xref: /openbmc/linux/kernel/kexec_core.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/objtool.h>
40 
41 #include <asm/page.h>
42 #include <asm/sections.h>
43 
44 #include <crypto/hash.h>
45 #include "kexec_internal.h"
46 
47 DEFINE_MUTEX(kexec_mutex);
48 
49 /* Per cpu memory for storing cpu states in case of system crash. */
50 note_buf_t __percpu *crash_notes;
51 
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
54 
55 
56 /* Location of the reserved area for the crash kernel */
57 struct resource crashk_res = {
58 	.name  = "Crash kernel",
59 	.start = 0,
60 	.end   = 0,
61 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
62 	.desc  = IORES_DESC_CRASH_KERNEL
63 };
64 struct resource crashk_low_res = {
65 	.name  = "Crash kernel",
66 	.start = 0,
67 	.end   = 0,
68 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
69 	.desc  = IORES_DESC_CRASH_KERNEL
70 };
71 
72 int kexec_should_crash(struct task_struct *p)
73 {
74 	/*
75 	 * If crash_kexec_post_notifiers is enabled, don't run
76 	 * crash_kexec() here yet, which must be run after panic
77 	 * notifiers in panic().
78 	 */
79 	if (crash_kexec_post_notifiers)
80 		return 0;
81 	/*
82 	 * There are 4 panic() calls in do_exit() path, each of which
83 	 * corresponds to each of these 4 conditions.
84 	 */
85 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86 		return 1;
87 	return 0;
88 }
89 
90 int kexec_crash_loaded(void)
91 {
92 	return !!kexec_crash_image;
93 }
94 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
95 
96 /*
97  * When kexec transitions to the new kernel there is a one-to-one
98  * mapping between physical and virtual addresses.  On processors
99  * where you can disable the MMU this is trivial, and easy.  For
100  * others it is still a simple predictable page table to setup.
101  *
102  * In that environment kexec copies the new kernel to its final
103  * resting place.  This means I can only support memory whose
104  * physical address can fit in an unsigned long.  In particular
105  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106  * If the assembly stub has more restrictive requirements
107  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108  * defined more restrictively in <asm/kexec.h>.
109  *
110  * The code for the transition from the current kernel to the
111  * new kernel is placed in the control_code_buffer, whose size
112  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
113  * page of memory is necessary, but some architectures require more.
114  * Because this memory must be identity mapped in the transition from
115  * virtual to physical addresses it must live in the range
116  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
117  * modifiable.
118  *
119  * The assembly stub in the control code buffer is passed a linked list
120  * of descriptor pages detailing the source pages of the new kernel,
121  * and the destination addresses of those source pages.  As this data
122  * structure is not used in the context of the current OS, it must
123  * be self-contained.
124  *
125  * The code has been made to work with highmem pages and will use a
126  * destination page in its final resting place (if it happens
127  * to allocate it).  The end product of this is that most of the
128  * physical address space, and most of RAM can be used.
129  *
130  * Future directions include:
131  *  - allocating a page table with the control code buffer identity
132  *    mapped, to simplify machine_kexec and make kexec_on_panic more
133  *    reliable.
134  */
135 
136 /*
137  * KIMAGE_NO_DEST is an impossible destination address..., for
138  * allocating pages whose destination address we do not care about.
139  */
140 #define KIMAGE_NO_DEST (-1UL)
141 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
142 
143 static struct page *kimage_alloc_page(struct kimage *image,
144 				       gfp_t gfp_mask,
145 				       unsigned long dest);
146 
147 int sanity_check_segment_list(struct kimage *image)
148 {
149 	int i;
150 	unsigned long nr_segments = image->nr_segments;
151 	unsigned long total_pages = 0;
152 	unsigned long nr_pages = totalram_pages();
153 
154 	/*
155 	 * Verify we have good destination addresses.  The caller is
156 	 * responsible for making certain we don't attempt to load
157 	 * the new image into invalid or reserved areas of RAM.  This
158 	 * just verifies it is an address we can use.
