xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
36 
37 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
40 
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
44 
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
49 
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p)					\
52 do {									\
53 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
54 	smp_mb__after_unlock_lock();					\
55 } while (0)
56 
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58 
59 #define spin_lock_irq_rcu_node(p)					\
60 do {									\
61 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_irq_rcu_node(p)					\
66 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67 
68 #define spin_lock_irqsave_rcu_node(p, flags)			\
69 do {									\
70 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
71 	smp_mb__after_unlock_lock();					\
72 } while (0)
73 
74 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
75 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
76 
77 /*
78  * Initialize SRCU combining tree.  Note that statically allocated
79  * srcu_struct structures might already have srcu_read_lock() and
80  * srcu_read_unlock() running against them.  So if the is_static parameter
81  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82  */
83 static void init_srcu_struct_nodes(struct srcu_struct *ssp)
84 {
85 	int cpu;
86 	int i;
87 	int level = 0;
88 	int levelspread[RCU_NUM_LVLS];
89 	struct srcu_data *sdp;
90 	struct srcu_node *snp;
91 	struct srcu_node *snp_first;
92 
93 	/* Initialize geometry if it has not already been initialized. */
94 	rcu_init_geometry();
95 
96 	/* Work out the overall tree geometry. */
97 	ssp->level[0] = &ssp->node[0];
98 	for (i = 1; i < rcu_num_lvls; i++)
99 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
100 	rcu_init_levelspread(levelspread, num_rcu_lvl);
101 
102 	/* Each pass through this loop initializes one srcu_node structure. */
103 	srcu_for_each_node_breadth_first(ssp, snp) {
104 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
105 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
106 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
107 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
108 			snp->srcu_have_cbs[i] = 0;
109 			snp->srcu_data_have_cbs[i] = 0;
110 		}
111 		snp->srcu_gp_seq_needed_exp = 0;
112 		snp->grplo = -1;
113 		snp->grphi = -1;
114 		if (snp == &ssp->node[0]) {
115 			/* Root node, special case. */
116 			snp->srcu_parent = NULL;
117 			continue;
118 		}
119 
120 		/* Non-root node. */
121 		if (snp == ssp->level[level + 1])
122 			level++;
123 		snp->srcu_parent = ssp->level[level - 1] +
124 				   (snp - ssp->level[level]) /
125 				   levelspread[level - 1];
126 	}
127 
128 	/*
129 	 * Initialize the per-CPU srcu_data array, which feeds into the
130 	 * leaves of the srcu_node tree.
131 	 */
132 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
133 		     ARRAY_SIZE(sdp->srcu_unlock_count));
134 	level = rcu_num_lvls - 1;
135 	snp_first = ssp->level[level];
136 	for_each_possible_cpu(cpu) {
137 		sdp = per_cpu_ptr(ssp->sda, cpu);
138 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
139 		rcu_segcblist_init(&sdp->srcu_cblist);
140 		sdp->srcu_cblist_invoking = false;
141 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
142 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
143 		sdp->mynode = &snp_first[cpu / levelspread[level]];
144 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
145 			if (snp->grplo < 0)
146 				snp->grplo = cpu;
147 			snp->grphi = cpu;
148 		}
149 		sdp->cpu = cpu;
150 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
151 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
152 		sdp->ssp = ssp;
153 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
154 	}
155 }
156 
157 /*
158  * Initialize non-compile-time initialized fields, including the
159  * associated srcu_node and srcu_data structures.  The is_static
160  * parameter is passed through to init_srcu_struct_nodes(), and
161  * also tells us that ->sda has already been wired up to srcu_data.
162  */
163 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
164 {
165 	mutex_init(&ssp->srcu_cb_mutex);
166 	mutex_init(&ssp->srcu_gp_mutex);
167 	ssp->srcu_idx = 0;
168 	ssp->srcu_gp_seq = 0;
169 	ssp->srcu_barrier_seq = 0;
170 	mutex_init(&ssp->srcu_barrier_mutex);
171 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
172 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
173 	if (!is_static)
174 		ssp->sda = alloc_percpu(struct srcu_data);
175 	if (!ssp->sda)
176 		return -ENOMEM;
177 	init_srcu_struct_nodes(ssp);
178 	ssp->srcu_gp_seq_needed_exp = 0;
179 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
180 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
181 	return 0;
182 }
183 
184 #ifdef CONFIG_DEBUG_LOCK_ALLOC
185 
186 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
187 		       struct lock_class_key *key)
188 {
189 	/* Don't re-initialize a lock while it is held. */
190 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
191 	lockdep_init_map(&ssp->dep_map, name, key, 0);
192 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
193 	return init_srcu_struct_fields(ssp, false);
194 }
195 EXPORT_SYMBOL_GPL(__init_srcu_struct);
196 
197 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
198 
199 /**
200  * init_srcu_struct - initialize a sleep-RCU structure
201  * @ssp: structure to initialize.
202  *
203  * Must invoke this on a given srcu_struct before passing that srcu_struct
204  * to any other function.  Each srcu_struct represents a separate domain
205  * of SRCU protection.
206  */
207 int init_srcu_struct(struct srcu_struct *ssp)
208 {
209 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
210 	return init_srcu_struct_fields(ssp, false);
211 }
212 EXPORT_SYMBOL_GPL(init_srcu_struct);
213 
214 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
215 
216 /*
217  * First-use initialization of statically allocated srcu_struct
218  * structure.  Wiring up the combining tree is more than can be
219  * done with compile-time initialization, so this check is added
220  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
221  * compile-time initialized, to resolve races involving multiple
222  * CPUs trying to garner first-use privileges.
223  */
224 static void check_init_srcu_struct(struct srcu_struct *ssp)
225 {
226 	unsigned long flags;
227 
228 	/* The smp_load_acquire() pairs with the smp_store_release(). */
229 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
230 		return; /* Already initialized. */
231 	spin_lock_irqsave_rcu_node(ssp, flags);
232 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
233 		spin_unlock_irqrestore_rcu_node(ssp, flags);
234 		return;
235 	}
236 	init_srcu_struct_fields(ssp, true);
237 	spin_unlock_irqrestore_rcu_node(ssp, flags);
238 }
239 
240 /*
241  * Returns approximate total of the readers' ->srcu_lock_count[] values
242  * for the rank of per-CPU counters specified by idx.
