xref: /openbmc/linux/kernel/locking/mutex.c (revision f2f09a4cee3507dba0e24b87ba2961a5c377d3a7)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29 
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
32 #else
33 # include "mutex.h"
34 #endif
35 
36 void
37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
38 {
39 	atomic_long_set(&lock->owner, 0);
40 	spin_lock_init(&lock->wait_lock);
41 	INIT_LIST_HEAD(&lock->wait_list);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 	osq_lock_init(&lock->osq);
44 #endif
45 
46 	debug_mutex_init(lock, name, key);
47 }
48 EXPORT_SYMBOL(__mutex_init);
49 
50 /*
51  * @owner: contains: 'struct task_struct *' to the current lock owner,
52  * NULL means not owned. Since task_struct pointers are aligned at
53  * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54  * bits to store extra state.
55  *
56  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57  * Bit1 indicates unlock needs to hand the lock to the top-waiter
58  */
59 #define MUTEX_FLAG_WAITERS	0x01
60 #define MUTEX_FLAG_HANDOFF	0x02
61 
62 #define MUTEX_FLAGS		0x03
63 
64 static inline struct task_struct *__owner_task(unsigned long owner)
65 {
66 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67 }
68 
69 static inline unsigned long __owner_flags(unsigned long owner)
70 {
71 	return owner & MUTEX_FLAGS;
72 }
73 
74 /*
75  * Actual trylock that will work on any unlocked state.
76  *
77  * When setting the owner field, we must preserve the low flag bits.
78  *
79  * Be careful with @handoff, only set that in a wait-loop (where you set
80  * HANDOFF) to avoid recursive lock attempts.
81  */
82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
83 {
84 	unsigned long owner, curr = (unsigned long)current;
85 
86 	owner = atomic_long_read(&lock->owner);
87 	for (;;) { /* must loop, can race against a flag */
88 		unsigned long old, flags = __owner_flags(owner);
89 
90 		if (__owner_task(owner)) {
91 			if (handoff && unlikely(__owner_task(owner) == current)) {
92 				/*
93 				 * Provide ACQUIRE semantics for the lock-handoff.
94 				 *
95 				 * We cannot easily use load-acquire here, since
96 				 * the actual load is a failed cmpxchg, which
97 				 * doesn't imply any barriers.
98 				 *
99 				 * Also, this is a fairly unlikely scenario, and
100 				 * this contains the cost.
101 				 */
102 				smp_mb(); /* ACQUIRE */
103 				return true;
104 			}
105 
106 			return false;
107 		}
108 
109 		/*
110 		 * We set the HANDOFF bit, we must make sure it doesn't live
111 		 * past the point where we acquire it. This would be possible
112 		 * if we (accidentally) set the bit on an unlocked mutex.
113 		 */
114 		if (handoff)
115 			flags &= ~MUTEX_FLAG_HANDOFF;
116 
117 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
118 		if (old == owner)
119 			return true;
120 
121 		owner = old;
122 	}
123 }
124 
125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
126 /*
127  * Lockdep annotations are contained to the slow paths for simplicity.
128  * There is nothing that would stop spreading the lockdep annotations outwards
129  * except more code.
130  */
131 
132 /*
133  * Optimistic trylock that only works in the uncontended case. Make sure to
134  * follow with a __mutex_trylock() before failing.
135  */
136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137 {
138 	unsigned long curr = (unsigned long)current;
139 
140 	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 		return true;
142 
143 	return false;
144 }
145 
146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147 {
148 	unsigned long curr = (unsigned long)current;
149 
150 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 		return true;
152 
153 	return false;
154 }
155 #endif
156 
157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158 {
159 	atomic_long_or(flag, &lock->owner);
160 }
161 
162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163 {
164 	atomic_long_andnot(flag, &lock->owner);
165 }
166 
167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168 {
169 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170 }
171 
172 /*
173  * Give up ownership to a specific task, when @task = NULL, this is equivalent
174  * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175  * semantics like a regular unlock, the __mutex_trylock() provides matching
176  * ACQUIRE semantics for the handoff.
