xref: /openbmc/linux/kernel/pid_namespace.c (revision af4b8a83add95ef40716401395b44a1b579965f4)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 #define BITS_PER_PAGE		(PAGE_SIZE*8)
23 
24 struct pid_cache {
25 	int nr_ids;
26 	char name[16];
27 	struct kmem_cache *cachep;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(pid_caches_lh);
32 static DEFINE_MUTEX(pid_caches_mutex);
33 static struct kmem_cache *pid_ns_cachep;
34 
35 /*
36  * creates the kmem cache to allocate pids from.
37  * @nr_ids: the number of numerical ids this pid will have to carry
38  */
39 
40 static struct kmem_cache *create_pid_cachep(int nr_ids)
41 {
42 	struct pid_cache *pcache;
43 	struct kmem_cache *cachep;
44 
45 	mutex_lock(&pid_caches_mutex);
46 	list_for_each_entry(pcache, &pid_caches_lh, list)
47 		if (pcache->nr_ids == nr_ids)
48 			goto out;
49 
50 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
51 	if (pcache == NULL)
52 		goto err_alloc;
53 
54 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
55 	cachep = kmem_cache_create(pcache->name,
56 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
57 			0, SLAB_HWCACHE_ALIGN, NULL);
58 	if (cachep == NULL)
59 		goto err_cachep;
60 
61 	pcache->nr_ids = nr_ids;
62 	pcache->cachep = cachep;
63 	list_add(&pcache->list, &pid_caches_lh);
64 out:
65 	mutex_unlock(&pid_caches_mutex);
66 	return pcache->cachep;
67 
68 err_cachep:
69 	kfree(pcache);
70 err_alloc:
71 	mutex_unlock(&pid_caches_mutex);
72 	return NULL;
73 }
74 
75 static void proc_cleanup_work(struct work_struct *work)
76 {
77 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 	pid_ns_release_proc(ns);
79 }
80 
81 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
82 #define MAX_PID_NS_LEVEL 32
83 
84 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 	struct pid_namespace *parent_pid_ns)
86 {
87 	struct pid_namespace *ns;
88 	unsigned int level = parent_pid_ns->level + 1;
89 	int i;
90 	int err;
91 
92 	if (level > MAX_PID_NS_LEVEL) {
93 		err = -EINVAL;
94 		goto out;
95 	}
96 
97 	err = -ENOMEM;
98 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 	if (ns == NULL)
100 		goto out;
101 
102 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
103 	if (!ns->pidmap[0].page)
104 		goto out_free;
105 
106 	ns->pid_cachep = create_pid_cachep(level + 1);
107 	if (ns->pid_cachep == NULL)
108 		goto out_free_map;
109 
110 	kref_init(&ns->kref);
111 	ns->level = level;
112 	ns->parent = get_pid_ns(parent_pid_ns);
113 	ns->user_ns = get_user_ns(user_ns);
114 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
115 
116 	set_bit(0, ns->pidmap[0].page);
117 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
118 
119 	for (i = 1; i < PIDMAP_ENTRIES; i++)
120 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
121 
122 	return ns;
123 
124 out_free_map:
125 	kfree(ns->pidmap[0].page);
126 out_free:
127 	kmem_cache_free(pid_ns_cachep, ns);
128 out:
129 	return ERR_PTR(err);
130 }
131 
132 static void destroy_pid_namespace(struct pid_namespace *ns)
133 {
134 	int i;
135 
136 	for (i = 0; i < PIDMAP_ENTRIES; i++)
137 		kfree(ns->pidmap[i].page);
138 	put_user_ns(ns->user_ns);
139 	kmem_cache_free(pid_ns_cachep, ns);
140 }
141 
142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 	if (!(flags & CLONE_NEWPID))
146 		return get_pid_ns(old_ns);
147 	if (flags & (CLONE_THREAD|CLONE_PARENT))
148 		return ERR_PTR(-EINVAL);
149 	return create_pid_namespace(user_ns, old_ns);
150 }
151 
152 static void free_pid_ns(struct kref *kref)
153 {
154 	struct pid_namespace *ns;
155 
156 	ns = container_of(kref, struct pid_namespace, kref);
157 	destroy_pid_namespace(ns);
158 }
159 
160 void put_pid_ns(struct pid_namespace *ns)
161 {
162 	struct pid_namespace *parent;
163 
164 	while (ns != &init_pid_ns) {
165 		parent = ns->parent;
166 		if (!kref_put(&ns->kref, free_pid_ns))
167 			break;
168 		ns = parent;
169 	}
170 }
171 EXPORT_SYMBOL_GPL(put_pid_ns);
172 
173 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
174 {
175 	int nr;
176 	int rc;
177 	struct task_struct *task, *me = current;
178 
179 	/* Ignore SIGCHLD causing any terminated children to autoreap */
180 	spin_lock_irq(&me->sighand->siglock);
181 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
182 	spin_unlock_irq(&me->sighand->siglock);
183 
184 	/*
185 	 * The last thread in the cgroup-init thread group is terminating.
