1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched.h> 23 #include <linux/sched/rt.h> 24 #include <linux/export.h> 25 #include <linux/spinlock.h> 26 #include <linux/interrupt.h> 27 #include <linux/debug_locks.h> 28 #include "mcs_spinlock.h" 29 30 /* 31 * In the DEBUG case we are using the "NULL fastpath" for mutexes, 32 * which forces all calls into the slowpath: 33 */ 34 #ifdef CONFIG_DEBUG_MUTEXES 35 # include "mutex-debug.h" 36 # include <asm-generic/mutex-null.h> 37 /* 38 * Must be 0 for the debug case so we do not do the unlock outside of the 39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this 40 * case. 41 */ 42 # undef __mutex_slowpath_needs_to_unlock 43 # define __mutex_slowpath_needs_to_unlock() 0 44 #else 45 # include "mutex.h" 46 # include <asm/mutex.h> 47 #endif 48 49 void 50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 51 { 52 atomic_set(&lock->count, 1); 53 spin_lock_init(&lock->wait_lock); 54 INIT_LIST_HEAD(&lock->wait_list); 55 mutex_clear_owner(lock); 56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 57 lock->osq = NULL; 58 #endif 59 60 debug_mutex_init(lock, name, key); 61 } 62 63 EXPORT_SYMBOL(__mutex_init); 64 65 #ifndef CONFIG_DEBUG_LOCK_ALLOC 66 /* 67 * We split the mutex lock/unlock logic into separate fastpath and 68 * slowpath functions, to reduce the register pressure on the fastpath. 69 * We also put the fastpath first in the kernel image, to make sure the 70 * branch is predicted by the CPU as default-untaken. 71 */ 72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count); 73 74 /** 75 * mutex_lock - acquire the mutex 76 * @lock: the mutex to be acquired 77 * 78 * Lock the mutex exclusively for this task. If the mutex is not 79 * available right now, it will sleep until it can get it. 80 * 81 * The mutex must later on be released by the same task that 82 * acquired it. Recursive locking is not allowed. The task 83 * may not exit without first unlocking the mutex. Also, kernel 84 * memory where the mutex resides mutex must not be freed with 85 * the mutex still locked. The mutex must first be initialized 86 * (or statically defined) before it can be locked. memset()-ing 87 * the mutex to 0 is not allowed. 88 * 89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 90 * checks that will enforce the restrictions and will also do 91 * deadlock debugging. ) 92 * 93 * This function is similar to (but not equivalent to) down(). 94 */ 95 void __sched mutex_lock(struct mutex *lock) 96 { 97 might_sleep(); 98 /* 99 * The locking fastpath is the 1->0 transition from 100 * 'unlocked' into 'locked' state. 101 */ 102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); 103 mutex_set_owner(lock); 104 } 105 106 EXPORT_SYMBOL(mutex_lock); 107 #endif 108 109 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 110 /* 111 * In order to avoid a stampede of mutex spinners from acquiring the mutex 112 * more or less simultaneously, the spinners need to acquire a MCS lock 113 * first before spinning on the owner field. 114 * 115 */ 116 117 /* 118 * Mutex spinning code migrated from kernel/sched/core.c 119 */ 120 121 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 122 { 123 if (lock->owner != owner) 124 return false; 125 126 /* 127 * Ensure we emit the owner->on_cpu, dereference _after_ checking 128 * lock->owner still matches owner, if that fails, owner might 129 * point to free()d memory, if it still matches, the rcu_read_lock() 130 * ensures the memory stays valid. 131 */ 132 barrier(); 133 134 return owner->on_cpu; 135 } 136 137 /* 138 * Look out! "owner" is an entirely speculative pointer 139 * access and not reliable. 