1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 static int swsusp_page_is_free(struct page *); 38 static void swsusp_set_page_forbidden(struct page *); 39 static void swsusp_unset_page_forbidden(struct page *); 40 41 /* List of PBEs needed for restoring the pages that were allocated before 42 * the suspend and included in the suspend image, but have also been 43 * allocated by the "resume" kernel, so their contents cannot be written 44 * directly to their "original" page frames. 45 */ 46 struct pbe *restore_pblist; 47 48 /* Pointer to an auxiliary buffer (1 page) */ 49 static void *buffer; 50 51 /** 52 * @safe_needed - on resume, for storing the PBE list and the image, 53 * we can only use memory pages that do not conflict with the pages 54 * used before suspend. The unsafe pages have PageNosaveFree set 55 * and we count them using unsafe_pages. 56 * 57 * Each allocated image page is marked as PageNosave and PageNosaveFree 58 * so that swsusp_free() can release it. 59 */ 60 61 #define PG_ANY 0 62 #define PG_SAFE 1 63 #define PG_UNSAFE_CLEAR 1 64 #define PG_UNSAFE_KEEP 0 65 66 static unsigned int allocated_unsafe_pages; 67 68 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 69 { 70 void *res; 71 72 res = (void *)get_zeroed_page(gfp_mask); 73 if (safe_needed) 74 while (res && swsusp_page_is_free(virt_to_page(res))) { 75 /* The page is unsafe, mark it for swsusp_free() */ 76 swsusp_set_page_forbidden(virt_to_page(res)); 77 allocated_unsafe_pages++; 78 res = (void *)get_zeroed_page(gfp_mask); 79 } 80 if (res) { 81 swsusp_set_page_forbidden(virt_to_page(res)); 82 swsusp_set_page_free(virt_to_page(res)); 83 } 84 return res; 85 } 86 87 unsigned long get_safe_page(gfp_t gfp_mask) 88 { 89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 90 } 91 92 static struct page *alloc_image_page(gfp_t gfp_mask) 93 { 94 struct page *page; 95 96 page = alloc_page(gfp_mask); 97 if (page) { 98 swsusp_set_page_forbidden(page); 99 swsusp_set_page_free(page); 100 } 101 return page; 102 } 103 104 /** 105 * free_image_page - free page represented by @addr, allocated with 106 * get_image_page (page flags set by it must be cleared) 107 */ 108 109 static inline void free_image_page(void *addr, int clear_nosave_free) 110 { 111 struct page *page; 112 113 BUG_ON(!virt_addr_valid(addr)); 114 115 page = virt_to_page(addr); 116 117 swsusp_unset_page_forbidden(page); 118 if (clear_nosave_free) 119 swsusp_unset_page_free(page); 120 121 __free_page(page); 122 } 123 124 /* struct linked_page is used to build chains of pages */ 125 126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 127 128 struct linked_page { 129 struct linked_page *next; 130 char data[LINKED_PAGE_DATA_SIZE]; 131 } __attribute__((packed)); 132 133 static inline void 134 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 135 { 136 while (list) { 137 struct linked_page *lp = list->next; 138 139 free_image_page(list, clear_page_nosave); 140 list = lp; 141 } 142 } 143 144 /** 145 * struct chain_allocator is used for allocating small objects out of 146 * a linked list of pages called 'the chain'. 147 * 148 * The chain grows each time when there is no room for a new object in 149 * the current page. The allocated objects cannot be freed individually. 150 * It is only possible to free them all at once, by freeing the entire 151 * chain. 152 * 153 * NOTE: The chain allocator may be inefficient if the allocated objects 154 * are not much smaller than PAGE_SIZE. 155 */ 156 157 struct chain_allocator { 158 struct linked_page *chain; /* the chain */ 159 unsigned int used_space; /* total size of objects allocated out 160 * of the current page 161 */ 162 gfp_t gfp_mask; /* mask for allocating pages */ 163 int safe_needed; /* if set, only "safe" pages are allocated */ 164 }; 165 166 static void 167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 168 { 169 ca->chain = NULL; 170 ca->used_space = LINKED_PAGE_DATA_SIZE; 171 ca->gfp_mask = gfp_mask; 172 ca->safe_needed = safe_needed; 173 } 174 175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 176 { 177 void *ret; 178 179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 180 struct linked_page *lp; 181 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 183 if (!lp) 184 return NULL; 185 186 lp->next = ca->chain; 187 ca->chain = lp; 188 ca->used_space = 0; 189 } 190 ret = ca->chain->data + ca->used_space; 191 ca->used_space += size; 192 return ret; 193 } 194 195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 196 { 197 free_list_of_pages(ca->chain, clear_page_nosave); 198 memset(ca, 0, sizeof(struct chain_allocator)); 199 } 200 201 /** 202 * Data types related to memory bitmaps. 203 * 204 * Memory bitmap is a structure consiting of many linked lists of 205 * objects. The main list's elements are of type struct zone_bitmap 206 * and each of them corresonds to one zone. For each zone bitmap 207 * object there is a list of objects of type struct bm_block that 208 * represent each blocks of bit chunks in which information is 209 * stored. 210 * 211 * struct memory_bitmap contains a pointer to the main list of zone 212 * bitmap objects, a struct bm_position used for browsing the bitmap, 213 * and a pointer to the list of pages used for allocating all of the 214 * zone bitmap objects and bitmap block objects. 215 * 216 * NOTE: It has to be possible to lay out the bitmap in memory 217 * using only allocations of order 0. Additionally, the bitmap is 218 * designed to work with arbitrary number of zones (this is over the 219 * top for now, but let's avoid making unnecessary assumptions ;-). 220 * 221 * struct zone_bitmap contains a pointer to a list of bitmap block 222 * objects and a pointer to the bitmap block object that has been 223 * most recently used for setting bits. Additionally, it contains the 224 * pfns that correspond to the start and end of the represented zone. 225 * 226 * struct bm_block contains a pointer to the memory page in which 227 * information is stored (in the form of a block of bit chunks 228 * of type unsigned long each). It also contains the pfns that 229 * correspond to the start and end of the represented memory area and 230 * the number of bit chunks in the block. 