xref: /openbmc/linux/kernel/locking/mutex.c (revision 642fa448ae6b3a4e5e8737054a094173405b7643)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29 
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
32 #else
33 # include "mutex.h"
34 #endif
35 
36 void
37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
38 {
39 	atomic_long_set(&lock->owner, 0);
40 	spin_lock_init(&lock->wait_lock);
41 	INIT_LIST_HEAD(&lock->wait_list);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 	osq_lock_init(&lock->osq);
44 #endif
45 
46 	debug_mutex_init(lock, name, key);
47 }
48 EXPORT_SYMBOL(__mutex_init);
49 
50 /*
51  * @owner: contains: 'struct task_struct *' to the current lock owner,
52  * NULL means not owned. Since task_struct pointers are aligned at
53  * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54  * bits to store extra state.
55  *
56  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57  * Bit1 indicates unlock needs to hand the lock to the top-waiter
58  */
59 #define MUTEX_FLAG_WAITERS	0x01
60 #define MUTEX_FLAG_HANDOFF	0x02
61 
62 #define MUTEX_FLAGS		0x03
63 
64 static inline struct task_struct *__owner_task(unsigned long owner)
65 {
66 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67 }
68 
69 static inline unsigned long __owner_flags(unsigned long owner)
70 {
71 	return owner & MUTEX_FLAGS;
72 }
73 
74 /*
75  * Actual trylock that will work on any unlocked state.
76  *
77  * When setting the owner field, we must preserve the low flag bits.
78  *
79  * Be careful with @handoff, only set that in a wait-loop (where you set
80  * HANDOFF) to avoid recursive lock attempts.
81  */
82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
83 {
84 	unsigned long owner, curr = (unsigned long)current;
85 
86 	owner = atomic_long_read(&lock->owner);
87 	for (;;) { /* must loop, can race against a flag */
88 		unsigned long old, flags = __owner_flags(owner);
89 
90 		if (__owner_task(owner)) {
91 			if (handoff && unlikely(__owner_task(owner) == current)) {
92 				/*
93 				 * Provide ACQUIRE semantics for the lock-handoff.
94 				 *
95 				 * We cannot easily use load-acquire here, since
96 				 * the actual load is a failed cmpxchg, which
97 				 * doesn't imply any barriers.
98 				 *
99 				 * Also, this is a fairly unlikely scenario, and
100 				 * this contains the cost.
101 				 */
102 				smp_mb(); /* ACQUIRE */
103 				return true;
104 			}
105 
106 			return false;
107 		}
108 
109 		/*
110 		 * We set the HANDOFF bit, we must make sure it doesn't live
111 		 * past the point where we acquire it. This would be possible
112 		 * if we (accidentally) set the bit on an unlocked mutex.
113 		 */
114 		if (handoff)
115 			flags &= ~MUTEX_FLAG_HANDOFF;
116 
117 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
118 		if (old == owner)
119 			return true;
120 
121 		owner = old;
122 	}
123 }
124 
125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
126 /*
127  * Lockdep annotations are contained to the slow paths for simplicity.
128  * There is nothing that would stop spreading the lockdep annotations outwards
129  * except more code.
130  */
131 
132 /*
133  * Optimistic trylock that only works in the uncontended case. Make sure to
134  * follow with a __mutex_trylock() before failing.
135  */
136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137 {
138 	unsigned long curr = (unsigned long)current;
139 
140 	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 		return true;
142 
143 	return false;
144 }
145 
146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147 {
148 	unsigned long curr = (unsigned long)current;
149 
150 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 		return true;
152 
153 	return false;
154 }
155 #endif
156 
157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158 {
159 	atomic_long_or(flag, &lock->owner);
160 }
161 
162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163 {
164 	atomic_long_andnot(flag, &lock->owner);
165 }
166 
167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168 {
169 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170 }
171 
172 /*
173  * Give up ownership to a specific task, when @task = NULL, this is equivalent
174  * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175  * semantics like a regular unlock, the __mutex_trylock() provides matching
176  * ACQUIRE semantics for the handoff.
