xref: /openbmc/linux/kernel/printk/printk.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /* Deferred messaged from sched code are marked by this special level */
66 #define SCHED_MESSAGE_LOGLEVEL -2
67 
68 /*
69  * Low level drivers may need that to know if they can schedule in
70  * their unblank() callback or not. So let's export it.
71  */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74 
75 /*
76  * console_sem protects the console_drivers list, and also
77  * provides serialisation for access to the entire console
78  * driver system.
79  */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83 
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 	.name = "console_lock"
87 };
88 #endif
89 
90 /*
91  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
92  * macros instead of functions so that _RET_IP_ contains useful information.
93  */
94 #define down_console_sem() do { \
95 	down(&console_sem);\
96 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
97 } while (0)
98 
99 static int __down_trylock_console_sem(unsigned long ip)
100 {
101 	if (down_trylock(&console_sem))
102 		return 1;
103 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
104 	return 0;
105 }
106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
107 
108 #define up_console_sem() do { \
109 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
110 	up(&console_sem);\
111 } while (0)
112 
113 /*
114  * This is used for debugging the mess that is the VT code by
115  * keeping track if we have the console semaphore held. It's
116  * definitely not the perfect debug tool (we don't know if _WE_
117  * hold it and are racing, but it helps tracking those weird code
118  * paths in the console code where we end up in places I want
119  * locked without the console sempahore held).
120  */
121 static int console_locked, console_suspended;
122 
123 /*
124  * If exclusive_console is non-NULL then only this console is to be printed to.
125  */
126 static struct console *exclusive_console;
127 
128 /*
129  *	Array of consoles built from command line options (console=)
130  */
131 
132 #define MAX_CMDLINECONSOLES 8
133 
134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
135 
136 static int selected_console = -1;
137 static int preferred_console = -1;
138 int console_set_on_cmdline;
139 EXPORT_SYMBOL(console_set_on_cmdline);
140 
141 /* Flag: console code may call schedule() */
142 static int console_may_schedule;
143 
144 /*
145  * The printk log buffer consists of a chain of concatenated variable
146  * length records. Every record starts with a record header, containing
147  * the overall length of the record.
148  *
149  * The heads to the first and last entry in the buffer, as well as the
150  * sequence numbers of these entries are maintained when messages are
151  * stored.
152  *
153  * If the heads indicate available messages, the length in the header
154  * tells the start next message. A length == 0 for the next message
155  * indicates a wrap-around to the beginning of the buffer.
156  *
157  * Every record carries the monotonic timestamp in microseconds, as well as
158  * the standard userspace syslog level and syslog facility. The usual
159  * kernel messages use LOG_KERN; userspace-injected messages always carry
160  * a matching syslog facility, by default LOG_USER. The origin of every
161  * message can be reliably determined that way.
162  *
163  * The human readable log message directly follows the message header. The
164  * length of the message text is stored in the header, the stored message
165  * is not terminated.
166  *
167  * Optionally, a message can carry a dictionary of properties (key/value pairs),
168  * to provide userspace with a machine-readable message context.
169  *
170  * Examples for well-defined, commonly used property names are:
171  *   DEVICE=b12:8               device identifier
172  *                                b12:8         block dev_t
173  *                                c127:3        char dev_t
174  *                                n8            netdev ifindex
175  *                                +sound:card0  subsystem:devname
176  *   SUBSYSTEM=pci              driver-core subsystem name
177  *
178  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
179  * follows directly after a '=' character. Every property is terminated by
180  * a '\0' character. The last property is not terminated.
181  *
182  * Example of a message structure:
183  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
184  *   0008  34 00                        record is 52 bytes long
185  *   000a        0b 00                  text is 11 bytes long
186  *   000c              1f 00            dictionary is 23 bytes long
187  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
188  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
189  *         69 6e 65                     "ine"
190  *   001b           44 45 56 49 43      "DEVIC"
191  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
192  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
193  *         67                           "g"
194  *   0032     00 00 00                  padding to next message header
195  *
196  * The 'struct printk_log' buffer header must never be directly exported to
197  * userspace, it is a kernel-private implementation detail that might
198  * need to be changed in the future, when the requirements change.
199  *
200  * /dev/kmsg exports the structured data in the following line format:
201  *   "level,sequnum,timestamp;<message text>\n"
202  *
203  * The optional key/value pairs are attached as continuation lines starting
204  * with a space character and terminated by a newline. All possible
205  * non-prinatable characters are escaped in the "\xff" notation.
206  *
207  * Users of the export format should ignore possible additional values
208  * separated by ',', and find the message after the ';' character.
209  */
210 
211 enum log_flags {
212 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
213 	LOG_NEWLINE	= 2,	/* text ended with a newline */
214 	LOG_PREFIX	= 4,	/* text started with a prefix */
215 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
216 };
217 
218 struct printk_log {
219 	u64 ts_nsec;		/* timestamp in nanoseconds */
220 	u16 len;		/* length of entire record */
221 	u16 text_len;		/* length of text buffer */
222 	u16 dict_len;		/* length of dictionary buffer */
223 	u8 facility;		/* syslog facility */
224 	u8 flags:5;		/* internal record flags */
225 	u8 level:3;		/* syslog level */
226 };
227 
228 /*
229  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
230  * within the scheduler's rq lock. It must be released before calling
231  * console_unlock() or anything else that might wake up a process.
232  */
233 static DEFINE_RAW_SPINLOCK(logbuf_lock);
234 
235 #ifdef CONFIG_PRINTK
236 DECLARE_WAIT_QUEUE_HEAD(log_wait);
237 /* the next printk record to read by syslog(READ) or /proc/kmsg */
238 static u64 syslog_seq;
239 static u32 syslog_idx;
240 static enum log_flags syslog_prev;
241 static size_t syslog_partial;
242 
243 /* index and sequence number of the first record stored in the buffer */
244 static u64 log_first_seq;
245 static u32 log_first_idx;
246 
247 /* index and sequence number of the next record to store in the buffer */
248 static u64 log_next_seq;
249 static u32 log_next_idx;
250 
251 /* the next printk record to write to the console */
252 static u64 console_seq;
253 static u32 console_idx;
254 static enum log_flags console_prev;
255 
256 /* the next printk record to read after the last 'clear' command */
257 static u64 clear_seq;
258 static u32 clear_idx;
259 
260 #define PREFIX_MAX		32
261 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
262 
263 /* record buffer */
264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
265 #define LOG_ALIGN 4
266 #else
267 #define LOG_ALIGN __alignof__(struct printk_log)
268 #endif
269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
272 static char *log_buf = __log_buf;
273 static u32 log_buf_len = __LOG_BUF_LEN;
274 
275 /* Return log buffer address */
276 char *log_buf_addr_get(void)
277 {
278 	return log_buf;
279 }
280 
281 /* Return log buffer size */
282 u32 log_buf_len_get(void)
283 {
284 	return log_buf_len;
285 }
286 
287 /* human readable text of the record */
288 static char *log_text(const struct printk_log *msg)
289 {
290 	return (char *)msg + sizeof(struct printk_log);
291 }
292 
293 /* optional key/value pair dictionary attached to the record */
294 static char *log_dict(const struct printk_log *msg)
295 {
296 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
297 }
298 
299 /* get record by index; idx must point to valid msg */
300 static struct printk_log *log_from_idx(u32 idx)
301 {
302 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303 
304 	/*
305 	 * A length == 0 record is the end of buffer marker. Wrap around and
306 	 * read the message at the start of the buffer.
307 	 */
308 	if (!msg->len)
309 		return (struct printk_log *)log_buf;
310 	return msg;
311 }
312 
313 /* get next record; idx must point to valid msg */
314 static u32 log_next(u32 idx)
315 {
316 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
317 
318 	/* length == 0 indicates the end of the buffer; wrap */
319 	/*
320 	 * A length == 0 record is the end of buffer marker. Wrap around and
321 	 * read the message at the start of the buffer as *this* one, and
322 	 * return the one after that.
323 	 */
324 	if (!msg->len) {
325 		msg = (struct printk_log *)log_buf;
326 		return msg->len;
327 	}
328 	return idx + msg->len;
329 }
330 
331 /*
332  * Check whether there is enough free space for the given message.
333  *
334  * The same values of first_idx and next_idx mean that the buffer
335  * is either empty or full.
336  *
337  * If the buffer is empty, we must respect the position of the indexes.
338  * They cannot be reset to the beginning of the buffer.
339  */
340 static int logbuf_has_space(u32 msg_size, bool empty)
341 {
342 	u32 free;
343 
344 	if (log_next_idx > log_first_idx || empty)
345 		free = max(log_buf_len - log_next_idx, log_first_idx);
346 	else
347 		free = log_first_idx - log_next_idx;
348 
349 	/*
350 	 * We need space also for an empty header that signalizes wrapping
351 	 * of the buffer.
352 	 */
353 	return free >= msg_size + sizeof(struct printk_log);
354 }
355 
356 static int log_make_free_space(u32 msg_size)
357 {
358 	while (log_first_seq < log_next_seq) {
359 		if (logbuf_has_space(msg_size, false))
360 			return 0;
361 		/* drop old messages until we have enough contiguous space */
362 		log_first_idx = log_next(log_first_idx);
363 		log_first_seq++;
364 	}
365 
366 	/* sequence numbers are equal, so the log buffer is empty */
367 	if (logbuf_has_space(msg_size, true))
368 		return 0;
369 
370 	return -ENOMEM;
371 }
372 
373 /* compute the message size including the padding bytes */
374 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
375 {
376 	u32 size;
377 
378 	size = sizeof(struct printk_log) + text_len + dict_len;
379 	*pad_len = (-size) & (LOG_ALIGN - 1);
380 	size += *pad_len;
381 
382 	return size;
383 }
384 
385 /*
386  * Define how much of the log buffer we could take at maximum. The value
387  * must be greater than two. Note that only half of the buffer is available
388  * when the index points to the middle.
389  */
390 #define MAX_LOG_TAKE_PART 4
391 static const char trunc_msg[] = "<truncated>";
392 
393 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
394 			u16 *dict_len, u32 *pad_len)
395 {
396 	/*
397 	 * The message should not take the whole buffer. Otherwise, it might
398 	 * get removed too soon.
399 	 */
400 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
401 	if (*text_len > max_text_len)
402 		*text_len = max_text_len;
403 	/* enable the warning message */
404 	*trunc_msg_len = strlen(trunc_msg);
405 	/* disable the "dict" completely */
406 	*dict_len = 0;
407 	/* compute the size again, count also the warning message */
408 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
409 }
410 
411 /* insert record into the buffer, discard old ones, update heads */
412 static int log_store(int facility, int level,
413 		     enum log_flags flags, u64 ts_nsec,
414 		     const char *dict, u16 dict_len,
415 		     const char *text, u16 text_len)
416 {
417 	struct printk_log *msg;
418 	u32 size, pad_len;
419 	u16 trunc_msg_len = 0;
420 
421 	/* number of '\0' padding bytes to next message */
422 	size = msg_used_size(text_len, dict_len, &pad_len);
423 
424 	if (log_make_free_space(size)) {
425 		/* truncate the message if it is too long for empty buffer */
426 		size = truncate_msg(&text_len, &trunc_msg_len,
427 				    &dict_len, &pad_len);
428 		/* survive when the log buffer is too small for trunc_msg */
429 		if (log_make_free_space(size))
430 			return 0;
431 	}
432 
433 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
434 		/*
435 		 * This message + an additional empty header does not fit
436 		 * at the end of the buffer. Add an empty header with len == 0
437 		 * to signify a wrap around.
