xref: /openbmc/linux/kernel/locking/mutex.c (revision a40ca56577f628eb3f7af22b484e95edfdd047a2)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29 
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
32 #else
33 # include "mutex.h"
34 #endif
35 
36 void
37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
38 {
39 	atomic_long_set(&lock->owner, 0);
40 	spin_lock_init(&lock->wait_lock);
41 	INIT_LIST_HEAD(&lock->wait_list);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 	osq_lock_init(&lock->osq);
44 #endif
45 
46 	debug_mutex_init(lock, name, key);
47 }
48 EXPORT_SYMBOL(__mutex_init);
49 
50 /*
51  * @owner: contains: 'struct task_struct *' to the current lock owner,
52  * NULL means not owned. Since task_struct pointers are aligned at
53  * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54  * bits to store extra state.
55  *
56  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57  * Bit1 indicates unlock needs to hand the lock to the top-waiter
58  */
59 #define MUTEX_FLAG_WAITERS	0x01
60 #define MUTEX_FLAG_HANDOFF	0x02
61 
62 #define MUTEX_FLAGS		0x03
63 
64 static inline struct task_struct *__owner_task(unsigned long owner)
65 {
66 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67 }
68 
69 static inline unsigned long __owner_flags(unsigned long owner)
70 {
71 	return owner & MUTEX_FLAGS;
72 }
73 
74 /*
75  * Actual trylock that will work on any unlocked state.
76  *
77  * When setting the owner field, we must preserve the low flag bits.
78  *
79  * Be careful with @handoff, only set that in a wait-loop (where you set
80  * HANDOFF) to avoid recursive lock attempts.
81  */
82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
83 {
84 	unsigned long owner, curr = (unsigned long)current;
85 
86 	owner = atomic_long_read(&lock->owner);
87 	for (;;) { /* must loop, can race against a flag */
88 		unsigned long old, flags = __owner_flags(owner);
89 
90 		if (__owner_task(owner)) {
91 			if (handoff && unlikely(__owner_task(owner) == current)) {
92 				/*
93 				 * Provide ACQUIRE semantics for the lock-handoff.
94 				 *
95 				 * We cannot easily use load-acquire here, since
96 				 * the actual load is a failed cmpxchg, which
97 				 * doesn't imply any barriers.
98 				 *
99 				 * Also, this is a fairly unlikely scenario, and
100 				 * this contains the cost.
101 				 */
102 				smp_mb(); /* ACQUIRE */
103 				return true;
104 			}
105 
106 			return false;
107 		}
108 
109 		/*
110 		 * We set the HANDOFF bit, we must make sure it doesn't live
111 		 * past the point where we acquire it. This would be possible
112 		 * if we (accidentally) set the bit on an unlocked mutex.
113 		 */
114 		if (handoff)
115 			flags &= ~MUTEX_FLAG_HANDOFF;
116 
117 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
118 		if (old == owner)
119 			return true;
120 
121 		owner = old;
122 	}
123 }
124 
125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
126 /*
127  * Lockdep annotations are contained to the slow paths for simplicity.
128  * There is nothing that would stop spreading the lockdep annotations outwards
129  * except more code.
130  */
131 
132 /*
133  * Optimistic trylock that only works in the uncontended case. Make sure to
134  * follow with a __mutex_trylock() before failing.
135  */
136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137 {
138 	unsigned long curr = (unsigned long)current;
139 
140 	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 		return true;
142 
143 	return false;
144 }
145 
146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147 {
148 	unsigned long curr = (unsigned long)current;
149 
150 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 		return true;
152 
153 	return false;
154 }
155 #endif
156 
157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158 {
159 	atomic_long_or(flag, &lock->owner);
160 }
161 
162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163 {
164 	atomic_long_andnot(flag, &lock->owner);
165 }
166 
167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168 {
169 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170 }
171 
172 /*
173  * Give up ownership to a specific task, when @task = NULL, this is equivalent
174  * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175  * semantics like a regular unlock, the __mutex_trylock() provides matching
176  * ACQUIRE semantics for the handoff.