140 */ 141 static noinline 142 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 143 { 144 rcu_read_lock(); 145 while (owner_running(lock, owner)) { 146 if (need_resched()) 147 break; 148 149 arch_mutex_cpu_relax(); 150 } 151 rcu_read_unlock(); 152 153 /* 154 * We break out the loop above on need_resched() and when the 155 * owner changed, which is a sign for heavy contention. Return 156 * success only when lock->owner is NULL. 157 */ 158 return lock->owner == NULL; 159 } 160 161 /* 162 * Initial check for entering the mutex spinning loop 163 */ 164 static inline int mutex_can_spin_on_owner(struct mutex *lock) 165 { 166 struct task_struct *owner; 167 int retval = 1; 168 169 if (need_resched()) 170 return 0; 171 172 rcu_read_lock(); 173 owner = ACCESS_ONCE(lock->owner); 174 if (owner) 175 retval = owner->on_cpu; 176 rcu_read_unlock(); 177 /* 178 * if lock->owner is not set, the mutex owner may have just acquired 179 * it and not set the owner yet or the mutex has been released. 180 */ 181 return retval; 182 } 183 #endif 184 185 __visible __used noinline 186 void __sched __mutex_unlock_slowpath(atomic_t *lock_count); 187 188 /** 189 * mutex_unlock - release the mutex 190 * @lock: the mutex to be released 191 * 192 * Unlock a mutex that has been locked by this task previously. 193 * 194 * This function must not be used in interrupt context. Unlocking 195 * of a not locked mutex is not allowed. 196 * 197 * This function is similar to (but not equivalent to) up(). 198 */ 199 void __sched mutex_unlock(struct mutex *lock) 200 { 201 /* 202 * The unlocking fastpath is the 0->1 transition from 'locked' 203 * into 'unlocked' state: 204 */ 205 #ifndef CONFIG_DEBUG_MUTEXES 206 /* 207 * When debugging is enabled we must not clear the owner before time, 208 * the slow path will always be taken, and that clears the owner field 209 * after verifying that it was indeed current. 210 */ 211 mutex_clear_owner(lock); 212 #endif 213 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); 214 } 215 216 EXPORT_SYMBOL(mutex_unlock); 217 218 /** 219 * ww_mutex_unlock - release the w/w mutex 220 * @lock: the mutex to be released 221 * 222 * Unlock a mutex that has been locked by this task previously with any of the 223 * ww_mutex_lock* functions (with or without an acquire context). It is 224 * forbidden to release the locks after releasing the acquire context. 225 * 226 * This function must not be used in interrupt context. Unlocking 227 * of a unlocked mutex is not allowed. 228 */ 229 void __sched ww_mutex_unlock(struct ww_mutex *lock) 230 { 231 /* 232 * The unlocking fastpath is the 0->1 transition from 'locked' 233 * into 'unlocked' state: 234 */ 235 if (lock->ctx) { 236 #ifdef CONFIG_DEBUG_MUTEXES 237 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 238 #endif 239 if (lock->ctx->acquired > 0) 240 lock->ctx->acquired--; 241 lock->ctx = NULL; 242 } 243 244 #ifndef CONFIG_DEBUG_MUTEXES 245 /* 246 * When debugging is enabled we must not clear the owner before time, 247 * the slow path will always be taken, and that clears the owner field 248 * after verifying that it was indeed current. 249 */ 250 mutex_clear_owner(&lock->base); 251 #endif 252 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath); 253 } 254 EXPORT_SYMBOL(ww_mutex_unlock); 255 256 static inline int __sched 257 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) 258 { 259 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 260 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx); 261 262 if (!hold_ctx) 263 return 0; 264 265 if (unlikely(ctx == hold_ctx)) 266 return -EALREADY; 267 268 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && 269 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { 270 #ifdef CONFIG_DEBUG_MUTEXES 271 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 272 ctx->contending_lock = ww; 273 #endif 274 return -EDEADLK; 275 } 276 277 return 0; 278 } 279 280 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, 281 struct ww_acquire_ctx *ww_ctx) 282 { 283 #ifdef CONFIG_DEBUG_MUTEXES 284 /* 285 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 286 * but released with a normal mutex_unlock in this call. 287 * 288 * This should never happen, always use ww_mutex_unlock. 