xref: /openbmc/linux/kernel/pid.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 William Irwin, IBM
5  * (C) 2004 William Irwin, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37 #include <linux/syscalls.h>
38 
39 #define pid_hashfn(nr, ns)	\
40 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41 static struct hlist_head *pid_hash;
42 static int pidhash_shift;
43 struct pid init_struct_pid = INIT_STRUCT_PID;
44 static struct kmem_cache *pid_ns_cachep;
45 
46 int pid_max = PID_MAX_DEFAULT;
47 
48 #define RESERVED_PIDS		300
49 
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52 
53 #define BITS_PER_PAGE		(PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
55 
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 		struct pidmap *map, int off)
58 {
59 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61 
62 #define find_next_offset(map, off)					\
63 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = {
73 		.refcount       = ATOMIC_INIT(2),
74 	},
75 	.pidmap = {
76 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 	},
78 	.last_pid = 0,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83 
84 int is_container_init(struct task_struct *tsk)
85 {
86 	int ret = 0;
87 	struct pid *pid;
88 
89 	rcu_read_lock();
90 	pid = task_pid(tsk);
91 	if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 		ret = 1;
93 	rcu_read_unlock();
94 
95 	return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98 
99 /*
100  * Note: disable interrupts while the pidmap_lock is held as an
101  * interrupt might come in and do read_lock(&tasklist_lock).
102  *
103  * If we don't disable interrupts there is a nasty deadlock between
104  * detach_pid()->free_pid() and another cpu that does
105  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106  * read_lock(&tasklist_lock);
107  *
108  * After we clean up the tasklist_lock and know there are no
109  * irq handlers that take it we can leave the interrupts enabled.
110  * For now it is easier to be safe than to prove it can't happen.
111  */
112 
113 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114 
115 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
116 {
117 	struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
118 	int offset = pid & BITS_PER_PAGE_MASK;
119 
120 	clear_bit(offset, map->page);
121 	atomic_inc(&map->nr_free);
122 }
123 
124 static int alloc_pidmap(struct pid_namespace *pid_ns)
125 {
126 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
127 	struct pidmap *map;
128 
129 	pid = last + 1;
130 	if (pid >= pid_max)
131 		pid = RESERVED_PIDS;
132 	offset = pid & BITS_PER_PAGE_MASK;
133 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
134 	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135 	for (i = 0; i <= max_scan; ++i) {
136 		if (unlikely(!map->page)) {
137 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
138 			/*
139 			 * Free the page if someone raced with us
140 			 * installing it:
141 			 */
142 			spin_lock_irq(&pidmap_lock);
143 			if (map->page)
144 				kfree(page);
145 			else
146 				map->page = page;
147 			spin_unlock_irq(&pidmap_lock);
148 			if (unlikely(!map->page))
149 				break;
150 		}
151 		if (likely(atomic_read(&map->nr_free))) {
152 			do {
153 				if (!test_and_set_bit(offset, map->page)) {
154 					atomic_dec(&map->nr_free);
155 					pid_ns->last_pid = pid;
156 					return pid;
157 				}
158 				offset = find_next_offset(map, offset);
159 				pid = mk_pid(pid_ns, map, offset);
160 			/*
161 			 * find_next_offset() found a bit, the pid from it
162 			 * is in-bounds, and if we fell back to the last
163 			 * bitmap block and the final block was the same
164 			 * as the starting point, pid is before last_pid.
