xref: /openbmc/linux/kernel/power/snapshot.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/kernel.h>
23 #include <linux/pm.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h>
27 #include <linux/nmi.h>
28 #include <linux/syscalls.h>
29 #include <linux/console.h>
30 #include <linux/highmem.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 #include <linux/compiler.h>
34 #include <linux/ktime.h>
35 #include <linux/set_memory.h>
36 
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/io.h>
42 
43 #include "power.h"
44 
45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 static bool hibernate_restore_protection;
47 static bool hibernate_restore_protection_active;
48 
49 void enable_restore_image_protection(void)
50 {
51 	hibernate_restore_protection = true;
52 }
53 
54 static inline void hibernate_restore_protection_begin(void)
55 {
56 	hibernate_restore_protection_active = hibernate_restore_protection;
57 }
58 
59 static inline void hibernate_restore_protection_end(void)
60 {
61 	hibernate_restore_protection_active = false;
62 }
63 
64 static inline void hibernate_restore_protect_page(void *page_address)
65 {
66 	if (hibernate_restore_protection_active)
67 		set_memory_ro((unsigned long)page_address, 1);
68 }
69 
70 static inline void hibernate_restore_unprotect_page(void *page_address)
71 {
72 	if (hibernate_restore_protection_active)
73 		set_memory_rw((unsigned long)page_address, 1);
74 }
75 #else
76 static inline void hibernate_restore_protection_begin(void) {}
77 static inline void hibernate_restore_protection_end(void) {}
78 static inline void hibernate_restore_protect_page(void *page_address) {}
79 static inline void hibernate_restore_unprotect_page(void *page_address) {}
80 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
81 
82 static int swsusp_page_is_free(struct page *);
83 static void swsusp_set_page_forbidden(struct page *);
84 static void swsusp_unset_page_forbidden(struct page *);
85 
86 /*
87  * Number of bytes to reserve for memory allocations made by device drivers
88  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
89  * cause image creation to fail (tunable via /sys/power/reserved_size).
90  */
91 unsigned long reserved_size;
92 
93 void __init hibernate_reserved_size_init(void)
94 {
95 	reserved_size = SPARE_PAGES * PAGE_SIZE;
96 }
97 
98 /*
99  * Preferred image size in bytes (tunable via /sys/power/image_size).
100  * When it is set to N, swsusp will do its best to ensure the image
101  * size will not exceed N bytes, but if that is impossible, it will
102  * try to create the smallest image possible.
103  */
104 unsigned long image_size;
105 
106 void __init hibernate_image_size_init(void)
107 {
108 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
109 }
110 
111 /*
112  * List of PBEs needed for restoring the pages that were allocated before
113  * the suspend and included in the suspend image, but have also been
114  * allocated by the "resume" kernel, so their contents cannot be written
115  * directly to their "original" page frames.
116  */
117 struct pbe *restore_pblist;
118 
119 /* struct linked_page is used to build chains of pages */
120 
121 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
122 
123 struct linked_page {
124 	struct linked_page *next;
125 	char data[LINKED_PAGE_DATA_SIZE];
126 } __packed;
127 
128 /*
129  * List of "safe" pages (ie. pages that were not used by the image kernel
130  * before hibernation) that may be used as temporary storage for image kernel
131  * memory contents.
132  */
133 static struct linked_page *safe_pages_list;
134 
135 /* Pointer to an auxiliary buffer (1 page) */
136 static void *buffer;
137 
138 #define PG_ANY		0
139 #define PG_SAFE		1
140 #define PG_UNSAFE_CLEAR	1
141 #define PG_UNSAFE_KEEP	0
142 
143 static unsigned int allocated_unsafe_pages;
144 
145 /**
146  * get_image_page - Allocate a page for a hibernation image.
147  * @gfp_mask: GFP mask for the allocation.
148  * @safe_needed: Get pages that were not used before hibernation (restore only)
149  *
150  * During image restoration, for storing the PBE list and the image data, we can
151  * only use memory pages that do not conflict with the pages used before
152  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
153  * using allocated_unsafe_pages.
154  *
155  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
156  * swsusp_free() can release it.
157  */
158 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 {
160 	void *res;
161 
162 	res = (void *)get_zeroed_page(gfp_mask);
163 	if (safe_needed)
164 		while (res && swsusp_page_is_free(virt_to_page(res))) {
165 			/* The page is unsafe, mark it for swsusp_free() */
166 			swsusp_set_page_forbidden(virt_to_page(res));
167 			allocated_unsafe_pages++;
168 			res = (void *)get_zeroed_page(gfp_mask);
169 		}
170 	if (res) {
171 		swsusp_set_page_forbidden(virt_to_page(res));
172 		swsusp_set_page_free(virt_to_page(res));
173 	}
174 	return res;
175 }
176 
177 static void *__get_safe_page(gfp_t gfp_mask)
178 {
179 	if (safe_pages_list) {
180 		void *ret = safe_pages_list;
181 
182 		safe_pages_list = safe_pages_list->next;
183 		memset(ret, 0, PAGE_SIZE);
184 		return ret;
185 	}
186 	return get_image_page(gfp_mask, PG_SAFE);
187 }
188 
189 unsigned long get_safe_page(gfp_t gfp_mask)
190 {
191 	return (unsigned long)__get_safe_page(gfp_mask);
192 }
193 
194 static struct page *alloc_image_page(gfp_t gfp_mask)
195 {
196 	struct page *page;
197 
198 	page = alloc_page(gfp_mask);
199 	if (page) {
200 		swsusp_set_page_forbidden(page);
201 		swsusp_set_page_free(page);
202 	}
203 	return page;
204 }
205 
206 static void recycle_safe_page(void *page_address)
207 {
208 	struct linked_page *lp = page_address;
209 
210 	lp->next = safe_pages_list;
211 	safe_pages_list = lp;
212 }
213 
214 /**
215  * free_image_page - Free a page allocated for hibernation image.
216  * @addr: Address of the page to free.
217  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
218  *
219  * The page to free should have been allocated by get_image_page() (page flags
220  * set by it are affected).
221  */
222 static inline void free_image_page(void *addr, int clear_nosave_free)
223 {
224 	struct page *page;
225 
226 	BUG_ON(!virt_addr_valid(addr));
227 
228 	page = virt_to_page(addr);
229 
230 	swsusp_unset_page_forbidden(page);
231 	if (clear_nosave_free)
232 		swsusp_unset_page_free(page);
233 
234 	__free_page(page);
235 }
236 
237 static inline void free_list_of_pages(struct linked_page *list,
238 				      int clear_page_nosave)
239 {
240 	while (list) {
241 		struct linked_page *lp = list->next;
242 
243 		free_image_page(list, clear_page_nosave);
244 		list = lp;
245 	}
246 }
247 
248 /*
249  * struct chain_allocator is used for allocating small objects out of
250  * a linked list of pages called 'the chain'.
251  *
252  * The chain grows each time when there is no room for a new object in
253  * the current page.  The allocated objects cannot be freed individually.
254  * It is only possible to free them all at once, by freeing the entire
255  * chain.
256  *
257  * NOTE: The chain allocator may be inefficient if the allocated objects
258  * are not much smaller than PAGE_SIZE.
259  */
260 struct chain_allocator {
261 	struct linked_page *chain;	/* the chain */
262 	unsigned int used_space;	/* total size of objects allocated out
263 					   of the current page */
264 	gfp_t gfp_mask;		/* mask for allocating pages */
265 	int safe_needed;	/* if set, only "safe" pages are allocated */
266 };
267 
268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
269 		       int safe_needed)
270 {
271 	ca->chain = NULL;
272 	ca->used_space = LINKED_PAGE_DATA_SIZE;
273 	ca->gfp_mask = gfp_mask;
274 	ca->safe_needed = safe_needed;
275 }
276 
277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
278 {
279 	void *ret;
280 
281 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
282 		struct linked_page *lp;
283 
284 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
285 					get_image_page(ca->gfp_mask, PG_ANY);
286 		if (!lp)
287 			return NULL;
288 
289 		lp->next = ca->chain;
290 		ca->chain = lp;
291 		ca->used_space = 0;
292 	}
293 	ret = ca->chain->data + ca->used_space;
294 	ca->used_space += size;
295 	return ret;
296 }
297 
298 /**
299  * Data types related to memory bitmaps.
300  *
301  * Memory bitmap is a structure consiting of many linked lists of
302  * objects.  The main list's elements are of type struct zone_bitmap
303  * and each of them corresonds to one zone.  For each zone bitmap
304  * object there is a list of objects of type struct bm_block that
305  * represent each blocks of bitmap in which information is stored.
306  *
307  * struct memory_bitmap contains a pointer to the main list of zone
308  * bitmap objects, a struct bm_position used for browsing the bitmap,
309  * and a pointer to the list of pages used for allocating all of the
310  * zone bitmap objects and bitmap block objects.
311  *
312  * NOTE: It has to be possible to lay out the bitmap in memory
313  * using only allocations of order 0.  Additionally, the bitmap is
314  * designed to work with arbitrary number of zones (this is over the
315  * top for now, but let's avoid making unnecessary assumptions ;-).
316  *
317  * struct zone_bitmap contains a pointer to a list of bitmap block
318  * objects and a pointer to the bitmap block object that has been
319  * most recently used for setting bits.  Additionally, it contains the
320  * PFNs that correspond to the start and end of the represented zone.
321  *
322  * struct bm_block contains a pointer to the memory page in which
323  * information is stored (in the form of a block of bitmap)
324  * It also contains the pfns that correspond to the start and end of
325  * the represented memory area.
326  *
327  * The memory bitmap is organized as a radix tree to guarantee fast random
328  * access to the bits. There is one radix tree for each zone (as returned
329  * from create_mem_extents).
330  *
331  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
332  * two linked lists for the nodes of the tree, one for the inner nodes and
333  * one for the leave nodes. The linked leave nodes are used for fast linear
334  * access of the memory bitmap.
335  *
336  * The struct rtree_node represents one node of the radix tree.