231 */ 232 233 #define BM_END_OF_MAP (~0UL) 234 235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 238 239 struct bm_block { 240 struct bm_block *next; /* next element of the list */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned int size; /* number of bit chunks */ 244 unsigned long *data; /* chunks of bits representing pages */ 245 }; 246 247 struct zone_bitmap { 248 struct zone_bitmap *next; /* next element of the list */ 249 unsigned long start_pfn; /* minimal pfn in this zone */ 250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 251 struct bm_block *bm_blocks; /* list of bitmap blocks */ 252 struct bm_block *cur_block; /* recently used bitmap block */ 253 }; 254 255 /* strcut bm_position is used for browsing memory bitmaps */ 256 257 struct bm_position { 258 struct zone_bitmap *zone_bm; 259 struct bm_block *block; 260 int chunk; 261 int bit; 262 }; 263 264 struct memory_bitmap { 265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 266 struct linked_page *p_list; /* list of pages used to store zone 267 * bitmap objects and bitmap block 268 * objects 269 */ 270 struct bm_position cur; /* most recently used bit position */ 271 }; 272 273 /* Functions that operate on memory bitmaps */ 274 275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 276 { 277 bm->cur.chunk = 0; 278 bm->cur.bit = -1; 279 } 280 281 static void memory_bm_position_reset(struct memory_bitmap *bm) 282 { 283 struct zone_bitmap *zone_bm; 284 285 zone_bm = bm->zone_bm_list; 286 bm->cur.zone_bm = zone_bm; 287 bm->cur.block = zone_bm->bm_blocks; 288 memory_bm_reset_chunk(bm); 289 } 290 291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 292 293 /** 294 * create_bm_block_list - create a list of block bitmap objects 295 */ 296 297 static inline struct bm_block * 298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 299 { 300 struct bm_block *bblist = NULL; 301 302 while (nr_blocks-- > 0) { 303 struct bm_block *bb; 304 305 bb = chain_alloc(ca, sizeof(struct bm_block)); 306 if (!bb) 307 return NULL; 308 309 bb->next = bblist; 310 bblist = bb; 311 } 312 return bblist; 313 } 314 315 /** 316 * create_zone_bm_list - create a list of zone bitmap objects 317 */ 318 319 static inline struct zone_bitmap * 320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 321 { 322 struct zone_bitmap *zbmlist = NULL; 323 324 while (nr_zones-- > 0) { 325 struct zone_bitmap *zbm; 326 327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 328 if (!zbm) 329 return NULL; 330 331 zbm->next = zbmlist; 332 zbmlist = zbm; 333 } 334 return zbmlist; 335 } 336 337 /** 338 * memory_bm_create - allocate memory for a memory bitmap 339 */ 340 341 static int 342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 343 { 344 struct chain_allocator ca; 345 struct zone *zone; 346 struct zone_bitmap *zone_bm; 347 struct bm_block *bb; 348 unsigned int nr; 349 350 chain_init(&ca, gfp_mask, safe_needed); 351 352 /* Compute the number of zones */ 353 nr = 0; 354 for_each_zone(zone) 355 if (populated_zone(zone)) 356 nr++; 357 358 /* Allocate the list of zones bitmap objects */ 359 zone_bm = create_zone_bm_list(nr, &ca); 360 bm->zone_bm_list = zone_bm; 361 if (!zone_bm) { 362 chain_free(&ca, PG_UNSAFE_CLEAR); 363 return -ENOMEM; 364 } 365 366 /* Initialize the zone bitmap objects */ 367 for_each_zone(zone) { 368 unsigned long pfn; 369 370 if (!populated_zone(zone)) 371 continue; 372 373 zone_bm->start_pfn = zone->zone_start_pfn; 374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 375 /* Allocate the list of bitmap block objects */ 376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 377 bb = create_bm_block_list(nr, &ca); 378 zone_bm->bm_blocks = bb; 379 zone_bm->cur_block = bb; 380 if (!bb) 381 goto Free; 382 383 nr = zone->spanned_pages; 384 pfn = zone->zone_start_pfn; 385 /* Initialize the bitmap block objects */ 386 while (bb) { 387 unsigned long *ptr; 388 389 ptr = get_image_page(gfp_mask, safe_needed); 390 bb->data = ptr; 391 if (!ptr) 392 goto Free; 393 394 bb->start_pfn = pfn; 395 if (nr >= BM_BITS_PER_BLOCK) { 396 pfn += BM_BITS_PER_BLOCK; 397 bb->size = BM_CHUNKS_PER_BLOCK; 398 nr -= BM_BITS_PER_BLOCK; 399 } else { 400 /* This is executed only once in the loop */ 401 pfn += nr; 402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 403 } 404 bb->end_pfn = pfn; 405 bb = bb->next; 406 } 407 zone_bm = zone_bm->next; 408 } 409 bm->p_list = ca.chain; 410 memory_bm_position_reset(bm); 411 return 0; 412 413 Free: 414 bm->p_list = ca.chain; 415 memory_bm_free(bm, PG_UNSAFE_CLEAR); 416 return -ENOMEM; 417 } 418 419 /** 420 * memory_bm_free - free memory occupied by the memory bitmap @bm 421 */ 422 423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 424 { 425 struct zone_bitmap *zone_bm; 426 427 /* Free the list of bit blocks for each zone_bitmap object */ 428 zone_bm = bm->zone_bm_list; 429 while (zone_bm) { 430 struct bm_block *bb; 431 432 bb = zone_bm->bm_blocks; 433 while (bb) { 434 if (bb->data) 435 free_image_page(bb->data, clear_nosave_free); 436 bb = bb->next; 437 } 438 zone_bm = zone_bm->next; 439 } 440 free_list_of_pages(bm->p_list, clear_nosave_free); 441 bm->zone_bm_list = NULL; 442 } 443 444 /** 445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 447 * of @bm->cur_zone_bm are updated. 448 */ 449 450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 451 void **addr, unsigned int *bit_nr) 452 { 453 struct zone_bitmap *zone_bm; 454 struct bm_block *bb; 455 456 /* Check if the pfn is from the current zone */ 457 zone_bm = bm->cur.zone_bm; 458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 459 zone_bm = bm->zone_bm_list; 460 /* We don't assume that the zones are sorted by pfns */ 461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = zone_bm->next; 463 464 BUG_ON(!zone_bm); 465 } 466 bm->cur.zone_bm = zone_bm; 467 } 468 /* Check if the pfn corresponds to the current bitmap block */ 469 bb = zone_bm->cur_block; 470 if (pfn < bb->start_pfn) 471 bb = zone_bm->bm_blocks; 472 473 while (pfn >= bb->end_pfn) { 474 bb = bb->next; 475 476 BUG_ON(!bb); 477 } 478 zone_bm->cur_block = bb; 479 pfn -= bb->start_pfn; 480 *bit_nr = pfn % BM_BITS_PER_CHUNK; 481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK; 482 } 483 484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 485 { 486 void *addr; 487 unsigned int bit; 488 489 memory_bm_find_bit(bm, pfn, &addr, &bit); 490 set_bit(bit, addr); 491 } 492 493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 494 { 495 void *addr; 496 unsigned int bit; 497 498 memory_bm_find_bit(bm, pfn, &addr, &bit); 499 clear_bit(bit, addr); 500 } 501 502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 503 { 504 void *addr; 505 unsigned int bit; 506 507 memory_bm_find_bit(bm, pfn, &addr, &bit); 508 return test_bit(bit, addr); 509 } 510 511 /* Two auxiliary functions for memory_bm_next_pfn */ 512 513 /* Find the first set bit in the given chunk, if there is one */ 514 515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 516 { 517 bit++; 518 while (bit < BM_BITS_PER_CHUNK) { 519 if (test_bit(bit, chunk_p)) 520 return bit; 521 522 bit++; 523 } 524 return -1; 525 } 526 527 /* Find a chunk containing some bits set in given block of bits */ 528 529 static inline int next_chunk_in_block(int n, struct bm_block *bb) 530 { 531 n++; 532 while (n < bb->size) { 533 if (bb->data[n]) 534 return n; 535 536 n++; 537 } 538 return -1; 539 } 540 541 /** 542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 544 * returned. 545 * 546 * It is required to run memory_bm_position_reset() before the first call to 547 * this function. 