177  */
178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179 {
180 	unsigned long owner = atomic_long_read(&lock->owner);
181 
182 	for (;;) {
183 		unsigned long old, new;
184 
185 #ifdef CONFIG_DEBUG_MUTEXES
186 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187 #endif
188 
189 		new = (owner & MUTEX_FLAG_WAITERS);
190 		new |= (unsigned long)task;
191 
192 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 		if (old == owner)
194 			break;
195 
196 		owner = old;
197 	}
198 }
199 
200 #ifndef CONFIG_DEBUG_LOCK_ALLOC
201 /*
202  * We split the mutex lock/unlock logic into separate fastpath and
203  * slowpath functions, to reduce the register pressure on the fastpath.
204  * We also put the fastpath first in the kernel image, to make sure the
205  * branch is predicted by the CPU as default-untaken.
206  */
207 static void __sched __mutex_lock_slowpath(struct mutex *lock);
208 
209 /**
210  * mutex_lock - acquire the mutex
211  * @lock: the mutex to be acquired
212  *
213  * Lock the mutex exclusively for this task. If the mutex is not
214  * available right now, it will sleep until it can get it.
215  *
216  * The mutex must later on be released by the same task that
217  * acquired it. Recursive locking is not allowed. The task
218  * may not exit without first unlocking the mutex. Also, kernel
219  * memory where the mutex resides must not be freed with
220  * the mutex still locked. The mutex must first be initialized
221  * (or statically defined) before it can be locked. memset()-ing
222  * the mutex to 0 is not allowed.
223  *
224  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225  *   checks that will enforce the restrictions and will also do
226  *   deadlock debugging. )
227  *
228  * This function is similar to (but not equivalent to) down().
229  */
230 void __sched mutex_lock(struct mutex *lock)
231 {
232 	might_sleep();
233 
234 	if (!__mutex_trylock_fast(lock))
235 		__mutex_lock_slowpath(lock);
236 }
237 EXPORT_SYMBOL(mutex_lock);
238 #endif
239 
240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 						   struct ww_acquire_ctx *ww_ctx)
242 {
243 #ifdef CONFIG_DEBUG_MUTEXES
244 	/*
245 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 	 * but released with a normal mutex_unlock in this call.
247 	 *
248 	 * This should never happen, always use ww_mutex_unlock.
249 	 */
250 	DEBUG_LOCKS_WARN_ON(ww->ctx);
251 
252 	/*
253 	 * Not quite done after calling ww_acquire_done() ?
254 	 */
255 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256 
257 	if (ww_ctx->contending_lock) {
258 		/*
259 		 * After -EDEADLK you tried to
260 		 * acquire a different ww_mutex? Bad!
261 		 */
262 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263 
264 		/*
265 		 * You called ww_mutex_lock after receiving -EDEADLK,
266 		 * but 'forgot' to unlock everything else first?
267 		 */
268 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 		ww_ctx->contending_lock = NULL;
270 	}
271 
272 	/*
273 	 * Naughty, using a different class will lead to undefined behavior!
274 	 */
275 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276 #endif
277 	ww_ctx->acquired++;
278 }
279 
280 /*
281  * After acquiring lock with fastpath or when we lost out in contested
282  * slowpath, set ctx and wake up any waiters so they can recheck.
283  */
284 static __always_inline void
285 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 			       struct ww_acquire_ctx *ctx)
287 {
288 	unsigned long flags;
289 	struct mutex_waiter *cur;
290 
291 	ww_mutex_lock_acquired(lock, ctx);
292 
293 	lock->ctx = ctx;
294 
295 	/*
296 	 * The lock->ctx update should be visible on all cores before
297 	 * the atomic read is done, otherwise contended waiters might be
298 	 * missed. The contended waiters will either see ww_ctx == NULL
299 	 * and keep spinning, or it will acquire wait_lock, add itself
300 	 * to waiter list and sleep.