438 		 */
439 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
440 		log_next_idx = 0;
441 	}
442 
443 	/* fill message */
444 	msg = (struct printk_log *)(log_buf + log_next_idx);
445 	memcpy(log_text(msg), text, text_len);
446 	msg->text_len = text_len;
447 	if (trunc_msg_len) {
448 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
449 		msg->text_len += trunc_msg_len;
450 	}
451 	memcpy(log_dict(msg), dict, dict_len);
452 	msg->dict_len = dict_len;
453 	msg->facility = facility;
454 	msg->level = level & 7;
455 	msg->flags = flags & 0x1f;
456 	if (ts_nsec > 0)
457 		msg->ts_nsec = ts_nsec;
458 	else
459 		msg->ts_nsec = local_clock();
460 	memset(log_dict(msg) + dict_len, 0, pad_len);
461 	msg->len = size;
462 
463 	/* insert message */
464 	log_next_idx += msg->len;
465 	log_next_seq++;
466 
467 	return msg->text_len;
468 }
469 
470 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
471 
472 static int syslog_action_restricted(int type)
473 {
474 	if (dmesg_restrict)
475 		return 1;
476 	/*
477 	 * Unless restricted, we allow "read all" and "get buffer size"
478 	 * for everybody.
479 	 */
480 	return type != SYSLOG_ACTION_READ_ALL &&
481 	       type != SYSLOG_ACTION_SIZE_BUFFER;
482 }
483 
484 static int check_syslog_permissions(int type, bool from_file)
485 {
486 	/*
487 	 * If this is from /proc/kmsg and we've already opened it, then we've
488 	 * already done the capabilities checks at open time.
489 	 */
490 	if (from_file && type != SYSLOG_ACTION_OPEN)
491 		return 0;
492 
493 	if (syslog_action_restricted(type)) {
494 		if (capable(CAP_SYSLOG))
495 			return 0;
496 		/*
497 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
498 		 * a warning.
499 		 */
500 		if (capable(CAP_SYS_ADMIN)) {
501 			pr_warn_once("%s (%d): Attempt to access syslog with "
502 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
503 				     "(deprecated).\n",
504 				 current->comm, task_pid_nr(current));
505 			return 0;
506 		}
507 		return -EPERM;
508 	}
509 	return security_syslog(type);
510 }
511 
512 
513 /* /dev/kmsg - userspace message inject/listen interface */
514 struct devkmsg_user {
515 	u64 seq;
516 	u32 idx;
517 	enum log_flags prev;
518 	struct mutex lock;
519 	char buf[8192];
520 };
521 
522 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
523 			      unsigned long count, loff_t pos)
524 {
525 	char *buf, *line;
526 	int i;
527 	int level = default_message_loglevel;
528 	int facility = 1;	/* LOG_USER */
529 	size_t len = iov_length(iv, count);
530 	ssize_t ret = len;
531 
532 	if (len > LOG_LINE_MAX)
533 		return -EINVAL;
534 	buf = kmalloc(len+1, GFP_KERNEL);
535 	if (buf == NULL)
536 		return -ENOMEM;
537 
538 	line = buf;
539 	for (i = 0; i < count; i++) {
540 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
541 			ret = -EFAULT;
542 			goto out;
543 		}
544 		line += iv[i].iov_len;
545 	}
546 
547 	/*
548 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
549 	 * the decimal value represents 32bit, the lower 3 bit are the log
550 	 * level, the rest are the log facility.
551 	 *
552 	 * If no prefix or no userspace facility is specified, we
553 	 * enforce LOG_USER, to be able to reliably distinguish
554 	 * kernel-generated messages from userspace-injected ones.
555 	 */
556 	line = buf;
557 	if (line[0] == '<') {
558 		char *endp = NULL;
559 
560 		i = simple_strtoul(line+1, &endp, 10);
561 		if (endp && endp[0] == '>') {
562 			level = i & 7;
563 			if (i >> 3)
564 				facility = i >> 3;
565 			endp++;
566 			len -= endp - line;
567 			line = endp;
568 		}
569 	}
570 	line[len] = '\0';
571 
572 	printk_emit(facility, level, NULL, 0, "%s", line);
573 out:
574 	kfree(buf);
575 	return ret;
576 }
577 
578 static ssize_t devkmsg_read(struct file *file, char __user *buf,
579 			    size_t count, loff_t *ppos)
580 {
581 	struct devkmsg_user *user = file->private_data;
582 	struct printk_log *msg;
583 	u64 ts_usec;
584 	size_t i;
585 	char cont = '-';
586 	size_t len;
587 	ssize_t ret;
588 
589 	if (!user)
590 		return -EBADF;
591 
592 	ret = mutex_lock_interruptible(&user->lock);
593 	if (ret)
594 		return ret;
595 	raw_spin_lock_irq(&logbuf_lock);
596 	while (user->seq == log_next_seq) {
597 		if (file->f_flags & O_NONBLOCK) {
598 			ret = -EAGAIN;
599 			raw_spin_unlock_irq(&logbuf_lock);
600 			goto out;
601 		}
602 
603 		raw_spin_unlock_irq(&logbuf_lock);
604 		ret = wait_event_interruptible(log_wait,
605 					       user->seq != log_next_seq);
606 		if (ret)
607 			goto out;
608 		raw_spin_lock_irq(&logbuf_lock);
609 	}
610 
611 	if (user->seq < log_first_seq) {
612 		/* our last seen message is gone, return error and reset */
613 		user->idx = log_first_idx;
614 		user->seq = log_first_seq;
615 		ret = -EPIPE;
616 		raw_spin_unlock_irq(&logbuf_lock);
617 		goto out;
618 	}
619 
620 	msg = log_from_idx(user->idx);
621 	ts_usec = msg->ts_nsec;
622 	do_div(ts_usec, 1000);
623 
624 	/*
625 	 * If we couldn't merge continuation line fragments during the print,
626 	 * export the stored flags to allow an optional external merge of the
627 	 * records. Merging the records isn't always neccessarily correct, like
628 	 * when we hit a race during printing. In most cases though, it produces
629 	 * better readable output. 'c' in the record flags mark the first
630 	 * fragment of a line, '+' the following.
631 	 */
632 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
633 		cont = 'c';
634 	else if ((msg->flags & LOG_CONT) ||
635 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
636 		cont = '+';
637 
638 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
639 		      (msg->facility << 3) | msg->level,
640 		      user->seq, ts_usec, cont);
641 	user->prev = msg->flags;
642 
643 	/* escape non-printable characters */
644 	for (i = 0; i < msg->text_len; i++) {
645 		unsigned char c = log_text(msg)[i];
646 
647 		if (c < ' ' || c >= 127 || c == '\\')
648 			len += sprintf(user->buf + len, "\\x%02x", c);
649 		else
650 			user->buf[len++] = c;
651 	}
652 	user->buf[len++] = '\n';
653 
654 	if (msg->dict_len) {
655 		bool line = true;
656 
657 		for (i = 0; i < msg->dict_len; i++) {
658 			unsigned char c = log_dict(msg)[i];
659 
660 			if (line) {
661 				user->buf[len++] = ' ';
662 				line = false;
663 			}
664 
665 			if (c == '\0') {
666 				user->buf[len++] = '\n';
667 				line = true;
668 				continue;
669 			}
670 
671 			if (c < ' ' || c >= 127 || c == '\\') {
672 				len += sprintf(user->buf + len, "\\x%02x", c);
673 				continue;
674 			}
675 
676 			user->buf[len++] = c;
677 		}
678 		user->buf[len++] = '\n';
679 	}
680 
681 	user->idx = log_next(user->idx);
682 	user->seq++;
683 	raw_spin_unlock_irq(&logbuf_lock);
684 
685 	if (len > count) {
686 		ret = -EINVAL;
687 		goto out;
688 	}
689 
690 	if (copy_to_user(buf, user->buf, len)) {
691 		ret = -EFAULT;
692 		goto out;
693 	}
694 	ret = len;
695 out:
696 	mutex_unlock(&user->lock);
697 	return ret;
698 }
699 
700 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
701 {
702 	struct devkmsg_user *user = file->private_data;
703 	loff_t ret = 0;
704 
705 	if (!user)
706 		return -EBADF;
707 	if (offset)
708 		return -ESPIPE;
709 
710 	raw_spin_lock_irq(&logbuf_lock);
711 	switch (whence) {
712 	case SEEK_SET:
713 		/* the first record */
714 		user->idx = log_first_idx;
715 		user->seq = log_first_seq;
716 		break;
717 	case SEEK_DATA:
718 		/*
719 		 * The first record after the last SYSLOG_ACTION_CLEAR,
720 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
721 		 * changes no global state, and does not clear anything.
722 		 */
723 		user->idx = clear_idx;
724 		user->seq = clear_seq;
725 		break;
726 	case SEEK_END:
727 		/* after the last record */
728 		user->idx = log_next_idx;
729 		user->seq = log_next_seq;
730 		break;
731 	default:
732 		ret = -EINVAL;
733 	}
734 	raw_spin_unlock_irq(&logbuf_lock);
735 	return ret;
736 }
737 
738 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
739 {
740 	struct devkmsg_user *user = file->private_data;
741 	int ret = 0;
742 
743 	if (!user)
744 		return POLLERR|POLLNVAL;
745 
746 	poll_wait(file, &log_wait, wait);
747 
748 	raw_spin_lock_irq(&logbuf_lock);
749 	if (user->seq < log_next_seq) {
750 		/* return error when data has vanished underneath us */
751 		if (user->seq < log_first_seq)
752 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
753 		else
754 			ret = POLLIN|POLLRDNORM;
755 	}
756 	raw_spin_unlock_irq(&logbuf_lock);
757 
758 	return ret;
759 }
760 
761 static int devkmsg_open(struct inode *inode, struct file *file)
762 {
763 	struct devkmsg_user *user;
764 	int err;
765 
766 	/* write-only does not need any file context */
767 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
768 		return 0;
769 
770 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
771 				       SYSLOG_FROM_READER);
772 	if (err)
773 		return err;
774 
775 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
776 	if (!user)
777 		return -ENOMEM;
778 
779 	mutex_init(&user->lock);
780 
781 	raw_spin_lock_irq(&logbuf_lock);
782 	user->idx = log_first_idx;
783 	user->seq = log_first_seq;
784 	raw_spin_unlock_irq(&logbuf_lock);
785 
786 	file->private_data = user;
787 	return 0;
788 }
789 
790 static int devkmsg_release(struct inode *inode, struct file *file)
791 {
792 	struct devkmsg_user *user = file->private_data;
793 
794 	if (!user)
795 		return 0;
796 
797 	mutex_destroy(&user->lock);
798 	kfree(user);
799 	return 0;
800 }
801 
802 const struct file_operations kmsg_fops = {
803 	.open = devkmsg_open,
804 	.read = devkmsg_read,
805 	.aio_write = devkmsg_writev,
806 	.llseek = devkmsg_llseek,
807 	.poll = devkmsg_poll,
808 	.release = devkmsg_release,
809 };
810 
811 #ifdef CONFIG_KEXEC
812 /*
813  * This appends the listed symbols to /proc/vmcore
814  *
815  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
816  * obtain access to symbols that are otherwise very difficult to locate.  These
817  * symbols are specifically used so that utilities can access and extract the
818  * dmesg log from a vmcore file after a crash.
819  */
820 void log_buf_kexec_setup(void)
821 {
822 	VMCOREINFO_SYMBOL(log_buf);
823 	VMCOREINFO_SYMBOL(log_buf_len);
824 	VMCOREINFO_SYMBOL(log_first_idx);
825 	VMCOREINFO_SYMBOL(log_next_idx);
826 	/*
827 	 * Export struct printk_log size and field offsets. User space tools can
828 	 * parse it and detect any changes to structure down the line.
