1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 break; 148 } 149 150 idr_remove(&ns->idr, upid->nr); 151 } 152 spin_unlock_irqrestore(&pidmap_lock, flags); 153 154 call_rcu(&pid->rcu, delayed_put_pid); 155 } 156 157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 158 size_t set_tid_size) 159 { 160 struct pid *pid; 161 enum pid_type type; 162 int i, nr; 163 struct pid_namespace *tmp; 164 struct upid *upid; 165 int retval = -ENOMEM; 166 167 /* 168 * set_tid_size contains the size of the set_tid array. Starting at 169 * the most nested currently active PID namespace it tells alloc_pid() 170 * which PID to set for a process in that most nested PID namespace 171 * up to set_tid_size PID namespaces. It does not have to set the PID 172 * for a process in all nested PID namespaces but set_tid_size must 173 * never be greater than the current ns->level + 1. 174 */ 175 if (set_tid_size > ns->level + 1) 176 return ERR_PTR(-EINVAL); 177 178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 179 if (!pid) 180 return ERR_PTR(retval); 181 182 tmp = ns; 183 pid->level = ns->level; 184 185 for (i = ns->level; i >= 0; i--) { 186 int tid = 0; 187 188 if (set_tid_size) { 189 tid = set_tid[ns->level - i]; 190 191 retval = -EINVAL; 192 if (tid < 1 || tid >= pid_max) 193 goto out_free; 194 /* 195 * Also fail if a PID != 1 is requested and 196 * no PID 1 exists. 197 */ 198 if (tid != 1 && !tmp->child_reaper) 199 goto out_free; 200 retval = -EPERM; 201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN)) 202 goto out_free; 203 set_tid_size--; 204 } 205 206 idr_preload(GFP_KERNEL); 207 spin_lock_irq(&pidmap_lock); 208 209 if (tid) { 210 nr = idr_alloc(&tmp->idr, NULL, tid, 211 tid + 1, GFP_ATOMIC); 212 /* 213 * If ENOSPC is returned it means that the PID is 214 * alreay in use. Return EEXIST in that case. 215 */ 216 if (nr == -ENOSPC) 217 nr = -EEXIST; 218 } else { 219 int pid_min = 1; 220 /* 221 * init really needs pid 1, but after reaching the 222 * maximum wrap back to RESERVED_PIDS 223 */ 224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 225 pid_min = RESERVED_PIDS; 226 227 /* 228 * Store a null pointer so find_pid_ns does not find 229 * a partially initialized PID (see below). 230 */ 231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 232 pid_max, GFP_ATOMIC); 233 } 234 spin_unlock_irq(&pidmap_lock); 235 idr_preload_end(); 236 237 if (nr < 0) { 238 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 239 goto out_free; 240 } 241 242 pid->numbers[i].nr = nr; 243 pid->numbers[i].ns = tmp; 244 tmp = tmp->parent; 245 } 246 247 get_pid_ns(ns); 248 refcount_set(&pid->count, 1); 249 spin_lock_init(&pid->lock); 250 for (type = 0; type < PIDTYPE_MAX; ++type) 251 INIT_HLIST_HEAD(&pid->tasks[type]); 252 253 init_waitqueue_head(&pid->wait_pidfd); 254 INIT_HLIST_HEAD(&pid->inodes); 255 256 upid = pid->numbers + ns->level; 257 spin_lock_irq(&pidmap_lock); 258 if (!(ns->pid_allocated & PIDNS_ADDING)) 259 goto out_unlock; 260 for ( ; upid >= pid->numbers; --upid) { 261 /* Make the PID visible to find_pid_ns. */ 262 idr_replace(&upid->ns->idr, pid, upid->nr); 263 upid->ns->pid_allocated++; 264 } 265 spin_unlock_irq(&pidmap_lock); 266 267 return pid; 268 269 out_unlock: 270 spin_unlock_irq(&pidmap_lock); 271 put_pid_ns(ns); 272 273 out_free: 274 spin_lock_irq(&pidmap_lock); 275 while (++i <= ns->level) { 276 upid = pid->numbers + i; 277 idr_remove(&upid->ns->idr, upid->nr); 278 } 279 280 /* On failure to allocate the first pid, reset the state */ 281 if (ns->pid_allocated == PIDNS_ADDING) 282 idr_set_cursor(&ns->idr, 0); 283 284 spin_unlock_irq(&pidmap_lock); 285 286 kmem_cache_free(ns->pid_cachep, pid); 287 return ERR_PTR(retval); 288 } 289 290 void disable_pid_allocation(struct pid_namespace *ns) 291 { 292 spin_lock_irq(&pidmap_lock); 293 ns->pid_allocated &= ~PIDNS_ADDING; 294 spin_unlock_irq(&pidmap_lock); 295 } 296 297 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 298 { 299 return idr_find(&ns->idr, nr); 300 } 301 EXPORT_SYMBOL_GPL(find_pid_ns); 302 303 struct pid *find_vpid(int nr) 304 { 305 return find_pid_ns(nr, task_active_pid_ns(current)); 306 } 307 EXPORT_SYMBOL_GPL(find_vpid); 308 309 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 310 { 311 return (type == PIDTYPE_PID) ? 