xref: /openbmc/linux/kernel/profile.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/profile.h>
25 #include <linux/highmem.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 
29 struct profile_hit {
30 	u32 pc, hits;
31 };
32 #define PROFILE_GRPSHIFT	3
33 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
34 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
35 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
36 
37 /* Oprofile timer tick hook */
38 int (*timer_hook)(struct pt_regs *);
39 
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 static int prof_on;
43 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
44 #ifdef CONFIG_SMP
45 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
46 static DEFINE_PER_CPU(int, cpu_profile_flip);
47 static DECLARE_MUTEX(profile_flip_mutex);
48 #endif /* CONFIG_SMP */
49 
50 static int __init profile_setup(char * str)
51 {
52 	int par;
53 
54 	if (!strncmp(str, "schedule", 8)) {
55 		prof_on = SCHED_PROFILING;
56 		printk(KERN_INFO "kernel schedule profiling enabled\n");
57 		if (str[7] == ',')
58 			str += 8;
59 	}
60 	if (get_option(&str,&par)) {
61 		prof_shift = par;
62 		prof_on = CPU_PROFILING;
63 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
64 			prof_shift);
65 	}
66 	return 1;
67 }
68 __setup("profile=", profile_setup);
69 
70 
71 void __init profile_init(void)
72 {
73 	if (!prof_on)
74 		return;
75 
76 	/* only text is profiled */
77 	prof_len = (_etext - _stext) >> prof_shift;
78 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
79 }
80 
81 /* Profile event notifications */
82 
83 #ifdef CONFIG_PROFILING
84 
85 static DECLARE_RWSEM(profile_rwsem);
86 static DEFINE_RWLOCK(handoff_lock);
87 static struct notifier_block * task_exit_notifier;
88 static struct notifier_block * task_free_notifier;
89 static struct notifier_block * munmap_notifier;
90 
91 void profile_task_exit(struct task_struct * task)
92 {
93 	down_read(&profile_rwsem);
94 	notifier_call_chain(&task_exit_notifier, 0, task);
95 	up_read(&profile_rwsem);
96 }
97 
98 int profile_handoff_task(struct task_struct * task)
99 {
100 	int ret;
101 	read_lock(&handoff_lock);
102 	ret = notifier_call_chain(&task_free_notifier, 0, task);
103 	read_unlock(&handoff_lock);
104 	return (ret == NOTIFY_OK) ? 1 : 0;
105 }
106 
107 void profile_munmap(unsigned long addr)
108 {
109 	down_read(&profile_rwsem);
110 	notifier_call_chain(&munmap_notifier, 0, (void *)addr);
111 	up_read(&profile_rwsem);
112 }
113 
114 int task_handoff_register(struct notifier_block * n)
115 {
116 	int err = -EINVAL;
117 
118 	write_lock(&handoff_lock);
119 	err = notifier_chain_register(&task_free_notifier, n);
120 	write_unlock(&handoff_lock);
121 	return err;
122 }
123 
124 int task_handoff_unregister(struct notifier_block * n)
125 {
126 	int err = -EINVAL;
127 
128 	write_lock(&handoff_lock);
129 	err = notifier_chain_unregister(&task_free_notifier, n);
130 	write_unlock(&handoff_lock);
131 	return err;
132 }
133 
134 int profile_event_register(enum profile_type type, struct notifier_block * n)
135 {
136 	int err = -EINVAL;
137 
138 	down_write(&profile_rwsem);
139 
140 	switch (type) {
141 		case PROFILE_TASK_EXIT:
142 			err = notifier_chain_register(&task_exit_notifier, n);
143 			break;
144 		case PROFILE_MUNMAP:
145 			err = notifier_chain_register(&munmap_notifier, n);
146 			break;
147 	}
148 
149 	up_write(&profile_rwsem);
150 
151 	return err;
152 }
153 
154 
155 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
156 {
157 	int err = -EINVAL;
158 
159 	down_write(&profile_rwsem);
160 
161 	switch (type) {
162 		case PROFILE_TASK_EXIT:
163 			err = notifier_chain_unregister(&task_exit_notifier, n);
164 			break;
165 		case PROFILE_MUNMAP:
166 			err = notifier_chain_unregister(&munmap_notifier, n);
167 			break;
168 	}
169 
170 	up_write(&profile_rwsem);
171 	return err;
172 }
173 
174 int register_timer_hook(int (*hook)(struct pt_regs *))
175 {
176 	if (timer_hook)
177 		return -EBUSY;
178 	timer_hook = hook;
179 	return 0;
180 }
181 
182 void unregister_timer_hook(int (*hook)(struct pt_regs *))
183 {
184 	WARN_ON(hook != timer_hook);
185 	timer_hook = NULL;
186 	/* make sure all CPUs see the NULL hook */
187 	synchronize_kernel();
188 }
189 
190 EXPORT_SYMBOL_GPL(register_timer_hook);
191 EXPORT_SYMBOL_GPL(unregister_timer_hook);
192 EXPORT_SYMBOL_GPL(task_handoff_register);
193 EXPORT_SYMBOL_GPL(task_handoff_unregister);
194 
195 #endif /* CONFIG_PROFILING */
196 
197 EXPORT_SYMBOL_GPL(profile_event_register);
198 EXPORT_SYMBOL_GPL(profile_event_unregister);
199 
200 #ifdef CONFIG_SMP
201 /*
202  * Each cpu has a pair of open-addressed hashtables for pending
203  * profile hits. read_profile() IPI's all cpus to request them
204  * to flip buffers and flushes their contents to prof_buffer itself.
205  * Flip requests are serialized by the profile_flip_mutex. The sole
206  * use of having a second hashtable is for avoiding cacheline
207  * contention that would otherwise happen during flushes of pending
208  * profile hits required for the accuracy of reported profile hits
209  * and so resurrect the interrupt livelock issue.
210  *
211  * The open-addressed hashtables are indexed by profile buffer slot
212  * and hold the number of pending hits to that profile buffer slot on
213  * a cpu in an entry. When the hashtable overflows, all pending hits
214  * are accounted to their corresponding profile buffer slots with
215  * atomic_add() and the hashtable emptied. As numerous pending hits
216  * may be accounted to a profile buffer slot in a hashtable entry,
217  * this amortizes a number of atomic profile buffer increments likely
218  * to be far larger than the number of entries in the hashtable,
219  * particularly given that the number of distinct profile buffer
220  * positions to which hits are accounted during short intervals (e.g.
221  * several seconds) is usually very small. Exclusion from buffer
222  * flipping is provided by interrupt disablement (note that for
223  * SCHED_PROFILING profile_hit() may be called from process context).
224  * The hash function is meant to be lightweight as opposed to strong,
225  * and was vaguely inspired by ppc64 firmware-supported inverted
226  * pagetable hash functions, but uses a full hashtable full of finite
227  * collision chains, not just pairs of them.