829 	 */
830 	VMCOREINFO_STRUCT_SIZE(printk_log);
831 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
832 	VMCOREINFO_OFFSET(printk_log, len);
833 	VMCOREINFO_OFFSET(printk_log, text_len);
834 	VMCOREINFO_OFFSET(printk_log, dict_len);
835 }
836 #endif
837 
838 /* requested log_buf_len from kernel cmdline */
839 static unsigned long __initdata new_log_buf_len;
840 
841 /* we practice scaling the ring buffer by powers of 2 */
842 static void __init log_buf_len_update(unsigned size)
843 {
844 	if (size)
845 		size = roundup_pow_of_two(size);
846 	if (size > log_buf_len)
847 		new_log_buf_len = size;
848 }
849 
850 /* save requested log_buf_len since it's too early to process it */
851 static int __init log_buf_len_setup(char *str)
852 {
853 	unsigned size = memparse(str, &str);
854 
855 	log_buf_len_update(size);
856 
857 	return 0;
858 }
859 early_param("log_buf_len", log_buf_len_setup);
860 
861 static void __init log_buf_add_cpu(void)
862 {
863 	unsigned int cpu_extra;
864 
865 	/*
866 	 * archs should set up cpu_possible_bits properly with
867 	 * set_cpu_possible() after setup_arch() but just in
868 	 * case lets ensure this is valid.
869 	 */
870 	if (num_possible_cpus() == 1)
871 		return;
872 
873 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
874 
875 	/* by default this will only continue through for large > 64 CPUs */
876 	if (cpu_extra <= __LOG_BUF_LEN / 2)
877 		return;
878 
879 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
880 		__LOG_CPU_MAX_BUF_LEN);
881 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
882 		cpu_extra);
883 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
884 
885 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
886 }
887 
888 void __init setup_log_buf(int early)
889 {
890 	unsigned long flags;
891 	char *new_log_buf;
892 	int free;
893 
894 	if (log_buf != __log_buf)
895 		return;
896 
897 	if (!early && !new_log_buf_len)
898 		log_buf_add_cpu();
899 
900 	if (!new_log_buf_len)
901 		return;
902 
903 	if (early) {
904 		new_log_buf =
905 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
906 	} else {
907 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
908 							  LOG_ALIGN);
909 	}
910 
911 	if (unlikely(!new_log_buf)) {
912 		pr_err("log_buf_len: %ld bytes not available\n",
913 			new_log_buf_len);
914 		return;
915 	}
916 
917 	raw_spin_lock_irqsave(&logbuf_lock, flags);
918 	log_buf_len = new_log_buf_len;
919 	log_buf = new_log_buf;
920 	new_log_buf_len = 0;
921 	free = __LOG_BUF_LEN - log_next_idx;
922 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
923 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
924 
925 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
926 	pr_info("early log buf free: %d(%d%%)\n",
927 		free, (free * 100) / __LOG_BUF_LEN);
928 }
929 
930 static bool __read_mostly ignore_loglevel;
931 
932 static int __init ignore_loglevel_setup(char *str)
933 {
934 	ignore_loglevel = true;
935 	pr_info("debug: ignoring loglevel setting.\n");
936 
937 	return 0;
938 }
939 
940 early_param("ignore_loglevel", ignore_loglevel_setup);
941 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
942 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
943 	"print all kernel messages to the console.");
944 
945 #ifdef CONFIG_BOOT_PRINTK_DELAY
946 
947 static int boot_delay; /* msecs delay after each printk during bootup */
948 static unsigned long long loops_per_msec;	/* based on boot_delay */
949 
950 static int __init boot_delay_setup(char *str)
951 {
952 	unsigned long lpj;
953 
954 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
955 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
956 
957 	get_option(&str, &boot_delay);
958 	if (boot_delay > 10 * 1000)
959 		boot_delay = 0;
960 
961 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
962 		"HZ: %d, loops_per_msec: %llu\n",
963 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
964 	return 0;
965 }
966 early_param("boot_delay", boot_delay_setup);
967 
968 static void boot_delay_msec(int level)
969 {
970 	unsigned long long k;
971 	unsigned long timeout;
972 
973 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
974 		|| (level >= console_loglevel && !ignore_loglevel)) {
975 		return;
976 	}
977 
978 	k = (unsigned long long)loops_per_msec * boot_delay;
979 
980 	timeout = jiffies + msecs_to_jiffies(boot_delay);
981 	while (k) {
982 		k--;
983 		cpu_relax();
984 		/*
985 		 * use (volatile) jiffies to prevent
986 		 * compiler reduction; loop termination via jiffies
987 		 * is secondary and may or may not happen.
988 		 */
989 		if (time_after(jiffies, timeout))
990 			break;
991 		touch_nmi_watchdog();
992 	}
993 }
994 #else
995 static inline void boot_delay_msec(int level)
996 {
997 }
998 #endif
999 
1000 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1001 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1002 
1003 static size_t print_time(u64 ts, char *buf)
1004 {
1005 	unsigned long rem_nsec;
1006 
1007 	if (!printk_time)
1008 		return 0;
1009 
1010 	rem_nsec = do_div(ts, 1000000000);
1011 
1012 	if (!buf)
1013 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1014 
1015 	return sprintf(buf, "[%5lu.%06lu] ",
1016 		       (unsigned long)ts, rem_nsec / 1000);
1017 }
1018 
1019 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1020 {
1021 	size_t len = 0;
1022 	unsigned int prefix = (msg->facility << 3) | msg->level;
1023 
1024 	if (syslog) {
1025 		if (buf) {
1026 			len += sprintf(buf, "<%u>", prefix);
1027 		} else {
1028 			len += 3;
1029 			if (prefix > 999)
1030 				len += 3;
1031 			else if (prefix > 99)
1032 				len += 2;
1033 			else if (prefix > 9)
1034 				len++;
1035 		}
1036 	}
1037 
1038 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1039 	return len;
1040 }
1041 
1042 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1043 			     bool syslog, char *buf, size_t size)
1044 {
1045 	const char *text = log_text(msg);
1046 	size_t text_size = msg->text_len;
1047 	bool prefix = true;
1048 	bool newline = true;
1049 	size_t len = 0;
1050 
1051 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1052 		prefix = false;
1053 
1054 	if (msg->flags & LOG_CONT) {
1055 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1056 			prefix = false;
1057 
1058 		if (!(msg->flags & LOG_NEWLINE))
1059 			newline = false;
1060 	}
1061 
1062 	do {
1063 		const char *next = memchr(text, '\n', text_size);
1064 		size_t text_len;
1065 
1066 		if (next) {
1067 			text_len = next - text;
1068 			next++;
1069 			text_size -= next - text;
1070 		} else {
1071 			text_len = text_size;
1072 		}
1073 
1074 		if (buf) {
1075 			if (print_prefix(msg, syslog, NULL) +
1076 			    text_len + 1 >= size - len)
1077 				break;
1078 
1079 			if (prefix)
1080 				len += print_prefix(msg, syslog, buf + len);
1081 			memcpy(buf + len, text, text_len);
1082 			len += text_len;
1083 			if (next || newline)
1084 				buf[len++] = '\n';
1085 		} else {
1086 			/* SYSLOG_ACTION_* buffer size only calculation */
1087 			if (prefix)
1088 				len += print_prefix(msg, syslog, NULL);
1089 			len += text_len;
1090 			if (next || newline)
1091 				len++;
1092 		}
1093 
1094 		prefix = true;
1095 		text = next;
1096 	} while (text);
1097 
1098 	return len;
1099 }
1100 
1101 static int syslog_print(char __user *buf, int size)
1102 {
1103 	char *text;
1104 	struct printk_log *msg;
1105 	int len = 0;
1106 
1107 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1108 	if (!text)
1109 		return -ENOMEM;
1110 
1111 	while (size > 0) {
1112 		size_t n;
1113 		size_t skip;
1114 
1115 		raw_spin_lock_irq(&logbuf_lock);
1116 		if (syslog_seq < log_first_seq) {
1117 			/* messages are gone, move to first one */
1118 			syslog_seq = log_first_seq;
1119 			syslog_idx = log_first_idx;
1120 			syslog_prev = 0;
1121 			syslog_partial = 0;
1122 		}
1123 		if (syslog_seq == log_next_seq) {
1124 			raw_spin_unlock_irq(&logbuf_lock);
1125 			break;
1126 		}
1127 
1128 		skip = syslog_partial;
1129 		msg = log_from_idx(syslog_idx);
1130 		n = msg_print_text(msg, syslog_prev, true, text,
1131 				   LOG_LINE_MAX + PREFIX_MAX);
1132 		if (n - syslog_partial <= size) {
1133 			/* message fits into buffer, move forward */
1134 			syslog_idx = log_next(syslog_idx);
1135 			syslog_seq++;
1136 			syslog_prev = msg->flags;
1137 			n -= syslog_partial;
1138 			syslog_partial = 0;
1139 		} else if (!len){
1140 			/* partial read(), remember position */
1141 			n = size;
1142 			syslog_partial += n;
1143 		} else
1144 			n = 0;
1145 		raw_spin_unlock_irq(&logbuf_lock);
1146 
1147 		if (!n)
1148 			break;
1149 
1150 		if (copy_to_user(buf, text + skip, n)) {
1151 			if (!len)
1152 				len = -EFAULT;
1153 			break;
1154 		}
1155 
1156 		len += n;
1157 		size -= n;
1158 		buf += n;
1159 	}
1160 
1161 	kfree(text);
1162 	return len;
1163 }
1164 
1165 static int syslog_print_all(char __user *buf, int size, bool clear)
1166 {
1167 	char *text;
1168 	int len = 0;
1169 
1170 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1171 	if (!text)
1172 		return -ENOMEM;
1173 
1174 	raw_spin_lock_irq(&logbuf_lock);
1175 	if (buf) {
1176 		u64 next_seq;
1177 		u64 seq;
1178 		u32 idx;
1179 		enum log_flags prev;
1180 
1181 		if (clear_seq < log_first_seq) {
1182 			/* messages are gone, move to first available one */
1183 			clear_seq = log_first_seq;
1184 			clear_idx = log_first_idx;
1185 		}
1186 
1187 		/*
1188 		 * Find first record that fits, including all following records,
1189 		 * into the user-provided buffer for this dump.