243  */
244 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
245 {
246 	int cpu;
247 	unsigned long sum = 0;
248 
249 	for_each_possible_cpu(cpu) {
250 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
251 
252 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
253 	}
254 	return sum;
255 }
256 
257 /*
258  * Returns approximate total of the readers' ->srcu_unlock_count[] values
259  * for the rank of per-CPU counters specified by idx.
260  */
261 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
262 {
263 	int cpu;
264 	unsigned long sum = 0;
265 
266 	for_each_possible_cpu(cpu) {
267 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
268 
269 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
270 	}
271 	return sum;
272 }
273 
274 /*
275  * Return true if the number of pre-existing readers is determined to
276  * be zero.
277  */
278 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
279 {
280 	unsigned long unlocks;
281 
282 	unlocks = srcu_readers_unlock_idx(ssp, idx);
283 
284 	/*
285 	 * Make sure that a lock is always counted if the corresponding
286 	 * unlock is counted. Needs to be a smp_mb() as the read side may
287 	 * contain a read from a variable that is written to before the
288 	 * synchronize_srcu() in the write side. In this case smp_mb()s
289 	 * A and B act like the store buffering pattern.
290 	 *
291 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
292 	 * after the synchronize_srcu() from being executed before the
293 	 * grace period ends.
294 	 */
295 	smp_mb(); /* A */
296 
297 	/*
298 	 * If the locks are the same as the unlocks, then there must have
299 	 * been no readers on this index at some time in between. This does
300 	 * not mean that there are no more readers, as one could have read
301 	 * the current index but not have incremented the lock counter yet.
302 	 *
303 	 * So suppose that the updater is preempted here for so long
304 	 * that more than ULONG_MAX non-nested readers come and go in
305 	 * the meantime.  It turns out that this cannot result in overflow
306 	 * because if a reader modifies its unlock count after we read it
307 	 * above, then that reader's next load of ->srcu_idx is guaranteed
308 	 * to get the new value, which will cause it to operate on the
309 	 * other bank of counters, where it cannot contribute to the
310 	 * overflow of these counters.  This means that there is a maximum
311 	 * of 2*NR_CPUS increments, which cannot overflow given current
312 	 * systems, especially not on 64-bit systems.
313 	 *
314 	 * OK, how about nesting?  This does impose a limit on nesting
315 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
316 	 * especially on 64-bit systems.
317 	 */
318 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
319 }
320 
321 /**
322  * srcu_readers_active - returns true if there are readers. and false
323  *                       otherwise
324  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
325  *
326  * Note that this is not an atomic primitive, and can therefore suffer
327  * severe errors when invoked on an active srcu_struct.  That said, it
328  * can be useful as an error check at cleanup time.
329  */
330 static bool srcu_readers_active(struct srcu_struct *ssp)
331 {
332 	int cpu;
333 	unsigned long sum = 0;
334 
335 	for_each_possible_cpu(cpu) {
336 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
337 
338 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
339 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
340 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
341 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
342 	}
343 	return sum;
344 }
345 
346 #define SRCU_INTERVAL		1
347 
348 /*
349  * Return grace-period delay, zero if there are expedited grace
350  * periods pending, SRCU_INTERVAL otherwise.
351  */
352 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
353 {
354 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
355 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
356 		return 0;
357 	return SRCU_INTERVAL;
358 }
359 
360 /**
361  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
362  * @ssp: structure to clean up.
363  *
364  * Must invoke this after you are finished using a given srcu_struct that
365  * was initialized via init_srcu_struct(), else you leak memory.
366  */
367 void cleanup_srcu_struct(struct srcu_struct *ssp)
368 {
369 	int cpu;
370 
371 	if (WARN_ON(!srcu_get_delay(ssp)))
372 		return; /* Just leak it! */
373 	if (WARN_ON(srcu_readers_active(ssp)))
374 		return; /* Just leak it! */
375 	flush_delayed_work(&ssp->work);
376 	for_each_possible_cpu(cpu) {
377 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
378 
379 		del_timer_sync(&sdp->delay_work);
380 		flush_work(&sdp->work);
381 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
382 			return; /* Forgot srcu_barrier(), so just leak it! */
383 	}
384 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
385 	    WARN_ON(srcu_readers_active(ssp))) {
386 		pr_info("%s: Active srcu_struct %p state: %d\n",
387 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
388 		return; /* Caller forgot to stop doing call_srcu()? */
389 	}
390 	free_percpu(ssp->sda);
391 	ssp->sda = NULL;
392 }
393 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
394 
395 /*
396  * Counts the new reader in the appropriate per-CPU element of the
397  * srcu_struct.
398  * Returns an index that must be passed to the matching srcu_read_unlock().
399  */
400 int __srcu_read_lock(struct srcu_struct *ssp)
401 {
402 	int idx;
403 
404 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
405 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
406 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
407 	return idx;
408 }
409 EXPORT_SYMBOL_GPL(__srcu_read_lock);
410 
411 /*
412  * Removes the count for the old reader from the appropriate per-CPU
413  * element of the srcu_struct.  Note that this may well be a different
414  * CPU than that which was incremented by the corresponding srcu_read_lock().
415  */
416 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
417 {
418 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
419 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
420 }
421 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
422 
423 /*
424  * We use an adaptive strategy for synchronize_srcu() and especially for
425  * synchronize_srcu_expedited().  We spin for a fixed time period
426  * (defined below) to allow SRCU readers to exit their read-side critical
427  * sections.  If there are still some readers after a few microseconds,
428  * we repeatedly block for 1-millisecond time periods.
429  */
430 #define SRCU_RETRY_CHECK_DELAY		5
431 
432 /*
433  * Start an SRCU grace period.