186 	 * Find remaining pid_ts in the namespace, signal and wait for them
187 	 * to exit.
188 	 *
189 	 * Note:  This signals each threads in the namespace - even those that
190 	 * 	  belong to the same thread group, To avoid this, we would have
191 	 * 	  to walk the entire tasklist looking a processes in this
192 	 * 	  namespace, but that could be unnecessarily expensive if the
193 	 * 	  pid namespace has just a few processes. Or we need to
194 	 * 	  maintain a tasklist for each pid namespace.
195 	 *
196 	 */
197 	read_lock(&tasklist_lock);
198 	nr = next_pidmap(pid_ns, 1);
199 	while (nr > 0) {
200 		rcu_read_lock();
201 
202 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
203 		if (task && !__fatal_signal_pending(task))
204 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
205 
206 		rcu_read_unlock();
207 
208 		nr = next_pidmap(pid_ns, nr);
209 	}
210 	read_unlock(&tasklist_lock);
211 
212 	/* Firstly reap the EXIT_ZOMBIE children we may have. */
213 	do {
214 		clear_thread_flag(TIF_SIGPENDING);
215 		rc = sys_wait4(-1, NULL, __WALL, NULL);
216 	} while (rc != -ECHILD);
217 
218 	/*
219 	 * sys_wait4() above can't reap the TASK_DEAD children.
220 	 * Make sure they all go away, see free_pid().
221 	 */
222 	for (;;) {
223 		set_current_state(TASK_UNINTERRUPTIBLE);
224 		if (pid_ns->nr_hashed == 1)
225 			break;
226 		schedule();
227 	}
228 	__set_current_state(TASK_RUNNING);
229 
230 	if (pid_ns->reboot)
231 		current->signal->group_exit_code = pid_ns->reboot;
232 
233 	acct_exit_ns(pid_ns);
234 	return;
235 }
236 
237 #ifdef CONFIG_CHECKPOINT_RESTORE
238 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
239 		void __user *buffer, size_t *lenp, loff_t *ppos)
240 {
241 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
242 	struct ctl_table tmp = *table;
243 
244 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
245 		return -EPERM;
246 
247 	/*
248 	 * Writing directly to ns' last_pid field is OK, since this field
249 	 * is volatile in a living namespace anyway and a code writing to
250 	 * it should synchronize its usage with external means.
251 	 */
252 
253 	tmp.data = &pid_ns->last_pid;
254 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
255 }
256 
257 extern int pid_max;
258 static int zero = 0;
259 static struct ctl_table pid_ns_ctl_table[] = {
260 	{
261 		.procname = "ns_last_pid",
262 		.maxlen = sizeof(int),
263 		.mode = 0666, /* permissions are checked in the handler */
264 		.proc_handler = pid_ns_ctl_handler,
265 		.extra1 = &zero,
266 		.extra2 = &pid_max,
267 	},
268 	{ }
269 };
270 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
271 #endif	/* CONFIG_CHECKPOINT_RESTORE */
272 
273 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
274 {
275 	if (pid_ns == &init_pid_ns)
276 		return 0;
277 
278 	switch (cmd) {
279 	case LINUX_REBOOT_CMD_RESTART2:
280 	case LINUX_REBOOT_CMD_RESTART:
281 		pid_ns->reboot = SIGHUP;
282 		break;
283 
284 	case LINUX_REBOOT_CMD_POWER_OFF:
285 	case LINUX_REBOOT_CMD_HALT:
286 		pid_ns->reboot = SIGINT;
287 		break;
288 	default:
289 		return -EINVAL;
290 	}
291 
292 	read_lock(&tasklist_lock);
293 	force_sig(SIGKILL, pid_ns->child_reaper);
294 	read_unlock(&tasklist_lock);
295 
296 	do_exit(0);
297 
298 	/* Not reached */
299 	return 0;
300 }
301 
302 static __init int pid_namespaces_init(void)
303 {
304 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
305 
306 #ifdef CONFIG_CHECKPOINT_RESTORE
307 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
308 #endif
309 	return 0;
310 }
311 
312 __initcall(pid_namespaces_init);
313