301 	 */
302 	smp_mb(); /* ^^^ */
303 
304 	/*
305 	 * Check if lock is contended, if not there is nobody to wake up
306 	 */
307 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
308 		return;
309 
310 	/*
311 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 	 * so they can see the new lock->ctx.
313 	 */
314 	spin_lock_mutex(&lock->base.wait_lock, flags);
315 	list_for_each_entry(cur, &lock->base.wait_list, list) {
316 		debug_mutex_wake_waiter(&lock->base, cur);
317 		wake_up_process(cur->task);
318 	}
319 	spin_unlock_mutex(&lock->base.wait_lock, flags);
320 }
321 
322 /*
323  * After acquiring lock in the slowpath set ctx and wake up any
324  * waiters so they can recheck.
325  *
326  * Callers must hold the mutex wait_lock.
327  */
328 static __always_inline void
329 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 			      struct ww_acquire_ctx *ctx)
331 {
332 	struct mutex_waiter *cur;
333 
334 	ww_mutex_lock_acquired(lock, ctx);
335 	lock->ctx = ctx;
336 
337 	/*
338 	 * Give any possible sleeping processes the chance to wake up,
339 	 * so they can recheck if they have to back off.
340 	 */
341 	list_for_each_entry(cur, &lock->base.wait_list, list) {
342 		debug_mutex_wake_waiter(&lock->base, cur);
343 		wake_up_process(cur->task);
344 	}
345 }
346 
347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
348 /*
349  * Look out! "owner" is an entirely speculative pointer
350  * access and not reliable.
351  */
352 static noinline
353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
354 {
355 	bool ret = true;
356 
357 	rcu_read_lock();
358 	while (__mutex_owner(lock) == owner) {
359 		/*
360 		 * Ensure we emit the owner->on_cpu, dereference _after_
361 		 * checking lock->owner still matches owner. If that fails,
362 		 * owner might point to freed memory. If it still matches,
363 		 * the rcu_read_lock() ensures the memory stays valid.
364 		 */
365 		barrier();
366 
367 		if (!owner->on_cpu || need_resched()) {
368 			ret = false;
369 			break;
370 		}
371 
372 		cpu_relax();
373 	}
374 	rcu_read_unlock();
375 
376 	return ret;
377 }
378 
379 /*
380  * Initial check for entering the mutex spinning loop
381  */
382 static inline int mutex_can_spin_on_owner(struct mutex *lock)
383 {
384 	struct task_struct *owner;
385 	int retval = 1;
386 
387 	if (need_resched())
388 		return 0;
389 
390 	rcu_read_lock();
391 	owner = __mutex_owner(lock);
392 	if (owner)
393 		retval = owner->on_cpu;
394 	rcu_read_unlock();
395 
396 	/*
397 	 * If lock->owner is not set, the mutex has been released. Return true
398 	 * such that we'll trylock in the spin path, which is a faster option
399 	 * than the blocking slow path.
400 	 */
401 	return retval;
402 }
403 
404 /*
405  * Optimistic spinning.
406  *
407  * We try to spin for acquisition when we find that the lock owner
408  * is currently running on a (different) CPU and while we don't
409  * need to reschedule. The rationale is that if the lock owner is
410  * running, it is likely to release the lock soon.
411  *
412  * The mutex spinners are queued up using MCS lock so that only one
413  * spinner can compete for the mutex. However, if mutex spinning isn't
414  * going to happen, there is no point in going through the lock/unlock
415  * overhead.
416  *
417  * Returns true when the lock was taken, otherwise false, indicating
418  * that we need to jump to the slowpath and sleep.
