1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 40 #define pid_hashfn(nr, ns) \ 41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 42 static struct hlist_head *pid_hash; 43 static int pidhash_shift; 44 struct pid init_struct_pid = INIT_STRUCT_PID; 45 46 int pid_max = PID_MAX_DEFAULT; 47 48 #define RESERVED_PIDS 300 49 50 int pid_max_min = RESERVED_PIDS + 1; 51 int pid_max_max = PID_MAX_LIMIT; 52 53 #define BITS_PER_PAGE (PAGE_SIZE*8) 54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 55 56 static inline int mk_pid(struct pid_namespace *pid_ns, 57 struct pidmap *map, int off) 58 { 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 60 } 61 62 #define find_next_offset(map, off) \ 63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 64 65 /* 66 * PID-map pages start out as NULL, they get allocated upon 67 * first use and are never deallocated. This way a low pid_max 68 * value does not cause lots of bitmaps to be allocated, but 69 * the scheme scales to up to 4 million PIDs, runtime. 70 */ 71 struct pid_namespace init_pid_ns = { 72 .kref = { 73 .refcount = ATOMIC_INIT(2), 74 }, 75 .pidmap = { 76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 77 }, 78 .last_pid = 0, 79 .level = 0, 80 .child_reaper = &init_task, 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 int is_container_init(struct task_struct *tsk) 85 { 86 int ret = 0; 87 struct pid *pid; 88 89 rcu_read_lock(); 90 pid = task_pid(tsk); 91 if (pid != NULL && pid->numbers[pid->level].nr == 1) 92 ret = 1; 93 rcu_read_unlock(); 94 95 return ret; 96 } 97 EXPORT_SYMBOL(is_container_init); 98 99 /* 100 * Note: disable interrupts while the pidmap_lock is held as an 101 * interrupt might come in and do read_lock(&tasklist_lock). 102 * 103 * If we don't disable interrupts there is a nasty deadlock between 104 * detach_pid()->free_pid() and another cpu that does 105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 106 * read_lock(&tasklist_lock); 107 * 108 * After we clean up the tasklist_lock and know there are no 109 * irq handlers that take it we can leave the interrupts enabled. 110 * For now it is easier to be safe than to prove it can't happen. 111 */ 112 113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 114 115 static void free_pidmap(struct upid *upid) 116 { 117 int nr = upid->nr; 118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 119 int offset = nr & BITS_PER_PAGE_MASK; 120 121 clear_bit(offset, map->page); 122 atomic_inc(&map->nr_free); 123 } 124 125 static int alloc_pidmap(struct pid_namespace *pid_ns) 126 { 127 int i, offset, max_scan, pid, last = pid_ns->last_pid; 128 struct pidmap *map; 129 130 pid = last + 1; 131 if (pid >= pid_max) 132 pid = RESERVED_PIDS; 133 offset = pid & BITS_PER_PAGE_MASK; 134 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 135 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; 136 for (i = 0; i <= max_scan; ++i) { 137 if (unlikely(!map->page)) { 138 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 139 /* 140 * Free the page if someone raced with us 141 * installing it: 142 */ 143 spin_lock_irq(&pidmap_lock); 144 if (map->page) 145 kfree(page); 146 else 147 map->page = page; 148 spin_unlock_irq(&pidmap_lock); 149 if (unlikely(!map->page)) 150 break; 151 } 152 if (likely(atomic_read(&map->nr_free))) { 153 do { 154 if (!test_and_set_bit(offset, map->page)) { 155 atomic_dec(&map->nr_free); 156 pid_ns->last_pid = pid; 157 return pid; 158 } 159 offset = find_next_offset(map, offset); 160 pid = mk_pid(pid_ns, map, offset); 161 /* 162 * find_next_offset() found a bit, the pid from it 163 * is in-bounds, and if we fell back to the last 164 * bitmap block and the final block was the same 165 * as the starting point, pid is before last_pid. 166 */ 167 } while (offset < BITS_PER_PAGE && pid < pid_max && 168 (i != max_scan || pid < last || 169 !