xref: /openbmc/linux/kernel/kprobes.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91 
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100 	struct list_head list;
101 	kprobe_opcode_t *insns;		/* Page of instruction slots */
102 	struct kprobe_insn_cache *cache;
103 	int nused;
104 	int ngarbage;
105 	char slot_used[];
106 };
107 
108 #define KPROBE_INSN_PAGE_SIZE(slots)			\
109 	(offsetof(struct kprobe_insn_page, slot_used) +	\
110 	 (sizeof(char) * (slots)))
111 
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116 
117 enum kprobe_slot_state {
118 	SLOT_CLEAN = 0,
119 	SLOT_DIRTY = 1,
120 	SLOT_USED = 2,
121 };
122 
123 static void *alloc_insn_page(void)
124 {
125 	return module_alloc(PAGE_SIZE);
126 }
127 
128 static void free_insn_page(void *page)
129 {
130 	module_free(NULL, page);
131 }
132 
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 	.alloc = alloc_insn_page,
136 	.free = free_insn_page,
137 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 	.insn_size = MAX_INSN_SIZE,
139 	.nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142 
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 	struct kprobe_insn_page *kip;
150 	kprobe_opcode_t *slot = NULL;
151 
152 	mutex_lock(&c->mutex);
153  retry:
154 	list_for_each_entry(kip, &c->pages, list) {
155 		if (kip->nused < slots_per_page(c)) {
156 			int i;
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 		goto retry;
174 
175 	/* All out of space.  Need to allocate a new page. */
176 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 	if (!kip)
178 		goto out;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = c->alloc();
186 	if (!kip->insns) {
187 		kfree(kip);
188 		goto out;
189 	}
190 	INIT_LIST_HEAD(&kip->list);
191 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 	kip->slot_used[0] = SLOT_USED;
193 	kip->nused = 1;
194 	kip->ngarbage = 0;
195 	kip->cache = c;
196 	list_add(&kip->list, &c->pages);
197 	slot = kip->insns;
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			list_del(&kip->list);
217 			kip->cache->free(kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 	struct kprobe_insn_page *kip, *next;
228 
229 	/* Ensure no-one is interrupted on the garbages */
230 	synchronize_sched();
231 
232 	list_for_each_entry_safe(kip, next, &c->pages, list) {
233 		int i;
234 		if (kip->ngarbage == 0)
235 			continue;
236 		kip->ngarbage = 0;	/* we will collect all garbages */
237 		for (i = 0; i < slots_per_page(c); i++) {
238 			if (kip->slot_used[i] == SLOT_DIRTY &&
239 			    collect_one_slot(kip, i))
240 				break;
241 		}
242 	}
243 	c->nr_garbage = 0;
244 	return 0;
245 }
246 
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 		      kprobe_opcode_t *slot, int dirty)
249 {
250 	struct kprobe_insn_page *kip;
251 
252 	mutex_lock(&c->mutex);
253 	list_for_each_entry(kip, &c->pages, list) {
254 		long idx = ((long)slot - (long)kip->insns) /
255 				(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c)) {
257 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 			if (dirty) {
259 				kip->slot_used[idx] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 				if (++c->nr_garbage > slots_per_page(c))
262 					collect_garbage_slots(c);
263 			} else
264 				collect_one_slot(kip, idx);
265 			goto out;
266 		}
267 	}
268 	/* Could not free this slot. */
269 	WARN_ON(1);
270 out:
271 	mutex_unlock(&c->mutex);
272 }
273 
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 	.alloc = alloc_insn_page,
279 	.free = free_insn_page,
280 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 	/* .insn_size is initialized later */
282 	.nr_garbage = 0,
283 };
284 #endif
285 #endif
286 
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 	__this_cpu_write(kprobe_instance, kp);
291 }
292 
293 static inline void reset_kprobe_instance(void)
294 {
295 	__this_cpu_write(kprobe_instance, NULL);
296 }
297 
298 /*
299  * This routine is called either:
300  * 	- under the kprobe_mutex - during kprobe_[un]register()
301  * 				OR
302  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe *get_kprobe(void *addr)
305 {
306 	struct hlist_head *head;
307 	struct kprobe *p;
308 
309 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 	hlist_for_each_entry_rcu(p, head, hlist) {
311 		if (p->addr == addr)
312 			return p;
313 	}
314 
315 	return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318 
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320 
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 	return p->pre_handler == aggr_pre_handler;
325 }
326 
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 	       list_empty(&p->list);
332 }
333 
334 /*
335  * Keep all fields in the kprobe consistent
336  */
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342 
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346 
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 	struct kprobe *kp;
354 
355 	list_for_each_entry_rcu(kp, &p->list, list) {
356 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 			set_kprobe_instance(kp);
358 			kp->pre_handler(kp, regs);
359 		}
360 		reset_kprobe_instance();
361 	}
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364 
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 	struct optimized_kprobe *op;
369 
370 	op = container_of(p, struct optimized_kprobe, kp);
371 	arch_remove_optimized_kprobe(op);
372 	arch_remove_kprobe(p);
373 	kfree(op);
374 }
375 
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 	struct optimized_kprobe *op;
380 
381 	if (kprobe_aggrprobe(p)) {
382 		op = container_of(p, struct optimized_kprobe, kp);
383 		return arch_prepared_optinsn(&op->optinsn);
384 	}
385 
386 	return 0;
387 }
388 
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 	struct optimized_kprobe *op;
393 
394 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 	if (!kprobe_aggrprobe(p))
396 		return kprobe_disabled(p);
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 
400 	return kprobe_disabled(p) && list_empty(&op->list);
401 }
402 
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
405 {
406 	struct optimized_kprobe *op;
407 
408 	if (kprobe_aggrprobe(p)) {
409 		op = container_of(p, struct optimized_kprobe, kp);
410 		if (!list_empty(&op->list))
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 	int i;
423 	struct kprobe *p = NULL;
424 	struct optimized_kprobe *op;
425 
426 	/* Don't check i == 0, since that is a breakpoint case. */
427 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 		p = get_kprobe((void *)(addr - i));
429 
430 	if (p && kprobe_optready(p)) {
431 		op = container_of(p, struct optimized_kprobe, kp);
432 		if (arch_within_optimized_kprobe(op, addr))
433 			return p;
434 	}
435 
436 	return NULL;
437 }
438 
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443 
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447 
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
452 static void do_optimize_kprobes(void)
453 {
454 	/* Optimization never be done when disarmed */
455 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 	    list_empty(&optimizing_list))
457 		return;
458 
459 	/*
460 	 * The optimization/unoptimization refers online_cpus via
461 	 * stop_machine() and cpu-hotplug modifies online_cpus.
462 	 * And same time, text_mutex will be held in cpu-hotplug and here.
463 	 * This combination can cause a deadlock (cpu-hotplug try to lock
464 	 * text_mutex but stop_machine can not be done because online_cpus
465 	 * has been changed)
466 	 * To avoid this deadlock, we need to call get_online_cpus()
467 	 * for preventing cpu-hotplug outside of text_mutex locking.
468 	 */
469 	get_online_cpus();
470 	mutex_lock(&text_mutex);
471 	arch_optimize_kprobes(&optimizing_list);
472 	mutex_unlock(&text_mutex);
473 	put_online_cpus();
474 }
475 
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
480 static void do_unoptimize_kprobes(void)
481 {
482 	struct optimized_kprobe *op, *tmp;
483 
484 	/* Unoptimization must be done anytime */
485 	if (list_empty(&unoptimizing_list))
486 		return;
487 
488 	/* Ditto to do_optimize_kprobes */
489 	get_online_cpus();
490 	mutex_lock(&text_mutex);
491 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 	/* Loop free_list for disarming */
493 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 		/* Disarm probes if marked disabled */
495 		if (kprobe_disabled(&op->kp))
496 			arch_disarm_kprobe(&op->kp);
497 		if (kprobe_unused(&op->kp)) {
498 			/*
499 			 * Remove unused probes from hash list. After waiting
500 			 * for synchronization, these probes are reclaimed.
501 			 * (reclaiming is done by do_free_cleaned_kprobes.)
502 			 */
503 			hlist_del_rcu(&op->kp.hlist);
504 		} else
505 			list_del_init(&op->list);
506 	}
507 	mutex_unlock(&text_mutex);
508 	put_online_cpus();
509 }
510 
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 		BUG_ON(!kprobe_unused(&op->kp));
518 		list_del_init(&op->list);
519 		free_aggr_kprobe(&op->kp);
520 	}
521 }
522 
523 /* Start optimizer after OPTIMIZE_DELAY passed */
524 static void kick_kprobe_optimizer(void)
525 {
526 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527 }
528 
529 /* Kprobe jump optimizer */
530 static void kprobe_optimizer(struct work_struct *work)
531 {
532 	mutex_lock(&kprobe_mutex);
533 	/* Lock modules while optimizing kprobes */
534 	mutex_lock(&module_mutex);
535 
536 	/*
537 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 	 * kprobes before waiting for quiesence period.