337  */
338 
339 #define BM_END_OF_MAP	(~0UL)
340 
341 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
342 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
343 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
344 
345 /*
346  * struct rtree_node is a wrapper struct to link the nodes
347  * of the rtree together for easy linear iteration over
348  * bits and easy freeing
349  */
350 struct rtree_node {
351 	struct list_head list;
352 	unsigned long *data;
353 };
354 
355 /*
356  * struct mem_zone_bm_rtree represents a bitmap used for one
357  * populated memory zone.
358  */
359 struct mem_zone_bm_rtree {
360 	struct list_head list;		/* Link Zones together         */
361 	struct list_head nodes;		/* Radix Tree inner nodes      */
362 	struct list_head leaves;	/* Radix Tree leaves           */
363 	unsigned long start_pfn;	/* Zone start page frame       */
364 	unsigned long end_pfn;		/* Zone end page frame + 1     */
365 	struct rtree_node *rtree;	/* Radix Tree Root             */
366 	int levels;			/* Number of Radix Tree Levels */
367 	unsigned int blocks;		/* Number of Bitmap Blocks     */
368 };
369 
370 /* strcut bm_position is used for browsing memory bitmaps */
371 
372 struct bm_position {
373 	struct mem_zone_bm_rtree *zone;
374 	struct rtree_node *node;
375 	unsigned long node_pfn;
376 	int node_bit;
377 };
378 
379 struct memory_bitmap {
380 	struct list_head zones;
381 	struct linked_page *p_list;	/* list of pages used to store zone
382 					   bitmap objects and bitmap block
383 					   objects */
384 	struct bm_position cur;	/* most recently used bit position */
385 };
386 
387 /* Functions that operate on memory bitmaps */
388 
389 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
390 #if BITS_PER_LONG == 32
391 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
392 #else
393 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
394 #endif
395 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
396 
397 /**
398  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399  *
400  * This function is used to allocate inner nodes as well as the
401  * leave nodes of the radix tree. It also adds the node to the
402  * corresponding linked list passed in by the *list parameter.
403  */
404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
405 					   struct chain_allocator *ca,
406 					   struct list_head *list)
407 {
408 	struct rtree_node *node;
409 
410 	node = chain_alloc(ca, sizeof(struct rtree_node));
411 	if (!node)
412 		return NULL;
413 
414 	node->data = get_image_page(gfp_mask, safe_needed);
415 	if (!node->data)
416 		return NULL;
417 
418 	list_add_tail(&node->list, list);
419 
420 	return node;
421 }
422 
423 /**
424  * add_rtree_block - Add a new leave node to the radix tree.
425  *
426  * The leave nodes need to be allocated in order to keep the leaves
427  * linked list in order. This is guaranteed by the zone->blocks
428  * counter.
429  */
430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
431 			   int safe_needed, struct chain_allocator *ca)
432 {
433 	struct rtree_node *node, *block, **dst;
434 	unsigned int levels_needed, block_nr;
435 	int i;
436 
437 	block_nr = zone->blocks;
438 	levels_needed = 0;
439 
440 	/* How many levels do we need for this block nr? */
441 	while (block_nr) {
442 		levels_needed += 1;
443 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
444 	}
445 
446 	/* Make sure the rtree has enough levels */
447 	for (i = zone->levels; i < levels_needed; i++) {
448 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
449 					&zone->nodes);
450 		if (!node)
451 			return -ENOMEM;
452 
453 		node->data[0] = (unsigned long)zone->rtree;
454 		zone->rtree = node;
455 		zone->levels += 1;
456 	}
457 
458 	/* Allocate new block */
459 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
460 	if (!block)
461 		return -ENOMEM;
462 
463 	/* Now walk the rtree to insert the block */
464 	node = zone->rtree;
465 	dst = &zone->rtree;
466 	block_nr = zone->blocks;
467 	for (i = zone->levels; i > 0; i--) {
468 		int index;
469 
470 		if (!node) {
471 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
472 						&zone->nodes);
473 			if (!node)
474 				return -ENOMEM;
475 			*dst = node;
476 		}
477 
478 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
479 		index &= BM_RTREE_LEVEL_MASK;
480 		dst = (struct rtree_node **)&((*dst)->data[index]);
481 		node = *dst;
482 	}
483 
484 	zone->blocks += 1;
485 	*dst = block;
486 
487 	return 0;
488 }
489 
490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
491 			       int clear_nosave_free);
492 
493 /**
494  * create_zone_bm_rtree - Create a radix tree for one zone.
495  *
496  * Allocated the mem_zone_bm_rtree structure and initializes it.
497  * This function also allocated and builds the radix tree for the
498  * zone.
499  */
500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
501 						      int safe_needed,
502 						      struct chain_allocator *ca,
503 						      unsigned long start,
504 						      unsigned long end)
505 {
506 	struct mem_zone_bm_rtree *zone;
507 	unsigned int i, nr_blocks;
508 	unsigned long pages;
509 
510 	pages = end - start;
511 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
512 	if (!zone)
513 		return NULL;
514 
515 	INIT_LIST_HEAD(&zone->nodes);
516 	INIT_LIST_HEAD(&zone->leaves);
517 	zone->start_pfn = start;
518 	zone->end_pfn = end;
519 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
520 
521 	for (i = 0; i < nr_blocks; i++) {
522 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
523 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
524 			return NULL;
525 		}
526 	}
527 
528 	return zone;
529 }
530 
531 /**
532  * free_zone_bm_rtree - Free the memory of the radix tree.
533  *
534  * Free all node pages of the radix tree. The mem_zone_bm_rtree
535  * structure itself is not freed here nor are the rtree_node
536  * structs.
537  */
538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
539 			       int clear_nosave_free)
540 {
541 	struct rtree_node *node;
542 
543 	list_for_each_entry(node, &zone->nodes, list)
544 		free_image_page(node->data, clear_nosave_free);
545 
546 	list_for_each_entry(node, &zone->leaves, list)
547 		free_image_page(node->data, clear_nosave_free);
548 }
549 
550 static void memory_bm_position_reset(struct memory_bitmap *bm)
551 {
552 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
553 				  list);
554 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
555 				  struct rtree_node, list);
556 	bm->cur.node_pfn = 0;
557 	bm->cur.node_bit = 0;
558 }
559 
560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
561 
562 struct mem_extent {
563 	struct list_head hook;
564 	unsigned long start;
565 	unsigned long end;
566 };
567 
568 /**
569  * free_mem_extents - Free a list of memory extents.
570  * @list: List of extents to free.
571  */
572 static void free_mem_extents(struct list_head *list)
573 {
574 	struct mem_extent *ext, *aux;
575 
576 	list_for_each_entry_safe(ext, aux, list, hook) {
577 		list_del(&ext->hook);
578 		kfree(ext);
579 	}
580 }
581 
582 /**
583  * create_mem_extents - Create a list of memory extents.
584  * @list: List to put the extents into.
585  * @gfp_mask: Mask to use for memory allocations.
586  *
587  * The extents represent contiguous ranges of PFNs.
588  */
589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590 {
591 	struct zone *zone;
592 
593 	INIT_LIST_HEAD(list);
594 
595 	for_each_populated_zone(zone) {
596 		unsigned long zone_start, zone_end;
597 		struct mem_extent *ext, *cur, *aux;
598 
599 		zone_start = zone->zone_start_pfn;
600 		zone_end = zone_end_pfn(zone);
601 
602 		list_for_each_entry(ext, list, hook)
603 			if (zone_start <= ext->end)
604 				break;
605 
606 		if (&ext->hook == list || zone_end < ext->start) {
607 			/* New extent is necessary */
608 			struct mem_extent *new_ext;
609 
610 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
611 			if (!new_ext) {
612 				free_mem_extents(list);
613 				return -ENOMEM;
614 			}
615 			new_ext->start = zone_start;
616 			new_ext->end = zone_end;
617 			list_add_tail(&new_ext->hook, &ext->hook);
618 			continue;
619 		}
620 
621 		/* Merge this zone's range of PFNs with the existing one */
622 		if (zone_start < ext->start)
623 			ext->start = zone_start;
624 		if (zone_end > ext->end)
625 			ext->end = zone_end;
626 
627 		/* More merging may be possible */
628 		cur = ext;
629 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
630 			if (zone_end < cur->start)
631 				break;
632 			if (zone_end < cur->end)
633 				ext->end = cur->end;
634 			list_del(&cur->hook);
635 			kfree(cur);
636 		}
637 	}
638 
639 	return 0;
640 }
641 
642 /**
643  * memory_bm_create - Allocate memory for a memory bitmap.
644  */
645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
646 			    int safe_needed)
647 {
648 	struct chain_allocator ca;
649 	struct list_head mem_extents;
650 	struct mem_extent *ext;
651 	int error;
652 
653 	chain_init(&ca, gfp_mask, safe_needed);
654 	INIT_LIST_HEAD(&bm->zones);
655 
656 	error = create_mem_extents(&mem_extents, gfp_mask);
657 	if (error)
658 		return error;
659 
660 	list_for_each_entry(ext, &mem_extents, hook) {
661 		struct mem_zone_bm_rtree *zone;
662 
663 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
664 					    ext->start, ext->end);
665 		if (!zone) {
666 			error = -ENOMEM;
667 			goto Error;
668 		}
669 		list_add_tail(&zone->list, &bm->zones);
670 	}
671 
672 	bm->p_list = ca.chain;
673 	memory_bm_position_reset(bm);
674  Exit:
675 	free_mem_extents(&mem_extents);
676 	return error;
677 
678  Error:
679 	bm->p_list = ca.chain;
680 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
681 	goto Exit;
682 }
683 
684 /**
685  * memory_bm_free - Free memory occupied by the memory bitmap.
686  * @bm: Memory bitmap.
687  */
688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
689 {
690 	struct mem_zone_bm_rtree *zone;
691 
692 	list_for_each_entry(zone, &bm->zones, list)
693 		free_zone_bm_rtree(zone, clear_nosave_free);
694 
695 	free_list_of_pages(bm->p_list, clear_nosave_free);
696 
697 	INIT_LIST_HEAD(&bm->zones);
698 }
699 
700 /**
701  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702  *
703  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
704  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
705  *
706  * Walk the radix tree to find the page containing the bit that represents @pfn
707  * and return the position of the bit in @addr and @bit_nr.