177  */
178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179 {
180 	unsigned long owner = atomic_long_read(&lock->owner);
181 
182 	for (;;) {
183 		unsigned long old, new;
184 
185 #ifdef CONFIG_DEBUG_MUTEXES
186 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187 #endif
188 
189 		new = (owner & MUTEX_FLAG_WAITERS);
190 		new |= (unsigned long)task;
191 
192 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 		if (old == owner)
194 			break;
195 
196 		owner = old;
197 	}
198 }
199 
200 #ifndef CONFIG_DEBUG_LOCK_ALLOC
201 /*
202  * We split the mutex lock/unlock logic into separate fastpath and
203  * slowpath functions, to reduce the register pressure on the fastpath.
204  * We also put the fastpath first in the kernel image, to make sure the
205  * branch is predicted by the CPU as default-untaken.
206  */
207 static void __sched __mutex_lock_slowpath(struct mutex *lock);
208 
209 /**
210  * mutex_lock - acquire the mutex
211  * @lock: the mutex to be acquired
212  *
213  * Lock the mutex exclusively for this task. If the mutex is not
214  * available right now, it will sleep until it can get it.
215  *
216  * The mutex must later on be released by the same task that
217  * acquired it. Recursive locking is not allowed. The task
218  * may not exit without first unlocking the mutex. Also, kernel
219  * memory where the mutex resides must not be freed with
220  * the mutex still locked. The mutex must first be initialized
221  * (or statically defined) before it can be locked. memset()-ing
222  * the mutex to 0 is not allowed.
223  *
224  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225  *   checks that will enforce the restrictions and will also do
226  *   deadlock debugging. )
227  *
228  * This function is similar to (but not equivalent to) down().
229  */
230 void __sched mutex_lock(struct mutex *lock)
231 {
232 	might_sleep();
233 
234 	if (!__mutex_trylock_fast(lock))
235 		__mutex_lock_slowpath(lock);
236 }
237 EXPORT_SYMBOL(mutex_lock);
238 #endif
239 
240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 						   struct ww_acquire_ctx *ww_ctx)
242 {
243 #ifdef CONFIG_DEBUG_MUTEXES
244 	/*
245 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 	 * but released with a normal mutex_unlock in this call.
247 	 *
248 	 * This should never happen, always use ww_mutex_unlock.
249 	 */
250 	DEBUG_LOCKS_WARN_ON(ww->ctx);
251 
252 	/*
253 	 * Not quite done after calling ww_acquire_done() ?
254 	 */
255 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256 
257 	if (ww_ctx->contending_lock) {
258 		/*
259 		 * After -EDEADLK you tried to
260 		 * acquire a different ww_mutex? Bad!
261 		 */
262 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263 
264 		/*
265 		 * You called ww_mutex_lock after receiving -EDEADLK,
266 		 * but 'forgot' to unlock everything else first?
267 		 */
268 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 		ww_ctx->contending_lock = NULL;
270 	}
271 
272 	/*
273 	 * Naughty, using a different class will lead to undefined behavior!
274 	 */
275 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276 #endif
277 	ww_ctx->acquired++;
278 }
279 
280 /*
281  * After acquiring lock with fastpath or when we lost out in contested
282  * slowpath, set ctx and wake up any waiters so they can recheck.
283  */
284 static __always_inline void
285 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 			       struct ww_acquire_ctx *ctx)
287 {
288 	unsigned long flags;
289 	struct mutex_waiter *cur;
290 
291 	ww_mutex_lock_acquired(lock, ctx);
292 
293 	lock->ctx = ctx;
294 
295 	/*
296 	 * The lock->ctx update should be visible on all cores before
297 	 * the atomic read is done, otherwise contended waiters might be
298 	 * missed. The contended waiters will either see ww_ctx == NULL
299 	 * and keep spinning, or it will acquire wait_lock, add itself
300 	 * to waiter list and sleep.
301 	 */
302 	smp_mb(); /* ^^^ */
303 
304 	/*
305 	 * Check if lock is contended, if not there is nobody to wake up
306 	 */
307 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
308 		return;
309 
310 	/*
311 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 	 * so they can see the new lock->ctx.
313 	 */
314 	spin_lock_mutex(&lock->base.wait_lock, flags);
315 	list_for_each_entry(cur, &lock->base.wait_list, list) {
316 		debug_mutex_wake_waiter(&lock->base, cur);
317 		wake_up_process(cur->task);
318 	}
319 	spin_unlock_mutex(&lock->base.wait_lock, flags);
320 }
321 
322 /*
323  * After acquiring lock in the slowpath set ctx and wake up any
324  * waiters so they can recheck.