289 */ 290 DEBUG_LOCKS_WARN_ON(ww->ctx); 291 292 /* 293 * Not quite done after calling ww_acquire_done() ? 294 */ 295 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 296 297 if (ww_ctx->contending_lock) { 298 /* 299 * After -EDEADLK you tried to 300 * acquire a different ww_mutex? Bad! 301 */ 302 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 303 304 /* 305 * You called ww_mutex_lock after receiving -EDEADLK, 306 * but 'forgot' to unlock everything else first? 307 */ 308 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 309 ww_ctx->contending_lock = NULL; 310 } 311 312 /* 313 * Naughty, using a different class will lead to undefined behavior! 314 */ 315 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 316 #endif 317 ww_ctx->acquired++; 318 } 319 320 /* 321 * after acquiring lock with fastpath or when we lost out in contested 322 * slowpath, set ctx and wake up any waiters so they can recheck. 323 * 324 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set, 325 * as the fastpath and opportunistic spinning are disabled in that case. 326 */ 327 static __always_inline void 328 ww_mutex_set_context_fastpath(struct ww_mutex *lock, 329 struct ww_acquire_ctx *ctx) 330 { 331 unsigned long flags; 332 struct mutex_waiter *cur; 333 334 ww_mutex_lock_acquired(lock, ctx); 335 336 lock->ctx = ctx; 337 338 /* 339 * The lock->ctx update should be visible on all cores before 340 * the atomic read is done, otherwise contended waiters might be 341 * missed. The contended waiters will either see ww_ctx == NULL 342 * and keep spinning, or it will acquire wait_lock, add itself 343 * to waiter list and sleep. 344 */ 345 smp_mb(); /* ^^^ */ 346 347 /* 348 * Check if lock is contended, if not there is nobody to wake up 349 */ 350 if (likely(atomic_read(&lock->base.count) == 0)) 351 return; 352 353 /* 354 * Uh oh, we raced in fastpath, wake up everyone in this case, 355 * so they can see the new lock->ctx. 356 */ 357 spin_lock_mutex(&lock->base.wait_lock, flags); 358 list_for_each_entry(cur, &lock->base.wait_list, list) { 359 debug_mutex_wake_waiter(&lock->base, cur); 360 wake_up_process(cur->task); 361 } 362 spin_unlock_mutex(&lock->base.wait_lock, flags); 363 } 364 365 /* 366 * Lock a mutex (possibly interruptible), slowpath: 367 */ 368 static __always_inline int __sched 369 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 370 struct lockdep_map *nest_lock, unsigned long ip, 371 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 372 { 373 struct task_struct *task = current; 374 struct mutex_waiter waiter; 375 unsigned long flags; 376 int ret; 377 378 preempt_disable(); 379 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 380 381 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 382 /* 383 * Optimistic spinning. 384 * 385 * We try to spin for acquisition when we find that the lock owner 386 * is currently running on a (different) CPU and while we don't 387 * need to reschedule. The rationale is that if the lock owner is 388 * running, it is likely to release the lock soon. 389 * 390 * Since this needs the lock owner, and this mutex implementation 391 * doesn't track the owner atomically in the lock field, we need to 392 * track it non-atomically. 