312 &task->thread_pid : 313 &task->signal->pids[type]; 314 } 315 316 /* 317 * attach_pid() must be called with the tasklist_lock write-held. 318 */ 319 void attach_pid(struct task_struct *task, enum pid_type type) 320 { 321 struct pid *pid = *task_pid_ptr(task, type); 322 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 323 } 324 325 static void __change_pid(struct task_struct *task, enum pid_type type, 326 struct pid *new) 327 { 328 struct pid **pid_ptr = task_pid_ptr(task, type); 329 struct pid *pid; 330 int tmp; 331 332 pid = *pid_ptr; 333 334 hlist_del_rcu(&task->pid_links[type]); 335 *pid_ptr = new; 336 337 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 338 if (pid_has_task(pid, tmp)) 339 return; 340 341 free_pid(pid); 342 } 343 344 void detach_pid(struct task_struct *task, enum pid_type type) 345 { 346 __change_pid(task, type, NULL); 347 } 348 349 void change_pid(struct task_struct *task, enum pid_type type, 350 struct pid *pid) 351 { 352 __change_pid(task, type, pid); 353 attach_pid(task, type); 354 } 355 356 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 357 void transfer_pid(struct task_struct *old, struct task_struct *new, 358 enum pid_type type) 359 { 360 if (type == PIDTYPE_PID) 361 new->thread_pid = old->thread_pid; 362 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 363 } 364 365 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 366 { 367 struct task_struct *result = NULL; 368 if (pid) { 369 struct hlist_node *first; 370 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 371 lockdep_tasklist_lock_is_held()); 372 if (first) 373 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 374 } 375 return result; 376 } 377 EXPORT_SYMBOL(pid_task); 378 379 /* 380 * Must be called under rcu_read_lock(). 381 */ 382 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 383 { 384 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 385 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 386 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 387 } 388 389 struct task_struct *find_task_by_vpid(pid_t vnr) 390 { 391 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 392 } 393 394 struct task_struct *find_get_task_by_vpid(pid_t nr) 395 { 396 struct task_struct *task; 397 398 rcu_read_lock(); 399 task = find_task_by_vpid(nr); 400 if (task) 401 get_task_struct(task); 402 rcu_read_unlock(); 403 404 return task; 405 } 406 407 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 408 { 409 struct pid *pid; 410 rcu_read_lock(); 411 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 412 rcu_read_unlock(); 413 return pid; 414 } 415 EXPORT_SYMBOL_GPL(get_task_pid); 416 417 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 418 { 419 struct task_struct *result; 420 rcu_read_lock(); 421 result = pid_task(pid, type); 422 if (result) 423 get_task_struct(result); 424 rcu_read_unlock(); 425 return result; 426 } 427 EXPORT_SYMBOL_GPL(get_pid_task); 428 429 struct pid *find_get_pid(pid_t nr) 430 { 431 struct pid *pid; 432 433 rcu_read_lock(); 434 pid = get_pid(find_vpid(nr)); 435 rcu_read_unlock(); 436 437 return pid; 438 } 439 EXPORT_SYMBOL_GPL(find_get_pid); 440 441 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 442 { 443 struct upid *upid; 444 pid_t nr = 0; 445 446 if (pid && ns->level <= pid->level) { 447 upid = &pid->numbers[ns->level]; 448 if (upid->ns == ns) 449 nr = upid->nr; 450 } 451 return nr; 452 } 453 EXPORT_SYMBOL_GPL(pid_nr_ns); 454 455 pid_t pid_vnr(struct pid *pid) 456 { 457 return pid_nr_ns(pid, task_active_pid_ns(current)); 458 } 459 EXPORT_SYMBOL_GPL(pid_vnr); 460 461 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 462 struct pid_namespace *ns) 463 { 464 pid_t nr = 0; 465 466 rcu_read_lock(); 467 if (!ns) 468 ns = task_active_pid_ns(current); 469 if (likely(pid_alive(task))) 470 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 471 rcu_read_unlock(); 472 473 return nr; 474 } 475 EXPORT_SYMBOL(__task_pid_nr_ns); 476 477 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 478 { 479 return ns_of_pid(task_pid(tsk)); 480 } 481 EXPORT_SYMBOL_GPL(task_active_pid_ns); 482 483 /* 484 * Used by proc to find the first pid that is greater than or equal to nr. 485 * 486 * If there is a pid at nr this function is exactly the same as find_pid_ns. 487 */ 488 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 489 { 490 return idr_get_next(&ns->idr, &nr); 491 } 492 493 /** 494 * pidfd_create() - Create a new pid file descriptor. 