159 	 *
160 	 * Since the kernel does everything in page size chunks ensure
161 	 * the destination addresses are page aligned.  Too many
162 	 * special cases crop of when we don't do this.  The most
163 	 * insidious is getting overlapping destination addresses
164 	 * simply because addresses are changed to page size
165 	 * granularity.
166 	 */
167 	for (i = 0; i < nr_segments; i++) {
168 		unsigned long mstart, mend;
169 
170 		mstart = image->segment[i].mem;
171 		mend   = mstart + image->segment[i].memsz;
172 		if (mstart > mend)
173 			return -EADDRNOTAVAIL;
174 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
175 			return -EADDRNOTAVAIL;
176 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
177 			return -EADDRNOTAVAIL;
178 	}
179 
180 	/* Verify our destination addresses do not overlap.
181 	 * If we alloed overlapping destination addresses
182 	 * through very weird things can happen with no
183 	 * easy explanation as one segment stops on another.
184 	 */
185 	for (i = 0; i < nr_segments; i++) {
186 		unsigned long mstart, mend;
187 		unsigned long j;
188 
189 		mstart = image->segment[i].mem;
190 		mend   = mstart + image->segment[i].memsz;
191 		for (j = 0; j < i; j++) {
192 			unsigned long pstart, pend;
193 
194 			pstart = image->segment[j].mem;
195 			pend   = pstart + image->segment[j].memsz;
196 			/* Do the segments overlap ? */
197 			if ((mend > pstart) && (mstart < pend))
198 				return -EINVAL;
199 		}
200 	}
201 
202 	/* Ensure our buffer sizes are strictly less than
203 	 * our memory sizes.  This should always be the case,
204 	 * and it is easier to check up front than to be surprised
205 	 * later on.
206 	 */
207 	for (i = 0; i < nr_segments; i++) {
208 		if (image->segment[i].bufsz > image->segment[i].memsz)
209 			return -EINVAL;
210 	}
211 
212 	/*
213 	 * Verify that no more than half of memory will be consumed. If the
214 	 * request from userspace is too large, a large amount of time will be
215 	 * wasted allocating pages, which can cause a soft lockup.
216 	 */
217 	for (i = 0; i < nr_segments; i++) {
218 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
219 			return -EINVAL;
220 
221 		total_pages += PAGE_COUNT(image->segment[i].memsz);
222 	}
223 
224 	if (total_pages > nr_pages / 2)
225 		return -EINVAL;
226 
227 	/*
228 	 * Verify we have good destination addresses.  Normally
229 	 * the caller is responsible for making certain we don't
230 	 * attempt to load the new image into invalid or reserved
231 	 * areas of RAM.  But crash kernels are preloaded into a
232 	 * reserved area of ram.  We must ensure the addresses
233 	 * are in the reserved area otherwise preloading the
234 	 * kernel could corrupt things.
235 	 */
236 
237 	if (image->type == KEXEC_TYPE_CRASH) {
238 		for (i = 0; i < nr_segments; i++) {
239 			unsigned long mstart, mend;
240 
241 			mstart = image->segment[i].mem;
242 			mend = mstart + image->segment[i].memsz - 1;
243 			/* Ensure we are within the crash kernel limits */
244 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
245 			    (mend > phys_to_boot_phys(crashk_res.end)))
246 				return -EADDRNOTAVAIL;
247 		}
248 	}
249 
250 	return 0;
251 }
252 
253 struct kimage *do_kimage_alloc_init(void)
254 {
255 	struct kimage *image;
256 
257 	/* Allocate a controlling structure */
258 	image = kzalloc(sizeof(*image), GFP_KERNEL);
259 	if (!image)
260 		return NULL;
261 
262 	image->head = 0;
263 	image->entry = &image->head;
264 	image->last_entry = &image->head;
265 	image->control_page = ~0; /* By default this does not apply */
266 	image->type = KEXEC_TYPE_DEFAULT;
267 
268 	/* Initialize the list of control pages */
269 	INIT_LIST_HEAD(&image->control_pages);
270 
271 	/* Initialize the list of destination pages */
272 	INIT_LIST_HEAD(&image->dest_pages);
273 
274 	/* Initialize the list of unusable pages */
