xref: /openbmc/linux/kernel/pid_namespace.c (revision 225778d68d98e7cfe2579f8d8b2d7b76f8541b8b)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 #define BITS_PER_PAGE		(PAGE_SIZE*8)
23 
24 struct pid_cache {
25 	int nr_ids;
26 	char name[16];
27 	struct kmem_cache *cachep;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(pid_caches_lh);
32 static DEFINE_MUTEX(pid_caches_mutex);
33 static struct kmem_cache *pid_ns_cachep;
34 
35 /*
36  * creates the kmem cache to allocate pids from.
37  * @nr_ids: the number of numerical ids this pid will have to carry
38  */
39 
40 static struct kmem_cache *create_pid_cachep(int nr_ids)
41 {
42 	struct pid_cache *pcache;
43 	struct kmem_cache *cachep;
44 
45 	mutex_lock(&pid_caches_mutex);
46 	list_for_each_entry(pcache, &pid_caches_lh, list)
47 		if (pcache->nr_ids == nr_ids)
48 			goto out;
49 
50 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
51 	if (pcache == NULL)
52 		goto err_alloc;
53 
54 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
55 	cachep = kmem_cache_create(pcache->name,
56 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
57 			0, SLAB_HWCACHE_ALIGN, NULL);
58 	if (cachep == NULL)
59 		goto err_cachep;
60 
61 	pcache->nr_ids = nr_ids;
62 	pcache->cachep = cachep;
63 	list_add(&pcache->list, &pid_caches_lh);
64 out:
65 	mutex_unlock(&pid_caches_mutex);
66 	return pcache->cachep;
67 
68 err_cachep:
69 	kfree(pcache);
70 err_alloc:
71 	mutex_unlock(&pid_caches_mutex);
72 	return NULL;
73 }
74 
75 static void proc_cleanup_work(struct work_struct *work)
76 {
77 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 	pid_ns_release_proc(ns);
79 }
80 
81 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
82 #define MAX_PID_NS_LEVEL 32
83 
84 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 	struct pid_namespace *parent_pid_ns)
86 {
87 	struct pid_namespace *ns;
88 	unsigned int level = parent_pid_ns->level + 1;
89 	int i;
90 	int err;
91 
92 	if (level > MAX_PID_NS_LEVEL) {
93 		err = -EINVAL;
94 		goto out;
95 	}
96 
97 	err = -ENOMEM;
98 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 	if (ns == NULL)
100 		goto out;
101 
102 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
103 	if (!ns->pidmap[0].page)
104 		goto out_free;
105 
106 	ns->pid_cachep = create_pid_cachep(level + 1);
107 	if (ns->pid_cachep == NULL)
108 		goto out_free_map;
109 
110 	kref_init(&ns->kref);
111 	ns->level = level;
112 	ns->parent = get_pid_ns(parent_pid_ns);
113 	ns->user_ns = get_user_ns(user_ns);
114 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
115 
116 	set_bit(0, ns->pidmap[0].page);
117 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
118 
119 	for (i = 1; i < PIDMAP_ENTRIES; i++)
120 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
121 
122 	return ns;
123 
124 out_free_map:
125 	kfree(ns->pidmap[0].page);
126 out_free:
127 	kmem_cache_free(pid_ns_cachep, ns);
128 out:
129 	return ERR_PTR(err);
130 }
131 
132 static void destroy_pid_namespace(struct pid_namespace *ns)
133 {
134 	int i;
135 
136 	for (i = 0; i < PIDMAP_ENTRIES; i++)
137 		kfree(ns->pidmap[i].page);
138 	put_user_ns(ns->user_ns);
139 	kmem_cache_free(pid_ns_cachep, ns);
140 }
141 
142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 	if (!(flags & CLONE_NEWPID))
146 		return get_pid_ns(old_ns);
147 	if (flags & (CLONE_THREAD|CLONE_PARENT))
148 		return ERR_PTR(-EINVAL);
149 	if (task_active_pid_ns(current) != old_ns)
150 		return ERR_PTR(-EINVAL);
151 	return create_pid_namespace(user_ns, old_ns);
152 }
153 
154 static void free_pid_ns(struct kref *kref)
155 {
156 	struct pid_namespace *ns;
157 
158 	ns = container_of(kref, struct pid_namespace, kref);
159 	destroy_pid_namespace(ns);
160 }
161 
162 void put_pid_ns(struct pid_namespace *ns)
163 {
164 	struct pid_namespace *parent;
165 
166 	while (ns != &init_pid_ns) {
167 		parent = ns->parent;
168 		if (!kref_put(&ns->kref, free_pid_ns))
169 			break;
170 		ns = parent;
171 	}
172 }
173 EXPORT_SYMBOL_GPL(put_pid_ns);
174 
175 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
176 {
177 	int nr;
178 	int rc;
179 	struct task_struct *task, *me = current;
180 
181 	/* Ignore SIGCHLD causing any terminated children to autoreap */
182 	spin_lock_irq(&me->sighand->siglock);
183 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
184 	spin_unlock_irq(&me->sighand->siglock);
185 
186 	/*
187 	 * The last thread in the cgroup-init thread group is terminating.
