1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched.h> 23 #include <linux/sched/rt.h> 24 #include <linux/export.h> 25 #include <linux/spinlock.h> 26 #include <linux/interrupt.h> 27 #include <linux/debug_locks.h> 28 #include <linux/osq_lock.h> 29 30 #ifdef CONFIG_DEBUG_MUTEXES 31 # include "mutex-debug.h" 32 #else 33 # include "mutex.h" 34 #endif 35 36 void 37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 38 { 39 atomic_long_set(&lock->owner, 0); 40 spin_lock_init(&lock->wait_lock); 41 INIT_LIST_HEAD(&lock->wait_list); 42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 43 osq_lock_init(&lock->osq); 44 #endif 45 46 debug_mutex_init(lock, name, key); 47 } 48 EXPORT_SYMBOL(__mutex_init); 49 50 /* 51 * @owner: contains: 'struct task_struct *' to the current lock owner, 52 * NULL means not owned. Since task_struct pointers are aligned at 53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low 54 * bits to store extra state. 55 * 56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 57 * Bit1 indicates unlock needs to hand the lock to the top-waiter 58 */ 59 #define MUTEX_FLAG_WAITERS 0x01 60 #define MUTEX_FLAG_HANDOFF 0x02 61 62 #define MUTEX_FLAGS 0x03 63 64 static inline struct task_struct *__owner_task(unsigned long owner) 65 { 66 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 67 } 68 69 static inline unsigned long __owner_flags(unsigned long owner) 70 { 71 return owner & MUTEX_FLAGS; 72 } 73 74 /* 75 * Actual trylock that will work on any unlocked state. 76 * 77 * When setting the owner field, we must preserve the low flag bits. 78 * 79 * Be careful with @handoff, only set that in a wait-loop (where you set 80 * HANDOFF) to avoid recursive lock attempts. 81 */ 82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff) 83 { 84 unsigned long owner, curr = (unsigned long)current; 85 86 owner = atomic_long_read(&lock->owner); 87 for (;;) { /* must loop, can race against a flag */ 88 unsigned long old, flags = __owner_flags(owner); 89 90 if (__owner_task(owner)) { 91 if (handoff && unlikely(__owner_task(owner) == current)) { 92 /* 93 * Provide ACQUIRE semantics for the lock-handoff. 94 * 95 * We cannot easily use load-acquire here, since 96 * the actual load is a failed cmpxchg, which 97 * doesn't imply any barriers. 98 * 99 * Also, this is a fairly unlikely scenario, and 100 * this contains the cost. 101 */ 102 smp_mb(); /* ACQUIRE */ 103 return true; 104 } 105 106 return false; 107 } 108 109 /* 110 * We set the HANDOFF bit, we must make sure it doesn't live 111 * past the point where we acquire it. This would be possible 112 * if we (accidentally) set the bit on an unlocked mutex. 113 */ 114 if (handoff) 115 flags &= ~MUTEX_FLAG_HANDOFF; 116 117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 118 if (old == owner) 119 return true; 120 121 owner = old; 122 } 123 } 124 125 #ifndef CONFIG_DEBUG_LOCK_ALLOC 126 /* 127 * Lockdep annotations are contained to the slow paths for simplicity. 128 * There is nothing that would stop spreading the lockdep annotations outwards 129 * except more code. 130 */ 131 132 /* 133 * Optimistic trylock that only works in the uncontended case. Make sure to 134 * follow with a __mutex_trylock() before failing. 135 */ 136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 137 { 138 unsigned long curr = (unsigned long)current; 139 140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr)) 141 return true; 142 143 return false; 144 } 145 146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 147 { 148 unsigned long curr = (unsigned long)current; 149 150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 151 return true; 152 153 return false; 154 } 155 #endif 156 157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 158 { 159 atomic_long_or(flag, &lock->owner); 160 } 161 162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 163 { 164 atomic_long_andnot(flag, &lock->owner); 165 } 166 167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 168 { 169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 170 } 171 172 /* 173 * Give up ownership to a specific task, when @task = NULL, this is equivalent 174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE 175 * semantics like a regular unlock, the __mutex_trylock() provides matching 176 * ACQUIRE semantics for the handoff. 