275 	INIT_LIST_HEAD(&image->unusable_pages);
276 
277 	return image;
278 }
279 
280 int kimage_is_destination_range(struct kimage *image,
281 					unsigned long start,
282 					unsigned long end)
283 {
284 	unsigned long i;
285 
286 	for (i = 0; i < image->nr_segments; i++) {
287 		unsigned long mstart, mend;
288 
289 		mstart = image->segment[i].mem;
290 		mend = mstart + image->segment[i].memsz;
291 		if ((end > mstart) && (start < mend))
292 			return 1;
293 	}
294 
295 	return 0;
296 }
297 
298 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
299 {
300 	struct page *pages;
301 
302 	if (fatal_signal_pending(current))
303 		return NULL;
304 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
305 	if (pages) {
306 		unsigned int count, i;
307 
308 		pages->mapping = NULL;
309 		set_page_private(pages, order);
310 		count = 1 << order;
311 		for (i = 0; i < count; i++)
312 			SetPageReserved(pages + i);
313 
314 		arch_kexec_post_alloc_pages(page_address(pages), count,
315 					    gfp_mask);
316 
317 		if (gfp_mask & __GFP_ZERO)
318 			for (i = 0; i < count; i++)
319 				clear_highpage(pages + i);
320 	}
321 
322 	return pages;
323 }
324 
325 static void kimage_free_pages(struct page *page)
326 {
327 	unsigned int order, count, i;
328 
329 	order = page_private(page);
330 	count = 1 << order;
331 
332 	arch_kexec_pre_free_pages(page_address(page), count);
333 
334 	for (i = 0; i < count; i++)
335 		ClearPageReserved(page + i);
336 	__free_pages(page, order);
337 }
338 
339 void kimage_free_page_list(struct list_head *list)
340 {
341 	struct page *page, *next;
342 
343 	list_for_each_entry_safe(page, next, list, lru) {
344 		list_del(&page->lru);
345 		kimage_free_pages(page);
346 	}
347 }
348 
349 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
350 							unsigned int order)
351 {
352 	/* Control pages are special, they are the intermediaries
353 	 * that are needed while we copy the rest of the pages
354 	 * to their final resting place.  As such they must
355 	 * not conflict with either the destination addresses
356 	 * or memory the kernel is already using.
357 	 *
358 	 * The only case where we really need more than one of
359 	 * these are for architectures where we cannot disable
360 	 * the MMU and must instead generate an identity mapped
361 	 * page table for all of the memory.
362 	 *
363 	 * At worst this runs in O(N) of the image size.
364 	 */
365 	struct list_head extra_pages;
366 	struct page *pages;
367 	unsigned int count;
368 
369 	count = 1 << order;
370 	INIT_LIST_HEAD(&extra_pages);
371 
372 	/* Loop while I can allocate a page and the page allocated
373 	 * is a destination page.
374 	 */
375 	do {
376 		unsigned long pfn, epfn, addr, eaddr;
377 
378 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
379 		if (!pages)
380 			break;
381 		pfn   = page_to_boot_pfn(pages);
382 		epfn  = pfn + count;
383 		addr  = pfn << PAGE_SHIFT;
384 		eaddr = epfn << PAGE_SHIFT;
385 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
386 			      kimage_is_destination_range(image, addr, eaddr)) {
387 			list_add(&pages->lru, &extra_pages);
388 			pages = NULL;
389 		}
390 	} while (!pages);
391 
392 	if (pages) {
393 		/* Remember the allocated page... */
394 		list_add(&pages->lru, &image->control_pages);
395 
396 		/* Because the page is already in it's destination
397 		 * location we will never allocate another page at
398 		 * that address.  Therefore kimage_alloc_pages
399 		 * will not return it (again) and we don't need
400 		 * to give it an entry in image->segment[].
401 		 */
402 	}
403 	/* Deal with the destination pages I have inadvertently allocated.
404 	 *
405 	 * Ideally I would convert multi-page allocations into single
406 	 * page allocations, and add everything to image->dest_pages.
407 	 *
408 	 * For now it is simpler to just free the pages.
