xref: /openbmc/linux/kernel/power/snapshot.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40 
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47 
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50 
51 /**
52  *	@safe_needed - on resume, for storing the PBE list and the image,
53  *	we can only use memory pages that do not conflict with the pages
54  *	used before suspend.  The unsafe pages have PageNosaveFree set
55  *	and we count them using unsafe_pages.
56  *
57  *	Each allocated image page is marked as PageNosave and PageNosaveFree
58  *	so that swsusp_free() can release it.
59  */
60 
61 #define PG_ANY		0
62 #define PG_SAFE		1
63 #define PG_UNSAFE_CLEAR	1
64 #define PG_UNSAFE_KEEP	0
65 
66 static unsigned int allocated_unsafe_pages;
67 
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 	void *res;
71 
72 	res = (void *)get_zeroed_page(gfp_mask);
73 	if (safe_needed)
74 		while (res && swsusp_page_is_free(virt_to_page(res))) {
75 			/* The page is unsafe, mark it for swsusp_free() */
76 			swsusp_set_page_forbidden(virt_to_page(res));
77 			allocated_unsafe_pages++;
78 			res = (void *)get_zeroed_page(gfp_mask);
79 		}
80 	if (res) {
81 		swsusp_set_page_forbidden(virt_to_page(res));
82 		swsusp_set_page_free(virt_to_page(res));
83 	}
84 	return res;
85 }
86 
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91 
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 	struct page *page;
95 
96 	page = alloc_page(gfp_mask);
97 	if (page) {
98 		swsusp_set_page_forbidden(page);
99 		swsusp_set_page_free(page);
100 	}
101 	return page;
102 }
103 
104 /**
105  *	free_image_page - free page represented by @addr, allocated with
106  *	get_image_page (page flags set by it must be cleared)
107  */
108 
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 	struct page *page;
112 
113 	BUG_ON(!virt_addr_valid(addr));
114 
115 	page = virt_to_page(addr);
116 
117 	swsusp_unset_page_forbidden(page);
118 	if (clear_nosave_free)
119 		swsusp_unset_page_free(page);
120 
121 	__free_page(page);
122 }
123 
124 /* struct linked_page is used to build chains of pages */
125 
126 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
127 
128 struct linked_page {
129 	struct linked_page *next;
130 	char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132 
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 	while (list) {
137 		struct linked_page *lp = list->next;
138 
139 		free_image_page(list, clear_page_nosave);
140 		list = lp;
141 	}
142 }
143 
144 /**
145   *	struct chain_allocator is used for allocating small objects out of
146   *	a linked list of pages called 'the chain'.
147   *
148   *	The chain grows each time when there is no room for a new object in
149   *	the current page.  The allocated objects cannot be freed individually.
150   *	It is only possible to free them all at once, by freeing the entire
151   *	chain.
152   *
153   *	NOTE: The chain allocator may be inefficient if the allocated objects
154   *	are not much smaller than PAGE_SIZE.
155   */
156 
157 struct chain_allocator {
158 	struct linked_page *chain;	/* the chain */
159 	unsigned int used_space;	/* total size of objects allocated out
160 					 * of the current page
161 					 */
162 	gfp_t gfp_mask;		/* mask for allocating pages */
163 	int safe_needed;	/* if set, only "safe" pages are allocated */
164 };
165 
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 	ca->chain = NULL;
170 	ca->used_space = LINKED_PAGE_DATA_SIZE;
171 	ca->gfp_mask = gfp_mask;
172 	ca->safe_needed = safe_needed;
173 }
174 
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 	void *ret;
178 
179 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 		struct linked_page *lp;
181 
182 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 		if (!lp)
184 			return NULL;
185 
186 		lp->next = ca->chain;
187 		ca->chain = lp;
188 		ca->used_space = 0;
189 	}
190 	ret = ca->chain->data + ca->used_space;
191 	ca->used_space += size;
192 	return ret;
193 }
194 
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 	free_list_of_pages(ca->chain, clear_page_nosave);
198 	memset(ca, 0, sizeof(struct chain_allocator));
199 }
200 
201 /**
202  *	Data types related to memory bitmaps.
203  *
204  *	Memory bitmap is a structure consiting of many linked lists of
205  *	objects.  The main list's elements are of type struct zone_bitmap
206  *	and each of them corresonds to one zone.  For each zone bitmap
207  *	object there is a list of objects of type struct bm_block that
208  *	represent each blocks of bit chunks in which information is
209  *	stored.
210  *
211  *	struct memory_bitmap contains a pointer to the main list of zone
212  *	bitmap objects, a struct bm_position used for browsing the bitmap,
213  *	and a pointer to the list of pages used for allocating all of the
214  *	zone bitmap objects and bitmap block objects.
215  *
216  *	NOTE: It has to be possible to lay out the bitmap in memory
217  *	using only allocations of order 0.  Additionally, the bitmap is
218  *	designed to work with arbitrary number of zones (this is over the
219  *	top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *	struct zone_bitmap contains a pointer to a list of bitmap block
222  *	objects and a pointer to the bitmap block object that has been
223  *	most recently used for setting bits.  Additionally, it contains the
224  *	pfns that correspond to the start and end of the represented zone.
225  *
226  *	struct bm_block contains a pointer to the memory page in which
227  *	information is stored (in the form of a block of bit chunks
228  *	of type unsigned long each).  It also contains the pfns that
229  *	correspond to the start and end of the represented memory area and
230  *	the number of bit chunks in the block.