708  */
709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
710 			      void **addr, unsigned int *bit_nr)
711 {
712 	struct mem_zone_bm_rtree *curr, *zone;
713 	struct rtree_node *node;
714 	int i, block_nr;
715 
716 	zone = bm->cur.zone;
717 
718 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
719 		goto zone_found;
720 
721 	zone = NULL;
722 
723 	/* Find the right zone */
724 	list_for_each_entry(curr, &bm->zones, list) {
725 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
726 			zone = curr;
727 			break;
728 		}
729 	}
730 
731 	if (!zone)
732 		return -EFAULT;
733 
734 zone_found:
735 	/*
736 	 * We have found the zone. Now walk the radix tree to find the leaf node
737 	 * for our PFN.
738 	 */
739 	node = bm->cur.node;
740 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
741 		goto node_found;
742 
743 	node      = zone->rtree;
744 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
745 
746 	for (i = zone->levels; i > 0; i--) {
747 		int index;
748 
749 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
750 		index &= BM_RTREE_LEVEL_MASK;
751 		BUG_ON(node->data[index] == 0);
752 		node = (struct rtree_node *)node->data[index];
753 	}
754 
755 node_found:
756 	/* Update last position */
757 	bm->cur.zone = zone;
758 	bm->cur.node = node;
759 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
760 
761 	/* Set return values */
762 	*addr = node->data;
763 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
764 
765 	return 0;
766 }
767 
768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
769 {
770 	void *addr;
771 	unsigned int bit;
772 	int error;
773 
774 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
775 	BUG_ON(error);
776 	set_bit(bit, addr);
777 }
778 
779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
780 {
781 	void *addr;
782 	unsigned int bit;
783 	int error;
784 
785 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
786 	if (!error)
787 		set_bit(bit, addr);
788 
789 	return error;
790 }
791 
792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
793 {
794 	void *addr;
795 	unsigned int bit;
796 	int error;
797 
798 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
799 	BUG_ON(error);
800 	clear_bit(bit, addr);
801 }
802 
803 static void memory_bm_clear_current(struct memory_bitmap *bm)
804 {
805 	int bit;
806 
807 	bit = max(bm->cur.node_bit - 1, 0);
808 	clear_bit(bit, bm->cur.node->data);
809 }
810 
811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
812 {
813 	void *addr;
814 	unsigned int bit;
815 	int error;
816 
817 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
818 	BUG_ON(error);
819 	return test_bit(bit, addr);
820 }
821 
822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
823 {
824 	void *addr;
825 	unsigned int bit;
826 
827 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
828 }
829 
830 /*
831  * rtree_next_node - Jump to the next leaf node.
832  *
833  * Set the position to the beginning of the next node in the
834  * memory bitmap. This is either the next node in the current
835  * zone's radix tree or the first node in the radix tree of the
836  * next zone.
837  *
838  * Return true if there is a next node, false otherwise.
839  */
840 static bool rtree_next_node(struct memory_bitmap *bm)
841 {
842 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
843 		bm->cur.node = list_entry(bm->cur.node->list.next,
844 					  struct rtree_node, list);
845 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
846 		bm->cur.node_bit  = 0;
847 		touch_softlockup_watchdog();
848 		return true;
849 	}
850 
851 	/* No more nodes, goto next zone */
852 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
853 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
854 				  struct mem_zone_bm_rtree, list);
855 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
856 					  struct rtree_node, list);
857 		bm->cur.node_pfn = 0;
858 		bm->cur.node_bit = 0;
859 		return true;
860 	}
861 
862 	/* No more zones */
863 	return false;
864 }
865 
866 /**
867  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
868  * @bm: Memory bitmap.
869  *
870  * Starting from the last returned position this function searches for the next
871  * set bit in @bm and returns the PFN represented by it.  If no more bits are
872  * set, BM_END_OF_MAP is returned.
873  *
874  * It is required to run memory_bm_position_reset() before the first call to
875  * this function for the given memory bitmap.
876  */
877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
878 {
879 	unsigned long bits, pfn, pages;
880 	int bit;
881 
882 	do {
883 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
884 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
885 		bit	  = find_next_bit(bm->cur.node->data, bits,
886 					  bm->cur.node_bit);
887 		if (bit < bits) {
888 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
889 			bm->cur.node_bit = bit + 1;
890 			return pfn;
891 		}
892 	} while (rtree_next_node(bm));
893 
894 	return BM_END_OF_MAP;
895 }
896 
897 /*
898  * This structure represents a range of page frames the contents of which
899  * should not be saved during hibernation.
900  */
901 struct nosave_region {
902 	struct list_head list;
903 	unsigned long start_pfn;
904 	unsigned long end_pfn;
905 };
906 
907 static LIST_HEAD(nosave_regions);
908 
909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
910 {
911 	struct rtree_node *node;
912 
913 	list_for_each_entry(node, &zone->nodes, list)
914 		recycle_safe_page(node->data);
915 
916 	list_for_each_entry(node, &zone->leaves, list)
917 		recycle_safe_page(node->data);
918 }
919 
920 static void memory_bm_recycle(struct memory_bitmap *bm)
921 {
922 	struct mem_zone_bm_rtree *zone;
923 	struct linked_page *p_list;
924 
925 	list_for_each_entry(zone, &bm->zones, list)
926 		recycle_zone_bm_rtree(zone);
927 
928 	p_list = bm->p_list;
929 	while (p_list) {
930 		struct linked_page *lp = p_list;
931 
932 		p_list = lp->next;
933 		recycle_safe_page(lp);
934 	}
935 }
936 
937 /**
938  * register_nosave_region - Register a region of unsaveable memory.
939  *
940  * Register a range of page frames the contents of which should not be saved
941  * during hibernation (to be used in the early initialization code).
942  */
943 void __init __register_nosave_region(unsigned long start_pfn,
944 				     unsigned long end_pfn, int use_kmalloc)
945 {
946 	struct nosave_region *region;
947 
948 	if (start_pfn >= end_pfn)
949 		return;
950 
951 	if (!list_empty(&nosave_regions)) {
952 		/* Try to extend the previous region (they should be sorted) */
953 		region = list_entry(nosave_regions.prev,
954 					struct nosave_region, list);
955 		if (region->end_pfn == start_pfn) {
956 			region->end_pfn = end_pfn;
957 			goto Report;
958 		}
959 	}
960 	if (use_kmalloc) {
961 		/* During init, this shouldn't fail */
962 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
963 		BUG_ON(!region);
964 	} else {
965 		/* This allocation cannot fail */
966 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
967 	}
968 	region->start_pfn = start_pfn;
969 	region->end_pfn = end_pfn;
970 	list_add_tail(&region->list, &nosave_regions);
971  Report:
972 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
973 		(unsigned long long) start_pfn << PAGE_SHIFT,
974 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
975 }
976 
977 /*
978  * Set bits in this map correspond to the page frames the contents of which
979  * should not be saved during the suspend.
980  */
981 static struct memory_bitmap *forbidden_pages_map;
982 
983 /* Set bits in this map correspond to free page frames. */
984 static struct memory_bitmap *free_pages_map;
985 
986 /*
987  * Each page frame allocated for creating the image is marked by setting the
988  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
989  */
990 
991 void swsusp_set_page_free(struct page *page)
992 {
993 	if (free_pages_map)
994 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
995 }
996 
997 static int swsusp_page_is_free(struct page *page)
998 {
999 	return free_pages_map ?
1000 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001 }
1002 
1003 void swsusp_unset_page_free(struct page *page)
1004 {
1005 	if (free_pages_map)
1006 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007 }
1008 
1009 static void swsusp_set_page_forbidden(struct page *page)
1010 {
1011 	if (forbidden_pages_map)
1012 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013 }
1014 
1015 int swsusp_page_is_forbidden(struct page *page)
1016 {
1017 	return forbidden_pages_map ?
1018 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019 }
1020 
1021 static void swsusp_unset_page_forbidden(struct page *page)
1022 {
1023 	if (forbidden_pages_map)
1024 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025 }
1026 
1027 /**
1028  * mark_nosave_pages - Mark pages that should not be saved.
1029  * @bm: Memory bitmap.
1030  *
1031  * Set the bits in @bm that correspond to the page frames the contents of which
1032  * should not be saved.
1033  */
1034 static void mark_nosave_pages(struct memory_bitmap *bm)
1035 {
1036 	struct nosave_region *region;
1037 
1038 	if (list_empty(&nosave_regions))
1039 		return;
1040 
1041 	list_for_each_entry(region, &nosave_regions, list) {
1042 		unsigned long pfn;
1043 
1044 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047 				- 1);
1048 
1049 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050 			if (pfn_valid(pfn)) {
1051 				/*
1052 				 * It is safe to ignore the result of
1053 				 * mem_bm_set_bit_check() here, since we won't
1054 				 * touch the PFNs for which the error is
1055 				 * returned anyway.
1056 				 */
1057 				mem_bm_set_bit_check(bm, pfn);
1058 			}
1059 	}
1060 }
1061 
1062 /**
1063  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064  *
1065  * Create bitmaps needed for marking page frames that should not be saved and
1066  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1067  * only modified if everything goes well, because we don't want the bits to be
1068  * touched before both bitmaps are set up.
1069  */
1070 int create_basic_memory_bitmaps(void)
1071 {
1072 	struct memory_bitmap *bm1, *bm2;
1073 	int error = 0;
1074 
1075 	if (forbidden_pages_map && free_pages_map)
1076 		return 0;
1077 	else
1078 		BUG_ON(forbidden_pages_map || free_pages_map);
1079 
1080 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081 	if (!bm1)
1082 		return -ENOMEM;
1083 
1084 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085 	if (error)
1086 		goto Free_first_object;
1087 
1088 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089 	if (!bm2)
1090 		goto Free_first_bitmap;
1091 
1092 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093 	if (error)
1094 		goto Free_second_object;
1095 
1096 	forbidden_pages_map = bm1;
1097 	free_pages_map = bm2;
1098 	mark_nosave_pages(forbidden_pages_map);
1099 
1100 	pr_debug("Basic memory bitmaps created\n");
1101 
1102 	return 0;
1103 
1104  Free_second_object:
1105 	kfree(bm2);
1106  Free_first_bitmap:
1107  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108  Free_first_object:
1109 	kfree(bm1);
1110 	return -ENOMEM;
1111 }
1112 
1113 /**
1114  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115  *
1116  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1117  * auxiliary pointers are necessary so that the bitmaps themselves are not
1118  * referred to while they are being freed.