177  */
178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179 {
180 	unsigned long owner = atomic_long_read(&lock->owner);
181 
182 	for (;;) {
183 		unsigned long old, new;
184 
185 #ifdef CONFIG_DEBUG_MUTEXES
186 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187 #endif
188 
189 		new = (owner & MUTEX_FLAG_WAITERS);
190 		new |= (unsigned long)task;
191 
192 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 		if (old == owner)
194 			break;
195 
196 		owner = old;
197 	}
198 }
199 
200 #ifndef CONFIG_DEBUG_LOCK_ALLOC
201 /*
202  * We split the mutex lock/unlock logic into separate fastpath and
203  * slowpath functions, to reduce the register pressure on the fastpath.
204  * We also put the fastpath first in the kernel image, to make sure the
205  * branch is predicted by the CPU as default-untaken.
206  */
207 static void __sched __mutex_lock_slowpath(struct mutex *lock);
208 
209 /**
210  * mutex_lock - acquire the mutex
211  * @lock: the mutex to be acquired
212  *
213  * Lock the mutex exclusively for this task. If the mutex is not
214  * available right now, it will sleep until it can get it.
215  *
216  * The mutex must later on be released by the same task that
217  * acquired it. Recursive locking is not allowed. The task
218  * may not exit without first unlocking the mutex. Also, kernel
219  * memory where the mutex resides must not be freed with
220  * the mutex still locked. The mutex must first be initialized
221  * (or statically defined) before it can be locked. memset()-ing
222  * the mutex to 0 is not allowed.
223  *
224  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225  *   checks that will enforce the restrictions and will also do
226  *   deadlock debugging. )
227  *
228  * This function is similar to (but not equivalent to) down().
229  */
230 void __sched mutex_lock(struct mutex *lock)
231 {
232 	might_sleep();
233 
234 	if (!__mutex_trylock_fast(lock))
235 		__mutex_lock_slowpath(lock);
236 }
237 EXPORT_SYMBOL(mutex_lock);
238 #endif
239 
240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 						   struct ww_acquire_ctx *ww_ctx)
242 {
243 #ifdef CONFIG_DEBUG_MUTEXES
244 	/*
245 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 	 * but released with a normal mutex_unlock in this call.
247 	 *
248 	 * This should never happen, always use ww_mutex_unlock.
249 	 */
250 	DEBUG_LOCKS_WARN_ON(ww->ctx);
251 
252 	/*
253 	 * Not quite done after calling ww_acquire_done() ?
254 	 */
255 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256 
257 	if (ww_ctx->contending_lock) {
258 		/*
259 		 * After -EDEADLK you tried to
260 		 * acquire a different ww_mutex? Bad!
261 		 */
262 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263 
264 		/*
265 		 * You called ww_mutex_lock after receiving -EDEADLK,
266 		 * but 'forgot' to unlock everything else first?
267 		 */
268 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 		ww_ctx->contending_lock = NULL;
270 	}
271 
272 	/*
273 	 * Naughty, using a different class will lead to undefined behavior!
274 	 */
275 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276 #endif
277 	ww_ctx->acquired++;
278 }
279 
280 /*
281  * After acquiring lock with fastpath or when we lost out in contested
282  * slowpath, set ctx and wake up any waiters so they can recheck.
283  */
284 static __always_inline void
285 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 			       struct ww_acquire_ctx *ctx)
287 {
288 	unsigned long flags;
289 	struct mutex_waiter *cur;
290 
291 	ww_mutex_lock_acquired(lock, ctx);
292 
293 	lock->ctx = ctx;
294 
295 	/*
296 	 * The lock->ctx update should be visible on all cores before
297 	 * the atomic read is done, otherwise contended waiters might be
298 	 * missed. The contended waiters will either see ww_ctx == NULL
299 	 * and keep spinning, or it will acquire wait_lock, add itself
300 	 * to waiter list and sleep.