231  */
232 
233 #define BM_END_OF_MAP	(~0UL)
234 
235 #define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
238 
239 struct bm_block {
240 	struct bm_block *next;		/* next element of the list */
241 	unsigned long start_pfn;	/* pfn represented by the first bit */
242 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
243 	unsigned int size;	/* number of bit chunks */
244 	unsigned long *data;	/* chunks of bits representing pages */
245 };
246 
247 struct zone_bitmap {
248 	struct zone_bitmap *next;	/* next element of the list */
249 	unsigned long start_pfn;	/* minimal pfn in this zone */
250 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
251 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
252 	struct bm_block *cur_block;	/* recently used bitmap block */
253 };
254 
255 /* strcut bm_position is used for browsing memory bitmaps */
256 
257 struct bm_position {
258 	struct zone_bitmap *zone_bm;
259 	struct bm_block *block;
260 	int chunk;
261 	int bit;
262 };
263 
264 struct memory_bitmap {
265 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
266 	struct linked_page *p_list;	/* list of pages used to store zone
267 					 * bitmap objects and bitmap block
268 					 * objects
269 					 */
270 	struct bm_position cur;	/* most recently used bit position */
271 };
272 
273 /* Functions that operate on memory bitmaps */
274 
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277 	bm->cur.chunk = 0;
278 	bm->cur.bit = -1;
279 }
280 
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283 	struct zone_bitmap *zone_bm;
284 
285 	zone_bm = bm->zone_bm_list;
286 	bm->cur.zone_bm = zone_bm;
287 	bm->cur.block = zone_bm->bm_blocks;
288 	memory_bm_reset_chunk(bm);
289 }
290 
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292 
293 /**
294  *	create_bm_block_list - create a list of block bitmap objects
295  */
296 
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300 	struct bm_block *bblist = NULL;
301 
302 	while (nr_blocks-- > 0) {
303 		struct bm_block *bb;
304 
305 		bb = chain_alloc(ca, sizeof(struct bm_block));
306 		if (!bb)
307 			return NULL;
308 
309 		bb->next = bblist;
310 		bblist = bb;
311 	}
312 	return bblist;
313 }
314 
315 /**
316  *	create_zone_bm_list - create a list of zone bitmap objects
317  */
318 
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322 	struct zone_bitmap *zbmlist = NULL;
323 
324 	while (nr_zones-- > 0) {
325 		struct zone_bitmap *zbm;
326 
327 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 		if (!zbm)
329 			return NULL;
330 
331 		zbm->next = zbmlist;
332 		zbmlist = zbm;
333 	}
334 	return zbmlist;
335 }
336 
337 /**
338   *	memory_bm_create - allocate memory for a memory bitmap
339   */
340 
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344 	struct chain_allocator ca;
345 	struct zone *zone;
346 	struct zone_bitmap *zone_bm;
347 	struct bm_block *bb;
348 	unsigned int nr;
349 
350 	chain_init(&ca, gfp_mask, safe_needed);
351 
352 	/* Compute the number of zones */
353 	nr = 0;
354 	for_each_zone(zone)
355 		if (populated_zone(zone))
356 			nr++;
357 
358 	/* Allocate the list of zones bitmap objects */
359 	zone_bm = create_zone_bm_list(nr, &ca);
360 	bm->zone_bm_list = zone_bm;
361 	if (!zone_bm) {
362 		chain_free(&ca, PG_UNSAFE_CLEAR);
363 		return -ENOMEM;
364 	}
365 
366 	/* Initialize the zone bitmap objects */
367 	for_each_zone(zone) {
368 		unsigned long pfn;
369 
370 		if (!populated_zone(zone))
371 			continue;
372 
373 		zone_bm->start_pfn = zone->zone_start_pfn;
374 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 		/* Allocate the list of bitmap block objects */
376 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 		bb = create_bm_block_list(nr, &ca);
378 		zone_bm->bm_blocks = bb;
379 		zone_bm->cur_block = bb;
380 		if (!bb)
381 			goto Free;
382 
383 		nr = zone->spanned_pages;
384 		pfn = zone->zone_start_pfn;
385 		/* Initialize the bitmap block objects */
386 		while (bb) {
387 			unsigned long *ptr;
388 
389 			ptr = get_image_page(gfp_mask, safe_needed);
390 			bb->data = ptr;
391 			if (!ptr)
392 				goto Free;
393 
394 			bb->start_pfn = pfn;
395 			if (nr >= BM_BITS_PER_BLOCK) {
396 				pfn += BM_BITS_PER_BLOCK;
397 				bb->size = BM_CHUNKS_PER_BLOCK;
398 				nr -= BM_BITS_PER_BLOCK;
399 			} else {
400 				/* This is executed only once in the loop */
401 				pfn += nr;
402 				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 			}
404 			bb->end_pfn = pfn;
405 			bb = bb->next;
406 		}
407 		zone_bm = zone_bm->next;
408 	}
409 	bm->p_list = ca.chain;
410 	memory_bm_position_reset(bm);
411 	return 0;
412 
413  Free:
414 	bm->p_list = ca.chain;
415 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 	return -ENOMEM;
417 }
418 
419 /**
420   *	memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422 
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425 	struct zone_bitmap *zone_bm;
426 
427 	/* Free the list of bit blocks for each zone_bitmap object */
428 	zone_bm = bm->zone_bm_list;
429 	while (zone_bm) {
430 		struct bm_block *bb;
431 
432 		bb = zone_bm->bm_blocks;
433 		while (bb) {
434 			if (bb->data)
435 				free_image_page(bb->data, clear_nosave_free);
436 			bb = bb->next;
437 		}
438 		zone_bm = zone_bm->next;
439 	}
440 	free_list_of_pages(bm->p_list, clear_nosave_free);
441 	bm->zone_bm_list = NULL;
442 }
443 
444 /**
445  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *	of @bm->cur_zone_bm are updated.
448  */
449 
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 				void **addr, unsigned int *bit_nr)
452 {
453 	struct zone_bitmap *zone_bm;
454 	struct bm_block *bb;
455 
456 	/* Check if the pfn is from the current zone */
457 	zone_bm = bm->cur.zone_bm;
458 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 		zone_bm = bm->zone_bm_list;
460 		/* We don't assume that the zones are sorted by pfns */
461 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 			zone_bm = zone_bm->next;
463 
464 			BUG_ON(!zone_bm);
465 		}
466 		bm->cur.zone_bm = zone_bm;
467 	}
468 	/* Check if the pfn corresponds to the current bitmap block */
469 	bb = zone_bm->cur_block;
470 	if (pfn < bb->start_pfn)
471 		bb = zone_bm->bm_blocks;
472 
473 	while (pfn >= bb->end_pfn) {
474 		bb = bb->next;
475 
476 		BUG_ON(!bb);
477 	}
478 	zone_bm->cur_block = bb;
479 	pfn -= bb->start_pfn;
480 	*bit_nr = pfn % BM_BITS_PER_CHUNK;
481 	*addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483 
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486 	void *addr;
487 	unsigned int bit;
488 
489 	memory_bm_find_bit(bm, pfn, &addr, &bit);
490 	set_bit(bit, addr);
491 }
492 
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495 	void *addr;
496 	unsigned int bit;
497 
498 	memory_bm_find_bit(bm, pfn, &addr, &bit);
499 	clear_bit(bit, addr);
500 }
501 
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504 	void *addr;
505 	unsigned int bit;
506 
507 	memory_bm_find_bit(bm, pfn, &addr, &bit);
508 	return test_bit(bit, addr);
509 }
510 
511 /* Two auxiliary functions for memory_bm_next_pfn */
512 
513 /* Find the first set bit in the given chunk, if there is one */
514 
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517 	bit++;
518 	while (bit < BM_BITS_PER_CHUNK) {
519 		if (test_bit(bit, chunk_p))
520 			return bit;
521 
522 		bit++;
523 	}
524 	return -1;
525 }
526 
527 /* Find a chunk containing some bits set in given block of bits */
528 
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531 	n++;
532 	while (n < bb->size) {
533 		if (bb->data[n])
534 			return n;
535 
536 		n++;
537 	}
538 	return -1;
539 }
540 
541 /**
542  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
544  *	returned.
545  *
546  *	It is required to run memory_bm_position_reset() before the first call to
547  *	this function.