393 * 394 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock 395 * to serialize everything. 396 * 397 * The mutex spinners are queued up using MCS lock so that only one 398 * spinner can compete for the mutex. However, if mutex spinning isn't 399 * going to happen, there is no point in going through the lock/unlock 400 * overhead. 401 */ 402 if (!mutex_can_spin_on_owner(lock)) 403 goto slowpath; 404 405 if (!osq_lock(&lock->osq)) 406 goto slowpath; 407 408 for (;;) { 409 struct task_struct *owner; 410 411 if (use_ww_ctx && ww_ctx->acquired > 0) { 412 struct ww_mutex *ww; 413 414 ww = container_of(lock, struct ww_mutex, base); 415 /* 416 * If ww->ctx is set the contents are undefined, only 417 * by acquiring wait_lock there is a guarantee that 418 * they are not invalid when reading. 419 * 420 * As such, when deadlock detection needs to be 421 * performed the optimistic spinning cannot be done. 422 */ 423 if (ACCESS_ONCE(ww->ctx)) 424 break; 425 } 426 427 /* 428 * If there's an owner, wait for it to either 429 * release the lock or go to sleep. 430 */ 431 owner = ACCESS_ONCE(lock->owner); 432 if (owner && !mutex_spin_on_owner(lock, owner)) 433 break; 434 435 if ((atomic_read(&lock->count) == 1) && 436 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) { 437 lock_acquired(&lock->dep_map, ip); 438 if (use_ww_ctx) { 439 struct ww_mutex *ww; 440 ww = container_of(lock, struct ww_mutex, base); 441 442 ww_mutex_set_context_fastpath(ww, ww_ctx); 443 } 444 445 mutex_set_owner(lock); 446 osq_unlock(&lock->osq); 447 preempt_enable(); 448 return 0; 449 } 450 451 /* 452 * When there's no owner, we might have preempted between the 453 * owner acquiring the lock and setting the owner field. If 454 * we're an RT task that will live-lock because we won't let 455 * the owner complete. 456 */ 457 if (!owner && (need_resched() || rt_task(task))) 458 break; 459 460 /* 461 * The cpu_relax() call is a compiler barrier which forces 462 * everything in this loop to be re-loaded. We don't need 463 * memory barriers as we'll eventually observe the right 464 * values at the cost of a few extra spins. 465 */ 466 arch_mutex_cpu_relax(); 467 } 468 osq_unlock(&lock->osq); 469 slowpath: 470 /* 471 * If we fell out of the spin path because of need_resched(), 472 * reschedule now, before we try-lock the mutex. This avoids getting 473 * scheduled out right after we obtained the mutex. 474 */ 475 if (need_resched()) 476 schedule_preempt_disabled(); 477 #endif 478 spin_lock_mutex(&lock->wait_lock, flags); 479 480 /* 481 * Once more, try to acquire the lock. Only try-lock the mutex if 482 * lock->count >= 0 to reduce unnecessary xchg operations. 483 */ 484 if (atomic_read(&lock->count) >= 0 && (atomic_xchg(&lock->count, 0) == 1)) 485 goto skip_wait; 486 487 debug_mutex_lock_common(lock, &waiter); 488 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); 489 490 /* add waiting tasks to the end of the waitqueue (FIFO): */ 491 list_add_tail(&waiter.list, &lock->wait_list); 492 waiter.task = task; 493 494 lock_contended(&lock->dep_map, ip); 495 496 for (;;) { 497 /* 498 * Lets try to take the lock again - this is needed even if 499 * we get here for the first time (shortly after failing to 500 * acquire the lock), to make sure that we get a wakeup once 501 * it's unlocked. Later on, if we sleep, this is the 502 * operation that gives us the lock. We xchg it to -1, so 503 * that when we release the lock, we properly wake up the 504 * other waiters. We only attempt the xchg if the count is 505 * non-negative in order to avoid unnecessary xchg operations: 506 */ 507 if (atomic_read(&lock->count) >= 0 && 508 (atomic_xchg(&lock->count, -1) == 1)) 509 break; 510 511 /* 512 * got