301 	 */
302 	smp_mb(); /* ^^^ */
303 
304 	/*
305 	 * Check if lock is contended, if not there is nobody to wake up
306 	 */
307 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
308 		return;
309 
310 	/*
311 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 	 * so they can see the new lock->ctx.
313 	 */
314 	spin_lock_mutex(&lock->base.wait_lock, flags);
315 	list_for_each_entry(cur, &lock->base.wait_list, list) {
316 		debug_mutex_wake_waiter(&lock->base, cur);
317 		wake_up_process(cur->task);
318 	}
319 	spin_unlock_mutex(&lock->base.wait_lock, flags);
320 }
321 
322 /*
323  * After acquiring lock in the slowpath set ctx and wake up any
324  * waiters so they can recheck.
325  *
326  * Callers must hold the mutex wait_lock.
327  */
328 static __always_inline void
329 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 			      struct ww_acquire_ctx *ctx)
331 {
332 	struct mutex_waiter *cur;
333 
334 	ww_mutex_lock_acquired(lock, ctx);
335 	lock->ctx = ctx;
336 
337 	/*
338 	 * Give any possible sleeping processes the chance to wake up,
339 	 * so they can recheck if they have to back off.
340 	 */
341 	list_for_each_entry(cur, &lock->base.wait_list, list) {
342 		debug_mutex_wake_waiter(&lock->base, cur);
343 		wake_up_process(cur->task);
344 	}
345 }
346 
347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
348 /*
349  * Look out! "owner" is an entirely speculative pointer
350  * access and not reliable.
351  */
352 static noinline
353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
354 {
355 	bool ret = true;
356 
357 	rcu_read_lock();
358 	while (__mutex_owner(lock) == owner) {
359 		/*
360 		 * Ensure we emit the owner->on_cpu, dereference _after_
361 		 * checking lock->owner still matches owner. If that fails,
362 		 * owner might point to freed memory. If it still matches,
363 		 * the rcu_read_lock() ensures the memory stays valid.
364 		 */
365 		barrier();
366 
367 		/*
368 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
369 		 */
370 		if (!owner->on_cpu || need_resched() ||
371 				vcpu_is_preempted(task_cpu(owner))) {
372 			ret = false;
373 			break;
374 		}
375 
376 		cpu_relax();
377 	}
378 	rcu_read_unlock();
379 
380 	return ret;
381 }
382 
383 /*
384  * Initial check for entering the mutex spinning loop
385  */
386 static inline int mutex_can_spin_on_owner(struct mutex *lock)
387 {
388 	struct task_struct *owner;
389 	int retval = 1;
390 
391 	if (need_resched())
392 		return 0;
393 
394 	rcu_read_lock();
395 	owner = __mutex_owner(lock);
396 
397 	/*
398 	 * As lock holder preemption issue, we both skip spinning if task is not
399 	 * on cpu or its cpu is preempted
400 	 */
401 	if (owner)
402 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
403 	rcu_read_unlock();
404 
405 	/*
406 	 * If lock->owner is not set, the mutex has been released. Return true
407 	 * such that we'll trylock in the spin path, which is a faster option
408 	 * than the blocking slow path.
409 	 */
410 	return retval;
411 }
412 
413 /*
414  * Optimistic spinning.
415  *
416  * We try to spin for acquisition when we find that the lock owner
417  * is currently running on a (different) CPU and while we don't
418  * need to reschedule. The rationale is that if the lock owner is
419  * running, it is likely to release the lock soon.
420  *
421  * The mutex spinners are queued up using MCS lock so that only one
422  * spinner can compete for the mutex. However, if mutex spinning isn't
423  * going to happen, there is no point in going through the lock/unlock
424  * overhead.
