xref: /openbmc/linux/kernel/locking/rwsem.c (revision ad89e2e3ec30f54cff34a6b9d61b18612610001c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #ifndef CONFIG_PREEMPT_RT
32 #include "lock_events.h"
33 
34 /*
35  * The least significant 2 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39  *
40  * When the rwsem is reader-owned and a spinning writer has timed out,
41  * the nonspinnable bit will be set to disable optimistic spinning.
42 
43  * When a writer acquires a rwsem, it puts its task_struct pointer
44  * into the owner field. It is cleared after an unlock.
45  *
46  * When a reader acquires a rwsem, it will also puts its task_struct
47  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48  * On unlock, the owner field will largely be left untouched. So
49  * for a free or reader-owned rwsem, the owner value may contain
50  * information about the last reader that acquires the rwsem.
51  *
52  * That information may be helpful in debugging cases where the system
53  * seems to hang on a reader owned rwsem especially if only one reader
54  * is involved. Ideally we would like to track all the readers that own
55  * a rwsem, but the overhead is simply too big.
56  *
57  * A fast path reader optimistic lock stealing is supported when the rwsem
58  * is previously owned by a writer and the following conditions are met:
59  *  - rwsem is not currently writer owned
60  *  - the handoff isn't set.
61  */
62 #define RWSEM_READER_OWNED	(1UL << 0)
63 #define RWSEM_NONSPINNABLE	(1UL << 1)
64 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
65 
66 #ifdef CONFIG_DEBUG_RWSEMS
67 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
68 	if (!debug_locks_silent &&				\
69 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
70 		#c, atomic_long_read(&(sem)->count),		\
71 		(unsigned long) sem->magic,			\
72 		atomic_long_read(&(sem)->owner), (long)current,	\
73 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
74 			debug_locks_off();			\
75 	} while (0)
76 #else
77 # define DEBUG_RWSEMS_WARN_ON(c, sem)
78 #endif
79 
80 /*
81  * On 64-bit architectures, the bit definitions of the count are:
82  *
83  * Bit  0    - writer locked bit
84  * Bit  1    - waiters present bit
85  * Bit  2    - lock handoff bit
86  * Bits 3-7  - reserved
87  * Bits 8-62 - 55-bit reader count
88  * Bit  63   - read fail bit
89  *
90  * On 32-bit architectures, the bit definitions of the count are:
91  *
92  * Bit  0    - writer locked bit
93  * Bit  1    - waiters present bit
94  * Bit  2    - lock handoff bit
95  * Bits 3-7  - reserved
96  * Bits 8-30 - 23-bit reader count
97  * Bit  31   - read fail bit
98  *
99  * It is not likely that the most significant bit (read fail bit) will ever
100  * be set. This guard bit is still checked anyway in the down_read() fastpath
101  * just in case we need to use up more of the reader bits for other purpose
102  * in the future.
103  *
104  * atomic_long_fetch_add() is used to obtain reader lock, whereas
105  * atomic_long_cmpxchg() will be used to obtain writer lock.
106  *
107  * There are three places where the lock handoff bit may be set or cleared.
108  * 1) rwsem_mark_wake() for readers		-- set, clear
109  * 2) rwsem_try_write_lock() for writers	-- set, clear
110  * 3) rwsem_del_waiter()			-- clear
111  *
112  * For all the above cases, wait_lock will be held. A writer must also
113  * be the first one in the wait_list to be eligible for setting the handoff
114  * bit. So concurrent setting/clearing of handoff bit is not possible.
115  */
116 #define RWSEM_WRITER_LOCKED	(1UL << 0)
117 #define RWSEM_FLAG_WAITERS	(1UL << 1)
118 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
119 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
120 
121 #define RWSEM_READER_SHIFT	8
122 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
123 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
124 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
125 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
126 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
127 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
128 
129 /*
130  * All writes to owner are protected by WRITE_ONCE() to make sure that
131  * store tearing can't happen as optimistic spinners may read and use
132  * the owner value concurrently without lock. Read from owner, however,
133  * may not need READ_ONCE() as long as the pointer value is only used
134  * for comparison and isn't being dereferenced.
135  */
136 static inline void rwsem_set_owner(struct rw_semaphore *sem)
137 {
138 	atomic_long_set(&sem->owner, (long)current);
139 }
140 
141 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
142 {
143 	atomic_long_set(&sem->owner, 0);
144 }
145 
146 /*
147  * Test the flags in the owner field.
148  */
149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
150 {
151 	return atomic_long_read(&sem->owner) & flags;
152 }
153 
154 /*
155  * The task_struct pointer of the last owning reader will be left in
156  * the owner field.
157  *
158  * Note that the owner value just indicates the task has owned the rwsem
159  * previously, it may not be the real owner or one of the real owners
160  * anymore when that field is examined, so take it with a grain of salt.
161  *
162  * The reader non-spinnable bit is preserved.
163  */
164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
165 					    struct task_struct *owner)
166 {
167 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
168 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
169 
170 	atomic_long_set(&sem->owner, val);
171 }
172 
173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
174 {
175 	__rwsem_set_reader_owned(sem, current);
176 }
177 
178 /*
179  * Return true if the rwsem is owned by a reader.
180  */
181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
182 {
183 #ifdef CONFIG_DEBUG_RWSEMS
184 	/*
185 	 * Check the count to see if it is write-locked.
186 	 */
187 	long count = atomic_long_read(&sem->count);
188 
189 	if (count & RWSEM_WRITER_MASK)
190 		return false;
191 #endif
192 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
193 }
194 
195 #ifdef CONFIG_DEBUG_RWSEMS
196 /*
197  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
198  * is a task pointer in owner of a reader-owned rwsem, it will be the
199  * real owner or one of the real owners. The only exception is when the
200  * unlock is done by up_read_non_owner().
201  */
202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
203 {
204 	unsigned long val = atomic_long_read(&sem->owner);
205 
206 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
207 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
208 					    val & RWSEM_OWNER_FLAGS_MASK))
209 			return;
210 	}
211 }
212 #else
213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
214 {
215 }
216 #endif
217 
218 /*
219  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
220  * remains set. Otherwise, the operation will be aborted.