1119  */
1120 void free_basic_memory_bitmaps(void)
1121 {
1122 	struct memory_bitmap *bm1, *bm2;
1123 
1124 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125 		return;
1126 
1127 	bm1 = forbidden_pages_map;
1128 	bm2 = free_pages_map;
1129 	forbidden_pages_map = NULL;
1130 	free_pages_map = NULL;
1131 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132 	kfree(bm1);
1133 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134 	kfree(bm2);
1135 
1136 	pr_debug("Basic memory bitmaps freed\n");
1137 }
1138 
1139 void clear_free_pages(void)
1140 {
1141 #ifdef CONFIG_PAGE_POISONING_ZERO
1142 	struct memory_bitmap *bm = free_pages_map;
1143 	unsigned long pfn;
1144 
1145 	if (WARN_ON(!(free_pages_map)))
1146 		return;
1147 
1148 	memory_bm_position_reset(bm);
1149 	pfn = memory_bm_next_pfn(bm);
1150 	while (pfn != BM_END_OF_MAP) {
1151 		if (pfn_valid(pfn))
1152 			clear_highpage(pfn_to_page(pfn));
1153 
1154 		pfn = memory_bm_next_pfn(bm);
1155 	}
1156 	memory_bm_position_reset(bm);
1157 	pr_info("free pages cleared after restore\n");
1158 #endif /* PAGE_POISONING_ZERO */
1159 }
1160 
1161 /**
1162  * snapshot_additional_pages - Estimate the number of extra pages needed.
1163  * @zone: Memory zone to carry out the computation for.
1164  *
1165  * Estimate the number of additional pages needed for setting up a hibernation
1166  * image data structures for @zone (usually, the returned value is greater than
1167  * the exact number).
1168  */
1169 unsigned int snapshot_additional_pages(struct zone *zone)
1170 {
1171 	unsigned int rtree, nodes;
1172 
1173 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175 			      LINKED_PAGE_DATA_SIZE);
1176 	while (nodes > 1) {
1177 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178 		rtree += nodes;
1179 	}
1180 
1181 	return 2 * rtree;
1182 }
1183 
1184 #ifdef CONFIG_HIGHMEM
1185 /**
1186  * count_free_highmem_pages - Compute the total number of free highmem pages.
1187  *
1188  * The returned number is system-wide.
1189  */
1190 static unsigned int count_free_highmem_pages(void)
1191 {
1192 	struct zone *zone;
1193 	unsigned int cnt = 0;
1194 
1195 	for_each_populated_zone(zone)
1196 		if (is_highmem(zone))
1197 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198 
1199 	return cnt;
1200 }
1201 
1202 /**
1203  * saveable_highmem_page - Check if a highmem page is saveable.
1204  *
1205  * Determine whether a highmem page should be included in a hibernation image.
1206  *
1207  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208  * and it isn't part of a free chunk of pages.
1209  */
1210 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211 {
1212 	struct page *page;
1213 
1214 	if (!pfn_valid(pfn))
1215 		return NULL;
1216 
1217 	page = pfn_to_page(pfn);
1218 	if (page_zone(page) != zone)
1219 		return NULL;
1220 
1221 	BUG_ON(!PageHighMem(page));
1222 
1223 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1224 	    PageReserved(page))
1225 		return NULL;
1226 
1227 	if (page_is_guard(page))
1228 		return NULL;
1229 
1230 	return page;
1231 }
1232 
1233 /**
1234  * count_highmem_pages - Compute the total number of saveable highmem pages.
1235  */
1236 static unsigned int count_highmem_pages(void)
1237 {
1238 	struct zone *zone;
1239 	unsigned int n = 0;
1240 
1241 	for_each_populated_zone(zone) {
1242 		unsigned long pfn, max_zone_pfn;
1243 
1244 		if (!is_highmem(zone))
1245 			continue;
1246 
1247 		mark_free_pages(zone);
1248 		max_zone_pfn = zone_end_pfn(zone);
1249 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250 			if (saveable_highmem_page(zone, pfn))
1251 				n++;
1252 	}
1253 	return n;
1254 }
1255 #else
1256 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257 {
1258 	return NULL;
1259 }
1260 #endif /* CONFIG_HIGHMEM */
1261 
1262 /**
1263  * saveable_page - Check if the given page is saveable.
1264  *
1265  * Determine whether a non-highmem page should be included in a hibernation
1266  * image.
1267  *
1268  * We should save the page if it isn't Nosave, and is not in the range
1269  * of pages statically defined as 'unsaveable', and it isn't part of
1270  * a free chunk of pages.
1271  */
1272 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273 {
1274 	struct page *page;
1275 
1276 	if (!pfn_valid(pfn))
1277 		return NULL;
1278 
1279 	page = pfn_to_page(pfn);
1280 	if (page_zone(page) != zone)
1281 		return NULL;
1282 
1283 	BUG_ON(PageHighMem(page));
1284 
1285 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286 		return NULL;
1287 
1288 	if (PageReserved(page)
1289 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290 		return NULL;
1291 
1292 	if (page_is_guard(page))
1293 		return NULL;
1294 
1295 	return page;
1296 }
1297 
1298 /**
1299  * count_data_pages - Compute the total number of saveable non-highmem pages.
1300  */
1301 static unsigned int count_data_pages(void)
1302 {
1303 	struct zone *zone;
1304 	unsigned long pfn, max_zone_pfn;
1305 	unsigned int n = 0;
1306 
1307 	for_each_populated_zone(zone) {
1308 		if (is_highmem(zone))
1309 			continue;
1310 
1311 		mark_free_pages(zone);
1312 		max_zone_pfn = zone_end_pfn(zone);
1313 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314 			if (saveable_page(zone, pfn))
1315 				n++;
1316 	}
1317 	return n;
1318 }
1319 
1320 /*
1321  * This is needed, because copy_page and memcpy are not usable for copying
1322  * task structs.
1323  */
1324 static inline void do_copy_page(long *dst, long *src)
1325 {
1326 	int n;
1327 
1328 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1329 		*dst++ = *src++;
1330 }
1331 
1332 /**
1333  * safe_copy_page - Copy a page in a safe way.
1334  *
1335  * Check if the page we are going to copy is marked as present in the kernel
1336  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337  * and in that case kernel_page_present() always returns 'true').
1338  */
1339 static void safe_copy_page(void *dst, struct page *s_page)
1340 {
1341 	if (kernel_page_present(s_page)) {
1342 		do_copy_page(dst, page_address(s_page));
1343 	} else {
1344 		kernel_map_pages(s_page, 1, 1);
1345 		do_copy_page(dst, page_address(s_page));
1346 		kernel_map_pages(s_page, 1, 0);
1347 	}
1348 }
1349 
1350 #ifdef CONFIG_HIGHMEM
1351 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352 {
1353 	return is_highmem(zone) ?
1354 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355 }
1356 
1357 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358 {
1359 	struct page *s_page, *d_page;
1360 	void *src, *dst;
1361 
1362 	s_page = pfn_to_page(src_pfn);
1363 	d_page = pfn_to_page(dst_pfn);
1364 	if (PageHighMem(s_page)) {
1365 		src = kmap_atomic(s_page);
1366 		dst = kmap_atomic(d_page);
1367 		do_copy_page(dst, src);
1368 		kunmap_atomic(dst);
1369 		kunmap_atomic(src);
1370 	} else {
1371 		if (PageHighMem(d_page)) {
1372 			/*
1373 			 * The page pointed to by src may contain some kernel
1374 			 * data modified by kmap_atomic()
1375 			 */
1376 			safe_copy_page(buffer, s_page);
1377 			dst = kmap_atomic(d_page);
1378 			copy_page(dst, buffer);
1379 			kunmap_atomic(dst);
1380 		} else {
1381 			safe_copy_page(page_address(d_page), s_page);
1382 		}
1383 	}
1384 }
1385 #else
1386 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387 
1388 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389 {
1390 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391 				pfn_to_page(src_pfn));
1392 }
1393 #endif /* CONFIG_HIGHMEM */
1394 
1395 static void copy_data_pages(struct memory_bitmap *copy_bm,
1396 			    struct memory_bitmap *orig_bm)
1397 {
1398 	struct zone *zone;
1399 	unsigned long pfn;
1400 
1401 	for_each_populated_zone(zone) {
1402 		unsigned long max_zone_pfn;
1403 
1404 		mark_free_pages(zone);
1405 		max_zone_pfn = zone_end_pfn(zone);
1406 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407 			if (page_is_saveable(zone, pfn))
1408 				memory_bm_set_bit(orig_bm, pfn);
1409 	}
1410 	memory_bm_position_reset(orig_bm);
1411 	memory_bm_position_reset(copy_bm);
1412 	for(;;) {
1413 		pfn = memory_bm_next_pfn(orig_bm);
1414 		if (unlikely(pfn == BM_END_OF_MAP))
1415 			break;
1416 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1417 	}
1418 }
1419 
1420 /* Total number of image pages */
1421 static unsigned int nr_copy_pages;
1422 /* Number of pages needed for saving the original pfns of the image pages */
1423 static unsigned int nr_meta_pages;
1424 /*
1425  * Numbers of normal and highmem page frames allocated for hibernation image
1426  * before suspending devices.
1427  */
1428 static unsigned int alloc_normal, alloc_highmem;
1429 /*
1430  * Memory bitmap used for marking saveable pages (during hibernation) or
1431  * hibernation image pages (during restore)
1432  */
1433 static struct memory_bitmap orig_bm;
1434 /*
1435  * Memory bitmap used during hibernation for marking allocated page frames that
1436  * will contain copies of saveable pages.  During restore it is initially used
1437  * for marking hibernation image pages, but then the set bits from it are
1438  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1439  * used for marking "safe" highmem pages, but it has to be reinitialized for
1440  * this purpose.
1441  */
1442 static struct memory_bitmap copy_bm;
1443 
1444 /**
1445  * swsusp_free - Free pages allocated for hibernation image.
1446  *
1447  * Image pages are alocated before snapshot creation, so they need to be
1448  * released after resume.