1190 		 */
1191 		seq = clear_seq;
1192 		idx = clear_idx;
1193 		prev = 0;
1194 		while (seq < log_next_seq) {
1195 			struct printk_log *msg = log_from_idx(idx);
1196 
1197 			len += msg_print_text(msg, prev, true, NULL, 0);
1198 			prev = msg->flags;
1199 			idx = log_next(idx);
1200 			seq++;
1201 		}
1202 
1203 		/* move first record forward until length fits into the buffer */
1204 		seq = clear_seq;
1205 		idx = clear_idx;
1206 		prev = 0;
1207 		while (len > size && seq < log_next_seq) {
1208 			struct printk_log *msg = log_from_idx(idx);
1209 
1210 			len -= msg_print_text(msg, prev, true, NULL, 0);
1211 			prev = msg->flags;
1212 			idx = log_next(idx);
1213 			seq++;
1214 		}
1215 
1216 		/* last message fitting into this dump */
1217 		next_seq = log_next_seq;
1218 
1219 		len = 0;
1220 		while (len >= 0 && seq < next_seq) {
1221 			struct printk_log *msg = log_from_idx(idx);
1222 			int textlen;
1223 
1224 			textlen = msg_print_text(msg, prev, true, text,
1225 						 LOG_LINE_MAX + PREFIX_MAX);
1226 			if (textlen < 0) {
1227 				len = textlen;
1228 				break;
1229 			}
1230 			idx = log_next(idx);
1231 			seq++;
1232 			prev = msg->flags;
1233 
1234 			raw_spin_unlock_irq(&logbuf_lock);
1235 			if (copy_to_user(buf + len, text, textlen))
1236 				len = -EFAULT;
1237 			else
1238 				len += textlen;
1239 			raw_spin_lock_irq(&logbuf_lock);
1240 
1241 			if (seq < log_first_seq) {
1242 				/* messages are gone, move to next one */
1243 				seq = log_first_seq;
1244 				idx = log_first_idx;
1245 				prev = 0;
1246 			}
1247 		}
1248 	}
1249 
1250 	if (clear) {
1251 		clear_seq = log_next_seq;
1252 		clear_idx = log_next_idx;
1253 	}
1254 	raw_spin_unlock_irq(&logbuf_lock);
1255 
1256 	kfree(text);
1257 	return len;
1258 }
1259 
1260 int do_syslog(int type, char __user *buf, int len, bool from_file)
1261 {
1262 	bool clear = false;
1263 	static int saved_console_loglevel = -1;
1264 	int error;
1265 
1266 	error = check_syslog_permissions(type, from_file);
1267 	if (error)
1268 		goto out;
1269 
1270 	error = security_syslog(type);
1271 	if (error)
1272 		return error;
1273 
1274 	switch (type) {
1275 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1276 		break;
1277 	case SYSLOG_ACTION_OPEN:	/* Open log */
1278 		break;
1279 	case SYSLOG_ACTION_READ:	/* Read from log */
1280 		error = -EINVAL;
1281 		if (!buf || len < 0)
1282 			goto out;
1283 		error = 0;
1284 		if (!len)
1285 			goto out;
1286 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1287 			error = -EFAULT;
1288 			goto out;
1289 		}
1290 		error = wait_event_interruptible(log_wait,
1291 						 syslog_seq != log_next_seq);
1292 		if (error)
1293 			goto out;
1294 		error = syslog_print(buf, len);
1295 		break;
1296 	/* Read/clear last kernel messages */
1297 	case SYSLOG_ACTION_READ_CLEAR:
1298 		clear = true;
1299 		/* FALL THRU */
1300 	/* Read last kernel messages */
1301 	case SYSLOG_ACTION_READ_ALL:
1302 		error = -EINVAL;
1303 		if (!buf || len < 0)
1304 			goto out;
1305 		error = 0;
1306 		if (!len)
1307 			goto out;
1308 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1309 			error = -EFAULT;
1310 			goto out;
1311 		}
1312 		error = syslog_print_all(buf, len, clear);
1313 		break;
1314 	/* Clear ring buffer */
1315 	case SYSLOG_ACTION_CLEAR:
1316 		syslog_print_all(NULL, 0, true);
1317 		break;
1318 	/* Disable logging to console */
1319 	case SYSLOG_ACTION_CONSOLE_OFF:
1320 		if (saved_console_loglevel == -1)
1321 			saved_console_loglevel = console_loglevel;
1322 		console_loglevel = minimum_console_loglevel;
1323 		break;
1324 	/* Enable logging to console */
1325 	case SYSLOG_ACTION_CONSOLE_ON:
1326 		if (saved_console_loglevel != -1) {
1327 			console_loglevel = saved_console_loglevel;
1328 			saved_console_loglevel = -1;
1329 		}
1330 		break;
1331 	/* Set level of messages printed to console */
1332 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1333 		error = -EINVAL;
1334 		if (len < 1 || len > 8)
1335 			goto out;
1336 		if (len < minimum_console_loglevel)
1337 			len = minimum_console_loglevel;
1338 		console_loglevel = len;
1339 		/* Implicitly re-enable logging to console */
1340 		saved_console_loglevel = -1;
1341 		error = 0;
1342 		break;
1343 	/* Number of chars in the log buffer */
1344 	case SYSLOG_ACTION_SIZE_UNREAD:
1345 		raw_spin_lock_irq(&logbuf_lock);
1346 		if (syslog_seq < log_first_seq) {
1347 			/* messages are gone, move to first one */
1348 			syslog_seq = log_first_seq;
1349 			syslog_idx = log_first_idx;
1350 			syslog_prev = 0;
1351 			syslog_partial = 0;
1352 		}
1353 		if (from_file) {
1354 			/*
1355 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1356 			 * for pending data, not the size; return the count of
1357 			 * records, not the length.
1358 			 */
1359 			error = log_next_seq - syslog_seq;
1360 		} else {
1361 			u64 seq = syslog_seq;
1362 			u32 idx = syslog_idx;
1363 			enum log_flags prev = syslog_prev;
1364 
1365 			error = 0;
1366 			while (seq < log_next_seq) {
1367 				struct printk_log *msg = log_from_idx(idx);
1368 
1369 				error += msg_print_text(msg, prev, true, NULL, 0);
1370 				idx = log_next(idx);
1371 				seq++;
1372 				prev = msg->flags;
1373 			}
1374 			error -= syslog_partial;
1375 		}
1376 		raw_spin_unlock_irq(&logbuf_lock);
1377 		break;
1378 	/* Size of the log buffer */
1379 	case SYSLOG_ACTION_SIZE_BUFFER:
1380 		error = log_buf_len;
1381 		break;
1382 	default:
1383 		error = -EINVAL;
1384 		break;
1385 	}
1386 out:
1387 	return error;
1388 }
1389 
1390 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1391 {
1392 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1393 }
1394 
1395 /*
1396  * Call the console drivers, asking them to write out
1397  * log_buf[start] to log_buf[end - 1].
1398  * The console_lock must be held.
1399  */
1400 static void call_console_drivers(int level, const char *text, size_t len)
1401 {
1402 	struct console *con;
1403 
1404 	trace_console(text, len);
1405 
1406 	if (level >= console_loglevel && !ignore_loglevel)
1407 		return;
1408 	if (!console_drivers)
1409 		return;
1410 
1411 	for_each_console(con) {
1412 		if (exclusive_console && con != exclusive_console)
1413 			continue;
1414 		if (!(con->flags & CON_ENABLED))
1415 			continue;
1416 		if (!con->write)
1417 			continue;
1418 		if (!cpu_online(smp_processor_id()) &&
1419 		    !(con->flags & CON_ANYTIME))
1420 			continue;
1421 		con->write(con, text, len);
1422 	}
1423 }
1424 
1425 /*
1426  * Zap console related locks when oopsing. Only zap at most once
1427  * every 10 seconds, to leave time for slow consoles to print a
1428  * full oops.
1429  */
1430 static void zap_locks(void)
1431 {
1432 	static unsigned long oops_timestamp;
1433 
1434 	if (time_after_eq(jiffies, oops_timestamp) &&
1435 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1436 		return;
1437 
1438 	oops_timestamp = jiffies;
1439 
1440 	debug_locks_off();
1441 	/* If a crash is occurring, make sure we can't deadlock */
1442 	raw_spin_lock_init(&logbuf_lock);
1443 	/* And make sure that we print immediately */
1444 	sema_init(&console_sem, 1);
1445 }
1446 
1447 /*
1448  * Check if we have any console that is capable of printing while cpu is
1449  * booting or shutting down. Requires console_sem.
1450  */
1451 static int have_callable_console(void)
1452 {
1453 	struct console *con;
1454 
1455 	for_each_console(con)
1456 		if (con->flags & CON_ANYTIME)
1457 			return 1;
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Can we actually use the console at this time on this cpu?
1464  *
1465  * Console drivers may assume that per-cpu resources have been allocated. So
1466  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1467  * call them until this CPU is officially up.
1468  */
1469 static inline int can_use_console(unsigned int cpu)
1470 {
1471 	return cpu_online(cpu) || have_callable_console();
1472 }
1473 
1474 /*
1475  * Try to get console ownership to actually show the kernel
1476  * messages from a 'printk'. Return true (and with the
1477  * console_lock held, and 'console_locked' set) if it
1478  * is successful, false otherwise.
1479  */
1480 static int console_trylock_for_printk(void)
1481 {
1482 	unsigned int cpu = smp_processor_id();
1483 
1484 	if (!console_trylock())
1485 		return 0;
1486 	/*
1487 	 * If we can't use the console, we need to release the console
1488 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1489 	 * console semaphore in order to do this test safely.
1490 	 */
1491 	if (!can_use_console(cpu)) {
1492 		console_locked = 0;
1493 		up_console_sem();
1494 		return 0;
1495 	}
1496 	return 1;
1497 }
1498 
1499 int printk_delay_msec __read_mostly;
1500 
1501 static inline void printk_delay(void)
1502 {
1503 	if (unlikely(printk_delay_msec)) {
1504 		int m = printk_delay_msec;
1505 
1506 		while (m--) {
1507 			mdelay(1);
1508 			touch_nmi_watchdog();
1509 		}
1510 	}
1511 }
1512 
1513 /*
1514  * Continuation lines are buffered, and not committed to the record buffer
1515  * until the line is complete, or a race forces it. The line fragments
1516  * though, are printed immediately to the consoles to ensure everything has
1517  * reached the console in case of a kernel crash.
1518  */
1519 static struct cont {
1520 	char buf[LOG_LINE_MAX];
1521 	size_t len;			/* length == 0 means unused buffer */
1522 	size_t cons;			/* bytes written to console */
1523 	struct task_struct *owner;	/* task of first print*/
1524 	u64 ts_nsec;			/* time of first print */
1525 	u8 level;			/* log level of first message */
1526 	u8 facility;			/* log facility of first message */
1527 	enum log_flags flags;		/* prefix, newline flags */
1528 	bool flushed:1;			/* buffer sealed and committed */
1529 } cont;
1530 
1531 static void cont_flush(enum log_flags flags)
1532 {
1533 	if (cont.flushed)
1534 		return;
1535 	if (cont.len == 0)
1536 		return;
1537 
1538 	if (cont.cons) {
1539 		/*
1540 		 * If a fragment of this line was directly flushed to the
1541 		 * console; wait for the console to pick up the rest of the
1542 		 * line. LOG_NOCONS suppresses a duplicated output.
1543 		 */
1544 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1545 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1546 		cont.flags = flags;
1547 		cont.flushed = true;
1548 	} else {
1549 		/*
1550 		 * If no fragment of this line ever reached the console,
1551 		 * just submit it to the store and free the buffer.
