1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/bootmem.h> 34 #include <linux/hash.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/init_task.h> 37 #include <linux/syscalls.h> 38 39 #define pid_hashfn(nr, ns) \ 40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 41 static struct hlist_head *pid_hash; 42 static int pidhash_shift; 43 struct pid init_struct_pid = INIT_STRUCT_PID; 44 45 int pid_max = PID_MAX_DEFAULT; 46 47 #define RESERVED_PIDS 300 48 49 int pid_max_min = RESERVED_PIDS + 1; 50 int pid_max_max = PID_MAX_LIMIT; 51 52 #define BITS_PER_PAGE (PAGE_SIZE*8) 53 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .level = 0, 79 .child_reaper = &init_task, 80 }; 81 EXPORT_SYMBOL_GPL(init_pid_ns); 82 83 int is_container_init(struct task_struct *tsk) 84 { 85 int ret = 0; 86 struct pid *pid; 87 88 rcu_read_lock(); 89 pid = task_pid(tsk); 90 if (pid != NULL && pid->numbers[pid->level].nr == 1) 91 ret = 1; 92 rcu_read_unlock(); 93 94 return ret; 95 } 96 EXPORT_SYMBOL(is_container_init); 97 98 /* 99 * Note: disable interrupts while the pidmap_lock is held as an 100 * interrupt might come in and do read_lock(&tasklist_lock). 101 * 102 * If we don't disable interrupts there is a nasty deadlock between 103 * detach_pid()->free_pid() and another cpu that does 104 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 105 * read_lock(&tasklist_lock); 106 * 107 * After we clean up the tasklist_lock and know there are no 108 * irq handlers that take it we can leave the interrupts enabled. 109 * For now it is easier to be safe than to prove it can't happen. 110 */ 111 112 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 113 114 static void free_pidmap(struct upid *upid) 115 { 116 int nr = upid->nr; 117 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 118 int offset = nr & BITS_PER_PAGE_MASK; 119 120 clear_bit(offset, map->page); 121 atomic_inc(&map->nr_free); 122 } 123 124 static int alloc_pidmap(struct pid_namespace *pid_ns) 125 { 126 int i, offset, max_scan, pid, last = pid_ns->last_pid; 127 struct pidmap *map; 128 129 pid = last + 1; 130 if (pid >= pid_max) 131 pid = RESERVED_PIDS; 132 offset = pid & BITS_PER_PAGE_MASK; 133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; 135 for (i = 0; i <= max_scan; ++i) { 136 if (unlikely(!map->page)) { 137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 138 /* 139 * Free the page if someone raced with us 140 * installing it: 141 */ 142 spin_lock_irq(&pidmap_lock); 143 if (map->page) 144 kfree(page); 145 else 146 map->page = page; 147 spin_unlock_irq(&pidmap_lock); 148 if (unlikely(!map->page)) 149 break; 150 } 151 if (likely(atomic_read(&map->nr_free))) { 152 do { 153 if (!test_and_set_bit(offset, map->page)) { 154 atomic_dec(&map->nr_free); 155 pid_ns->last_pid = pid; 156 return pid; 157 } 158 offset = find_next_offset(map, offset); 159 pid = mk_pid(pid_ns, map, offset); 160 /* 161 * find_next_offset() found a bit, the pid from it 162 * is in-bounds, and if we fell back to the last 163 * bitmap block and the final block was the same 164 * as the starting point, pid is before last_pid. 165 */ 166 } while (offset < BITS_PER_PAGE && pid < pid_max && 167 (i != max_scan || pid < last || 168 !((last+1) & BITS_PER_PAGE_MASK))); 169 } 170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 171 ++map; 172 offset = 0; 173 } else { 174 map = &pid_ns->pidmap[0]; 175 offset = RESERVED_PIDS; 176 if (unlikely(last == offset)) 177 break; 178 } 179 pid = mk_pid(pid_ns, map, offset); 180 } 181 return -1; 182 } 183 184 int next_pidmap(struct pid_namespace *pid_ns, int last) 185 { 186 int offset; 187 struct pidmap *map, *end; 188 189 offset = (last + 1) & BITS_PER_PAGE_MASK; 190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 191 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 192 for (; map < end; map++, offset = 0) { 193 if (unlikely(!map->page)) 194 continue; 195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 196 if (offset < BITS_PER_PAGE) 197 return mk_pid(pid_ns, map, offset); 198 } 199 return -1; 200 } 201 202 void put_pid(struct pid *pid) 203 { 204 