325  *
326  * Callers must hold the mutex wait_lock.
327  */
328 static __always_inline void
329 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 			      struct ww_acquire_ctx *ctx)
331 {
332 	struct mutex_waiter *cur;
333 
334 	ww_mutex_lock_acquired(lock, ctx);
335 	lock->ctx = ctx;
336 
337 	/*
338 	 * Give any possible sleeping processes the chance to wake up,
339 	 * so they can recheck if they have to back off.
340 	 */
341 	list_for_each_entry(cur, &lock->base.wait_list, list) {
342 		debug_mutex_wake_waiter(&lock->base, cur);
343 		wake_up_process(cur->task);
344 	}
345 }
346 
347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
348 /*
349  * Look out! "owner" is an entirely speculative pointer
350  * access and not reliable.
351  */
352 static noinline
353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
354 {
355 	bool ret = true;
356 
357 	rcu_read_lock();
358 	while (__mutex_owner(lock) == owner) {
359 		/*
360 		 * Ensure we emit the owner->on_cpu, dereference _after_
361 		 * checking lock->owner still matches owner. If that fails,
362 		 * owner might point to freed memory. If it still matches,
363 		 * the rcu_read_lock() ensures the memory stays valid.
364 		 */
365 		barrier();
366 
367 		if (!owner->on_cpu || need_resched()) {
368 			ret = false;
369 			break;
370 		}
371 
372 		cpu_relax_lowlatency();
373 	}
374 	rcu_read_unlock();
375 
376 	return ret;
377 }
378 
379 /*
380  * Initial check for entering the mutex spinning loop
381  */
382 static inline int mutex_can_spin_on_owner(struct mutex *lock)
383 {
384 	struct task_struct *owner;
385 	int retval = 1;
386 
387 	if (need_resched())
388 		return 0;
389 
390 	rcu_read_lock();
391 	owner = __mutex_owner(lock);
392 	if (owner)
393 		retval = owner->on_cpu;
394 	rcu_read_unlock();
395 
396 	/*
397 	 * If lock->owner is not set, the mutex has been released. Return true
398 	 * such that we'll trylock in the spin path, which is a faster option
399 	 * than the blocking slow path.
400 	 */
401 	return retval;
402 }
403 
404 /*
405  * Optimistic spinning.
406  *
407  * We try to spin for acquisition when we find that the lock owner
408  * is currently running on a (different) CPU and while we don't
409  * need to reschedule. The rationale is that if the lock owner is
410  * running, it is likely to release the lock soon.
411  *
412  * The mutex spinners are queued up using MCS lock so that only one
413  * spinner can compete for the mutex. However, if mutex spinning isn't
414  * going to happen, there is no point in going through the lock/unlock
415  * overhead.
416  *
417  * Returns true when the lock was taken, otherwise false, indicating
418  * that we need to jump to the slowpath and sleep.
419  */
420 static bool mutex_optimistic_spin(struct mutex *lock,
421 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
422 {
423 	struct task_struct *task = current;
424 
425 	if (!mutex_can_spin_on_owner(lock))
426 		goto done;
427 
428 	/*
429 	 * In order to avoid a stampede of mutex spinners trying to
430 	 * acquire the mutex all at once, the spinners need to take a
431 	 * MCS (queued) lock first before spinning on the owner field.
432 	 */
433 	if (!osq_lock(&lock->osq))
434 		goto done;
435 
436 	while (true) {
437 		struct task_struct *owner;
438 
439 		if (use_ww_ctx && ww_ctx->acquired > 0) {
440 			struct ww_mutex *ww;
441 
442 			ww = container_of(lock, struct ww_mutex, base);
443 			/*
444 			 * If ww->ctx is set the contents are undefined, only
445 			 * by acquiring wait_lock there is a guarantee that
446 			 * they are not invalid when reading.
447 			 *
448 			 * As such, when deadlock detection needs to be
449 			 * performed the optimistic spinning cannot be done.
450 			 */
451 			if (READ_ONCE(ww->ctx))
452 				break;
453 		}
454 
455 		/*
456 		 * If there's an owner, wait for it to either
457 		 * release the lock or go to sleep.