419  *
420  * The waiter flag is set to true if the spinner is a waiter in the wait
421  * queue. The waiter-spinner will spin on the lock directly and concurrently
422  * with the spinner at the head of the OSQ, if present, until the owner is
423  * changed to itself.
424  */
425 static bool mutex_optimistic_spin(struct mutex *lock,
426 				  struct ww_acquire_ctx *ww_ctx,
427 				  const bool use_ww_ctx, const bool waiter)
428 {
429 	struct task_struct *task = current;
430 
431 	if (!waiter) {
432 		/*
433 		 * The purpose of the mutex_can_spin_on_owner() function is
434 		 * to eliminate the overhead of osq_lock() and osq_unlock()
435 		 * in case spinning isn't possible. As a waiter-spinner
436 		 * is not going to take OSQ lock anyway, there is no need
437 		 * to call mutex_can_spin_on_owner().
438 		 */
439 		if (!mutex_can_spin_on_owner(lock))
440 			goto fail;
441 
442 		/*
443 		 * In order to avoid a stampede of mutex spinners trying to
444 		 * acquire the mutex all at once, the spinners need to take a
445 		 * MCS (queued) lock first before spinning on the owner field.
446 		 */
447 		if (!osq_lock(&lock->osq))
448 			goto fail;
449 	}
450 
451 	for (;;) {
452 		struct task_struct *owner;
453 
454 		if (use_ww_ctx && ww_ctx->acquired > 0) {
455 			struct ww_mutex *ww;
456 
457 			ww = container_of(lock, struct ww_mutex, base);
458 			/*
459 			 * If ww->ctx is set the contents are undefined, only
460 			 * by acquiring wait_lock there is a guarantee that
461 			 * they are not invalid when reading.
462 			 *
463 			 * As such, when deadlock detection needs to be
464 			 * performed the optimistic spinning cannot be done.
465 			 */
466 			if (READ_ONCE(ww->ctx))
467 				goto fail_unlock;
468 		}
469 
470 		/*
471 		 * If there's an owner, wait for it to either
472 		 * release the lock or go to sleep.
473 		 */
474 		owner = __mutex_owner(lock);
475 		if (owner) {
476 			if (waiter && owner == task) {
477 				smp_mb(); /* ACQUIRE */
478 				break;
479 			}
480 
481 			if (!mutex_spin_on_owner(lock, owner))
482 				goto fail_unlock;
483 		}
484 
485 		/* Try to acquire the mutex if it is unlocked. */
486 		if (__mutex_trylock(lock, waiter))
487 			break;
488 
489 		/*
490 		 * The cpu_relax() call is a compiler barrier which forces
491 		 * everything in this loop to be re-loaded. We don't need
492 		 * memory barriers as we'll eventually observe the right
493 		 * values at the cost of a few extra spins.
494 		 */
495 		cpu_relax();
496 	}
497 
498 	if (!waiter)
499 		osq_unlock(&lock->osq);
500 
501 	return true;
502 
503 
504 fail_unlock:
505 	if (!waiter)
506 		osq_unlock(&lock->osq);
507 
508 fail:
509 	/*
510 	 * If we fell out of the spin path because of need_resched(),
511 	 * reschedule now, before we try-lock the mutex. This avoids getting
512 	 * scheduled out right after we obtained the mutex.
513 	 */
514 	if (need_resched()) {
515 		/*
516 		 * We _should_ have TASK_RUNNING here, but just in case
517 		 * we do not, make it so, otherwise we might get stuck.
518 		 */
519 		__set_current_state(TASK_RUNNING);
520 		schedule_preempt_disabled();
521 	}
522 
523 	return false;
524 }
525 #else
526 static bool mutex_optimistic_spin(struct mutex *lock,
527 				  struct ww_acquire_ctx *ww_ctx,
528 				  const bool use_ww_ctx, const bool waiter)
529 {
530 	return false;
531 }
532 #endif
533 
534 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
535 
536 /**
537  * mutex_unlock - release the mutex
538  * @lock: the mutex to be released
539  *
540  * Unlock a mutex that has been locked by this task previously.