425  *
426  * Returns true when the lock was taken, otherwise false, indicating
427  * that we need to jump to the slowpath and sleep.
428  *
429  * The waiter flag is set to true if the spinner is a waiter in the wait
430  * queue. The waiter-spinner will spin on the lock directly and concurrently
431  * with the spinner at the head of the OSQ, if present, until the owner is
432  * changed to itself.
433  */
434 static bool mutex_optimistic_spin(struct mutex *lock,
435 				  struct ww_acquire_ctx *ww_ctx,
436 				  const bool use_ww_ctx, const bool waiter)
437 {
438 	struct task_struct *task = current;
439 
440 	if (!waiter) {
441 		/*
442 		 * The purpose of the mutex_can_spin_on_owner() function is
443 		 * to eliminate the overhead of osq_lock() and osq_unlock()
444 		 * in case spinning isn't possible. As a waiter-spinner
445 		 * is not going to take OSQ lock anyway, there is no need
446 		 * to call mutex_can_spin_on_owner().
447 		 */
448 		if (!mutex_can_spin_on_owner(lock))
449 			goto fail;
450 
451 		/*
452 		 * In order to avoid a stampede of mutex spinners trying to
453 		 * acquire the mutex all at once, the spinners need to take a
454 		 * MCS (queued) lock first before spinning on the owner field.
455 		 */
456 		if (!osq_lock(&lock->osq))
457 			goto fail;
458 	}
459 
460 	for (;;) {
461 		struct task_struct *owner;
462 
463 		if (use_ww_ctx && ww_ctx->acquired > 0) {
464 			struct ww_mutex *ww;
465 
466 			ww = container_of(lock, struct ww_mutex, base);
467 			/*
468 			 * If ww->ctx is set the contents are undefined, only
469 			 * by acquiring wait_lock there is a guarantee that
470 			 * they are not invalid when reading.
471 			 *
472 			 * As such, when deadlock detection needs to be
473 			 * performed the optimistic spinning cannot be done.
474 			 */
475 			if (READ_ONCE(ww->ctx))
476 				goto fail_unlock;
477 		}
478 
479 		/*
480 		 * If there's an owner, wait for it to either
481 		 * release the lock or go to sleep.
482 		 */
483 		owner = __mutex_owner(lock);
484 		if (owner) {
485 			if (waiter && owner == task) {
486 				smp_mb(); /* ACQUIRE */
487 				break;
488 			}
489 
490 			if (!mutex_spin_on_owner(lock, owner))
491 				goto fail_unlock;
492 		}
493 
494 		/* Try to acquire the mutex if it is unlocked. */
495 		if (__mutex_trylock(lock, waiter))
496 			break;
497 
498 		/*
499 		 * The cpu_relax() call is a compiler barrier which forces
500 		 * everything in this loop to be re-loaded. We don't need
501 		 * memory barriers as we'll eventually observe the right
502 		 * values at the cost of a few extra spins.
503 		 */
504 		cpu_relax();
505 	}
506 
507 	if (!waiter)
508 		osq_unlock(&lock->osq);
509 
510 	return true;
511 
512 
513 fail_unlock:
514 	if (!waiter)
515 		osq_unlock(&lock->osq);
516 
517 fail:
518 	/*
519 	 * If we fell out of the spin path because of need_resched(),
520 	 * reschedule now, before we try-lock the mutex. This avoids getting
521 	 * scheduled out right after we obtained the mutex.
522 	 */
523 	if (need_resched()) {
524 		/*
525 		 * We _should_ have TASK_RUNNING here, but just in case
526 		 * we do not, make it so, otherwise we might get stuck.
527 		 */
528 		__set_current_state(TASK_RUNNING);
529 		schedule_preempt_disabled();
530 	}
531 
532 	return false;
533 }
534 #else
535 static bool mutex_optimistic_spin(struct mutex *lock,
536 				  struct ww_acquire_ctx *ww_ctx,
537 				  const bool use_ww_ctx, const bool waiter)
538 {
539 	return false;
540 }
541 #endif
542 
543 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
544 
545 /**
546  * mutex_unlock - release the mutex
547  * @lock: the mutex to be released
548  *
549  * Unlock a mutex that has been locked by this task previously.