458 		 */
459 		owner = __mutex_owner(lock);
460 		if (owner && !mutex_spin_on_owner(lock, owner))
461 			break;
462 
463 		/* Try to acquire the mutex if it is unlocked. */
464 		if (__mutex_trylock(lock, false)) {
465 			osq_unlock(&lock->osq);
466 			return true;
467 		}
468 
469 		/*
470 		 * The cpu_relax() call is a compiler barrier which forces
471 		 * everything in this loop to be re-loaded. We don't need
472 		 * memory barriers as we'll eventually observe the right
473 		 * values at the cost of a few extra spins.
474 		 */
475 		cpu_relax_lowlatency();
476 	}
477 
478 	osq_unlock(&lock->osq);
479 done:
480 	/*
481 	 * If we fell out of the spin path because of need_resched(),
482 	 * reschedule now, before we try-lock the mutex. This avoids getting
483 	 * scheduled out right after we obtained the mutex.
484 	 */
485 	if (need_resched()) {
486 		/*
487 		 * We _should_ have TASK_RUNNING here, but just in case
488 		 * we do not, make it so, otherwise we might get stuck.
489 		 */
490 		__set_current_state(TASK_RUNNING);
491 		schedule_preempt_disabled();
492 	}
493 
494 	return false;
495 }
496 #else
497 static bool mutex_optimistic_spin(struct mutex *lock,
498 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
499 {
500 	return false;
501 }
502 #endif
503 
504 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
505 
506 /**
507  * mutex_unlock - release the mutex
508  * @lock: the mutex to be released
509  *
510  * Unlock a mutex that has been locked by this task previously.
511  *
512  * This function must not be used in interrupt context. Unlocking
513  * of a not locked mutex is not allowed.
514  *
515  * This function is similar to (but not equivalent to) up().
516  */
517 void __sched mutex_unlock(struct mutex *lock)
518 {
519 #ifndef CONFIG_DEBUG_LOCK_ALLOC
520 	if (__mutex_unlock_fast(lock))
521 		return;
522 #endif
523 	__mutex_unlock_slowpath(lock, _RET_IP_);
524 }
525 EXPORT_SYMBOL(mutex_unlock);
526 
527 /**
528  * ww_mutex_unlock - release the w/w mutex
529  * @lock: the mutex to be released
530  *
531  * Unlock a mutex that has been locked by this task previously with any of the
532  * ww_mutex_lock* functions (with or without an acquire context). It is
533  * forbidden to release the locks after releasing the acquire context.
534  *
535  * This function must not be used in interrupt context. Unlocking
536  * of a unlocked mutex is not allowed.
537  */
538 void __sched ww_mutex_unlock(struct ww_mutex *lock)
539 {
540 	/*
541 	 * The unlocking fastpath is the 0->1 transition from 'locked'
542 	 * into 'unlocked' state:
543 	 */
544 	if (lock->ctx) {
545 #ifdef CONFIG_DEBUG_MUTEXES
546 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
547 #endif
548 		if (lock->ctx->acquired > 0)
549 			lock->ctx->acquired--;
550 		lock->ctx = NULL;
551 	}
552 
553 	mutex_unlock(&lock->base);
554 }
555 EXPORT_SYMBOL(ww_mutex_unlock);
556 
557 static inline int __sched
558 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
559 {
560 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
561 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
562 
563 	if (!hold_ctx)
564 		return 0;
565 
566 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
567 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
568 #ifdef CONFIG_DEBUG_MUTEXES
569 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
570 		ctx->contending_lock = ww;
571 #endif
572 		return -EDEADLK;
573 	}
574 
575 	return 0;
576 }
577 
578 /*
579  * Lock a mutex (possibly interruptible), slowpath:
580  */
581 static __always_inline int __sched
582 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
583 		    struct lockdep_map *nest_lock, unsigned long ip,
584 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
585 {
586 	struct task_struct *task = current;
587 	struct mutex_waiter waiter;
588 	unsigned long flags;
589 	bool first = false;
590 	struct ww_mutex *ww;
591 	int ret;
592 
593 	if (use_ww_ctx) {
594 		ww = container_of(lock, struct ww_mutex, base);
595 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
596 			return -EALREADY;
597 	}
598 
599 	preempt_disable();
600 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
601 
602 	if (__mutex_trylock(lock, false) ||
603 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
604 		/* got the lock, yay! */
605 		lock_acquired(&lock->dep_map, ip);
606 		if (use_ww_ctx)
607 			ww_mutex_set_context_fastpath(ww, ww_ctx);
608 		preempt_enable();
609 		return 0;
610 	}
611 
612 	spin_lock_mutex(&lock->wait_lock, flags);
613 	/*
614 	 * After waiting to acquire the wait_lock, try again.
