1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched.h> 23 #include <linux/sched/rt.h> 24 #include <linux/export.h> 25 #include <linux/spinlock.h> 26 #include <linux/interrupt.h> 27 #include <linux/debug_locks.h> 28 #include <linux/osq_lock.h> 29 30 #ifdef CONFIG_DEBUG_MUTEXES 31 # include "mutex-debug.h" 32 #else 33 # include "mutex.h" 34 #endif 35 36 void 37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 38 { 39 atomic_long_set(&lock->owner, 0); 40 spin_lock_init(&lock->wait_lock); 41 INIT_LIST_HEAD(&lock->wait_list); 42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 43 osq_lock_init(&lock->osq); 44 #endif 45 46 debug_mutex_init(lock, name, key); 47 } 48 EXPORT_SYMBOL(__mutex_init); 49 50 /* 51 * @owner: contains: 'struct task_struct *' to the current lock owner, 52 * NULL means not owned. Since task_struct pointers are aligned at 53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low 54 * bits to store extra state. 55 * 56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 57 * Bit1 indicates unlock needs to hand the lock to the top-waiter 58 */ 59 #define MUTEX_FLAG_WAITERS 0x01 60 #define MUTEX_FLAG_HANDOFF 0x02 61 62 #define MUTEX_FLAGS 0x03 63 64 static inline struct task_struct *__owner_task(unsigned long owner) 65 { 66 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 67 } 68 69 static inline unsigned long __owner_flags(unsigned long owner) 70 { 71 return owner & MUTEX_FLAGS; 72 } 73 74 /* 75 * Actual trylock that will work on any unlocked state. 76 * 77 * When setting the owner field, we must preserve the low flag bits. 78 * 79 * Be careful with @handoff, only set that in a wait-loop (where you set 80 * HANDOFF) to avoid recursive lock attempts. 81 */ 82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff) 83 { 84 unsigned long owner, curr = (unsigned long)current; 85 86 owner = atomic_long_read(&lock->owner); 87 for (;;) { /* must loop, can race against a flag */ 88 unsigned long old, flags = __owner_flags(owner); 89 90 if (__owner_task(owner)) { 91 if (handoff && unlikely(__owner_task(owner) == current)) { 92 /* 93 * Provide ACQUIRE semantics for the lock-handoff. 94 * 95 * We cannot easily use load-acquire here, since 96 * the actual load is a failed cmpxchg, which 97 * doesn't imply any barriers. 98 * 99 * Also, this is a fairly unlikely scenario, and 100 * this contains the cost. 101 */ 102 smp_mb(); /* ACQUIRE */ 103 return true; 104 } 105 106 return false; 107 } 108 109 /* 110 * We set the HANDOFF bit, we must make sure it doesn't live 111 * past the point where we acquire it. This would be possible 112 * if we (accidentally) set the bit on an unlocked mutex. 113 */ 114 if (handoff) 115 flags &= ~MUTEX_FLAG_HANDOFF; 116 117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 118 if (old == owner) 119 return true; 120 121 owner = old; 122 } 123 } 124 125 #ifndef CONFIG_DEBUG_LOCK_ALLOC 126 /* 127 * Lockdep annotations are contained to the slow paths for simplicity. 128 * There is nothing that would stop spreading the lockdep annotations outwards 129 * except more code. 130 */ 131 132 /* 133 * Optimistic trylock that only works in the uncontended case. Make sure to 134 * follow with a __mutex_trylock() before failing. 135 */ 136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 137 { 138 unsigned long curr = (unsigned long)current; 139 140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr)) 141 return true; 142 143 return false; 144 } 145 146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 147 { 148 unsigned long curr = (unsigned long)current; 149 150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 151 return true; 152 153 return false; 154 } 155 #endif 156 157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 158 { 159 atomic_long_or(flag, &lock->owner); 160 } 161 162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 163 { 164 atomic_long_andnot(flag, &lock->owner); 165 } 166 167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 168 { 169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 170 } 171 172 /* 173 * Give up ownership to a specific task, when @task = NULL, this is equivalent 174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE 175 * semantics like a regular unlock, the __mutex_trylock() provides matching 176 * ACQUIRE semantics for the handoff. 