a signal? (This code gets eliminated in the 513 * TASK_UNINTERRUPTIBLE case.) 514 */ 515 if (unlikely(signal_pending_state(state, task))) { 516 ret = -EINTR; 517 goto err; 518 } 519 520 if (use_ww_ctx && ww_ctx->acquired > 0) { 521 ret = __mutex_lock_check_stamp(lock, ww_ctx); 522 if (ret) 523 goto err; 524 } 525 526 __set_task_state(task, state); 527 528 /* didn't get the lock, go to sleep: */ 529 spin_unlock_mutex(&lock->wait_lock, flags); 530 schedule_preempt_disabled(); 531 spin_lock_mutex(&lock->wait_lock, flags); 532 } 533 mutex_remove_waiter(lock, &waiter, current_thread_info()); 534 /* set it to 0 if there are no waiters left: */ 535 if (likely(list_empty(&lock->wait_list))) 536 atomic_set(&lock->count, 0); 537 debug_mutex_free_waiter(&waiter); 538 539 skip_wait: 540 /* got the lock - cleanup and rejoice! */ 541 lock_acquired(&lock->dep_map, ip); 542 mutex_set_owner(lock); 543 544 if (use_ww_ctx) { 545 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 546 struct mutex_waiter *cur; 547 548 /* 549 * This branch gets optimized out for the common case, 550 * and is only important for ww_mutex_lock. 551 */ 552 ww_mutex_lock_acquired(ww, ww_ctx); 553 ww->ctx = ww_ctx; 554 555 /* 556 * Give any possible sleeping processes the chance to wake up, 557 * so they can recheck if they have to back off. 558 */ 559 list_for_each_entry(cur, &lock->wait_list, list) { 560 debug_mutex_wake_waiter(lock, cur); 561 wake_up_process(cur->task); 562 } 563 } 564 565 spin_unlock_mutex(&lock->wait_lock, flags); 566 preempt_enable(); 567 return 0; 568 569 err: 570 mutex_remove_waiter(lock, &waiter, task_thread_info(task)); 571 spin_unlock_mutex(&lock->wait_lock, flags); 572 debug_mutex_free_waiter(&waiter); 573 mutex_release(&lock->dep_map, 1, ip); 574 preempt_enable(); 575 return ret; 576 } 577 578 #ifdef CONFIG_DEBUG_LOCK_ALLOC 579 void __sched 580 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 581 { 582 might_sleep(); 583 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 584 subclass, NULL, _RET_IP_, NULL, 0); 585 } 586 587 EXPORT_SYMBOL_GPL(mutex_lock_nested); 588 589 void __sched 590 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 591 { 592 might_sleep(); 593 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 594 0, nest, _RET_IP_, NULL, 0); 595 } 596 597 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 598 599 int __sched 600 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 601 { 602 might_sleep(); 603 return __mutex_lock_common(lock, TASK_KILLABLE, 604 subclass, NULL, _RET_IP_, NULL, 0); 605 } 606 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 607 608 int __sched 609 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 610 { 611 might_sleep(); 612 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 613 subclass, NULL, _RET_IP_, NULL, 0); 614 } 615 616 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 617 618 static inline int 619 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 620 { 621 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 622 unsigned tmp; 623 624 if (ctx->deadlock_inject_countdown-- == 0) { 625 tmp = ctx->deadlock_inject_interval; 626 if (tmp > UINT_MAX/4) 627 tmp = UINT_MAX; 628 else 629 tmp = tmp*2 + tmp + tmp/2; 630 631 ctx->deadlock_inject_interval = tmp; 632 ctx->deadlock_inject_countdown = tmp; 633 ctx->contending_lock = lock; 634 635 ww_mutex_unlock(lock); 636 637 return -EDEADLK; 638 } 639 #endif 640 641 return 0; 642 } 643 644 int __sched 645 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 646 { 647 int ret; 648 649 might_sleep(); 650 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 651 0, &ctx->dep_map, _RET_IP_, ctx, 1); 652 if (!ret && ctx->acquired > 1) 653 return ww_mutex_deadlock_injection(lock, ctx); 654 655 return ret; 656 } 657 EXPORT_SYMBOL_GPL(__ww_mutex_lock); 658 659 int __sched 660 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 661 { 662 int ret; 663 664 might_sleep(); 665 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 666 0, &ctx->dep_map, _RET_IP_, ctx, 1); 667 668 if (!ret && ctx->acquired > 1) 669 return ww_mutex_deadlock_injection(lock, ctx); 670 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); 674 675 #endif 676 677 /* 678 * Release the lock, slowpath: 679 */ 680 static inline void 681 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) 682 { 683 struct mutex *lock = container_of(lock_count, struct mutex, count); 684 unsigned long flags; 685 686 /* 687 * some architectures leave the lock unlocked in the fastpath failure 688 * case, others need to leave it locked. In the later case we have to 689 * unlock it here 690 */ 691 if (__mutex_slowpath_needs_to_unlock()) 692 atomic_set(&lock->count, 1); 693 694 spin_lock_mutex(&lock->wait_lock, flags); 695 mutex_release(&lock->dep_map, nested, _RET_IP_); 696 debug_mutex_unlock(lock); 697 698 if (!list_empty(&lock->wait_list)) { 699 /* get the first entry from the wait-list: */ 700 struct mutex_waiter *waiter = 701 list_entry(lock->wait_list.next, 702 struct mutex_waiter, list); 703 704 debug_mutex_wake_waiter(lock, waiter); 705 706 wake_up_process(waiter->task); 707 } 708 709 spin_unlock_mutex(&lock->wait_lock, flags); 710 } 711 712 /* 713 * Release the lock, slowpath: 714 */ 715 __visible void 716 __mutex_unlock_slowpath(atomic_t *lock_count) 717 { 718 __mutex_unlock_common_slowpath(lock_count, 1); 719 } 720 721 #ifndef CONFIG_DEBUG_LOCK_ALLOC 722 /* 723 * Here come the less common (and hence less performance-critical) APIs: 724 * mutex_lock_interruptible() and mutex_trylock(). 725 */ 726 static noinline int __sched 727 __mutex_lock_killable_slowpath(struct mutex *lock); 728 729 static noinline int __sched 730 __mutex_lock_interruptible_slowpath(struct mutex *lock); 731 732 /** 733 * mutex_lock_interruptible - acquire the mutex, interruptible 734 * @lock: the mutex to be acquired 735 * 736 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 737 * been acquired or sleep until the mutex becomes available. If a 738 * signal arrives while waiting for the lock then this function 739 * returns -EINTR. 740 * 741 * This function is similar to (but not equivalent to) down_interruptible(). 742 */ 743 int __sched mutex_lock_interruptible(struct mutex *lock) 744 { 745 int ret; 746 747 might_sleep(); 748 ret = __mutex_fastpath_lock_retval(&lock->count); 749 if (likely(!ret)) { 750 mutex_set_owner(lock); 751 return 0; 752 } else 753 return __mutex_lock_interruptible_slowpath(lock); 754 } 755 756 EXPORT_SYMBOL(mutex_lock_interruptible); 757 758 int __sched mutex_lock_killable(struct mutex *lock) 759 { 760 int ret; 761 762 might_sleep(); 763 ret = __mutex_fastpath_lock_retval(&lock->count); 764 if (likely(!ret)) { 765 mutex_set_owner(lock); 766 return 0; 767 } else 768 return __mutex_lock_killable_slowpath(lock); 769 } 770 EXPORT_SYMBOL(mutex_lock_killable); 771 772 __visible void __sched 773 __mutex_lock_slowpath(atomic_t *lock_count) 774 { 775 struct mutex *lock = container_of(lock_count, struct mutex, count); 776 777 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, 778 NULL, _RET_IP_, NULL, 0); 779 } 780 781 static noinline int __sched 782 __mutex_lock_killable_slowpath(struct mutex *lock) 783 { 784 return __mutex_lock_common(lock, TASK_KILLABLE, 0, 785 NULL, _RET_IP_, NULL, 0); 786 } 787 788 static noinline int __sched 789 __mutex_lock_interruptible_slowpath(struct mutex *lock) 790 { 791 