1449  */
1450 void swsusp_free(void)
1451 {
1452 	unsigned long fb_pfn, fr_pfn;
1453 
1454 	if (!forbidden_pages_map || !free_pages_map)
1455 		goto out;
1456 
1457 	memory_bm_position_reset(forbidden_pages_map);
1458 	memory_bm_position_reset(free_pages_map);
1459 
1460 loop:
1461 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1462 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463 
1464 	/*
1465 	 * Find the next bit set in both bitmaps. This is guaranteed to
1466 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467 	 */
1468 	do {
1469 		if (fb_pfn < fr_pfn)
1470 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471 		if (fr_pfn < fb_pfn)
1472 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1473 	} while (fb_pfn != fr_pfn);
1474 
1475 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476 		struct page *page = pfn_to_page(fr_pfn);
1477 
1478 		memory_bm_clear_current(forbidden_pages_map);
1479 		memory_bm_clear_current(free_pages_map);
1480 		hibernate_restore_unprotect_page(page_address(page));
1481 		__free_page(page);
1482 		goto loop;
1483 	}
1484 
1485 out:
1486 	nr_copy_pages = 0;
1487 	nr_meta_pages = 0;
1488 	restore_pblist = NULL;
1489 	buffer = NULL;
1490 	alloc_normal = 0;
1491 	alloc_highmem = 0;
1492 	hibernate_restore_protection_end();
1493 }
1494 
1495 /* Helper functions used for the shrinking of memory. */
1496 
1497 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1498 
1499 /**
1500  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501  * @nr_pages: Number of page frames to allocate.
1502  * @mask: GFP flags to use for the allocation.
1503  *
1504  * Return value: Number of page frames actually allocated
1505  */
1506 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507 {
1508 	unsigned long nr_alloc = 0;
1509 
1510 	while (nr_pages > 0) {
1511 		struct page *page;
1512 
1513 		page = alloc_image_page(mask);
1514 		if (!page)
1515 			break;
1516 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517 		if (PageHighMem(page))
1518 			alloc_highmem++;
1519 		else
1520 			alloc_normal++;
1521 		nr_pages--;
1522 		nr_alloc++;
1523 	}
1524 
1525 	return nr_alloc;
1526 }
1527 
1528 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529 					      unsigned long avail_normal)
1530 {
1531 	unsigned long alloc;
1532 
1533 	if (avail_normal <= alloc_normal)
1534 		return 0;
1535 
1536 	alloc = avail_normal - alloc_normal;
1537 	if (nr_pages < alloc)
1538 		alloc = nr_pages;
1539 
1540 	return preallocate_image_pages(alloc, GFP_IMAGE);
1541 }
1542 
1543 #ifdef CONFIG_HIGHMEM
1544 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545 {
1546 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547 }
1548 
1549 /**
1550  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551  */
1552 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553 {
1554 	x *= multiplier;
1555 	do_div(x, base);
1556 	return (unsigned long)x;
1557 }
1558 
1559 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560 						  unsigned long highmem,
1561 						  unsigned long total)
1562 {
1563 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1564 
1565 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566 }
1567 #else /* CONFIG_HIGHMEM */
1568 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569 {
1570 	return 0;
1571 }
1572 
1573 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574 							 unsigned long highmem,
1575 							 unsigned long total)
1576 {
1577 	return 0;
1578 }
1579 #endif /* CONFIG_HIGHMEM */
1580 
1581 /**
1582  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583  */
1584 static unsigned long free_unnecessary_pages(void)
1585 {
1586 	unsigned long save, to_free_normal, to_free_highmem, free;
1587 
1588 	save = count_data_pages();
1589 	if (alloc_normal >= save) {
1590 		to_free_normal = alloc_normal - save;
1591 		save = 0;
1592 	} else {
1593 		to_free_normal = 0;
1594 		save -= alloc_normal;
1595 	}
1596 	save += count_highmem_pages();
1597 	if (alloc_highmem >= save) {
1598 		to_free_highmem = alloc_highmem - save;
1599 	} else {
1600 		to_free_highmem = 0;
1601 		save -= alloc_highmem;
1602 		if (to_free_normal > save)
1603 			to_free_normal -= save;
1604 		else
1605 			to_free_normal = 0;
1606 	}
1607 	free = to_free_normal + to_free_highmem;
1608 
1609 	memory_bm_position_reset(&copy_bm);
1610 
1611 	while (to_free_normal > 0 || to_free_highmem > 0) {
1612 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613 		struct page *page = pfn_to_page(pfn);
1614 
1615 		if (PageHighMem(page)) {
1616 			if (!to_free_highmem)
1617 				continue;
1618 			to_free_highmem--;
1619 			alloc_highmem--;
1620 		} else {
1621 			if (!to_free_normal)
1622 				continue;
1623 			to_free_normal--;
1624 			alloc_normal--;
1625 		}
1626 		memory_bm_clear_bit(&copy_bm, pfn);
1627 		swsusp_unset_page_forbidden(page);
1628 		swsusp_unset_page_free(page);
1629 		__free_page(page);
1630 	}
1631 
1632 	return free;
1633 }
1634 
1635 /**
1636  * minimum_image_size - Estimate the minimum acceptable size of an image.
1637  * @saveable: Number of saveable pages in the system.
1638  *
1639  * We want to avoid attempting to free too much memory too hard, so estimate the
1640  * minimum acceptable size of a hibernation image to use as the lower limit for
1641  * preallocating memory.
1642  *
1643  * We assume that the minimum image size should be proportional to
1644  *
1645  * [number of saveable pages] - [number of pages that can be freed in theory]
1646  *
1647  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1649  */
1650 static unsigned long minimum_image_size(unsigned long saveable)
1651 {
1652 	unsigned long size;
1653 
1654 	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1655 		+ global_node_page_state(NR_ACTIVE_ANON)
1656 		+ global_node_page_state(NR_INACTIVE_ANON)
1657 		+ global_node_page_state(NR_ACTIVE_FILE)
1658 		+ global_node_page_state(NR_INACTIVE_FILE);
1659 
1660 	return saveable <= size ? 0 : saveable - size;
1661 }
1662 
1663 /**
1664  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665  *
1666  * To create a hibernation image it is necessary to make a copy of every page
1667  * frame in use.  We also need a number of page frames to be free during
1668  * hibernation for allocations made while saving the image and for device
1669  * drivers, in case they need to allocate memory from their hibernation
1670  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673  * total number of available page frames and allocate at least
1674  *
1675  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677  *
1678  * of them, which corresponds to the maximum size of a hibernation image.
1679  *
1680  * If image_size is set below the number following from the above formula,
1681  * the preallocation of memory is continued until the total number of saveable
1682  * pages in the system is below the requested image size or the minimum
1683  * acceptable image size returned by minimum_image_size(), whichever is greater.
1684  */
1685 int hibernate_preallocate_memory(void)
1686 {
1687 	struct zone *zone;
1688 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690 	ktime_t start, stop;
1691 	int error;
1692 
1693 	pr_info("Preallocating image memory... ");
1694 	start = ktime_get();
1695 
1696 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697 	if (error)
1698 		goto err_out;
1699 
1700 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701 	if (error)
1702 		goto err_out;
1703 
1704 	alloc_normal = 0;
1705 	alloc_highmem = 0;
1706 
1707 	/* Count the number of saveable data pages. */
1708 	save_highmem = count_highmem_pages();
1709 	saveable = count_data_pages();
1710 
1711 	/*
1712 	 * Compute the total number of page frames we can use (count) and the
1713 	 * number of pages needed for image metadata (size).
1714 	 */
1715 	count = saveable;
1716 	saveable += save_highmem;
1717 	highmem = save_highmem;
1718 	size = 0;
1719 	for_each_populated_zone(zone) {
1720 		size += snapshot_additional_pages(zone);
1721 		if (is_highmem(zone))
1722 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723 		else
1724 			count += zone_page_state(zone, NR_FREE_PAGES);
1725 	}
1726 	avail_normal = count;
1727 	count += highmem;
1728 	count -= totalreserve_pages;
1729 
1730 	/* Add number of pages required for page keys (s390 only). */
1731 	size += page_key_additional_pages(saveable);
1732 
1733 	/* Compute the maximum number of saveable pages to leave in memory. */
1734 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736 	/* Compute the desired number of image pages specified by image_size. */
1737 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738 	if (size > max_size)
1739 		size = max_size;
1740 	/*
1741 	 * If the desired number of image pages is at least as large as the
1742 	 * current number of saveable pages in memory, allocate page frames for
1743 	 * the image and we're done.
1744 	 */
1745 	if (size >= saveable) {
1746 		pages = preallocate_image_highmem(save_highmem);
1747 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748 		goto out;
1749 	}
1750 
1751 	/* Estimate the minimum size of the image. */
1752 	pages = minimum_image_size(saveable);
1753 	/*
1754 	 * To avoid excessive pressure on the normal zone, leave room in it to
1755 	 * accommodate an image of the minimum size (unless it's already too
1756 	 * small, in which case don't preallocate pages from it at all).
1757 	 */
1758 	if (avail_normal > pages)
1759 		avail_normal -= pages;
1760 	else
1761 		avail_normal = 0;
1762 	if (size < pages)
1763 		size = min_t(unsigned long, pages, max_size);
1764 
1765 	/*
1766 	 * Let the memory management subsystem know that we're going to need a
1767 	 * large number of page frames to allocate and make it free some memory.
1768 	 * NOTE: If this is not done, performance will be hurt badly in some
1769 	 * test cases.
1770 	 */
1771 	shrink_all_memory(saveable - size);
1772 
1773 	/*
1774 	 * The number of saveable pages in memory was too high, so apply some
1775 	 * pressure to decrease it.  First, make room for the largest possible
1776 	 * image and fail if that doesn't work.  Next, try to decrease the size
1777 	 * of the image as much as indicated by 'size' using allocations from
1778 	 * highmem and non-highmem zones separately.