177 */ 178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 179 { 180 unsigned long owner = atomic_long_read(&lock->owner); 181 182 for (;;) { 183 unsigned long old, new; 184 185 #ifdef CONFIG_DEBUG_MUTEXES 186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 187 #endif 188 189 new = (owner & MUTEX_FLAG_WAITERS); 190 new |= (unsigned long)task; 191 192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 193 if (old == owner) 194 break; 195 196 owner = old; 197 } 198 } 199 200 #ifndef CONFIG_DEBUG_LOCK_ALLOC 201 /* 202 * We split the mutex lock/unlock logic into separate fastpath and 203 * slowpath functions, to reduce the register pressure on the fastpath. 204 * We also put the fastpath first in the kernel image, to make sure the 205 * branch is predicted by the CPU as default-untaken. 206 */ 207 static void __sched __mutex_lock_slowpath(struct mutex *lock); 208 209 /** 210 * mutex_lock - acquire the mutex 211 * @lock: the mutex to be acquired 212 * 213 * Lock the mutex exclusively for this task. If the mutex is not 214 * available right now, it will sleep until it can get it. 215 * 216 * The mutex must later on be released by the same task that 217 * acquired it. Recursive locking is not allowed. The task 218 * may not exit without first unlocking the mutex. Also, kernel 219 * memory where the mutex resides must not be freed with 220 * the mutex still locked. The mutex must first be initialized 221 * (or statically defined) before it can be locked. memset()-ing 222 * the mutex to 0 is not allowed. 223 * 224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 225 * checks that will enforce the restrictions and will also do 226 * deadlock debugging. ) 227 * 228 * This function is similar to (but not equivalent to) down(). 229 */ 230 void __sched mutex_lock(struct mutex *lock) 231 { 232 might_sleep(); 233 234 if (!__mutex_trylock_fast(lock)) 235 __mutex_lock_slowpath(lock); 236 } 237 EXPORT_SYMBOL(mutex_lock); 238 #endif 239 240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, 241 struct ww_acquire_ctx *ww_ctx) 242 { 243 #ifdef CONFIG_DEBUG_MUTEXES 244 /* 245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 246 * but released with a normal mutex_unlock in this call. 247 * 248 * This should never happen, always use ww_mutex_unlock. 249 */ 250 DEBUG_LOCKS_WARN_ON(ww->ctx); 251 252 /* 253 * Not quite done after calling ww_acquire_done() ? 254 */ 255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 256 257 if (ww_ctx->contending_lock) { 258 /* 259 * After -EDEADLK you tried to 260 * acquire a different ww_mutex? Bad! 261 */ 262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 263 264 /* 265 * You called ww_mutex_lock after receiving -EDEADLK, 266 * but 'forgot' to unlock everything else first? 267 */ 268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 269 ww_ctx->contending_lock = NULL; 270 } 271 272 /* 273 * Naughty, using a different class will lead to undefined behavior! 274 */ 275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 276 #endif 277 ww_ctx->acquired++; 278 } 279 280 /* 281 * After acquiring lock with fastpath or when we lost out in contested 282 * slowpath, set ctx and wake up any waiters so they can recheck. 283 */ 284 static __always_inline void 285 ww_mutex_set_context_fastpath(struct ww_mutex *lock, 286 struct ww_acquire_ctx *ctx) 287 { 288 unsigned long flags; 289 struct mutex_waiter *cur; 290 291 ww_mutex_lock_acquired(lock, ctx); 292 293 lock->ctx = ctx; 294 295 /* 296 * The lock->ctx update should be visible on all cores before 297 * the atomic read is done, otherwise contended waiters might be 298 * missed. The contended waiters will either see ww_ctx == NULL 299 * and keep spinning, or it will acquire wait_lock, add itself 300 * to waiter list and sleep. 