539 	 */
540 	do_unoptimize_kprobes();
541 
542 	/*
543 	 * Step 2: Wait for quiesence period to ensure all running interrupts
544 	 * are done. Because optprobe may modify multiple instructions
545 	 * there is a chance that Nth instruction is interrupted. In that
546 	 * case, running interrupt can return to 2nd-Nth byte of jump
547 	 * instruction. This wait is for avoiding it.
548 	 */
549 	synchronize_sched();
550 
551 	/* Step 3: Optimize kprobes after quiesence period */
552 	do_optimize_kprobes();
553 
554 	/* Step 4: Free cleaned kprobes after quiesence period */
555 	do_free_cleaned_kprobes();
556 
557 	mutex_unlock(&module_mutex);
558 	mutex_unlock(&kprobe_mutex);
559 
560 	/* Step 5: Kick optimizer again if needed */
561 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 		kick_kprobe_optimizer();
563 }
564 
565 /* Wait for completing optimization and unoptimization */
566 static void wait_for_kprobe_optimizer(void)
567 {
568 	mutex_lock(&kprobe_mutex);
569 
570 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 		mutex_unlock(&kprobe_mutex);
572 
573 		/* this will also make optimizing_work execute immmediately */
574 		flush_delayed_work(&optimizing_work);
575 		/* @optimizing_work might not have been queued yet, relax */
576 		cpu_relax();
577 
578 		mutex_lock(&kprobe_mutex);
579 	}
580 
581 	mutex_unlock(&kprobe_mutex);
582 }
583 
584 /* Optimize kprobe if p is ready to be optimized */
585 static void optimize_kprobe(struct kprobe *p)
586 {
587 	struct optimized_kprobe *op;
588 
589 	/* Check if the kprobe is disabled or not ready for optimization. */
590 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 	    (kprobe_disabled(p) || kprobes_all_disarmed))
592 		return;
593 
594 	/* Both of break_handler and post_handler are not supported. */
595 	if (p->break_handler || p->post_handler)
596 		return;
597 
598 	op = container_of(p, struct optimized_kprobe, kp);
599 
600 	/* Check there is no other kprobes at the optimized instructions */
601 	if (arch_check_optimized_kprobe(op) < 0)
602 		return;
603 
604 	/* Check if it is already optimized. */
605 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 		return;
607 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608 
609 	if (!list_empty(&op->list))
610 		/* This is under unoptimizing. Just dequeue the probe */
611 		list_del_init(&op->list);
612 	else {
613 		list_add(&op->list, &optimizing_list);
614 		kick_kprobe_optimizer();
615 	}
616 }
617 
618 /* Short cut to direct unoptimizing */
619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620 {
621 	get_online_cpus();
622 	arch_unoptimize_kprobe(op);
623 	put_online_cpus();
624 	if (kprobe_disabled(&op->kp))
625 		arch_disarm_kprobe(&op->kp);
626 }
627 
628 /* Unoptimize a kprobe if p is optimized */
629 static void unoptimize_kprobe(struct kprobe *p, bool force)
630 {
631 	struct optimized_kprobe *op;
632 
633 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 		return; /* This is not an optprobe nor optimized */
635 
636 	op = container_of(p, struct optimized_kprobe, kp);
637 	if (!kprobe_optimized(p)) {
638 		/* Unoptimized or unoptimizing case */
639 		if (force && !list_empty(&op->list)) {
640 			/*
641 			 * Only if this is unoptimizing kprobe and forced,
642 			 * forcibly unoptimize it. (No need to unoptimize
643 			 * unoptimized kprobe again :)
644 			 */
645 			list_del_init(&op->list);
646 			force_unoptimize_kprobe(op);
647 		}
648 		return;
649 	}
650 
651 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 	if (!list_empty(&op->list)) {
653 		/* Dequeue from the optimization queue */
654 		list_del_init(&op->list);
655 		return;
656 	}
657 	/* Optimized kprobe case */
658 	if (force)
659 		/* Forcibly update the code: this is a special case */
660 		force_unoptimize_kprobe(op);
661 	else {
662 		list_add(&op->list, &unoptimizing_list);
663 		kick_kprobe_optimizer();
664 	}
665 }
666 
667 /* Cancel unoptimizing for reusing */
668 static void reuse_unused_kprobe(struct kprobe *ap)
669 {
670 	struct optimized_kprobe *op;
671 
672 	BUG_ON(!kprobe_unused(ap));
673 	/*
674 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 	 * there is still a relative jump) and disabled.
676 	 */
677 	op = container_of(ap, struct optimized_kprobe, kp);
678 	if (unlikely(list_empty(&op->list)))
679 		printk(KERN_WARNING "Warning: found a stray unused "
680 			"aggrprobe@%p\n", ap->addr);
681 	/* Enable the probe again */
682 	ap->flags &= ~KPROBE_FLAG_DISABLED;
683 	/* Optimize it again (remove from op->list) */
684 	BUG_ON(!kprobe_optready(ap));
685 	optimize_kprobe(ap);
686 }
687 
688 /* Remove optimized instructions */
689 static void kill_optimized_kprobe(struct kprobe *p)
690 {
691 	struct optimized_kprobe *op;
692 
693 	op = container_of(p, struct optimized_kprobe, kp);
694 	if (!list_empty(&op->list))
695 		/* Dequeue from the (un)optimization queue */
696 		list_del_init(&op->list);
697 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
698 
699 	if (kprobe_unused(p)) {
700 		/* Enqueue if it is unused */
701 		list_add(&op->list, &freeing_list);
702 		/*
703 		 * Remove unused probes from the hash list. After waiting
704 		 * for synchronization, this probe is reclaimed.
705 		 * (reclaiming is done by do_free_cleaned_kprobes().)
706 		 */
707 		hlist_del_rcu(&op->kp.hlist);
708 	}
709 
710 	/* Don't touch the code, because it is already freed. */
711 	arch_remove_optimized_kprobe(op);
712 }
713 
714 /* Try to prepare optimized instructions */
715 static void prepare_optimized_kprobe(struct kprobe *p)
716 {
717 	struct optimized_kprobe *op;
718 
719 	op = container_of(p, struct optimized_kprobe, kp);
720 	arch_prepare_optimized_kprobe(op);
721 }
722 
723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
725 {
726 	struct optimized_kprobe *op;
727 
728 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 	if (!op)
730 		return NULL;
731 
732 	INIT_LIST_HEAD(&op->list);
733 	op->kp.addr = p->addr;
734 	arch_prepare_optimized_kprobe(op);
735 
736 	return &op->kp;
737 }
738 
739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
740 
741 /*
742  * Prepare an optimized_kprobe and optimize it
743  * NOTE: p must be a normal registered kprobe
744  */
745 static void try_to_optimize_kprobe(struct kprobe *p)
746 {
747 	struct kprobe *ap;
748 	struct optimized_kprobe *op;
749 
750 	/* Impossible to optimize ftrace-based kprobe */
751 	if (kprobe_ftrace(p))
752 		return;
753 
754 	/* For preparing optimization, jump_label_text_reserved() is called */
755 	jump_label_lock();
756 	mutex_lock(&text_mutex);
757 
758 	ap = alloc_aggr_kprobe(p);
759 	if (!ap)
760 		goto out;
761 
762 	op = container_of(ap, struct optimized_kprobe, kp);
763 	if (!arch_prepared_optinsn(&op->optinsn)) {
764 		/* If failed to setup optimizing, fallback to kprobe */
765 		arch_remove_optimized_kprobe(op);
766 		kfree(op);
767 		goto out;
768 	}
769 
770 	init_aggr_kprobe(ap, p);
771 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
772 
773 out:
774 	mutex_unlock(&text_mutex);
775 	jump_label_unlock();
776 }
777 
778 #ifdef CONFIG_SYSCTL
779 static void optimize_all_kprobes(void)
780 {
781 	struct hlist_head *head;
782 	struct kprobe *p;
783 	unsigned int i;
784 
785 	mutex_lock(&kprobe_mutex);
786 	/* If optimization is already allowed, just return */
787 	if (kprobes_allow_optimization)
788 		goto out;
789 
790 	kprobes_allow_optimization = true;
791 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 		head = &kprobe_table[i];
793 		hlist_for_each_entry_rcu(p, head, hlist)
794 			if (!kprobe_disabled(p))
795 				optimize_kprobe(p);
796 	}
797 	printk(KERN_INFO "Kprobes globally optimized\n");
798 out:
799 	mutex_unlock(&kprobe_mutex);
800 }
801 
802 static void unoptimize_all_kprobes(void)
803 {
804 	struct hlist_head *head;
805 	struct kprobe *p;
806 	unsigned int i;
807 
808 	mutex_lock(&kprobe_mutex);
809 	/* If optimization is already prohibited, just return */
810 	if (!kprobes_allow_optimization) {
811 		mutex_unlock(&kprobe_mutex);
812 		return;
813 	}
814 
815 	kprobes_allow_optimization = false;
816 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 		head = &kprobe_table[i];
818 		hlist_for_each_entry_rcu(p, head, hlist) {
819 			if (!kprobe_disabled(p))
820 				unoptimize_kprobe(p, false);
821 		}
822 	}
823 	mutex_unlock(&kprobe_mutex);
824 
825 	/* Wait for unoptimizing completion */
826 	wait_for_kprobe_optimizer();
827 	printk(KERN_INFO "Kprobes globally unoptimized\n");
828 }
829 
830 static DEFINE_MUTEX(kprobe_sysctl_mutex);
831 int sysctl_kprobes_optimization;
832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 				      void __user *buffer, size_t *length,
834 				      loff_t *ppos)
835 {
836 	int ret;
837 
838 	mutex_lock(&kprobe_sysctl_mutex);
839 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
841 
842 	if (sysctl_kprobes_optimization)
843 		optimize_all_kprobes();
844 	else
845 		unoptimize_all_kprobes();