548 */ 549 550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 551 { 552 struct zone_bitmap *zone_bm; 553 struct bm_block *bb; 554 int chunk; 555 int bit; 556 557 do { 558 bb = bm->cur.block; 559 do { 560 chunk = bm->cur.chunk; 561 bit = bm->cur.bit; 562 do { 563 bit = next_bit_in_chunk(bit, bb->data + chunk); 564 if (bit >= 0) 565 goto Return_pfn; 566 567 chunk = next_chunk_in_block(chunk, bb); 568 bit = -1; 569 } while (chunk >= 0); 570 bb = bb->next; 571 bm->cur.block = bb; 572 memory_bm_reset_chunk(bm); 573 } while (bb); 574 zone_bm = bm->cur.zone_bm->next; 575 if (zone_bm) { 576 bm->cur.zone_bm = zone_bm; 577 bm->cur.block = zone_bm->bm_blocks; 578 memory_bm_reset_chunk(bm); 579 } 580 } while (zone_bm); 581 memory_bm_position_reset(bm); 582 return BM_END_OF_MAP; 583 584 Return_pfn: 585 bm->cur.chunk = chunk; 586 bm->cur.bit = bit; 587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 588 } 589 590 /** 591 * This structure represents a range of page frames the contents of which 592 * should not be saved during the suspend. 593 */ 594 595 struct nosave_region { 596 struct list_head list; 597 unsigned long start_pfn; 598 unsigned long end_pfn; 599 }; 600 601 static LIST_HEAD(nosave_regions); 602 603 /** 604 * register_nosave_region - register a range of page frames the contents 605 * of which should not be saved during the suspend (to be used in the early 606 * initialization code) 607 */ 608 609 void __init 610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 611 int use_kmalloc) 612 { 613 struct nosave_region *region; 614 615 if (start_pfn >= end_pfn) 616 return; 617 618 if (!list_empty(&nosave_regions)) { 619 /* Try to extend the previous region (they should be sorted) */ 620 region = list_entry(nosave_regions.prev, 621 struct nosave_region, list); 622 if (region->end_pfn == start_pfn) { 623 region->end_pfn = end_pfn; 624 goto Report; 625 } 626 } 627 if (use_kmalloc) { 628 /* during init, this shouldn't fail */ 629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 630 BUG_ON(!region); 631 } else 632 /* This allocation cannot fail */ 633 region = alloc_bootmem_low(sizeof(struct nosave_region)); 634 region->start_pfn = start_pfn; 635 region->end_pfn = end_pfn; 636 list_add_tail(®ion->list, &nosave_regions); 637 Report: 638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n", 639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 640 } 641 642 /* 643 * Set bits in this map correspond to the page frames the contents of which 644 * should not be saved during the suspend. 645 */ 646 static struct memory_bitmap *forbidden_pages_map; 647 648 /* Set bits in this map correspond to free page frames. */ 649 static struct memory_bitmap *free_pages_map; 650 651 /* 652 * Each page frame allocated for creating the image is marked by setting the 653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 654 */ 655 656 void swsusp_set_page_free(struct page *page) 657 { 658 if (free_pages_map) 659 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 660 } 661 662 static int swsusp_page_is_free(struct page *page) 663 { 664 return free_pages_map ? 665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 666 } 667 668 void swsusp_unset_page_free(struct page *page) 669 { 670 if (free_pages_map) 671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 672 } 673 674 static void swsusp_set_page_forbidden(struct page *page) 675 { 676 if (forbidden_pages_map) 677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 678 } 679 680 int swsusp_page_is_forbidden(struct page *page) 681 { 682 return forbidden_pages_map ? 683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 684 } 685 686 static void swsusp_unset_page_forbidden(struct page *page) 687 { 688 if (forbidden_pages_map) 689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 690 } 691 692 /** 693 * mark_nosave_pages - set bits corresponding to the page frames the 694 * contents of which should not be saved in a given bitmap. 695 */ 696 697 static void mark_nosave_pages(struct memory_bitmap *bm) 698 { 699 struct nosave_region *region; 700 701 if (list_empty(&nosave_regions)) 702 return; 703 704 list_for_each_entry(region, &nosave_regions, list) { 705 unsigned long pfn; 706 707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n", 708 region->start_pfn << PAGE_SHIFT, 709 region->end_pfn << PAGE_SHIFT); 710 711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 712 if (pfn_valid(pfn)) 713 memory_bm_set_bit(bm, pfn); 714 } 715 } 716 717 /** 718 * create_basic_memory_bitmaps - create bitmaps needed for marking page 719 * frames that should not be saved and free page frames. The pointers 720 * forbidden_pages_map and free_pages_map are only modified if everything 721 * goes well, because we don't want the bits to be used before both bitmaps 722 * are set up. 723 */ 724 725 int create_basic_memory_bitmaps(void) 726 { 727 struct memory_bitmap *bm1, *bm2; 728 int error = 0; 729 730 BUG_ON(forbidden_pages_map || free_pages_map); 731 732 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 733 if (!bm1) 734 return -ENOMEM; 735 736 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 737 if (error) 738 goto Free_first_object; 739 740 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 741 if (!bm2) 742 goto Free_first_bitmap; 743 744 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 745 if (error) 746 goto Free_second_object; 747 748 forbidden_pages_map = bm1; 749 free_pages_map = bm2; 750 mark_nosave_pages(forbidden_pages_map); 751 752 printk("swsusp: Basic memory bitmaps created\n"); 753 754 return 0; 755 756 Free_second_object: 757 kfree(bm2); 758 Free_first_bitmap: 759 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 760 Free_first_object: 761 kfree(bm1); 762 return -ENOMEM; 763 } 764 765 /** 766 * free_basic_memory_bitmaps - free memory bitmaps allocated by 767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 768 * so that the bitmaps themselves are not referred to while they are being 769 * freed. 770 */ 771 772 void free_basic_memory_bitmaps(void) 773 { 774 struct memory_bitmap *bm1, *bm2; 775 776 BUG_ON(!(forbidden_pages_map && free_pages_map)); 777 778 bm1 = forbidden_pages_map; 779 bm2 = free_pages_map; 780 forbidden_pages_map = NULL; 781 free_pages_map = NULL; 782 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 783 kfree(bm1); 784 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 785 kfree(bm2); 786 787 printk("swsusp: Basic memory bitmaps freed\n"); 788 } 789 790 /** 791 * snapshot_additional_pages - estimate the number of additional pages 792 * be needed for setting up the suspend image data structures for given 793 * zone (usually the returned value is greater than the exact number) 794 */ 795 796 unsigned int snapshot_additional_pages(struct zone *zone) 797 { 798 unsigned int res; 799 800 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 801 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 802 return 2 * res; 803 } 804 805 #ifdef CONFIG_HIGHMEM 806 /** 807 * count_free_highmem_pages - compute the total number of free highmem 808 * pages, system-wide. 809 */ 810 811 static unsigned int count_free_highmem_pages(void) 812 { 813 struct zone *zone; 814 unsigned int cnt = 0; 815 816 for_each_zone(zone) 817 if (populated_zone(zone) && is_highmem(zone)) 818 cnt += zone_page_state(zone, NR_FREE_PAGES); 819 820 return cnt; 821 } 822 823 /** 824 * saveable_highmem_page - Determine whether a highmem page should be 825 * included in the suspend image. 