177 */ 178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 179 { 180 unsigned long owner = atomic_long_read(&lock->owner); 181 182 for (;;) { 183 unsigned long old, new; 184 185 #ifdef CONFIG_DEBUG_MUTEXES 186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 187 #endif 188 189 new = (owner & MUTEX_FLAG_WAITERS); 190 new |= (unsigned long)task; 191 192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 193 if (old == owner) 194 break; 195 196 owner = old; 197 } 198 } 199 200 #ifndef CONFIG_DEBUG_LOCK_ALLOC 201 /* 202 * We split the mutex lock/unlock logic into separate fastpath and 203 * slowpath functions, to reduce the register pressure on the fastpath. 204 * We also put the fastpath first in the kernel image, to make sure the 205 * branch is predicted by the CPU as default-untaken. 206 */ 207 static void __sched __mutex_lock_slowpath(struct mutex *lock); 208 209 /** 210 * mutex_lock - acquire the mutex 211 * @lock: the mutex to be acquired 212 * 213 * Lock the mutex exclusively for this task. If the mutex is not 214 * available right now, it will sleep until it can get it. 215 * 216 * The mutex must later on be released by the same task that 217 * acquired it. Recursive locking is not allowed. The task 218 * may not exit without first unlocking the mutex. Also, kernel 219 * memory where the mutex resides must not be freed with 220 * the mutex still locked. The mutex must first be initialized 221 * (or statically defined) before it can be locked. memset()-ing 222 * the mutex to 0 is not allowed. 223 * 224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 225 * checks that will enforce the restrictions and will also do 226 * deadlock debugging. ) 227 * 228 * This function is similar to (but not equivalent to) down(). 229 */ 230 void __sched mutex_lock(struct mutex *lock) 231 { 232 might_sleep(); 233 234 if (!__mutex_trylock_fast(lock)) 235 __mutex_lock_slowpath(lock); 236 } 237 EXPORT_SYMBOL(mutex_lock); 238 #endif 239 240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, 241 struct ww_acquire_ctx *ww_ctx) 242 { 243 #ifdef CONFIG_DEBUG_MUTEXES 244 /* 245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 246 * but released with a normal mutex_unlock in this call. 247 * 248 * This should never happen, always use ww_mutex_unlock. 249 */ 250 DEBUG_LOCKS_WARN_ON(ww->ctx); 251 252 /* 253 * Not quite done after calling ww_acquire_done() ? 254 */ 255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 256 257 if (ww_ctx->contending_lock) { 258 /* 259 * After -EDEADLK you tried to 260 * acquire a different ww_mutex? Bad! 261 */ 262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 263 264 /* 265 * You called ww_mutex_lock after receiving -EDEADLK, 266 * but 'forgot' to unlock everything else first? 267 */ 268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 269 ww_ctx->contending_lock = NULL; 270 } 271 272 /* 273 * Naughty, using a different class will lead to undefined behavior! 274 */ 275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 276 #endif 277 ww_ctx->acquired++; 278 } 279 280 /* 281 * After acquiring lock with fastpath or when we lost out in contested 282 * slowpath, set ctx and wake up any waiters so they can recheck. 283 */ 284 static __always_inline void 285 ww_mutex_set_context_fastpath(struct ww_mutex *lock, 286 struct ww_acquire_ctx *ctx) 287 { 288 unsigned long flags; 289 struct mutex_waiter *cur; 290 291 ww_mutex_lock_acquired(lock, ctx); 292 293 lock->ctx = ctx; 294 295 /* 296 * The lock->ctx update should be visible on all cores before 297 * the atomic read is done, otherwise contended waiters might be 298 * missed. The contended waiters will either see ww_ctx == NULL 299 * and keep spinning, or it will acquire wait_lock, add itself 300 * to waiter list and sleep. 