1552 		 */
1553 		log_store(cont.facility, cont.level, flags, 0,
1554 			  NULL, 0, cont.buf, cont.len);
1555 		cont.len = 0;
1556 	}
1557 }
1558 
1559 static bool cont_add(int facility, int level, const char *text, size_t len)
1560 {
1561 	if (cont.len && cont.flushed)
1562 		return false;
1563 
1564 	if (cont.len + len > sizeof(cont.buf)) {
1565 		/* the line gets too long, split it up in separate records */
1566 		cont_flush(LOG_CONT);
1567 		return false;
1568 	}
1569 
1570 	if (!cont.len) {
1571 		cont.facility = facility;
1572 		cont.level = level;
1573 		cont.owner = current;
1574 		cont.ts_nsec = local_clock();
1575 		cont.flags = 0;
1576 		cont.cons = 0;
1577 		cont.flushed = false;
1578 	}
1579 
1580 	memcpy(cont.buf + cont.len, text, len);
1581 	cont.len += len;
1582 
1583 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1584 		cont_flush(LOG_CONT);
1585 
1586 	return true;
1587 }
1588 
1589 static size_t cont_print_text(char *text, size_t size)
1590 {
1591 	size_t textlen = 0;
1592 	size_t len;
1593 
1594 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1595 		textlen += print_time(cont.ts_nsec, text);
1596 		size -= textlen;
1597 	}
1598 
1599 	len = cont.len - cont.cons;
1600 	if (len > 0) {
1601 		if (len+1 > size)
1602 			len = size-1;
1603 		memcpy(text + textlen, cont.buf + cont.cons, len);
1604 		textlen += len;
1605 		cont.cons = cont.len;
1606 	}
1607 
1608 	if (cont.flushed) {
1609 		if (cont.flags & LOG_NEWLINE)
1610 			text[textlen++] = '\n';
1611 		/* got everything, release buffer */
1612 		cont.len = 0;
1613 	}
1614 	return textlen;
1615 }
1616 
1617 asmlinkage int vprintk_emit(int facility, int level,
1618 			    const char *dict, size_t dictlen,
1619 			    const char *fmt, va_list args)
1620 {
1621 	static int recursion_bug;
1622 	static char textbuf[LOG_LINE_MAX];
1623 	char *text = textbuf;
1624 	size_t text_len = 0;
1625 	enum log_flags lflags = 0;
1626 	unsigned long flags;
1627 	int this_cpu;
1628 	int printed_len = 0;
1629 	bool in_sched = false;
1630 	/* cpu currently holding logbuf_lock in this function */
1631 	static volatile unsigned int logbuf_cpu = UINT_MAX;
1632 
1633 	if (level == SCHED_MESSAGE_LOGLEVEL) {
1634 		level = -1;
1635 		in_sched = true;
1636 	}
1637 
1638 	boot_delay_msec(level);
1639 	printk_delay();
1640 
1641 	/* This stops the holder of console_sem just where we want him */
1642 	local_irq_save(flags);
1643 	this_cpu = smp_processor_id();
1644 
1645 	/*
1646 	 * Ouch, printk recursed into itself!
1647 	 */
1648 	if (unlikely(logbuf_cpu == this_cpu)) {
1649 		/*
1650 		 * If a crash is occurring during printk() on this CPU,
1651 		 * then try to get the crash message out but make sure
1652 		 * we can't deadlock. Otherwise just return to avoid the
1653 		 * recursion and return - but flag the recursion so that
1654 		 * it can be printed at the next appropriate moment:
1655 		 */
1656 		if (!oops_in_progress && !lockdep_recursing(current)) {
1657 			recursion_bug = 1;
1658 			local_irq_restore(flags);
1659 			return 0;
1660 		}
1661 		zap_locks();
1662 	}
1663 
1664 	lockdep_off();
1665 	raw_spin_lock(&logbuf_lock);
1666 	logbuf_cpu = this_cpu;
1667 
1668 	if (unlikely(recursion_bug)) {
1669 		static const char recursion_msg[] =
1670 			"BUG: recent printk recursion!";
1671 
1672 		recursion_bug = 0;
1673 		/* emit KERN_CRIT message */
1674 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1675 					 NULL, 0, recursion_msg,
1676 					 strlen(recursion_msg));
1677 	}
1678 
1679 	/*
1680 	 * The printf needs to come first; we need the syslog
1681 	 * prefix which might be passed-in as a parameter.
1682 	 */
1683 	if (in_sched)
1684 		text_len = scnprintf(text, sizeof(textbuf),
1685 				     KERN_WARNING "[sched_delayed] ");
1686 
1687 	text_len += vscnprintf(text + text_len,
1688 			       sizeof(textbuf) - text_len, fmt, args);
1689 
1690 	/* mark and strip a trailing newline */
1691 	if (text_len && text[text_len-1] == '\n') {
1692 		text_len--;
1693 		lflags |= LOG_NEWLINE;
1694 	}
1695 
1696 	/* strip kernel syslog prefix and extract log level or control flags */
1697 	if (facility == 0) {
1698 		int kern_level = printk_get_level(text);
1699 
1700 		if (kern_level) {
1701 			const char *end_of_header = printk_skip_level(text);
1702 			switch (kern_level) {
1703 			case '0' ... '7':
1704 				if (level == -1)
1705 					level = kern_level - '0';
1706 			case 'd':	/* KERN_DEFAULT */
1707 				lflags |= LOG_PREFIX;
1708 			}
1709 			/*
1710 			 * No need to check length here because vscnprintf
1711 			 * put '\0' at the end of the string. Only valid and
1712 			 * newly printed level is detected.
1713 			 */
1714 			text_len -= end_of_header - text;
1715 			text = (char *)end_of_header;
1716 		}
1717 	}
1718 
1719 	if (level == -1)
1720 		level = default_message_loglevel;
1721 
1722 	if (dict)
1723 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1724 
1725 	if (!(lflags & LOG_NEWLINE)) {
1726 		/*
1727 		 * Flush the conflicting buffer. An earlier newline was missing,
1728 		 * or another task also prints continuation lines.
1729 		 */
1730 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1731 			cont_flush(LOG_NEWLINE);
1732 
1733 		/* buffer line if possible, otherwise store it right away */
1734 		if (cont_add(facility, level, text, text_len))
1735 			printed_len += text_len;
1736 		else
1737 			printed_len += log_store(facility, level,
1738 						 lflags | LOG_CONT, 0,
1739 						 dict, dictlen, text, text_len);
1740 	} else {
1741 		bool stored = false;
1742 
1743 		/*
1744 		 * If an earlier newline was missing and it was the same task,
1745 		 * either merge it with the current buffer and flush, or if
1746 		 * there was a race with interrupts (prefix == true) then just
1747 		 * flush it out and store this line separately.
1748 		 * If the preceding printk was from a different task and missed
1749 		 * a newline, flush and append the newline.
1750 		 */
1751 		if (cont.len) {
1752 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1753 				stored = cont_add(facility, level, text,
1754 						  text_len);
1755 			cont_flush(LOG_NEWLINE);
1756 		}
1757 
1758 		if (stored)
1759 			printed_len += text_len;
1760 		else
1761 			printed_len += log_store(facility, level, lflags, 0,
1762 						 dict, dictlen, text, text_len);
1763 	}
1764 
1765 	logbuf_cpu = UINT_MAX;
1766 	raw_spin_unlock(&logbuf_lock);
1767 	lockdep_on();
1768 	local_irq_restore(flags);
1769 
1770 	/* If called from the scheduler, we can not call up(). */
1771 	if (!in_sched) {
1772 		lockdep_off();
1773 		/*
1774 		 * Disable preemption to avoid being preempted while holding
1775 		 * console_sem which would prevent anyone from printing to
1776 		 * console
1777 		 */
1778 		preempt_disable();
1779 
1780 		/*
1781 		 * Try to acquire and then immediately release the console
1782 		 * semaphore.  The release will print out buffers and wake up
1783 		 * /dev/kmsg and syslog() users.
1784 		 */
1785 		if (console_trylock_for_printk())
1786 			console_unlock();
1787 		preempt_enable();
1788 		lockdep_on();
1789 	}
1790 
1791 	return printed_len;
1792 }
1793 EXPORT_SYMBOL(vprintk_emit);
1794 
1795 asmlinkage int vprintk(const char *fmt, va_list args)
1796 {
1797 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1798 }
1799 EXPORT_SYMBOL(vprintk);
1800 
1801 asmlinkage int printk_emit(int facility, int level,
1802 			   const char *dict, size_t dictlen,
1803 			   const char *fmt, ...)
1804 {
1805 	va_list args;
1806 	int r;
1807 
1808 	va_start(args, fmt);
1809 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1810 	va_end(args);
1811 
1812 	return r;
1813 }
1814 EXPORT_SYMBOL(printk_emit);
1815 
1816 /**
1817  * printk - print a kernel message
1818  * @fmt: format string
1819  *
1820  * This is printk(). It can be called from any context. We want it to work.
1821  *
1822  * We try to grab the console_lock. If we succeed, it's easy - we log the
1823  * output and call the console drivers.  If we fail to get the semaphore, we
1824  * place the output into the log buffer and return. The current holder of
1825  * the console_sem will notice the new output in console_unlock(); and will
1826  * send it to the consoles before releasing the lock.
1827  *
1828  * One effect of this deferred printing is that code which calls printk() and
1829  * then changes console_loglevel may break. This is because console_loglevel
1830  * is inspected when the actual printing occurs.
1831  *
1832  * See also:
1833  * printf(3)
1834  *
1835  * See the vsnprintf() documentation for format string extensions over C99.
1836  */
1837 asmlinkage __visible int printk(const char *fmt, ...)
1838 {
1839 	va_list args;
1840 	int r;
1841 
1842 #ifdef CONFIG_KGDB_KDB
1843 	if (unlikely(kdb_trap_printk)) {
1844 		va_start(args, fmt);
1845 		r = vkdb_printf(fmt, args);
1846 		va_end(args);
1847 		return r;
1848 	}
1849 #endif
1850 	va_start(args, fmt);
1851 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1852 	va_end(args);
1853 
1854 	return r;
1855 }
1856 EXPORT_SYMBOL(printk);
1857 
1858 #else /* CONFIG_PRINTK */
1859 
1860 #define LOG_LINE_MAX		0
1861 #define PREFIX_MAX		0
1862 
1863 static u64 syslog_seq;
1864 static u32 syslog_idx;
1865 static u64 console_seq;
1866 static u32 console_idx;
1867 static enum log_flags syslog_prev;
1868 static u64 log_first_seq;
1869 static u32 log_first_idx;
1870 static u64 log_next_seq;
1871 static enum log_flags console_prev;
1872 static struct cont {
1873 	size_t len;
1874 	size_t cons;
1875 	u8 level;
1876 	bool flushed:1;
1877 } cont;
1878 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1879 static u32 log_next(u32 idx) { return 0; }
1880 static void call_console_drivers(int level, const char *text, size_t len) {}
1881 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1882 			     bool syslog, char *buf, size_t size) { return 0; }
1883 static size_t cont_print_text(char *text, size_t size) { return 0; }
1884 
1885 #endif /* CONFIG_PRINTK */
1886 
1887 #ifdef CONFIG_EARLY_PRINTK
1888 struct console *early_console;
1889 
1890 void early_vprintk(const char *fmt, va_list ap)
1891 {
1892 	if (early_console) {
1893 		char buf[512];
1894 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1895 
1896 		early_console->write(early_console, buf, n);
1897 	}
1898 }
1899 
1900 asmlinkage __visible void early_printk(const char *fmt, ...)
1901 {
1902 	va_list ap;
1903 
1904 	va_start(ap, fmt);
1905 	early_vprintk(fmt, ap);
1906 	va_end(ap);
1907 }
1908 #endif
1909 
1910 static int __add_preferred_console(char *name, int idx, char *options,
1911 				   char *brl_options)
1912 {
1913 	struct console_cmdline *c;
1914 	int i;
1915 
1916 	/*
1917 	 *	See if this tty is not yet registered, and
1918 	 *	if we have a slot free.
1919 	 */
1920 	for (i = 0, c = console_cmdline;
1921 	     i < MAX_CMDLINECONSOLES && c->name[0];
1922 	     i++, c++) {
1923 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1924 			if (!brl_options)
1925 				selected_console = i;
1926 			return 0;
1927 		}
1928 	}
1929 	if (i == MAX_CMDLINECONSOLES)
1930 		return -E2BIG;
1931 	if (!brl_options)
1932 		selected_console = i;
1933 	strlcpy(c->name, name, sizeof(c->name));
1934 	c->options = options;
1935 	braille_set_options(c, brl_options);
1936 
1937 	c->index = idx;
1938 	return 0;
1939 }
1940 /*
1941  * Set up a console.  Called via do_early_param() in init/main.c
1942  * for each "console=" parameter in the boot command line.
1943  */
1944 static int __init console_setup(char *str)
1945 {
1946 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1947 	char *s, *options, *brl_options = NULL;
1948 	int idx;
1949 
1950 	if (_braille_console_setup(&str, &brl_options))
1951 		return 1;
1952 
1953 	/*
1954 	 * Decode str into name, index, options.