301 */ 302 smp_mb(); /* ^^^ */ 303 304 /* 305 * Check if lock is contended, if not there is nobody to wake up 306 */ 307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 308 return; 309 310 /* 311 * Uh oh, we raced in fastpath, wake up everyone in this case, 312 * so they can see the new lock->ctx. 313 */ 314 spin_lock_mutex(&lock->base.wait_lock, flags); 315 list_for_each_entry(cur, &lock->base.wait_list, list) { 316 debug_mutex_wake_waiter(&lock->base, cur); 317 wake_up_process(cur->task); 318 } 319 spin_unlock_mutex(&lock->base.wait_lock, flags); 320 } 321 322 /* 323 * After acquiring lock in the slowpath set ctx and wake up any 324 * waiters so they can recheck. 325 * 326 * Callers must hold the mutex wait_lock. 327 */ 328 static __always_inline void 329 ww_mutex_set_context_slowpath(struct ww_mutex *lock, 330 struct ww_acquire_ctx *ctx) 331 { 332 struct mutex_waiter *cur; 333 334 ww_mutex_lock_acquired(lock, ctx); 335 lock->ctx = ctx; 336 337 /* 338 * Give any possible sleeping processes the chance to wake up, 339 * so they can recheck if they have to back off. 340 */ 341 list_for_each_entry(cur, &lock->base.wait_list, list) { 342 debug_mutex_wake_waiter(&lock->base, cur); 343 wake_up_process(cur->task); 344 } 345 } 346 347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 348 /* 349 * Look out! "owner" is an entirely speculative pointer 350 * access and not reliable. 351 */ 352 static noinline 353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 354 { 355 bool ret = true; 356 357 rcu_read_lock(); 358 while (__mutex_owner(lock) == owner) { 359 /* 360 * Ensure we emit the owner->on_cpu, dereference _after_ 361 * checking lock->owner still matches owner. If that fails, 362 * owner might point to freed memory. If it still matches, 363 * the rcu_read_lock() ensures the memory stays valid. 364 */ 365 barrier(); 366 367 /* 368 * Use vcpu_is_preempted to detect lock holder preemption issue. 369 */ 370 if (!owner->on_cpu || need_resched() || 371 vcpu_is_preempted(task_cpu(owner))) { 372 ret = false; 373 break; 374 } 375 376 cpu_relax(); 377 } 378 rcu_read_unlock(); 379 380 return ret; 381 } 382 383 /* 384 * Initial check for entering the mutex spinning loop 385 */ 386 static inline int mutex_can_spin_on_owner(struct mutex *lock) 387 { 388 struct task_struct *owner; 389 int retval = 1; 390 391 if (need_resched()) 392 return 0; 393 394 rcu_read_lock(); 395 owner = __mutex_owner(lock); 396 397 /* 398 * As lock holder preemption issue, we both skip spinning if task is not 399 * on cpu or its cpu is preempted 400 */ 401 if (owner) 402 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 403 rcu_read_unlock(); 404 405 /* 406 * If lock->owner is not set, the mutex has been released. Return true 407 * such that we'll trylock in the spin path, which is a faster option 408 * than the blocking slow path. 409 */ 410 return retval; 411 } 412 413 /* 414 * Optimistic spinning. 415 * 416 * We try to spin for acquisition when we find that the lock owner 417 * is currently running on a (different) CPU and while we don't 418 * need to reschedule. The rationale is that if the lock owner is 419 * running, it is likely to release the lock soon. 420 * 421 * The mutex spinners are queued up using MCS lock so that only one 422 * spinner can compete for the mutex. However, if mutex spinning isn't 423 * going to happen, there is no point in going through the lock/unlock 424 * overhead. 425 * 426 * Returns true when the lock was taken, otherwise false, indicating 427 * that we need to jump to the slowpath and sleep. 428 * 429 * The waiter flag is set to true if the spinner is a waiter in the wait 430 * queue. The waiter-spinner will spin on the lock directly and concurrently 431 * with the spinner at the head of the OSQ, if present, until the owner is 432 * changed to itself. 433 */ 434 static bool mutex_optimistic_spin(struct mutex *lock, 435 struct ww_acquire_ctx *ww_ctx, 436 const bool use_ww_ctx, const bool waiter) 437 { 438 struct task_struct *task = current; 439 440 if (!waiter) { 441 /* 442 * The purpose of the mutex_can_spin_on_owner() function is 443 * to eliminate the overhead of osq_lock() and osq_unlock() 444 * in case spinning isn't possible. As a waiter-spinner 445 * is not going to take OSQ lock anyway, there is no need 446 * to call mutex_can_spin_on_owner(). 