1779 	 */
1780 	pages_highmem = preallocate_image_highmem(highmem / 2);
1781 	alloc = count - max_size;
1782 	if (alloc > pages_highmem)
1783 		alloc -= pages_highmem;
1784 	else
1785 		alloc = 0;
1786 	pages = preallocate_image_memory(alloc, avail_normal);
1787 	if (pages < alloc) {
1788 		/* We have exhausted non-highmem pages, try highmem. */
1789 		alloc -= pages;
1790 		pages += pages_highmem;
1791 		pages_highmem = preallocate_image_highmem(alloc);
1792 		if (pages_highmem < alloc)
1793 			goto err_out;
1794 		pages += pages_highmem;
1795 		/*
1796 		 * size is the desired number of saveable pages to leave in
1797 		 * memory, so try to preallocate (all memory - size) pages.
1798 		 */
1799 		alloc = (count - pages) - size;
1800 		pages += preallocate_image_highmem(alloc);
1801 	} else {
1802 		/*
1803 		 * There are approximately max_size saveable pages at this point
1804 		 * and we want to reduce this number down to size.
1805 		 */
1806 		alloc = max_size - size;
1807 		size = preallocate_highmem_fraction(alloc, highmem, count);
1808 		pages_highmem += size;
1809 		alloc -= size;
1810 		size = preallocate_image_memory(alloc, avail_normal);
1811 		pages_highmem += preallocate_image_highmem(alloc - size);
1812 		pages += pages_highmem + size;
1813 	}
1814 
1815 	/*
1816 	 * We only need as many page frames for the image as there are saveable
1817 	 * pages in memory, but we have allocated more.  Release the excessive
1818 	 * ones now.
1819 	 */
1820 	pages -= free_unnecessary_pages();
1821 
1822  out:
1823 	stop = ktime_get();
1824 	pr_cont("done (allocated %lu pages)\n", pages);
1825 	swsusp_show_speed(start, stop, pages, "Allocated");
1826 
1827 	return 0;
1828 
1829  err_out:
1830 	pr_cont("\n");
1831 	swsusp_free();
1832 	return -ENOMEM;
1833 }
1834 
1835 #ifdef CONFIG_HIGHMEM
1836 /**
1837  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838  *
1839  * Compute the number of non-highmem pages that will be necessary for creating
1840  * copies of highmem pages.
1841  */
1842 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843 {
1844 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845 
1846 	if (free_highmem >= nr_highmem)
1847 		nr_highmem = 0;
1848 	else
1849 		nr_highmem -= free_highmem;
1850 
1851 	return nr_highmem;
1852 }
1853 #else
1854 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855 #endif /* CONFIG_HIGHMEM */
1856 
1857 /**
1858  * enough_free_mem - Check if there is enough free memory for the image.
1859  */
1860 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861 {
1862 	struct zone *zone;
1863 	unsigned int free = alloc_normal;
1864 
1865 	for_each_populated_zone(zone)
1866 		if (!is_highmem(zone))
1867 			free += zone_page_state(zone, NR_FREE_PAGES);
1868 
1869 	nr_pages += count_pages_for_highmem(nr_highmem);
1870 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1871 		 nr_pages, PAGES_FOR_IO, free);
1872 
1873 	return free > nr_pages + PAGES_FOR_IO;
1874 }
1875 
1876 #ifdef CONFIG_HIGHMEM
1877 /**
1878  * get_highmem_buffer - Allocate a buffer for highmem pages.
1879  *
1880  * If there are some highmem pages in the hibernation image, we may need a
1881  * buffer to copy them and/or load their data.
1882  */
1883 static inline int get_highmem_buffer(int safe_needed)
1884 {
1885 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1886 	return buffer ? 0 : -ENOMEM;
1887 }
1888 
1889 /**
1890  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891  *
1892  * Try to allocate as many pages as needed, but if the number of free highmem
1893  * pages is less than that, allocate them all.
1894  */
1895 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896 					       unsigned int nr_highmem)
1897 {
1898 	unsigned int to_alloc = count_free_highmem_pages();
1899 
1900 	if (to_alloc > nr_highmem)
1901 		to_alloc = nr_highmem;
1902 
1903 	nr_highmem -= to_alloc;
1904 	while (to_alloc-- > 0) {
1905 		struct page *page;
1906 
1907 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908 		memory_bm_set_bit(bm, page_to_pfn(page));
1909 	}
1910 	return nr_highmem;
1911 }
1912 #else
1913 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914 
1915 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916 					       unsigned int n) { return 0; }
1917 #endif /* CONFIG_HIGHMEM */
1918 
1919 /**
1920  * swsusp_alloc - Allocate memory for hibernation image.
1921  *
1922  * We first try to allocate as many highmem pages as there are
1923  * saveable highmem pages in the system.  If that fails, we allocate
1924  * non-highmem pages for the copies of the remaining highmem ones.
1925  *
1926  * In this approach it is likely that the copies of highmem pages will
1927  * also be located in the high memory, because of the way in which
1928  * copy_data_pages() works.
1929  */
1930 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931 			unsigned int nr_pages, unsigned int nr_highmem)
1932 {
1933 	if (nr_highmem > 0) {
1934 		if (get_highmem_buffer(PG_ANY))
1935 			goto err_out;
1936 		if (nr_highmem > alloc_highmem) {
1937 			nr_highmem -= alloc_highmem;
1938 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939 		}
1940 	}
1941 	if (nr_pages > alloc_normal) {
1942 		nr_pages -= alloc_normal;
1943 		while (nr_pages-- > 0) {
1944 			struct page *page;
1945 
1946 			page = alloc_image_page(GFP_ATOMIC);
1947 			if (!page)
1948 				goto err_out;
1949 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950 		}
1951 	}
1952 
1953 	return 0;
1954 
1955  err_out:
1956 	swsusp_free();
1957 	return -ENOMEM;
1958 }
1959 
1960 asmlinkage __visible int swsusp_save(void)
1961 {
1962 	unsigned int nr_pages, nr_highmem;
1963 
1964 	pr_info("Creating hibernation image:\n");
1965 
1966 	drain_local_pages(NULL);
1967 	nr_pages = count_data_pages();
1968 	nr_highmem = count_highmem_pages();
1969 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1970 
1971 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972 		pr_err("Not enough free memory\n");
1973 		return -ENOMEM;
1974 	}
1975 
1976 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977 		pr_err("Memory allocation failed\n");
1978 		return -ENOMEM;
1979 	}
1980 
1981 	/*
1982 	 * During allocating of suspend pagedir, new cold pages may appear.
1983 	 * Kill them.
1984 	 */
1985 	drain_local_pages(NULL);
1986 	copy_data_pages(&copy_bm, &orig_bm);
1987 
1988 	/*
1989 	 * End of critical section. From now on, we can write to memory,
1990 	 * but we should not touch disk. This specially means we must _not_
1991 	 * touch swap space! Except we must write out our image of course.
1992 	 */
1993 
1994 	nr_pages += nr_highmem;
1995 	nr_copy_pages = nr_pages;
1996 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997 
1998 	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
1999 
2000 	return 0;
2001 }
2002 
2003 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004 static int init_header_complete(struct swsusp_info *info)
2005 {
2006 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007 	info->version_code = LINUX_VERSION_CODE;
2008 	return 0;
2009 }
2010 
2011 static char *check_image_kernel(struct swsusp_info *info)
2012 {
2013 	if (info->version_code != LINUX_VERSION_CODE)
2014 		return "kernel version";
2015 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016 		return "system type";
2017 	if (strcmp(info->uts.release,init_utsname()->release))
2018 		return "kernel release";
2019 	if (strcmp(info->uts.version,init_utsname()->version))
2020 		return "version";
2021 	if (strcmp(info->uts.machine,init_utsname()->machine))
2022 		return "machine";
2023 	return NULL;
2024 }
2025 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026 
2027 unsigned long snapshot_get_image_size(void)
2028 {
2029 	return nr_copy_pages + nr_meta_pages + 1;
2030 }
2031 
2032 static int init_header(struct swsusp_info *info)
2033 {
2034 	memset(info, 0, sizeof(struct swsusp_info));
2035 	info->num_physpages = get_num_physpages();
2036 	info->image_pages = nr_copy_pages;
2037 	info->pages = snapshot_get_image_size();
2038 	info->size = info->pages;
2039 	info->size <<= PAGE_SHIFT;
2040 	return init_header_complete(info);
2041 }
2042 
2043 /**
2044  * pack_pfns - Prepare PFNs for saving.
2045  * @bm: Memory bitmap.
2046  * @buf: Memory buffer to store the PFNs in.
2047  *
2048  * PFNs corresponding to set bits in @bm are stored in the area of memory
2049  * pointed to by @buf (1 page at a time).
2050  */
2051 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2052 {
2053 	int j;
2054 
2055 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056 		buf[j] = memory_bm_next_pfn(bm);
2057 		if (unlikely(buf[j] == BM_END_OF_MAP))
2058 			break;
2059 		/* Save page key for data page (s390 only). */
2060 		page_key_read(buf + j);
2061 	}
2062 }
2063 
2064 /**
2065  * snapshot_read_next - Get the address to read the next image page from.
2066  * @handle: Snapshot handle to be used for the reading.
2067  *
2068  * On the first call, @handle should point to a zeroed snapshot_handle
2069  * structure.  The structure gets populated then and a pointer to it should be
2070  * passed to this function every next time.
2071  *
2072  * On success, the function returns a positive number.  Then, the caller
2073  * is allowed to read up to the returned number of bytes from the memory
2074  * location computed by the data_of() macro.
2075  *
2076  * The function returns 0 to indicate the end of the data stream condition,
2077  * and negative numbers are returned on errors.  If that happens, the structure
2078  * pointed to by @handle is not updated and should not be used any more.
2079  */
2080 int snapshot_read_next(struct snapshot_handle *handle)
2081 {
2082 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083 		return 0;
2084 
2085 	if (!buffer) {
2086 		/* This makes the buffer be freed by swsusp_free() */
2087 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088 		if (!buffer)
2089 			return -ENOMEM;
2090 	}
2091 	if (!handle->cur) {
2092 		int error;
2093 
2094 		error = init_header((struct swsusp_info *)buffer);
2095 		if (error)
2096 			return error;
2097 		handle->buffer = buffer;
2098 		memory_bm_position_reset(&orig_bm);
2099 		memory_bm_position_reset(&copy_bm);
2100 	} else if (handle->cur <= nr_meta_pages) {
2101 		clear_page(buffer);
2102 		pack_pfns(buffer, &orig_bm);
2103 	} else {
2104 		struct page *page;
2105 
2106 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107 		if (PageHighMem(page)) {
2108 			/*
2109 			 * Highmem pages are copied to the buffer,
2110 			 * because we can't return with a kmapped
2111 			 * highmem page (we may not be called again).