struct pid_namespace *ns; 205 206 if (!pid) 207 return; 208 209 ns = pid->numbers[pid->level].ns; 210 if ((atomic_read(&pid->count) == 1) || 211 atomic_dec_and_test(&pid->count)) { 212 kmem_cache_free(ns->pid_cachep, pid); 213 put_pid_ns(ns); 214 } 215 } 216 EXPORT_SYMBOL_GPL(put_pid); 217 218 static void delayed_put_pid(struct rcu_head *rhp) 219 { 220 struct pid *pid = container_of(rhp, struct pid, rcu); 221 put_pid(pid); 222 } 223 224 void free_pid(struct pid *pid) 225 { 226 /* We can be called with write_lock_irq(&tasklist_lock) held */ 227 int i; 228 unsigned long flags; 229 230 spin_lock_irqsave(&pidmap_lock, flags); 231 for (i = 0; i <= pid->level; i++) 232 hlist_del_rcu(&pid->numbers[i].pid_chain); 233 spin_unlock_irqrestore(&pidmap_lock, flags); 234 235 for (i = 0; i <= pid->level; i++) 236 free_pidmap(pid->numbers + i); 237 238 call_rcu(&pid->rcu, delayed_put_pid); 239 } 240 241 struct pid *alloc_pid(struct pid_namespace *ns) 242 { 243 struct pid *pid; 244 enum pid_type type; 245 int i, nr; 246 struct pid_namespace *tmp; 247 struct upid *upid; 248 249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 250 if (!pid) 251 goto out; 252 253 tmp = ns; 254 for (i = ns->level; i >= 0; i--) { 255 nr = alloc_pidmap(tmp); 256 if (nr < 0) 257 goto out_free; 258 259 pid->numbers[i].nr = nr; 260 pid->numbers[i].ns = tmp; 261 tmp = tmp->parent; 262 } 263 264 get_pid_ns(ns); 265 pid->level = ns->level; 266 atomic_set(&pid->count, 1); 267 for (type = 0; type < PIDTYPE_MAX; ++type) 268 INIT_HLIST_HEAD(&pid->tasks[type]); 269 270 spin_lock_irq(&pidmap_lock); 271 for (i = ns->level; i >= 0; i--) { 272 upid = &pid->numbers[i]; 273 hlist_add_head_rcu(&upid->pid_chain, 274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 275 } 276 spin_unlock_irq(&pidmap_lock); 277 278 out: 279 return pid; 280 281 out_free: 282 while (++i <= ns->level) 283 free_pidmap(pid->numbers + i); 284 285 kmem_cache_free(ns->pid_cachep, pid); 286 pid = NULL; 287 goto out; 288 } 289 290 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 291 { 292 struct hlist_node *elem; 293 struct upid *pnr; 294 295 hlist_for_each_entry_rcu(pnr, elem, 296 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 297 if (pnr->nr == nr && pnr->ns == ns) 298 return container_of(pnr, struct pid, 299 numbers[ns->level]); 300 301 return NULL; 302 } 303 EXPORT_SYMBOL_GPL(find_pid_ns); 304 305 struct pid *find_vpid(int nr) 306 { 307 return find_pid_ns(nr, current->nsproxy->pid_ns); 308 } 309 EXPORT_SYMBOL_GPL(find_vpid); 310 311 struct pid *find_pid(int nr) 312 { 313 return find_pid_ns(nr, &init_pid_ns); 314 } 315 EXPORT_SYMBOL_GPL(find_pid); 316 317 /* 318 * attach_pid() must be called with the tasklist_lock write-held. 319 */ 320 void attach_pid(struct task_struct *task, enum pid_type type, 321 struct pid *pid) 322 { 323 struct pid_link *link; 324 325 link = &task->pids[type]; 326 link->pid = pid; 327 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 328 } 329 330 static void __change_pid(struct task_struct *task, enum pid_type type, 331 struct pid *new) 332 { 333 struct pid_link *link; 334 struct pid *pid; 335 int tmp; 336 337 link = &task->pids[type]; 338 pid = link->pid; 339 340 hlist_del_rcu(&link->node); 341 link->pid = new; 342 343 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 344 if (!hlist_empty(&pid->tasks[tmp])) 345 return; 346 347 free_pid(pid); 348 } 349 350 void detach_pid(struct task_struct *task, enum pid_type type) 351 { 352 __change_pid(task, type, NULL); 353 } 354 355 void change_pid(struct task_struct *task, enum pid_type type, 356 struct pid *pid) 357 { 358 __change_pid(task, type, pid); 359 attach_pid(task, type, pid); 360 } 361 362 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 363 void transfer_pid(struct task_struct *old, struct task_struct *new, 364 enum pid_type type) 365 { 366 new->pids[type].pid = old->pids[type].pid; 367 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 368 } 369 370 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 371 { 372 struct task_struct *result = NULL; 373 if (pid) { 374 struct hlist_node *first; 