xref: /openbmc/linux/kernel/locking/qspinlock.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * Queued spinlock
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15  * (C) Copyright 2013-2014,2018 Red Hat, Inc.
16  * (C) Copyright 2015 Intel Corp.
17  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18  *
19  * Authors: Waiman Long <longman@redhat.com>
20  *          Peter Zijlstra <peterz@infradead.org>
21  */
22 
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24 
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <linux/prefetch.h>
32 #include <asm/byteorder.h>
33 #include <asm/qspinlock.h>
34 
35 /*
36  * Include queued spinlock statistics code
37  */
38 #include "qspinlock_stat.h"
39 
40 /*
41  * The basic principle of a queue-based spinlock can best be understood
42  * by studying a classic queue-based spinlock implementation called the
43  * MCS lock. The paper below provides a good description for this kind
44  * of lock.
45  *
46  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
47  *
48  * This queued spinlock implementation is based on the MCS lock, however to make
49  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
50  * API, we must modify it somehow.
51  *
52  * In particular; where the traditional MCS lock consists of a tail pointer
53  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
54  * unlock the next pending (next->locked), we compress both these: {tail,
55  * next->locked} into a single u32 value.
56  *
57  * Since a spinlock disables recursion of its own context and there is a limit
58  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
59  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
60  * we can encode the tail by combining the 2-bit nesting level with the cpu
61  * number. With one byte for the lock value and 3 bytes for the tail, only a
62  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
63  * we extend it to a full byte to achieve better performance for architectures
64  * that support atomic byte write.
65  *
66  * We also change the first spinner to spin on the lock bit instead of its
67  * node; whereby avoiding the need to carry a node from lock to unlock, and
68  * preserving existing lock API. This also makes the unlock code simpler and
69  * faster.
70  *
71  * N.B. The current implementation only supports architectures that allow
72  *      atomic operations on smaller 8-bit and 16-bit data types.
73  *
74  */
75 
76 #include "mcs_spinlock.h"
77 
78 #ifdef CONFIG_PARAVIRT_SPINLOCKS
79 #define MAX_NODES	8
80 #else
81 #define MAX_NODES	4
82 #endif
83 
84 /*
85  * The pending bit spinning loop count.
86  * This heuristic is used to limit the number of lockword accesses
87  * made by atomic_cond_read_relaxed when waiting for the lock to
88  * transition out of the "== _Q_PENDING_VAL" state. We don't spin
89  * indefinitely because there's no guarantee that we'll make forward
90  * progress.
91  */
92 #ifndef _Q_PENDING_LOOPS
93 #define _Q_PENDING_LOOPS	1
94 #endif
95 
96 /*
97  * Per-CPU queue node structures; we can never have more than 4 nested
98  * contexts: task, softirq, hardirq, nmi.
99  *
100  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
101  *
102  * PV doubles the storage and uses the second cacheline for PV state.
103  */
104 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
105 
106 /*
107  * We must be able to distinguish between no-tail and the tail at 0:0,
108  * therefore increment the cpu number by one.
109  */
110 
111 static inline __pure u32 encode_tail(int cpu, int idx)
112 {
113 	u32 tail;
114 
115 #ifdef CONFIG_DEBUG_SPINLOCK
116 	BUG_ON(idx > 3);
117 #endif
118 	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
119 	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
120 
121 	return tail;
122 }
123 
124 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
125 {
126 	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
127 	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
128 
129 	return per_cpu_ptr(&mcs_nodes[idx], cpu);
130 }
131 
132 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
133 
134 #if _Q_PENDING_BITS == 8
135 /**
136  * clear_pending - clear the pending bit.
137  * @lock: Pointer to queued spinlock structure
138  *
139  * *,1,* -> *,0,*
140  */
141 static __always_inline void clear_pending(struct qspinlock *lock)
142 {
143 	WRITE_ONCE(lock->pending, 0);
144 }
145 
146 /**
147  * clear_pending_set_locked - take ownership and clear the pending bit.