228  *
229  * -- wli
230  */
231 static void __profile_flip_buffers(void *unused)
232 {
233 	int cpu = smp_processor_id();
234 
235 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
236 }
237 
238 static void profile_flip_buffers(void)
239 {
240 	int i, j, cpu;
241 
242 	down(&profile_flip_mutex);
243 	j = per_cpu(cpu_profile_flip, get_cpu());
244 	put_cpu();
245 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
246 	for_each_online_cpu(cpu) {
247 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
248 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
249 			if (!hits[i].hits) {
250 				if (hits[i].pc)
251 					hits[i].pc = 0;
252 				continue;
253 			}
254 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
255 			hits[i].hits = hits[i].pc = 0;
256 		}
257 	}
258 	up(&profile_flip_mutex);
259 }
260 
261 static void profile_discard_flip_buffers(void)
262 {
263 	int i, cpu;
264 
265 	down(&profile_flip_mutex);
266 	i = per_cpu(cpu_profile_flip, get_cpu());
267 	put_cpu();
268 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
269 	for_each_online_cpu(cpu) {
270 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
271 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
272 	}
273 	up(&profile_flip_mutex);
274 }
275 
276 void profile_hit(int type, void *__pc)
277 {
278 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
279 	int i, j, cpu;
280 	struct profile_hit *hits;
281 
282 	if (prof_on != type || !prof_buffer)
283 		return;
284 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
285 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
286 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
287 	cpu = get_cpu();
288 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
289 	if (!hits) {
290 		put_cpu();
291 		return;
292 	}
293 	local_irq_save(flags);
294 	do {
295 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
296 			if (hits[i + j].pc == pc) {
297 				hits[i + j].hits++;
298 				goto out;
299 			} else if (!hits[i + j].hits) {
300 				hits[i + j].pc = pc;
301 				hits[i + j].hits = 1;
302 				goto out;
303 			}
304 		}
305 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
306 	} while (i != primary);
307 	atomic_inc(&prof_buffer[pc]);
308 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
309 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
310 		hits[i].pc = hits[i].hits = 0;
311 	}
312 out:
313 	local_irq_restore(flags);
314 	put_cpu();
315 }
316 
317 #ifdef CONFIG_HOTPLUG_CPU
318 static int __devinit profile_cpu_callback(struct notifier_block *info,
319 					unsigned long action, void *__cpu)
320 {
321 	int node, cpu = (unsigned long)__cpu;
322 	struct page *page;
323 
324 	switch (action) {
325 	case CPU_UP_PREPARE:
326 		node = cpu_to_node(cpu);
327 		per_cpu(cpu_profile_flip, cpu) = 0;
328 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
329 			page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
330 			if (!page)
331 				return NOTIFY_BAD;
332 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
333 		}
334 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
335 			page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
336 			if (!page)
337 				goto out_free;
338 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
339 		}
340 		break;
341 	out_free:
342 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
343 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
344 		__free_page(page);
345 		return NOTIFY_BAD;
346 	case CPU_ONLINE:
347 		cpu_set(cpu, prof_cpu_mask);
348 		break;
349 	case CPU_UP_CANCELED:
350 	case CPU_DEAD:
351 		cpu_clear(cpu, prof_cpu_mask);
352 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
353 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
354 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
355 			__free_page(page);
356 		}
357 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
358 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
359 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
360 			__free_page(page);
361 		}
362 		break;
363 	}
364 	return NOTIFY_OK;
365 }
366 #endif /* CONFIG_HOTPLUG_CPU */
367 #else /* !CONFIG_SMP */
368 #define profile_flip_buffers()		do { } while (0)
369 #define profile_discard_flip_buffers()	do { } while (0)
370 
371 void profile_hit(int type, void *__pc)
372 {
373 	unsigned long pc;
374 
375 	if (prof_on != type || !prof_buffer)
376 		return;
377 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
378 	atomic_inc(&prof_buffer[min(pc, prof_len - 1)]);
379 }
380 #endif /* !CONFIG_SMP */
381 
382 void profile_tick(int type, struct pt_regs *regs)
383 {
384 	if (type == CPU_PROFILING && timer_hook)
385 		timer_hook(regs);
386 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
387 		profile_hit(type, (void *)profile_pc(regs));
388 }
389 
390 #ifdef CONFIG_PROC_FS
391 #include <linux/proc_fs.h>
392 #include <asm/uaccess.h>
393 #include <asm/ptrace.h>
394 
395 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
396 			int count, int *eof, void *data)
397 {
398 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
399 	if (count - len < 2)
400 		return -EINVAL;
401 	len += sprintf(page + len, "\n");
402 	return len;
403 }
404 
405 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
406 					unsigned long count, void *data)
407 {
408 	cpumask_t *mask = (cpumask_t *)data;
409 	unsigned long full_count = count, err;
410 	cpumask_t new_value;
411 
412 	err = cpumask_parse(buffer, count, new_value);
413 	if (err)
414 		return err;
415 
416 	*mask = new_value;
417 	return full_count;
418 }
419 
420 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
421 {
422 	struct proc_dir_entry *entry;
423 
424 	/* create /proc/irq/prof_cpu_mask */
425 	if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
426 		return;
427 	entry->nlink = 1;
428 	entry->data = (void *)&prof_cpu_mask;
429 	entry->read_proc = prof_cpu_mask_read_proc;
430 	entry->write_proc = prof_cpu_mask_write_proc;
431 }
432 
433 /*
434  * This function accesses profiling information. The returned data is
435  * binary: the sampling step and the actual contents of the profile
436  * buffer. Use of the program readprofile is recommended in order to
437  * get meaningful info out of these data.