1955 	 */
1956 	if (str[0] >= '0' && str[0] <= '9') {
1957 		strcpy(buf, "ttyS");
1958 		strncpy(buf + 4, str, sizeof(buf) - 5);
1959 	} else {
1960 		strncpy(buf, str, sizeof(buf) - 1);
1961 	}
1962 	buf[sizeof(buf) - 1] = 0;
1963 	options = strchr(str, ',');
1964 	if (options)
1965 		*(options++) = 0;
1966 #ifdef __sparc__
1967 	if (!strcmp(str, "ttya"))
1968 		strcpy(buf, "ttyS0");
1969 	if (!strcmp(str, "ttyb"))
1970 		strcpy(buf, "ttyS1");
1971 #endif
1972 	for (s = buf; *s; s++)
1973 		if (isdigit(*s) || *s == ',')
1974 			break;
1975 	idx = simple_strtoul(s, NULL, 10);
1976 	*s = 0;
1977 
1978 	__add_preferred_console(buf, idx, options, brl_options);
1979 	console_set_on_cmdline = 1;
1980 	return 1;
1981 }
1982 __setup("console=", console_setup);
1983 
1984 /**
1985  * add_preferred_console - add a device to the list of preferred consoles.
1986  * @name: device name
1987  * @idx: device index
1988  * @options: options for this console
1989  *
1990  * The last preferred console added will be used for kernel messages
1991  * and stdin/out/err for init.  Normally this is used by console_setup
1992  * above to handle user-supplied console arguments; however it can also
1993  * be used by arch-specific code either to override the user or more
1994  * commonly to provide a default console (ie from PROM variables) when
1995  * the user has not supplied one.
1996  */
1997 int add_preferred_console(char *name, int idx, char *options)
1998 {
1999 	return __add_preferred_console(name, idx, options, NULL);
2000 }
2001 
2002 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
2003 {
2004 	struct console_cmdline *c;
2005 	int i;
2006 
2007 	for (i = 0, c = console_cmdline;
2008 	     i < MAX_CMDLINECONSOLES && c->name[0];
2009 	     i++, c++)
2010 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2011 			strlcpy(c->name, name_new, sizeof(c->name));
2012 			c->options = options;
2013 			c->index = idx_new;
2014 			return i;
2015 		}
2016 	/* not found */
2017 	return -1;
2018 }
2019 
2020 bool console_suspend_enabled = true;
2021 EXPORT_SYMBOL(console_suspend_enabled);
2022 
2023 static int __init console_suspend_disable(char *str)
2024 {
2025 	console_suspend_enabled = false;
2026 	return 1;
2027 }
2028 __setup("no_console_suspend", console_suspend_disable);
2029 module_param_named(console_suspend, console_suspend_enabled,
2030 		bool, S_IRUGO | S_IWUSR);
2031 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2032 	" and hibernate operations");
2033 
2034 /**
2035  * suspend_console - suspend the console subsystem
2036  *
2037  * This disables printk() while we go into suspend states
2038  */
2039 void suspend_console(void)
2040 {
2041 	if (!console_suspend_enabled)
2042 		return;
2043 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2044 	console_lock();
2045 	console_suspended = 1;
2046 	up_console_sem();
2047 }
2048 
2049 void resume_console(void)
2050 {
2051 	if (!console_suspend_enabled)
2052 		return;
2053 	down_console_sem();
2054 	console_suspended = 0;
2055 	console_unlock();
2056 }
2057 
2058 /**
2059  * console_cpu_notify - print deferred console messages after CPU hotplug
2060  * @self: notifier struct
2061  * @action: CPU hotplug event
2062  * @hcpu: unused
2063  *
2064  * If printk() is called from a CPU that is not online yet, the messages
2065  * will be spooled but will not show up on the console.  This function is
2066  * called when a new CPU comes online (or fails to come up), and ensures
2067  * that any such output gets printed.
2068  */
2069 static int console_cpu_notify(struct notifier_block *self,
2070 	unsigned long action, void *hcpu)
2071 {
2072 	switch (action) {
2073 	case CPU_ONLINE:
2074 	case CPU_DEAD:
2075 	case CPU_DOWN_FAILED:
2076 	case CPU_UP_CANCELED:
2077 		console_lock();
2078 		console_unlock();
2079 	}
2080 	return NOTIFY_OK;
2081 }
2082 
2083 /**
2084  * console_lock - lock the console system for exclusive use.
2085  *
2086  * Acquires a lock which guarantees that the caller has
2087  * exclusive access to the console system and the console_drivers list.
2088  *
2089  * Can sleep, returns nothing.
2090  */
2091 void console_lock(void)
2092 {
2093 	might_sleep();
2094 
2095 	down_console_sem();
2096 	if (console_suspended)
2097 		return;
2098 	console_locked = 1;
2099 	console_may_schedule = 1;
2100 }
2101 EXPORT_SYMBOL(console_lock);
2102 
2103 /**
2104  * console_trylock - try to lock the console system for exclusive use.
2105  *
2106  * Try to acquire a lock which guarantees that the caller has exclusive
2107  * access to the console system and the console_drivers list.
2108  *
2109  * returns 1 on success, and 0 on failure to acquire the lock.
2110  */
2111 int console_trylock(void)
2112 {
2113 	if (down_trylock_console_sem())
2114 		return 0;
2115 	if (console_suspended) {
2116 		up_console_sem();
2117 		return 0;
2118 	}
2119 	console_locked = 1;
2120 	console_may_schedule = 0;
2121 	return 1;
2122 }
2123 EXPORT_SYMBOL(console_trylock);
2124 
2125 int is_console_locked(void)
2126 {
2127 	return console_locked;
2128 }
2129 
2130 static void console_cont_flush(char *text, size_t size)
2131 {
2132 	unsigned long flags;
2133 	size_t len;
2134 
2135 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2136 
2137 	if (!cont.len)
2138 		goto out;
2139 
2140 	/*
2141 	 * We still queue earlier records, likely because the console was
2142 	 * busy. The earlier ones need to be printed before this one, we
2143 	 * did not flush any fragment so far, so just let it queue up.
2144 	 */
2145 	if (console_seq < log_next_seq && !cont.cons)
2146 		goto out;
2147 
2148 	len = cont_print_text(text, size);
2149 	raw_spin_unlock(&logbuf_lock);
2150 	stop_critical_timings();
2151 	call_console_drivers(cont.level, text, len);
2152 	start_critical_timings();
2153 	local_irq_restore(flags);
2154 	return;
2155 out:
2156 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2157 }
2158 
2159 /**
2160  * console_unlock - unlock the console system
2161  *
2162  * Releases the console_lock which the caller holds on the console system
2163  * and the console driver list.
2164  *
2165  * While the console_lock was held, console output may have been buffered
2166  * by printk().  If this is the case, console_unlock(); emits
2167  * the output prior to releasing the lock.
2168  *
2169  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2170  *
2171  * console_unlock(); may be called from any context.
2172  */
2173 void console_unlock(void)
2174 {
2175 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2176 	static u64 seen_seq;
2177 	unsigned long flags;
2178 	bool wake_klogd = false;
2179 	bool retry;
2180 
2181 	if (console_suspended) {
2182 		up_console_sem();
2183 		return;
2184 	}
2185 
2186 	console_may_schedule = 0;
2187 
2188 	/* flush buffered message fragment immediately to console */
2189 	console_cont_flush(text, sizeof(text));
2190 again:
2191 	for (;;) {
2192 		struct printk_log *msg;
2193 		size_t len;
2194 		int level;
2195 
2196 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2197 		if (seen_seq != log_next_seq) {
2198 			wake_klogd = true;
2199 			seen_seq = log_next_seq;
2200 		}
2201 
2202 		if (console_seq < log_first_seq) {
2203 			len = sprintf(text, "** %u printk messages dropped ** ",
2204 				      (unsigned)(log_first_seq - console_seq));
2205 
2206 			/* messages are gone, move to first one */
2207 			console_seq = log_first_seq;
2208 			console_idx = log_first_idx;
2209 			console_prev = 0;
2210 		} else {
2211 			len = 0;
2212 		}
2213 skip:
2214 		if (console_seq == log_next_seq)
2215 			break;
2216 
2217 		msg = log_from_idx(console_idx);
2218 		if (msg->flags & LOG_NOCONS) {
2219 			/*
2220 			 * Skip record we have buffered and already printed
2221 			 * directly to the console when we received it.
2222 			 */
2223 			console_idx = log_next(console_idx);
2224 			console_seq++;
2225 			/*
2226 			 * We will get here again when we register a new
2227 			 * CON_PRINTBUFFER console. Clear the flag so we
2228 			 * will properly dump everything later.
2229 			 */
2230 			msg->flags &= ~LOG_NOCONS;
2231 			console_prev = msg->flags;
2232 			goto skip;
2233 		}
2234 
2235 		level = msg->level;
2236 		len += msg_print_text(msg, console_prev, false,
2237 				      text + len, sizeof(text) - len);
2238 		console_idx = log_next(console_idx);
2239 		console_seq++;
2240 		console_prev = msg->flags;
2241 		raw_spin_unlock(&logbuf_lock);
2242 
2243 		stop_critical_timings();	/* don't trace print latency */
2244 		call_console_drivers(level, text, len);
2245 		start_critical_timings();
2246 		local_irq_restore(flags);
2247 	}
2248 	console_locked = 0;
2249 
2250 	/* Release the exclusive_console once it is used */
2251 	if (unlikely(exclusive_console))
2252 		exclusive_console = NULL;
2253 
2254 	raw_spin_unlock(&logbuf_lock);
2255 
2256 	up_console_sem();
2257 
2258 	/*
2259 	 * Someone could have filled up the buffer again, so re-check if there's
2260 	 * something to flush. In case we cannot trylock the console_sem again,
2261 	 * there's a new owner and the console_unlock() from them will do the
2262 	 * flush, no worries.
2263 	 */
2264 	raw_spin_lock(&logbuf_lock);
2265 	retry = console_seq != log_next_seq;
2266 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2267 
2268 	if (retry && console_trylock())
2269 		goto again;
2270 
2271 	if (wake_klogd)
2272 		wake_up_klogd();
2273 }
2274 EXPORT_SYMBOL(console_unlock);
2275 
2276 /**
2277  * console_conditional_schedule - yield the CPU if required
2278  *
2279  * If the console code is currently allowed to sleep, and
2280  * if this CPU should yield the CPU to another task, do
2281  * so here.
2282  *
2283  * Must be called within console_lock();.
2284  */
2285 void __sched console_conditional_schedule(void)
2286 {
2287 	if (console_may_schedule)
2288 		cond_resched();
2289 }
2290 EXPORT_SYMBOL(console_conditional_schedule);
2291 
2292 void console_unblank(void)
2293 {
2294 	struct console *c;
2295 
2296 	/*
2297 	 * console_unblank can no longer be called in interrupt context unless
2298 	 * oops_in_progress is set to 1..
2299 	 */
2300 	if (oops_in_progress) {
2301 		if (down_trylock_console_sem() != 0)
2302 			return;
2303 	} else
2304 		console_lock();
2305 
2306 	console_locked = 1;
2307 	console_may_schedule = 0;
2308 	for_each_console(c)
2309 		if ((c->flags & CON_ENABLED) && c->unblank)
2310 			c->unblank();
2311 	console_unlock();
2312 }
2313 
2314 /*
2315  * Return the console tty driver structure and its associated index
2316  */
2317 struct tty_driver *console_device(int *index)
2318 {
2319 	struct console *c;
2320 	struct tty_driver *driver = NULL;
2321 
2322 	console_lock();
2323 	for_each_console(c) {
2324 		if (!c->device)
2325 			continue;
2326 		driver = c->device(c, index);
2327 		if (driver)
2328 			break;
2329 	}
2330 	console_unlock();
2331 	return driver;
2332 }
2333 
2334 /*
2335  * Prevent further output on the passed console device so that (for example)
2336  * serial drivers can disable console output before suspending a port, and can
2337  * re-enable output afterwards.