548  */
549 
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552 	struct zone_bitmap *zone_bm;
553 	struct bm_block *bb;
554 	int chunk;
555 	int bit;
556 
557 	do {
558 		bb = bm->cur.block;
559 		do {
560 			chunk = bm->cur.chunk;
561 			bit = bm->cur.bit;
562 			do {
563 				bit = next_bit_in_chunk(bit, bb->data + chunk);
564 				if (bit >= 0)
565 					goto Return_pfn;
566 
567 				chunk = next_chunk_in_block(chunk, bb);
568 				bit = -1;
569 			} while (chunk >= 0);
570 			bb = bb->next;
571 			bm->cur.block = bb;
572 			memory_bm_reset_chunk(bm);
573 		} while (bb);
574 		zone_bm = bm->cur.zone_bm->next;
575 		if (zone_bm) {
576 			bm->cur.zone_bm = zone_bm;
577 			bm->cur.block = zone_bm->bm_blocks;
578 			memory_bm_reset_chunk(bm);
579 		}
580 	} while (zone_bm);
581 	memory_bm_position_reset(bm);
582 	return BM_END_OF_MAP;
583 
584  Return_pfn:
585 	bm->cur.chunk = chunk;
586 	bm->cur.bit = bit;
587 	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589 
590 /**
591  *	This structure represents a range of page frames the contents of which
592  *	should not be saved during the suspend.
593  */
594 
595 struct nosave_region {
596 	struct list_head list;
597 	unsigned long start_pfn;
598 	unsigned long end_pfn;
599 };
600 
601 static LIST_HEAD(nosave_regions);
602 
603 /**
604  *	register_nosave_region - register a range of page frames the contents
605  *	of which should not be saved during the suspend (to be used in the early
606  *	initialization code)
607  */
608 
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 			 int use_kmalloc)
612 {
613 	struct nosave_region *region;
614 
615 	if (start_pfn >= end_pfn)
616 		return;
617 
618 	if (!list_empty(&nosave_regions)) {
619 		/* Try to extend the previous region (they should be sorted) */
620 		region = list_entry(nosave_regions.prev,
621 					struct nosave_region, list);
622 		if (region->end_pfn == start_pfn) {
623 			region->end_pfn = end_pfn;
624 			goto Report;
625 		}
626 	}
627 	if (use_kmalloc) {
628 		/* during init, this shouldn't fail */
629 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 		BUG_ON(!region);
631 	} else
632 		/* This allocation cannot fail */
633 		region = alloc_bootmem_low(sizeof(struct nosave_region));
634 	region->start_pfn = start_pfn;
635 	region->end_pfn = end_pfn;
636 	list_add_tail(&region->list, &nosave_regions);
637  Report:
638 	printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
639 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640 }
641 
642 /*
643  * Set bits in this map correspond to the page frames the contents of which
644  * should not be saved during the suspend.
645  */
646 static struct memory_bitmap *forbidden_pages_map;
647 
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
650 
651 /*
652  * Each page frame allocated for creating the image is marked by setting the
653  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654  */
655 
656 void swsusp_set_page_free(struct page *page)
657 {
658 	if (free_pages_map)
659 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660 }
661 
662 static int swsusp_page_is_free(struct page *page)
663 {
664 	return free_pages_map ?
665 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666 }
667 
668 void swsusp_unset_page_free(struct page *page)
669 {
670 	if (free_pages_map)
671 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672 }
673 
674 static void swsusp_set_page_forbidden(struct page *page)
675 {
676 	if (forbidden_pages_map)
677 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678 }
679 
680 int swsusp_page_is_forbidden(struct page *page)
681 {
682 	return forbidden_pages_map ?
683 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684 }
685 
686 static void swsusp_unset_page_forbidden(struct page *page)
687 {
688 	if (forbidden_pages_map)
689 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690 }
691 
692 /**
693  *	mark_nosave_pages - set bits corresponding to the page frames the
694  *	contents of which should not be saved in a given bitmap.
695  */
696 
697 static void mark_nosave_pages(struct memory_bitmap *bm)
698 {
699 	struct nosave_region *region;
700 
701 	if (list_empty(&nosave_regions))
702 		return;
703 
704 	list_for_each_entry(region, &nosave_regions, list) {
705 		unsigned long pfn;
706 
707 		printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
708 				region->start_pfn << PAGE_SHIFT,
709 				region->end_pfn << PAGE_SHIFT);
710 
711 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712 			if (pfn_valid(pfn))
713 				memory_bm_set_bit(bm, pfn);
714 	}
715 }
716 
717 /**
718  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
719  *	frames that should not be saved and free page frames.  The pointers
720  *	forbidden_pages_map and free_pages_map are only modified if everything
721  *	goes well, because we don't want the bits to be used before both bitmaps
722  *	are set up.
723  */
724 
725 int create_basic_memory_bitmaps(void)
726 {
727 	struct memory_bitmap *bm1, *bm2;
728 	int error = 0;
729 
730 	BUG_ON(forbidden_pages_map || free_pages_map);
731 
732 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
733 	if (!bm1)
734 		return -ENOMEM;
735 
736 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
737 	if (error)
738 		goto Free_first_object;
739 
740 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
741 	if (!bm2)
742 		goto Free_first_bitmap;
743 
744 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
745 	if (error)
746 		goto Free_second_object;
747 
748 	forbidden_pages_map = bm1;
749 	free_pages_map = bm2;
750 	mark_nosave_pages(forbidden_pages_map);
751 
752 	printk("swsusp: Basic memory bitmaps created\n");
753 
754 	return 0;
755 
756  Free_second_object:
757 	kfree(bm2);
758  Free_first_bitmap:
759  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760  Free_first_object:
761 	kfree(bm1);
762 	return -ENOMEM;
763 }
764 
765 /**
766  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
767  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
768  *	so that the bitmaps themselves are not referred to while they are being
769  *	freed.
770  */
771 
772 void free_basic_memory_bitmaps(void)
773 {
774 	struct memory_bitmap *bm1, *bm2;
775 
776 	BUG_ON(!(forbidden_pages_map && free_pages_map));
777 
778 	bm1 = forbidden_pages_map;
779 	bm2 = free_pages_map;
780 	forbidden_pages_map = NULL;
781 	free_pages_map = NULL;
782 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783 	kfree(bm1);
784 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785 	kfree(bm2);
786 
787 	printk("swsusp: Basic memory bitmaps freed\n");
788 }
789 
790 /**
791  *	snapshot_additional_pages - estimate the number of additional pages
792  *	be needed for setting up the suspend image data structures for given
793  *	zone (usually the returned value is greater than the exact number)
794  */
795 
796 unsigned int snapshot_additional_pages(struct zone *zone)
797 {
798 	unsigned int res;
799 
800 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
802 	return 2 * res;
803 }
804 
805 #ifdef CONFIG_HIGHMEM
806 /**
807  *	count_free_highmem_pages - compute the total number of free highmem
808  *	pages, system-wide.
809  */
810 
811 static unsigned int count_free_highmem_pages(void)
812 {
813 	struct zone *zone;
814 	unsigned int cnt = 0;
815 
816 	for_each_zone(zone)
817 		if (populated_zone(zone) && is_highmem(zone))
818 			cnt += zone_page_state(zone, NR_FREE_PAGES);
819 
820 	return cnt;
821 }
822 
823 /**
824  *	saveable_highmem_page - Determine whether a highmem page should be
825  *	included in the suspend image.
826  *
827  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828  *	and it isn't a part of a free chunk of pages.