846 	mutex_unlock(&kprobe_sysctl_mutex);
847 
848 	return ret;
849 }
850 #endif /* CONFIG_SYSCTL */
851 
852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
853 static void __arm_kprobe(struct kprobe *p)
854 {
855 	struct kprobe *_p;
856 
857 	/* Check collision with other optimized kprobes */
858 	_p = get_optimized_kprobe((unsigned long)p->addr);
859 	if (unlikely(_p))
860 		/* Fallback to unoptimized kprobe */
861 		unoptimize_kprobe(_p, true);
862 
863 	arch_arm_kprobe(p);
864 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
865 }
866 
867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868 static void __disarm_kprobe(struct kprobe *p, bool reopt)
869 {
870 	struct kprobe *_p;
871 
872 	unoptimize_kprobe(p, false);	/* Try to unoptimize */
873 
874 	if (!kprobe_queued(p)) {
875 		arch_disarm_kprobe(p);
876 		/* If another kprobe was blocked, optimize it. */
877 		_p = get_optimized_kprobe((unsigned long)p->addr);
878 		if (unlikely(_p) && reopt)
879 			optimize_kprobe(_p);
880 	}
881 	/* TODO: reoptimize others after unoptimized this probe */
882 }
883 
884 #else /* !CONFIG_OPTPROBES */
885 
886 #define optimize_kprobe(p)			do {} while (0)
887 #define unoptimize_kprobe(p, f)			do {} while (0)
888 #define kill_optimized_kprobe(p)		do {} while (0)
889 #define prepare_optimized_kprobe(p)		do {} while (0)
890 #define try_to_optimize_kprobe(p)		do {} while (0)
891 #define __arm_kprobe(p)				arch_arm_kprobe(p)
892 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
893 #define kprobe_disarmed(p)			kprobe_disabled(p)
894 #define wait_for_kprobe_optimizer()		do {} while (0)
895 
896 /* There should be no unused kprobes can be reused without optimization */
897 static void reuse_unused_kprobe(struct kprobe *ap)
898 {
899 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
900 	BUG_ON(kprobe_unused(ap));
901 }
902 
903 static void free_aggr_kprobe(struct kprobe *p)
904 {
905 	arch_remove_kprobe(p);
906 	kfree(p);
907 }
908 
909 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
910 {
911 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
912 }
913 #endif /* CONFIG_OPTPROBES */
914 
915 #ifdef CONFIG_KPROBES_ON_FTRACE
916 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
917 	.func = kprobe_ftrace_handler,
918 	.flags = FTRACE_OPS_FL_SAVE_REGS,
919 };
920 static int kprobe_ftrace_enabled;
921 
922 /* Must ensure p->addr is really on ftrace */
923 static int prepare_kprobe(struct kprobe *p)
924 {
925 	if (!kprobe_ftrace(p))
926 		return arch_prepare_kprobe(p);
927 
928 	return arch_prepare_kprobe_ftrace(p);
929 }
930 
931 /* Caller must lock kprobe_mutex */
932 static void arm_kprobe_ftrace(struct kprobe *p)
933 {
934 	int ret;
935 
936 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
937 				   (unsigned long)p->addr, 0, 0);
938 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
939 	kprobe_ftrace_enabled++;
940 	if (kprobe_ftrace_enabled == 1) {
941 		ret = register_ftrace_function(&kprobe_ftrace_ops);
942 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
943 	}
944 }
945 
946 /* Caller must lock kprobe_mutex */
947 static void disarm_kprobe_ftrace(struct kprobe *p)
948 {
949 	int ret;
950 
951 	kprobe_ftrace_enabled--;
952 	if (kprobe_ftrace_enabled == 0) {
953 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
954 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
955 	}
956 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
957 			   (unsigned long)p->addr, 1, 0);
958 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
959 }
960 #else	/* !CONFIG_KPROBES_ON_FTRACE */
961 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
962 #define arm_kprobe_ftrace(p)	do {} while (0)
963 #define disarm_kprobe_ftrace(p)	do {} while (0)
964 #endif
965 
966 /* Arm a kprobe with text_mutex */
967 static void arm_kprobe(struct kprobe *kp)
968 {
969 	if (unlikely(kprobe_ftrace(kp))) {
970 		arm_kprobe_ftrace(kp);
971 		return;
972 	}
973 	/*
974 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
975 	 * this doesn't cause deadlock on text_mutex. So, we don't
976 	 * need get_online_cpus().
977 	 */
978 	mutex_lock(&text_mutex);
979 	__arm_kprobe(kp);
980 	mutex_unlock(&text_mutex);
981 }
982 
983 /* Disarm a kprobe with text_mutex */
984 static void disarm_kprobe(struct kprobe *kp, bool reopt)
985 {
986 	if (unlikely(kprobe_ftrace(kp))) {
987 		disarm_kprobe_ftrace(kp);
988 		return;
989 	}
990 	/* Ditto */
991 	mutex_lock(&text_mutex);
992 	__disarm_kprobe(kp, reopt);
993 	mutex_unlock(&text_mutex);
994 }
995 
996 /*
997  * Aggregate handlers for multiple kprobes support - these handlers
998  * take care of invoking the individual kprobe handlers on p->list
999  */
1000 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1001 {
1002 	struct kprobe *kp;
1003 
1004 	list_for_each_entry_rcu(kp, &p->list, list) {
1005 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1006 			set_kprobe_instance(kp);
1007 			if (kp->pre_handler(kp, regs))
1008 				return 1;
1009 		}
1010 		reset_kprobe_instance();
1011 	}
1012 	return 0;
1013 }
1014 NOKPROBE_SYMBOL(aggr_pre_handler);
1015 
1016 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1017 			      unsigned long flags)
1018 {
1019 	struct kprobe *kp;
1020 
1021 	list_for_each_entry_rcu(kp, &p->list, list) {
1022 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1023 			set_kprobe_instance(kp);
1024 			kp->post_handler(kp, regs, flags);
1025 			reset_kprobe_instance();
1026 		}
1027 	}
1028 }
1029 NOKPROBE_SYMBOL(aggr_post_handler);
1030 
1031 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1032 			      int trapnr)
1033 {
1034 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1035 
1036 	/*
1037 	 * if we faulted "during" the execution of a user specified
1038 	 * probe handler, invoke just that probe's fault handler
1039 	 */
1040 	if (cur && cur->fault_handler) {
1041 		if (cur->fault_handler(cur, regs, trapnr))
1042 			return 1;
1043 	}
1044 	return 0;
1045 }
1046 NOKPROBE_SYMBOL(aggr_fault_handler);
1047 
1048 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1049 {
1050 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051 	int ret = 0;
1052 
1053 	if (cur && cur->break_handler) {
1054 		if (cur->break_handler(cur, regs))
1055 			ret = 1;
1056 	}
1057 	reset_kprobe_instance();
1058 	return ret;
1059 }
1060 NOKPROBE_SYMBOL(aggr_break_handler);
1061 
1062 /* Walks the list and increments nmissed count for multiprobe case */
1063 void kprobes_inc_nmissed_count(struct kprobe *p)
1064 {
1065 	struct kprobe *kp;
1066 	if (!kprobe_aggrprobe(p)) {
1067 		p->nmissed++;
1068 	} else {
1069 		list_for_each_entry_rcu(kp, &p->list, list)
1070 			kp->nmissed++;
1071 	}
1072 	return;
1073 }
1074 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1075 
1076 void recycle_rp_inst(struct kretprobe_instance *ri,
1077 		     struct hlist_head *head)
1078 {
1079 	struct kretprobe *rp = ri->rp;
1080 
1081 	/* remove rp inst off the rprobe_inst_table */
1082 	hlist_del(&ri->hlist);
1083 	INIT_HLIST_NODE(&ri->hlist);
1084 	if (likely(rp)) {
1085 		raw_spin_lock(&rp->lock);
1086 		hlist_add_head(&ri->hlist, &rp->free_instances);
1087 		raw_spin_unlock(&rp->lock);
1088 	} else
1089 		/* Unregistering */
1090 		hlist_add_head(&ri->hlist, head);
1091 }
1092 NOKPROBE_SYMBOL(recycle_rp_inst);
1093 
1094 void kretprobe_hash_lock(struct task_struct *tsk,
1095 			 struct hlist_head **head, unsigned long *flags)
1096 __acquires(hlist_lock)
1097 {
1098 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1099 	raw_spinlock_t *hlist_lock;
1100 
1101 	*head = &kretprobe_inst_table[hash];
1102 	hlist_lock = kretprobe_table_lock_ptr(hash);
1103 	raw_spin_lock_irqsave(hlist_lock, *flags);
1104 }
1105 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1106 
1107 static void kretprobe_table_lock(unsigned long hash,
1108 				 unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112 	raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 NOKPROBE_SYMBOL(kretprobe_table_lock);
1115 
1116 void kretprobe_hash_unlock(struct task_struct *tsk,
1117 			   unsigned long *flags)
1118 __releases(hlist_lock)
1119 {
1120 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 	raw_spinlock_t *hlist_lock;
1122 
1123 	hlist_lock = kretprobe_table_lock_ptr(hash);
1124 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1125 }
1126 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1127 
1128 static void kretprobe_table_unlock(unsigned long hash,
1129 				   unsigned long *flags)
1130 __releases(hlist_lock)
1131 {
1132 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1134 }
1135 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1136 
1137 /*
1138  * This function is called from finish_task_switch when task tk becomes dead,
1139  * so that we can recycle any function-return probe instances associated
1140  * with this task. These left over instances represent probed functions
1141  * that have been called but will never return.