2338  */
2339 void console_stop(struct console *console)
2340 {
2341 	console_lock();
2342 	console->flags &= ~CON_ENABLED;
2343 	console_unlock();
2344 }
2345 EXPORT_SYMBOL(console_stop);
2346 
2347 void console_start(struct console *console)
2348 {
2349 	console_lock();
2350 	console->flags |= CON_ENABLED;
2351 	console_unlock();
2352 }
2353 EXPORT_SYMBOL(console_start);
2354 
2355 static int __read_mostly keep_bootcon;
2356 
2357 static int __init keep_bootcon_setup(char *str)
2358 {
2359 	keep_bootcon = 1;
2360 	pr_info("debug: skip boot console de-registration.\n");
2361 
2362 	return 0;
2363 }
2364 
2365 early_param("keep_bootcon", keep_bootcon_setup);
2366 
2367 /*
2368  * The console driver calls this routine during kernel initialization
2369  * to register the console printing procedure with printk() and to
2370  * print any messages that were printed by the kernel before the
2371  * console driver was initialized.
2372  *
2373  * This can happen pretty early during the boot process (because of
2374  * early_printk) - sometimes before setup_arch() completes - be careful
2375  * of what kernel features are used - they may not be initialised yet.
2376  *
2377  * There are two types of consoles - bootconsoles (early_printk) and
2378  * "real" consoles (everything which is not a bootconsole) which are
2379  * handled differently.
2380  *  - Any number of bootconsoles can be registered at any time.
2381  *  - As soon as a "real" console is registered, all bootconsoles
2382  *    will be unregistered automatically.
2383  *  - Once a "real" console is registered, any attempt to register a
2384  *    bootconsoles will be rejected
2385  */
2386 void register_console(struct console *newcon)
2387 {
2388 	int i;
2389 	unsigned long flags;
2390 	struct console *bcon = NULL;
2391 	struct console_cmdline *c;
2392 
2393 	if (console_drivers)
2394 		for_each_console(bcon)
2395 			if (WARN(bcon == newcon,
2396 					"console '%s%d' already registered\n",
2397 					bcon->name, bcon->index))
2398 				return;
2399 
2400 	/*
2401 	 * before we register a new CON_BOOT console, make sure we don't
2402 	 * already have a valid console
2403 	 */
2404 	if (console_drivers && newcon->flags & CON_BOOT) {
2405 		/* find the last or real console */
2406 		for_each_console(bcon) {
2407 			if (!(bcon->flags & CON_BOOT)) {
2408 				pr_info("Too late to register bootconsole %s%d\n",
2409 					newcon->name, newcon->index);
2410 				return;
2411 			}
2412 		}
2413 	}
2414 
2415 	if (console_drivers && console_drivers->flags & CON_BOOT)
2416 		bcon = console_drivers;
2417 
2418 	if (preferred_console < 0 || bcon || !console_drivers)
2419 		preferred_console = selected_console;
2420 
2421 	if (newcon->early_setup)
2422 		newcon->early_setup();
2423 
2424 	/*
2425 	 *	See if we want to use this console driver. If we
2426 	 *	didn't select a console we take the first one
2427 	 *	that registers here.
2428 	 */
2429 	if (preferred_console < 0) {
2430 		if (newcon->index < 0)
2431 			newcon->index = 0;
2432 		if (newcon->setup == NULL ||
2433 		    newcon->setup(newcon, NULL) == 0) {
2434 			newcon->flags |= CON_ENABLED;
2435 			if (newcon->device) {
2436 				newcon->flags |= CON_CONSDEV;
2437 				preferred_console = 0;
2438 			}
2439 		}
2440 	}
2441 
2442 	/*
2443 	 *	See if this console matches one we selected on
2444 	 *	the command line.
2445 	 */
2446 	for (i = 0, c = console_cmdline;
2447 	     i < MAX_CMDLINECONSOLES && c->name[0];
2448 	     i++, c++) {
2449 		if (strcmp(c->name, newcon->name) != 0)
2450 			continue;
2451 		if (newcon->index >= 0 &&
2452 		    newcon->index != c->index)
2453 			continue;
2454 		if (newcon->index < 0)
2455 			newcon->index = c->index;
2456 
2457 		if (_braille_register_console(newcon, c))
2458 			return;
2459 
2460 		if (newcon->setup &&
2461 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2462 			break;
2463 		newcon->flags |= CON_ENABLED;
2464 		newcon->index = c->index;
2465 		if (i == selected_console) {
2466 			newcon->flags |= CON_CONSDEV;
2467 			preferred_console = selected_console;
2468 		}
2469 		break;
2470 	}
2471 
2472 	if (!(newcon->flags & CON_ENABLED))
2473 		return;
2474 
2475 	/*
2476 	 * If we have a bootconsole, and are switching to a real console,
2477 	 * don't print everything out again, since when the boot console, and
2478 	 * the real console are the same physical device, it's annoying to
2479 	 * see the beginning boot messages twice
2480 	 */
2481 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2482 		newcon->flags &= ~CON_PRINTBUFFER;
2483 
2484 	/*
2485 	 *	Put this console in the list - keep the
2486 	 *	preferred driver at the head of the list.
2487 	 */
2488 	console_lock();
2489 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2490 		newcon->next = console_drivers;
2491 		console_drivers = newcon;
2492 		if (newcon->next)
2493 			newcon->next->flags &= ~CON_CONSDEV;
2494 	} else {
2495 		newcon->next = console_drivers->next;
2496 		console_drivers->next = newcon;
2497 	}
2498 	if (newcon->flags & CON_PRINTBUFFER) {
2499 		/*
2500 		 * console_unlock(); will print out the buffered messages
2501 		 * for us.
2502 		 */
2503 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2504 		console_seq = syslog_seq;
2505 		console_idx = syslog_idx;
2506 		console_prev = syslog_prev;
2507 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2508 		/*
2509 		 * We're about to replay the log buffer.  Only do this to the
2510 		 * just-registered console to avoid excessive message spam to
2511 		 * the already-registered consoles.
2512 		 */
2513 		exclusive_console = newcon;
2514 	}
2515 	console_unlock();
2516 	console_sysfs_notify();
2517 
2518 	/*
2519 	 * By unregistering the bootconsoles after we enable the real console
2520 	 * we get the "console xxx enabled" message on all the consoles -
2521 	 * boot consoles, real consoles, etc - this is to ensure that end
2522 	 * users know there might be something in the kernel's log buffer that
2523 	 * went to the bootconsole (that they do not see on the real console)
2524 	 */
2525 	pr_info("%sconsole [%s%d] enabled\n",
2526 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2527 		newcon->name, newcon->index);
2528 	if (bcon &&
2529 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2530 	    !keep_bootcon) {
2531 		/* We need to iterate through all boot consoles, to make
2532 		 * sure we print everything out, before we unregister them.
2533 		 */
2534 		for_each_console(bcon)
2535 			if (bcon->flags & CON_BOOT)
2536 				unregister_console(bcon);
2537 	}
2538 }
2539 EXPORT_SYMBOL(register_console);
2540 
2541 int unregister_console(struct console *console)
2542 {
2543         struct console *a, *b;
2544 	int res;
2545 
2546 	pr_info("%sconsole [%s%d] disabled\n",
2547 		(console->flags & CON_BOOT) ? "boot" : "" ,
2548 		console->name, console->index);
2549 
2550 	res = _braille_unregister_console(console);
2551 	if (res)
2552 		return res;
2553 
2554 	res = 1;
2555 	console_lock();
2556 	if (console_drivers == console) {
2557 		console_drivers=console->next;
2558 		res = 0;
2559 	} else if (console_drivers) {
2560 		for (a=console_drivers->next, b=console_drivers ;
2561 		     a; b=a, a=b->next) {
2562 			if (a == console) {
2563 				b->next = a->next;
2564 				res = 0;
2565 				break;
2566 			}
2567 		}
2568 	}
2569 
2570 	/*
2571 	 * If this isn't the last console and it has CON_CONSDEV set, we
2572 	 * need to set it on the next preferred console.
2573 	 */
2574 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2575 		console_drivers->flags |= CON_CONSDEV;
2576 
2577 	console->flags &= ~CON_ENABLED;
2578 	console_unlock();
2579 	console_sysfs_notify();
2580 	return res;
2581 }
2582 EXPORT_SYMBOL(unregister_console);
2583 
2584 static int __init printk_late_init(void)
2585 {
2586 	struct console *con;
2587 
2588 	for_each_console(con) {
2589 		if (!keep_bootcon && con->flags & CON_BOOT) {
2590 			unregister_console(con);
2591 		}
2592 	}
2593 	hotcpu_notifier(console_cpu_notify, 0);
2594 	return 0;
2595 }
2596 late_initcall(printk_late_init);
2597 
2598 #if defined CONFIG_PRINTK
2599 /*
2600  * Delayed printk version, for scheduler-internal messages:
2601  */
2602 #define PRINTK_PENDING_WAKEUP	0x01
2603 #define PRINTK_PENDING_OUTPUT	0x02
2604 
2605 static DEFINE_PER_CPU(int, printk_pending);
2606 
2607 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2608 {
2609 	int pending = __this_cpu_xchg(printk_pending, 0);
2610 
2611 	if (pending & PRINTK_PENDING_OUTPUT) {
2612 		/* If trylock fails, someone else is doing the printing */
2613 		if (console_trylock())
2614 			console_unlock();
2615 	}
2616 
2617 	if (pending & PRINTK_PENDING_WAKEUP)
2618 		wake_up_interruptible(&log_wait);
2619 }
2620 
2621 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2622 	.func = wake_up_klogd_work_func,
2623 	.flags = IRQ_WORK_LAZY,
2624 };
2625 
2626 void wake_up_klogd(void)
2627 {
2628 	preempt_disable();
2629 	if (waitqueue_active(&log_wait)) {
2630 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2631 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2632 	}
2633 	preempt_enable();
2634 }
2635 
2636 int printk_deferred(const char *fmt, ...)
2637 {
2638 	va_list args;
2639 	int r;
2640 
2641 	preempt_disable();
2642 	va_start(args, fmt);
2643 	r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2644 	va_end(args);
2645 
2646 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2647 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2648 	preempt_enable();
2649 
2650 	return r;
2651 }
2652 
2653 /*
2654  * printk rate limiting, lifted from the networking subsystem.
2655  *
2656  * This enforces a rate limit: not more than 10 kernel messages
2657  * every 5s to make a denial-of-service attack impossible.
2658  */
2659 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2660 
2661 int __printk_ratelimit(const char *func)
2662 {
2663 	return ___ratelimit(&printk_ratelimit_state, func);
2664 }
2665 EXPORT_SYMBOL(__printk_ratelimit);
2666 
2667 /**
2668  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2669  * @caller_jiffies: pointer to caller's state
2670  * @interval_msecs: minimum interval between prints
2671  *
2672  * printk_timed_ratelimit() returns true if more than @interval_msecs
2673  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2674  * returned true.