447 */ 448 if (!mutex_can_spin_on_owner(lock)) 449 goto fail; 450 451 /* 452 * In order to avoid a stampede of mutex spinners trying to 453 * acquire the mutex all at once, the spinners need to take a 454 * MCS (queued) lock first before spinning on the owner field. 455 */ 456 if (!osq_lock(&lock->osq)) 457 goto fail; 458 } 459 460 for (;;) { 461 struct task_struct *owner; 462 463 if (use_ww_ctx && ww_ctx->acquired > 0) { 464 struct ww_mutex *ww; 465 466 ww = container_of(lock, struct ww_mutex, base); 467 /* 468 * If ww->ctx is set the contents are undefined, only 469 * by acquiring wait_lock there is a guarantee that 470 * they are not invalid when reading. 471 * 472 * As such, when deadlock detection needs to be 473 * performed the optimistic spinning cannot be done. 474 */ 475 if (READ_ONCE(ww->ctx)) 476 goto fail_unlock; 477 } 478 479 /* 480 * If there's an owner, wait for it to either 481 * release the lock or go to sleep. 482 */ 483 owner = __mutex_owner(lock); 484 if (owner) { 485 if (waiter && owner == task) { 486 smp_mb(); /* ACQUIRE */ 487 break; 488 } 489 490 if (!mutex_spin_on_owner(lock, owner)) 491 goto fail_unlock; 492 } 493 494 /* Try to acquire the mutex if it is unlocked. */ 495 if (__mutex_trylock(lock, waiter)) 496 break; 497 498 /* 499 * The cpu_relax() call is a compiler barrier which forces 500 * everything in this loop to be re-loaded. We don't need 501 * memory barriers as we'll eventually observe the right 502 * values at the cost of a few extra spins. 503 */ 504 cpu_relax(); 505 } 506 507 if (!waiter) 508 osq_unlock(&lock->osq); 509 510 return true; 511 512 513 fail_unlock: 514 if (!waiter) 515 osq_unlock(&lock->osq); 516 517 fail: 518 /* 519 * If we fell out of the spin path because of need_resched(), 520 * reschedule now, before we try-lock the mutex. This avoids getting 521 * scheduled out right after we obtained the mutex. 522 */ 523 if (need_resched()) { 524 /* 525 * We _should_ have TASK_RUNNING here, but just in case 526 * we do not, make it so, otherwise we might get stuck. 527 */ 528 __set_current_state(TASK_RUNNING); 529 schedule_preempt_disabled(); 530 } 531 532 return false; 533 } 534 #else 535 static bool mutex_optimistic_spin(struct mutex *lock, 536 struct ww_acquire_ctx *ww_ctx, 537 const bool use_ww_ctx, const bool waiter) 538 { 539 return false; 540 } 541 #endif 542 543 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 544 545 /** 546 * mutex_unlock - release the mutex 547 * @lock: the mutex to be released 548 * 549 * Unlock a mutex that has been locked by this task previously. 550 * 551 * This function must not be used in interrupt context. Unlocking 552 * of a not locked mutex is not allowed. 553 * 554 * This function is similar to (but not equivalent to) up(). 555 */ 556 void __sched mutex_unlock(struct mutex *lock) 557 { 558 #ifndef CONFIG_DEBUG_LOCK_ALLOC 559 if (__mutex_unlock_fast(lock)) 560 return; 561 #endif 562 __mutex_unlock_slowpath(lock, _RET_IP_); 563 } 564 EXPORT_SYMBOL(mutex_unlock); 565 566 /** 567 * ww_mutex_unlock - release the w/w mutex 568 * @lock: the mutex to be released 569 * 570 * Unlock a mutex that has been locked by this task previously with any of the 571 * ww_mutex_lock* functions (with or without an acquire context). It is 572 * forbidden to release the locks after releasing the acquire context. 573 * 574 * This function must not be used in interrupt context. Unlocking 575 * of a unlocked mutex is not allowed. 576 */ 577 void __sched ww_mutex_unlock(struct ww_mutex *lock) 578 { 579 /* 580 * The unlocking fastpath is the 0->1 transition from 'locked' 581 * into 'unlocked' state: 582 */ 583 if (lock->ctx) { 584 #ifdef CONFIG_DEBUG_MUTEXES 585 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 586 #endif 587 if (lock->ctx->acquired > 0) 588 lock->ctx->acquired--; 589 lock->ctx = NULL; 590 } 591 592 mutex_unlock(&lock->base); 593 } 594 EXPORT_SYMBOL(ww_mutex_unlock); 595 596 static inline int __sched 597 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) 598 { 599 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 600 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 601 602 if (!hold_ctx) 603 return 0; 604 605 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && 606 