221  */
222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
223 {
224 	unsigned long owner = atomic_long_read(&sem->owner);
225 
226 	do {
227 		if (!(owner & RWSEM_READER_OWNED))
228 			break;
229 		if (owner & RWSEM_NONSPINNABLE)
230 			break;
231 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
232 					  owner | RWSEM_NONSPINNABLE));
233 }
234 
235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
236 {
237 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
238 
239 	if (WARN_ON_ONCE(*cntp < 0))
240 		rwsem_set_nonspinnable(sem);
241 
242 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
243 		rwsem_set_reader_owned(sem);
244 		return true;
245 	}
246 
247 	return false;
248 }
249 
250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
251 {
252 	long tmp = RWSEM_UNLOCKED_VALUE;
253 
254 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
255 		rwsem_set_owner(sem);
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
262 /*
263  * Return just the real task structure pointer of the owner
264  */
265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
266 {
267 	return (struct task_struct *)
268 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
269 }
270 
271 /*
272  * Return the real task structure pointer of the owner and the embedded
273  * flags in the owner. pflags must be non-NULL.
274  */
275 static inline struct task_struct *
276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
277 {
278 	unsigned long owner = atomic_long_read(&sem->owner);
279 
280 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
281 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
282 }
283 
284 /*
285  * Guide to the rw_semaphore's count field.
286  *
287  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
288  * by a writer.
289  *
290  * The lock is owned by readers when
291  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
292  * (2) some of the reader bits are set in count, and
293  * (3) the owner field has RWSEM_READ_OWNED bit set.
294  *
295  * Having some reader bits set is not enough to guarantee a readers owned
296  * lock as the readers may be in the process of backing out from the count
297  * and a writer has just released the lock. So another writer may steal
298  * the lock immediately after that.
299  */
300 
301 /*
302  * Initialize an rwsem:
303  */
304 void __init_rwsem(struct rw_semaphore *sem, const char *name,
305 		  struct lock_class_key *key)
306 {
307 #ifdef CONFIG_DEBUG_LOCK_ALLOC
308 	/*
309 	 * Make sure we are not reinitializing a held semaphore:
310 	 */
311 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
312 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
313 #endif
314 #ifdef CONFIG_DEBUG_RWSEMS
315 	sem->magic = sem;
316 #endif
317 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
318 	raw_spin_lock_init(&sem->wait_lock);
319 	INIT_LIST_HEAD(&sem->wait_list);
320 	atomic_long_set(&sem->owner, 0L);
321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
322 	osq_lock_init(&sem->osq);
323 #endif
324 }
325 EXPORT_SYMBOL(__init_rwsem);
326 
327 enum rwsem_waiter_type {
328 	RWSEM_WAITING_FOR_WRITE,
329 	RWSEM_WAITING_FOR_READ
330 };
331 
332 struct rwsem_waiter {
333 	struct list_head list;
334 	struct task_struct *task;
335 	enum rwsem_waiter_type type;
336 	unsigned long timeout;
337 
338 	/* Writer only, not initialized in reader */
339 	bool handoff_set;
340 };
341 #define rwsem_first_waiter(sem) \
342 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
343 
344 enum rwsem_wake_type {
345 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
346 	RWSEM_WAKE_READERS,	/* Wake readers only */
347 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
348 };
349 
350 /*
351  * The typical HZ value is either 250 or 1000. So set the minimum waiting
352  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
353  * queue before initiating the handoff protocol.
354  */
355 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
356 
357 /*
358  * Magic number to batch-wakeup waiting readers, even when writers are
359  * also present in the queue. This both limits the amount of work the
360  * waking thread must do and also prevents any potential counter overflow,
361  * however unlikely.
362  */
363 #define MAX_READERS_WAKEUP	0x100
364 
365 static inline void
366 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
367 {
368 	lockdep_assert_held(&sem->wait_lock);
369 	list_add_tail(&waiter->list, &sem->wait_list);
370 	/* caller will set RWSEM_FLAG_WAITERS */
371 }
372 
373 /*
374  * Remove a waiter from the wait_list and clear flags.
375  *
376  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
377  * this function. Modify with care.
378  */
379 static inline void
380 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
381 {
382 	lockdep_assert_held(&sem->wait_lock);
383 	list_del(&waiter->list);
384 	if (likely(!list_empty(&sem->wait_list)))
385 		return;
386 
387 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
388 }
389 
390 /*
391  * handle the lock release when processes blocked on it that can now run
392  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
393  *   have been set.
394  * - there must be someone on the queue
395  * - the wait_lock must be held by the caller
396  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
397  *   to actually wakeup the blocked task(s) and drop the reference count,
398  *   preferably when the wait_lock is released
399  * - woken process blocks are discarded from the list after having task zeroed
400  * - writers are only marked woken if downgrading is false
401  *
402  * Implies rwsem_del_waiter() for all woken readers.
403  */
404 static void rwsem_mark_wake(struct rw_semaphore *sem,
405 			    enum rwsem_wake_type wake_type,
406 			    struct wake_q_head *wake_q)
407 {
408 	struct rwsem_waiter *waiter, *tmp;
409 	long oldcount, woken = 0, adjustment = 0;
410 	struct list_head wlist;
411 
412 	lockdep_assert_held(&sem->wait_lock);
413 
414 	/*
415 	 * Take a peek at the queue head waiter such that we can determine
416 	 * the wakeup(s) to perform.
417 	 */
418 	waiter = rwsem_first_waiter(sem);
419 
420 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
421 		if (wake_type == RWSEM_WAKE_ANY) {
422 			/*
423 			 * Mark writer at the front of the queue for wakeup.
424 			 * Until the task is actually later awoken later by
425 			 * the caller, other writers are able to steal it.
426 			 * Readers, on the other hand, will block as they
427 			 * will notice the queued writer.
428 			 */
429 			wake_q_add(wake_q, waiter->task);
430 			lockevent_inc(rwsem_wake_writer);
431 		}
432 
433 		return;
434 	}
435 
436 	/*
437 	 * No reader wakeup if there are too many of them already.