434  */
435 static void srcu_gp_start(struct srcu_struct *ssp)
436 {
437 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
438 	int state;
439 
440 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
441 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
442 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
443 	rcu_segcblist_advance(&sdp->srcu_cblist,
444 			      rcu_seq_current(&ssp->srcu_gp_seq));
445 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
446 				       rcu_seq_snap(&ssp->srcu_gp_seq));
447 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
448 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
449 	rcu_seq_start(&ssp->srcu_gp_seq);
450 	state = rcu_seq_state(ssp->srcu_gp_seq);
451 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
452 }
453 
454 
455 static void srcu_delay_timer(struct timer_list *t)
456 {
457 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
458 
459 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
460 }
461 
462 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
463 				       unsigned long delay)
464 {
465 	if (!delay) {
466 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
467 		return;
468 	}
469 
470 	timer_reduce(&sdp->delay_work, jiffies + delay);
471 }
472 
473 /*
474  * Schedule callback invocation for the specified srcu_data structure,
475  * if possible, on the corresponding CPU.
476  */
477 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
478 {
479 	srcu_queue_delayed_work_on(sdp, delay);
480 }
481 
482 /*
483  * Schedule callback invocation for all srcu_data structures associated
484  * with the specified srcu_node structure that have callbacks for the
485  * just-completed grace period, the one corresponding to idx.  If possible,
486  * schedule this invocation on the corresponding CPUs.
487  */
488 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
489 				  unsigned long mask, unsigned long delay)
490 {
491 	int cpu;
492 
493 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
494 		if (!(mask & (1 << (cpu - snp->grplo))))
495 			continue;
496 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
497 	}
498 }
499 
500 /*
501  * Note the end of an SRCU grace period.  Initiates callback invocation
502  * and starts a new grace period if needed.
503  *
504  * The ->srcu_cb_mutex acquisition does not protect any data, but
505  * instead prevents more than one grace period from starting while we
506  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
507  * array to have a finite number of elements.
508  */
509 static void srcu_gp_end(struct srcu_struct *ssp)
510 {
511 	unsigned long cbdelay;
512 	bool cbs;
513 	bool last_lvl;
514 	int cpu;
515 	unsigned long flags;
516 	unsigned long gpseq;
517 	int idx;
518 	unsigned long mask;
519 	struct srcu_data *sdp;
520 	struct srcu_node *snp;
521 
522 	/* Prevent more than one additional grace period. */
523 	mutex_lock(&ssp->srcu_cb_mutex);
524 
525 	/* End the current grace period. */
526 	spin_lock_irq_rcu_node(ssp);
527 	idx = rcu_seq_state(ssp->srcu_gp_seq);
528 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
529 	cbdelay = srcu_get_delay(ssp);
530 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
531 	rcu_seq_end(&ssp->srcu_gp_seq);
532 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
533 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
534 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
535 	spin_unlock_irq_rcu_node(ssp);
536 	mutex_unlock(&ssp->srcu_gp_mutex);
537 	/* A new grace period can start at this point.  But only one. */
538 
539 	/* Initiate callback invocation as needed. */
540 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
541 	srcu_for_each_node_breadth_first(ssp, snp) {
542 		spin_lock_irq_rcu_node(snp);
543 		cbs = false;
544 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
545 		if (last_lvl)
546 			cbs = snp->srcu_have_cbs[idx] == gpseq;
547 		snp->srcu_have_cbs[idx] = gpseq;
548 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
549 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
550 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
551 		mask = snp->srcu_data_have_cbs[idx];
552 		snp->srcu_data_have_cbs[idx] = 0;
553 		spin_unlock_irq_rcu_node(snp);
554 		if (cbs)
555 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
556 
557 		/* Occasionally prevent srcu_data counter wrap. */
558 		if (!(gpseq & counter_wrap_check) && last_lvl)
559 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
560 				sdp = per_cpu_ptr(ssp->sda, cpu);
561 				spin_lock_irqsave_rcu_node(sdp, flags);
562 				if (ULONG_CMP_GE(gpseq,
563 						 sdp->srcu_gp_seq_needed + 100))
564 					sdp->srcu_gp_seq_needed = gpseq;
565 				if (ULONG_CMP_GE(gpseq,
566 						 sdp->srcu_gp_seq_needed_exp + 100))
567 					sdp->srcu_gp_seq_needed_exp = gpseq;
568 				spin_unlock_irqrestore_rcu_node(sdp, flags);
569 			}
570 	}
571 
572 	/* Callback initiation done, allow grace periods after next. */
573 	mutex_unlock(&ssp->srcu_cb_mutex);
574 
575 	/* Start a new grace period if needed. */
576 	spin_lock_irq_rcu_node(ssp);
577 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
578 	if (!rcu_seq_state(gpseq) &&
579 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
580 		srcu_gp_start(ssp);
581 		spin_unlock_irq_rcu_node(ssp);
582 		srcu_reschedule(ssp, 0);
583 	} else {
584 		spin_unlock_irq_rcu_node(ssp);
585 	}
586 }
587 
588 /*
589  * Funnel-locking scheme to scalably mediate many concurrent expedited
590  * grace-period requests.  This function is invoked for the first known
591  * expedited request for a grace period that has already been requested,
592  * but without expediting.  To start a completely new grace period,
593  * whether expedited or not, use srcu_funnel_gp_start() instead.
594  */
595 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
596 				  unsigned long s)
597 {
598 	unsigned long flags;
599 
600 	for (; snp != NULL; snp = snp->srcu_parent) {
601 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
602 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
603 			return;
604 		spin_lock_irqsave_rcu_node(snp, flags);
605 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
606 			spin_unlock_irqrestore_rcu_node(snp, flags);
607 			return;
608 		}
609 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
610 		spin_unlock_irqrestore_rcu_node(snp, flags);
611 	}
612 	spin_lock_irqsave_rcu_node(ssp, flags);
613 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
614 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
615 	spin_unlock_irqrestore_rcu_node(ssp, flags);
616 }
617 
618 /*
619  * Funnel-locking scheme to scalably mediate many concurrent grace-period
620  * requests.  The winner has to do the work of actually starting grace
621  * period s.  Losers must either ensure that their desired grace-period
622  * number is recorded on at least their leaf srcu_node structure, or they
623  * must take steps to invoke their own callbacks.