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { 607 #ifdef CONFIG_DEBUG_MUTEXES 608 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 609 ctx->contending_lock = ww; 610 #endif 611 return -EDEADLK; 612 } 613 614 return 0; 615 } 616 617 /* 618 * Lock a mutex (possibly interruptible), slowpath: 619 */ 620 static __always_inline int __sched 621 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 622 struct lockdep_map *nest_lock, unsigned long ip, 623 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 624 { 625 struct mutex_waiter waiter; 626 unsigned long flags; 627 bool first = false; 628 struct ww_mutex *ww; 629 int ret; 630 631 if (use_ww_ctx) { 632 ww = container_of(lock, struct ww_mutex, base); 633 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 634 return -EALREADY; 635 } 636 637 preempt_disable(); 638 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 639 640 if (__mutex_trylock(lock, false) || 641 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) { 642 /* got the lock, yay! */ 643 lock_acquired(&lock->dep_map, ip); 644 if (use_ww_ctx) 645 ww_mutex_set_context_fastpath(ww, ww_ctx); 646 preempt_enable(); 647 return 0; 648 } 649 650 spin_lock_mutex(&lock->wait_lock, flags); 651 /* 652 * After waiting to acquire the wait_lock, try again. 653 */ 654 if (__mutex_trylock(lock, false)) 655 goto skip_wait; 656 657 debug_mutex_lock_common(lock, &waiter); 658 debug_mutex_add_waiter(lock, &waiter, current); 659 660 /* add waiting tasks to the end of the waitqueue (FIFO): */ 661 list_add_tail(&waiter.list, &lock->wait_list); 662 waiter.task = current; 663 664 if (__mutex_waiter_is_first(lock, &waiter)) 665 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 666 667 lock_contended(&lock->dep_map, ip); 668 669 set_current_state(state); 670 for (;;) { 671 /* 672 * Once we hold wait_lock, we're serialized against 673 * mutex_unlock() handing the lock off to us, do a trylock 674 * before testing the error conditions to make sure we pick up 675 * the handoff. 676 */ 677 if (__mutex_trylock(lock, first)) 678 goto acquired; 679 680 /* 681 * Check for signals and wound conditions while holding 682 * wait_lock. This ensures the lock cancellation is ordered 683 * against mutex_unlock() and wake-ups do not go missing. 684 */ 685 if (unlikely(signal_pending_state(state, current))) { 686 ret = -EINTR; 687 goto err; 688 } 689 690 if (use_ww_ctx && ww_ctx->acquired > 0) { 691 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx); 692 if (ret) 693 goto err; 694 } 695 696 spin_unlock_mutex(&lock->wait_lock, flags); 697 schedule_preempt_disabled(); 698 699 if (!first && __mutex_waiter_is_first(lock, &waiter)) { 700 first = true; 701 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 702 } 703 704 set_current_state(state); 705 /* 706 * Here we order against unlock; we must either see it change 707 * state back to RUNNING and fall through the next schedule(), 708 * or we must see its unlock and acquire. 709 */ 710 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) || 711 __mutex_trylock(lock, first)) 712 break; 713 714 spin_lock_mutex(&lock->wait_lock, flags); 715 } 716 spin_lock_mutex(&lock->wait_lock, flags); 717 acquired: 718 __set_current_state(TASK_RUNNING); 719 720 mutex_remove_waiter(lock, &waiter, current); 721 if (likely(list_empty(&lock->wait_list))) 722 __mutex_clear_flag(lock, MUTEX_FLAGS); 723 724 debug_mutex_free_waiter(&waiter); 725 726 skip_wait: 727 /* got the lock - cleanup and rejoice! */ 728 lock_acquired(&lock->dep_map, ip); 729 730 if (use_ww_ctx) 731 ww_mutex_set_context_slowpath(ww, ww_ctx); 732 733 spin_unlock_mutex(&lock->wait_lock, flags); 734 preempt_enable(); 735 return 0; 736 737 err: 738 __set_current_state(TASK_RUNNING); 739 mutex_remove_waiter(lock, &waiter, current); 740 spin_unlock_mutex(&lock->wait_lock, flags); 741 debug_mutex_free_waiter(&waiter); 742 mutex_release(&lock->dep_map, 1, ip); 743 preempt_enable(); 744 return ret; 745 } 746 747 #ifdef CONFIG_DEBUG_LOCK_ALLOC 748 void __sched 749 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 750 { 751 might_sleep(); 752 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 753 subclass, NULL, _RET_IP_, NULL, 0); 754 } 