1142  */
1143 void kprobe_flush_task(struct task_struct *tk)
1144 {
1145 	struct kretprobe_instance *ri;
1146 	struct hlist_head *head, empty_rp;
1147 	struct hlist_node *tmp;
1148 	unsigned long hash, flags = 0;
1149 
1150 	if (unlikely(!kprobes_initialized))
1151 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1152 		return;
1153 
1154 	INIT_HLIST_HEAD(&empty_rp);
1155 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1156 	head = &kretprobe_inst_table[hash];
1157 	kretprobe_table_lock(hash, &flags);
1158 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1159 		if (ri->task == tk)
1160 			recycle_rp_inst(ri, &empty_rp);
1161 	}
1162 	kretprobe_table_unlock(hash, &flags);
1163 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1164 		hlist_del(&ri->hlist);
1165 		kfree(ri);
1166 	}
1167 }
1168 NOKPROBE_SYMBOL(kprobe_flush_task);
1169 
1170 static inline void free_rp_inst(struct kretprobe *rp)
1171 {
1172 	struct kretprobe_instance *ri;
1173 	struct hlist_node *next;
1174 
1175 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 		hlist_del(&ri->hlist);
1177 		kfree(ri);
1178 	}
1179 }
1180 
1181 static void cleanup_rp_inst(struct kretprobe *rp)
1182 {
1183 	unsigned long flags, hash;
1184 	struct kretprobe_instance *ri;
1185 	struct hlist_node *next;
1186 	struct hlist_head *head;
1187 
1188 	/* No race here */
1189 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 		kretprobe_table_lock(hash, &flags);
1191 		head = &kretprobe_inst_table[hash];
1192 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 			if (ri->rp == rp)
1194 				ri->rp = NULL;
1195 		}
1196 		kretprobe_table_unlock(hash, &flags);
1197 	}
1198 	free_rp_inst(rp);
1199 }
1200 NOKPROBE_SYMBOL(cleanup_rp_inst);
1201 
1202 /*
1203 * Add the new probe to ap->list. Fail if this is the
1204 * second jprobe at the address - two jprobes can't coexist
1205 */
1206 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1207 {
1208 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1209 
1210 	if (p->break_handler || p->post_handler)
1211 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1212 
1213 	if (p->break_handler) {
1214 		if (ap->break_handler)
1215 			return -EEXIST;
1216 		list_add_tail_rcu(&p->list, &ap->list);
1217 		ap->break_handler = aggr_break_handler;
1218 	} else
1219 		list_add_rcu(&p->list, &ap->list);
1220 	if (p->post_handler && !ap->post_handler)
1221 		ap->post_handler = aggr_post_handler;
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Fill in the required fields of the "manager kprobe". Replace the
1228  * earlier kprobe in the hlist with the manager kprobe
1229  */
1230 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1231 {
1232 	/* Copy p's insn slot to ap */
1233 	copy_kprobe(p, ap);
1234 	flush_insn_slot(ap);
1235 	ap->addr = p->addr;
1236 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1237 	ap->pre_handler = aggr_pre_handler;
1238 	ap->fault_handler = aggr_fault_handler;
1239 	/* We don't care the kprobe which has gone. */
1240 	if (p->post_handler && !kprobe_gone(p))
1241 		ap->post_handler = aggr_post_handler;
1242 	if (p->break_handler && !kprobe_gone(p))
1243 		ap->break_handler = aggr_break_handler;
1244 
1245 	INIT_LIST_HEAD(&ap->list);
1246 	INIT_HLIST_NODE(&ap->hlist);
1247 
1248 	list_add_rcu(&p->list, &ap->list);
1249 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1250 }
1251 
1252 /*
1253  * This is the second or subsequent kprobe at the address - handle
1254  * the intricacies
1255  */
1256 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1257 {
1258 	int ret = 0;
1259 	struct kprobe *ap = orig_p;
1260 
1261 	/* For preparing optimization, jump_label_text_reserved() is called */
1262 	jump_label_lock();
1263 	/*
1264 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 	 */
1267 	get_online_cpus();
1268 	mutex_lock(&text_mutex);
1269 
1270 	if (!kprobe_aggrprobe(orig_p)) {
1271 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 		ap = alloc_aggr_kprobe(orig_p);
1273 		if (!ap) {
1274 			ret = -ENOMEM;
1275 			goto out;
1276 		}
1277 		init_aggr_kprobe(ap, orig_p);
1278 	} else if (kprobe_unused(ap))
1279 		/* This probe is going to die. Rescue it */
1280 		reuse_unused_kprobe(ap);
1281 
1282 	if (kprobe_gone(ap)) {
1283 		/*
1284 		 * Attempting to insert new probe at the same location that
1285 		 * had a probe in the module vaddr area which already
1286 		 * freed. So, the instruction slot has already been
1287 		 * released. We need a new slot for the new probe.
1288 		 */
1289 		ret = arch_prepare_kprobe(ap);
1290 		if (ret)
1291 			/*
1292 			 * Even if fail to allocate new slot, don't need to
1293 			 * free aggr_probe. It will be used next time, or
1294 			 * freed by unregister_kprobe.
1295 			 */
1296 			goto out;
1297 
1298 		/* Prepare optimized instructions if possible. */
1299 		prepare_optimized_kprobe(ap);
1300 
1301 		/*
1302 		 * Clear gone flag to prevent allocating new slot again, and
1303 		 * set disabled flag because it is not armed yet.
1304 		 */
1305 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 			    | KPROBE_FLAG_DISABLED;
1307 	}
1308 
1309 	/* Copy ap's insn slot to p */
1310 	copy_kprobe(ap, p);
1311 	ret = add_new_kprobe(ap, p);
1312 
1313 out:
1314 	mutex_unlock(&text_mutex);
1315 	put_online_cpus();
1316 	jump_label_unlock();
1317 
1318 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 		if (!kprobes_all_disarmed)
1321 			/* Arm the breakpoint again. */
1322 			arm_kprobe(ap);
1323 	}
1324 	return ret;
1325 }
1326 
1327 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1328 {
1329 	/* The __kprobes marked functions and entry code must not be probed */
1330 	return addr >= (unsigned long)__kprobes_text_start &&
1331 	       addr < (unsigned long)__kprobes_text_end;
1332 }
1333 
1334 static bool within_kprobe_blacklist(unsigned long addr)
1335 {
1336 	struct kprobe_blacklist_entry *ent;
1337 
1338 	if (arch_within_kprobe_blacklist(addr))
1339 		return true;
1340 	/*
1341 	 * If there exists a kprobe_blacklist, verify and
1342 	 * fail any probe registration in the prohibited area
1343 	 */
1344 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1345 		if (addr >= ent->start_addr && addr < ent->end_addr)
1346 			return true;
1347 	}
1348 
1349 	return false;
1350 }
1351 
1352 /*
1353  * If we have a symbol_name argument, look it up and add the offset field
1354  * to it. This way, we can specify a relative address to a symbol.
1355  * This returns encoded errors if it fails to look up symbol or invalid
1356  * combination of parameters.