165 			 */
166 			} while (offset < BITS_PER_PAGE && pid < pid_max &&
167 					(i != max_scan || pid < last ||
168 					    !((last+1) & BITS_PER_PAGE_MASK)));
169 		}
170 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
171 			++map;
172 			offset = 0;
173 		} else {
174 			map = &pid_ns->pidmap[0];
175 			offset = RESERVED_PIDS;
176 			if (unlikely(last == offset))
177 				break;
178 		}
179 		pid = mk_pid(pid_ns, map, offset);
180 	}
181 	return -1;
182 }
183 
184 static int next_pidmap(struct pid_namespace *pid_ns, int last)
185 {
186 	int offset;
187 	struct pidmap *map, *end;
188 
189 	offset = (last + 1) & BITS_PER_PAGE_MASK;
190 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
192 	for (; map < end; map++, offset = 0) {
193 		if (unlikely(!map->page))
194 			continue;
195 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196 		if (offset < BITS_PER_PAGE)
197 			return mk_pid(pid_ns, map, offset);
198 	}
199 	return -1;
200 }
201 
202 fastcall void put_pid(struct pid *pid)
203 {
204 	struct pid_namespace *ns;
205 
206 	if (!pid)
207 		return;
208 
209 	ns = pid->numbers[pid->level].ns;
210 	if ((atomic_read(&pid->count) == 1) ||
211 	     atomic_dec_and_test(&pid->count)) {
212 		kmem_cache_free(ns->pid_cachep, pid);
213 		put_pid_ns(ns);
214 	}
215 }
216 EXPORT_SYMBOL_GPL(put_pid);
217 
218 static void delayed_put_pid(struct rcu_head *rhp)
219 {
220 	struct pid *pid = container_of(rhp, struct pid, rcu);
221 	put_pid(pid);
222 }
223 
224 fastcall void free_pid(struct pid *pid)
225 {
226 	/* We can be called with write_lock_irq(&tasklist_lock) held */
227 	int i;
228 	unsigned long flags;
229 
230 	spin_lock_irqsave(&pidmap_lock, flags);
231 	for (i = 0; i <= pid->level; i++)
232 		hlist_del_rcu(&pid->numbers[i].pid_chain);
233 	spin_unlock_irqrestore(&pidmap_lock, flags);
234 
235 	for (i = 0; i <= pid->level; i++)
236 		free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237 
238 	call_rcu(&pid->rcu, delayed_put_pid);
239 }
240 
241 struct pid *alloc_pid(struct pid_namespace *ns)
242 {
243 	struct pid *pid;
244 	enum pid_type type;
245 	int i, nr;
246 	struct pid_namespace *tmp;
247 	struct upid *upid;
248 
249 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
250 	if (!pid)
251 		goto out;
252 
253 	tmp = ns;
254 	for (i = ns->level; i >= 0; i--) {
255 		nr = alloc_pidmap(tmp);
256 		if (nr < 0)
257 			goto out_free;
258 
259 		pid->numbers[i].nr = nr;
260 		pid->numbers[i].ns = tmp;
261 		tmp = tmp->parent;
262 	}
263 
264 	get_pid_ns(ns);
265 	pid->level = ns->level;
266 	atomic_set(&pid->count, 1);
267 	for (type = 0; type < PIDTYPE_MAX; ++type)
268 		INIT_HLIST_HEAD(&pid->tasks[type]);
269 
270 	spin_lock_irq(&pidmap_lock);
271 	for (i = ns->level; i >= 0; i--) {
272 		upid = &pid->numbers[i];
273 		hlist_add_head_rcu(&upid->pid_chain,
274 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 	}
276 	spin_unlock_irq(&pidmap_lock);
277 
278 out:
279 	return pid;
280 
281 out_free:
282 	for (i++; i <= ns->level; i++)
283 		free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284 
285 	kmem_cache_free(ns->pid_cachep, pid);
286 	pid = NULL;
287 	goto out;
288 }
289 
290 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
291 {
292 	struct hlist_node *elem;
293 	struct upid *pnr;
294 
295 	hlist_for_each_entry_rcu(pnr, elem,
296 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
297 		if (pnr->nr == nr && pnr->ns == ns)
298 			return container_of(pnr, struct pid,
299 					numbers[ns->level]);
300 
301 	return NULL;
302 }
303 EXPORT_SYMBOL_GPL(find_pid_ns);
304 
305 struct pid *find_vpid(int nr)
306 {
307 	return find_pid_ns(nr, current->nsproxy->pid_ns);
308 }
309 EXPORT_SYMBOL_GPL(find_vpid);
310 
311 struct pid *find_pid(int nr)
312 {
313 	return find_pid_ns(nr, &init_pid_ns);
314 }
315 EXPORT_SYMBOL_GPL(find_pid);
316 
317 /*
318  * attach_pid() must be called with the tasklist_lock write-held.