755 756 EXPORT_SYMBOL_GPL(mutex_lock_nested); 757 758 void __sched 759 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 760 { 761 might_sleep(); 762 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 763 0, nest, _RET_IP_, NULL, 0); 764 } 765 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 766 767 int __sched 768 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 769 { 770 might_sleep(); 771 return __mutex_lock_common(lock, TASK_KILLABLE, 772 subclass, NULL, _RET_IP_, NULL, 0); 773 } 774 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 775 776 int __sched 777 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 778 { 779 might_sleep(); 780 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 781 subclass, NULL, _RET_IP_, NULL, 0); 782 } 783 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 784 785 static inline int 786 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 787 { 788 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 789 unsigned tmp; 790 791 if (ctx->deadlock_inject_countdown-- == 0) { 792 tmp = ctx->deadlock_inject_interval; 793 if (tmp > UINT_MAX/4) 794 tmp = UINT_MAX; 795 else 796 tmp = tmp*2 + tmp + tmp/2; 797 798 ctx->deadlock_inject_interval = tmp; 799 ctx->deadlock_inject_countdown = tmp; 800 ctx->contending_lock = lock; 801 802 ww_mutex_unlock(lock); 803 804 return -EDEADLK; 805 } 806 #endif 807 808 return 0; 809 } 810 811 int __sched 812 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 813 { 814 int ret; 815 816 might_sleep(); 817 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 818 0, &ctx->dep_map, _RET_IP_, ctx, 1); 819 if (!ret && ctx->acquired > 1) 820 return ww_mutex_deadlock_injection(lock, ctx); 821 822 return ret; 823 } 824 EXPORT_SYMBOL_GPL(__ww_mutex_lock); 825 826 int __sched 827 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 828 { 829 int ret; 830 831 might_sleep(); 832 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 833 0, &ctx->dep_map, _RET_IP_, ctx, 1); 834 835 if (!ret && ctx->acquired > 1) 836 return ww_mutex_deadlock_injection(lock, ctx); 837 838 return ret; 839 } 840 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); 841 842 #endif 843 844 /* 845 * Release the lock, slowpath: 846 */ 847 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 848 { 849 struct task_struct *next = NULL; 850 unsigned long owner, flags; 851 DEFINE_WAKE_Q(wake_q); 852 853 mutex_release(&lock->dep_map, 1, ip); 854 855 /* 856 * Release the lock before (potentially) taking the spinlock such that 857 * other contenders can get on with things ASAP. 858 * 859 * Except when HANDOFF, in that case we must not clear the owner field, 860 * but instead set it to the top waiter. 861 */ 862 owner = atomic_long_read(&lock->owner); 863 for (;;) { 864 unsigned long old; 865 866 #ifdef CONFIG_DEBUG_MUTEXES 867 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 868 #endif 869 870 if (owner & MUTEX_FLAG_HANDOFF) 871 break; 872 873 old = atomic_long_cmpxchg_release(&lock->owner, owner, 874 __owner_flags(owner)); 875 if (old == owner) { 876 if (owner & MUTEX_FLAG_WAITERS) 877 break; 878 879 return; 880 } 881 882 owner = old; 883 } 884 885 spin_lock_mutex(&lock->wait_lock, flags); 886 debug_mutex_unlock(lock); 887 if (!list_empty(&lock->wait_list)) { 888 /* get the first entry from the wait-list: */ 889 struct mutex_waiter *waiter = 890 list_first_entry(&lock->wait_list, 891 struct mutex_waiter, list); 892 893 next = waiter->task; 894 895 debug_mutex_wake_waiter(lock, waiter); 896 wake_q_add(&wake_q, next); 897 } 898 899 if (owner & MUTEX_FLAG_HANDOFF) 900 __mutex_handoff(lock, next); 901 902 spin_unlock_mutex(&lock->wait_lock, flags); 903 904 wake_up_q(&wake_q); 905 } 906 907 #ifndef CONFIG_DEBUG_LOCK_ALLOC 908 /* 909 * Here come the less common (and hence less performance-critical) APIs: 910 * mutex_lock_interruptible() and mutex_trylock(). 911 */ 912 static noinline int __sched 913 __mutex_lock_killable_slowpath(struct mutex *lock); 914 915 static noinline int __sched 916 __mutex_lock_interruptible_slowpath(struct mutex *lock); 917 918 /** 919 * mutex_lock_interruptible - acquire the mutex, interruptible 920 * @lock: the mutex to be acquired 921 * 922 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 923 * been acquired or sleep until the mutex becomes available. If a 924 * signal arrives while waiting for the lock then this function 925 * returns -EINTR. 