1357  */
1358 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1359 {
1360 	kprobe_opcode_t *addr = p->addr;
1361 
1362 	if ((p->symbol_name && p->addr) ||
1363 	    (!p->symbol_name && !p->addr))
1364 		goto invalid;
1365 
1366 	if (p->symbol_name) {
1367 		kprobe_lookup_name(p->symbol_name, addr);
1368 		if (!addr)
1369 			return ERR_PTR(-ENOENT);
1370 	}
1371 
1372 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1373 	if (addr)
1374 		return addr;
1375 
1376 invalid:
1377 	return ERR_PTR(-EINVAL);
1378 }
1379 
1380 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1381 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1382 {
1383 	struct kprobe *ap, *list_p;
1384 
1385 	ap = get_kprobe(p->addr);
1386 	if (unlikely(!ap))
1387 		return NULL;
1388 
1389 	if (p != ap) {
1390 		list_for_each_entry_rcu(list_p, &ap->list, list)
1391 			if (list_p == p)
1392 			/* kprobe p is a valid probe */
1393 				goto valid;
1394 		return NULL;
1395 	}
1396 valid:
1397 	return ap;
1398 }
1399 
1400 /* Return error if the kprobe is being re-registered */
1401 static inline int check_kprobe_rereg(struct kprobe *p)
1402 {
1403 	int ret = 0;
1404 
1405 	mutex_lock(&kprobe_mutex);
1406 	if (__get_valid_kprobe(p))
1407 		ret = -EINVAL;
1408 	mutex_unlock(&kprobe_mutex);
1409 
1410 	return ret;
1411 }
1412 
1413 static int check_kprobe_address_safe(struct kprobe *p,
1414 				     struct module **probed_mod)
1415 {
1416 	int ret = 0;
1417 	unsigned long ftrace_addr;
1418 
1419 	/*
1420 	 * If the address is located on a ftrace nop, set the
1421 	 * breakpoint to the following instruction.
1422 	 */
1423 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1424 	if (ftrace_addr) {
1425 #ifdef CONFIG_KPROBES_ON_FTRACE
1426 		/* Given address is not on the instruction boundary */
1427 		if ((unsigned long)p->addr != ftrace_addr)
1428 			return -EILSEQ;
1429 		p->flags |= KPROBE_FLAG_FTRACE;
1430 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1431 		return -EINVAL;
1432 #endif
1433 	}
1434 
1435 	jump_label_lock();
1436 	preempt_disable();
1437 
1438 	/* Ensure it is not in reserved area nor out of text */
1439 	if (!kernel_text_address((unsigned long) p->addr) ||
1440 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1441 	    jump_label_text_reserved(p->addr, p->addr)) {
1442 		ret = -EINVAL;
1443 		goto out;
1444 	}
1445 
1446 	/* Check if are we probing a module */
1447 	*probed_mod = __module_text_address((unsigned long) p->addr);
1448 	if (*probed_mod) {
1449 		/*
1450 		 * We must hold a refcount of the probed module while updating
1451 		 * its code to prohibit unexpected unloading.
1452 		 */
1453 		if (unlikely(!try_module_get(*probed_mod))) {
1454 			ret = -ENOENT;
1455 			goto out;
1456 		}
1457 
1458 		/*
1459 		 * If the module freed .init.text, we couldn't insert
1460 		 * kprobes in there.
1461 		 */
1462 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1463 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1464 			module_put(*probed_mod);
1465 			*probed_mod = NULL;
1466 			ret = -ENOENT;
1467 		}
1468 	}
1469 out:
1470 	preempt_enable();
1471 	jump_label_unlock();
1472 
1473 	return ret;
1474 }
1475 
1476 int register_kprobe(struct kprobe *p)
1477 {
1478 	int ret;
1479 	struct kprobe *old_p;
1480 	struct module *probed_mod;
1481 	kprobe_opcode_t *addr;
1482 
1483 	/* Adjust probe address from symbol */
1484 	addr = kprobe_addr(p);
1485 	if (IS_ERR(addr))
1486 		return PTR_ERR(addr);
1487 	p->addr = addr;
1488 
1489 	ret = check_kprobe_rereg(p);
1490 	if (ret)
1491 		return ret;
1492 
1493 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1494 	p->flags &= KPROBE_FLAG_DISABLED;
1495 	p->nmissed = 0;
1496 	INIT_LIST_HEAD(&p->list);
1497 
1498 	ret = check_kprobe_address_safe(p, &probed_mod);
1499 	if (ret)
1500 		return ret;
1501 
1502 	mutex_lock(&kprobe_mutex);
1503 
1504 	old_p = get_kprobe(p->addr);
1505 	if (old_p) {
1506 		/* Since this may unoptimize old_p, locking text_mutex. */
1507 		ret = register_aggr_kprobe(old_p, p);
1508 		goto out;
1509 	}
1510 
1511 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1512 	ret = prepare_kprobe(p);
1513 	mutex_unlock(&text_mutex);
1514 	if (ret)
1515 		goto out;
1516 
1517 	INIT_HLIST_NODE(&p->hlist);
1518 	hlist_add_head_rcu(&p->hlist,
1519 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1520 
1521 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1522 		arm_kprobe(p);
1523 
1524 	/* Try to optimize kprobe */
1525 	try_to_optimize_kprobe(p);
1526 
1527 out:
1528 	mutex_unlock(&kprobe_mutex);
1529 
1530 	if (probed_mod)
1531 		module_put(probed_mod);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(register_kprobe);
1536 
1537 /* Check if all probes on the aggrprobe are disabled */
1538 static int aggr_kprobe_disabled(struct kprobe *ap)
1539 {
1540 	struct kprobe *kp;
1541 
1542 	list_for_each_entry_rcu(kp, &ap->list, list)
1543 		if (!kprobe_disabled(kp))
1544 			/*
1545 			 * There is an active probe on the list.
1546 			 * We can't disable this ap.
1547 			 */
1548 			return 0;
1549 
1550 	return 1;
1551 }
1552 
1553 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1554 static struct kprobe *__disable_kprobe(struct kprobe *p)
1555 {
1556 	struct kprobe *orig_p;
1557 
1558 	/* Get an original kprobe for return */
1559 	orig_p = __get_valid_kprobe(p);
1560 	if (unlikely(orig_p == NULL))
1561 		return NULL;
1562 
1563 	if (!kprobe_disabled(p)) {
1564 		/* Disable probe if it is a child probe */
1565 		if (p != orig_p)
1566 			p->flags |= KPROBE_FLAG_DISABLED;
1567 
1568 		/* Try to disarm and disable this/parent probe */
1569 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1570 			disarm_kprobe(orig_p, true);
1571 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1572 		}
1573 	}
1574 
1575 	return orig_p;
1576 }
1577 
1578 /*
1579  * Unregister a kprobe without a scheduler synchronization.
1580  */
1581 static int __unregister_kprobe_top(struct kprobe *p)
1582 {
1583 	struct kprobe *ap, *list_p;
1584 
1585 	/* Disable kprobe. This will disarm it if needed. */
1586 	ap = __disable_kprobe(p);
1587 	if (ap == NULL)
1588 		return -EINVAL;
1589 
1590 	if (ap == p)
1591 		/*
1592 		 * This probe is an independent(and non-optimized) kprobe
1593 		 * (not an aggrprobe). Remove from the hash list.
1594 		 */
1595 		goto disarmed;
1596 
1597 	/* Following process expects this probe is an aggrprobe */
1598 	WARN_ON(!kprobe_aggrprobe(ap));
1599 
1600 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1601 		/*
1602 		 * !disarmed could be happen if the probe is under delayed
1603 		 * unoptimizing.
1604 		 */
1605 		goto disarmed;
1606 	else {
1607 		/* If disabling probe has special handlers, update aggrprobe */
1608 		if (p->break_handler && !kprobe_gone(p))
1609 			ap->break_handler = NULL;
1610 		if (p->post_handler && !kprobe_gone(p)) {
1611 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1612 				if ((list_p != p) && (list_p->post_handler))
1613 					goto noclean;
1614 			}
1615 			ap->post_handler = NULL;
1616 		}
1617 noclean:
1618 		/*
1619 		 * Remove from the aggrprobe: this path will do nothing in
1620 		 * __unregister_kprobe_bottom().
1621 		 */
1622 		list_del_rcu(&p->list);
1623 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1624 			/*
1625 			 * Try to optimize this probe again, because post
1626 			 * handler may have been changed.