826 * 827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 828 * and it isn't a part of a free chunk of pages. 829 */ 830 831 static struct page *saveable_highmem_page(unsigned long pfn) 832 { 833 struct page *page; 834 835 if (!pfn_valid(pfn)) 836 return NULL; 837 838 page = pfn_to_page(pfn); 839 840 BUG_ON(!PageHighMem(page)); 841 842 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 843 PageReserved(page)) 844 return NULL; 845 846 return page; 847 } 848 849 /** 850 * count_highmem_pages - compute the total number of saveable highmem 851 * pages. 852 */ 853 854 unsigned int count_highmem_pages(void) 855 { 856 struct zone *zone; 857 unsigned int n = 0; 858 859 for_each_zone(zone) { 860 unsigned long pfn, max_zone_pfn; 861 862 if (!is_highmem(zone)) 863 continue; 864 865 mark_free_pages(zone); 866 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 867 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 868 if (saveable_highmem_page(pfn)) 869 n++; 870 } 871 return n; 872 } 873 #else 874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 875 static inline unsigned int count_highmem_pages(void) { return 0; } 876 #endif /* CONFIG_HIGHMEM */ 877 878 /** 879 * saveable - Determine whether a non-highmem page should be included in 880 * the suspend image. 881 * 882 * We should save the page if it isn't Nosave, and is not in the range 883 * of pages statically defined as 'unsaveable', and it isn't a part of 884 * a free chunk of pages. 885 */ 886 887 static struct page *saveable_page(unsigned long pfn) 888 { 889 struct page *page; 890 891 if (!pfn_valid(pfn)) 892 return NULL; 893 894 page = pfn_to_page(pfn); 895 896 BUG_ON(PageHighMem(page)); 897 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 899 return NULL; 900 901 if (PageReserved(page) && pfn_is_nosave(pfn)) 902 return NULL; 903 904 return page; 905 } 906 907 /** 908 * count_data_pages - compute the total number of saveable non-highmem 909 * pages. 910 */ 911 912 unsigned int count_data_pages(void) 913 { 914 struct zone *zone; 915 unsigned long pfn, max_zone_pfn; 916 unsigned int n = 0; 917 918 for_each_zone(zone) { 919 if (is_highmem(zone)) 920 continue; 921 922 mark_free_pages(zone); 923 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 924 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 925 if(saveable_page(pfn)) 926 n++; 927 } 928 return n; 929 } 930 931 /* This is needed, because copy_page and memcpy are not usable for copying 932 * task structs. 933 */ 934 static inline void do_copy_page(long *dst, long *src) 935 { 936 int n; 937 938 for (n = PAGE_SIZE / sizeof(long); n; n--) 939 *dst++ = *src++; 940 } 941 942 #ifdef CONFIG_HIGHMEM 943 static inline struct page * 944 page_is_saveable(struct zone *zone, unsigned long pfn) 945 { 946 return is_highmem(zone) ? 947 saveable_highmem_page(pfn) : saveable_page(pfn); 948 } 949 950 static inline void 951 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 952 { 953 struct page *s_page, *d_page; 954 void *src, *dst; 955 956 s_page = pfn_to_page(src_pfn); 957 d_page = pfn_to_page(dst_pfn); 958 if (PageHighMem(s_page)) { 959 src = kmap_atomic(s_page, KM_USER0); 960 dst = kmap_atomic(d_page, KM_USER1); 961 do_copy_page(dst, src); 962 kunmap_atomic(src, KM_USER0); 963 kunmap_atomic(dst, KM_USER1); 964 } else { 965 src = page_address(s_page); 966 if (PageHighMem(d_page)) { 967 /* Page pointed to by src may contain some kernel 968 * data modified by kmap_atomic() 969 */ 970 do_copy_page(buffer, src); 971 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 972 memcpy(dst, buffer, PAGE_SIZE); 973 kunmap_atomic(dst, KM_USER0); 974 } else { 975 dst = page_address(d_page); 976 do_copy_page(dst, src); 977 } 978 } 979 } 980 #else 981 #define page_is_saveable(zone, pfn) saveable_page(pfn) 982 983 static inline void 984 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 985 { 986 do_copy_page(page_address(pfn_to_page(dst_pfn)), 987 page_address(pfn_to_page(src_pfn))); 988 } 989 #endif /* CONFIG_HIGHMEM */ 990 991 static void 992 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 993 { 994 struct zone *zone; 995 unsigned long pfn; 996 997 for_each_zone(zone) { 998 unsigned long max_zone_pfn; 999 1000 mark_free_pages(zone); 1001 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1002 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1003 if (page_is_saveable(zone, pfn)) 1004 memory_bm_set_bit(orig_bm, pfn); 1005 } 1006 memory_bm_position_reset(orig_bm); 1007 memory_bm_position_reset(copy_bm); 1008 do { 1009 pfn = memory_bm_next_pfn(orig_bm); 1010 if (likely(pfn != BM_END_OF_MAP)) 1011 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1012 } while (pfn != BM_END_OF_MAP); 1013 } 1014 1015 /* Total number of image pages */ 1016 static unsigned int nr_copy_pages; 1017 /* Number of pages needed for saving the original pfns of the image pages */ 1018 static unsigned int nr_meta_pages; 1019 1020 /** 1021 * swsusp_free - free pages allocated for the suspend. 1022 * 1023 * Suspend pages are alocated before the atomic copy is made, so we 1024 * need to release them after the resume. 1025 */ 1026 1027 void swsusp_free(void) 1028 { 1029 struct zone *zone; 1030 unsigned long pfn, max_zone_pfn; 1031 1032 for_each_zone(zone) { 1033 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1035 if (pfn_valid(pfn)) { 1036 struct page *page = pfn_to_page(pfn); 1037 1038 if (swsusp_page_is_forbidden(page) && 1039 swsusp_page_is_free(page)) { 1040 swsusp_unset_page_forbidden(page); 1041 swsusp_unset_page_free(page); 1042 __free_page(page); 1043 } 1044 } 1045 } 1046 nr_copy_pages = 0; 1047 nr_meta_pages = 0; 1048 restore_pblist = NULL; 1049 buffer = NULL; 1050 } 1051 1052 #ifdef CONFIG_HIGHMEM 1053 /** 1054 * count_pages_for_highmem - compute the number of non-highmem pages 1055 * that will be necessary for creating copies of highmem pages. 1056 */ 1057 1058 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1059 { 1060 unsigned int free_highmem = count_free_highmem_pages(); 1061 1062 if (free_highmem >= nr_highmem) 1063 nr_highmem = 0; 1064 else 1065 nr_highmem -= free_highmem; 1066 1067 return nr_highmem; 1068 } 1069 #else 1070 static unsigned int 1071 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1072 #endif /* CONFIG_HIGHMEM */ 1073 1074 /** 1075 * enough_free_mem - Make sure we have enough free memory for the 1076 * snapshot image. 