301 */ 302 smp_mb(); /* ^^^ */ 303 304 /* 305 * Check if lock is contended, if not there is nobody to wake up 306 */ 307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 308 return; 309 310 /* 311 * Uh oh, we raced in fastpath, wake up everyone in this case, 312 * so they can see the new lock->ctx. 313 */ 314 spin_lock_mutex(&lock->base.wait_lock, flags); 315 list_for_each_entry(cur, &lock->base.wait_list, list) { 316 debug_mutex_wake_waiter(&lock->base, cur); 317 wake_up_process(cur->task); 318 } 319 spin_unlock_mutex(&lock->base.wait_lock, flags); 320 } 321 322 /* 323 * After acquiring lock in the slowpath set ctx and wake up any 324 * waiters so they can recheck. 325 * 326 * Callers must hold the mutex wait_lock. 327 */ 328 static __always_inline void 329 ww_mutex_set_context_slowpath(struct ww_mutex *lock, 330 struct ww_acquire_ctx *ctx) 331 { 332 struct mutex_waiter *cur; 333 334 ww_mutex_lock_acquired(lock, ctx); 335 lock->ctx = ctx; 336 337 /* 338 * Give any possible sleeping processes the chance to wake up, 339 * so they can recheck if they have to back off. 340 */ 341 list_for_each_entry(cur, &lock->base.wait_list, list) { 342 debug_mutex_wake_waiter(&lock->base, cur); 343 wake_up_process(cur->task); 344 } 345 } 346 347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 348 /* 349 * Look out! "owner" is an entirely speculative pointer 350 * access and not reliable. 351 */ 352 static noinline 353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 354 { 355 bool ret = true; 356 357 rcu_read_lock(); 358 while (__mutex_owner(lock) == owner) { 359 /* 360 * Ensure we emit the owner->on_cpu, dereference _after_ 361 * checking lock->owner still matches owner. If that fails, 362 * owner might point to freed memory. If it still matches, 363 * the rcu_read_lock() ensures the memory stays valid. 364 */ 365 barrier(); 366 367 if (!owner->on_cpu || need_resched()) { 368 ret = false; 369 break; 370 } 371 372 cpu_relax(); 373 } 374 rcu_read_unlock(); 375 376 return ret; 377 } 378 379 /* 380 * Initial check for entering the mutex spinning loop 381 */ 382 static inline int mutex_can_spin_on_owner(struct mutex *lock) 383 { 384 struct task_struct *owner; 385 int retval = 1; 386 387 if (need_resched()) 388 return 0; 389 390 rcu_read_lock(); 391 owner = __mutex_owner(lock); 392 if (owner) 393 retval = owner->on_cpu; 394 rcu_read_unlock(); 395 396 /* 397 * If lock->owner is not set, the mutex has been released. Return true 398 * such that we'll trylock in the spin path, which is a faster option 399 * than the blocking slow path. 400 */ 401 return retval; 402 } 403 404 /* 405 * Optimistic spinning. 406 * 407 * We try to spin for acquisition when we find that the lock owner 408 * is currently running on a (different) CPU and while we don't 409 * need to reschedule. The rationale is that if the lock owner is 410 * running, it is likely to release the lock soon. 411 * 412 * The mutex spinners are queued up using MCS lock so that only one 413 * spinner can compete for the mutex. However, if mutex spinning isn't 414 * going to happen, there is no point in going through the lock/unlock 415 * overhead. 416 * 417 * Returns true when the lock was taken, otherwise false, indicating 418 * that we need to jump to the slowpath and sleep. 419 * 420 * The waiter flag is set to true if the spinner is a waiter in the wait 421 * queue. The waiter-spinner will spin on the lock directly and concurrently 422 * with the spinner at the head of the OSQ, if present, until the owner is 423 * changed to itself. 424 */ 425 static bool mutex_optimistic_spin(struct mutex *lock, 426 struct ww_acquire_ctx *ww_ctx, 427 const bool use_ww_ctx, const bool waiter) 428 { 429 struct task_struct *task = current; 430 431 if (!waiter) { 432 /* 433 * The purpose of the mutex_can_spin_on_owner() function is 434 * to eliminate the overhead of osq_lock() and osq_unlock() 435 * in case spinning isn't possible. As a waiter-spinner 436 * is not going to take OSQ lock anyway, there is no need 437 * to call mutex_can_spin_on_owner(). 438 */ 439 if (!mutex_can_spin_on_owner(lock)) 440 goto fail; 441 442 /* 443 * In order to avoid a stampede of mutex spinners trying to 444 * acquire the mutex all at once, the spinners need to take a 445 * MCS (queued) lock first before spinning on the owner field. 