1627 			 */
1628 			optimize_kprobe(ap);
1629 	}
1630 	return 0;
1631 
1632 disarmed:
1633 	BUG_ON(!kprobe_disarmed(ap));
1634 	hlist_del_rcu(&ap->hlist);
1635 	return 0;
1636 }
1637 
1638 static void __unregister_kprobe_bottom(struct kprobe *p)
1639 {
1640 	struct kprobe *ap;
1641 
1642 	if (list_empty(&p->list))
1643 		/* This is an independent kprobe */
1644 		arch_remove_kprobe(p);
1645 	else if (list_is_singular(&p->list)) {
1646 		/* This is the last child of an aggrprobe */
1647 		ap = list_entry(p->list.next, struct kprobe, list);
1648 		list_del(&p->list);
1649 		free_aggr_kprobe(ap);
1650 	}
1651 	/* Otherwise, do nothing. */
1652 }
1653 
1654 int register_kprobes(struct kprobe **kps, int num)
1655 {
1656 	int i, ret = 0;
1657 
1658 	if (num <= 0)
1659 		return -EINVAL;
1660 	for (i = 0; i < num; i++) {
1661 		ret = register_kprobe(kps[i]);
1662 		if (ret < 0) {
1663 			if (i > 0)
1664 				unregister_kprobes(kps, i);
1665 			break;
1666 		}
1667 	}
1668 	return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(register_kprobes);
1671 
1672 void unregister_kprobe(struct kprobe *p)
1673 {
1674 	unregister_kprobes(&p, 1);
1675 }
1676 EXPORT_SYMBOL_GPL(unregister_kprobe);
1677 
1678 void unregister_kprobes(struct kprobe **kps, int num)
1679 {
1680 	int i;
1681 
1682 	if (num <= 0)
1683 		return;
1684 	mutex_lock(&kprobe_mutex);
1685 	for (i = 0; i < num; i++)
1686 		if (__unregister_kprobe_top(kps[i]) < 0)
1687 			kps[i]->addr = NULL;
1688 	mutex_unlock(&kprobe_mutex);
1689 
1690 	synchronize_sched();
1691 	for (i = 0; i < num; i++)
1692 		if (kps[i]->addr)
1693 			__unregister_kprobe_bottom(kps[i]);
1694 }
1695 EXPORT_SYMBOL_GPL(unregister_kprobes);
1696 
1697 static struct notifier_block kprobe_exceptions_nb = {
1698 	.notifier_call = kprobe_exceptions_notify,
1699 	.priority = 0x7fffffff /* we need to be notified first */
1700 };
1701 
1702 unsigned long __weak arch_deref_entry_point(void *entry)
1703 {
1704 	return (unsigned long)entry;
1705 }
1706 
1707 int register_jprobes(struct jprobe **jps, int num)
1708 {
1709 	struct jprobe *jp;
1710 	int ret = 0, i;
1711 
1712 	if (num <= 0)
1713 		return -EINVAL;
1714 	for (i = 0; i < num; i++) {
1715 		unsigned long addr, offset;
1716 		jp = jps[i];
1717 		addr = arch_deref_entry_point(jp->entry);
1718 
1719 		/* Verify probepoint is a function entry point */
1720 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1721 		    offset == 0) {
1722 			jp->kp.pre_handler = setjmp_pre_handler;
1723 			jp->kp.break_handler = longjmp_break_handler;
1724 			ret = register_kprobe(&jp->kp);
1725 		} else
1726 			ret = -EINVAL;
1727 
1728 		if (ret < 0) {
1729 			if (i > 0)
1730 				unregister_jprobes(jps, i);
1731 			break;
1732 		}
1733 	}
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(register_jprobes);
1737 
1738 int register_jprobe(struct jprobe *jp)
1739 {
1740 	return register_jprobes(&jp, 1);
1741 }
1742 EXPORT_SYMBOL_GPL(register_jprobe);
1743 
1744 void unregister_jprobe(struct jprobe *jp)
1745 {
1746 	unregister_jprobes(&jp, 1);
1747 }
1748 EXPORT_SYMBOL_GPL(unregister_jprobe);
1749 
1750 void unregister_jprobes(struct jprobe **jps, int num)
1751 {
1752 	int i;
1753 
1754 	if (num <= 0)
1755 		return;
1756 	mutex_lock(&kprobe_mutex);
1757 	for (i = 0; i < num; i++)
1758 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1759 			jps[i]->kp.addr = NULL;
1760 	mutex_unlock(&kprobe_mutex);
1761 
1762 	synchronize_sched();
1763 	for (i = 0; i < num; i++) {
1764 		if (jps[i]->kp.addr)
1765 			__unregister_kprobe_bottom(&jps[i]->kp);
1766 	}
1767 }
1768 EXPORT_SYMBOL_GPL(unregister_jprobes);
1769 
1770 #ifdef CONFIG_KRETPROBES
1771 /*
1772  * This kprobe pre_handler is registered with every kretprobe. When probe
1773  * hits it will set up the return probe.
1774  */
1775 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1776 {
1777 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778 	unsigned long hash, flags = 0;
1779 	struct kretprobe_instance *ri;
1780 
1781 	/*
1782 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1783 	 * just skip the probe and increase the (inexact) 'nmissed'
1784 	 * statistical counter, so that the user is informed that
1785 	 * something happened:
1786 	 */
1787 	if (unlikely(in_nmi())) {
1788 		rp->nmissed++;
1789 		return 0;
1790 	}
1791 
1792 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1793 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1794 	raw_spin_lock_irqsave(&rp->lock, flags);
1795 	if (!hlist_empty(&rp->free_instances)) {
1796 		ri = hlist_entry(rp->free_instances.first,
1797 				struct kretprobe_instance, hlist);
1798 		hlist_del(&ri->hlist);
1799 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1800 
1801 		ri->rp = rp;
1802 		ri->task = current;
1803 
1804 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1805 			raw_spin_lock_irqsave(&rp->lock, flags);
1806 			hlist_add_head(&ri->hlist, &rp->free_instances);
1807 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1808 			return 0;
1809 		}
1810 
1811 		arch_prepare_kretprobe(ri, regs);
1812 
1813 		/* XXX(hch): why is there no hlist_move_head? */
1814 		INIT_HLIST_NODE(&ri->hlist);
1815 		kretprobe_table_lock(hash, &flags);
1816 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1817 		kretprobe_table_unlock(hash, &flags);
1818 	} else {
1819 		rp->nmissed++;
1820 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1821 	}
1822 	return 0;
1823 }
1824 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1825 
1826 int register_kretprobe(struct kretprobe *rp)
1827 {
1828 	int ret = 0;
1829 	struct kretprobe_instance *inst;
1830 	int i;
1831 	void *addr;
1832 
1833 	if (kretprobe_blacklist_size) {
1834 		addr = kprobe_addr(&rp->kp);
1835 		if (IS_ERR(addr))
1836 			return PTR_ERR(addr);
1837 
1838 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1839 			if (kretprobe_blacklist[i].addr == addr)
1840 				return -EINVAL;
1841 		}
1842 	}
1843 
1844 	rp->kp.pre_handler = pre_handler_kretprobe;
1845 	rp->kp.post_handler = NULL;
1846 	rp->kp.fault_handler = NULL;
1847 	rp->kp.break_handler = NULL;
1848 
1849 	/* Pre-allocate memory for max kretprobe instances */
1850 	if (rp->maxactive <= 0) {
1851 #ifdef CONFIG_PREEMPT
1852 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1853 #else
1854 		rp->maxactive = num_possible_cpus();
1855 #endif
1856 	}
1857 	raw_spin_lock_init(&rp->lock);
1858 	INIT_HLIST_HEAD(&rp->free_instances);
1859 	for (i = 0; i < rp->maxactive; i++) {
1860 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1861 			       rp->data_size, GFP_KERNEL);
1862 		if (inst == NULL) {
1863 			free_rp_inst(rp);
1864 			return -ENOMEM;
1865 		}
1866 		INIT_HLIST_NODE(&inst->hlist);
1867 		hlist_add_head(&inst->hlist, &rp->free_instances);
1868 	}
1869 
1870 	rp->nmissed = 0;
1871 	/* Establish function entry probe point */
1872 	ret = register_kprobe(&rp->kp);
1873 	if (ret != 0)
1874 		free_rp_inst(rp);
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL_GPL(register_kretprobe);
1878 
1879 int register_kretprobes(struct kretprobe **rps, int num)
1880 {
1881 	int ret = 0, i;
1882 
1883 	if (num <= 0)
1884 		return -EINVAL;
1885 	for (i = 0; i < num; i++) {
1886 		ret = register_kretprobe(rps[i]);
1887 		if (ret < 0) {
1888 			if (i > 0)
1889 				unregister_kretprobes(rps, i);
1890 			break;
1891 		}
1892 	}
1893 	return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(register_kretprobes);
1896 
1897 void unregister_kretprobe(struct kretprobe *rp)
1898 {
1899 	unregister_kretprobes(&rp, 1);
1900 }
1901 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1902 
1903 void unregister_kretprobes(struct kretprobe **rps, int num)
1904 {
1905 	int i;
1906 
1907 	if (num <= 0)
1908 		return;
1909 	mutex_lock(&kprobe_mutex);
1910 	for (i = 0; i < num; i++)
1911 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1912 			rps[i]->kp.addr = NULL;
1913 	mutex_unlock(&kprobe_mutex);
1914 
1915 	synchronize_sched();
1916 	for (i = 0; i < num; i++) {
1917 		if (rps[i]->kp.addr) {
1918 			__unregister_kprobe_bottom(&rps[i]->kp);
1919 			cleanup_rp_inst(rps[i]);
1920 		}
1921 	}
1922 }
1923 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1924 
1925 #else /* CONFIG_KRETPROBES */
1926 int register_kretprobe(struct kretprobe *rp)
1927 {
1928 	return -ENOSYS;
1929 }
1930 EXPORT_SYMBOL_GPL(register_kretprobe);
1931 
1932 int register_kretprobes(struct kretprobe **rps, int num)
1933 {
1934 	return -ENOSYS;
1935 }
1936 EXPORT_SYMBOL_GPL(register_kretprobes);
1937 
1938 void unregister_kretprobe(struct kretprobe *rp)
1939 {
1940 }
1941 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1942 
1943 void unregister_kretprobes(struct kretprobe **rps, int num)
1944 {
1945 }
1946 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1947 
1948 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1949 {
1950 	return 0;
1951 }
1952 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1953 
1954 #endif /* CONFIG_KRETPROBES */
1955 
1956 /* Set the kprobe gone and remove its instruction buffer. */
1957 static void kill_kprobe(struct kprobe *p)
1958 {
1959 	struct kprobe *kp;
1960 
1961 	p->flags |= KPROBE_FLAG_GONE;
1962 	if (kprobe_aggrprobe(p)) {
1963 		/*
1964 		 * If this is an aggr_kprobe, we have to list all the
1965 		 * chained probes and mark them GONE.