148  * @lock: Pointer to queued spinlock structure
149  *
150  * *,1,0 -> *,0,1
151  *
152  * Lock stealing is not allowed if this function is used.
153  */
154 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
155 {
156 	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
157 }
158 
159 /*
160  * xchg_tail - Put in the new queue tail code word & retrieve previous one
161  * @lock : Pointer to queued spinlock structure
162  * @tail : The new queue tail code word
163  * Return: The previous queue tail code word
164  *
165  * xchg(lock, tail), which heads an address dependency
166  *
167  * p,*,* -> n,*,* ; prev = xchg(lock, node)
168  */
169 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
170 {
171 	/*
172 	 * We can use relaxed semantics since the caller ensures that the
173 	 * MCS node is properly initialized before updating the tail.
174 	 */
175 	return (u32)xchg_relaxed(&lock->tail,
176 				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
177 }
178 
179 #else /* _Q_PENDING_BITS == 8 */
180 
181 /**
182  * clear_pending - clear the pending bit.
183  * @lock: Pointer to queued spinlock structure
184  *
185  * *,1,* -> *,0,*
186  */
187 static __always_inline void clear_pending(struct qspinlock *lock)
188 {
189 	atomic_andnot(_Q_PENDING_VAL, &lock->val);
190 }
191 
192 /**
193  * clear_pending_set_locked - take ownership and clear the pending bit.
194  * @lock: Pointer to queued spinlock structure
195  *
196  * *,1,0 -> *,0,1
197  */
198 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
199 {
200 	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
201 }
202 
203 /**
204  * xchg_tail - Put in the new queue tail code word & retrieve previous one
205  * @lock : Pointer to queued spinlock structure
206  * @tail : The new queue tail code word
207  * Return: The previous queue tail code word
208  *
209  * xchg(lock, tail)
210  *
211  * p,*,* -> n,*,* ; prev = xchg(lock, node)
212  */
213 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
214 {
215 	u32 old, new, val = atomic_read(&lock->val);
216 
217 	for (;;) {
218 		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
219 		/*
220 		 * We can use relaxed semantics since the caller ensures that
221 		 * the MCS node is properly initialized before updating the
222 		 * tail.
223 		 */
224 		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
225 		if (old == val)
226 			break;
227 
228 		val = old;
229 	}
230 	return old;
231 }
232 #endif /* _Q_PENDING_BITS == 8 */
233 
234 /**
235  * set_locked - Set the lock bit and own the lock
236  * @lock: Pointer to queued spinlock structure
237  *
238  * *,*,0 -> *,0,1
239  */
240 static __always_inline void set_locked(struct qspinlock *lock)
241 {
242 	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
243 }
244 
245 
246 /*
247  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
248  * all the PV callbacks.
249  */
250 
251 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
252 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
253 					   struct mcs_spinlock *prev) { }
254 static __always_inline void __pv_kick_node(struct qspinlock *lock,
255 					   struct mcs_spinlock *node) { }
256 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
257 						   struct mcs_spinlock *node)
258 						   { return 0; }
259 
260 #define pv_enabled()		false
261 
262 #define pv_init_node		__pv_init_node
263 #define pv_wait_node		__pv_wait_node
264 #define pv_kick_node		__pv_kick_node
265 #define pv_wait_head_or_lock	__pv_wait_head_or_lock
266 
267 #ifdef CONFIG_PARAVIRT_SPINLOCKS
268 #define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
269 #endif
270 
271 #endif /* _GEN_PV_LOCK_SLOWPATH */
272 
273 /**
274  * queued_spin_lock_slowpath - acquire the queued spinlock
275  * @lock: Pointer to queued spinlock structure
276  * @val: Current value of the queued spinlock 32-bit word
277  *
278  * (queue tail, pending bit, lock value)
279  *
280  *              fast     :    slow                                  :    unlock
281  *                       :                                          :
282  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
283  *                       :       | ^--------.------.             /  :
284  *                       :       v           \      \            |  :
285  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
286  *                       :       | ^--'              |           |  :
287  *                       :       v                   |           |  :
288  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
289  *   queue               :       | ^--'                          |  :
290  *                       :       v                               |  :
291  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
292  *   queue               :         ^--'                             :
293  */
294 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
295 {
296 	struct mcs_spinlock *prev, *next, *node;
297 	u32 old, tail;
298 	int idx;
299 
300 	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
301 
302 	if (pv_enabled())
303 		goto pv_queue;
304 
305 	if (virt_spin_lock(lock))
306 		return;
307 
308 	/*
309 	 * Wait for in-progress pending->locked hand-overs with a bounded
310 	 * number of spins so that we guarantee forward progress.