550  *
551  * This function must not be used in interrupt context. Unlocking
552  * of a not locked mutex is not allowed.
553  *
554  * This function is similar to (but not equivalent to) up().
555  */
556 void __sched mutex_unlock(struct mutex *lock)
557 {
558 #ifndef CONFIG_DEBUG_LOCK_ALLOC
559 	if (__mutex_unlock_fast(lock))
560 		return;
561 #endif
562 	__mutex_unlock_slowpath(lock, _RET_IP_);
563 }
564 EXPORT_SYMBOL(mutex_unlock);
565 
566 /**
567  * ww_mutex_unlock - release the w/w mutex
568  * @lock: the mutex to be released
569  *
570  * Unlock a mutex that has been locked by this task previously with any of the
571  * ww_mutex_lock* functions (with or without an acquire context). It is
572  * forbidden to release the locks after releasing the acquire context.
573  *
574  * This function must not be used in interrupt context. Unlocking
575  * of a unlocked mutex is not allowed.
576  */
577 void __sched ww_mutex_unlock(struct ww_mutex *lock)
578 {
579 	/*
580 	 * The unlocking fastpath is the 0->1 transition from 'locked'
581 	 * into 'unlocked' state:
582 	 */
583 	if (lock->ctx) {
584 #ifdef CONFIG_DEBUG_MUTEXES
585 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
586 #endif
587 		if (lock->ctx->acquired > 0)
588 			lock->ctx->acquired--;
589 		lock->ctx = NULL;
590 	}
591 
592 	mutex_unlock(&lock->base);
593 }
594 EXPORT_SYMBOL(ww_mutex_unlock);
595 
596 static inline int __sched
597 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
598 {
599 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
600 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
601 
602 	if (!hold_ctx)
603 		return 0;
604 
605 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
606 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
607 #ifdef CONFIG_DEBUG_MUTEXES
608 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
609 		ctx->contending_lock = ww;
610 #endif
611 		return -EDEADLK;
612 	}
613 
614 	return 0;
615 }
616 
617 /*
618  * Lock a mutex (possibly interruptible), slowpath:
619  */
620 static __always_inline int __sched
621 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
622 		    struct lockdep_map *nest_lock, unsigned long ip,
623 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
624 {
625 	struct mutex_waiter waiter;
626 	unsigned long flags;
627 	bool first = false;
628 	struct ww_mutex *ww;
629 	int ret;
630 
631 	if (use_ww_ctx) {
632 		ww = container_of(lock, struct ww_mutex, base);
633 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
634 			return -EALREADY;
635 	}
636 
637 	preempt_disable();
638 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
639 
640 	if (__mutex_trylock(lock, false) ||
641 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
642 		/* got the lock, yay! */
643 		lock_acquired(&lock->dep_map, ip);
644 		if (use_ww_ctx)
645 			ww_mutex_set_context_fastpath(ww, ww_ctx);
646 		preempt_enable();
647 		return 0;
648 	}
649 
650 	spin_lock_mutex(&lock->wait_lock, flags);
651 	/*
652 	 * After waiting to acquire the wait_lock, try again.
653 	 */
654 	if (__mutex_trylock(lock, false))
655 		goto skip_wait;
656 
657 	debug_mutex_lock_common(lock, &waiter);
658 	debug_mutex_add_waiter(lock, &waiter, current);
659 
660 	/* add waiting tasks to the end of the waitqueue (FIFO): */
661 	list_add_tail(&waiter.list, &lock->wait_list);
662 	waiter.task = current;
663 
664 	if (__mutex_waiter_is_first(lock, &waiter))
665 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
666 
667 	lock_contended(&lock->dep_map, ip);
668 
669 	set_current_state(state);
670 	for (;;) {
671 		/*
672 		 * Once we hold wait_lock, we're serialized against
673 		 * mutex_unlock() handing the lock off to us, do a trylock
674 		 * before testing the error conditions to make sure we pick up
675 		 * the handoff.