1966 		 */
1967 		list_for_each_entry_rcu(kp, &p->list, list)
1968 			kp->flags |= KPROBE_FLAG_GONE;
1969 		p->post_handler = NULL;
1970 		p->break_handler = NULL;
1971 		kill_optimized_kprobe(p);
1972 	}
1973 	/*
1974 	 * Here, we can remove insn_slot safely, because no thread calls
1975 	 * the original probed function (which will be freed soon) any more.
1976 	 */
1977 	arch_remove_kprobe(p);
1978 }
1979 
1980 /* Disable one kprobe */
1981 int disable_kprobe(struct kprobe *kp)
1982 {
1983 	int ret = 0;
1984 
1985 	mutex_lock(&kprobe_mutex);
1986 
1987 	/* Disable this kprobe */
1988 	if (__disable_kprobe(kp) == NULL)
1989 		ret = -EINVAL;
1990 
1991 	mutex_unlock(&kprobe_mutex);
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(disable_kprobe);
1995 
1996 /* Enable one kprobe */
1997 int enable_kprobe(struct kprobe *kp)
1998 {
1999 	int ret = 0;
2000 	struct kprobe *p;
2001 
2002 	mutex_lock(&kprobe_mutex);
2003 
2004 	/* Check whether specified probe is valid. */
2005 	p = __get_valid_kprobe(kp);
2006 	if (unlikely(p == NULL)) {
2007 		ret = -EINVAL;
2008 		goto out;
2009 	}
2010 
2011 	if (kprobe_gone(kp)) {
2012 		/* This kprobe has gone, we couldn't enable it. */
2013 		ret = -EINVAL;
2014 		goto out;
2015 	}
2016 
2017 	if (p != kp)
2018 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2019 
2020 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2021 		p->flags &= ~KPROBE_FLAG_DISABLED;
2022 		arm_kprobe(p);
2023 	}
2024 out:
2025 	mutex_unlock(&kprobe_mutex);
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(enable_kprobe);
2029 
2030 void dump_kprobe(struct kprobe *kp)
2031 {
2032 	printk(KERN_WARNING "Dumping kprobe:\n");
2033 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2034 	       kp->symbol_name, kp->addr, kp->offset);
2035 }
2036 NOKPROBE_SYMBOL(dump_kprobe);
2037 
2038 /*
2039  * Lookup and populate the kprobe_blacklist.
2040  *
2041  * Unlike the kretprobe blacklist, we'll need to determine
2042  * the range of addresses that belong to the said functions,
2043  * since a kprobe need not necessarily be at the beginning
2044  * of a function.
2045  */
2046 static int __init populate_kprobe_blacklist(unsigned long *start,
2047 					     unsigned long *end)
2048 {
2049 	unsigned long *iter;
2050 	struct kprobe_blacklist_entry *ent;
2051 	unsigned long entry, offset = 0, size = 0;
2052 
2053 	for (iter = start; iter < end; iter++) {
2054 		entry = arch_deref_entry_point((void *)*iter);
2055 
2056 		if (!kernel_text_address(entry) ||
2057 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2058 			pr_err("Failed to find blacklist at %p\n",
2059 				(void *)entry);
2060 			continue;
2061 		}
2062 
2063 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2064 		if (!ent)
2065 			return -ENOMEM;
2066 		ent->start_addr = entry;
2067 		ent->end_addr = entry + size;
2068 		INIT_LIST_HEAD(&ent->list);
2069 		list_add_tail(&ent->list, &kprobe_blacklist);
2070 	}
2071 	return 0;
2072 }
2073 
2074 /* Module notifier call back, checking kprobes on the module */
2075 static int kprobes_module_callback(struct notifier_block *nb,
2076 				   unsigned long val, void *data)
2077 {
2078 	struct module *mod = data;
2079 	struct hlist_head *head;
2080 	struct kprobe *p;
2081 	unsigned int i;
2082 	int checkcore = (val == MODULE_STATE_GOING);
2083 
2084 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2085 		return NOTIFY_DONE;
2086 
2087 	/*
2088 	 * When MODULE_STATE_GOING was notified, both of module .text and
2089 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2090 	 * notified, only .init.text section would be freed. We need to
2091 	 * disable kprobes which have been inserted in the sections.
2092 	 */
2093 	mutex_lock(&kprobe_mutex);
2094 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2095 		head = &kprobe_table[i];
2096 		hlist_for_each_entry_rcu(p, head, hlist)
2097 			if (within_module_init((unsigned long)p->addr, mod) ||
2098 			    (checkcore &&
2099 			     within_module_core((unsigned long)p->addr, mod))) {
2100 				/*
2101 				 * The vaddr this probe is installed will soon
2102 				 * be vfreed buy not synced to disk. Hence,
2103 				 * disarming the breakpoint isn't needed.