615 	 */
616 	if (__mutex_trylock(lock, false))
617 		goto skip_wait;
618 
619 	debug_mutex_lock_common(lock, &waiter);
620 	debug_mutex_add_waiter(lock, &waiter, task);
621 
622 	/* add waiting tasks to the end of the waitqueue (FIFO): */
623 	list_add_tail(&waiter.list, &lock->wait_list);
624 	waiter.task = task;
625 
626 	if (__mutex_waiter_is_first(lock, &waiter))
627 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
628 
629 	lock_contended(&lock->dep_map, ip);
630 
631 	set_task_state(task, state);
632 	for (;;) {
633 		/*
634 		 * Once we hold wait_lock, we're serialized against
635 		 * mutex_unlock() handing the lock off to us, do a trylock
636 		 * before testing the error conditions to make sure we pick up
637 		 * the handoff.
638 		 */
639 		if (__mutex_trylock(lock, first))
640 			goto acquired;
641 
642 		/*
643 		 * Check for signals and wound conditions while holding
644 		 * wait_lock. This ensures the lock cancellation is ordered
645 		 * against mutex_unlock() and wake-ups do not go missing.
646 		 */
647 		if (unlikely(signal_pending_state(state, task))) {
648 			ret = -EINTR;
649 			goto err;
650 		}
651 
652 		if (use_ww_ctx && ww_ctx->acquired > 0) {
653 			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
654 			if (ret)
655 				goto err;
656 		}
657 
658 		spin_unlock_mutex(&lock->wait_lock, flags);
659 		schedule_preempt_disabled();
660 
661 		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
662 			first = true;
663 			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
664 		}
665 
666 		set_task_state(task, state);
667 		/*
668 		 * Here we order against unlock; we must either see it change
669 		 * state back to RUNNING and fall through the next schedule(),
670 		 * or we must see its unlock and acquire.
671 		 */
672 		if (__mutex_trylock(lock, first))
673 			break;
674 
675 		spin_lock_mutex(&lock->wait_lock, flags);
676 	}
677 	spin_lock_mutex(&lock->wait_lock, flags);
678 acquired:
679 	__set_task_state(task, TASK_RUNNING);
680 
681 	mutex_remove_waiter(lock, &waiter, task);
682 	if (likely(list_empty(&lock->wait_list)))
683 		__mutex_clear_flag(lock, MUTEX_FLAGS);
684 
685 	debug_mutex_free_waiter(&waiter);
686 
687 skip_wait:
688 	/* got the lock - cleanup and rejoice! */
689 	lock_acquired(&lock->dep_map, ip);
690 
691 	if (use_ww_ctx)
692 		ww_mutex_set_context_slowpath(ww, ww_ctx);
693 
694 	spin_unlock_mutex(&lock->wait_lock, flags);
695 	preempt_enable();
696 	return 0;
697 
698 err:
699 	__set_task_state(task, TASK_RUNNING);
700 	mutex_remove_waiter(lock, &waiter, task);
701 	spin_unlock_mutex(&lock->wait_lock, flags);
702 	debug_mutex_free_waiter(&waiter);
703 	mutex_release(&lock->dep_map, 1, ip);
704 	preempt_enable();
705 	return ret;
706 }
707 
708 #ifdef CONFIG_DEBUG_LOCK_ALLOC
709 void __sched
710 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
711 {
712 	might_sleep();
713 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
714 			    subclass, NULL, _RET_IP_, NULL, 0);
715 }
716 
717 EXPORT_SYMBOL_GPL(mutex_lock_nested);
718 
719 void __sched
720 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
721 {
722 	might_sleep();
723 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
724 			    0, nest, _RET_IP_, NULL, 0);
725 }
726 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
727 
728 int __sched
729 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
730 {
731 	might_sleep();
732 	return __mutex_lock_common(lock, TASK_KILLABLE,
733 				   subclass, NULL, _RET_IP_, NULL, 0);
734 }
735 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
736 
737 int __sched
738 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
739 {
740 	might_sleep();
741 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
742 				   subclass, NULL, _RET_IP_, NULL, 0);
743 }