438 	 */
439 	if (unlikely(atomic_long_read(&sem->count) < 0))
440 		return;
441 
442 	/*
443 	 * Writers might steal the lock before we grant it to the next reader.
444 	 * We prefer to do the first reader grant before counting readers
445 	 * so we can bail out early if a writer stole the lock.
446 	 */
447 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
448 		struct task_struct *owner;
449 
450 		adjustment = RWSEM_READER_BIAS;
451 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
452 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
453 			/*
454 			 * When we've been waiting "too" long (for writers
455 			 * to give up the lock), request a HANDOFF to
456 			 * force the issue.
457 			 */
458 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
459 			    time_after(jiffies, waiter->timeout)) {
460 				adjustment -= RWSEM_FLAG_HANDOFF;
461 				lockevent_inc(rwsem_rlock_handoff);
462 			}
463 
464 			atomic_long_add(-adjustment, &sem->count);
465 			return;
466 		}
467 		/*
468 		 * Set it to reader-owned to give spinners an early
469 		 * indication that readers now have the lock.
470 		 * The reader nonspinnable bit seen at slowpath entry of
471 		 * the reader is copied over.
472 		 */
473 		owner = waiter->task;
474 		__rwsem_set_reader_owned(sem, owner);
475 	}
476 
477 	/*
478 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
479 	 * queue. We know that the woken will be at least 1 as we accounted
480 	 * for above. Note we increment the 'active part' of the count by the
481 	 * number of readers before waking any processes up.
482 	 *
483 	 * This is an adaptation of the phase-fair R/W locks where at the
484 	 * reader phase (first waiter is a reader), all readers are eligible
485 	 * to acquire the lock at the same time irrespective of their order
486 	 * in the queue. The writers acquire the lock according to their
487 	 * order in the queue.
488 	 *
489 	 * We have to do wakeup in 2 passes to prevent the possibility that
490 	 * the reader count may be decremented before it is incremented. It
491 	 * is because the to-be-woken waiter may not have slept yet. So it
492 	 * may see waiter->task got cleared, finish its critical section and
493 	 * do an unlock before the reader count increment.
494 	 *
495 	 * 1) Collect the read-waiters in a separate list, count them and
496 	 *    fully increment the reader count in rwsem.
497 	 * 2) For each waiters in the new list, clear waiter->task and
498 	 *    put them into wake_q to be woken up later.
499 	 */
500 	INIT_LIST_HEAD(&wlist);
501 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
502 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
503 			continue;
504 
505 		woken++;
506 		list_move_tail(&waiter->list, &wlist);
507 
508 		/*
509 		 * Limit # of readers that can be woken up per wakeup call.
510 		 */
511 		if (unlikely(woken >= MAX_READERS_WAKEUP))
512 			break;
513 	}
514 
515 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
516 	lockevent_cond_inc(rwsem_wake_reader, woken);
517 
518 	oldcount = atomic_long_read(&sem->count);
519 	if (list_empty(&sem->wait_list)) {
520 		/*
521 		 * Combined with list_move_tail() above, this implies
522 		 * rwsem_del_waiter().
523 		 */
524 		adjustment -= RWSEM_FLAG_WAITERS;
525 		if (oldcount & RWSEM_FLAG_HANDOFF)
526 			adjustment -= RWSEM_FLAG_HANDOFF;
527 	} else if (woken) {
528 		/*
529 		 * When we've woken a reader, we no longer need to force
530 		 * writers to give up the lock and we can clear HANDOFF.
531 		 */
532 		if (oldcount & RWSEM_FLAG_HANDOFF)
533 			adjustment -= RWSEM_FLAG_HANDOFF;
534 	}
535 
536 	if (adjustment)
537 		atomic_long_add(adjustment, &sem->count);
538 
539 	/* 2nd pass */
540 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
541 		struct task_struct *tsk;
542 
543 		tsk = waiter->task;
544 		get_task_struct(tsk);
545 
546 		/*
547 		 * Ensure calling get_task_struct() before setting the reader
548 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
549 		 * race with do_exit() by always holding a reference count
550 		 * to the task to wakeup.
551 		 */
552 		smp_store_release(&waiter->task, NULL);
553 		/*
554 		 * Ensure issuing the wakeup (either by us or someone else)
555 		 * after setting the reader waiter to nil.
556 		 */
557 		wake_q_add_safe(wake_q, tsk);
558 	}
559 }
560 
561 /*
562  * This function must be called with the sem->wait_lock held to prevent
563  * race conditions between checking the rwsem wait list and setting the
564  * sem->count accordingly.
565  *
566  * Implies rwsem_del_waiter() on success.
567  */
568 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
569 					struct rwsem_waiter *waiter)
570 {
571 	bool first = rwsem_first_waiter(sem) == waiter;
572 	long count, new;
573 
574 	lockdep_assert_held(&sem->wait_lock);
575 
576 	count = atomic_long_read(&sem->count);
577 	do {
578 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
579 
580 		if (has_handoff) {
581 			if (!first)
582 				return false;
583 
584 			/* First waiter inherits a previously set handoff bit */
585 			waiter->handoff_set = true;
586 		}
587 
588 		new = count;
589 
590 		if (count & RWSEM_LOCK_MASK) {
591 			if (has_handoff || (!rt_task(waiter->task) &&
592 					    !time_after(jiffies, waiter->timeout)))
593 				return false;
594 
595 			new |= RWSEM_FLAG_HANDOFF;
596 		} else {
597 			new |= RWSEM_WRITER_LOCKED;
598 			new &= ~RWSEM_FLAG_HANDOFF;
599 
600 			if (list_is_singular(&sem->wait_list))
601 				new &= ~RWSEM_FLAG_WAITERS;
602 		}
603 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
604 
605 	/*
606 	 * We have either acquired the lock with handoff bit cleared or
607 	 * set the handoff bit.
608 	 */
609 	if (new & RWSEM_FLAG_HANDOFF) {
610 		waiter->handoff_set = true;
611 		lockevent_inc(rwsem_wlock_handoff);
612 		return false;
613 	}
614 
615 	/*
616 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
617 	 * success.