1077 */ 1078 1079 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1080 { 1081 struct zone *zone; 1082 unsigned int free = 0, meta = 0; 1083 1084 for_each_zone(zone) { 1085 meta += snapshot_additional_pages(zone); 1086 if (!is_highmem(zone)) 1087 free += zone_page_state(zone, NR_FREE_PAGES); 1088 } 1089 1090 nr_pages += count_pages_for_highmem(nr_highmem); 1091 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 1092 nr_pages, PAGES_FOR_IO, meta, free); 1093 1094 return free > nr_pages + PAGES_FOR_IO + meta; 1095 } 1096 1097 #ifdef CONFIG_HIGHMEM 1098 /** 1099 * get_highmem_buffer - if there are some highmem pages in the suspend 1100 * image, we may need the buffer to copy them and/or load their data. 1101 */ 1102 1103 static inline int get_highmem_buffer(int safe_needed) 1104 { 1105 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1106 return buffer ? 0 : -ENOMEM; 1107 } 1108 1109 /** 1110 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1111 * Try to allocate as many pages as needed, but if the number of free 1112 * highmem pages is lesser than that, allocate them all. 1113 */ 1114 1115 static inline unsigned int 1116 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1117 { 1118 unsigned int to_alloc = count_free_highmem_pages(); 1119 1120 if (to_alloc > nr_highmem) 1121 to_alloc = nr_highmem; 1122 1123 nr_highmem -= to_alloc; 1124 while (to_alloc-- > 0) { 1125 struct page *page; 1126 1127 page = alloc_image_page(__GFP_HIGHMEM); 1128 memory_bm_set_bit(bm, page_to_pfn(page)); 1129 } 1130 return nr_highmem; 1131 } 1132 #else 1133 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1134 1135 static inline unsigned int 1136 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1137 #endif /* CONFIG_HIGHMEM */ 1138 1139 /** 1140 * swsusp_alloc - allocate memory for the suspend image 1141 * 1142 * We first try to allocate as many highmem pages as there are 1143 * saveable highmem pages in the system. If that fails, we allocate 1144 * non-highmem pages for the copies of the remaining highmem ones. 1145 * 1146 * In this approach it is likely that the copies of highmem pages will 1147 * also be located in the high memory, because of the way in which 1148 * copy_data_pages() works. 1149 */ 1150 1151 static int 1152 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1153 unsigned int nr_pages, unsigned int nr_highmem) 1154 { 1155 int error; 1156 1157 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1158 if (error) 1159 goto Free; 1160 1161 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1162 if (error) 1163 goto Free; 1164 1165 if (nr_highmem > 0) { 1166 error = get_highmem_buffer(PG_ANY); 1167 if (error) 1168 goto Free; 1169 1170 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1171 } 1172 while (nr_pages-- > 0) { 1173 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1174 1175 if (!page) 1176 goto Free; 1177 1178 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1179 } 1180 return 0; 1181 1182 Free: 1183 swsusp_free(); 1184 return -ENOMEM; 1185 } 1186 1187 /* Memory bitmap used for marking saveable pages (during suspend) or the 1188 * suspend image pages (during resume) 1189 */ 1190 static struct memory_bitmap orig_bm; 1191 /* Memory bitmap used on suspend for marking allocated pages that will contain 1192 * the copies of saveable pages. During resume it is initially used for 1193 * marking the suspend image pages, but then its set bits are duplicated in 1194 * @orig_bm and it is released. Next, on systems with high memory, it may be 1195 * used for marking "safe" highmem pages, but it has to be reinitialized for 1196 * this purpose. 1197 */ 1198 static struct memory_bitmap copy_bm; 1199 1200 asmlinkage int swsusp_save(void) 1201 { 1202 unsigned int nr_pages, nr_highmem; 1203 1204 printk("swsusp: critical section: \n"); 1205 1206 drain_local_pages(); 1207 nr_pages = count_data_pages(); 1208 nr_highmem = count_highmem_pages(); 1209 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 1210 1211 if (!enough_free_mem(nr_pages, nr_highmem)) { 1212 printk(KERN_ERR "swsusp: Not enough free memory\n"); 1213 return -ENOMEM; 1214 } 1215 1216 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1217 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 1218 return -ENOMEM; 1219 } 1220 1221 /* During allocating of suspend pagedir, new cold pages may appear. 1222 * Kill them. 1223 */ 1224 drain_local_pages(); 1225 copy_data_pages(©_bm, &orig_bm); 1226 1227 /* 1228 * End of critical section. From now on, we can write to memory, 1229 * but we should not touch disk. This specially means we must _not_ 1230 * touch swap space! Except we must write out our image of course. 1231 */ 1232 1233 nr_pages += nr_highmem; 1234 nr_copy_pages = nr_pages; 1235 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1236 1237 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages); 1238 1239 return 0; 1240 } 1241 1242 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1243 static int init_header_complete(struct swsusp_info *info) 1244 { 1245 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1246 info->version_code = LINUX_VERSION_CODE; 1247 return 0; 1248 } 1249 1250 static char *check_image_kernel(struct swsusp_info *info) 1251 { 1252 if (info->version_code != LINUX_VERSION_CODE) 1253 return "kernel version"; 1254 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1255 return "system type"; 1256 if (strcmp(info->uts.release,init_utsname()->release)) 1257 return "kernel release"; 1258 if (strcmp(info->uts.version,init_utsname()->version)) 1259 return "version"; 1260 if (strcmp(info->uts.machine,init_utsname()->machine)) 1261 return "machine"; 1262 return NULL; 1263 } 1264 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1265 1266 static int init_header(struct swsusp_info *info) 1267 { 1268 memset(info, 0, sizeof(struct swsusp_info)); 1269 info->num_physpages = num_physpages; 1270 info->image_pages = nr_copy_pages; 1271 info->pages = nr_copy_pages + nr_meta_pages + 1; 1272 info->size = info->pages; 1273 info->size <<= PAGE_SHIFT; 1274 return init_header_complete(info); 1275 } 1276 1277 /** 1278 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1279 * are stored in the array @buf[] (1 page at a time) 1280 */ 1281 1282 static inline void 1283 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1284 { 1285 int j; 1286 1287 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1288 buf[j] = memory_bm_next_pfn(bm); 1289 if (unlikely(buf[j] == BM_END_OF_MAP)) 1290 break; 1291 } 1292 } 1293 1294 /** 1295 * snapshot_read_next - used for reading the system memory snapshot. 