744 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
745 
746 static inline int
747 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
748 {
749 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
750 	unsigned tmp;
751 
752 	if (ctx->deadlock_inject_countdown-- == 0) {
753 		tmp = ctx->deadlock_inject_interval;
754 		if (tmp > UINT_MAX/4)
755 			tmp = UINT_MAX;
756 		else
757 			tmp = tmp*2 + tmp + tmp/2;
758 
759 		ctx->deadlock_inject_interval = tmp;
760 		ctx->deadlock_inject_countdown = tmp;
761 		ctx->contending_lock = lock;
762 
763 		ww_mutex_unlock(lock);
764 
765 		return -EDEADLK;
766 	}
767 #endif
768 
769 	return 0;
770 }
771 
772 int __sched
773 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
774 {
775 	int ret;
776 
777 	might_sleep();
778 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
779 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
780 	if (!ret && ctx->acquired > 1)
781 		return ww_mutex_deadlock_injection(lock, ctx);
782 
783 	return ret;
784 }
785 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
786 
787 int __sched
788 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
789 {
790 	int ret;
791 
792 	might_sleep();
793 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
794 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
795 
796 	if (!ret && ctx->acquired > 1)
797 		return ww_mutex_deadlock_injection(lock, ctx);
798 
799 	return ret;
800 }
801 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
802 
803 #endif
804 
805 /*
806  * Release the lock, slowpath:
807  */
808 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
809 {
810 	struct task_struct *next = NULL;
811 	unsigned long owner, flags;
812 	WAKE_Q(wake_q);
813 
814 	mutex_release(&lock->dep_map, 1, ip);
815 
816 	/*
817 	 * Release the lock before (potentially) taking the spinlock such that
818 	 * other contenders can get on with things ASAP.
819 	 *
820 	 * Except when HANDOFF, in that case we must not clear the owner field,
821 	 * but instead set it to the top waiter.
822 	 */
823 	owner = atomic_long_read(&lock->owner);
824 	for (;;) {
825 		unsigned long old;
826 
827 #ifdef CONFIG_DEBUG_MUTEXES
828 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
829 #endif
830 
831 		if (owner & MUTEX_FLAG_HANDOFF)
832 			break;
833 
834 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
835 						  __owner_flags(owner));
836 		if (old == owner) {
837 			if (owner & MUTEX_FLAG_WAITERS)
838 				break;
839 
840 			return;
841 		}
842 
843 		owner = old;
844 	}
845 
846 	spin_lock_mutex(&lock->wait_lock, flags);
847 	debug_mutex_unlock(lock);
848 	if (!list_empty(&lock->wait_list)) {
849 		/* get the first entry from the wait-list: */
850 		struct mutex_waiter *waiter =
851 			list_first_entry(&lock->wait_list,
852 					 struct mutex_waiter, list);
853 
854 		next = waiter->task;
855 
856 		debug_mutex_wake_waiter(lock, waiter);
857 		wake_q_add(&wake_q, next);
858 	}
859 
860 	if (owner & MUTEX_FLAG_HANDOFF)
861 		__mutex_handoff(lock, next);
862 
863 	spin_unlock_mutex(&lock->wait_lock, flags);
864 
865 	wake_up_q(&wake_q);
866 }
867 
868 #ifndef CONFIG_DEBUG_LOCK_ALLOC
869 /*
870  * Here come the less common (and hence less performance-critical) APIs:
871  * mutex_lock_interruptible() and mutex_trylock().
872  */
873 static noinline int __sched
874 __mutex_lock_killable_slowpath(struct mutex *lock);
875 
876 static noinline int __sched
877 __mutex_lock_interruptible_slowpath(struct mutex *lock);
878 
879 /**
880  * mutex_lock_interruptible - acquire the mutex, interruptible
881  * @lock: the mutex to be acquired
882  *
883  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
884  * been acquired or sleep until the mutex becomes available. If a
885  * signal arrives while waiting for the lock then this function
886  * returns -EINTR.