618 	 */
619 	list_del(&waiter->list);
620 	rwsem_set_owner(sem);
621 	return true;
622 }
623 
624 /*
625  * The rwsem_spin_on_owner() function returns the following 4 values
626  * depending on the lock owner state.
627  *   OWNER_NULL  : owner is currently NULL
628  *   OWNER_WRITER: when owner changes and is a writer
629  *   OWNER_READER: when owner changes and the new owner may be a reader.
630  *   OWNER_NONSPINNABLE:
631  *		   when optimistic spinning has to stop because either the
632  *		   owner stops running, is unknown, or its timeslice has
633  *		   been used up.
634  */
635 enum owner_state {
636 	OWNER_NULL		= 1 << 0,
637 	OWNER_WRITER		= 1 << 1,
638 	OWNER_READER		= 1 << 2,
639 	OWNER_NONSPINNABLE	= 1 << 3,
640 };
641 
642 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
643 /*
644  * Try to acquire write lock before the writer has been put on wait queue.
645  */
646 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
647 {
648 	long count = atomic_long_read(&sem->count);
649 
650 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
651 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
652 					count | RWSEM_WRITER_LOCKED)) {
653 			rwsem_set_owner(sem);
654 			lockevent_inc(rwsem_opt_lock);
655 			return true;
656 		}
657 	}
658 	return false;
659 }
660 
661 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
662 {
663 	struct task_struct *owner;
664 	unsigned long flags;
665 	bool ret = true;
666 
667 	if (need_resched()) {
668 		lockevent_inc(rwsem_opt_fail);
669 		return false;
670 	}
671 
672 	preempt_disable();
673 	/*
674 	 * Disable preemption is equal to the RCU read-side crital section,
675 	 * thus the task_strcut structure won't go away.
676 	 */
677 	owner = rwsem_owner_flags(sem, &flags);
678 	/*
679 	 * Don't check the read-owner as the entry may be stale.
680 	 */
681 	if ((flags & RWSEM_NONSPINNABLE) ||
682 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
683 		ret = false;
684 	preempt_enable();
685 
686 	lockevent_cond_inc(rwsem_opt_fail, !ret);
687 	return ret;
688 }
689 
690 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
691 
692 static inline enum owner_state
693 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
694 {
695 	if (flags & RWSEM_NONSPINNABLE)
696 		return OWNER_NONSPINNABLE;
697 
698 	if (flags & RWSEM_READER_OWNED)
699 		return OWNER_READER;
700 
701 	return owner ? OWNER_WRITER : OWNER_NULL;
702 }
703 
704 static noinline enum owner_state
705 rwsem_spin_on_owner(struct rw_semaphore *sem)
706 {
707 	struct task_struct *new, *owner;
708 	unsigned long flags, new_flags;
709 	enum owner_state state;
710 
711 	lockdep_assert_preemption_disabled();
712 
713 	owner = rwsem_owner_flags(sem, &flags);
714 	state = rwsem_owner_state(owner, flags);
715 	if (state != OWNER_WRITER)
716 		return state;
717 
718 	for (;;) {
719 		/*
720 		 * When a waiting writer set the handoff flag, it may spin
721 		 * on the owner as well. Once that writer acquires the lock,
722 		 * we can spin on it. So we don't need to quit even when the
723 		 * handoff bit is set.
724 		 */
725 		new = rwsem_owner_flags(sem, &new_flags);
726 		if ((new != owner) || (new_flags != flags)) {
727 			state = rwsem_owner_state(new, new_flags);
728 			break;
729 		}
730 
731 		/*
732 		 * Ensure we emit the owner->on_cpu, dereference _after_
733 		 * checking sem->owner still matches owner, if that fails,
734 		 * owner might point to free()d memory, if it still matches,
735 		 * our spinning context already disabled preemption which is
736 		 * equal to RCU read-side crital section ensures the memory
737 		 * stays valid.
738 		 */
739 		barrier();
740 
741 		if (need_resched() || !owner_on_cpu(owner)) {
742 			state = OWNER_NONSPINNABLE;
743 			break;
744 		}
745 
746 		cpu_relax();
747 	}
748 
749 	return state;
750 }
751 
752 /*
753  * Calculate reader-owned rwsem spinning threshold for writer
754  *
755  * The more readers own the rwsem, the longer it will take for them to
756  * wind down and free the rwsem. So the empirical formula used to
757  * determine the actual spinning time limit here is:
758  *
759  *   Spinning threshold = (10 + nr_readers/2)us
760  *
761  * The limit is capped to a maximum of 25us (30 readers). This is just
762  * a heuristic and is subjected to change in the future.
763  */
764 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
765 {
766 	long count = atomic_long_read(&sem->count);
767 	int readers = count >> RWSEM_READER_SHIFT;
768 	u64 delta;
769 
770 	if (readers > 30)
771 		readers = 30;
772 	delta = (20 + readers) * NSEC_PER_USEC / 2;
773 
774 	return sched_clock() + delta;
775 }
776 
777 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
778 {
779 	bool taken = false;
780 	int prev_owner_state = OWNER_NULL;
781 	int loop = 0;
782 	u64 rspin_threshold = 0;
783 
784 	preempt_disable();
785 
786 	/* sem->wait_lock should not be held when doing optimistic spinning */
787 	if (!osq_lock(&sem->osq))
788 		goto done;
789 
790 	/*
791 	 * Optimistically spin on the owner field and attempt to acquire the
792 	 * lock whenever the owner changes. Spinning will be stopped when:
793 	 *  1) the owning writer isn't running; or
794 	 *  2) readers own the lock and spinning time has exceeded limit.
795 	 */
796 	for (;;) {
797 		enum owner_state owner_state;
798 
799 		owner_state = rwsem_spin_on_owner(sem);
800 		if (!(owner_state & OWNER_SPINNABLE))
801 			break;
802 
803 		/*
804 		 * Try to acquire the lock
805 		 */
806 		taken = rwsem_try_write_lock_unqueued(sem);
807 
808 		if (taken)
809 			break;
810 
811 		/*
812 		 * Time-based reader-owned rwsem optimistic spinning
813 		 */
814 		if (owner_state == OWNER_READER) {
815 			/*
816 			 * Re-initialize rspin_threshold every time when
817 			 * the owner state changes from non-reader to reader.