1296 * 1297 * On the first call to it @handle should point to a zeroed 1298 * snapshot_handle structure. The structure gets updated and a pointer 1299 * to it should be passed to this function every next time. 1300 * 1301 * The @count parameter should contain the number of bytes the caller 1302 * wants to read from the snapshot. It must not be zero. 1303 * 1304 * On success the function returns a positive number. Then, the caller 1305 * is allowed to read up to the returned number of bytes from the memory 1306 * location computed by the data_of() macro. The number returned 1307 * may be smaller than @count, but this only happens if the read would 1308 * cross a page boundary otherwise. 1309 * 1310 * The function returns 0 to indicate the end of data stream condition, 1311 * and a negative number is returned on error. In such cases the 1312 * structure pointed to by @handle is not updated and should not be used 1313 * any more. 1314 */ 1315 1316 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1317 { 1318 if (handle->cur > nr_meta_pages + nr_copy_pages) 1319 return 0; 1320 1321 if (!buffer) { 1322 /* This makes the buffer be freed by swsusp_free() */ 1323 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1324 if (!buffer) 1325 return -ENOMEM; 1326 } 1327 if (!handle->offset) { 1328 int error; 1329 1330 error = init_header((struct swsusp_info *)buffer); 1331 if (error) 1332 return error; 1333 handle->buffer = buffer; 1334 memory_bm_position_reset(&orig_bm); 1335 memory_bm_position_reset(©_bm); 1336 } 1337 if (handle->prev < handle->cur) { 1338 if (handle->cur <= nr_meta_pages) { 1339 memset(buffer, 0, PAGE_SIZE); 1340 pack_pfns(buffer, &orig_bm); 1341 } else { 1342 struct page *page; 1343 1344 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1345 if (PageHighMem(page)) { 1346 /* Highmem pages are copied to the buffer, 1347 * because we can't return with a kmapped 1348 * highmem page (we may not be called again). 1349 */ 1350 void *kaddr; 1351 1352 kaddr = kmap_atomic(page, KM_USER0); 1353 memcpy(buffer, kaddr, PAGE_SIZE); 1354 kunmap_atomic(kaddr, KM_USER0); 1355 handle->buffer = buffer; 1356 } else { 1357 handle->buffer = page_address(page); 1358 } 1359 } 1360 handle->prev = handle->cur; 1361 } 1362 handle->buf_offset = handle->cur_offset; 1363 if (handle->cur_offset + count >= PAGE_SIZE) { 1364 count = PAGE_SIZE - handle->cur_offset; 1365 handle->cur_offset = 0; 1366 handle->cur++; 1367 } else { 1368 handle->cur_offset += count; 1369 } 1370 handle->offset += count; 1371 return count; 1372 } 1373 1374 /** 1375 * mark_unsafe_pages - mark the pages that cannot be used for storing 1376 * the image during resume, because they conflict with the pages that 1377 * had been used before suspend 1378 */ 1379 1380 static int mark_unsafe_pages(struct memory_bitmap *bm) 1381 { 1382 struct zone *zone; 1383 unsigned long pfn, max_zone_pfn; 1384 1385 /* Clear page flags */ 1386 for_each_zone(zone) { 1387 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1388 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1389 if (pfn_valid(pfn)) 1390 swsusp_unset_page_free(pfn_to_page(pfn)); 1391 } 1392 1393 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1394 memory_bm_position_reset(bm); 1395 do { 1396 pfn = memory_bm_next_pfn(bm); 1397 if (likely(pfn != BM_END_OF_MAP)) { 1398 if (likely(pfn_valid(pfn))) 1399 swsusp_set_page_free(pfn_to_page(pfn)); 1400 else 1401 return -EFAULT; 1402 } 1403 } while (pfn != BM_END_OF_MAP); 1404 1405 allocated_unsafe_pages = 0; 1406 1407 return 0; 1408 } 1409 1410 static void 1411 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1412 { 1413 unsigned long pfn; 1414 1415 memory_bm_position_reset(src); 1416 pfn = memory_bm_next_pfn(src); 1417 while (pfn != BM_END_OF_MAP) { 1418 memory_bm_set_bit(dst, pfn); 1419 pfn = memory_bm_next_pfn(src); 1420 } 1421 } 1422 1423 static int check_header(struct swsusp_info *info) 1424 { 1425 char *reason; 1426 1427 reason = check_image_kernel(info); 1428 if (!reason && info->num_physpages != num_physpages) 1429 reason = "memory size"; 1430 if (reason) { 1431 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1432 return -EPERM; 1433 } 1434 return 0; 1435 } 1436 1437 /** 1438 * load header - check the image header and copy data from it 1439 */ 1440 1441 static int 1442 load_header(struct swsusp_info *info) 1443 { 1444 int error; 1445 1446 restore_pblist = NULL; 1447 error = check_header(info); 1448 if (!error) { 1449 nr_copy_pages = info->image_pages; 1450 nr_meta_pages = info->pages - info->image_pages - 1; 1451 } 1452 return error; 1453 } 1454 1455 /** 1456 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1457 * the corresponding bit in the memory bitmap @bm 1458 */ 1459 1460 static inline void 1461 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1462 { 1463 int j; 1464 1465 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1466 if (unlikely(buf[j] == BM_END_OF_MAP)) 1467 break; 1468 1469 memory_bm_set_bit(bm, buf[j]); 1470 } 1471 } 1472 1473 /* List of "safe" pages that may be used to store data loaded from the suspend 1474 * image 1475 */ 1476 static struct linked_page *safe_pages_list; 1477 1478 #ifdef CONFIG_HIGHMEM 1479 /* struct highmem_pbe is used for creating the list of highmem pages that 1480 * should be restored atomically during the resume from disk, because the page 1481 * frames they have occupied before the suspend are in use. 1482 */ 1483 struct highmem_pbe { 1484 struct page *copy_page; /* data is here now */ 1485 struct page *orig_page; /* data was here before the suspend */ 1486 struct highmem_pbe *next; 1487 }; 1488 1489 /* List of highmem PBEs needed for restoring the highmem pages that were 1490 * allocated before the suspend and included in the suspend image, but have 1491 * also been allocated by the "resume" kernel, so their contents cannot be 1492 * written directly to their "original" page frames. 1493 */ 1494 static struct highmem_pbe *highmem_pblist; 1495 1496 /** 1497 * count_highmem_image_pages - compute the number of highmem pages in the 1498 * suspend image. The bits in the memory bitmap @bm that correspond to the 1499 * image pages are assumed to be set. 1500 */ 1501 1502 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1503 { 1504 unsigned long pfn; 1505 unsigned int cnt = 0; 1506 1507 memory_bm_position_reset(bm); 1508 pfn = memory_bm_next_pfn(bm); 1509 while (pfn != BM_END_OF_MAP) { 1510 if (PageHighMem(pfn_to_page(pfn))) 1511 cnt++; 1512 1513 pfn = memory_bm_next_pfn(bm); 1514 } 1515 return cnt; 1516 } 1517 1518 /** 1519 * prepare_highmem_image - try to allocate as many highmem pages as 1520 * there are highmem image pages (@nr_highmem_p points to the variable 1521 * containing the number of highmem image pages). The pages that are 1522 * "safe" (ie. will not be overwritten when the suspend image is 1523 * restored) have the corresponding bits set in @bm (it must be 1524 * unitialized). 1525 * 1526 * NOTE: This function should not be called if there are no highmem 1527 * image pages. 