2104 				 */
2105 				kill_kprobe(p);
2106 			}
2107 	}
2108 	mutex_unlock(&kprobe_mutex);
2109 	return NOTIFY_DONE;
2110 }
2111 
2112 static struct notifier_block kprobe_module_nb = {
2113 	.notifier_call = kprobes_module_callback,
2114 	.priority = 0
2115 };
2116 
2117 /* Markers of _kprobe_blacklist section */
2118 extern unsigned long __start_kprobe_blacklist[];
2119 extern unsigned long __stop_kprobe_blacklist[];
2120 
2121 static int __init init_kprobes(void)
2122 {
2123 	int i, err = 0;
2124 
2125 	/* FIXME allocate the probe table, currently defined statically */
2126 	/* initialize all list heads */
2127 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2128 		INIT_HLIST_HEAD(&kprobe_table[i]);
2129 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2130 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2131 	}
2132 
2133 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2134 					__stop_kprobe_blacklist);
2135 	if (err) {
2136 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2137 		pr_err("Please take care of using kprobes.\n");
2138 	}
2139 
2140 	if (kretprobe_blacklist_size) {
2141 		/* lookup the function address from its name */
2142 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2143 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2144 					   kretprobe_blacklist[i].addr);
2145 			if (!kretprobe_blacklist[i].addr)
2146 				printk("kretprobe: lookup failed: %s\n",
2147 				       kretprobe_blacklist[i].name);
2148 		}
2149 	}
2150 
2151 #if defined(CONFIG_OPTPROBES)
2152 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2153 	/* Init kprobe_optinsn_slots */
2154 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2155 #endif
2156 	/* By default, kprobes can be optimized */
2157 	kprobes_allow_optimization = true;
2158 #endif
2159 
2160 	/* By default, kprobes are armed */
2161 	kprobes_all_disarmed = false;
2162 
2163 	err = arch_init_kprobes();
2164 	if (!err)
2165 		err = register_die_notifier(&kprobe_exceptions_nb);
2166 	if (!err)
2167 		err = register_module_notifier(&kprobe_module_nb);
2168 
2169 	kprobes_initialized = (err == 0);
2170 
2171 	if (!err)
2172 		init_test_probes();
2173 	return err;
2174 }
2175 
2176 #ifdef CONFIG_DEBUG_FS
2177 static void report_probe(struct seq_file *pi, struct kprobe *p,
2178 		const char *sym, int offset, char *modname, struct kprobe *pp)
2179 {
2180 	char *kprobe_type;
2181 
2182 	if (p->pre_handler == pre_handler_kretprobe)
2183 		kprobe_type = "r";
2184 	else if (p->pre_handler == setjmp_pre_handler)
2185 		kprobe_type = "j";
2186 	else
2187 		kprobe_type = "k";
2188 
2189 	if (sym)
2190 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2191 			p->addr, kprobe_type, sym, offset,
2192 			(modname ? modname : " "));
2193 	else
2194 		seq_printf(pi, "%p  %s  %p ",
2195 			p->addr, kprobe_type, p->addr);
2196 
2197 	if (!pp)
2198 		pp = p;
2199 	seq_printf(pi, "%s%s%s%s\n",
2200 		(kprobe_gone(p) ? "[GONE]" : ""),
2201 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2202 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2203 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2204 }
2205 
2206 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2207 {
2208 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2209 }
2210 
2211 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2212 {
2213 	(*pos)++;
2214 	if (*pos >= KPROBE_TABLE_SIZE)
2215 		return NULL;
2216 	return pos;
2217 }
2218 
2219 static void kprobe_seq_stop(struct seq_file *f, void *v)
2220 {
2221 	/* Nothing to do */
2222 }
2223 
2224 static int show_kprobe_addr(struct seq_file *pi, void *v)
2225 {
2226 	struct hlist_head *head;
2227 	struct kprobe *p, *kp;
2228 	const char *sym = NULL;
2229 	unsigned int i = *(loff_t *) v;
2230 	unsigned long offset = 0;
2231 	char *modname, namebuf[KSYM_NAME_LEN];
2232 
2233 	head = &kprobe_table[i];
2234 	preempt_disable();
2235 	hlist_for_each_entry_rcu(p, head, hlist) {
2236 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2237 					&offset, &modname, namebuf);
2238 		if (kprobe_aggrprobe(p)) {
2239 			list_for_each_entry_rcu(kp, &p->list, list)
2240 				report_probe(pi, kp, sym, offset, modname, p);
2241 		} else
2242 			report_probe(pi, p, sym, offset, modname, NULL);
2243 	}
2244 	preempt_enable();
2245 	return 0;
2246 }
2247 
2248 static const struct seq_operations kprobes_seq_ops = {
2249 	.start = kprobe_seq_start,
2250 	.next  = kprobe_seq_next,
2251 	.stop  = kprobe_seq_stop,
2252 	.show  = show_kprobe_addr
2253 };
2254 
2255 static int kprobes_open(struct inode *inode, struct file *filp)
2256 {
2257 	return seq_open(filp, &kprobes_seq_ops);
2258 }
2259 
2260 static const struct file_operations debugfs_kprobes_operations = {
2261 	.open           = kprobes_open,
2262 	.read           = seq_read,
2263 	.llseek         = seq_lseek,
2264 	.release        = seq_release,
2265 };
2266 
2267 /* kprobes/blacklist -- shows which functions can not be probed */
2268 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2269 {
2270 	return seq_list_start(&kprobe_blacklist, *pos);
2271 }
2272 
2273 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2274 {
2275 	return seq_list_next(v, &kprobe_blacklist, pos);
2276 }
2277 
2278 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2279 {
2280 	struct kprobe_blacklist_entry *ent =
2281 		list_entry(v, struct kprobe_blacklist_entry, list);
2282 
2283 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2284 		   (void *)ent->end_addr, (void *)ent->start_addr);
2285 	return 0;
2286 }
2287 
2288 static const struct seq_operations kprobe_blacklist_seq_ops = {
2289 	.start = kprobe_blacklist_seq_start,
2290 	.next  = kprobe_blacklist_seq_next,
2291 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2292 	.show  = kprobe_blacklist_seq_show,
2293 };
2294 
2295 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2296 {
2297 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2298 }
2299 
2300 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2301 	.open           = kprobe_blacklist_open,
2302 	.read           = seq_read,
2303 	.llseek         = seq_lseek,
2304 	.release        = seq_release,
2305 };
2306 
2307 static void arm_all_kprobes(void)
2308 {
2309 	struct hlist_head *head;
2310 	struct kprobe *p;
2311 	unsigned int i;
2312 
2313 	mutex_lock(&kprobe_mutex);
2314 
2315 	/* If kprobes are armed, just return */
2316 	if (!kprobes_all_disarmed)
2317 		goto already_enabled;
2318 
2319 	/* Arming kprobes doesn't optimize kprobe itself */
2320 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2321 		head = &kprobe_table[i];
2322 		hlist_for_each_entry_rcu(p, head, hlist)
2323 			if (!kprobe_disabled(p))
2324 				arm_kprobe(p);
2325 	}
2326 
2327 	kprobes_all_disarmed = false;
2328 	printk(KERN_INFO "Kprobes globally enabled\n");
2329 
2330 already_enabled:
2331 	mutex_unlock(&kprobe_mutex);
2332 	return;
2333 }
2334 
2335 static void disarm_all_kprobes(void)
2336 {
2337 	struct hlist_head *head;
2338 	struct kprobe *p;
2339 	unsigned int i;
2340 
2341 	mutex_lock(&kprobe_mutex);
2342 
2343 	/* If kprobes are already disarmed, just return */
2344 	if (kprobes_all_disarmed) {
2345 		mutex_unlock(&kprobe_mutex);
2346 		return;
2347 	}
2348 
2349 	kprobes_all_disarmed = true;
2350 	printk(KERN_INFO "Kprobes globally disabled\n");
2351 
2352 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2353 		head = &kprobe_table[i];
2354 		hlist_for_each_entry_rcu(p, head, hlist) {
2355 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2356 				disarm_kprobe(p, false);
2357 		}
2358 	}
2359 	mutex_unlock(&kprobe_mutex);
2360 
2361 	/* Wait for disarming all kprobes by optimizer */
2362 	wait_for_kprobe_optimizer();
2363 }
2364 
2365 /*
2366  * XXX: The debugfs bool file interface doesn't allow for callbacks
2367  * when the bool state is switched. We can reuse that facility when
2368  * available
2369  */
2370 static ssize_t read_enabled_file_bool(struct file *file,
2371 	       char __user *user_buf, size_t count, loff_t *ppos)
2372 {
2373 	char buf[3];
2374 
2375 	if (!kprobes_all_disarmed)
2376 		buf[0] = '1';
2377 	else
2378 		buf[0] = '0';
2379 	buf[1] = '\n';
2380 	buf[2] = 0x00;
2381 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2382 }
2383 
2384 static ssize_t write_enabled_file_bool(struct file *file,
2385 	       const char __user *user_buf, size_t count, loff_t *ppos)
2386 {
2387 	char buf[32];
2388 	size_t buf_size;
2389 
2390 	buf_size = min(count, (sizeof(buf)-1));
2391 	if (copy_from_user(buf, user_buf, buf_size))
2392 		return -EFAULT;
2393 
2394 	buf[buf_size] = '\0';
2395 	switch (buf[0]) {
2396 	case 'y':
2397 	case 'Y':
2398 	case '1':
2399 		arm_all_kprobes();
2400 		break;
2401 	case 'n':
2402 	case 'N':
2403 	case '0':
2404 		disarm_all_kprobes();
2405 		break;
2406 	default:
2407 		return -EINVAL;
2408 	}
2409 
2410 	return count;
2411 }
2412 
2413 static const struct file_operations fops_kp = {
2414 	.read =         read_enabled_file_bool,
2415 	.write =        write_enabled_file_bool,
2416 	.llseek =	default_llseek,
2417 };
2418 
2419 static int __init debugfs_kprobe_init(void)
2420 {
2421 	struct dentry *dir, *file;
2422 	unsigned int value = 1;
2423 
2424 	dir = debugfs_create_dir("kprobes", NULL);
2425 	if (!dir)
2426 		return -ENOMEM;
2427 
2428 	file = debugfs_create_file("list", 0444, dir, NULL,
2429 				&debugfs_kprobes_operations);
2430 	if (!file)
2431 		goto error;
2432 
2433 	file = debugfs_create_file("enabled", 0600, dir,
2434 					&value, &fops_kp);
2435 	if (!file)
2436 		goto error;
2437 
2438 	file = debugfs_create_file("blacklist", 0444, dir, NULL,
2439 				&debugfs_kprobe_blacklist_ops);
2440 	if (!file)
2441 		goto error;
2442 
2443 	return 0;
2444 
2445 error:
2446 	debugfs_remove(dir);
2447 	return -ENOMEM;
2448 }
2449 
2450 late_initcall(debugfs_kprobe_init);
2451 #endif /* CONFIG_DEBUG_FS */
2452 
2453 module_init(init_kprobes);
2454 
2455 /* defined in arch/.../kernel/kprobes.c */
2456 EXPORT_SYMBOL_GPL(jprobe_return);
2457