818 			 * This allows a writer to steal the lock in between
819 			 * 2 reader phases and have the threshold reset at
820 			 * the beginning of the 2nd reader phase.
821 			 */
822 			if (prev_owner_state != OWNER_READER) {
823 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
824 					break;
825 				rspin_threshold = rwsem_rspin_threshold(sem);
826 				loop = 0;
827 			}
828 
829 			/*
830 			 * Check time threshold once every 16 iterations to
831 			 * avoid calling sched_clock() too frequently so
832 			 * as to reduce the average latency between the times
833 			 * when the lock becomes free and when the spinner
834 			 * is ready to do a trylock.
835 			 */
836 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
837 				rwsem_set_nonspinnable(sem);
838 				lockevent_inc(rwsem_opt_nospin);
839 				break;
840 			}
841 		}
842 
843 		/*
844 		 * An RT task cannot do optimistic spinning if it cannot
845 		 * be sure the lock holder is running or live-lock may
846 		 * happen if the current task and the lock holder happen
847 		 * to run in the same CPU. However, aborting optimistic
848 		 * spinning while a NULL owner is detected may miss some
849 		 * opportunity where spinning can continue without causing
850 		 * problem.
851 		 *
852 		 * There are 2 possible cases where an RT task may be able
853 		 * to continue spinning.
854 		 *
855 		 * 1) The lock owner is in the process of releasing the
856 		 *    lock, sem->owner is cleared but the lock has not
857 		 *    been released yet.
858 		 * 2) The lock was free and owner cleared, but another
859 		 *    task just comes in and acquire the lock before
860 		 *    we try to get it. The new owner may be a spinnable
861 		 *    writer.
862 		 *
863 		 * To take advantage of two scenarios listed above, the RT
864 		 * task is made to retry one more time to see if it can
865 		 * acquire the lock or continue spinning on the new owning
866 		 * writer. Of course, if the time lag is long enough or the
867 		 * new owner is not a writer or spinnable, the RT task will
868 		 * quit spinning.
869 		 *
870 		 * If the owner is a writer, the need_resched() check is
871 		 * done inside rwsem_spin_on_owner(). If the owner is not
872 		 * a writer, need_resched() check needs to be done here.
873 		 */
874 		if (owner_state != OWNER_WRITER) {
875 			if (need_resched())
876 				break;
877 			if (rt_task(current) &&
878 			   (prev_owner_state != OWNER_WRITER))
879 				break;
880 		}
881 		prev_owner_state = owner_state;
882 
883 		/*
884 		 * The cpu_relax() call is a compiler barrier which forces
885 		 * everything in this loop to be re-loaded. We don't need
886 		 * memory barriers as we'll eventually observe the right
887 		 * values at the cost of a few extra spins.
888 		 */
889 		cpu_relax();
890 	}
891 	osq_unlock(&sem->osq);
892 done:
893 	preempt_enable();
894 	lockevent_cond_inc(rwsem_opt_fail, !taken);
895 	return taken;
896 }
897 
898 /*
899  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
900  * only be called when the reader count reaches 0.
901  */
902 static inline void clear_nonspinnable(struct rw_semaphore *sem)
903 {
904 	if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
905 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
906 }
907 
908 #else
909 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
910 {
911 	return false;
912 }
913 
914 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
915 {
916 	return false;
917 }
918 
919 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
920 
921 static inline enum owner_state
922 rwsem_spin_on_owner(struct rw_semaphore *sem)
923 {
924 	return OWNER_NONSPINNABLE;
925 }
926 #endif
927 
928 /*
929  * Wait for the read lock to be granted
930  */
931 static struct rw_semaphore __sched *
932 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
933 {
934 	long adjustment = -RWSEM_READER_BIAS;
935 	long rcnt = (count >> RWSEM_READER_SHIFT);
936 	struct rwsem_waiter waiter;
937 	DEFINE_WAKE_Q(wake_q);
938 	bool wake = false;
939 
940 	/*
941 	 * To prevent a constant stream of readers from starving a sleeping
942 	 * waiter, don't attempt optimistic lock stealing if the lock is
943 	 * currently owned by readers.
944 	 */
945 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
946 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
947 		goto queue;
948 
949 	/*
950 	 * Reader optimistic lock stealing.
951 	 */
952 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
953 		rwsem_set_reader_owned(sem);
954 		lockevent_inc(rwsem_rlock_steal);
955 
956 		/*
957 		 * Wake up other readers in the wait queue if it is
958 		 * the first reader.
959 		 */
960 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
961 			raw_spin_lock_irq(&sem->wait_lock);
962 			if (!list_empty(&sem->wait_list))
963 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
964 						&wake_q);
965 			raw_spin_unlock_irq(&sem->wait_lock);
966 			wake_up_q(&wake_q);
967 		}
968 		return sem;
969 	}
970 
971 queue:
972 	waiter.task = current;
973 	waiter.type = RWSEM_WAITING_FOR_READ;
974 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
975 
976 	raw_spin_lock_irq(&sem->wait_lock);
977 	if (list_empty(&sem->wait_list)) {
978 		/*
979 		 * In case the wait queue is empty and the lock isn't owned
980 		 * by a writer or has the handoff bit set, this reader can
981 		 * exit the slowpath and return immediately as its
982 		 * RWSEM_READER_BIAS has already been set in the count.
983 		 */
984 		if (!(atomic_long_read(&sem->count) &
985 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
986 			/* Provide lock ACQUIRE */
987 			smp_acquire__after_ctrl_dep();
988 			raw_spin_unlock_irq(&sem->wait_lock);
989 			rwsem_set_reader_owned(sem);
990 			lockevent_inc(rwsem_rlock_fast);
991 			return sem;
992 		}
993 		adjustment += RWSEM_FLAG_WAITERS;
994 	}
995 	rwsem_add_waiter(sem, &waiter);
996 
997 	/* we're now waiting on the lock, but no longer actively locking */
998 	count = atomic_long_add_return(adjustment, &sem->count);
999 
1000 	/*
1001 	 * If there are no active locks, wake the front queued process(es).