829  */
830 
831 static struct page *saveable_highmem_page(unsigned long pfn)
832 {
833 	struct page *page;
834 
835 	if (!pfn_valid(pfn))
836 		return NULL;
837 
838 	page = pfn_to_page(pfn);
839 
840 	BUG_ON(!PageHighMem(page));
841 
842 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
843 	    PageReserved(page))
844 		return NULL;
845 
846 	return page;
847 }
848 
849 /**
850  *	count_highmem_pages - compute the total number of saveable highmem
851  *	pages.
852  */
853 
854 unsigned int count_highmem_pages(void)
855 {
856 	struct zone *zone;
857 	unsigned int n = 0;
858 
859 	for_each_zone(zone) {
860 		unsigned long pfn, max_zone_pfn;
861 
862 		if (!is_highmem(zone))
863 			continue;
864 
865 		mark_free_pages(zone);
866 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868 			if (saveable_highmem_page(pfn))
869 				n++;
870 	}
871 	return n;
872 }
873 #else
874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875 static inline unsigned int count_highmem_pages(void) { return 0; }
876 #endif /* CONFIG_HIGHMEM */
877 
878 /**
879  *	saveable - Determine whether a non-highmem page should be included in
880  *	the suspend image.
881  *
882  *	We should save the page if it isn't Nosave, and is not in the range
883  *	of pages statically defined as 'unsaveable', and it isn't a part of
884  *	a free chunk of pages.
885  */
886 
887 static struct page *saveable_page(unsigned long pfn)
888 {
889 	struct page *page;
890 
891 	if (!pfn_valid(pfn))
892 		return NULL;
893 
894 	page = pfn_to_page(pfn);
895 
896 	BUG_ON(PageHighMem(page));
897 
898 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899 		return NULL;
900 
901 	if (PageReserved(page) && pfn_is_nosave(pfn))
902 		return NULL;
903 
904 	return page;
905 }
906 
907 /**
908  *	count_data_pages - compute the total number of saveable non-highmem
909  *	pages.
910  */
911 
912 unsigned int count_data_pages(void)
913 {
914 	struct zone *zone;
915 	unsigned long pfn, max_zone_pfn;
916 	unsigned int n = 0;
917 
918 	for_each_zone(zone) {
919 		if (is_highmem(zone))
920 			continue;
921 
922 		mark_free_pages(zone);
923 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
924 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
925 			if(saveable_page(pfn))
926 				n++;
927 	}
928 	return n;
929 }
930 
931 /* This is needed, because copy_page and memcpy are not usable for copying
932  * task structs.
933  */
934 static inline void do_copy_page(long *dst, long *src)
935 {
936 	int n;
937 
938 	for (n = PAGE_SIZE / sizeof(long); n; n--)
939 		*dst++ = *src++;
940 }
941 
942 #ifdef CONFIG_HIGHMEM
943 static inline struct page *
944 page_is_saveable(struct zone *zone, unsigned long pfn)
945 {
946 	return is_highmem(zone) ?
947 			saveable_highmem_page(pfn) : saveable_page(pfn);
948 }
949 
950 static inline void
951 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
952 {
953 	struct page *s_page, *d_page;
954 	void *src, *dst;
955 
956 	s_page = pfn_to_page(src_pfn);
957 	d_page = pfn_to_page(dst_pfn);
958 	if (PageHighMem(s_page)) {
959 		src = kmap_atomic(s_page, KM_USER0);
960 		dst = kmap_atomic(d_page, KM_USER1);
961 		do_copy_page(dst, src);
962 		kunmap_atomic(src, KM_USER0);
963 		kunmap_atomic(dst, KM_USER1);
964 	} else {
965 		src = page_address(s_page);
966 		if (PageHighMem(d_page)) {
967 			/* Page pointed to by src may contain some kernel
968 			 * data modified by kmap_atomic()
969 			 */
970 			do_copy_page(buffer, src);
971 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
972 			memcpy(dst, buffer, PAGE_SIZE);
973 			kunmap_atomic(dst, KM_USER0);
974 		} else {
975 			dst = page_address(d_page);
976 			do_copy_page(dst, src);
977 		}
978 	}
979 }
980 #else
981 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
982 
983 static inline void
984 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
985 {
986 	do_copy_page(page_address(pfn_to_page(dst_pfn)),
987 			page_address(pfn_to_page(src_pfn)));
988 }
989 #endif /* CONFIG_HIGHMEM */
990 
991 static void
992 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
993 {
994 	struct zone *zone;
995 	unsigned long pfn;
996 
997 	for_each_zone(zone) {
998 		unsigned long max_zone_pfn;
999 
1000 		mark_free_pages(zone);
1001 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1002 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1003 			if (page_is_saveable(zone, pfn))
1004 				memory_bm_set_bit(orig_bm, pfn);
1005 	}
1006 	memory_bm_position_reset(orig_bm);
1007 	memory_bm_position_reset(copy_bm);
1008 	do {
1009 		pfn = memory_bm_next_pfn(orig_bm);
1010 		if (likely(pfn != BM_END_OF_MAP))
1011 			copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1012 	} while (pfn != BM_END_OF_MAP);
1013 }
1014 
1015 /* Total number of image pages */
1016 static unsigned int nr_copy_pages;
1017 /* Number of pages needed for saving the original pfns of the image pages */
1018 static unsigned int nr_meta_pages;
1019 
1020 /**
1021  *	swsusp_free - free pages allocated for the suspend.
1022  *
1023  *	Suspend pages are alocated before the atomic copy is made, so we
1024  *	need to release them after the resume.
1025  */
1026 
1027 void swsusp_free(void)
1028 {
1029 	struct zone *zone;
1030 	unsigned long pfn, max_zone_pfn;
1031 
1032 	for_each_zone(zone) {
1033 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1034 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1035 			if (pfn_valid(pfn)) {
1036 				struct page *page = pfn_to_page(pfn);
1037 
1038 				if (swsusp_page_is_forbidden(page) &&
1039 				    swsusp_page_is_free(page)) {
1040 					swsusp_unset_page_forbidden(page);
1041 					swsusp_unset_page_free(page);
1042 					__free_page(page);
1043 				}
1044 			}
1045 	}
1046 	nr_copy_pages = 0;
1047 	nr_meta_pages = 0;
1048 	restore_pblist = NULL;
1049 	buffer = NULL;
1050 }
1051 
1052 #ifdef CONFIG_HIGHMEM
1053 /**
1054   *	count_pages_for_highmem - compute the number of non-highmem pages
1055   *	that will be necessary for creating copies of highmem pages.
1056   */
1057 
1058 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1059 {
1060 	unsigned int free_highmem = count_free_highmem_pages();
1061 
1062 	if (free_highmem >= nr_highmem)
1063 		nr_highmem = 0;
1064 	else
1065 		nr_highmem -= free_highmem;
1066 
1067 	return nr_highmem;
1068 }
1069 #else
1070 static unsigned int
1071 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1072 #endif /* CONFIG_HIGHMEM */
1073 
1074 /**
1075  *	enough_free_mem - Make sure we have enough free memory for the
1076  *	snapshot image.