311 	 *
312 	 * 0,1,0 -> 0,0,1
313 	 */
314 	if (val == _Q_PENDING_VAL) {
315 		int cnt = _Q_PENDING_LOOPS;
316 		val = atomic_cond_read_relaxed(&lock->val,
317 					       (VAL != _Q_PENDING_VAL) || !cnt--);
318 	}
319 
320 	/*
321 	 * If we observe any contention; queue.
322 	 */
323 	if (val & ~_Q_LOCKED_MASK)
324 		goto queue;
325 
326 	/*
327 	 * trylock || pending
328 	 *
329 	 * 0,0,0 -> 0,0,1 ; trylock
330 	 * 0,0,1 -> 0,1,1 ; pending
331 	 */
332 	val = atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
333 	if (!(val & ~_Q_LOCKED_MASK)) {
334 		/*
335 		 * We're pending, wait for the owner to go away.
336 		 *
337 		 * *,1,1 -> *,1,0
338 		 *
339 		 * this wait loop must be a load-acquire such that we match the
340 		 * store-release that clears the locked bit and create lock
341 		 * sequentiality; this is because not all
342 		 * clear_pending_set_locked() implementations imply full
343 		 * barriers.
344 		 */
345 		if (val & _Q_LOCKED_MASK) {
346 			atomic_cond_read_acquire(&lock->val,
347 						 !(VAL & _Q_LOCKED_MASK));
348 		}
349 
350 		/*
351 		 * take ownership and clear the pending bit.
352 		 *
353 		 * *,1,0 -> *,0,1
354 		 */
355 		clear_pending_set_locked(lock);
356 		qstat_inc(qstat_lock_pending, true);
357 		return;
358 	}
359 
360 	/*
361 	 * If pending was clear but there are waiters in the queue, then
362 	 * we need to undo our setting of pending before we queue ourselves.
363 	 */
364 	if (!(val & _Q_PENDING_MASK))
365 		clear_pending(lock);
366 
367 	/*
368 	 * End of pending bit optimistic spinning and beginning of MCS
369 	 * queuing.
370 	 */
371 queue:
372 	qstat_inc(qstat_lock_slowpath, true);
373 pv_queue:
374 	node = this_cpu_ptr(&mcs_nodes[0]);
375 	idx = node->count++;
376 	tail = encode_tail(smp_processor_id(), idx);
377 
378 	node += idx;
379 
380 	/*
381 	 * Ensure that we increment the head node->count before initialising
382 	 * the actual node. If the compiler is kind enough to reorder these
383 	 * stores, then an IRQ could overwrite our assignments.
384 	 */
385 	barrier();
386 
387 	node->locked = 0;
388 	node->next = NULL;
389 	pv_init_node(node);
390 
391 	/*
392 	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
393 	 * attempt the trylock once more in the hope someone let go while we
394 	 * weren't watching.
395 	 */
396 	if (queued_spin_trylock(lock))
397 		goto release;
398 
399 	/*
400 	 * Ensure that the initialisation of @node is complete before we
401 	 * publish the updated tail via xchg_tail() and potentially link
402 	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
403 	 */
404 	smp_wmb();
405 
406 	/*
407 	 * Publish the updated tail.
408 	 * We have already touched the queueing cacheline; don't bother with
409 	 * pending stuff.