1002 	 *
1003 	 * If there are no writers and we are first in the queue,
1004 	 * wake our own waiter to join the existing active readers !
1005 	 */
1006 	if (!(count & RWSEM_LOCK_MASK)) {
1007 		clear_nonspinnable(sem);
1008 		wake = true;
1009 	}
1010 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
1011 		    (adjustment & RWSEM_FLAG_WAITERS)))
1012 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1013 
1014 	raw_spin_unlock_irq(&sem->wait_lock);
1015 	wake_up_q(&wake_q);
1016 
1017 	/* wait to be given the lock */
1018 	for (;;) {
1019 		set_current_state(state);
1020 		if (!smp_load_acquire(&waiter.task)) {
1021 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1022 			break;
1023 		}
1024 		if (signal_pending_state(state, current)) {
1025 			raw_spin_lock_irq(&sem->wait_lock);
1026 			if (waiter.task)
1027 				goto out_nolock;
1028 			raw_spin_unlock_irq(&sem->wait_lock);
1029 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1030 			break;
1031 		}
1032 		schedule();
1033 		lockevent_inc(rwsem_sleep_reader);
1034 	}
1035 
1036 	__set_current_state(TASK_RUNNING);
1037 	lockevent_inc(rwsem_rlock);
1038 	return sem;
1039 
1040 out_nolock:
1041 	rwsem_del_waiter(sem, &waiter);
1042 	raw_spin_unlock_irq(&sem->wait_lock);
1043 	__set_current_state(TASK_RUNNING);
1044 	lockevent_inc(rwsem_rlock_fail);
1045 	return ERR_PTR(-EINTR);
1046 }
1047 
1048 /*
1049  * Wait until we successfully acquire the write lock
1050  */
1051 static struct rw_semaphore *
1052 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1053 {
1054 	long count;
1055 	struct rwsem_waiter waiter;
1056 	DEFINE_WAKE_Q(wake_q);
1057 
1058 	/* do optimistic spinning and steal lock if possible */
1059 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1060 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1061 		return sem;
1062 	}
1063 
1064 	/*
1065 	 * Optimistic spinning failed, proceed to the slowpath
1066 	 * and block until we can acquire the sem.
1067 	 */
1068 	waiter.task = current;
1069 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1070 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1071 	waiter.handoff_set = false;
1072 
1073 	raw_spin_lock_irq(&sem->wait_lock);
1074 	rwsem_add_waiter(sem, &waiter);
1075 
1076 	/* we're now waiting on the lock */
1077 	if (rwsem_first_waiter(sem) != &waiter) {
1078 		count = atomic_long_read(&sem->count);
1079 
1080 		/*
1081 		 * If there were already threads queued before us and:
1082 		 *  1) there are no active locks, wake the front
1083 		 *     queued process(es) as the handoff bit might be set.
1084 		 *  2) there are no active writers and some readers, the lock
1085 		 *     must be read owned; so we try to wake any read lock
1086 		 *     waiters that were queued ahead of us.
1087 		 */
1088 		if (count & RWSEM_WRITER_MASK)
1089 			goto wait;
1090 
1091 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1092 					? RWSEM_WAKE_READERS
1093 					: RWSEM_WAKE_ANY, &wake_q);
1094 
1095 		if (!wake_q_empty(&wake_q)) {
1096 			/*
1097 			 * We want to minimize wait_lock hold time especially
1098 			 * when a large number of readers are to be woken up.
1099 			 */
1100 			raw_spin_unlock_irq(&sem->wait_lock);
1101 			wake_up_q(&wake_q);
1102 			wake_q_init(&wake_q);	/* Used again, reinit */
1103 			raw_spin_lock_irq(&sem->wait_lock);
1104 		}
1105 	} else {
1106 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1107 	}
1108 
1109 wait:
1110 	/* wait until we successfully acquire the lock */
1111 	set_current_state(state);
1112 	for (;;) {
1113 		if (rwsem_try_write_lock(sem, &waiter)) {
1114 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1115 			break;
1116 		}
1117 
1118 		raw_spin_unlock_irq(&sem->wait_lock);
1119 
1120 		if (signal_pending_state(state, current))
1121 			goto out_nolock;
1122 
1123 		/*
1124 		 * After setting the handoff bit and failing to acquire
1125 		 * the lock, attempt to spin on owner to accelerate lock
1126 		 * transfer. If the previous owner is a on-cpu writer and it
1127 		 * has just released the lock, OWNER_NULL will be returned.
1128 		 * In this case, we attempt to acquire the lock again
1129 		 * without sleeping.