2112 			 */
2113 			void *kaddr;
2114 
2115 			kaddr = kmap_atomic(page);
2116 			copy_page(buffer, kaddr);
2117 			kunmap_atomic(kaddr);
2118 			handle->buffer = buffer;
2119 		} else {
2120 			handle->buffer = page_address(page);
2121 		}
2122 	}
2123 	handle->cur++;
2124 	return PAGE_SIZE;
2125 }
2126 
2127 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128 				    struct memory_bitmap *src)
2129 {
2130 	unsigned long pfn;
2131 
2132 	memory_bm_position_reset(src);
2133 	pfn = memory_bm_next_pfn(src);
2134 	while (pfn != BM_END_OF_MAP) {
2135 		memory_bm_set_bit(dst, pfn);
2136 		pfn = memory_bm_next_pfn(src);
2137 	}
2138 }
2139 
2140 /**
2141  * mark_unsafe_pages - Mark pages that were used before hibernation.
2142  *
2143  * Mark the pages that cannot be used for storing the image during restoration,
2144  * because they conflict with the pages that had been used before hibernation.
2145  */
2146 static void mark_unsafe_pages(struct memory_bitmap *bm)
2147 {
2148 	unsigned long pfn;
2149 
2150 	/* Clear the "free"/"unsafe" bit for all PFNs */
2151 	memory_bm_position_reset(free_pages_map);
2152 	pfn = memory_bm_next_pfn(free_pages_map);
2153 	while (pfn != BM_END_OF_MAP) {
2154 		memory_bm_clear_current(free_pages_map);
2155 		pfn = memory_bm_next_pfn(free_pages_map);
2156 	}
2157 
2158 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159 	duplicate_memory_bitmap(free_pages_map, bm);
2160 
2161 	allocated_unsafe_pages = 0;
2162 }
2163 
2164 static int check_header(struct swsusp_info *info)
2165 {
2166 	char *reason;
2167 
2168 	reason = check_image_kernel(info);
2169 	if (!reason && info->num_physpages != get_num_physpages())
2170 		reason = "memory size";
2171 	if (reason) {
2172 		pr_err("Image mismatch: %s\n", reason);
2173 		return -EPERM;
2174 	}
2175 	return 0;
2176 }
2177 
2178 /**
2179  * load header - Check the image header and copy the data from it.
2180  */
2181 static int load_header(struct swsusp_info *info)
2182 {
2183 	int error;
2184 
2185 	restore_pblist = NULL;
2186 	error = check_header(info);
2187 	if (!error) {
2188 		nr_copy_pages = info->image_pages;
2189 		nr_meta_pages = info->pages - info->image_pages - 1;
2190 	}
2191 	return error;
2192 }
2193 
2194 /**
2195  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196  * @bm: Memory bitmap.
2197  * @buf: Area of memory containing the PFNs.
2198  *
2199  * For each element of the array pointed to by @buf (1 page at a time), set the
2200  * corresponding bit in @bm.
2201  */
2202 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203 {
2204 	int j;
2205 
2206 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207 		if (unlikely(buf[j] == BM_END_OF_MAP))
2208 			break;
2209 
2210 		/* Extract and buffer page key for data page (s390 only). */
2211 		page_key_memorize(buf + j);
2212 
2213 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214 			memory_bm_set_bit(bm, buf[j]);
2215 		else
2216 			return -EFAULT;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 #ifdef CONFIG_HIGHMEM
2223 /*
2224  * struct highmem_pbe is used for creating the list of highmem pages that
2225  * should be restored atomically during the resume from disk, because the page
2226  * frames they have occupied before the suspend are in use.
2227  */
2228 struct highmem_pbe {
2229 	struct page *copy_page;	/* data is here now */
2230 	struct page *orig_page;	/* data was here before the suspend */
2231 	struct highmem_pbe *next;
2232 };
2233 
2234 /*
2235  * List of highmem PBEs needed for restoring the highmem pages that were
2236  * allocated before the suspend and included in the suspend image, but have
2237  * also been allocated by the "resume" kernel, so their contents cannot be
2238  * written directly to their "original" page frames.
2239  */
2240 static struct highmem_pbe *highmem_pblist;
2241 
2242 /**
2243  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244  * @bm: Memory bitmap.
2245  *
2246  * The bits in @bm that correspond to image pages are assumed to be set.
2247  */
2248 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249 {
2250 	unsigned long pfn;
2251 	unsigned int cnt = 0;
2252 
2253 	memory_bm_position_reset(bm);
2254 	pfn = memory_bm_next_pfn(bm);
2255 	while (pfn != BM_END_OF_MAP) {
2256 		if (PageHighMem(pfn_to_page(pfn)))
2257 			cnt++;
2258 
2259 		pfn = memory_bm_next_pfn(bm);
2260 	}
2261 	return cnt;
2262 }
2263 
2264 static unsigned int safe_highmem_pages;
2265 
2266 static struct memory_bitmap *safe_highmem_bm;
2267 
2268 /**
2269  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270  * @bm: Pointer to an uninitialized memory bitmap structure.
2271  * @nr_highmem_p: Pointer to the number of highmem image pages.
2272  *
2273  * Try to allocate as many highmem pages as there are highmem image pages
2274  * (@nr_highmem_p points to the variable containing the number of highmem image
2275  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276  * hibernation image is restored entirely) have the corresponding bits set in
2277  * @bm (it must be unitialized).
2278  *
2279  * NOTE: This function should not be called if there are no highmem image pages.
2280  */
2281 static int prepare_highmem_image(struct memory_bitmap *bm,
2282 				 unsigned int *nr_highmem_p)
2283 {
2284 	unsigned int to_alloc;
2285 
2286 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287 		return -ENOMEM;
2288 
2289 	if (get_highmem_buffer(PG_SAFE))
2290 		return -ENOMEM;
2291 
2292 	to_alloc = count_free_highmem_pages();
2293 	if (to_alloc > *nr_highmem_p)
2294 		to_alloc = *nr_highmem_p;
2295 	else
2296 		*nr_highmem_p = to_alloc;
2297 
2298 	safe_highmem_pages = 0;
2299 	while (to_alloc-- > 0) {
2300 		struct page *page;
2301 
2302 		page = alloc_page(__GFP_HIGHMEM);
2303 		if (!swsusp_page_is_free(page)) {
2304 			/* The page is "safe", set its bit the bitmap */
2305 			memory_bm_set_bit(bm, page_to_pfn(page));
2306 			safe_highmem_pages++;
2307 		}
2308 		/* Mark the page as allocated */
2309 		swsusp_set_page_forbidden(page);
2310 		swsusp_set_page_free(page);
2311 	}
2312 	memory_bm_position_reset(bm);
2313 	safe_highmem_bm = bm;
2314 	return 0;
2315 }
2316 
2317 static struct page *last_highmem_page;
2318 
2319 /**
2320  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321  *
2322  * For a given highmem image page get a buffer that suspend_write_next() should
2323  * return to its caller to write to.
2324  *
2325  * If the page is to be saved to its "original" page frame or a copy of
2326  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327  * the copy of the page is to be made in normal memory, so the address of
2328  * the copy is returned.
2329  *
2330  * If @buffer is returned, the caller of suspend_write_next() will write
2331  * the page's contents to @buffer, so they will have to be copied to the
2332  * right location on the next call to suspend_write_next() and it is done
2333  * with the help of copy_last_highmem_page().  For this purpose, if
2334  * @buffer is returned, @last_highmem_page is set to the page to which
2335  * the data will have to be copied from @buffer.
2336  */
2337 static void *get_highmem_page_buffer(struct page *page,
2338 				     struct chain_allocator *ca)
2339 {
2340 	struct highmem_pbe *pbe;
2341 	void *kaddr;
2342 
2343 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344 		/*
2345 		 * We have allocated the "original" page frame and we can
2346 		 * use it directly to store the loaded page.
2347 		 */
2348 		last_highmem_page = page;
2349 		return buffer;
2350 	}
2351 	/*
2352 	 * The "original" page frame has not been allocated and we have to
2353 	 * use a "safe" page frame to store the loaded page.
2354 	 */
2355 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356 	if (!pbe) {
2357 		swsusp_free();
2358 		return ERR_PTR(-ENOMEM);
2359 	}
2360 	pbe->orig_page = page;
2361 	if (safe_highmem_pages > 0) {
2362 		struct page *tmp;
2363 
2364 		/* Copy of the page will be stored in high memory */
2365 		kaddr = buffer;
2366 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367 		safe_highmem_pages--;
2368 		last_highmem_page = tmp;
2369 		pbe->copy_page = tmp;
2370 	} else {
2371 		/* Copy of the page will be stored in normal memory */
2372 		kaddr = safe_pages_list;
2373 		safe_pages_list = safe_pages_list->next;
2374 		pbe->copy_page = virt_to_page(kaddr);
2375 	}
2376 	pbe->next = highmem_pblist;
2377 	highmem_pblist = pbe;
2378 	return kaddr;
2379 }
2380 
2381 /**
2382  * copy_last_highmem_page - Copy most the most recent highmem image page.
2383  *
2384  * Copy the contents of a highmem image from @buffer, where the caller of
2385  * snapshot_write_next() has stored them, to the right location represented by
2386  * @last_highmem_page .
2387  */
2388 static void copy_last_highmem_page(void)
2389 {
2390 	if (last_highmem_page) {
2391 		void *dst;
2392 
2393 		dst = kmap_atomic(last_highmem_page);
2394 		copy_page(dst, buffer);
2395 		kunmap_atomic(dst);
2396 		last_highmem_page = NULL;
2397 	}
2398 }
2399 
2400 static inline int last_highmem_page_copied(void)
2401 {
2402 	return !last_highmem_page;
2403 }
2404 
2405 static inline void free_highmem_data(void)
2406 {
2407 	if (safe_highmem_bm)
2408 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409 
2410 	if (buffer)
2411 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412 }
2413 #else
2414 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415 
2416 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417 					unsigned int *nr_highmem_p) { return 0; }
2418 
2419 static inline void *get_highmem_page_buffer(struct page *page,
2420 					    struct chain_allocator *ca)
2421 {
2422 	return ERR_PTR(-EINVAL);
2423 }
2424 
2425 static inline void copy_last_highmem_page(void) {}
2426 static inline int last_highmem_page_copied(void) { return 1; }
2427 static inline void free_highmem_data(void) {}
2428 #endif /* CONFIG_HIGHMEM */
2429 
2430 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431 
2432 /**
2433  * prepare_image - Make room for loading hibernation image.