926 * 927 * This function is similar to (but not equivalent to) down_interruptible(). 928 */ 929 int __sched mutex_lock_interruptible(struct mutex *lock) 930 { 931 might_sleep(); 932 933 if (__mutex_trylock_fast(lock)) 934 return 0; 935 936 return __mutex_lock_interruptible_slowpath(lock); 937 } 938 939 EXPORT_SYMBOL(mutex_lock_interruptible); 940 941 int __sched mutex_lock_killable(struct mutex *lock) 942 { 943 might_sleep(); 944 945 if (__mutex_trylock_fast(lock)) 946 return 0; 947 948 return __mutex_lock_killable_slowpath(lock); 949 } 950 EXPORT_SYMBOL(mutex_lock_killable); 951 952 static noinline void __sched 953 __mutex_lock_slowpath(struct mutex *lock) 954 { 955 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, 956 NULL, _RET_IP_, NULL, 0); 957 } 958 959 static noinline int __sched 960 __mutex_lock_killable_slowpath(struct mutex *lock) 961 { 962 return __mutex_lock_common(lock, TASK_KILLABLE, 0, 963 NULL, _RET_IP_, NULL, 0); 964 } 965 966 static noinline int __sched 967 __mutex_lock_interruptible_slowpath(struct mutex *lock) 968 { 969 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, 970 NULL, _RET_IP_, NULL, 0); 971 } 972 973 static noinline int __sched 974 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 975 { 976 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, 977 NULL, _RET_IP_, ctx, 1); 978 } 979 980 static noinline int __sched 981 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 982 struct ww_acquire_ctx *ctx) 983 { 984 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, 985 NULL, _RET_IP_, ctx, 1); 986 } 987 988 #endif 989 990 /** 991 * mutex_trylock - try to acquire the mutex, without waiting 992 * @lock: the mutex to be acquired 993 * 994 * Try to acquire the mutex atomically. Returns 1 if the mutex 995 * has been acquired successfully, and 0 on contention. 996 * 997 * NOTE: this function follows the spin_trylock() convention, so 998 * it is negated from the down_trylock() return values! Be careful 999 * about this when converting semaphore users to mutexes. 1000 * 1001 * This function must not be used in interrupt context. The 1002 * mutex must be released by the same task that acquired it. 1003 */ 1004 int __sched mutex_trylock(struct mutex *lock) 1005 { 1006 bool locked = __mutex_trylock(lock, false); 1007 1008 if (locked) 1009 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1010 1011 return locked; 1012 } 1013 EXPORT_SYMBOL(mutex_trylock); 1014 1015 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1016 int __sched 1017 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1018 { 1019 might_sleep(); 1020 1021 if (__mutex_trylock_fast(&lock->base)) { 1022 ww_mutex_set_context_fastpath(lock, ctx); 1023 return 0; 1024 } 1025 1026 return __ww_mutex_lock_slowpath(lock, ctx); 1027 } 1028 EXPORT_SYMBOL(__ww_mutex_lock); 1029 1030 int __sched 1031 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1032 { 1033 might_sleep(); 1034 1035 if (__mutex_trylock_fast(&lock->base)) { 1036 ww_mutex_set_context_fastpath(lock, ctx); 1037 return 0; 1038 } 1039 1040 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1041 } 1042 EXPORT_SYMBOL(__ww_mutex_lock_interruptible); 1043 1044 #endif 1045 1046 /** 1047 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1048 * @cnt: the atomic which we are to dec 1049 * @lock: the mutex to return holding if we dec to 0 1050 * 1051 * return true and hold lock if we dec to 0, return false otherwise 1052 */ 1053 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1054 { 1055 /* dec if we can't possibly hit 0 */ 1056 if (atomic_add_unless(cnt, -1, 1)) 1057 return 0; 1058 /* we might hit 0, so take the lock */ 1059 mutex_lock(lock); 1060 if (!atomic_dec_and_test(cnt)) { 1061 /* when we actually did the dec, we didn't hit 0 */ 1062 mutex_unlock(lock); 1063 return 0; 1064 } 1065 /* we hit 0, and we hold the lock */ 1066 return 1; 1067 } 1068 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1069