1130 		 */
1131 		if (waiter.handoff_set) {
1132 			enum owner_state owner_state;
1133 
1134 			preempt_disable();
1135 			owner_state = rwsem_spin_on_owner(sem);
1136 			preempt_enable();
1137 
1138 			if (owner_state == OWNER_NULL)
1139 				goto trylock_again;
1140 		}
1141 
1142 		schedule();
1143 		lockevent_inc(rwsem_sleep_writer);
1144 		set_current_state(state);
1145 trylock_again:
1146 		raw_spin_lock_irq(&sem->wait_lock);
1147 	}
1148 	__set_current_state(TASK_RUNNING);
1149 	raw_spin_unlock_irq(&sem->wait_lock);
1150 	lockevent_inc(rwsem_wlock);
1151 	return sem;
1152 
1153 out_nolock:
1154 	__set_current_state(TASK_RUNNING);
1155 	raw_spin_lock_irq(&sem->wait_lock);
1156 	rwsem_del_waiter(sem, &waiter);
1157 	if (!list_empty(&sem->wait_list))
1158 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1159 	raw_spin_unlock_irq(&sem->wait_lock);
1160 	wake_up_q(&wake_q);
1161 	lockevent_inc(rwsem_wlock_fail);
1162 	return ERR_PTR(-EINTR);
1163 }
1164 
1165 /*
1166  * handle waking up a waiter on the semaphore
1167  * - up_read/up_write has decremented the active part of count if we come here
1168  */
1169 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1170 {
1171 	unsigned long flags;
1172 	DEFINE_WAKE_Q(wake_q);
1173 
1174 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1175 
1176 	if (!list_empty(&sem->wait_list))
1177 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1178 
1179 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1180 	wake_up_q(&wake_q);
1181 
1182 	return sem;
1183 }
1184 
1185 /*
1186  * downgrade a write lock into a read lock
1187  * - caller incremented waiting part of count and discovered it still negative
1188  * - just wake up any readers at the front of the queue
1189  */
1190 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1191 {
1192 	unsigned long flags;
1193 	DEFINE_WAKE_Q(wake_q);
1194 
1195 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1196 
1197 	if (!list_empty(&sem->wait_list))
1198 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1199 
1200 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1201 	wake_up_q(&wake_q);
1202 
1203 	return sem;
1204 }
1205 
1206 /*
1207  * lock for reading
1208  */
1209 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1210 {
1211 	long count;
1212 
1213 	if (!rwsem_read_trylock(sem, &count)) {
1214 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1215 			return -EINTR;
1216 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1217 	}
1218 	return 0;
1219 }
1220 
1221 static inline void __down_read(struct rw_semaphore *sem)
1222 {
1223 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1224 }
1225 
1226 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1227 {
1228 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1229 }
1230 
1231 static inline int __down_read_killable(struct rw_semaphore *sem)
1232 {
1233 	return __down_read_common(sem, TASK_KILLABLE);
1234 }
1235 
1236 static inline int __down_read_trylock(struct rw_semaphore *sem)
1237 {
1238 	long tmp;
1239 
1240 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1241 
1242 	tmp = atomic_long_read(&sem->count);
1243 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1244 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1245 						    tmp + RWSEM_READER_BIAS)) {
1246 			rwsem_set_reader_owned(sem);
1247 			return 1;
1248 		}
1249 	}
1250 	return 0;
1251 }
1252 
1253 /*
1254  * lock for writing
1255  */
1256 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1257 {
1258 	if (unlikely(!rwsem_write_trylock(sem))) {
1259 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1260 			return -EINTR;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static inline void __down_write(struct rw_semaphore *sem)
1267 {
1268 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1269 }
1270 
1271 static inline int __down_write_killable(struct rw_semaphore *sem)
1272 {
1273 	return __down_write_common(sem, TASK_KILLABLE);
1274 }
1275 
1276 static inline int __down_write_trylock(struct rw_semaphore *sem)
1277 {
1278 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1279 	return rwsem_write_trylock(sem);
1280 }
1281 
1282 /*
1283  * unlock after reading
1284  */
1285 static inline void __up_read(struct rw_semaphore *sem)
1286 {
1287 	long tmp;
1288 
1289 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1290 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1291 
1292 	rwsem_clear_reader_owned(sem);
1293 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1294 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1295 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1296 		      RWSEM_FLAG_WAITERS)) {
1297 		clear_nonspinnable(sem);
1298 		rwsem_wake(sem);
1299 	}
1300 }
1301 
1302 /*
1303  * unlock after writing
1304  */
1305 static inline void __up_write(struct rw_semaphore *sem)
1306 {
1307 	long tmp;
1308 
1309 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1310 	/*
1311 	 * sem->owner may differ from current if the ownership is transferred
1312 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1313 	 */
1314 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1315 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1316 
1317 	rwsem_clear_owner(sem);
1318 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1319 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1320 		rwsem_wake(sem);
1321 }
1322 
1323 /*
1324  * downgrade write lock to read lock
1325  */
1326 static inline void __downgrade_write(struct rw_semaphore *sem)
1327 {
1328 	long tmp;
1329 
1330 	/*
1331 	 * When downgrading from exclusive to shared ownership,
1332 	 * anything inside the write-locked region cannot leak
1333 	 * into the read side. In contrast, anything in the
1334 	 * read-locked region is ok to be re-ordered into the
1335 	 * write side. As such, rely on RELEASE semantics.
1336 	 */
1337 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1338 	tmp = atomic_long_fetch_add_release(
1339 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1340 	rwsem_set_reader_owned(sem);
1341 	if (tmp & RWSEM_FLAG_WAITERS)
1342 		rwsem_downgrade_wake(sem);
1343 }
1344 
1345 #else /* !CONFIG_PREEMPT_RT */
1346 
1347 #define RT_MUTEX_BUILD_MUTEX
1348 #include "rtmutex.c"
1349 
1350 #define rwbase_set_and_save_current_state(state)	\
1351 	set_current_state(state)
1352 
1353 #define rwbase_restore_current_state()			\
1354 	__set_current_state(TASK_RUNNING)
1355 
1356 #define rwbase_rtmutex_lock_state(rtm, state)		\
1357 	__rt_mutex_lock(rtm, state)
1358 
1359 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1360 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1361 
1362 #define rwbase_rtmutex_unlock(rtm)			\
1363 	__rt_mutex_unlock(rtm)
1364 
1365 #define rwbase_rtmutex_trylock(rtm)			\
1366 	__rt_mutex_trylock(rtm)
1367 
1368 #define rwbase_signal_pending_state(state, current)	\
1369 	signal_pending_state(state, current)
1370 
1371 #define rwbase_schedule()				\
1372 	schedule()
1373 
1374 #include "rwbase_rt.c"
1375 
1376 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1377 		  struct lock_class_key *key)
1378 {
1379 	init_rwbase_rt(&(sem)->rwbase);
1380 