676 		 */
677 		if (__mutex_trylock(lock, first))
678 			goto acquired;
679 
680 		/*
681 		 * Check for signals and wound conditions while holding
682 		 * wait_lock. This ensures the lock cancellation is ordered
683 		 * against mutex_unlock() and wake-ups do not go missing.
684 		 */
685 		if (unlikely(signal_pending_state(state, current))) {
686 			ret = -EINTR;
687 			goto err;
688 		}
689 
690 		if (use_ww_ctx && ww_ctx->acquired > 0) {
691 			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
692 			if (ret)
693 				goto err;
694 		}
695 
696 		spin_unlock_mutex(&lock->wait_lock, flags);
697 		schedule_preempt_disabled();
698 
699 		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
700 			first = true;
701 			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
702 		}
703 
704 		set_current_state(state);
705 		/*
706 		 * Here we order against unlock; we must either see it change
707 		 * state back to RUNNING and fall through the next schedule(),
708 		 * or we must see its unlock and acquire.
709 		 */
710 		if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
711 		     __mutex_trylock(lock, first))
712 			break;
713 
714 		spin_lock_mutex(&lock->wait_lock, flags);
715 	}
716 	spin_lock_mutex(&lock->wait_lock, flags);
717 acquired:
718 	__set_current_state(TASK_RUNNING);
719 
720 	mutex_remove_waiter(lock, &waiter, current);
721 	if (likely(list_empty(&lock->wait_list)))
722 		__mutex_clear_flag(lock, MUTEX_FLAGS);
723 
724 	debug_mutex_free_waiter(&waiter);
725 
726 skip_wait:
727 	/* got the lock - cleanup and rejoice! */
728 	lock_acquired(&lock->dep_map, ip);
729 
730 	if (use_ww_ctx)
731 		ww_mutex_set_context_slowpath(ww, ww_ctx);
732 
733 	spin_unlock_mutex(&lock->wait_lock, flags);
734 	preempt_enable();
735 	return 0;
736 
737 err:
738 	__set_current_state(TASK_RUNNING);
739 	mutex_remove_waiter(lock, &waiter, current);
740 	spin_unlock_mutex(&lock->wait_lock, flags);
741 	debug_mutex_free_waiter(&waiter);
742 	mutex_release(&lock->dep_map, 1, ip);
743 	preempt_enable();
744 	return ret;
745 }
746 
747 #ifdef CONFIG_DEBUG_LOCK_ALLOC
748 void __sched
749 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
750 {
751 	might_sleep();
752 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
753 			    subclass, NULL, _RET_IP_, NULL, 0);
754 }
755 
756 EXPORT_SYMBOL_GPL(mutex_lock_nested);
757 
758 void __sched
759 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
760 {
761 	might_sleep();
762 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
763 			    0, nest, _RET_IP_, NULL, 0);
764 }
765 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
766 
767 int __sched
768 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
769 {
770 	might_sleep();
771 	return __mutex_lock_common(lock, TASK_KILLABLE,
772 				   subclass, NULL, _RET_IP_, NULL, 0);
773 }
774 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
775 
776 int __sched
777 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
778 {
779 	might_sleep();
780 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
781 				   subclass, NULL, _RET_IP_, NULL, 0);
782 }
783 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
784 
785 static inline int
786 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
787 {
788 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
789 	unsigned tmp;
790 
791 	if (ctx->deadlock_inject_countdown-- == 0) {
792 		tmp = ctx->deadlock_inject_interval;
793 		if (tmp > UINT_MAX/4)
794 			tmp = UINT_MAX;
795 		else