1077  */
1078 
1079 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1080 {
1081 	struct zone *zone;
1082 	unsigned int free = 0, meta = 0;
1083 
1084 	for_each_zone(zone) {
1085 		meta += snapshot_additional_pages(zone);
1086 		if (!is_highmem(zone))
1087 			free += zone_page_state(zone, NR_FREE_PAGES);
1088 	}
1089 
1090 	nr_pages += count_pages_for_highmem(nr_highmem);
1091 	pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1092 		nr_pages, PAGES_FOR_IO, meta, free);
1093 
1094 	return free > nr_pages + PAGES_FOR_IO + meta;
1095 }
1096 
1097 #ifdef CONFIG_HIGHMEM
1098 /**
1099  *	get_highmem_buffer - if there are some highmem pages in the suspend
1100  *	image, we may need the buffer to copy them and/or load their data.
1101  */
1102 
1103 static inline int get_highmem_buffer(int safe_needed)
1104 {
1105 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1106 	return buffer ? 0 : -ENOMEM;
1107 }
1108 
1109 /**
1110  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1111  *	Try to allocate as many pages as needed, but if the number of free
1112  *	highmem pages is lesser than that, allocate them all.
1113  */
1114 
1115 static inline unsigned int
1116 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1117 {
1118 	unsigned int to_alloc = count_free_highmem_pages();
1119 
1120 	if (to_alloc > nr_highmem)
1121 		to_alloc = nr_highmem;
1122 
1123 	nr_highmem -= to_alloc;
1124 	while (to_alloc-- > 0) {
1125 		struct page *page;
1126 
1127 		page = alloc_image_page(__GFP_HIGHMEM);
1128 		memory_bm_set_bit(bm, page_to_pfn(page));
1129 	}
1130 	return nr_highmem;
1131 }
1132 #else
1133 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1134 
1135 static inline unsigned int
1136 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1137 #endif /* CONFIG_HIGHMEM */
1138 
1139 /**
1140  *	swsusp_alloc - allocate memory for the suspend image
1141  *
1142  *	We first try to allocate as many highmem pages as there are
1143  *	saveable highmem pages in the system.  If that fails, we allocate
1144  *	non-highmem pages for the copies of the remaining highmem ones.
1145  *
1146  *	In this approach it is likely that the copies of highmem pages will
1147  *	also be located in the high memory, because of the way in which
1148  *	copy_data_pages() works.
1149  */
1150 
1151 static int
1152 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1153 		unsigned int nr_pages, unsigned int nr_highmem)
1154 {
1155 	int error;
1156 
1157 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1158 	if (error)
1159 		goto Free;
1160 
1161 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1162 	if (error)
1163 		goto Free;
1164 
1165 	if (nr_highmem > 0) {
1166 		error = get_highmem_buffer(PG_ANY);
1167 		if (error)
1168 			goto Free;
1169 
1170 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1171 	}
1172 	while (nr_pages-- > 0) {
1173 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1174 
1175 		if (!page)
1176 			goto Free;
1177 
1178 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1179 	}
1180 	return 0;
1181 
1182  Free:
1183 	swsusp_free();
1184 	return -ENOMEM;
1185 }
1186 
1187 /* Memory bitmap used for marking saveable pages (during suspend) or the
1188  * suspend image pages (during resume)
1189  */
1190 static struct memory_bitmap orig_bm;
1191 /* Memory bitmap used on suspend for marking allocated pages that will contain
1192  * the copies of saveable pages.  During resume it is initially used for
1193  * marking the suspend image pages, but then its set bits are duplicated in
1194  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1195  * used for marking "safe" highmem pages, but it has to be reinitialized for
1196  * this purpose.
1197  */
1198 static struct memory_bitmap copy_bm;
1199 
1200 asmlinkage int swsusp_save(void)
1201 {
1202 	unsigned int nr_pages, nr_highmem;
1203 
1204 	printk("swsusp: critical section: \n");
1205 
1206 	drain_local_pages();
1207 	nr_pages = count_data_pages();
1208 	nr_highmem = count_highmem_pages();
1209 	printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1210 
1211 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1212 		printk(KERN_ERR "swsusp: Not enough free memory\n");
1213 		return -ENOMEM;
1214 	}
1215 
1216 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1217 		printk(KERN_ERR "swsusp: Memory allocation failed\n");
1218 		return -ENOMEM;
1219 	}
1220 
1221 	/* During allocating of suspend pagedir, new cold pages may appear.
1222 	 * Kill them.
1223 	 */
1224 	drain_local_pages();
1225 	copy_data_pages(&copy_bm, &orig_bm);
1226 
1227 	/*
1228 	 * End of critical section. From now on, we can write to memory,
1229 	 * but we should not touch disk. This specially means we must _not_
1230 	 * touch swap space! Except we must write out our image of course.
1231 	 */
1232 
1233 	nr_pages += nr_highmem;
1234 	nr_copy_pages = nr_pages;
1235 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1236 
1237 	printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
1238 
1239 	return 0;
1240 }
1241 
1242 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1243 static int init_header_complete(struct swsusp_info *info)
1244 {
1245 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1246 	info->version_code = LINUX_VERSION_CODE;
1247 	return 0;
1248 }
1249 
1250 static char *check_image_kernel(struct swsusp_info *info)
1251 {
1252 	if (info->version_code != LINUX_VERSION_CODE)
1253 		return "kernel version";
1254 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1255 		return "system type";
1256 	if (strcmp(info->uts.release,init_utsname()->release))
1257 		return "kernel release";
1258 	if (strcmp(info->uts.version,init_utsname()->version))
1259 		return "version";
1260 	if (strcmp(info->uts.machine,init_utsname()->machine))
1261 		return "machine";
1262 	return NULL;
1263 }
1264 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1265 
1266 static int init_header(struct swsusp_info *info)
1267 {
1268 	memset(info, 0, sizeof(struct swsusp_info));
1269 	info->num_physpages = num_physpages;
1270 	info->image_pages = nr_copy_pages;
1271 	info->pages = nr_copy_pages + nr_meta_pages + 1;
1272 	info->size = info->pages;
1273 	info->size <<= PAGE_SHIFT;
1274 	return init_header_complete(info);
1275 }
1276 
1277 /**
1278  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1279  *	are stored in the array @buf[] (1 page at a time)
1280  */
1281 
1282 static inline void
1283 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1284 {
1285 	int j;
1286 
1287 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1288 		buf[j] = memory_bm_next_pfn(bm);
1289 		if (unlikely(buf[j] == BM_END_OF_MAP))
1290 			break;
1291 	}
1292 }
1293 
1294 /**
1295  *	snapshot_read_next - used for reading the system memory snapshot.
1296  *
1297  *	On the first call to it @handle should point to a zeroed
1298  *	snapshot_handle structure.  The structure gets updated and a pointer
1299  *	to it should be passed to this function every next time.
1300  *
1301  *	The @count parameter should contain the number of bytes the caller
1302  *	wants to read from the snapshot.  It must not be zero.
1303  *
1304  *	On success the function returns a positive number.  Then, the caller
1305  *	is allowed to read up to the returned number of bytes from the memory
1306  *	location computed by the data_of() macro.  The number returned
1307  *	may be smaller than @count, but this only happens if the read would
1308  *	cross a page boundary otherwise.