1528 */ 1529 1530 static unsigned int safe_highmem_pages; 1531 1532 static struct memory_bitmap *safe_highmem_bm; 1533 1534 static int 1535 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1536 { 1537 unsigned int to_alloc; 1538 1539 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1540 return -ENOMEM; 1541 1542 if (get_highmem_buffer(PG_SAFE)) 1543 return -ENOMEM; 1544 1545 to_alloc = count_free_highmem_pages(); 1546 if (to_alloc > *nr_highmem_p) 1547 to_alloc = *nr_highmem_p; 1548 else 1549 *nr_highmem_p = to_alloc; 1550 1551 safe_highmem_pages = 0; 1552 while (to_alloc-- > 0) { 1553 struct page *page; 1554 1555 page = alloc_page(__GFP_HIGHMEM); 1556 if (!swsusp_page_is_free(page)) { 1557 /* The page is "safe", set its bit the bitmap */ 1558 memory_bm_set_bit(bm, page_to_pfn(page)); 1559 safe_highmem_pages++; 1560 } 1561 /* Mark the page as allocated */ 1562 swsusp_set_page_forbidden(page); 1563 swsusp_set_page_free(page); 1564 } 1565 memory_bm_position_reset(bm); 1566 safe_highmem_bm = bm; 1567 return 0; 1568 } 1569 1570 /** 1571 * get_highmem_page_buffer - for given highmem image page find the buffer 1572 * that suspend_write_next() should set for its caller to write to. 1573 * 1574 * If the page is to be saved to its "original" page frame or a copy of 1575 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1576 * the copy of the page is to be made in normal memory, so the address of 1577 * the copy is returned. 1578 * 1579 * If @buffer is returned, the caller of suspend_write_next() will write 1580 * the page's contents to @buffer, so they will have to be copied to the 1581 * right location on the next call to suspend_write_next() and it is done 1582 * with the help of copy_last_highmem_page(). For this purpose, if 1583 * @buffer is returned, @last_highmem page is set to the page to which 1584 * the data will have to be copied from @buffer. 1585 */ 1586 1587 static struct page *last_highmem_page; 1588 1589 static void * 1590 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1591 { 1592 struct highmem_pbe *pbe; 1593 void *kaddr; 1594 1595 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1596 /* We have allocated the "original" page frame and we can 1597 * use it directly to store the loaded page. 1598 */ 1599 last_highmem_page = page; 1600 return buffer; 1601 } 1602 /* The "original" page frame has not been allocated and we have to 1603 * use a "safe" page frame to store the loaded page. 1604 */ 1605 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1606 if (!pbe) { 1607 swsusp_free(); 1608 return NULL; 1609 } 1610 pbe->orig_page = page; 1611 if (safe_highmem_pages > 0) { 1612 struct page *tmp; 1613 1614 /* Copy of the page will be stored in high memory */ 1615 kaddr = buffer; 1616 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1617 safe_highmem_pages--; 1618 last_highmem_page = tmp; 1619 pbe->copy_page = tmp; 1620 } else { 1621 /* Copy of the page will be stored in normal memory */ 1622 kaddr = safe_pages_list; 1623 safe_pages_list = safe_pages_list->next; 1624 pbe->copy_page = virt_to_page(kaddr); 1625 } 1626 pbe->next = highmem_pblist; 1627 highmem_pblist = pbe; 1628 return kaddr; 1629 } 1630 1631 /** 1632 * copy_last_highmem_page - copy the contents of a highmem image from 1633 * @buffer, where the caller of snapshot_write_next() has place them, 1634 * to the right location represented by @last_highmem_page . 1635 */ 1636 1637 static void copy_last_highmem_page(void) 1638 { 1639 if (last_highmem_page) { 1640 void *dst; 1641 1642 dst = kmap_atomic(last_highmem_page, KM_USER0); 1643 memcpy(dst, buffer, PAGE_SIZE); 1644 kunmap_atomic(dst, KM_USER0); 1645 last_highmem_page = NULL; 1646 } 1647 } 1648 1649 static inline int last_highmem_page_copied(void) 1650 { 1651 return !last_highmem_page; 1652 } 1653 1654 static inline void free_highmem_data(void) 1655 { 1656 if (safe_highmem_bm) 1657 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1658 1659 if (buffer) 1660 free_image_page(buffer, PG_UNSAFE_CLEAR); 1661 } 1662 #else 1663 static inline int get_safe_write_buffer(void) { return 0; } 1664 1665 static unsigned int 1666 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1667 1668 static inline int 1669 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1670 { 1671 return 0; 1672 } 1673 1674 static inline void * 1675 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1676 { 1677 return NULL; 1678 } 1679 1680 static inline void copy_last_highmem_page(void) {} 1681 static inline int last_highmem_page_copied(void) { return 1; } 1682 static inline void free_highmem_data(void) {} 1683 #endif /* CONFIG_HIGHMEM */ 1684 1685 /** 1686 * prepare_image - use the memory bitmap @bm to mark the pages that will 1687 * be overwritten in the process of restoring the system memory state 1688 * from the suspend image ("unsafe" pages) and allocate memory for the 1689 * image. 1690 * 1691 * The idea is to allocate a new memory bitmap first and then allocate 1692 * as many pages as needed for the image data, but not to assign these 1693 * pages to specific tasks initially. Instead, we just mark them as 1694 * allocated and create a lists of "safe" pages that will be used 1695 * later. On systems with high memory a list of "safe" highmem pages is 1696 * also created. 1697 */ 1698 1699 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1700 1701 static int 1702 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1703 { 1704 unsigned int nr_pages, nr_highmem; 1705 struct linked_page *sp_list, *lp; 1706 int error; 1707 1708 /* If there is no highmem, the buffer will not be necessary */ 1709 free_image_page(buffer, PG_UNSAFE_CLEAR); 1710 buffer = NULL; 1711 1712 nr_highmem = count_highmem_image_pages(bm); 1713 error = mark_unsafe_pages(bm); 1714 if (error) 1715 goto Free; 1716 1717 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1718 if (error) 1719 goto Free; 1720 1721 duplicate_memory_bitmap(new_bm, bm); 1722 memory_bm_free(bm, PG_UNSAFE_KEEP); 1723 if (nr_highmem > 0) { 1724 error = prepare_highmem_image(bm, &nr_highmem); 1725 if (error) 1726 goto Free; 1727 } 1728 /* Reserve some safe pages for potential later use. 1729 * 1730 * NOTE: This way we make sure there will be enough safe pages for the 1731 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1732 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1733 */ 1734 sp_list = NULL; 1735 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1736 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1737 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1738 while (nr_pages > 0) { 1739 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1740 if (!lp) { 1741 error = -ENOMEM; 1742 goto Free; 1743 } 1744 lp->next = sp_list; 1745 sp_list = lp; 1746 nr_pages--; 1747 } 1748 /* Preallocate memory for the image */ 1749 safe_pages_list = NULL; 1750 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1751 