796 			tmp = tmp*2 + tmp + tmp/2;
797 
798 		ctx->deadlock_inject_interval = tmp;
799 		ctx->deadlock_inject_countdown = tmp;
800 		ctx->contending_lock = lock;
801 
802 		ww_mutex_unlock(lock);
803 
804 		return -EDEADLK;
805 	}
806 #endif
807 
808 	return 0;
809 }
810 
811 int __sched
812 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
813 {
814 	int ret;
815 
816 	might_sleep();
817 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
818 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
819 	if (!ret && ctx->acquired > 1)
820 		return ww_mutex_deadlock_injection(lock, ctx);
821 
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
825 
826 int __sched
827 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
828 {
829 	int ret;
830 
831 	might_sleep();
832 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
833 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
834 
835 	if (!ret && ctx->acquired > 1)
836 		return ww_mutex_deadlock_injection(lock, ctx);
837 
838 	return ret;
839 }
840 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
841 
842 #endif
843 
844 /*
845  * Release the lock, slowpath:
846  */
847 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
848 {
849 	struct task_struct *next = NULL;
850 	unsigned long owner, flags;
851 	DEFINE_WAKE_Q(wake_q);
852 
853 	mutex_release(&lock->dep_map, 1, ip);
854 
855 	/*
856 	 * Release the lock before (potentially) taking the spinlock such that
857 	 * other contenders can get on with things ASAP.
858 	 *
859 	 * Except when HANDOFF, in that case we must not clear the owner field,
860 	 * but instead set it to the top waiter.
861 	 */
862 	owner = atomic_long_read(&lock->owner);
863 	for (;;) {
864 		unsigned long old;
865 
866 #ifdef CONFIG_DEBUG_MUTEXES
867 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
868 #endif
869 
870 		if (owner & MUTEX_FLAG_HANDOFF)
871 			break;
872 
873 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
874 						  __owner_flags(owner));
875 		if (old == owner) {
876 			if (owner & MUTEX_FLAG_WAITERS)
877 				break;
878 
879 			return;
880 		}
881 
882 		owner = old;
883 	}
884 
885 	spin_lock_mutex(&lock->wait_lock, flags);
886 	debug_mutex_unlock(lock);
887 	if (!list_empty(&lock->wait_list)) {
888 		/* get the first entry from the wait-list: */
889 		struct mutex_waiter *waiter =
890 			list_first_entry(&lock->wait_list,
891 					 struct mutex_waiter, list);
892 
893 		next = waiter->task;
894 
895 		debug_mutex_wake_waiter(lock, waiter);
896 		wake_q_add(&wake_q, next);
897 	}
898 
899 	if (owner & MUTEX_FLAG_HANDOFF)
900 		__mutex_handoff(lock, next);
901 
902 	spin_unlock_mutex(&lock->wait_lock, flags);
903 
904 	wake_up_q(&wake_q);
905 }
906 
907 #ifndef CONFIG_DEBUG_LOCK_ALLOC
908 /*
909  * Here come the less common (and hence less performance-critical) APIs:
910  * mutex_lock_interruptible() and mutex_trylock().
911  */
912 static noinline int __sched
913 __mutex_lock_killable_slowpath(struct mutex *lock);
914 
915 static noinline int __sched
916 __mutex_lock_interruptible_slowpath(struct mutex *lock);
917 
918 /**
919  * mutex_lock_interruptible - acquire the mutex, interruptible
920  * @lock: the mutex to be acquired
921  *
922  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
923  * been acquired or sleep until the mutex becomes available. If a
924  * signal arrives while waiting for the lock then this function
925  * returns -EINTR.
926  *
927  * This function is similar to (but not equivalent to) down_interruptible().