188 	 * Find remaining pid_ts in the namespace, signal and wait for them
189 	 * to exit.
190 	 *
191 	 * Note:  This signals each threads in the namespace - even those that
192 	 * 	  belong to the same thread group, To avoid this, we would have
193 	 * 	  to walk the entire tasklist looking a processes in this
194 	 * 	  namespace, but that could be unnecessarily expensive if the
195 	 * 	  pid namespace has just a few processes. Or we need to
196 	 * 	  maintain a tasklist for each pid namespace.
197 	 *
198 	 */
199 	read_lock(&tasklist_lock);
200 	nr = next_pidmap(pid_ns, 1);
201 	while (nr > 0) {
202 		rcu_read_lock();
203 
204 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
205 		if (task && !__fatal_signal_pending(task))
206 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
207 
208 		rcu_read_unlock();
209 
210 		nr = next_pidmap(pid_ns, nr);
211 	}
212 	read_unlock(&tasklist_lock);
213 
214 	/* Firstly reap the EXIT_ZOMBIE children we may have. */
215 	do {
216 		clear_thread_flag(TIF_SIGPENDING);
217 		rc = sys_wait4(-1, NULL, __WALL, NULL);
218 	} while (rc != -ECHILD);
219 
220 	/*
221 	 * sys_wait4() above can't reap the TASK_DEAD children.
222 	 * Make sure they all go away, see free_pid().
223 	 */
224 	for (;;) {
225 		set_current_state(TASK_UNINTERRUPTIBLE);
226 		if (pid_ns->nr_hashed == 1)
227 			break;
228 		schedule();
229 	}
230 	__set_current_state(TASK_RUNNING);
231 
232 	if (pid_ns->reboot)
233 		current->signal->group_exit_code = pid_ns->reboot;
234 
235 	acct_exit_ns(pid_ns);
236 	return;
237 }
238 
239 #ifdef CONFIG_CHECKPOINT_RESTORE
240 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
241 		void __user *buffer, size_t *lenp, loff_t *ppos)
242 {
243 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
244 	struct ctl_table tmp = *table;
245 
246 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
247 		return -EPERM;
248 
249 	/*
250 	 * Writing directly to ns' last_pid field is OK, since this field
251 	 * is volatile in a living namespace anyway and a code writing to
252 	 * it should synchronize its usage with external means.
253 	 */
254 
255 	tmp.data = &pid_ns->last_pid;
256 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
257 }
258 
259 extern int pid_max;
260 static int zero = 0;
261 static struct ctl_table pid_ns_ctl_table[] = {
262 	{
263 		.procname = "ns_last_pid",
264 		.maxlen = sizeof(int),
265 		.mode = 0666, /* permissions are checked in the handler */
266 		.proc_handler = pid_ns_ctl_handler,
267 		.extra1 = &zero,
268 		.extra2 = &pid_max,
269 	},
270 	{ }
271 };
272 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
273 #endif	/* CONFIG_CHECKPOINT_RESTORE */
274 
275 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
276 {
277 	if (pid_ns == &init_pid_ns)
278 		return 0;
279 
280 	switch (cmd) {
281 	case LINUX_REBOOT_CMD_RESTART2:
282 	case LINUX_REBOOT_CMD_RESTART:
283 		pid_ns->reboot = SIGHUP;
284 		break;
285 
286 	case LINUX_REBOOT_CMD_POWER_OFF:
287 	case LINUX_REBOOT_CMD_HALT:
288 		pid_ns->reboot = SIGINT;
289 		break;
290 	default:
291 		return -EINVAL;
292 	}
293 
294 	read_lock(&tasklist_lock);
295 	force_sig(SIGKILL, pid_ns->child_reaper);
296 	read_unlock(&tasklist_lock);
297 
298 	do_exit(0);
299 
300 	/* Not reached */
301 	return 0;
302 }
303 
304 static __init int pid_namespaces_init(void)
305 {
306 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
307 
308 #ifdef CONFIG_CHECKPOINT_RESTORE
309 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
310 #endif
311 	return 0;
312 }
313 
314 __initcall(pid_namespaces_init);
315