((last+1) & BITS_PER_PAGE_MASK))); 170 } 171 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 172 ++map; 173 offset = 0; 174 } else { 175 map = &pid_ns->pidmap[0]; 176 offset = RESERVED_PIDS; 177 if (unlikely(last == offset)) 178 break; 179 } 180 pid = mk_pid(pid_ns, map, offset); 181 } 182 return -1; 183 } 184 185 int next_pidmap(struct pid_namespace *pid_ns, int last) 186 { 187 int offset; 188 struct pidmap *map, *end; 189 190 offset = (last + 1) & BITS_PER_PAGE_MASK; 191 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 192 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 193 for (; map < end; map++, offset = 0) { 194 if (unlikely(!map->page)) 195 continue; 196 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 197 if (offset < BITS_PER_PAGE) 198 return mk_pid(pid_ns, map, offset); 199 } 200 return -1; 201 } 202 203 void put_pid(struct pid *pid) 204 { 205 struct pid_namespace *ns; 206 207 if (!pid) 208 return; 209 210 ns = pid->numbers[pid->level].ns; 211 if ((atomic_read(&pid->count) == 1) || 212 atomic_dec_and_test(&pid->count)) { 213 kmem_cache_free(ns->pid_cachep, pid); 214 put_pid_ns(ns); 215 } 216 } 217 EXPORT_SYMBOL_GPL(put_pid); 218 219 static void delayed_put_pid(struct rcu_head *rhp) 220 { 221 struct pid *pid = container_of(rhp, struct pid, rcu); 222 put_pid(pid); 223 } 224 225 void free_pid(struct pid *pid) 226 { 227 /* We can be called with write_lock_irq(&tasklist_lock) held */ 228 int i; 229 unsigned long flags; 230 231 spin_lock_irqsave(&pidmap_lock, flags); 232 for (i = 0; i <= pid->level; i++) 233 hlist_del_rcu(&pid->numbers[i].pid_chain); 234 spin_unlock_irqrestore(&pidmap_lock, flags); 235 236 for (i = 0; i <= pid->level; i++) 237 free_pidmap(pid->numbers + i); 238 239 call_rcu(&pid->rcu, delayed_put_pid); 240 } 241 242 struct pid *alloc_pid(struct pid_namespace *ns) 243 { 244 struct pid *pid; 245 enum pid_type type; 246 int i, nr; 247 struct pid_namespace *tmp; 248 struct upid *upid; 249 250 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 251 if (!pid) 252 goto out; 253 254 tmp = ns; 255 for (i = ns->level; i >= 0; i--) { 256 nr = alloc_pidmap(tmp); 257 if (nr < 0) 258 goto out_free; 259 260 pid->numbers[i].nr = nr; 261 pid->numbers[i].ns = tmp; 262 tmp = tmp->parent; 263 } 264 265 get_pid_ns(ns); 266 pid->level = ns->level; 267 atomic_set(&pid->count, 1); 268 for (type = 0; type < PIDTYPE_MAX; ++type) 269 INIT_HLIST_HEAD(&pid->tasks[type]); 270 271 spin_lock_irq(&pidmap_lock); 272 for (i = ns->level; i >= 0; i--) { 273 upid = &pid->numbers[i]; 274 hlist_add_head_rcu(&upid->pid_chain, 275 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 276 } 277 spin_unlock_irq(&pidmap_lock); 278 279 out: 280 return pid; 281 282 out_free: 283 while (++i <= ns->level) 284 free_pidmap(pid->numbers + i); 285 286 kmem_cache_free(ns->pid_cachep, pid); 287 pid = NULL; 288 goto out; 289 } 290 291 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 292 { 293 struct hlist_node *elem; 294 struct upid *pnr; 295 296 hlist_for_each_entry_rcu(pnr, elem, 297 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 298 if (pnr->nr == nr && pnr->ns == ns) 299 return container_of(pnr, struct pid, 300 numbers[ns->level]); 301 302 return NULL; 303 } 304 EXPORT_SYMBOL_GPL(find_pid_ns); 305 306 struct pid *find_vpid(int nr) 307 { 308 return find_pid_ns(nr, current->nsproxy->pid_ns); 309 } 310 EXPORT_SYMBOL_GPL(find_vpid); 311 312 struct pid *find_pid(int nr) 313 { 314 return find_pid_ns(nr, &init_pid_ns); 315 } 316 EXPORT_SYMBOL_GPL(find_pid); 317 318 /* 319 * attach_pid() must be called with the tasklist_lock write-held. 320 */ 321 void attach_pid(struct task_struct *task, enum pid_type type, 322 struct pid *pid) 323 { 324 struct pid_link *link; 325 326 link = &task->pids[type]; 327 link->pid = pid; 328 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 329 } 330 331 static void __change_pid(struct task_struct *task, enum pid_type type, 332 struct pid *new) 333 { 334 struct pid_link *link; 335 struct pid *pid; 336 int tmp; 337 338 link = &task->pids[type]; 339 pid = link->pid; 340 341 hlist_del_rcu(&link->node); 342 link->pid = new; 343 344 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 345 if (!hlist_empty(&pid->tasks[tmp])) 346 return; 347 348 free_pid(pid); 349 } 350 351 void detach_pid(struct task_struct *task, enum pid_type type) 352 { 353 __change_pid(task, type, NULL); 354 } 355 356 void change_pid(struct task_struct *task, enum pid_type type, 357 struct pid *pid) 358 { 359 __change_pid(task, type, pid); 360 attach_pid(task, type, pid); 361 } 362 363 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 364 void transfer_pid(struct task_struct *old, struct task_struct *new, 365 enum pid_type type) 366 { 367 new->pids[type].pid = old->pids[type].pid; 368 