446 */ 447 if (!osq_lock(&lock->osq)) 448 goto fail; 449 } 450 451 for (;;) { 452 struct task_struct *owner; 453 454 if (use_ww_ctx && ww_ctx->acquired > 0) { 455 struct ww_mutex *ww; 456 457 ww = container_of(lock, struct ww_mutex, base); 458 /* 459 * If ww->ctx is set the contents are undefined, only 460 * by acquiring wait_lock there is a guarantee that 461 * they are not invalid when reading. 462 * 463 * As such, when deadlock detection needs to be 464 * performed the optimistic spinning cannot be done. 465 */ 466 if (READ_ONCE(ww->ctx)) 467 goto fail_unlock; 468 } 469 470 /* 471 * If there's an owner, wait for it to either 472 * release the lock or go to sleep. 473 */ 474 owner = __mutex_owner(lock); 475 if (owner) { 476 if (waiter && owner == task) { 477 smp_mb(); /* ACQUIRE */ 478 break; 479 } 480 481 if (!mutex_spin_on_owner(lock, owner)) 482 goto fail_unlock; 483 } 484 485 /* Try to acquire the mutex if it is unlocked. */ 486 if (__mutex_trylock(lock, waiter)) 487 break; 488 489 /* 490 * The cpu_relax() call is a compiler barrier which forces 491 * everything in this loop to be re-loaded. We don't need 492 * memory barriers as we'll eventually observe the right 493 * values at the cost of a few extra spins. 494 */ 495 cpu_relax(); 496 } 497 498 if (!waiter) 499 osq_unlock(&lock->osq); 500 501 return true; 502 503 504 fail_unlock: 505 if (!waiter) 506 osq_unlock(&lock->osq); 507 508 fail: 509 /* 510 * If we fell out of the spin path because of need_resched(), 511 * reschedule now, before we try-lock the mutex. This avoids getting 512 * scheduled out right after we obtained the mutex. 513 */ 514 if (need_resched()) { 515 /* 516 * We _should_ have TASK_RUNNING here, but just in case 517 * we do not, make it so, otherwise we might get stuck. 518 */ 519 __set_current_state(TASK_RUNNING); 520 schedule_preempt_disabled(); 521 } 522 523 return false; 524 } 525 #else 526 static bool mutex_optimistic_spin(struct mutex *lock, 527 struct ww_acquire_ctx *ww_ctx, 528 const bool use_ww_ctx, const bool waiter) 529 { 530 return false; 531 } 532 #endif 533 534 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 535 536 /** 537 * mutex_unlock - release the mutex 538 * @lock: the mutex to be released 539 * 540 * Unlock a mutex that has been locked by this task previously. 541 * 542 * This function must not be used in interrupt context. Unlocking 543 * of a not locked mutex is not allowed. 544 * 545 * This function is similar to (but not equivalent to) up(). 546 */ 547 void __sched mutex_unlock(struct mutex *lock) 548 { 549 #ifndef CONFIG_DEBUG_LOCK_ALLOC 550 if (__mutex_unlock_fast(lock)) 551 return; 552 #endif 553 __mutex_unlock_slowpath(lock, _RET_IP_); 554 } 555 EXPORT_SYMBOL(mutex_unlock); 556 557 /** 558 * ww_mutex_unlock - release the w/w mutex 559 * @lock: the mutex to be released 560 * 561 * Unlock a mutex that has been locked by this task previously with any of the 562 * ww_mutex_lock* functions (with or without an acquire context). It is 563 * forbidden to release the locks after releasing the acquire context. 564 * 565 * This function must not be used in interrupt context. Unlocking 566 * of a unlocked mutex is not allowed. 567 */ 568 void __sched ww_mutex_unlock(struct ww_mutex *lock) 569 { 570 /* 571 * The unlocking fastpath is the 0->1 transition from 'locked' 572 * into 'unlocked' state: 573 */ 574 if (lock->ctx) { 575 #ifdef CONFIG_DEBUG_MUTEXES 576 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 577 #endif 578 if (lock->ctx->acquired > 0) 579 lock->ctx->acquired--; 580 lock->ctx = NULL; 581 } 582 583 mutex_unlock(&lock->base); 584 } 585 EXPORT_SYMBOL(ww_mutex_unlock); 586 587 static inline int __sched 588 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) 589 { 590 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 591 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 592 593 if (!hold_ctx) 594 return 0; 595 596 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && 597 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { 598 #ifdef CONFIG_DEBUG_MUTEXES 599 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 600 