624  *
625  * Note that this function also does the work of srcu_funnel_exp_start(),
626  * in some cases by directly invoking it.
627  */
628 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
629 				 unsigned long s, bool do_norm)
630 {
631 	unsigned long flags;
632 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
633 	struct srcu_node *snp = sdp->mynode;
634 	unsigned long snp_seq;
635 
636 	/* Each pass through the loop does one level of the srcu_node tree. */
637 	for (; snp != NULL; snp = snp->srcu_parent) {
638 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
639 			return; /* GP already done and CBs recorded. */
640 		spin_lock_irqsave_rcu_node(snp, flags);
641 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
642 			snp_seq = snp->srcu_have_cbs[idx];
643 			if (snp == sdp->mynode && snp_seq == s)
644 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
645 			spin_unlock_irqrestore_rcu_node(snp, flags);
646 			if (snp == sdp->mynode && snp_seq != s) {
647 				srcu_schedule_cbs_sdp(sdp, do_norm
648 							   ? SRCU_INTERVAL
649 							   : 0);
650 				return;
651 			}
652 			if (!do_norm)
653 				srcu_funnel_exp_start(ssp, snp, s);
654 			return;
655 		}
656 		snp->srcu_have_cbs[idx] = s;
657 		if (snp == sdp->mynode)
658 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
659 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
660 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
661 		spin_unlock_irqrestore_rcu_node(snp, flags);
662 	}
663 
664 	/* Top of tree, must ensure the grace period will be started. */
665 	spin_lock_irqsave_rcu_node(ssp, flags);
666 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
667 		/*
668 		 * Record need for grace period s.  Pair with load
669 		 * acquire setting up for initialization.
670 		 */
671 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
672 	}
673 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
674 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
675 
676 	/* If grace period not already done and none in progress, start it. */
677 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
678 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
679 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
680 		srcu_gp_start(ssp);
681 		if (likely(srcu_init_done))
682 			queue_delayed_work(rcu_gp_wq, &ssp->work,
683 					   srcu_get_delay(ssp));
684 		else if (list_empty(&ssp->work.work.entry))
685 			list_add(&ssp->work.work.entry, &srcu_boot_list);
686 	}
687 	spin_unlock_irqrestore_rcu_node(ssp, flags);
688 }
689 
690 /*
691  * Wait until all readers counted by array index idx complete, but
692  * loop an additional time if there is an expedited grace period pending.
693  * The caller must ensure that ->srcu_idx is not changed while checking.
694  */
695 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
696 {
697 	for (;;) {
698 		if (srcu_readers_active_idx_check(ssp, idx))
699 			return true;
700 		if (--trycount + !srcu_get_delay(ssp) <= 0)
701 			return false;
702 		udelay(SRCU_RETRY_CHECK_DELAY);
703 	}
704 }
705 
706 /*
707  * Increment the ->srcu_idx counter so that future SRCU readers will
708  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
709  * us to wait for pre-existing readers in a starvation-free manner.
710  */
711 static void srcu_flip(struct srcu_struct *ssp)
712 {
713 	/*
714 	 * Ensure that if this updater saw a given reader's increment
715 	 * from __srcu_read_lock(), that reader was using an old value
716 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
717 	 * new value of ->srcu_idx, this updater's earlier scans cannot
718 	 * have seen that reader's increments (which is OK, because this
719 	 * grace period need not wait on that reader).
720 	 */
721 	smp_mb(); /* E */  /* Pairs with B and C. */
722 
723 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
724 
725 	/*
726 	 * Ensure that if the updater misses an __srcu_read_unlock()
727 	 * increment, that task's next __srcu_read_lock() will see the
728 	 * above counter update.  Note that both this memory barrier
729 	 * and the one in srcu_readers_active_idx_check() provide the
730 	 * guarantee for __srcu_read_lock().
731 	 */
732 	smp_mb(); /* D */  /* Pairs with C. */
733 }
734 
735 /*
736  * If SRCU is likely idle, return true, otherwise return false.
737  *
738  * Note that it is OK for several current from-idle requests for a new
739  * grace period from idle to specify expediting because they will all end
740  * up requesting the same grace period anyhow.  So no loss.
741  *
742  * Note also that if any CPU (including the current one) is still invoking
743  * callbacks, this function will nevertheless say "idle".  This is not
744  * ideal, but the overhead of checking all CPUs' callback lists is even
745  * less ideal, especially on large systems.  Furthermore, the wakeup
746  * can happen before the callback is fully removed, so we have no choice
747  * but to accept this type of error.
748  *
749  * This function is also subject to counter-wrap errors, but let's face
750  * it, if this function was preempted for enough time for the counters
751  * to wrap, it really doesn't matter whether or not we expedite the grace
752  * period.  The extra overhead of a needlessly expedited grace period is
753  * negligible when amortized over that time period, and the extra latency
754  * of a needlessly non-expedited grace period is similarly negligible.
755  */
756 static bool srcu_might_be_idle(struct srcu_struct *ssp)
757 {
758 	unsigned long curseq;
759 	unsigned long flags;
760 	struct srcu_data *sdp;
761 	unsigned long t;
762 	unsigned long tlast;
763 
764 	check_init_srcu_struct(ssp);
765 	/* If the local srcu_data structure has callbacks, not idle.  */
766 	sdp = raw_cpu_ptr(ssp->sda);
767 	spin_lock_irqsave_rcu_node(sdp, flags);
768 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
769 		spin_unlock_irqrestore_rcu_node(sdp, flags);
770 		return false; /* Callbacks already present, so not idle. */
771 	}
772 	spin_unlock_irqrestore_rcu_node(sdp, flags);
773 
774 	/*
775 	 * No local callbacks, so probabilistically probe global state.