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 369 } 370 371 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 372 { 373 struct task_struct *result = NULL; 374 if (pid) { 375 struct hlist_node *first; 376 first = rcu_dereference(pid->tasks[type].first); 377 if (first) 378 result = hlist_entry(first, struct task_struct, pids[(type)].node); 379 } 380 return result; 381 } 382 EXPORT_SYMBOL(pid_task); 383 384 /* 385 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 386 */ 387 struct task_struct *find_task_by_pid_type_ns(int type, int nr, 388 struct pid_namespace *ns) 389 { 390 return pid_task(find_pid_ns(nr, ns), type); 391 } 392 393 EXPORT_SYMBOL(find_task_by_pid_type_ns); 394 395 struct task_struct *find_task_by_vpid(pid_t vnr) 396 { 397 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr, 398 current->nsproxy->pid_ns); 399 } 400 EXPORT_SYMBOL(find_task_by_vpid); 401 402 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 403 { 404 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns); 405 } 406 EXPORT_SYMBOL(find_task_by_pid_ns); 407 408 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 409 { 410 struct pid *pid; 411 rcu_read_lock(); 412 pid = get_pid(task->pids[type].pid); 413 rcu_read_unlock(); 414 return pid; 415 } 416 417 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 418 { 419 struct task_struct *result; 420 rcu_read_lock(); 421 result = pid_task(pid, type); 422 if (result) 423 get_task_struct(result); 424 rcu_read_unlock(); 425 return result; 426 } 427 428 struct pid *find_get_pid(pid_t nr) 429 { 430 struct pid *pid; 431 432 rcu_read_lock(); 433 pid = get_pid(find_vpid(nr)); 434 rcu_read_unlock(); 435 436 return pid; 437 } 438 439 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 440 { 441 struct upid *upid; 442 pid_t nr = 0; 443 444 if (pid && ns->level <= pid->level) { 445 upid = &pid->numbers[ns->level]; 446 if (upid->ns == ns) 447 nr = upid->nr; 448 } 449 return nr; 450 } 451 452 pid_t pid_vnr(struct pid *pid) 453 { 454 return pid_nr_ns(pid, current->nsproxy->pid_ns); 455 } 456 EXPORT_SYMBOL_GPL(pid_vnr); 457 458 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 459 { 460 return pid_nr_ns(task_pid(tsk), ns); 461 } 462 EXPORT_SYMBOL(task_pid_nr_ns); 463 464 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 465 { 466 return pid_nr_ns(task_tgid(tsk), ns); 467 } 468 EXPORT_SYMBOL(task_tgid_nr_ns); 469 470 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 471 { 472 return pid_nr_ns(task_pgrp(tsk), ns); 473 } 474 EXPORT_SYMBOL(task_pgrp_nr_ns); 475 476 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 477 { 478 return pid_nr_ns(task_session(tsk), ns); 479 } 480 EXPORT_SYMBOL(task_session_nr_ns); 481 482 /* 483 * Used by proc to find the first pid that is greater then or equal to nr. 484 * 485 * If there is a pid at nr this function is exactly the same as find_pid. 486 */ 487 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 488 { 489 struct pid *pid; 490 491 do { 492 pid = find_pid_ns(nr, ns); 493 if (pid) 494 break; 495 nr = next_pidmap(ns, nr); 496 } while (nr > 0); 497 498 return pid; 499 } 500 EXPORT_SYMBOL_GPL(find_get_pid); 501 502 /* 503 * The pid hash table is scaled according to the amount of memory in the 504 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 505 * more. 506 */ 507 void __init pidhash_init(void) 508 { 509 int i, pidhash_size; 510 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); 511 512 pidhash_shift = max(4, fls(megabytes * 4)); 513 pidhash_shift = min(12, pidhash_shift); 514 pidhash_size = 1 << pidhash_shift; 515 516 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", 517 pidhash_size, pidhash_shift, 518 pidhash_size * sizeof(struct hlist_head)); 519 520 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); 521 if (!pid_hash) 522 panic("Could not alloc pidhash!\n"); 523 for (i = 0; i < pidhash_size; i++) 524 INIT_HLIST_HEAD(&pid_hash[i]); 525 } 526 527 void __init pidmap_init(void) 528 { 529 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 530 /* Reserve PID 0. We never call free_pidmap(0) */ 531 set_bit(0, init_pid_ns.pidmap[0].page); 532 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 533 534 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 535 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 536 } 537