1309  *
1310  *	The function returns 0 to indicate the end of data stream condition,
1311  *	and a negative number is returned on error.  In such cases the
1312  *	structure pointed to by @handle is not updated and should not be used
1313  *	any more.
1314  */
1315 
1316 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1317 {
1318 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1319 		return 0;
1320 
1321 	if (!buffer) {
1322 		/* This makes the buffer be freed by swsusp_free() */
1323 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1324 		if (!buffer)
1325 			return -ENOMEM;
1326 	}
1327 	if (!handle->offset) {
1328 		int error;
1329 
1330 		error = init_header((struct swsusp_info *)buffer);
1331 		if (error)
1332 			return error;
1333 		handle->buffer = buffer;
1334 		memory_bm_position_reset(&orig_bm);
1335 		memory_bm_position_reset(&copy_bm);
1336 	}
1337 	if (handle->prev < handle->cur) {
1338 		if (handle->cur <= nr_meta_pages) {
1339 			memset(buffer, 0, PAGE_SIZE);
1340 			pack_pfns(buffer, &orig_bm);
1341 		} else {
1342 			struct page *page;
1343 
1344 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1345 			if (PageHighMem(page)) {
1346 				/* Highmem pages are copied to the buffer,
1347 				 * because we can't return with a kmapped
1348 				 * highmem page (we may not be called again).
1349 				 */
1350 				void *kaddr;
1351 
1352 				kaddr = kmap_atomic(page, KM_USER0);
1353 				memcpy(buffer, kaddr, PAGE_SIZE);
1354 				kunmap_atomic(kaddr, KM_USER0);
1355 				handle->buffer = buffer;
1356 			} else {
1357 				handle->buffer = page_address(page);
1358 			}
1359 		}
1360 		handle->prev = handle->cur;
1361 	}
1362 	handle->buf_offset = handle->cur_offset;
1363 	if (handle->cur_offset + count >= PAGE_SIZE) {
1364 		count = PAGE_SIZE - handle->cur_offset;
1365 		handle->cur_offset = 0;
1366 		handle->cur++;
1367 	} else {
1368 		handle->cur_offset += count;
1369 	}
1370 	handle->offset += count;
1371 	return count;
1372 }
1373 
1374 /**
1375  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1376  *	the image during resume, because they conflict with the pages that
1377  *	had been used before suspend
1378  */
1379 
1380 static int mark_unsafe_pages(struct memory_bitmap *bm)
1381 {
1382 	struct zone *zone;
1383 	unsigned long pfn, max_zone_pfn;
1384 
1385 	/* Clear page flags */
1386 	for_each_zone(zone) {
1387 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1388 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1389 			if (pfn_valid(pfn))
1390 				swsusp_unset_page_free(pfn_to_page(pfn));
1391 	}
1392 
1393 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1394 	memory_bm_position_reset(bm);
1395 	do {
1396 		pfn = memory_bm_next_pfn(bm);
1397 		if (likely(pfn != BM_END_OF_MAP)) {
1398 			if (likely(pfn_valid(pfn)))
1399 				swsusp_set_page_free(pfn_to_page(pfn));
1400 			else
1401 				return -EFAULT;
1402 		}
1403 	} while (pfn != BM_END_OF_MAP);
1404 
1405 	allocated_unsafe_pages = 0;
1406 
1407 	return 0;
1408 }
1409 
1410 static void
1411 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1412 {
1413 	unsigned long pfn;
1414 
1415 	memory_bm_position_reset(src);
1416 	pfn = memory_bm_next_pfn(src);
1417 	while (pfn != BM_END_OF_MAP) {
1418 		memory_bm_set_bit(dst, pfn);
1419 		pfn = memory_bm_next_pfn(src);
1420 	}
1421 }
1422 
1423 static int check_header(struct swsusp_info *info)
1424 {
1425 	char *reason;
1426 
1427 	reason = check_image_kernel(info);
1428 	if (!reason && info->num_physpages != num_physpages)
1429 		reason = "memory size";
1430 	if (reason) {
1431 		printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1432 		return -EPERM;
1433 	}
1434 	return 0;
1435 }
1436 
1437 /**
1438  *	load header - check the image header and copy data from it
1439  */
1440 
1441 static int
1442 load_header(struct swsusp_info *info)
1443 {
1444 	int error;
1445 
1446 	restore_pblist = NULL;
1447 	error = check_header(info);
1448 	if (!error) {
1449 		nr_copy_pages = info->image_pages;
1450 		nr_meta_pages = info->pages - info->image_pages - 1;
1451 	}
1452 	return error;
1453 }
1454 
1455 /**
1456  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1457  *	the corresponding bit in the memory bitmap @bm
1458  */
1459 
1460 static inline void
1461 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1462 {
1463 	int j;
1464 
1465 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1466 		if (unlikely(buf[j] == BM_END_OF_MAP))
1467 			break;
1468 
1469 		memory_bm_set_bit(bm, buf[j]);
1470 	}
1471 }
1472 
1473 /* List of "safe" pages that may be used to store data loaded from the suspend
1474  * image
1475  */
1476 static struct linked_page *safe_pages_list;
1477 
1478 #ifdef CONFIG_HIGHMEM
1479 /* struct highmem_pbe is used for creating the list of highmem pages that
1480  * should be restored atomically during the resume from disk, because the page
1481  * frames they have occupied before the suspend are in use.
1482  */
1483 struct highmem_pbe {
1484 	struct page *copy_page;	/* data is here now */
1485 	struct page *orig_page;	/* data was here before the suspend */
1486 	struct highmem_pbe *next;
1487 };
1488 
1489 /* List of highmem PBEs needed for restoring the highmem pages that were
1490  * allocated before the suspend and included in the suspend image, but have
1491  * also been allocated by the "resume" kernel, so their contents cannot be
1492  * written directly to their "original" page frames.
1493  */
1494 static struct highmem_pbe *highmem_pblist;
1495 
1496 /**
1497  *	count_highmem_image_pages - compute the number of highmem pages in the
1498  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1499  *	image pages are assumed to be set.
1500  */
1501 
1502 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1503 {
1504 	unsigned long pfn;
1505 	unsigned int cnt = 0;
1506 
1507 	memory_bm_position_reset(bm);
1508 	pfn = memory_bm_next_pfn(bm);
1509 	while (pfn != BM_END_OF_MAP) {
1510 		if (PageHighMem(pfn_to_page(pfn)))
1511 			cnt++;
1512 
1513 		pfn = memory_bm_next_pfn(bm);
1514 	}
1515 	return cnt;
1516 }
1517 
1518 /**
1519  *	prepare_highmem_image - try to allocate as many highmem pages as
1520  *	there are highmem image pages (@nr_highmem_p points to the variable
1521  *	containing the number of highmem image pages).  The pages that are
1522  *	"safe" (ie. will not be overwritten when the suspend image is
1523  *	restored) have the corresponding bits set in @bm (it must be
1524  *	unitialized).
1525  *
1526  *	NOTE: This function should not be called if there are no highmem
1527  *	image pages.