776 	 * Exact information would require acquiring locks, which would
777 	 * kill scalability, hence the probabilistic nature of the probe.
778 	 */
779 
780 	/* First, see if enough time has passed since the last GP. */
781 	t = ktime_get_mono_fast_ns();
782 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
783 	if (exp_holdoff == 0 ||
784 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
785 		return false; /* Too soon after last GP. */
786 
787 	/* Next, check for probable idleness. */
788 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
789 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
790 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
791 		return false; /* Grace period in progress, so not idle. */
792 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
793 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
794 		return false; /* GP # changed, so not idle. */
795 	return true; /* With reasonable probability, idle! */
796 }
797 
798 /*
799  * SRCU callback function to leak a callback.
800  */
801 static void srcu_leak_callback(struct rcu_head *rhp)
802 {
803 }
804 
805 /*
806  * Start an SRCU grace period, and also queue the callback if non-NULL.
807  */
808 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
809 					     struct rcu_head *rhp, bool do_norm)
810 {
811 	unsigned long flags;
812 	int idx;
813 	bool needexp = false;
814 	bool needgp = false;
815 	unsigned long s;
816 	struct srcu_data *sdp;
817 
818 	check_init_srcu_struct(ssp);
819 	idx = srcu_read_lock(ssp);
820 	sdp = raw_cpu_ptr(ssp->sda);
821 	spin_lock_irqsave_rcu_node(sdp, flags);
822 	if (rhp)
823 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
824 	rcu_segcblist_advance(&sdp->srcu_cblist,
825 			      rcu_seq_current(&ssp->srcu_gp_seq));
826 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
827 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
828 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
829 		sdp->srcu_gp_seq_needed = s;
830 		needgp = true;
831 	}
832 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
833 		sdp->srcu_gp_seq_needed_exp = s;
834 		needexp = true;
835 	}
836 	spin_unlock_irqrestore_rcu_node(sdp, flags);
837 	if (needgp)
838 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
839 	else if (needexp)
840 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
841 	srcu_read_unlock(ssp, idx);
842 	return s;
843 }
844 
845 /*
846  * Enqueue an SRCU callback on the srcu_data structure associated with
847  * the current CPU and the specified srcu_struct structure, initiating
848  * grace-period processing if it is not already running.
849  *
850  * Note that all CPUs must agree that the grace period extended beyond
851  * all pre-existing SRCU read-side critical section.  On systems with
852  * more than one CPU, this means that when "func()" is invoked, each CPU
853  * is guaranteed to have executed a full memory barrier since the end of
854  * its last corresponding SRCU read-side critical section whose beginning
855  * preceded the call to call_srcu().  It also means that each CPU executing
856  * an SRCU read-side critical section that continues beyond the start of
857  * "func()" must have executed a memory barrier after the call_srcu()
858  * but before the beginning of that SRCU read-side critical section.
859  * Note that these guarantees include CPUs that are offline, idle, or
860  * executing in user mode, as well as CPUs that are executing in the kernel.
861  *
862  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
863  * resulting SRCU callback function "func()", then both CPU A and CPU
864  * B are guaranteed to execute a full memory barrier during the time
865  * interval between the call to call_srcu() and the invocation of "func()".
866  * This guarantee applies even if CPU A and CPU B are the same CPU (but
867  * again only if the system has more than one CPU).
868  *
869  * Of course, these guarantees apply only for invocations of call_srcu(),
870  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
871  * srcu_struct structure.
872  */
873 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
874 			rcu_callback_t func, bool do_norm)
875 {
876 	if (debug_rcu_head_queue(rhp)) {
877 		/* Probable double call_srcu(), so leak the callback. */
878 		WRITE_ONCE(rhp->func, srcu_leak_callback);
879 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
880 		return;
881 	}
882 	rhp->func = func;
883 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
884 }
885 
886 /**
887  * call_srcu() - Queue a callback for invocation after an SRCU grace period
888  * @ssp: srcu_struct in queue the callback
889  * @rhp: structure to be used for queueing the SRCU callback.
890  * @func: function to be invoked after the SRCU grace period
891  *
892  * The callback function will be invoked some time after a full SRCU
893  * grace period elapses, in other words after all pre-existing SRCU
894  * read-side critical sections have completed.  However, the callback
895  * function might well execute concurrently with other SRCU read-side
896  * critical sections that started after call_srcu() was invoked.  SRCU
897  * read-side critical sections are delimited by srcu_read_lock() and
898  * srcu_read_unlock(), and may be nested.
899  *
900  * The callback will be invoked from process context, but must nevertheless
901  * be fast and must not block.
902  */
903 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
904 	       rcu_callback_t func)
905 {
906 	__call_srcu(ssp, rhp, func, true);
907 }
908 EXPORT_SYMBOL_GPL(call_srcu);
909 
910 /*
911  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
912  */
913 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
914 {
915 	struct rcu_synchronize rcu;
916 
917 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
918 			 lock_is_held(&rcu_bh_lock_map) ||
919 			 lock_is_held(&rcu_lock_map) ||
920 			 lock_is_held(&rcu_sched_lock_map),
921 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
922 
923 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
924 		return;
925 	might_sleep();
926 	check_init_srcu_struct(ssp);
927 	init_completion(&rcu.completion);
928 	init_rcu_head_on_stack(&rcu.head);
929 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
930 	wait_for_completion(&rcu.completion);
931 	destroy_rcu_head_on_stack(&rcu.head);
932 
933 	/*
934 	 * Make sure that later code is ordered after the SRCU grace
935 	 * period.  This pairs with the spin_lock_irq_rcu_node()
936 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
937 	 * because the current CPU might have been totally uninvolved with
938 	 * (and thus unordered against) that grace period.
939 	 */
940 	smp_mb();
941 }
942 
943 /**
944  * synchronize_srcu_expedited - Brute-force SRCU grace period
945  * @ssp: srcu_struct with which to synchronize.
946  *
947  * Wait for an SRCU grace period to elapse, but be more aggressive about
948  * spinning rather than blocking when waiting.