541  *
542  * This function must not be used in interrupt context. Unlocking
543  * of a not locked mutex is not allowed.
544  *
545  * This function is similar to (but not equivalent to) up().
546  */
547 void __sched mutex_unlock(struct mutex *lock)
548 {
549 #ifndef CONFIG_DEBUG_LOCK_ALLOC
550 	if (__mutex_unlock_fast(lock))
551 		return;
552 #endif
553 	__mutex_unlock_slowpath(lock, _RET_IP_);
554 }
555 EXPORT_SYMBOL(mutex_unlock);
556 
557 /**
558  * ww_mutex_unlock - release the w/w mutex
559  * @lock: the mutex to be released
560  *
561  * Unlock a mutex that has been locked by this task previously with any of the
562  * ww_mutex_lock* functions (with or without an acquire context). It is
563  * forbidden to release the locks after releasing the acquire context.
564  *
565  * This function must not be used in interrupt context. Unlocking
566  * of a unlocked mutex is not allowed.
567  */
568 void __sched ww_mutex_unlock(struct ww_mutex *lock)
569 {
570 	/*
571 	 * The unlocking fastpath is the 0->1 transition from 'locked'
572 	 * into 'unlocked' state:
573 	 */
574 	if (lock->ctx) {
575 #ifdef CONFIG_DEBUG_MUTEXES
576 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
577 #endif
578 		if (lock->ctx->acquired > 0)
579 			lock->ctx->acquired--;
580 		lock->ctx = NULL;
581 	}
582 
583 	mutex_unlock(&lock->base);
584 }
585 EXPORT_SYMBOL(ww_mutex_unlock);
586 
587 static inline int __sched
588 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
589 {
590 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
591 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
592 
593 	if (!hold_ctx)
594 		return 0;
595 
596 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
597 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
598 #ifdef CONFIG_DEBUG_MUTEXES
599 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
600 		ctx->contending_lock = ww;
601 #endif
602 		return -EDEADLK;
603 	}
604 
605 	return 0;
606 }
607 
608 /*
609  * Lock a mutex (possibly interruptible), slowpath:
610  */
611 static __always_inline int __sched
612 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
613 		    struct lockdep_map *nest_lock, unsigned long ip,
614 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
615 {
616 	struct task_struct *task = current;
617 	struct mutex_waiter waiter;
618 	unsigned long flags;
619 	bool first = false;
620 	struct ww_mutex *ww;
621 	int ret;
622 
623 	if (use_ww_ctx) {
624 		ww = container_of(lock, struct ww_mutex, base);
625 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
626 			return -EALREADY;
627 	}
628 
629 	preempt_disable();
630 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
631 
632 	if (__mutex_trylock(lock, false) ||
633 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
634 		/* got the lock, yay! */
635 		lock_acquired(&lock->dep_map, ip);
636 		if (use_ww_ctx)
637 			ww_mutex_set_context_fastpath(ww, ww_ctx);
638 		preempt_enable();
639 		return 0;
640 	}
641 
642 	spin_lock_mutex(&lock->wait_lock, flags);
643 	/*
644 	 * After waiting to acquire the wait_lock, try again.
645 	 */
646 	if (__mutex_trylock(lock, false))
647 		goto skip_wait;
648 
649 	debug_mutex_lock_common(lock, &waiter);
650 	debug_mutex_add_waiter(lock, &waiter, task);
651 
652 	/* add waiting tasks to the end of the waitqueue (FIFO): */
653 	list_add_tail(&waiter.list, &lock->wait_list);
654 	waiter.task = task;
655 
656 	if (__mutex_waiter_is_first(lock, &waiter))
657 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
658 
659 	lock_contended(&lock->dep_map, ip);
660 
661 	set_task_state(task, state);
662 	for (;;) {
663 		/*
664 		 * Once we hold wait_lock, we're serialized against
665 		 * mutex_unlock() handing the lock off to us, do a trylock
666 		 * before testing the error conditions to make sure we pick up
667 		 * the handoff.