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, 792 NULL, _RET_IP_, NULL, 0); 793 } 794 795 static noinline int __sched 796 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 797 { 798 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, 799 NULL, _RET_IP_, ctx, 1); 800 } 801 802 static noinline int __sched 803 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 804 struct ww_acquire_ctx *ctx) 805 { 806 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, 807 NULL, _RET_IP_, ctx, 1); 808 } 809 810 #endif 811 812 /* 813 * Spinlock based trylock, we take the spinlock and check whether we 814 * can get the lock: 815 */ 816 static inline int __mutex_trylock_slowpath(atomic_t *lock_count) 817 { 818 struct mutex *lock = container_of(lock_count, struct mutex, count); 819 unsigned long flags; 820 int prev; 821 822 spin_lock_mutex(&lock->wait_lock, flags); 823 824 prev = atomic_xchg(&lock->count, -1); 825 if (likely(prev == 1)) { 826 mutex_set_owner(lock); 827 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 828 } 829 830 /* Set it back to 0 if there are no waiters: */ 831 if (likely(list_empty(&lock->wait_list))) 832 atomic_set(&lock->count, 0); 833 834 spin_unlock_mutex(&lock->wait_lock, flags); 835 836 return prev == 1; 837 } 838 839 /** 840 * mutex_trylock - try to acquire the mutex, without waiting 841 * @lock: the mutex to be acquired 842 * 843 * Try to acquire the mutex atomically. Returns 1 if the mutex 844 * has been acquired successfully, and 0 on contention. 845 * 846 * NOTE: this function follows the spin_trylock() convention, so 847 * it is negated from the down_trylock() return values! Be careful 848 * about this when converting semaphore users to mutexes. 849 * 850 * This function must not be used in interrupt context. The 851 * mutex must be released by the same task that acquired it. 852 */ 853 int __sched mutex_trylock(struct mutex *lock) 854 { 855 int ret; 856 857 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); 858 if (ret) 859 mutex_set_owner(lock); 860 861 return ret; 862 } 863 EXPORT_SYMBOL(mutex_trylock); 864 865 #ifndef CONFIG_DEBUG_LOCK_ALLOC 866 int __sched 867 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 868 { 869 int ret; 870 871 might_sleep(); 872 873 ret = __mutex_fastpath_lock_retval(&lock->base.count); 874 875 if (likely(!ret)) { 876 ww_mutex_set_context_fastpath(lock, ctx); 877 mutex_set_owner(&lock->base); 878 } else 879 ret = __ww_mutex_lock_slowpath(lock, ctx); 880 return ret; 881 } 882 EXPORT_SYMBOL(__ww_mutex_lock); 883 884 int __sched 885 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 886 { 887 int ret; 888 889 might_sleep(); 890 891 ret = __mutex_fastpath_lock_retval(&lock->base.count); 892 893 if (likely(!ret)) { 894 ww_mutex_set_context_fastpath(lock, ctx); 895 mutex_set_owner(&lock->base); 896 } else 897 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx); 898 return ret; 899 } 900 EXPORT_SYMBOL(__ww_mutex_lock_interruptible); 901 902 #endif 903 904 /** 905 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 906 * @cnt: the atomic which we are to dec 907 * @lock: the mutex to return holding if we dec to 0 908 * 909 * return true and hold lock if we dec to 0, return false otherwise 910 */ 911 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 912 { 913 /* dec if we can't possibly hit 0 */ 914 if (atomic_add_unless(cnt, -1, 1)) 915 return 0; 916 /* we might hit 0, so take the lock */ 917 mutex_lock(lock); 918 if (!atomic_dec_and_test(cnt)) { 919 /* when we actually did the dec, we didn't hit 0 */ 920 mutex_unlock(lock); 921 return 0; 922 } 923 /* we hit 0, and we hold the lock */ 924 return 1; 925 } 926 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 927