949  *
950  * Note that synchronize_srcu_expedited() has the same deadlock and
951  * memory-ordering properties as does synchronize_srcu().
952  */
953 void synchronize_srcu_expedited(struct srcu_struct *ssp)
954 {
955 	__synchronize_srcu(ssp, rcu_gp_is_normal());
956 }
957 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
958 
959 /**
960  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
961  * @ssp: srcu_struct with which to synchronize.
962  *
963  * Wait for the count to drain to zero of both indexes. To avoid the
964  * possible starvation of synchronize_srcu(), it waits for the count of
965  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
966  * and then flip the srcu_idx and wait for the count of the other index.
967  *
968  * Can block; must be called from process context.
969  *
970  * Note that it is illegal to call synchronize_srcu() from the corresponding
971  * SRCU read-side critical section; doing so will result in deadlock.
972  * However, it is perfectly legal to call synchronize_srcu() on one
973  * srcu_struct from some other srcu_struct's read-side critical section,
974  * as long as the resulting graph of srcu_structs is acyclic.
975  *
976  * There are memory-ordering constraints implied by synchronize_srcu().
977  * On systems with more than one CPU, when synchronize_srcu() returns,
978  * each CPU is guaranteed to have executed a full memory barrier since
979  * the end of its last corresponding SRCU read-side critical section
980  * whose beginning preceded the call to synchronize_srcu().  In addition,
981  * each CPU having an SRCU read-side critical section that extends beyond
982  * the return from synchronize_srcu() is guaranteed to have executed a
983  * full memory barrier after the beginning of synchronize_srcu() and before
984  * the beginning of that SRCU read-side critical section.  Note that these
985  * guarantees include CPUs that are offline, idle, or executing in user mode,
986  * as well as CPUs that are executing in the kernel.
987  *
988  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
989  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
990  * to have executed a full memory barrier during the execution of
991  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
992  * are the same CPU, but again only if the system has more than one CPU.
993  *
994  * Of course, these memory-ordering guarantees apply only when
995  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
996  * passed the same srcu_struct structure.
997  *
998  * Implementation of these memory-ordering guarantees is similar to
999  * that of synchronize_rcu().
1000  *
1001  * If SRCU is likely idle, expedite the first request.  This semantic
1002  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1003  * SRCU must also provide it.  Note that detecting idleness is heuristic
1004  * and subject to both false positives and negatives.
1005  */
1006 void synchronize_srcu(struct srcu_struct *ssp)
1007 {
1008 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1009 		synchronize_srcu_expedited(ssp);
1010 	else
1011 		__synchronize_srcu(ssp, true);
1012 }
1013 EXPORT_SYMBOL_GPL(synchronize_srcu);
1014 
1015 /**
1016  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1017  * @ssp: srcu_struct to provide cookie for.
1018  *
1019  * This function returns a cookie that can be passed to
1020  * poll_state_synchronize_srcu(), which will return true if a full grace
1021  * period has elapsed in the meantime.  It is the caller's responsibility
1022  * to make sure that grace period happens, for example, by invoking
1023  * call_srcu() after return from get_state_synchronize_srcu().
1024  */
1025 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1026 {
1027 	// Any prior manipulation of SRCU-protected data must happen
1028 	// before the load from ->srcu_gp_seq.
1029 	smp_mb();
1030 	return rcu_seq_snap(&ssp->srcu_gp_seq);
1031 }
1032 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1033 
1034 /**
1035  * start_poll_synchronize_srcu - Provide cookie and start grace period
1036  * @ssp: srcu_struct to provide cookie for.
1037  *
1038  * This function returns a cookie that can be passed to
1039  * poll_state_synchronize_srcu(), which will return true if a full grace
1040  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1041  * this function also ensures that any needed SRCU grace period will be
1042  * started.  This convenience does come at a cost in terms of CPU overhead.
1043  */
1044 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1045 {
1046 	return srcu_gp_start_if_needed(ssp, NULL, true);
1047 }
1048 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1049 
1050 /**
1051  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1052  * @ssp: srcu_struct to provide cookie for.
1053  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1054  *
1055  * This function takes the cookie that was returned from either
1056  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1057  * returns @true if an SRCU grace period elapsed since the time that the
1058  * cookie was created.
1059  *
1060  * Because cookies are finite in size, wrapping/overflow is possible.
1061  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1062  * where in theory wrapping could happen in about 14 hours assuming
1063  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1064  * overflow lower bound is on the order of 24 days in the case of
1065  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1066  * system requires geologic timespans, as in more than seven million years
1067  * even for expedited SRCU grace periods.
1068  *
1069  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1070  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1071  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1072  * few minutes.  If this proves to be a problem, this counter will be
1073  * expanded to the same size as for Tree SRCU.
1074  */
1075 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1076 {
1077 	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1078 		return false;
1079 	// Ensure that the end of the SRCU grace period happens before
1080 	// any subsequent code that the caller might execute.
1081 	smp_mb(); // ^^^
1082 	return true;
1083 }
1084 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1085 
1086 /*
1087  * Callback function for srcu_barrier() use.
1088  */
1089 static void srcu_barrier_cb(struct rcu_head *rhp)
1090 {
1091 	struct srcu_data *sdp;
1092 	struct srcu_struct *ssp;
1093 
1094 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1095 	ssp = sdp->ssp;
1096 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1097 		complete(&ssp->srcu_barrier_completion);
1098 }
1099 
1100 /**
1101  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1102  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1103  */
1104 void srcu_barrier(struct srcu_struct *ssp)
1105 {
1106 	int cpu;
1107 	struct srcu_data *sdp;
1108 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1109 
1110 	check_init_srcu_struct(ssp);
1111 	mutex_lock(&ssp->srcu_barrier_mutex);
1112 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1113 		smp_mb(); /* Force ordering following return. */
1114 		mutex_unlock(&ssp->srcu_barrier_mutex);
1115 		return; /* Someone else did our work for us. */
1116 	}
1117 	rcu_seq_start(&ssp->srcu_barrier_seq);
1118 	init_completion(&ssp->srcu_barrier_completion);
1119 
1120 	/* Initial count prevents reaching zero until all CBs are posted. */
1121 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1122 
1123 	/*
1124 	 * Each pass through this loop enqueues a callback, but only
1125 	 * on CPUs already having callbacks enqueued.  Note that if
1126 	 * a CPU already has callbacks enqueue, it must have already
1127 	 * registered the need for a future grace period, so all we
1128 	 * need do is enqueue a callback that will use the same
1129 	 * grace period as the last callback already in the queue.