668 		 */
669 		if (__mutex_trylock(lock, first))
670 			goto acquired;
671 
672 		/*
673 		 * Check for signals and wound conditions while holding
674 		 * wait_lock. This ensures the lock cancellation is ordered
675 		 * against mutex_unlock() and wake-ups do not go missing.
676 		 */
677 		if (unlikely(signal_pending_state(state, task))) {
678 			ret = -EINTR;
679 			goto err;
680 		}
681 
682 		if (use_ww_ctx && ww_ctx->acquired > 0) {
683 			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
684 			if (ret)
685 				goto err;
686 		}
687 
688 		spin_unlock_mutex(&lock->wait_lock, flags);
689 		schedule_preempt_disabled();
690 
691 		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
692 			first = true;
693 			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
694 		}
695 
696 		set_task_state(task, state);
697 		/*
698 		 * Here we order against unlock; we must either see it change
699 		 * state back to RUNNING and fall through the next schedule(),
700 		 * or we must see its unlock and acquire.
701 		 */
702 		if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
703 		     __mutex_trylock(lock, first))
704 			break;
705 
706 		spin_lock_mutex(&lock->wait_lock, flags);
707 	}
708 	spin_lock_mutex(&lock->wait_lock, flags);
709 acquired:
710 	__set_task_state(task, TASK_RUNNING);
711 
712 	mutex_remove_waiter(lock, &waiter, task);
713 	if (likely(list_empty(&lock->wait_list)))
714 		__mutex_clear_flag(lock, MUTEX_FLAGS);
715 
716 	debug_mutex_free_waiter(&waiter);
717 
718 skip_wait:
719 	/* got the lock - cleanup and rejoice! */
720 	lock_acquired(&lock->dep_map, ip);
721 
722 	if (use_ww_ctx)
723 		ww_mutex_set_context_slowpath(ww, ww_ctx);
724 
725 	spin_unlock_mutex(&lock->wait_lock, flags);
726 	preempt_enable();
727 	return 0;
728 
729 err:
730 	__set_task_state(task, TASK_RUNNING);
731 	mutex_remove_waiter(lock, &waiter, task);
732 	spin_unlock_mutex(&lock->wait_lock, flags);
733 	debug_mutex_free_waiter(&waiter);
734 	mutex_release(&lock->dep_map, 1, ip);
735 	preempt_enable();
736 	return ret;
737 }
738 
739 #ifdef CONFIG_DEBUG_LOCK_ALLOC
740 void __sched
741 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
742 {
743 	might_sleep();
744 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
745 			    subclass, NULL, _RET_IP_, NULL, 0);
746 }
747 
748 EXPORT_SYMBOL_GPL(mutex_lock_nested);
749 
750 void __sched
751 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
752 {
753 	might_sleep();
754 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
755 			    0, nest, _RET_IP_, NULL, 0);
756 }
757 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
758 
759 int __sched
760 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
761 {
762 	might_sleep();
763 	return __mutex_lock_common(lock, TASK_KILLABLE,
764 				   subclass, NULL, _RET_IP_, NULL, 0);
765 }
766 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
767 
768 int __sched
769 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
770 {
771 	might_sleep();
772 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
773 				   subclass, NULL, _RET_IP_, NULL, 0);
774 }
775 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
776 
777 static inline int
778 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
779 {
780 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
781 	unsigned tmp;
782 
783 	if (ctx->deadlock_inject_countdown-- == 0) {
784 		tmp = ctx->deadlock_inject_interval;
785 		if (tmp > UINT_MAX/4)
786 			tmp = UINT_MAX;
787 		else
788 			tmp = tmp*2 + tmp + tmp/2;