1528  */
1529 
1530 static unsigned int safe_highmem_pages;
1531 
1532 static struct memory_bitmap *safe_highmem_bm;
1533 
1534 static int
1535 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1536 {
1537 	unsigned int to_alloc;
1538 
1539 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1540 		return -ENOMEM;
1541 
1542 	if (get_highmem_buffer(PG_SAFE))
1543 		return -ENOMEM;
1544 
1545 	to_alloc = count_free_highmem_pages();
1546 	if (to_alloc > *nr_highmem_p)
1547 		to_alloc = *nr_highmem_p;
1548 	else
1549 		*nr_highmem_p = to_alloc;
1550 
1551 	safe_highmem_pages = 0;
1552 	while (to_alloc-- > 0) {
1553 		struct page *page;
1554 
1555 		page = alloc_page(__GFP_HIGHMEM);
1556 		if (!swsusp_page_is_free(page)) {
1557 			/* The page is "safe", set its bit the bitmap */
1558 			memory_bm_set_bit(bm, page_to_pfn(page));
1559 			safe_highmem_pages++;
1560 		}
1561 		/* Mark the page as allocated */
1562 		swsusp_set_page_forbidden(page);
1563 		swsusp_set_page_free(page);
1564 	}
1565 	memory_bm_position_reset(bm);
1566 	safe_highmem_bm = bm;
1567 	return 0;
1568 }
1569 
1570 /**
1571  *	get_highmem_page_buffer - for given highmem image page find the buffer
1572  *	that suspend_write_next() should set for its caller to write to.
1573  *
1574  *	If the page is to be saved to its "original" page frame or a copy of
1575  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1576  *	the copy of the page is to be made in normal memory, so the address of
1577  *	the copy is returned.
1578  *
1579  *	If @buffer is returned, the caller of suspend_write_next() will write
1580  *	the page's contents to @buffer, so they will have to be copied to the
1581  *	right location on the next call to suspend_write_next() and it is done
1582  *	with the help of copy_last_highmem_page().  For this purpose, if
1583  *	@buffer is returned, @last_highmem page is set to the page to which
1584  *	the data will have to be copied from @buffer.
1585  */
1586 
1587 static struct page *last_highmem_page;
1588 
1589 static void *
1590 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1591 {
1592 	struct highmem_pbe *pbe;
1593 	void *kaddr;
1594 
1595 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1596 		/* We have allocated the "original" page frame and we can
1597 		 * use it directly to store the loaded page.
1598 		 */
1599 		last_highmem_page = page;
1600 		return buffer;
1601 	}
1602 	/* The "original" page frame has not been allocated and we have to
1603 	 * use a "safe" page frame to store the loaded page.
1604 	 */
1605 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1606 	if (!pbe) {
1607 		swsusp_free();
1608 		return NULL;
1609 	}
1610 	pbe->orig_page = page;
1611 	if (safe_highmem_pages > 0) {
1612 		struct page *tmp;
1613 
1614 		/* Copy of the page will be stored in high memory */
1615 		kaddr = buffer;
1616 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1617 		safe_highmem_pages--;
1618 		last_highmem_page = tmp;
1619 		pbe->copy_page = tmp;
1620 	} else {
1621 		/* Copy of the page will be stored in normal memory */
1622 		kaddr = safe_pages_list;
1623 		safe_pages_list = safe_pages_list->next;
1624 		pbe->copy_page = virt_to_page(kaddr);
1625 	}
1626 	pbe->next = highmem_pblist;
1627 	highmem_pblist = pbe;
1628 	return kaddr;
1629 }
1630 
1631 /**
1632  *	copy_last_highmem_page - copy the contents of a highmem image from
1633  *	@buffer, where the caller of snapshot_write_next() has place them,
1634  *	to the right location represented by @last_highmem_page .
1635  */
1636 
1637 static void copy_last_highmem_page(void)
1638 {
1639 	if (last_highmem_page) {
1640 		void *dst;
1641 
1642 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1643 		memcpy(dst, buffer, PAGE_SIZE);
1644 		kunmap_atomic(dst, KM_USER0);
1645 		last_highmem_page = NULL;
1646 	}
1647 }
1648 
1649 static inline int last_highmem_page_copied(void)
1650 {
1651 	return !last_highmem_page;
1652 }
1653 
1654 static inline void free_highmem_data(void)
1655 {
1656 	if (safe_highmem_bm)
1657 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1658 
1659 	if (buffer)
1660 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1661 }
1662 #else
1663 static inline int get_safe_write_buffer(void) { return 0; }
1664 
1665 static unsigned int
1666 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1667 
1668 static inline int
1669 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1670 {
1671 	return 0;
1672 }
1673 
1674 static inline void *
1675 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1676 {
1677 	return NULL;
1678 }
1679 
1680 static inline void copy_last_highmem_page(void) {}
1681 static inline int last_highmem_page_copied(void) { return 1; }
1682 static inline void free_highmem_data(void) {}
1683 #endif /* CONFIG_HIGHMEM */
1684 
1685 /**
1686  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1687  *	be overwritten in the process of restoring the system memory state
1688  *	from the suspend image ("unsafe" pages) and allocate memory for the
1689  *	image.
1690  *
1691  *	The idea is to allocate a new memory bitmap first and then allocate
1692  *	as many pages as needed for the image data, but not to assign these
1693  *	pages to specific tasks initially.  Instead, we just mark them as
1694  *	allocated and create a lists of "safe" pages that will be used
1695  *	later.  On systems with high memory a list of "safe" highmem pages is
1696  *	also created.
1697  */
1698 
1699 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1700 
1701 static int
1702 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1703 {
1704 	unsigned int nr_pages, nr_highmem;
1705 	struct linked_page *sp_list, *lp;
1706 	int error;
1707 
1708 	/* If there is no highmem, the buffer will not be necessary */
1709 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1710 	buffer = NULL;
1711 
1712 	nr_highmem = count_highmem_image_pages(bm);
1713 	error = mark_unsafe_pages(bm);
1714 	if (error)
1715 		goto Free;
1716 
1717 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1718 	if (error)
1719 		goto Free;
1720 
1721 	duplicate_memory_bitmap(new_bm, bm);
1722 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1723 	if (nr_highmem > 0) {
1724 		error = prepare_highmem_image(bm, &nr_highmem);
1725 		if (error)
1726 			goto Free;
1727 	}
1728 	/* Reserve some safe pages for potential later use.
1729 	 *
1730 	 * NOTE: This way we make sure there will be enough safe pages for the
1731 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1732 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1733 	 */
1734 	sp_list = NULL;
1735 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1736 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1737 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1738 	while (nr_pages > 0) {
1739 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1740 		if (!lp) {
1741 			error = -ENOMEM;
1742 			goto Free;
1743 		}
1744 		lp->next = sp_list;
1745 		sp_list = lp;
1746 		nr_pages--;
1747 	}
1748 	/* Preallocate memory for the image */
1749 	safe_pages_list = NULL;
1750 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1751 	while (nr_pages > 0) {
1752 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1753 		if (!lp) {
1754 			error = -ENOMEM;
1755 			goto Free;
1756 		}
1757 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1758 			/* The page is "safe", add it to the list */
1759 			lp->next = safe_pages_list;
1760 			safe_pages_list = lp;
1761 		}
1762 		/* Mark the page as allocated */
1763 		swsusp_set_page_forbidden(virt_to_page(lp));
1764 		swsusp_set_page_free(virt_to_page(lp));
1765 		nr_pages--;
1766 	}
1767 	/* Free the reserved safe pages so that chain_alloc() can use them */
1768 	while (sp_list) {
1769 		lp = sp_list->next;
1770 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1771 		sp_list = lp;
1772 	}
1773 	return 0;
1774 
1775  Free:
1776 	swsusp_free();
1777 	return error;
1778 }
1779 
1780 /**
1781  *	get_buffer - compute the address that snapshot_write_next() should
1782  *	set for its caller to write to.