375 first = rcu_dereference(pid->tasks[type].first); 376 if (first) 377 result = hlist_entry(first, struct task_struct, pids[(type)].node); 378 } 379 return result; 380 } 381 EXPORT_SYMBOL(pid_task); 382 383 /* 384 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 385 */ 386 struct task_struct *find_task_by_pid_type_ns(int type, int nr, 387 struct pid_namespace *ns) 388 { 389 return pid_task(find_pid_ns(nr, ns), type); 390 } 391 392 EXPORT_SYMBOL(find_task_by_pid_type_ns); 393 394 struct task_struct *find_task_by_vpid(pid_t vnr) 395 { 396 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr, 397 current->nsproxy->pid_ns); 398 } 399 EXPORT_SYMBOL(find_task_by_vpid); 400 401 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 402 { 403 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns); 404 } 405 EXPORT_SYMBOL(find_task_by_pid_ns); 406 407 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 408 { 409 struct pid *pid; 410 rcu_read_lock(); 411 pid = get_pid(task->pids[type].pid); 412 rcu_read_unlock(); 413 return pid; 414 } 415 416 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 417 { 418 struct task_struct *result; 419 rcu_read_lock(); 420 result = pid_task(pid, type); 421 if (result) 422 get_task_struct(result); 423 rcu_read_unlock(); 424 return result; 425 } 426 427 struct pid *find_get_pid(pid_t nr) 428 { 429 struct pid *pid; 430 431 rcu_read_lock(); 432 pid = get_pid(find_vpid(nr)); 433 rcu_read_unlock(); 434 435 return pid; 436 } 437 438 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 439 { 440 struct upid *upid; 441 pid_t nr = 0; 442 443 if (pid && ns->level <= pid->level) { 444 upid = &pid->numbers[ns->level]; 445 if (upid->ns == ns) 446 nr = upid->nr; 447 } 448 return nr; 449 } 450 451 pid_t pid_vnr(struct pid *pid) 452 { 453 return pid_nr_ns(pid, current->nsproxy->pid_ns); 454 } 455 EXPORT_SYMBOL_GPL(pid_vnr); 456 457 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 458 { 459 return pid_nr_ns(task_pid(tsk), ns); 460 } 461 EXPORT_SYMBOL(task_pid_nr_ns); 462 463 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 464 { 465 return pid_nr_ns(task_tgid(tsk), ns); 466 } 467 EXPORT_SYMBOL(task_tgid_nr_ns); 468 469 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 470 { 471 return pid_nr_ns(task_pgrp(tsk), ns); 472 } 473 EXPORT_SYMBOL(task_pgrp_nr_ns); 474 475 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 476 { 477 return pid_nr_ns(task_session(tsk), ns); 478 } 479 EXPORT_SYMBOL(task_session_nr_ns); 480 481 /* 482 * Used by proc to find the first pid that is greater then or equal to nr. 483 * 484 * If there is a pid at nr this function is exactly the same as find_pid. 485 */ 486 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 487 { 488 struct pid *pid; 489 490 do { 491 pid = find_pid_ns(nr, ns); 492 if (pid) 493 break; 494 nr = next_pidmap(ns, nr); 495 } while (nr > 0); 496 497 return pid; 498 } 499 EXPORT_SYMBOL_GPL(find_get_pid); 500 501 /* 502 * The pid hash table is scaled according to the amount of memory in the 503 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 504 * more. 505 */ 506 void __init pidhash_init(void) 507 { 508 int i, pidhash_size; 509 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); 510 511 pidhash_shift = max(4, fls(megabytes * 4)); 512 pidhash_shift = min(12, pidhash_shift); 513 pidhash_size = 1 << pidhash_shift; 514 515 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", 516 pidhash_size, pidhash_shift, 517 pidhash_size * sizeof(struct hlist_head)); 518 519 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); 520 if (!pid_hash) 521 panic("Could not alloc pidhash!\n"); 522 for (i = 0; i < pidhash_size; i++) 523 INIT_HLIST_HEAD(&pid_hash[i]); 524 } 525 526 void __init pidmap_init(void) 527 { 528 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 529 /* Reserve PID 0. We never call free_pidmap(0) */ 530 set_bit(0, init_pid_ns.pidmap[0].page); 531 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 532 533 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 534 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 535 } 536