1130 	 */
1131 	for_each_possible_cpu(cpu) {
1132 		sdp = per_cpu_ptr(ssp->sda, cpu);
1133 		spin_lock_irq_rcu_node(sdp);
1134 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1135 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1136 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1137 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1138 					   &sdp->srcu_barrier_head)) {
1139 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1140 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1141 		}
1142 		spin_unlock_irq_rcu_node(sdp);
1143 	}
1144 
1145 	/* Remove the initial count, at which point reaching zero can happen. */
1146 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1147 		complete(&ssp->srcu_barrier_completion);
1148 	wait_for_completion(&ssp->srcu_barrier_completion);
1149 
1150 	rcu_seq_end(&ssp->srcu_barrier_seq);
1151 	mutex_unlock(&ssp->srcu_barrier_mutex);
1152 }
1153 EXPORT_SYMBOL_GPL(srcu_barrier);
1154 
1155 /**
1156  * srcu_batches_completed - return batches completed.
1157  * @ssp: srcu_struct on which to report batch completion.
1158  *
1159  * Report the number of batches, correlated with, but not necessarily
1160  * precisely the same as, the number of grace periods that have elapsed.
1161  */
1162 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1163 {
1164 	return READ_ONCE(ssp->srcu_idx);
1165 }
1166 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1167 
1168 /*
1169  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1170  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1171  * completed in that state.
1172  */
1173 static void srcu_advance_state(struct srcu_struct *ssp)
1174 {
1175 	int idx;
1176 
1177 	mutex_lock(&ssp->srcu_gp_mutex);
1178 
1179 	/*
1180 	 * Because readers might be delayed for an extended period after
1181 	 * fetching ->srcu_idx for their index, at any point in time there
1182 	 * might well be readers using both idx=0 and idx=1.  We therefore
1183 	 * need to wait for readers to clear from both index values before
1184 	 * invoking a callback.
1185 	 *
1186 	 * The load-acquire ensures that we see the accesses performed
1187 	 * by the prior grace period.
1188 	 */
1189 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1190 	if (idx == SRCU_STATE_IDLE) {
1191 		spin_lock_irq_rcu_node(ssp);
1192 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1193 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1194 			spin_unlock_irq_rcu_node(ssp);
1195 			mutex_unlock(&ssp->srcu_gp_mutex);
1196 			return;
1197 		}
1198 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1199 		if (idx == SRCU_STATE_IDLE)
1200 			srcu_gp_start(ssp);
1201 		spin_unlock_irq_rcu_node(ssp);
1202 		if (idx != SRCU_STATE_IDLE) {
1203 			mutex_unlock(&ssp->srcu_gp_mutex);
1204 			return; /* Someone else started the grace period. */
1205 		}
1206 	}
1207 
1208 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1209 		idx = 1 ^ (ssp->srcu_idx & 1);
1210 		if (!try_check_zero(ssp, idx, 1)) {
1211 			mutex_unlock(&ssp->srcu_gp_mutex);
1212 			return; /* readers present, retry later. */
1213 		}
1214 		srcu_flip(ssp);
1215 		spin_lock_irq_rcu_node(ssp);
1216 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1217 		spin_unlock_irq_rcu_node(ssp);
1218 	}
1219 
1220 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1221 
1222 		/*
1223 		 * SRCU read-side critical sections are normally short,
1224 		 * so check at least twice in quick succession after a flip.
1225 		 */
1226 		idx = 1 ^ (ssp->srcu_idx & 1);
1227 		if (!try_check_zero(ssp, idx, 2)) {
1228 			mutex_unlock(&ssp->srcu_gp_mutex);
1229 			return; /* readers present, retry later. */
1230 		}
1231 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1232 	}
1233 }
1234 
1235 /*
1236  * Invoke a limited number of SRCU callbacks that have passed through
1237  * their grace period.  If there are more to do, SRCU will reschedule
1238  * the workqueue.  Note that needed memory barriers have been executed
1239  * in this task's context by srcu_readers_active_idx_check().
1240  */
1241 static void srcu_invoke_callbacks(struct work_struct *work)
1242 {
1243 	long len;
1244 	bool more;
1245 	struct rcu_cblist ready_cbs;
1246 	struct rcu_head *rhp;
1247 	struct srcu_data *sdp;
1248 	struct srcu_struct *ssp;
1249 
1250 	sdp = container_of(work, struct srcu_data, work);
1251 
1252 	ssp = sdp->ssp;
1253 	rcu_cblist_init(&ready_cbs);
1254 	spin_lock_irq_rcu_node(sdp);
1255 	rcu_segcblist_advance(&sdp->srcu_cblist,
1256 			      rcu_seq_current(&ssp->srcu_gp_seq));
1257 	if (sdp->srcu_cblist_invoking ||
1258 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1259 		spin_unlock_irq_rcu_node(sdp);
1260 		return;  /* Someone else on the job or nothing to do. */
1261 	}
1262 
1263 	/* We are on the job!  Extract and invoke ready callbacks. */
1264 	sdp->srcu_cblist_invoking = true;
1265 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1266 	len = ready_cbs.len;
1267 	spin_unlock_irq_rcu_node(sdp);
1268 	rhp = rcu_cblist_dequeue(&ready_cbs);
1269 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1270 		debug_rcu_head_unqueue(rhp);
1271 		local_bh_disable();
1272 		rhp->func(rhp);
1273 		local_bh_enable();
1274 	}
1275 	WARN_ON_ONCE(ready_cbs.len);
1276 
1277 	/*
1278 	 * Update counts, accelerate new callbacks, and if needed,
1279 	 * schedule another round of callback invocation.