ctx->contending_lock = ww; 601 #endif 602 return -EDEADLK; 603 } 604 605 return 0; 606 } 607 608 /* 609 * Lock a mutex (possibly interruptible), slowpath: 610 */ 611 static __always_inline int __sched 612 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 613 struct lockdep_map *nest_lock, unsigned long ip, 614 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 615 { 616 struct task_struct *task = current; 617 struct mutex_waiter waiter; 618 unsigned long flags; 619 bool first = false; 620 struct ww_mutex *ww; 621 int ret; 622 623 if (use_ww_ctx) { 624 ww = container_of(lock, struct ww_mutex, base); 625 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 626 return -EALREADY; 627 } 628 629 preempt_disable(); 630 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 631 632 if (__mutex_trylock(lock, false) || 633 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) { 634 /* got the lock, yay! */ 635 lock_acquired(&lock->dep_map, ip); 636 if (use_ww_ctx) 637 ww_mutex_set_context_fastpath(ww, ww_ctx); 638 preempt_enable(); 639 return 0; 640 } 641 642 spin_lock_mutex(&lock->wait_lock, flags); 643 /* 644 * After waiting to acquire the wait_lock, try again. 645 */ 646 if (__mutex_trylock(lock, false)) 647 goto skip_wait; 648 649 debug_mutex_lock_common(lock, &waiter); 650 debug_mutex_add_waiter(lock, &waiter, task); 651 652 /* add waiting tasks to the end of the waitqueue (FIFO): */ 653 list_add_tail(&waiter.list, &lock->wait_list); 654 waiter.task = task; 655 656 if (__mutex_waiter_is_first(lock, &waiter)) 657 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 658 659 lock_contended(&lock->dep_map, ip); 660 661 set_task_state(task, state); 662 for (;;) { 663 /* 664 * Once we hold wait_lock, we're serialized against 665 * mutex_unlock() handing the lock off to us, do a trylock 666 * before testing the error conditions to make sure we pick up 667 * the handoff. 668 */ 669 if (__mutex_trylock(lock, first)) 670 goto acquired; 671 672 /* 673 * Check for signals and wound conditions while holding 674 * wait_lock. This ensures the lock cancellation is ordered 675 * against mutex_unlock() and wake-ups do not go missing. 676 */ 677 if (unlikely(signal_pending_state(state, task))) { 678 ret = -EINTR; 679 goto err; 680 } 681 682 if (use_ww_ctx && ww_ctx->acquired > 0) { 683 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx); 684 if (ret) 685 goto err; 686 } 687 688 spin_unlock_mutex(&lock->wait_lock, flags); 689 schedule_preempt_disabled(); 690 691 if (!first && __mutex_waiter_is_first(lock, &waiter)) { 692 first = true; 693 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 694 } 695 696 set_task_state(task, state); 697 /* 698 * Here we order against unlock; we must either see it change 699 * state back to RUNNING and fall through the next schedule(), 700 * or we must see its unlock and acquire. 701 */ 702 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) || 703 __mutex_trylock(lock, first)) 704 break; 705 706 spin_lock_mutex(&lock->wait_lock, flags); 707 } 708 spin_lock_mutex(&lock->wait_lock, flags); 709 acquired: 710 __set_task_state(task, TASK_RUNNING); 711 712 mutex_remove_waiter(lock, &waiter, task); 713 if (likely(list_empty(&lock->wait_list))) 714 __mutex_clear_flag(lock, MUTEX_FLAGS); 715 716 debug_mutex_free_waiter(&waiter); 717 718 skip_wait: 719 /* got the lock - cleanup and rejoice! */ 720 lock_acquired(&lock->dep_map, ip); 721 722 if (use_ww_ctx) 723 ww_mutex_set_context_slowpath(ww, ww_ctx); 724 725 spin_unlock_mutex(&lock->wait_lock, flags); 726 preempt_enable(); 727 return 0; 728 729 err: 730 __set_task_state(task, TASK_RUNNING); 731 mutex_remove_waiter(lock, &waiter, task); 732 spin_unlock_mutex(&lock->wait_lock, flags); 733 debug_mutex_free_waiter(&waiter); 734 mutex_release(&lock->dep_map, 1, ip); 735 preempt_enable(); 736 return ret; 737 } 738 739 #ifdef CONFIG_DEBUG_LOCK_ALLOC 740 void __sched 741 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 742 { 743 might_sleep(); 744 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 745 subclass, NULL, _RET_IP_, NULL, 0); 746 } 747 748 EXPORT_SYMBOL_GPL(mutex_lock_nested); 749 750 void __sched 751 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 752 { 753 might_sleep(); 754 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 755 0, nest, _RET_IP_, NULL, 0); 756 } 757 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 758 759 int __sched 760 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 761 { 762 might_sleep(); 763 return __mutex_lock_common(lock, TASK_KILLABLE, 764 subclass, NULL, _RET_IP_, NULL, 0); 765 } 766 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 767 768 int __sched 769 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 770 { 771 might_sleep(); 772 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 773 subclass, NULL, _RET_IP_, NULL, 0); 774 } 775 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 776 777 static inline int 778 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 779 { 780 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 781 unsigned tmp; 782 783 if (ctx->deadlock_inject_countdown-- == 0) { 784 tmp = ctx->deadlock_inject_interval; 785 if (tmp > UINT_MAX/4) 786 tmp = UINT_MAX; 787 else 788 tmp = tmp*2 + tmp + tmp/2; 789 790 ctx->deadlock_inject_interval = tmp; 791 ctx->deadlock_inject_countdown = tmp; 792 ctx->contending_lock = lock; 793 794 ww_mutex_unlock(lock); 795 796 return -EDEADLK; 797 } 798 #endif 799 800 return 0; 801 } 802 803 int __sched 804 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 805 { 806 int ret; 807 808 might_sleep(); 809 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 810 0, &ctx->dep_map, _RET_IP_, ctx, 1); 811 if (!ret && ctx->acquired > 1) 812 return ww_mutex_deadlock_injection(lock, ctx); 813 814 return ret; 815 } 816 EXPORT_SYMBOL_GPL(__ww_mutex_lock); 817 818 int __sched 819 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 820 { 821 int ret; 822 823 might_sleep(); 824 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 825 0, &ctx->dep_map, _RET_IP_, ctx, 1); 826 827 if (!ret && ctx->acquired > 1) 828 return ww_mutex_deadlock_injection(lock, ctx); 829 830 return ret; 831 } 832 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); 833 834 #endif 835 836 /* 837 * Release the lock, slowpath: 838 */ 839 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 840 { 841 struct task_struct *next = NULL; 842 unsigned long owner, flags; 843 WAKE_Q(wake_q); 844 845 mutex_release(&lock->dep_map, 1, ip); 846 847 /* 848 * Release the lock before (potentially) taking the spinlock such that 849 * other contenders can get on with things ASAP. 850 * 851 * Except when HANDOFF, in that case we must not clear the owner field, 852 * but instead set it to the top waiter. 853 */ 854 owner = atomic_long_read(&lock->owner); 855 for (;;) { 856 unsigned long old; 857 858 #ifdef CONFIG_DEBUG_MUTEXES 859 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 860 #endif 861 862 if (owner & MUTEX_FLAG_HANDOFF) 863 break; 864 865 old = atomic_long_cmpxchg_release(&lock->owner, owner, 866 __owner_flags(owner)); 867 if (old == owner) { 868 if (owner & MUTEX_FLAG_WAITERS) 869 break; 870 871 return; 872 } 873 874 owner = old; 875 } 876 877 spin_lock_mutex(&lock->wait_lock, flags); 878 debug_mutex_unlock(lock); 879 if (!list_empty(&lock->wait_list)) { 880 /* get the first entry from the wait-list: */ 881 struct mutex_waiter *waiter = 882 list_first_entry(&lock->wait_list, 883 struct mutex_waiter, list); 884 885 next = waiter->task; 886 887 debug_mutex_wake_waiter(lock, waiter); 888 wake_q_add(&wake_q, next); 889 } 890 891 if (owner & MUTEX_FLAG_HANDOFF) 892 __mutex_handoff(lock, next); 893 894 spin_unlock_mutex(&lock->wait_lock, flags); 895 896 wake_up_q(&wake_q); 897 } 898 899 #ifndef CONFIG_DEBUG_LOCK_ALLOC 900 /* 901 * Here come the less common (and hence less performance-critical) APIs: 902 * mutex_lock_interruptible() and mutex_trylock(). 903 */ 904 static noinline int __sched 905 __mutex_lock_killable_slowpath(struct mutex *lock); 906 907 static noinline int __sched 908 __mutex_lock_interruptible_slowpath(struct mutex *lock); 909 910 /** 911 * mutex_lock_interruptible - acquire the mutex, interruptible 912 * @lock: the mutex to be acquired 913 * 914 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 915 * been acquired or sleep until the mutex becomes available. If a 916 * signal arrives while waiting for the lock then this function 917 * returns -EINTR. 