while (nr_pages > 0) { 1752 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1753 if (!lp) { 1754 error = -ENOMEM; 1755 goto Free; 1756 } 1757 if (!swsusp_page_is_free(virt_to_page(lp))) { 1758 /* The page is "safe", add it to the list */ 1759 lp->next = safe_pages_list; 1760 safe_pages_list = lp; 1761 } 1762 /* Mark the page as allocated */ 1763 swsusp_set_page_forbidden(virt_to_page(lp)); 1764 swsusp_set_page_free(virt_to_page(lp)); 1765 nr_pages--; 1766 } 1767 /* Free the reserved safe pages so that chain_alloc() can use them */ 1768 while (sp_list) { 1769 lp = sp_list->next; 1770 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1771 sp_list = lp; 1772 } 1773 return 0; 1774 1775 Free: 1776 swsusp_free(); 1777 return error; 1778 } 1779 1780 /** 1781 * get_buffer - compute the address that snapshot_write_next() should 1782 * set for its caller to write to. 1783 */ 1784 1785 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1786 { 1787 struct pbe *pbe; 1788 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1789 1790 if (PageHighMem(page)) 1791 return get_highmem_page_buffer(page, ca); 1792 1793 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1794 /* We have allocated the "original" page frame and we can 1795 * use it directly to store the loaded page. 1796 */ 1797 return page_address(page); 1798 1799 /* The "original" page frame has not been allocated and we have to 1800 * use a "safe" page frame to store the loaded page. 1801 */ 1802 pbe = chain_alloc(ca, sizeof(struct pbe)); 1803 if (!pbe) { 1804 swsusp_free(); 1805 return NULL; 1806 } 1807 pbe->orig_address = page_address(page); 1808 pbe->address = safe_pages_list; 1809 safe_pages_list = safe_pages_list->next; 1810 pbe->next = restore_pblist; 1811 restore_pblist = pbe; 1812 return pbe->address; 1813 } 1814 1815 /** 1816 * snapshot_write_next - used for writing the system memory snapshot. 1817 * 1818 * On the first call to it @handle should point to a zeroed 1819 * snapshot_handle structure. The structure gets updated and a pointer 1820 * to it should be passed to this function every next time. 1821 * 1822 * The @count parameter should contain the number of bytes the caller 1823 * wants to write to the image. It must not be zero. 1824 * 1825 * On success the function returns a positive number. Then, the caller 1826 * is allowed to write up to the returned number of bytes to the memory 1827 * location computed by the data_of() macro. The number returned 1828 * may be smaller than @count, but this only happens if the write would 1829 * cross a page boundary otherwise. 1830 * 1831 * The function returns 0 to indicate the "end of file" condition, 1832 * and a negative number is returned on error. In such cases the 1833 * structure pointed to by @handle is not updated and should not be used 1834 * any more. 1835 */ 1836 1837 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1838 { 1839 static struct chain_allocator ca; 1840 int error = 0; 1841 1842 /* Check if we have already loaded the entire image */ 1843 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1844 return 0; 1845 1846 if (handle->offset == 0) { 1847 if (!buffer) 1848 /* This makes the buffer be freed by swsusp_free() */ 1849 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1850 1851 if (!buffer) 1852 return -ENOMEM; 1853 1854 handle->buffer = buffer; 1855 } 1856 handle->sync_read = 1; 1857 if (handle->prev < handle->cur) { 1858 if (handle->prev == 0) { 1859 error = load_header(buffer); 1860 if (error) 1861 return error; 1862 1863 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1864 if (error) 1865 return error; 1866 1867 } else if (handle->prev <= nr_meta_pages) { 1868 unpack_orig_pfns(buffer, ©_bm); 1869 if (handle->prev == nr_meta_pages) { 1870 error = prepare_image(&orig_bm, ©_bm); 1871 if (error) 1872 return error; 1873 1874 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1875 memory_bm_position_reset(&orig_bm); 1876 restore_pblist = NULL; 1877 handle->buffer = get_buffer(&orig_bm, &ca); 1878 handle->sync_read = 0; 1879 if (!handle->buffer) 1880 return -ENOMEM; 1881 } 1882 } else { 1883 copy_last_highmem_page(); 1884 handle->buffer = get_buffer(&orig_bm, &ca); 1885 if (handle->buffer != buffer) 1886 handle->sync_read = 0; 1887 } 1888 handle->prev = handle->cur; 1889 } 1890 handle->buf_offset = handle->cur_offset; 1891 if (handle->cur_offset + count >= PAGE_SIZE) { 1892 count = PAGE_SIZE - handle->cur_offset; 1893 handle->cur_offset = 0; 1894 handle->cur++; 1895 } else { 1896 handle->cur_offset += count; 1897 } 1898 handle->offset += count; 1899 return count; 1900 } 1901 1902 /** 1903 * snapshot_write_finalize - must be called after the last call to 1904 * snapshot_write_next() in case the last page in the image happens 1905 * to be a highmem page and its contents should be stored in the 1906 * highmem. Additionally, it releases the memory that will not be 1907 * used any more. 1908 */ 1909 1910 void snapshot_write_finalize(struct snapshot_handle *handle) 1911 { 1912 copy_last_highmem_page(); 1913 /* Free only if we have loaded the image entirely */ 1914 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1915 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1916 free_highmem_data(); 1917 } 1918 } 1919 1920 int snapshot_image_loaded(struct snapshot_handle *handle) 1921 { 1922 return !(!nr_copy_pages || !last_highmem_page_copied() || 1923 handle->cur <= nr_meta_pages + nr_copy_pages); 1924 } 1925 1926 #ifdef CONFIG_HIGHMEM 1927 /* Assumes that @buf is ready and points to a "safe" page */ 1928 static inline void 1929 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1930 { 1931 void *kaddr1, *kaddr2; 1932 1933 kaddr1 = kmap_atomic(p1, KM_USER0); 1934 kaddr2 = kmap_atomic(p2, KM_USER1); 1935 memcpy(buf, kaddr1, PAGE_SIZE); 1936 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1937 memcpy(kaddr2, buf, PAGE_SIZE); 1938 kunmap_atomic(kaddr1, KM_USER0); 1939 kunmap_atomic(kaddr2, KM_USER1); 1940 } 1941 1942 /** 1943 * restore_highmem - for each highmem page that was allocated before 1944 * the suspend and included in the suspend image, and also has been 1945 * allocated by the "resume" kernel swap its current (ie. "before 1946 * resume") contents with the previous (ie. "before suspend") one. 1947 * 1948 * If the resume eventually fails, we can call this function once 1949 * again and restore the "before resume" highmem state. 1950 */ 1951 1952 int restore_highmem(void) 1953 { 1954 struct highmem_pbe *pbe = highmem_pblist; 1955 void *buf; 1956 1957 if (!pbe) 1958 return 0; 1959 1960 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1961 if (!buf) 1962 return -ENOMEM; 1963 1964 while (pbe) { 1965 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1966 pbe = pbe->next; 1967 } 1968 free_image_page(buf, PG_UNSAFE_CLEAR); 1969 return 0; 1970 } 1971 #endif /* CONFIG_HIGHMEM */ 1972