319  */
320 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
321 		struct pid *pid)
322 {
323 	struct pid_link *link;
324 
325 	link = &task->pids[type];
326 	link->pid = pid;
327 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328 
329 	return 0;
330 }
331 
332 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
333 {
334 	struct pid_link *link;
335 	struct pid *pid;
336 	int tmp;
337 
338 	link = &task->pids[type];
339 	pid = link->pid;
340 
341 	hlist_del_rcu(&link->node);
342 	link->pid = NULL;
343 
344 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
345 		if (!hlist_empty(&pid->tasks[tmp]))
346 			return;
347 
348 	free_pid(pid);
349 }
350 
351 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
352 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
353 			   enum pid_type type)
354 {
355 	new->pids[type].pid = old->pids[type].pid;
356 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
357 	old->pids[type].pid = NULL;
358 }
359 
360 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
361 {
362 	struct task_struct *result = NULL;
363 	if (pid) {
364 		struct hlist_node *first;
365 		first = rcu_dereference(pid->tasks[type].first);
366 		if (first)
367 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
368 	}
369 	return result;
370 }
371 
372 /*
373  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
374  */
375 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
376 		struct pid_namespace *ns)
377 {
378 	return pid_task(find_pid_ns(nr, ns), type);
379 }
380 
381 EXPORT_SYMBOL(find_task_by_pid_type_ns);
382 
383 struct task_struct *find_task_by_pid(pid_t nr)
384 {
385 	return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
386 }
387 EXPORT_SYMBOL(find_task_by_pid);
388 
389 struct task_struct *find_task_by_vpid(pid_t vnr)
390 {
391 	return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
392 			current->nsproxy->pid_ns);
393 }
394 EXPORT_SYMBOL(find_task_by_vpid);
395 
396 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
397 {
398 	return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
399 }
400 EXPORT_SYMBOL(find_task_by_pid_ns);
401 
402 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
403 {
404 	struct pid *pid;
405 	rcu_read_lock();
406 	pid = get_pid(task->pids[type].pid);
407 	rcu_read_unlock();
408 	return pid;
409 }
410 
411 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
412 {
413 	struct task_struct *result;
414 	rcu_read_lock();
415 	result = pid_task(pid, type);
416 	if (result)
417 		get_task_struct(result);
418 	rcu_read_unlock();
419 	return result;
420 }
421 
422 struct pid *find_get_pid(pid_t nr)
423 {
424 	struct pid *pid;
425 
426 	rcu_read_lock();
427 	pid = get_pid(find_vpid(nr));
428 	rcu_read_unlock();
429 
430 	return pid;
431 }
432 
433 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
434 {
435 	struct upid *upid;
436 	pid_t nr = 0;
437 
438 	if (pid && ns->level <= pid->level) {
439 		upid = &pid->numbers[ns->level];
440 		if (upid->ns == ns)
441 			nr = upid->nr;
442 	}
443 	return nr;
444 }
445 
446 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
447 {
448 	return pid_nr_ns(task_pid(tsk), ns);
449 }
450 EXPORT_SYMBOL(task_pid_nr_ns);
451 
452 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
453 {
454 	return pid_nr_ns(task_tgid(tsk), ns);
455 }
456 EXPORT_SYMBOL(task_tgid_nr_ns);
457 
458 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
459 {
460 	return pid_nr_ns(task_pgrp(tsk), ns);
461 }
462 EXPORT_SYMBOL(task_pgrp_nr_ns);
463 
464 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
465 {
466 	return pid_nr_ns(task_session(tsk), ns);
467 }
468 EXPORT_SYMBOL(task_session_nr_ns);
469 
470 /*
471  * Used by proc to find the first pid that is greater then or equal to nr.
472  *
473  * If there is a pid at nr this function is exactly the same as find_pid.
474  */
475 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
476 {
477 	struct pid *pid;
478 
479 	do {
480 		pid = find_pid_ns(nr, ns);
481 		if (pid)
482 			break;
483 		nr = next_pidmap(ns, nr);
484 	} while (nr > 0);
485 
486 	return pid;
487 }
488 EXPORT_SYMBOL_GPL(find_get_pid);
489 
490 struct pid_cache {
491 	int nr_ids;
492 	char name[16];
493 	struct kmem_cache *cachep;
494 	struct list_head list;
495 };
496 
497 static LIST_HEAD(pid_caches_lh);
498 static DEFINE_MUTEX(pid_caches_mutex);
499 
500 /*
501  * creates the kmem cache to allocate pids from.
502  * @nr_ids: the number of numerical ids this pid will have to carry
503  */
504 
505 static struct kmem_cache *create_pid_cachep(int nr_ids)
506 {
507 	struct pid_cache *pcache;
508 	struct kmem_cache *cachep;
509 
510 	mutex_lock(&pid_caches_mutex);
511 	list_for_each_entry (pcache, &pid_caches_lh, list)
512 		if (pcache->nr_ids == nr_ids)
513 			goto out;
514 
515 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
516 	if (pcache == NULL)
517 		goto err_alloc;
518 
519 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