1381 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1382 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1383 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1384 #endif
1385 }
1386 EXPORT_SYMBOL(__init_rwsem);
1387 
1388 static inline void __down_read(struct rw_semaphore *sem)
1389 {
1390 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1391 }
1392 
1393 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1394 {
1395 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1396 }
1397 
1398 static inline int __down_read_killable(struct rw_semaphore *sem)
1399 {
1400 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1401 }
1402 
1403 static inline int __down_read_trylock(struct rw_semaphore *sem)
1404 {
1405 	return rwbase_read_trylock(&sem->rwbase);
1406 }
1407 
1408 static inline void __up_read(struct rw_semaphore *sem)
1409 {
1410 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1411 }
1412 
1413 static inline void __sched __down_write(struct rw_semaphore *sem)
1414 {
1415 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1416 }
1417 
1418 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1419 {
1420 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1421 }
1422 
1423 static inline int __down_write_trylock(struct rw_semaphore *sem)
1424 {
1425 	return rwbase_write_trylock(&sem->rwbase);
1426 }
1427 
1428 static inline void __up_write(struct rw_semaphore *sem)
1429 {
1430 	rwbase_write_unlock(&sem->rwbase);
1431 }
1432 
1433 static inline void __downgrade_write(struct rw_semaphore *sem)
1434 {
1435 	rwbase_write_downgrade(&sem->rwbase);
1436 }
1437 
1438 /* Debug stubs for the common API */
1439 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1440 
1441 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1442 					    struct task_struct *owner)
1443 {
1444 }
1445 
1446 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1447 {
1448 	int count = atomic_read(&sem->rwbase.readers);
1449 
1450 	return count < 0 && count != READER_BIAS;
1451 }
1452 
1453 #endif /* CONFIG_PREEMPT_RT */
1454 
1455 /*
1456  * lock for reading
1457  */
1458 void __sched down_read(struct rw_semaphore *sem)
1459 {
1460 	might_sleep();
1461 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1462 
1463 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1464 }
1465 EXPORT_SYMBOL(down_read);
1466 
1467 int __sched down_read_interruptible(struct rw_semaphore *sem)
1468 {
1469 	might_sleep();
1470 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1471 
1472 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1473 		rwsem_release(&sem->dep_map, _RET_IP_);
1474 		return -EINTR;
1475 	}
1476 
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(down_read_interruptible);
1480 
1481 int __sched down_read_killable(struct rw_semaphore *sem)
1482 {
1483 	might_sleep();
1484 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1485 
1486 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1487 		rwsem_release(&sem->dep_map, _RET_IP_);
1488 		return -EINTR;
1489 	}
1490 
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(down_read_killable);
1494 
1495 /*
1496  * trylock for reading -- returns 1 if successful, 0 if contention
1497  */
1498 int down_read_trylock(struct rw_semaphore *sem)
1499 {
1500 	int ret = __down_read_trylock(sem);
1501 
1502 	if (ret == 1)
1503 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(down_read_trylock);
1507 
1508 /*
1509  * lock for writing
1510  */
1511 void __sched down_write(struct rw_semaphore *sem)
1512 {
1513 	might_sleep();
1514 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1515 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1516 }
1517 EXPORT_SYMBOL(down_write);
1518 
1519 /*
1520  * lock for writing
1521  */
1522 int __sched down_write_killable(struct rw_semaphore *sem)
1523 {
1524 	might_sleep();
1525 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1526 
1527 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1528 				  __down_write_killable)) {
1529 		rwsem_release(&sem->dep_map, _RET_IP_);
1530 		return -EINTR;
1531 	}
1532 
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL(down_write_killable);
1536 
1537 /*
1538  * trylock for writing -- returns 1 if successful, 0 if contention
1539  */
1540 int down_write_trylock(struct rw_semaphore *sem)
1541 {
1542 	int ret = __down_write_trylock(sem);
1543 
1544 	if (ret == 1)
1545 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1546 
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(down_write_trylock);
1550 
1551 /*
1552  * release a read lock
1553  */
1554 void up_read(struct rw_semaphore *sem)
1555 {
1556 	rwsem_release(&sem->dep_map, _RET_IP_);
1557 	__up_read(sem);
1558 }
1559 EXPORT_SYMBOL(up_read);
1560 
1561 /*
1562  * release a write lock
1563  */
1564 void up_write(struct rw_semaphore *sem)
1565 {
1566 	rwsem_release(&sem->dep_map, _RET_IP_);
1567 	__up_write(sem);
1568 }
1569 EXPORT_SYMBOL(up_write);
1570 
1571 /*
1572  * downgrade write lock to read lock
1573  */
1574 void downgrade_write(struct rw_semaphore *sem)
1575 {
1576 	lock_downgrade(&sem->dep_map, _RET_IP_);
1577 	__downgrade_write(sem);
1578 }
1579 EXPORT_SYMBOL(downgrade_write);
1580 
1581 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1582 
1583 void down_read_nested(struct rw_semaphore *sem, int subclass)
1584 {
1585 	might_sleep();
1586 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1587 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1588 }
1589 EXPORT_SYMBOL(down_read_nested);
1590 
1591 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1592 {
1593 	might_sleep();
1594 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1595 
1596 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1597 		rwsem_release(&sem->dep_map, _RET_IP_);
1598 		return -EINTR;
1599 	}
1600 
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL(down_read_killable_nested);
1604 
1605 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1606 {
1607 	might_sleep();
1608 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1609 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1610 }
1611 EXPORT_SYMBOL(_down_write_nest_lock);
1612 
1613 void down_read_non_owner(struct rw_semaphore *sem)
1614 {
1615 	might_sleep();
1616 	__down_read(sem);
1617 	__rwsem_set_reader_owned(sem, NULL);
1618 }
1619 EXPORT_SYMBOL(down_read_non_owner);
1620 
1621 void down_write_nested(struct rw_semaphore *sem, int subclass)
1622 {
1623 	might_sleep();
1624 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1625 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1626 }
1627 EXPORT_SYMBOL(down_write_nested);
1628 
1629 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1630 {
1631 	might_sleep();
1632 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1633 
1634 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1635 				  __down_write_killable)) {
1636 		rwsem_release(&sem->dep_map, _RET_IP_);
1637 		return -EINTR;
1638 	}
1639 
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(down_write_killable_nested);
1643 
1644 void up_read_non_owner(struct rw_semaphore *sem)
1645 {
1646 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1647 	__up_read(sem);
1648 }
1649 EXPORT_SYMBOL(up_read_non_owner);
1650 
1651 #endif
1652