409 	 */
410 	kimage_free_page_list(&extra_pages);
411 
412 	return pages;
413 }
414 
415 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
416 						      unsigned int order)
417 {
418 	/* Control pages are special, they are the intermediaries
419 	 * that are needed while we copy the rest of the pages
420 	 * to their final resting place.  As such they must
421 	 * not conflict with either the destination addresses
422 	 * or memory the kernel is already using.
423 	 *
424 	 * Control pages are also the only pags we must allocate
425 	 * when loading a crash kernel.  All of the other pages
426 	 * are specified by the segments and we just memcpy
427 	 * into them directly.
428 	 *
429 	 * The only case where we really need more than one of
430 	 * these are for architectures where we cannot disable
431 	 * the MMU and must instead generate an identity mapped
432 	 * page table for all of the memory.
433 	 *
434 	 * Given the low demand this implements a very simple
435 	 * allocator that finds the first hole of the appropriate
436 	 * size in the reserved memory region, and allocates all
437 	 * of the memory up to and including the hole.
438 	 */
439 	unsigned long hole_start, hole_end, size;
440 	struct page *pages;
441 
442 	pages = NULL;
443 	size = (1 << order) << PAGE_SHIFT;
444 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
445 	hole_end   = hole_start + size - 1;
446 	while (hole_end <= crashk_res.end) {
447 		unsigned long i;
448 
449 		cond_resched();
450 
451 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
452 			break;
453 		/* See if I overlap any of the segments */
454 		for (i = 0; i < image->nr_segments; i++) {
455 			unsigned long mstart, mend;
456 
457 			mstart = image->segment[i].mem;
458 			mend   = mstart + image->segment[i].memsz - 1;
459 			if ((hole_end >= mstart) && (hole_start <= mend)) {
460 				/* Advance the hole to the end of the segment */
461 				hole_start = (mend + (size - 1)) & ~(size - 1);
462 				hole_end   = hole_start + size - 1;
463 				break;
464 			}
465 		}
466 		/* If I don't overlap any segments I have found my hole! */
467 		if (i == image->nr_segments) {
468 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
469 			image->control_page = hole_end;
470 			break;
471 		}
472 	}
473 
474 	/* Ensure that these pages are decrypted if SME is enabled. */
475 	if (pages)
476 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
477 
478 	return pages;
479 }
480 
481 
482 struct page *kimage_alloc_control_pages(struct kimage *image,
483 					 unsigned int order)
484 {
485 	struct page *pages = NULL;
486 
487 	switch (image->type) {
488 	case KEXEC_TYPE_DEFAULT:
489 		pages = kimage_alloc_normal_control_pages(image, order);
490 		break;
491 	case KEXEC_TYPE_CRASH:
492 		pages = kimage_alloc_crash_control_pages(image, order);
493 		break;
494 	}
495 
496 	return pages;
497 }
498 
499 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
500 {
501 	struct page *vmcoreinfo_page;
502 	void *safecopy;
503 
504 	if (image->type != KEXEC_TYPE_CRASH)
505 		return 0;
506 
507 	/*
508 	 * For kdump, allocate one vmcoreinfo safe copy from the
509 	 * crash memory. as we have arch_kexec_protect_crashkres()
510 	 * after kexec syscall, we naturally protect it from write
511 	 * (even read) access under kernel direct mapping. But on
512 	 * the other hand, we still need to operate it when crash
513 	 * happens to generate vmcoreinfo note, hereby we rely on
514 	 * vmap for this purpose.