918 * 919 * This function is similar to (but not equivalent to) down_interruptible(). 920 */ 921 int __sched mutex_lock_interruptible(struct mutex *lock) 922 { 923 might_sleep(); 924 925 if (__mutex_trylock_fast(lock)) 926 return 0; 927 928 return __mutex_lock_interruptible_slowpath(lock); 929 } 930 931 EXPORT_SYMBOL(mutex_lock_interruptible); 932 933 int __sched mutex_lock_killable(struct mutex *lock) 934 { 935 might_sleep(); 936 937 if (__mutex_trylock_fast(lock)) 938 return 0; 939 940 return __mutex_lock_killable_slowpath(lock); 941 } 942 EXPORT_SYMBOL(mutex_lock_killable); 943 944 static noinline void __sched 945 __mutex_lock_slowpath(struct mutex *lock) 946 { 947 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, 948 NULL, _RET_IP_, NULL, 0); 949 } 950 951 static noinline int __sched 952 __mutex_lock_killable_slowpath(struct mutex *lock) 953 { 954 return __mutex_lock_common(lock, TASK_KILLABLE, 0, 955 NULL, _RET_IP_, NULL, 0); 956 } 957 958 static noinline int __sched 959 __mutex_lock_interruptible_slowpath(struct mutex *lock) 960 { 961 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, 962 NULL, _RET_IP_, NULL, 0); 963 } 964 965 static noinline int __sched 966 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 967 { 968 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, 969 NULL, _RET_IP_, ctx, 1); 970 } 971 972 static noinline int __sched 973 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 974 struct ww_acquire_ctx *ctx) 975 { 976 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, 977 NULL, _RET_IP_, ctx, 1); 978 } 979 980 #endif 981 982 /** 983 * mutex_trylock - try to acquire the mutex, without waiting 984 * @lock: the mutex to be acquired 985 * 986 * Try to acquire the mutex atomically. Returns 1 if the mutex 987 * has been acquired successfully, and 0 on contention. 988 * 989 * NOTE: this function follows the spin_trylock() convention, so 990 * it is negated from the down_trylock() return values! Be careful 991 * about this when converting semaphore users to mutexes. 992 * 993 * This function must not be used in interrupt context. The 994 * mutex must be released by the same task that acquired it. 995 */ 996 int __sched mutex_trylock(struct mutex *lock) 997 { 998 bool locked = __mutex_trylock(lock, false); 999 1000 if (locked) 1001 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1002 1003 return locked; 1004 } 1005 EXPORT_SYMBOL(mutex_trylock); 1006 1007 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1008 int __sched 1009 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1010 { 1011 might_sleep(); 1012 1013 if (__mutex_trylock_fast(&lock->base)) { 1014 ww_mutex_set_context_fastpath(lock, ctx); 1015 return 0; 1016 } 1017 1018 return __ww_mutex_lock_slowpath(lock, ctx); 1019 } 1020 EXPORT_SYMBOL(__ww_mutex_lock); 1021 1022 int __sched 1023 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1024 { 1025 might_sleep(); 1026 1027 if (__mutex_trylock_fast(&lock->base)) { 1028 ww_mutex_set_context_fastpath(lock, ctx); 1029 return 0; 1030 } 1031 1032 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1033 } 1034 EXPORT_SYMBOL(__ww_mutex_lock_interruptible); 1035 1036 #endif 1037 1038 /** 1039 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1040 * @cnt: the atomic which we are to dec 1041 * @lock: the mutex to return holding if we dec to 0 1042 * 1043 * return true and hold lock if we dec to 0, return false otherwise 1044 */ 1045 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1046 { 1047 /* dec if we can't possibly hit 0 */ 1048 if (atomic_add_unless(cnt, -1, 1)) 1049 return 0; 1050 /* we might hit 0, so take the lock */ 1051 mutex_lock(lock); 1052 if (!atomic_dec_and_test(cnt)) { 1053 /* when we actually did the dec, we didn't hit 0 */ 1054 mutex_unlock(lock); 1055 return 0; 1056 } 1057 /* we hit 0, and we hold the lock */ 1058 return 1; 1059 } 1060 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1061