1280 	 */
1281 	spin_lock_irq_rcu_node(sdp);
1282 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1283 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1284 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1285 	sdp->srcu_cblist_invoking = false;
1286 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1287 	spin_unlock_irq_rcu_node(sdp);
1288 	if (more)
1289 		srcu_schedule_cbs_sdp(sdp, 0);
1290 }
1291 
1292 /*
1293  * Finished one round of SRCU grace period.  Start another if there are
1294  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1295  */
1296 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1297 {
1298 	bool pushgp = true;
1299 
1300 	spin_lock_irq_rcu_node(ssp);
1301 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1302 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1303 			/* All requests fulfilled, time to go idle. */
1304 			pushgp = false;
1305 		}
1306 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1307 		/* Outstanding request and no GP.  Start one. */
1308 		srcu_gp_start(ssp);
1309 	}
1310 	spin_unlock_irq_rcu_node(ssp);
1311 
1312 	if (pushgp)
1313 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1314 }
1315 
1316 /*
1317  * This is the work-queue function that handles SRCU grace periods.
1318  */
1319 static void process_srcu(struct work_struct *work)
1320 {
1321 	struct srcu_struct *ssp;
1322 
1323 	ssp = container_of(work, struct srcu_struct, work.work);
1324 
1325 	srcu_advance_state(ssp);
1326 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1327 }
1328 
1329 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1330 			     struct srcu_struct *ssp, int *flags,
1331 			     unsigned long *gp_seq)
1332 {
1333 	if (test_type != SRCU_FLAVOR)
1334 		return;
1335 	*flags = 0;
1336 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1337 }
1338 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1339 
1340 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1341 {
1342 	int cpu;
1343 	int idx;
1344 	unsigned long s0 = 0, s1 = 0;
1345 
1346 	idx = ssp->srcu_idx & 0x1;
1347 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1348 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1349 	for_each_possible_cpu(cpu) {
1350 		unsigned long l0, l1;
1351 		unsigned long u0, u1;
1352 		long c0, c1;
1353 		struct srcu_data *sdp;
1354 
1355 		sdp = per_cpu_ptr(ssp->sda, cpu);
1356 		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1357 		u1 = data_race(sdp->srcu_unlock_count[idx]);
1358 
1359 		/*
1360 		 * Make sure that a lock is always counted if the corresponding
1361 		 * unlock is counted.
1362 		 */
1363 		smp_rmb();
1364 
1365 		l0 = data_race(sdp->srcu_lock_count[!idx]);
1366 		l1 = data_race(sdp->srcu_lock_count[idx]);
1367 
1368 		c0 = l0 - u0;
1369 		c1 = l1 - u1;
1370 		pr_cont(" %d(%ld,%ld %c)",
1371 			cpu, c0, c1,
1372 			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1373 		s0 += c0;
1374 		s1 += c1;
1375 	}
1376 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1377 }
1378 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1379 
1380 static int __init srcu_bootup_announce(void)
1381 {
1382 	pr_info("Hierarchical SRCU implementation.\n");
1383 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1384 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1385 	return 0;
1386 }
1387 early_initcall(srcu_bootup_announce);
1388 
1389 void __init srcu_init(void)
1390 {
1391 	struct srcu_struct *ssp;
1392 
1393 	/*
1394 	 * Once that is set, call_srcu() can follow the normal path and
1395 	 * queue delayed work. This must follow RCU workqueues creation
1396 	 * and timers initialization.
1397 	 */
1398 	srcu_init_done = true;
1399 	while (!list_empty(&srcu_boot_list)) {
1400 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1401 				      work.work.entry);
1402 		list_del_init(&ssp->work.work.entry);
1403 		queue_work(rcu_gp_wq, &ssp->work.work);
1404 	}
1405 }
1406 
1407 #ifdef CONFIG_MODULES
1408 
1409 /* Initialize any global-scope srcu_struct structures used by this module. */
1410 static int srcu_module_coming(struct module *mod)
1411 {
1412 	int i;
1413 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1414 	int ret;
1415 
1416 	for (i = 0; i < mod->num_srcu_structs; i++) {
1417 		ret = init_srcu_struct(*(sspp++));
1418 		if (WARN_ON_ONCE(ret))
1419 			return ret;
1420 	}
1421 	return 0;
1422 }
1423 
1424 /* Clean up any global-scope srcu_struct structures used by this module. */
1425 static void srcu_module_going(struct module *mod)
1426 {
1427 	int i;
1428 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1429 
1430 	for (i = 0; i < mod->num_srcu_structs; i++)
1431 		cleanup_srcu_struct(*(sspp++));
1432 }
1433 
1434 /* Handle one module, either coming or going. */
1435 static int srcu_module_notify(struct notifier_block *self,
1436 			      unsigned long val, void *data)
1437 {
1438 	struct module *mod = data;
1439 	int ret = 0;
1440 
1441 	switch (val) {
1442 	case MODULE_STATE_COMING:
1443 		ret = srcu_module_coming(mod);
1444 		break;
1445 	case MODULE_STATE_GOING:
1446 		srcu_module_going(mod);
1447 		break;
1448 	default:
1449 		break;
1450 	}
1451 	return ret;
1452 }
1453 
1454 static struct notifier_block srcu_module_nb = {
1455 	.notifier_call = srcu_module_notify,
1456 	.priority = 0,
1457 };
1458 
1459 static __init int init_srcu_module_notifier(void)
1460 {
1461 	int ret;
1462 
1463 	ret = register_module_notifier(&srcu_module_nb);
1464 	if (ret)
1465 		pr_warn("Failed to register srcu module notifier\n");
1466 	return ret;
1467 }
1468 late_initcall(init_srcu_module_notifier);
1469 
1470 #endif /* #ifdef CONFIG_MODULES */
1471