789 
790 		ctx->deadlock_inject_interval = tmp;
791 		ctx->deadlock_inject_countdown = tmp;
792 		ctx->contending_lock = lock;
793 
794 		ww_mutex_unlock(lock);
795 
796 		return -EDEADLK;
797 	}
798 #endif
799 
800 	return 0;
801 }
802 
803 int __sched
804 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
805 {
806 	int ret;
807 
808 	might_sleep();
809 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
810 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
811 	if (!ret && ctx->acquired > 1)
812 		return ww_mutex_deadlock_injection(lock, ctx);
813 
814 	return ret;
815 }
816 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
817 
818 int __sched
819 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
820 {
821 	int ret;
822 
823 	might_sleep();
824 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
825 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
826 
827 	if (!ret && ctx->acquired > 1)
828 		return ww_mutex_deadlock_injection(lock, ctx);
829 
830 	return ret;
831 }
832 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
833 
834 #endif
835 
836 /*
837  * Release the lock, slowpath:
838  */
839 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
840 {
841 	struct task_struct *next = NULL;
842 	unsigned long owner, flags;
843 	WAKE_Q(wake_q);
844 
845 	mutex_release(&lock->dep_map, 1, ip);
846 
847 	/*
848 	 * Release the lock before (potentially) taking the spinlock such that
849 	 * other contenders can get on with things ASAP.
850 	 *
851 	 * Except when HANDOFF, in that case we must not clear the owner field,
852 	 * but instead set it to the top waiter.
853 	 */
854 	owner = atomic_long_read(&lock->owner);
855 	for (;;) {
856 		unsigned long old;
857 
858 #ifdef CONFIG_DEBUG_MUTEXES
859 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
860 #endif
861 
862 		if (owner & MUTEX_FLAG_HANDOFF)
863 			break;
864 
865 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
866 						  __owner_flags(owner));
867 		if (old == owner) {
868 			if (owner & MUTEX_FLAG_WAITERS)
869 				break;
870 
871 			return;
872 		}
873 
874 		owner = old;
875 	}
876 
877 	spin_lock_mutex(&lock->wait_lock, flags);
878 	debug_mutex_unlock(lock);
879 	if (!list_empty(&lock->wait_list)) {
880 		/* get the first entry from the wait-list: */
881 		struct mutex_waiter *waiter =
882 			list_first_entry(&lock->wait_list,
883 					 struct mutex_waiter, list);
884 
885 		next = waiter->task;
886 
887 		debug_mutex_wake_waiter(lock, waiter);
888 		wake_q_add(&wake_q, next);
889 	}
890 
891 	if (owner & MUTEX_FLAG_HANDOFF)
892 		__mutex_handoff(lock, next);
893 
894 	spin_unlock_mutex(&lock->wait_lock, flags);
895 
896 	wake_up_q(&wake_q);
897 }
898 
899 #ifndef CONFIG_DEBUG_LOCK_ALLOC
900 /*
901  * Here come the less common (and hence less performance-critical) APIs:
902  * mutex_lock_interruptible() and mutex_trylock().
903  */
904 static noinline int __sched
905 __mutex_lock_killable_slowpath(struct mutex *lock);
906 
907 static noinline int __sched
908 __mutex_lock_interruptible_slowpath(struct mutex *lock);
909 
910 /**
911  * mutex_lock_interruptible - acquire the mutex, interruptible
912  * @lock: the mutex to be acquired
913  *
914  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
915  * been acquired or sleep until the mutex becomes available. If a
916  * signal arrives while waiting for the lock then this function
917  * returns -EINTR.
918  *
919  * This function is similar to (but not equivalent to) down_interruptible().