515 	 */
516 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
517 	if (!vmcoreinfo_page) {
518 		pr_warn("Could not allocate vmcoreinfo buffer\n");
519 		return -ENOMEM;
520 	}
521 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
522 	if (!safecopy) {
523 		pr_warn("Could not vmap vmcoreinfo buffer\n");
524 		return -ENOMEM;
525 	}
526 
527 	image->vmcoreinfo_data_copy = safecopy;
528 	crash_update_vmcoreinfo_safecopy(safecopy);
529 
530 	return 0;
531 }
532 
533 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
534 {
535 	if (*image->entry != 0)
536 		image->entry++;
537 
538 	if (image->entry == image->last_entry) {
539 		kimage_entry_t *ind_page;
540 		struct page *page;
541 
542 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
543 		if (!page)
544 			return -ENOMEM;
545 
546 		ind_page = page_address(page);
547 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
548 		image->entry = ind_page;
549 		image->last_entry = ind_page +
550 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
551 	}
552 	*image->entry = entry;
553 	image->entry++;
554 	*image->entry = 0;
555 
556 	return 0;
557 }
558 
559 static int kimage_set_destination(struct kimage *image,
560 				   unsigned long destination)
561 {
562 	int result;
563 
564 	destination &= PAGE_MASK;
565 	result = kimage_add_entry(image, destination | IND_DESTINATION);
566 
567 	return result;
568 }
569 
570 
571 static int kimage_add_page(struct kimage *image, unsigned long page)
572 {
573 	int result;
574 
575 	page &= PAGE_MASK;
576 	result = kimage_add_entry(image, page | IND_SOURCE);
577 
578 	return result;
579 }
580 
581 
582 static void kimage_free_extra_pages(struct kimage *image)
583 {
584 	/* Walk through and free any extra destination pages I may have */
585 	kimage_free_page_list(&image->dest_pages);
586 
587 	/* Walk through and free any unusable pages I have cached */
588 	kimage_free_page_list(&image->unusable_pages);
589 
590 }
591 
592 int __weak machine_kexec_post_load(struct kimage *image)
593 {
594 	return 0;
595 }
596 
597 void kimage_terminate(struct kimage *image)
598 {
599 	if (*image->entry != 0)
600 		image->entry++;
601 
602 	*image->entry = IND_DONE;
603 }
604 
605 #define for_each_kimage_entry(image, ptr, entry) \
606 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
607 		ptr = (entry & IND_INDIRECTION) ? \
608 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
609 
610 static void kimage_free_entry(kimage_entry_t entry)
611 {
612 	struct page *page;
613 
614 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
615 	kimage_free_pages(page);
616 }
617 
618 void kimage_free(struct kimage *image)
619 {
620 	kimage_entry_t *ptr, entry;
621 	kimage_entry_t ind = 0;
622 
623 	if (!image)
624 		return;
625 
626 	if (image->vmcoreinfo_data_copy) {
627 		crash_update_vmcoreinfo_safecopy(NULL);
628 		vunmap(image->vmcoreinfo_data_copy);
629 	}
630 
631 	kimage_free_extra_pages(image);
632 	for_each_kimage_entry(image, ptr, entry) {
633 		if (entry & IND_INDIRECTION) {
634 			/* Free the previous indirection page */
635 			if (ind & IND_INDIRECTION)
636 				kimage_free_entry(ind);
637 			/* Save this indirection page until we are
638 			 * done with it.
639 			 */
640 			ind = entry;
641 		} else if (entry & IND_SOURCE)
642 			kimage_free_entry(entry);
643 	}
644 	/* Free the final indirection page */
645 	if (ind & IND_INDIRECTION)
646 		kimage_free_entry(ind);
647 
648 	/* Handle any machine specific cleanup */
649 	machine_kexec_cleanup(image);
650 
651 	/* Free the kexec control pages... */
652 	kimage_free_page_list(&image->control_pages);
653 
654 	/*
655 	 * Free up any temporary buffers allocated. This might hit if
656 	 * error occurred much later after buffer allocation.
657 	 */
658 	if (image->file_mode)
659 		kimage_file_post_load_cleanup(image);
660 
661 	kfree(image);
662 }
663 
664 static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 					unsigned long page)
666 {
667 	kimage_entry_t *ptr, entry;
668 	unsigned long destination = 0;
669 
670 	for_each_kimage_entry(image, ptr, entry) {
671 		if (entry & IND_DESTINATION)
672 			destination = entry & PAGE_MASK;
673 		else if (entry & IND_SOURCE) {
674 			if (page == destination)
675 				return ptr;
676 			destination += PAGE_SIZE;
677 		}
678 	}
679 
680 	return NULL;
681 }
682 
683 static struct page *kimage_alloc_page(struct kimage *image,
684 					gfp_t gfp_mask,
685 					unsigned long destination)
686 {
687 	/*
688 	 * Here we implement safeguards to ensure that a source page
689 	 * is not copied to its destination page before the data on
690 	 * the destination page is no longer useful.