410 	 *
411 	 * p,*,* -> n,*,*
412 	 */
413 	old = xchg_tail(lock, tail);
414 	next = NULL;
415 
416 	/*
417 	 * if there was a previous node; link it and wait until reaching the
418 	 * head of the waitqueue.
419 	 */
420 	if (old & _Q_TAIL_MASK) {
421 		prev = decode_tail(old);
422 
423 		/* Link @node into the waitqueue. */
424 		WRITE_ONCE(prev->next, node);
425 
426 		pv_wait_node(node, prev);
427 		arch_mcs_spin_lock_contended(&node->locked);
428 
429 		/*
430 		 * While waiting for the MCS lock, the next pointer may have
431 		 * been set by another lock waiter. We optimistically load
432 		 * the next pointer & prefetch the cacheline for writing
433 		 * to reduce latency in the upcoming MCS unlock operation.
434 		 */
435 		next = READ_ONCE(node->next);
436 		if (next)
437 			prefetchw(next);
438 	}
439 
440 	/*
441 	 * we're at the head of the waitqueue, wait for the owner & pending to
442 	 * go away.
443 	 *
444 	 * *,x,y -> *,0,0
445 	 *
446 	 * this wait loop must use a load-acquire such that we match the
447 	 * store-release that clears the locked bit and create lock
448 	 * sequentiality; this is because the set_locked() function below
449 	 * does not imply a full barrier.
450 	 *
451 	 * The PV pv_wait_head_or_lock function, if active, will acquire
452 	 * the lock and return a non-zero value. So we have to skip the
453 	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
454 	 * been designated yet, there is no way for the locked value to become
455 	 * _Q_SLOW_VAL. So both the set_locked() and the
456 	 * atomic_cmpxchg_relaxed() calls will be safe.
457 	 *
458 	 * If PV isn't active, 0 will be returned instead.
459 	 *
460 	 */
461 	if ((val = pv_wait_head_or_lock(lock, node)))
462 		goto locked;
463 
464 	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
465 
466 locked:
467 	/*
468 	 * claim the lock:
469 	 *
470 	 * n,0,0 -> 0,0,1 : lock, uncontended
471 	 * *,*,0 -> *,*,1 : lock, contended
472 	 *
473 	 * If the queue head is the only one in the queue (lock value == tail)
474 	 * and nobody is pending, clear the tail code and grab the lock.
475 	 * Otherwise, we only need to grab the lock.
476 	 */
477 
478 	/*
479 	 * In the PV case we might already have _Q_LOCKED_VAL set.
480 	 *
481 	 * The atomic_cond_read_acquire() call above has provided the
482 	 * necessary acquire semantics required for locking.
483 	 */
484 	if (((val & _Q_TAIL_MASK) == tail) &&
485 	    atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
486 		goto release; /* No contention */
487 
488 	/* Either somebody is queued behind us or _Q_PENDING_VAL is set */
489 	set_locked(lock);
490 
491 	/*
492 	 * contended path; wait for next if not observed yet, release.
493 	 */
494 	if (!next)
495 		next = smp_cond_load_relaxed(&node->next, (VAL));
496 
497 	arch_mcs_spin_unlock_contended(&next->locked);
498 	pv_kick_node(lock, next);
499 
500 release:
501 	/*
502 	 * release the node
503 	 */
504 	__this_cpu_dec(mcs_nodes[0].count);
505 }
506 EXPORT_SYMBOL(queued_spin_lock_slowpath);
507 
508 /*
509  * Generate the paravirt code for queued_spin_unlock_slowpath().
510  */
511 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
512 #define _GEN_PV_LOCK_SLOWPATH
513 
514 #undef  pv_enabled
515 #define pv_enabled()	true
516 
517 #undef pv_init_node
518 #undef pv_wait_node
519 #undef pv_kick_node
520 #undef pv_wait_head_or_lock
521 
522 #undef  queued_spin_lock_slowpath
523 #define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
524 
525 #include "qspinlock_paravirt.h"
526 #include "qspinlock.c"
527 
528 #endif
529