920  */
921 int __sched mutex_lock_interruptible(struct mutex *lock)
922 {
923 	might_sleep();
924 
925 	if (__mutex_trylock_fast(lock))
926 		return 0;
927 
928 	return __mutex_lock_interruptible_slowpath(lock);
929 }
930 
931 EXPORT_SYMBOL(mutex_lock_interruptible);
932 
933 int __sched mutex_lock_killable(struct mutex *lock)
934 {
935 	might_sleep();
936 
937 	if (__mutex_trylock_fast(lock))
938 		return 0;
939 
940 	return __mutex_lock_killable_slowpath(lock);
941 }
942 EXPORT_SYMBOL(mutex_lock_killable);
943 
944 static noinline void __sched
945 __mutex_lock_slowpath(struct mutex *lock)
946 {
947 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
948 			    NULL, _RET_IP_, NULL, 0);
949 }
950 
951 static noinline int __sched
952 __mutex_lock_killable_slowpath(struct mutex *lock)
953 {
954 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
955 				   NULL, _RET_IP_, NULL, 0);
956 }
957 
958 static noinline int __sched
959 __mutex_lock_interruptible_slowpath(struct mutex *lock)
960 {
961 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
962 				   NULL, _RET_IP_, NULL, 0);
963 }
964 
965 static noinline int __sched
966 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
967 {
968 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
969 				   NULL, _RET_IP_, ctx, 1);
970 }
971 
972 static noinline int __sched
973 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
974 					    struct ww_acquire_ctx *ctx)
975 {
976 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
977 				   NULL, _RET_IP_, ctx, 1);
978 }
979 
980 #endif
981 
982 /**
983  * mutex_trylock - try to acquire the mutex, without waiting
984  * @lock: the mutex to be acquired
985  *
986  * Try to acquire the mutex atomically. Returns 1 if the mutex
987  * has been acquired successfully, and 0 on contention.
988  *
989  * NOTE: this function follows the spin_trylock() convention, so
990  * it is negated from the down_trylock() return values! Be careful
991  * about this when converting semaphore users to mutexes.
992  *
993  * This function must not be used in interrupt context. The
994  * mutex must be released by the same task that acquired it.
995  */
996 int __sched mutex_trylock(struct mutex *lock)
997 {
998 	bool locked = __mutex_trylock(lock, false);
999 
1000 	if (locked)
1001 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1002 
1003 	return locked;
1004 }
1005 EXPORT_SYMBOL(mutex_trylock);
1006 
1007 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1008 int __sched
1009 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1010 {
1011 	might_sleep();
1012 
1013 	if (__mutex_trylock_fast(&lock->base)) {
1014 		ww_mutex_set_context_fastpath(lock, ctx);
1015 		return 0;
1016 	}
1017 
1018 	return __ww_mutex_lock_slowpath(lock, ctx);
1019 }
1020 EXPORT_SYMBOL(__ww_mutex_lock);
1021 
1022 int __sched
1023 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1024 {
1025 	might_sleep();
1026 
1027 	if (__mutex_trylock_fast(&lock->base)) {
1028 		ww_mutex_set_context_fastpath(lock, ctx);
1029 		return 0;
1030 	}
1031 
1032 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1033 }
1034 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1035 
1036 #endif
1037 
1038 /**
1039  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1040  * @cnt: the atomic which we are to dec
1041  * @lock: the mutex to return holding if we dec to 0
1042  *
1043  * return true and hold lock if we dec to 0, return false otherwise
1044  */
1045 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1046 {
1047 	/* dec if we can't possibly hit 0 */
1048 	if (atomic_add_unless(cnt, -1, 1))
1049 		return 0;
1050 	/* we might hit 0, so take the lock */
1051 	mutex_lock(lock);
1052 	if (!atomic_dec_and_test(cnt)) {
1053 		/* when we actually did the dec, we didn't hit 0 */
1054 		mutex_unlock(lock);
1055 		return 0;
1056 	}
1057 	/* we hit 0, and we hold the lock */
1058 	return 1;
1059 }
1060 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1061