495 * 496 * @pid: struct pid that the pidfd will reference 497 * 498 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 499 * 500 * Note, that this function can only be called after the fd table has 501 * been unshared to avoid leaking the pidfd to the new process. 502 * 503 * Return: On success, a cloexec pidfd is returned. 504 * On error, a negative errno number will be returned. 505 */ 506 static int pidfd_create(struct pid *pid) 507 { 508 int fd; 509 510 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 511 O_RDWR | O_CLOEXEC); 512 if (fd < 0) 513 put_pid(pid); 514 515 return fd; 516 } 517 518 /** 519 * pidfd_open() - Open new pid file descriptor. 520 * 521 * @pid: pid for which to retrieve a pidfd 522 * @flags: flags to pass 523 * 524 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 525 * the process identified by @pid. Currently, the process identified by 526 * @pid must be a thread-group leader. This restriction currently exists 527 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 528 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 529 * leaders). 530 * 531 * Return: On success, a cloexec pidfd is returned. 532 * On error, a negative errno number will be returned. 533 */ 534 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 535 { 536 int fd; 537 struct pid *p; 538 539 if (flags) 540 return -EINVAL; 541 542 if (pid <= 0) 543 return -EINVAL; 544 545 p = find_get_pid(pid); 546 if (!p) 547 return -ESRCH; 548 549 if (pid_has_task(p, PIDTYPE_TGID)) 550 fd = pidfd_create(p); 551 else 552 fd = -EINVAL; 553 554 put_pid(p); 555 return fd; 556 } 557 558 void __init pid_idr_init(void) 559 { 560 /* Verify no one has done anything silly: */ 561 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 562 563 /* bump default and minimum pid_max based on number of cpus */ 564 pid_max = min(pid_max_max, max_t(int, pid_max, 565 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 566 pid_max_min = max_t(int, pid_max_min, 567 PIDS_PER_CPU_MIN * num_possible_cpus()); 568 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 569 570 idr_init(&init_pid_ns.idr); 571 572 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 573 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 574 } 575 576 static struct file *__pidfd_fget(struct task_struct *task, int fd) 577 { 578 struct file *file; 579 int ret; 580 581 ret = mutex_lock_killable(&task->signal->exec_update_mutex); 582 if (ret) 583 return ERR_PTR(ret); 584 585 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 586 file = fget_task(task, fd); 587 else 588 file = ERR_PTR(-EPERM); 589 590 mutex_unlock(&task->signal->exec_update_mutex); 591 592 return file ?: ERR_PTR(-EBADF); 593 } 594 595 static int pidfd_getfd(struct pid *pid, int fd) 596 { 597 struct task_struct *task; 598 struct file *file; 599 int ret; 600 601 task = get_pid_task(pid, PIDTYPE_PID); 602 if (!task) 603 return -ESRCH; 604 605 file = __pidfd_fget(task, fd); 606 put_task_struct(task); 607 if (IS_ERR(file)) 608 return PTR_ERR(file); 609 610 ret = security_file_receive(file); 611 if (ret) { 612 fput(file); 613 return ret; 614 } 615 616 ret = get_unused_fd_flags(O_CLOEXEC); 617 if (ret < 0) 618 fput(file); 619 else 620 fd_install(ret, file); 621 622 return ret; 623 } 624 625 /** 626 * sys_pidfd_getfd() - Get a file descriptor from another process 627 * 628 * @pidfd: the pidfd file descriptor of the process 629 * @fd: the file descriptor number to get 630 * @flags: flags on how to get the fd (reserved) 631 * 632 * This syscall gets a copy of a file descriptor from another process 633 * based on the pidfd, and file descriptor number. It requires that 634 * the calling process has the ability to ptrace the process represented 635 * by the pidfd. The process which is having its file descriptor copied 636 * is otherwise unaffected. 637 * 638 * Return: On success, a cloexec file descriptor is returned. 639 * On error, a negative errno number will be returned. 640 */ 641 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 642 unsigned int, flags) 643 { 644 struct pid *pid; 645 struct fd f; 646 int ret; 647 648 /* flags is currently unused - make sure it's unset */ 649 if (flags) 650 return -EINVAL; 651 652 f = fdget(pidfd); 653 if (!f.file) 654 return -EBADF; 655 656 pid = pidfd_pid(f.file); 657 if (IS_ERR(pid)) 658 ret = PTR_ERR(pid); 659 else 660 ret = pidfd_getfd(pid, fd); 661 662 fdput(f); 663 return ret; 664 } 665