520 	cachep = kmem_cache_create(pcache->name,
521 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
522 			0, SLAB_HWCACHE_ALIGN, NULL);
523 	if (cachep == NULL)
524 		goto err_cachep;
525 
526 	pcache->nr_ids = nr_ids;
527 	pcache->cachep = cachep;
528 	list_add(&pcache->list, &pid_caches_lh);
529 out:
530 	mutex_unlock(&pid_caches_mutex);
531 	return pcache->cachep;
532 
533 err_cachep:
534 	kfree(pcache);
535 err_alloc:
536 	mutex_unlock(&pid_caches_mutex);
537 	return NULL;
538 }
539 
540 static struct pid_namespace *create_pid_namespace(int level)
541 {
542 	struct pid_namespace *ns;
543 	int i;
544 
545 	ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
546 	if (ns == NULL)
547 		goto out;
548 
549 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
550 	if (!ns->pidmap[0].page)
551 		goto out_free;
552 
553 	ns->pid_cachep = create_pid_cachep(level + 1);
554 	if (ns->pid_cachep == NULL)
555 		goto out_free_map;
556 
557 	kref_init(&ns->kref);
558 	ns->last_pid = 0;
559 	ns->child_reaper = NULL;
560 	ns->level = level;
561 
562 	set_bit(0, ns->pidmap[0].page);
563 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
564 
565 	for (i = 1; i < PIDMAP_ENTRIES; i++) {
566 		ns->pidmap[i].page = 0;
567 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
568 	}
569 
570 	return ns;
571 
572 out_free_map:
573 	kfree(ns->pidmap[0].page);
574 out_free:
575 	kmem_cache_free(pid_ns_cachep, ns);
576 out:
577 	return ERR_PTR(-ENOMEM);
578 }
579 
580 static void destroy_pid_namespace(struct pid_namespace *ns)
581 {
582 	int i;
583 
584 	for (i = 0; i < PIDMAP_ENTRIES; i++)
585 		kfree(ns->pidmap[i].page);
586 	kmem_cache_free(pid_ns_cachep, ns);
587 }
588 
589 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
590 {
591 	struct pid_namespace *new_ns;
592 
593 	BUG_ON(!old_ns);
594 	new_ns = get_pid_ns(old_ns);
595 	if (!(flags & CLONE_NEWPID))
596 		goto out;
597 
598 	new_ns = ERR_PTR(-EINVAL);
599 	if (flags & CLONE_THREAD)
600 		goto out_put;
601 
602 	new_ns = create_pid_namespace(old_ns->level + 1);
603 	if (!IS_ERR(new_ns))
604 		new_ns->parent = get_pid_ns(old_ns);
605 
606 out_put:
607 	put_pid_ns(old_ns);
608 out:
609 	return new_ns;
610 }
611 
612 void free_pid_ns(struct kref *kref)
613 {
614 	struct pid_namespace *ns, *parent;
615 
616 	ns = container_of(kref, struct pid_namespace, kref);
617 
618 	parent = ns->parent;
619 	destroy_pid_namespace(ns);
620 
621 	if (parent != NULL)
622 		put_pid_ns(parent);
623 }
624 
625 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
626 {
627 	int nr;
628 	int rc;
629 
630 	/*
631 	 * The last thread in the cgroup-init thread group is terminating.
632 	 * Find remaining pid_ts in the namespace, signal and wait for them
633 	 * to exit.
634 	 *
635 	 * Note:  This signals each threads in the namespace - even those that
636 	 * 	  belong to the same thread group, To avoid this, we would have
637 	 * 	  to walk the entire tasklist looking a processes in this
638 	 * 	  namespace, but that could be unnecessarily expensive if the
639 	 * 	  pid namespace has just a few processes. Or we need to
640 	 * 	  maintain a tasklist for each pid namespace.
641 	 *
642 	 */
643 	read_lock(&tasklist_lock);
644 	nr = next_pidmap(pid_ns, 1);
645 	while (nr > 0) {
646 		kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
647 		nr = next_pidmap(pid_ns, nr);
648 	}
649 	read_unlock(&tasklist_lock);
650 
651 	do {
652 		clear_thread_flag(TIF_SIGPENDING);
653 		rc = sys_wait4(-1, NULL, __WALL, NULL);
654 	} while (rc != -ECHILD);
655 
656 
657 	/* Child reaper for the pid namespace is going away */
658 	pid_ns->child_reaper = NULL;
659 	return;
660 }
661 
662 /*
663  * The pid hash table is scaled according to the amount of memory in the
664  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
665  * more.
666  */
667 void __init pidhash_init(void)
668 {
669 	int i, pidhash_size;
670 	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
671 
672 	pidhash_shift = max(4, fls(megabytes * 4));
673 	pidhash_shift = min(12, pidhash_shift);
674 	pidhash_size = 1 << pidhash_shift;
675 
676 	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
677 		pidhash_size, pidhash_shift,
678 		pidhash_size * sizeof(struct hlist_head));
679 
680 	pid_hash = alloc_bootmem(pidhash_size *	sizeof(*(pid_hash)));
681 	if (!pid_hash)
682 		panic("Could not alloc pidhash!\n");
683 	for (i = 0; i < pidhash_size; i++)
684 		INIT_HLIST_HEAD(&pid_hash[i]);
685 }
686 
687 void __init pidmap_init(void)
688 {
689 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
690 	/* Reserve PID 0. We never call free_pidmap(0) */
691 	set_bit(0, init_pid_ns.pidmap[0].page);
692 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
693 
694 	init_pid_ns.pid_cachep = create_pid_cachep(1);
695 	if (init_pid_ns.pid_cachep == NULL)
696 		panic("Can't create pid_1 cachep\n");
697 
698 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
699 }
700