2675  */
2676 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2677 			unsigned int interval_msecs)
2678 {
2679 	unsigned long elapsed = jiffies - *caller_jiffies;
2680 
2681 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2682 		return false;
2683 
2684 	*caller_jiffies = jiffies;
2685 	return true;
2686 }
2687 EXPORT_SYMBOL(printk_timed_ratelimit);
2688 
2689 static DEFINE_SPINLOCK(dump_list_lock);
2690 static LIST_HEAD(dump_list);
2691 
2692 /**
2693  * kmsg_dump_register - register a kernel log dumper.
2694  * @dumper: pointer to the kmsg_dumper structure
2695  *
2696  * Adds a kernel log dumper to the system. The dump callback in the
2697  * structure will be called when the kernel oopses or panics and must be
2698  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2699  */
2700 int kmsg_dump_register(struct kmsg_dumper *dumper)
2701 {
2702 	unsigned long flags;
2703 	int err = -EBUSY;
2704 
2705 	/* The dump callback needs to be set */
2706 	if (!dumper->dump)
2707 		return -EINVAL;
2708 
2709 	spin_lock_irqsave(&dump_list_lock, flags);
2710 	/* Don't allow registering multiple times */
2711 	if (!dumper->registered) {
2712 		dumper->registered = 1;
2713 		list_add_tail_rcu(&dumper->list, &dump_list);
2714 		err = 0;
2715 	}
2716 	spin_unlock_irqrestore(&dump_list_lock, flags);
2717 
2718 	return err;
2719 }
2720 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2721 
2722 /**
2723  * kmsg_dump_unregister - unregister a kmsg dumper.
2724  * @dumper: pointer to the kmsg_dumper structure
2725  *
2726  * Removes a dump device from the system. Returns zero on success and
2727  * %-EINVAL otherwise.
2728  */
2729 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2730 {
2731 	unsigned long flags;
2732 	int err = -EINVAL;
2733 
2734 	spin_lock_irqsave(&dump_list_lock, flags);
2735 	if (dumper->registered) {
2736 		dumper->registered = 0;
2737 		list_del_rcu(&dumper->list);
2738 		err = 0;
2739 	}
2740 	spin_unlock_irqrestore(&dump_list_lock, flags);
2741 	synchronize_rcu();
2742 
2743 	return err;
2744 }
2745 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2746 
2747 static bool always_kmsg_dump;
2748 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2749 
2750 /**
2751  * kmsg_dump - dump kernel log to kernel message dumpers.
2752  * @reason: the reason (oops, panic etc) for dumping
2753  *
2754  * Call each of the registered dumper's dump() callback, which can
2755  * retrieve the kmsg records with kmsg_dump_get_line() or
2756  * kmsg_dump_get_buffer().
2757  */
2758 void kmsg_dump(enum kmsg_dump_reason reason)
2759 {
2760 	struct kmsg_dumper *dumper;
2761 	unsigned long flags;
2762 
2763 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2764 		return;
2765 
2766 	rcu_read_lock();
2767 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2768 		if (dumper->max_reason && reason > dumper->max_reason)
2769 			continue;
2770 
2771 		/* initialize iterator with data about the stored records */
2772 		dumper->active = true;
2773 
2774 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2775 		dumper->cur_seq = clear_seq;
2776 		dumper->cur_idx = clear_idx;
2777 		dumper->next_seq = log_next_seq;
2778 		dumper->next_idx = log_next_idx;
2779 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2780 
2781 		/* invoke dumper which will iterate over records */
2782 		dumper->dump(dumper, reason);
2783 
2784 		/* reset iterator */
2785 		dumper->active = false;
2786 	}
2787 	rcu_read_unlock();
2788 }
2789 
2790 /**
2791  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2792  * @dumper: registered kmsg dumper
2793  * @syslog: include the "<4>" prefixes
2794  * @line: buffer to copy the line to
2795  * @size: maximum size of the buffer
2796  * @len: length of line placed into buffer
2797  *
2798  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2799  * record, and copy one record into the provided buffer.
2800  *
2801  * Consecutive calls will return the next available record moving
2802  * towards the end of the buffer with the youngest messages.
2803  *
2804  * A return value of FALSE indicates that there are no more records to
2805  * read.
2806  *
2807  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2808  */
2809 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2810 			       char *line, size_t size, size_t *len)
2811 {
2812 	struct printk_log *msg;
2813 	size_t l = 0;
2814 	bool ret = false;
2815 
2816 	if (!dumper->active)
2817 		goto out;
2818 
2819 	if (dumper->cur_seq < log_first_seq) {
2820 		/* messages are gone, move to first available one */
2821 		dumper->cur_seq = log_first_seq;
2822 		dumper->cur_idx = log_first_idx;
2823 	}
2824 
2825 	/* last entry */
2826 	if (dumper->cur_seq >= log_next_seq)
2827 		goto out;
2828 
2829 	msg = log_from_idx(dumper->cur_idx);
2830 	l = msg_print_text(msg, 0, syslog, line, size);
2831 
2832 	dumper->cur_idx = log_next(dumper->cur_idx);
2833 	dumper->cur_seq++;
2834 	ret = true;
2835 out:
2836 	if (len)
2837 		*len = l;
2838 	return ret;
2839 }
2840 
2841 /**
2842  * kmsg_dump_get_line - retrieve one kmsg log line
2843  * @dumper: registered kmsg dumper
2844  * @syslog: include the "<4>" prefixes
2845  * @line: buffer to copy the line to
2846  * @size: maximum size of the buffer
2847  * @len: length of line placed into buffer
2848  *
2849  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2850  * record, and copy one record into the provided buffer.
2851  *
2852  * Consecutive calls will return the next available record moving
2853  * towards the end of the buffer with the youngest messages.
2854  *
2855  * A return value of FALSE indicates that there are no more records to
2856  * read.
2857  */
2858 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2859 			char *line, size_t size, size_t *len)
2860 {
2861 	unsigned long flags;
2862 	bool ret;
2863 
2864 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2865 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2866 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2867 
2868 	return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2871 
2872 /**
2873  * kmsg_dump_get_buffer - copy kmsg log lines
2874  * @dumper: registered kmsg dumper
2875  * @syslog: include the "<4>" prefixes
2876  * @buf: buffer to copy the line to
2877  * @size: maximum size of the buffer
2878  * @len: length of line placed into buffer
2879  *
2880  * Start at the end of the kmsg buffer and fill the provided buffer
2881  * with as many of the the *youngest* kmsg records that fit into it.
2882  * If the buffer is large enough, all available kmsg records will be
2883  * copied with a single call.
2884  *
2885  * Consecutive calls will fill the buffer with the next block of
2886  * available older records, not including the earlier retrieved ones.
2887  *
2888  * A return value of FALSE indicates that there are no more records to
2889  * read.
2890  */
2891 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2892 			  char *buf, size_t size, size_t *len)
2893 {
2894 	unsigned long flags;
2895 	u64 seq;
2896 	u32 idx;
2897 	u64 next_seq;
2898 	u32 next_idx;
2899 	enum log_flags prev;
2900 	size_t l = 0;
2901 	bool ret = false;
2902 
2903 	if (!dumper->active)
2904 		goto out;
2905 
2906 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2907 	if (dumper->cur_seq < log_first_seq) {
2908 		/* messages are gone, move to first available one */
2909 		dumper->cur_seq = log_first_seq;
2910 		dumper->cur_idx = log_first_idx;
2911 	}
2912 
2913 	/* last entry */
2914 	if (dumper->cur_seq >= dumper->next_seq) {
2915 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2916 		goto out;
2917 	}
2918 
2919 	/* calculate length of entire buffer */
2920 	seq = dumper->cur_seq;
2921 	idx = dumper->cur_idx;
2922 	prev = 0;
2923 	while (seq < dumper->next_seq) {
2924 		struct printk_log *msg = log_from_idx(idx);
2925 
2926 		l += msg_print_text(msg, prev, true, NULL, 0);
2927 		idx = log_next(idx);
2928 		seq++;
2929 		prev = msg->flags;
2930 	}
2931 
2932 	/* move first record forward until length fits into the buffer */
2933 	seq = dumper->cur_seq;
2934 	idx = dumper->cur_idx;
2935 	prev = 0;
2936 	while (l > size && seq < dumper->next_seq) {
2937 		struct printk_log *msg = log_from_idx(idx);
2938 
2939 		l -= msg_print_text(msg, prev, true, NULL, 0);
2940 		idx = log_next(idx);
2941 		seq++;
2942 		prev = msg->flags;
2943 	}
2944 
2945 	/* last message in next interation */
2946 	next_seq = seq;
2947 	next_idx = idx;
2948 
2949 	l = 0;
2950 	while (seq < dumper->next_seq) {
2951 		struct printk_log *msg = log_from_idx(idx);
2952 
2953 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2954 		idx = log_next(idx);
2955 		seq++;
2956 		prev = msg->flags;
2957 	}
2958 
2959 	dumper->next_seq = next_seq;
2960 	dumper->next_idx = next_idx;
2961 	ret = true;
2962 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2963 out:
2964 	if (len)
2965 		*len = l;
2966 	return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2969 
2970 /**
2971  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2972  * @dumper: registered kmsg dumper
2973  *
2974  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2975  * kmsg_dump_get_buffer() can be called again and used multiple
2976  * times within the same dumper.dump() callback.
2977  *
2978  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2979  */
2980 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2981 {
2982 	dumper->cur_seq = clear_seq;
2983 	dumper->cur_idx = clear_idx;
2984 	dumper->next_seq = log_next_seq;
2985 	dumper->next_idx = log_next_idx;
2986 }
2987 
2988 /**
2989  * kmsg_dump_rewind - reset the interator
2990  * @dumper: registered kmsg dumper
2991  *
2992  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2993  * kmsg_dump_get_buffer() can be called again and used multiple
2994  * times within the same dumper.dump() callback.
2995  */
2996 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2997 {
2998 	unsigned long flags;
2999 
3000 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3001 	kmsg_dump_rewind_nolock(dumper);
3002 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3005 
3006 static char dump_stack_arch_desc_str[128];
3007 
3008 /**
3009  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3010  * @fmt: printf-style format string
3011  * @...: arguments for the format string
3012  *
3013  * The configured string will be printed right after utsname during task
3014  * dumps.  Usually used to add arch-specific system identifiers.  If an
3015  * arch wants to make use of such an ID string, it should initialize this
3016  * as soon as possible during boot.
3017  */
3018 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3019 {
3020 	va_list args;
3021 
3022 	va_start(args, fmt);
3023 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3024 		  fmt, args);
3025 	va_end(args);
3026 }
3027 
3028 /**
3029  * dump_stack_print_info - print generic debug info for dump_stack()
3030  * @log_lvl: log level
3031  *
3032  * Arch-specific dump_stack() implementations can use this function to
3033  * print out the same debug information as the generic dump_stack().
3034  */
3035 void dump_stack_print_info(const char *log_lvl)
3036 {
3037 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3038 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3039 	       print_tainted(), init_utsname()->release,
3040 	       (int)strcspn(init_utsname()->version, " "),
3041 	       init_utsname()->version);
3042 
3043 	if (dump_stack_arch_desc_str[0] != '\0')
3044 		printk("%sHardware name: %s\n",
3045 		       log_lvl, dump_stack_arch_desc_str);
3046 
3047 	print_worker_info(log_lvl, current);
3048 }
3049 
3050 /**
3051  * show_regs_print_info - print generic debug info for show_regs()
3052  * @log_lvl: log level
3053  *
3054  * show_regs() implementations can use this function to print out generic
3055  * debug information.
3056  */
3057 void show_regs_print_info(const char *log_lvl)
3058 {
3059 	dump_stack_print_info(log_lvl);
3060 
3061 	printk("%stask: %p ti: %p task.ti: %p\n",
3062 	       log_lvl, current, current_thread_info(),
3063 	       task_thread_info(current));
3064 }
3065 
3066 #endif
3067