887  *
888  * This function is similar to (but not equivalent to) down_interruptible().
889  */
890 int __sched mutex_lock_interruptible(struct mutex *lock)
891 {
892 	might_sleep();
893 
894 	if (__mutex_trylock_fast(lock))
895 		return 0;
896 
897 	return __mutex_lock_interruptible_slowpath(lock);
898 }
899 
900 EXPORT_SYMBOL(mutex_lock_interruptible);
901 
902 int __sched mutex_lock_killable(struct mutex *lock)
903 {
904 	might_sleep();
905 
906 	if (__mutex_trylock_fast(lock))
907 		return 0;
908 
909 	return __mutex_lock_killable_slowpath(lock);
910 }
911 EXPORT_SYMBOL(mutex_lock_killable);
912 
913 static noinline void __sched
914 __mutex_lock_slowpath(struct mutex *lock)
915 {
916 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
917 			    NULL, _RET_IP_, NULL, 0);
918 }
919 
920 static noinline int __sched
921 __mutex_lock_killable_slowpath(struct mutex *lock)
922 {
923 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
924 				   NULL, _RET_IP_, NULL, 0);
925 }
926 
927 static noinline int __sched
928 __mutex_lock_interruptible_slowpath(struct mutex *lock)
929 {
930 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
931 				   NULL, _RET_IP_, NULL, 0);
932 }
933 
934 static noinline int __sched
935 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
936 {
937 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
938 				   NULL, _RET_IP_, ctx, 1);
939 }
940 
941 static noinline int __sched
942 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
943 					    struct ww_acquire_ctx *ctx)
944 {
945 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
946 				   NULL, _RET_IP_, ctx, 1);
947 }
948 
949 #endif
950 
951 /**
952  * mutex_trylock - try to acquire the mutex, without waiting
953  * @lock: the mutex to be acquired
954  *
955  * Try to acquire the mutex atomically. Returns 1 if the mutex
956  * has been acquired successfully, and 0 on contention.
957  *
958  * NOTE: this function follows the spin_trylock() convention, so
959  * it is negated from the down_trylock() return values! Be careful
960  * about this when converting semaphore users to mutexes.
961  *
962  * This function must not be used in interrupt context. The
963  * mutex must be released by the same task that acquired it.
964  */
965 int __sched mutex_trylock(struct mutex *lock)
966 {
967 	bool locked = __mutex_trylock(lock, false);
968 
969 	if (locked)
970 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
971 
972 	return locked;
973 }
974 EXPORT_SYMBOL(mutex_trylock);
975 
976 #ifndef CONFIG_DEBUG_LOCK_ALLOC
977 int __sched
978 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
979 {
980 	might_sleep();
981 
982 	if (__mutex_trylock_fast(&lock->base)) {
983 		ww_mutex_set_context_fastpath(lock, ctx);
984 		return 0;
985 	}
986 
987 	return __ww_mutex_lock_slowpath(lock, ctx);
988 }
989 EXPORT_SYMBOL(__ww_mutex_lock);
990 
991 int __sched
992 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
993 {
994 	might_sleep();
995 
996 	if (__mutex_trylock_fast(&lock->base)) {
997 		ww_mutex_set_context_fastpath(lock, ctx);
998 		return 0;
999 	}
1000 
1001 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1002 }
1003 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1004 
1005 #endif
1006 
1007 /**
1008  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1009  * @cnt: the atomic which we are to dec
1010  * @lock: the mutex to return holding if we dec to 0
1011  *
1012  * return true and hold lock if we dec to 0, return false otherwise
1013  */
1014 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1015 {
1016 	/* dec if we can't possibly hit 0 */
1017 	if (atomic_add_unless(cnt, -1, 1))
1018 		return 0;
1019 	/* we might hit 0, so take the lock */
1020 	mutex_lock(lock);
1021 	if (!atomic_dec_and_test(cnt)) {
1022 		/* when we actually did the dec, we didn't hit 0 */
1023 		mutex_unlock(lock);
1024 		return 0;
1025 	}
1026 	/* we hit 0, and we hold the lock */
1027 	return 1;
1028 }
1029 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1030