2434  * @new_bm: Unitialized memory bitmap structure.
2435  * @bm: Memory bitmap with unsafe pages marked.
2436  *
2437  * Use @bm to mark the pages that will be overwritten in the process of
2438  * restoring the system memory state from the suspend image ("unsafe" pages)
2439  * and allocate memory for the image.
2440  *
2441  * The idea is to allocate a new memory bitmap first and then allocate
2442  * as many pages as needed for image data, but without specifying what those
2443  * pages will be used for just yet.  Instead, we mark them all as allocated and
2444  * create a lists of "safe" pages to be used later.  On systems with high
2445  * memory a list of "safe" highmem pages is created too.
2446  */
2447 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2448 {
2449 	unsigned int nr_pages, nr_highmem;
2450 	struct linked_page *lp;
2451 	int error;
2452 
2453 	/* If there is no highmem, the buffer will not be necessary */
2454 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455 	buffer = NULL;
2456 
2457 	nr_highmem = count_highmem_image_pages(bm);
2458 	mark_unsafe_pages(bm);
2459 
2460 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461 	if (error)
2462 		goto Free;
2463 
2464 	duplicate_memory_bitmap(new_bm, bm);
2465 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466 	if (nr_highmem > 0) {
2467 		error = prepare_highmem_image(bm, &nr_highmem);
2468 		if (error)
2469 			goto Free;
2470 	}
2471 	/*
2472 	 * Reserve some safe pages for potential later use.
2473 	 *
2474 	 * NOTE: This way we make sure there will be enough safe pages for the
2475 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477 	 *
2478 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479 	 */
2480 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482 	while (nr_pages > 0) {
2483 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484 		if (!lp) {
2485 			error = -ENOMEM;
2486 			goto Free;
2487 		}
2488 		lp->next = safe_pages_list;
2489 		safe_pages_list = lp;
2490 		nr_pages--;
2491 	}
2492 	/* Preallocate memory for the image */
2493 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494 	while (nr_pages > 0) {
2495 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496 		if (!lp) {
2497 			error = -ENOMEM;
2498 			goto Free;
2499 		}
2500 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501 			/* The page is "safe", add it to the list */
2502 			lp->next = safe_pages_list;
2503 			safe_pages_list = lp;
2504 		}
2505 		/* Mark the page as allocated */
2506 		swsusp_set_page_forbidden(virt_to_page(lp));
2507 		swsusp_set_page_free(virt_to_page(lp));
2508 		nr_pages--;
2509 	}
2510 	return 0;
2511 
2512  Free:
2513 	swsusp_free();
2514 	return error;
2515 }
2516 
2517 /**
2518  * get_buffer - Get the address to store the next image data page.
2519  *
2520  * Get the address that snapshot_write_next() should return to its caller to
2521  * write to.
2522  */
2523 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524 {
2525 	struct pbe *pbe;
2526 	struct page *page;
2527 	unsigned long pfn = memory_bm_next_pfn(bm);
2528 
2529 	if (pfn == BM_END_OF_MAP)
2530 		return ERR_PTR(-EFAULT);
2531 
2532 	page = pfn_to_page(pfn);
2533 	if (PageHighMem(page))
2534 		return get_highmem_page_buffer(page, ca);
2535 
2536 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537 		/*
2538 		 * We have allocated the "original" page frame and we can
2539 		 * use it directly to store the loaded page.
2540 		 */
2541 		return page_address(page);
2542 
2543 	/*
2544 	 * The "original" page frame has not been allocated and we have to
2545 	 * use a "safe" page frame to store the loaded page.
2546 	 */
2547 	pbe = chain_alloc(ca, sizeof(struct pbe));
2548 	if (!pbe) {
2549 		swsusp_free();
2550 		return ERR_PTR(-ENOMEM);
2551 	}
2552 	pbe->orig_address = page_address(page);
2553 	pbe->address = safe_pages_list;
2554 	safe_pages_list = safe_pages_list->next;
2555 	pbe->next = restore_pblist;
2556 	restore_pblist = pbe;
2557 	return pbe->address;
2558 }
2559 
2560 /**
2561  * snapshot_write_next - Get the address to store the next image page.
2562  * @handle: Snapshot handle structure to guide the writing.
2563  *
2564  * On the first call, @handle should point to a zeroed snapshot_handle
2565  * structure.  The structure gets populated then and a pointer to it should be
2566  * passed to this function every next time.
2567  *
2568  * On success, the function returns a positive number.  Then, the caller
2569  * is allowed to write up to the returned number of bytes to the memory
2570  * location computed by the data_of() macro.
2571  *
2572  * The function returns 0 to indicate the "end of file" condition.  Negative
2573  * numbers are returned on errors, in which cases the structure pointed to by
2574  * @handle is not updated and should not be used any more.
2575  */
2576 int snapshot_write_next(struct snapshot_handle *handle)
2577 {
2578 	static struct chain_allocator ca;
2579 	int error = 0;
2580 
2581 	/* Check if we have already loaded the entire image */
2582 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583 		return 0;
2584 
2585 	handle->sync_read = 1;
2586 
2587 	if (!handle->cur) {
2588 		if (!buffer)
2589 			/* This makes the buffer be freed by swsusp_free() */
2590 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591 
2592 		if (!buffer)
2593 			return -ENOMEM;
2594 
2595 		handle->buffer = buffer;
2596 	} else if (handle->cur == 1) {
2597 		error = load_header(buffer);
2598 		if (error)
2599 			return error;
2600 
2601 		safe_pages_list = NULL;
2602 
2603 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604 		if (error)
2605 			return error;
2606 
2607 		/* Allocate buffer for page keys. */
2608 		error = page_key_alloc(nr_copy_pages);
2609 		if (error)
2610 			return error;
2611 
2612 		hibernate_restore_protection_begin();
2613 	} else if (handle->cur <= nr_meta_pages + 1) {
2614 		error = unpack_orig_pfns(buffer, &copy_bm);
2615 		if (error)
2616 			return error;
2617 
2618 		if (handle->cur == nr_meta_pages + 1) {
2619 			error = prepare_image(&orig_bm, &copy_bm);
2620 			if (error)
2621 				return error;
2622 
2623 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624 			memory_bm_position_reset(&orig_bm);
2625 			restore_pblist = NULL;
2626 			handle->buffer = get_buffer(&orig_bm, &ca);
2627 			handle->sync_read = 0;
2628 			if (IS_ERR(handle->buffer))
2629 				return PTR_ERR(handle->buffer);
2630 		}
2631 	} else {
2632 		copy_last_highmem_page();
2633 		/* Restore page key for data page (s390 only). */
2634 		page_key_write(handle->buffer);
2635 		hibernate_restore_protect_page(handle->buffer);
2636 		handle->buffer = get_buffer(&orig_bm, &ca);
2637 		if (IS_ERR(handle->buffer))
2638 			return PTR_ERR(handle->buffer);
2639 		if (handle->buffer != buffer)
2640 			handle->sync_read = 0;
2641 	}
2642 	handle->cur++;
2643 	return PAGE_SIZE;
2644 }
2645 
2646 /**
2647  * snapshot_write_finalize - Complete the loading of a hibernation image.
2648  *
2649  * Must be called after the last call to snapshot_write_next() in case the last
2650  * page in the image happens to be a highmem page and its contents should be
2651  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652  * necessary any more.
2653  */
2654 void snapshot_write_finalize(struct snapshot_handle *handle)
2655 {
2656 	copy_last_highmem_page();
2657 	/* Restore page key for data page (s390 only). */
2658 	page_key_write(handle->buffer);
2659 	page_key_free();
2660 	hibernate_restore_protect_page(handle->buffer);
2661 	/* Do that only if we have loaded the image entirely */
2662 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663 		memory_bm_recycle(&orig_bm);
2664 		free_highmem_data();
2665 	}
2666 }
2667 
2668 int snapshot_image_loaded(struct snapshot_handle *handle)
2669 {
2670 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671 			handle->cur <= nr_meta_pages + nr_copy_pages);
2672 }
2673 
2674 #ifdef CONFIG_HIGHMEM
2675 /* Assumes that @buf is ready and points to a "safe" page */
2676 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677 				       void *buf)
2678 {
2679 	void *kaddr1, *kaddr2;
2680 
2681 	kaddr1 = kmap_atomic(p1);
2682 	kaddr2 = kmap_atomic(p2);
2683 	copy_page(buf, kaddr1);
2684 	copy_page(kaddr1, kaddr2);
2685 	copy_page(kaddr2, buf);
2686 	kunmap_atomic(kaddr2);
2687 	kunmap_atomic(kaddr1);
2688 }
2689 
2690 /**
2691  * restore_highmem - Put highmem image pages into their original locations.
2692  *
2693  * For each highmem page that was in use before hibernation and is included in
2694  * the image, and also has been allocated by the "restore" kernel, swap its
2695  * current contents with the previous (ie. "before hibernation") ones.
2696  *
2697  * If the restore eventually fails, we can call this function once again and
2698  * restore the highmem state as seen by the restore kernel.
2699  */
2700 int restore_highmem(void)
2701 {
2702 	struct highmem_pbe *pbe = highmem_pblist;
2703 	void *buf;
2704 
2705 	if (!pbe)
2706 		return 0;
2707 
2708 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709 	if (!buf)
2710 		return -ENOMEM;
2711 
2712 	while (pbe) {
2713 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714 		pbe = pbe->next;
2715 	}
2716 	free_image_page(buf, PG_UNSAFE_CLEAR);
2717 	return 0;
2718 }
2719 #endif /* CONFIG_HIGHMEM */
2720