438  */
439 static ssize_t
440 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
441 {
442 	unsigned long p = *ppos;
443 	ssize_t read;
444 	char * pnt;
445 	unsigned int sample_step = 1 << prof_shift;
446 
447 	profile_flip_buffers();
448 	if (p >= (prof_len+1)*sizeof(unsigned int))
449 		return 0;
450 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
451 		count = (prof_len+1)*sizeof(unsigned int) - p;
452 	read = 0;
453 
454 	while (p < sizeof(unsigned int) && count > 0) {
455 		put_user(*((char *)(&sample_step)+p),buf);
456 		buf++; p++; count--; read++;
457 	}
458 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
459 	if (copy_to_user(buf,(void *)pnt,count))
460 		return -EFAULT;
461 	read += count;
462 	*ppos += read;
463 	return read;
464 }
465 
466 /*
467  * Writing to /proc/profile resets the counters
468  *
469  * Writing a 'profiling multiplier' value into it also re-sets the profiling
470  * interrupt frequency, on architectures that support this.
471  */
472 static ssize_t write_profile(struct file *file, const char __user *buf,
473 			     size_t count, loff_t *ppos)
474 {
475 #ifdef CONFIG_SMP
476 	extern int setup_profiling_timer (unsigned int multiplier);
477 
478 	if (count == sizeof(int)) {
479 		unsigned int multiplier;
480 
481 		if (copy_from_user(&multiplier, buf, sizeof(int)))
482 			return -EFAULT;
483 
484 		if (setup_profiling_timer(multiplier))
485 			return -EINVAL;
486 	}
487 #endif
488 	profile_discard_flip_buffers();
489 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
490 	return count;
491 }
492 
493 static struct file_operations proc_profile_operations = {
494 	.read		= read_profile,
495 	.write		= write_profile,
496 };
497 
498 #ifdef CONFIG_SMP
499 static void __init profile_nop(void *unused)
500 {
501 }
502 
503 static int __init create_hash_tables(void)
504 {
505 	int cpu;
506 
507 	for_each_online_cpu(cpu) {
508 		int node = cpu_to_node(cpu);
509 		struct page *page;
510 
511 		page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
512 		if (!page)
513 			goto out_cleanup;
514 		per_cpu(cpu_profile_hits, cpu)[1]
515 				= (struct profile_hit *)page_address(page);
516 		page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
517 		if (!page)
518 			goto out_cleanup;
519 		per_cpu(cpu_profile_hits, cpu)[0]
520 				= (struct profile_hit *)page_address(page);
521 	}
522 	return 0;
523 out_cleanup:
524 	prof_on = 0;
525 	mb();
526 	on_each_cpu(profile_nop, NULL, 0, 1);
527 	for_each_online_cpu(cpu) {
528 		struct page *page;
529 
530 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
531 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
532 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
533 			__free_page(page);
534 		}
535 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
536 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
537 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
538 			__free_page(page);
539 		}
540 	}
541 	return -1;
542 }
543 #else
544 #define create_hash_tables()			({ 0; })
545 #endif
546 
547 static int __init create_proc_profile(void)
548 {
549 	struct proc_dir_entry *entry;
550 
551 	if (!prof_on)
552 		return 0;
553 	if (create_hash_tables())
554 		return -1;
555 	if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
556 		return 0;
557 	entry->proc_fops = &proc_profile_operations;
558 	entry->size = (1+prof_len) * sizeof(atomic_t);
559 	hotcpu_notifier(profile_cpu_callback, 0);
560 	return 0;
561 }
562 module_init(create_proc_profile);
563 #endif /* CONFIG_PROC_FS */
564