691 	 *
692 	 * To do this we maintain the invariant that a source page is
693 	 * either its own destination page, or it is not a
694 	 * destination page at all.
695 	 *
696 	 * That is slightly stronger than required, but the proof
697 	 * that no problems will not occur is trivial, and the
698 	 * implementation is simply to verify.
699 	 *
700 	 * When allocating all pages normally this algorithm will run
701 	 * in O(N) time, but in the worst case it will run in O(N^2)
702 	 * time.   If the runtime is a problem the data structures can
703 	 * be fixed.
704 	 */
705 	struct page *page;
706 	unsigned long addr;
707 
708 	/*
709 	 * Walk through the list of destination pages, and see if I
710 	 * have a match.
711 	 */
712 	list_for_each_entry(page, &image->dest_pages, lru) {
713 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
714 		if (addr == destination) {
715 			list_del(&page->lru);
716 			return page;
717 		}
718 	}
719 	page = NULL;
720 	while (1) {
721 		kimage_entry_t *old;
722 
723 		/* Allocate a page, if we run out of memory give up */
724 		page = kimage_alloc_pages(gfp_mask, 0);
725 		if (!page)
726 			return NULL;
727 		/* If the page cannot be used file it away */
728 		if (page_to_boot_pfn(page) >
729 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
730 			list_add(&page->lru, &image->unusable_pages);
731 			continue;
732 		}
733 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
734 
735 		/* If it is the destination page we want use it */
736 		if (addr == destination)
737 			break;
738 
739 		/* If the page is not a destination page use it */
740 		if (!kimage_is_destination_range(image, addr,
741 						  addr + PAGE_SIZE))
742 			break;
743 
744 		/*
745 		 * I know that the page is someones destination page.
746 		 * See if there is already a source page for this
747 		 * destination page.  And if so swap the source pages.
748 		 */
749 		old = kimage_dst_used(image, addr);
750 		if (old) {
751 			/* If so move it */
752 			unsigned long old_addr;
753 			struct page *old_page;
754 
755 			old_addr = *old & PAGE_MASK;
756 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
757 			copy_highpage(page, old_page);
758 			*old = addr | (*old & ~PAGE_MASK);
759 
760 			/* The old page I have found cannot be a
761 			 * destination page, so return it if it's
762 			 * gfp_flags honor the ones passed in.
763 			 */
764 			if (!(gfp_mask & __GFP_HIGHMEM) &&
765 			    PageHighMem(old_page)) {
766 				kimage_free_pages(old_page);
767 				continue;
768 			}
769 			addr = old_addr;
770 			page = old_page;
771 			break;
772 		}
773 		/* Place the page on the destination list, to be used later */
774 		list_add(&page->lru, &image->dest_pages);
775 	}
776 
777 	return page;
778 }
779 
780 static int kimage_load_normal_segment(struct kimage *image,
781 					 struct kexec_segment *segment)
782 {
783 	unsigned long maddr;
784 	size_t ubytes, mbytes;
785 	int result;
786 	unsigned char __user *buf = NULL;
787 	unsigned char *kbuf = NULL;
788 
789 	result = 0;
790 	if (image->file_mode)
791 		kbuf = segment->kbuf;
792 	else
793 		buf = segment->buf;
794 	ubytes = segment->bufsz;
795 	mbytes = segment->memsz;
796 	maddr = segment->mem;
797 
798 	result = kimage_set_destination(image, maddr);
799 	if (result < 0)
800 		goto out;
801 
802 	while (mbytes) {
803 		struct page *page;
804 		char *ptr;
805 		size_t uchunk, mchunk;
806 
807 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 		if (!page) {
809 			result  = -ENOMEM;
810 			goto out;
811 		}
812 		result = kimage_add_page(image, page_to_boot_pfn(page)
813 								<< PAGE_SHIFT);
814 		if (result < 0)
815 			goto out;
816 
817 		ptr = kmap(page);
818 		/* Start with a clear page */
819 		clear_page(ptr);
820 		ptr += maddr & ~PAGE_MASK;
821 		mchunk = min_t(size_t, mbytes,
822 				PAGE_SIZE - (maddr & ~PAGE_MASK));
823 		uchunk = min(ubytes, mchunk);
824 
825 		/* For file based kexec, source pages are in kernel memory */
826 		if (image->file_mode)
827 			memcpy(ptr, kbuf, uchunk);
828 		else
829 			result = copy_from_user(ptr, buf, uchunk);
830 		kunmap(page);
831 		if (result) {
832 			result = -EFAULT;
833 			goto out;
834 		}
835 		ubytes -= uchunk;
836 		maddr  += mchunk;
837 		if (image->file_mode)
838 			kbuf += mchunk;
839 		else
840 			buf += mchunk;
841 		mbytes -= mchunk;
842 
843 		cond_resched();
844 	}
845 out:
846 	return result;
847 }
848 
849 static int kimage_load_crash_segment(struct kimage *image,
850 					struct kexec_segment *segment)
851 {
852 	/* For crash dumps kernels we simply copy the data from
853 	 * user space to it's destination.