1783  */
1784 
1785 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1786 {
1787 	struct pbe *pbe;
1788 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1789 
1790 	if (PageHighMem(page))
1791 		return get_highmem_page_buffer(page, ca);
1792 
1793 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1794 		/* We have allocated the "original" page frame and we can
1795 		 * use it directly to store the loaded page.
1796 		 */
1797 		return page_address(page);
1798 
1799 	/* The "original" page frame has not been allocated and we have to
1800 	 * use a "safe" page frame to store the loaded page.
1801 	 */
1802 	pbe = chain_alloc(ca, sizeof(struct pbe));
1803 	if (!pbe) {
1804 		swsusp_free();
1805 		return NULL;
1806 	}
1807 	pbe->orig_address = page_address(page);
1808 	pbe->address = safe_pages_list;
1809 	safe_pages_list = safe_pages_list->next;
1810 	pbe->next = restore_pblist;
1811 	restore_pblist = pbe;
1812 	return pbe->address;
1813 }
1814 
1815 /**
1816  *	snapshot_write_next - used for writing the system memory snapshot.
1817  *
1818  *	On the first call to it @handle should point to a zeroed
1819  *	snapshot_handle structure.  The structure gets updated and a pointer
1820  *	to it should be passed to this function every next time.
1821  *
1822  *	The @count parameter should contain the number of bytes the caller
1823  *	wants to write to the image.  It must not be zero.
1824  *
1825  *	On success the function returns a positive number.  Then, the caller
1826  *	is allowed to write up to the returned number of bytes to the memory
1827  *	location computed by the data_of() macro.  The number returned
1828  *	may be smaller than @count, but this only happens if the write would
1829  *	cross a page boundary otherwise.
1830  *
1831  *	The function returns 0 to indicate the "end of file" condition,
1832  *	and a negative number is returned on error.  In such cases the
1833  *	structure pointed to by @handle is not updated and should not be used
1834  *	any more.
1835  */
1836 
1837 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1838 {
1839 	static struct chain_allocator ca;
1840 	int error = 0;
1841 
1842 	/* Check if we have already loaded the entire image */
1843 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1844 		return 0;
1845 
1846 	if (handle->offset == 0) {
1847 		if (!buffer)
1848 			/* This makes the buffer be freed by swsusp_free() */
1849 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1850 
1851 		if (!buffer)
1852 			return -ENOMEM;
1853 
1854 		handle->buffer = buffer;
1855 	}
1856 	handle->sync_read = 1;
1857 	if (handle->prev < handle->cur) {
1858 		if (handle->prev == 0) {
1859 			error = load_header(buffer);
1860 			if (error)
1861 				return error;
1862 
1863 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1864 			if (error)
1865 				return error;
1866 
1867 		} else if (handle->prev <= nr_meta_pages) {
1868 			unpack_orig_pfns(buffer, &copy_bm);
1869 			if (handle->prev == nr_meta_pages) {
1870 				error = prepare_image(&orig_bm, &copy_bm);
1871 				if (error)
1872 					return error;
1873 
1874 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1875 				memory_bm_position_reset(&orig_bm);
1876 				restore_pblist = NULL;
1877 				handle->buffer = get_buffer(&orig_bm, &ca);
1878 				handle->sync_read = 0;
1879 				if (!handle->buffer)
1880 					return -ENOMEM;
1881 			}
1882 		} else {
1883 			copy_last_highmem_page();
1884 			handle->buffer = get_buffer(&orig_bm, &ca);
1885 			if (handle->buffer != buffer)
1886 				handle->sync_read = 0;
1887 		}
1888 		handle->prev = handle->cur;
1889 	}
1890 	handle->buf_offset = handle->cur_offset;
1891 	if (handle->cur_offset + count >= PAGE_SIZE) {
1892 		count = PAGE_SIZE - handle->cur_offset;
1893 		handle->cur_offset = 0;
1894 		handle->cur++;
1895 	} else {
1896 		handle->cur_offset += count;
1897 	}
1898 	handle->offset += count;
1899 	return count;
1900 }
1901 
1902 /**
1903  *	snapshot_write_finalize - must be called after the last call to
1904  *	snapshot_write_next() in case the last page in the image happens
1905  *	to be a highmem page and its contents should be stored in the
1906  *	highmem.  Additionally, it releases the memory that will not be
1907  *	used any more.
1908  */
1909 
1910 void snapshot_write_finalize(struct snapshot_handle *handle)
1911 {
1912 	copy_last_highmem_page();
1913 	/* Free only if we have loaded the image entirely */
1914 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1915 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1916 		free_highmem_data();
1917 	}
1918 }
1919 
1920 int snapshot_image_loaded(struct snapshot_handle *handle)
1921 {
1922 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1923 			handle->cur <= nr_meta_pages + nr_copy_pages);
1924 }
1925 
1926 #ifdef CONFIG_HIGHMEM
1927 /* Assumes that @buf is ready and points to a "safe" page */
1928 static inline void
1929 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1930 {
1931 	void *kaddr1, *kaddr2;
1932 
1933 	kaddr1 = kmap_atomic(p1, KM_USER0);
1934 	kaddr2 = kmap_atomic(p2, KM_USER1);
1935 	memcpy(buf, kaddr1, PAGE_SIZE);
1936 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1937 	memcpy(kaddr2, buf, PAGE_SIZE);
1938 	kunmap_atomic(kaddr1, KM_USER0);
1939 	kunmap_atomic(kaddr2, KM_USER1);
1940 }
1941 
1942 /**
1943  *	restore_highmem - for each highmem page that was allocated before
1944  *	the suspend and included in the suspend image, and also has been
1945  *	allocated by the "resume" kernel swap its current (ie. "before
1946  *	resume") contents with the previous (ie. "before suspend") one.
1947  *
1948  *	If the resume eventually fails, we can call this function once
1949  *	again and restore the "before resume" highmem state.
1950  */
1951 
1952 int restore_highmem(void)
1953 {
1954 	struct highmem_pbe *pbe = highmem_pblist;
1955 	void *buf;
1956 
1957 	if (!pbe)
1958 		return 0;
1959 
1960 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1961 	if (!buf)
1962 		return -ENOMEM;
1963 
1964 	while (pbe) {
1965 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1966 		pbe = pbe->next;
1967 	}
1968 	free_image_page(buf, PG_UNSAFE_CLEAR);
1969 	return 0;
1970 }
1971 #endif /* CONFIG_HIGHMEM */
1972