928  */
929 int __sched mutex_lock_interruptible(struct mutex *lock)
930 {
931 	might_sleep();
932 
933 	if (__mutex_trylock_fast(lock))
934 		return 0;
935 
936 	return __mutex_lock_interruptible_slowpath(lock);
937 }
938 
939 EXPORT_SYMBOL(mutex_lock_interruptible);
940 
941 int __sched mutex_lock_killable(struct mutex *lock)
942 {
943 	might_sleep();
944 
945 	if (__mutex_trylock_fast(lock))
946 		return 0;
947 
948 	return __mutex_lock_killable_slowpath(lock);
949 }
950 EXPORT_SYMBOL(mutex_lock_killable);
951 
952 static noinline void __sched
953 __mutex_lock_slowpath(struct mutex *lock)
954 {
955 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
956 			    NULL, _RET_IP_, NULL, 0);
957 }
958 
959 static noinline int __sched
960 __mutex_lock_killable_slowpath(struct mutex *lock)
961 {
962 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
963 				   NULL, _RET_IP_, NULL, 0);
964 }
965 
966 static noinline int __sched
967 __mutex_lock_interruptible_slowpath(struct mutex *lock)
968 {
969 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
970 				   NULL, _RET_IP_, NULL, 0);
971 }
972 
973 static noinline int __sched
974 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
975 {
976 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
977 				   NULL, _RET_IP_, ctx, 1);
978 }
979 
980 static noinline int __sched
981 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
982 					    struct ww_acquire_ctx *ctx)
983 {
984 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
985 				   NULL, _RET_IP_, ctx, 1);
986 }
987 
988 #endif
989 
990 /**
991  * mutex_trylock - try to acquire the mutex, without waiting
992  * @lock: the mutex to be acquired
993  *
994  * Try to acquire the mutex atomically. Returns 1 if the mutex
995  * has been acquired successfully, and 0 on contention.
996  *
997  * NOTE: this function follows the spin_trylock() convention, so
998  * it is negated from the down_trylock() return values! Be careful
999  * about this when converting semaphore users to mutexes.
1000  *
1001  * This function must not be used in interrupt context. The
1002  * mutex must be released by the same task that acquired it.
1003  */
1004 int __sched mutex_trylock(struct mutex *lock)
1005 {
1006 	bool locked = __mutex_trylock(lock, false);
1007 
1008 	if (locked)
1009 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1010 
1011 	return locked;
1012 }
1013 EXPORT_SYMBOL(mutex_trylock);
1014 
1015 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1016 int __sched
1017 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1018 {
1019 	might_sleep();
1020 
1021 	if (__mutex_trylock_fast(&lock->base)) {
1022 		ww_mutex_set_context_fastpath(lock, ctx);
1023 		return 0;
1024 	}
1025 
1026 	return __ww_mutex_lock_slowpath(lock, ctx);
1027 }
1028 EXPORT_SYMBOL(__ww_mutex_lock);
1029 
1030 int __sched
1031 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1032 {
1033 	might_sleep();
1034 
1035 	if (__mutex_trylock_fast(&lock->base)) {
1036 		ww_mutex_set_context_fastpath(lock, ctx);
1037 		return 0;
1038 	}
1039 
1040 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1041 }
1042 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1043 
1044 #endif
1045 
1046 /**
1047  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1048  * @cnt: the atomic which we are to dec
1049  * @lock: the mutex to return holding if we dec to 0
1050  *
1051  * return true and hold lock if we dec to 0, return false otherwise
1052  */
1053 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1054 {
1055 	/* dec if we can't possibly hit 0 */
1056 	if (atomic_add_unless(cnt, -1, 1))
1057 		return 0;
1058 	/* we might hit 0, so take the lock */
1059 	mutex_lock(lock);
1060 	if (!atomic_dec_and_test(cnt)) {
1061 		/* when we actually did the dec, we didn't hit 0 */
1062 		mutex_unlock(lock);
1063 		return 0;
1064 	}
1065 	/* we hit 0, and we hold the lock */
1066 	return 1;
1067 }
1068 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1069