854 	 * We do things a page at a time for the sake of kmap.
855 	 */
856 	unsigned long maddr;
857 	size_t ubytes, mbytes;
858 	int result;
859 	unsigned char __user *buf = NULL;
860 	unsigned char *kbuf = NULL;
861 
862 	result = 0;
863 	if (image->file_mode)
864 		kbuf = segment->kbuf;
865 	else
866 		buf = segment->buf;
867 	ubytes = segment->bufsz;
868 	mbytes = segment->memsz;
869 	maddr = segment->mem;
870 	while (mbytes) {
871 		struct page *page;
872 		char *ptr;
873 		size_t uchunk, mchunk;
874 
875 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
876 		if (!page) {
877 			result  = -ENOMEM;
878 			goto out;
879 		}
880 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
881 		ptr = kmap(page);
882 		ptr += maddr & ~PAGE_MASK;
883 		mchunk = min_t(size_t, mbytes,
884 				PAGE_SIZE - (maddr & ~PAGE_MASK));
885 		uchunk = min(ubytes, mchunk);
886 		if (mchunk > uchunk) {
887 			/* Zero the trailing part of the page */
888 			memset(ptr + uchunk, 0, mchunk - uchunk);
889 		}
890 
891 		/* For file based kexec, source pages are in kernel memory */
892 		if (image->file_mode)
893 			memcpy(ptr, kbuf, uchunk);
894 		else
895 			result = copy_from_user(ptr, buf, uchunk);
896 		kexec_flush_icache_page(page);
897 		kunmap(page);
898 		arch_kexec_pre_free_pages(page_address(page), 1);
899 		if (result) {
900 			result = -EFAULT;
901 			goto out;
902 		}
903 		ubytes -= uchunk;
904 		maddr  += mchunk;
905 		if (image->file_mode)
906 			kbuf += mchunk;
907 		else
908 			buf += mchunk;
909 		mbytes -= mchunk;
910 
911 		cond_resched();
912 	}
913 out:
914 	return result;
915 }
916 
917 int kimage_load_segment(struct kimage *image,
918 				struct kexec_segment *segment)
919 {
920 	int result = -ENOMEM;
921 
922 	switch (image->type) {
923 	case KEXEC_TYPE_DEFAULT:
924 		result = kimage_load_normal_segment(image, segment);
925 		break;
926 	case KEXEC_TYPE_CRASH:
927 		result = kimage_load_crash_segment(image, segment);
928 		break;
929 	}
930 
931 	return result;
932 }
933 
934 struct kimage *kexec_image;
935 struct kimage *kexec_crash_image;
936 int kexec_load_disabled;
937 
938 /*
939  * No panic_cpu check version of crash_kexec().  This function is called
940  * only when panic_cpu holds the current CPU number; this is the only CPU
941  * which processes crash_kexec routines.
942  */
943 void __noclone __crash_kexec(struct pt_regs *regs)
944 {
945 	/* Take the kexec_mutex here to prevent sys_kexec_load
946 	 * running on one cpu from replacing the crash kernel
947 	 * we are using after a panic on a different cpu.
948 	 *
949 	 * If the crash kernel was not located in a fixed area
950 	 * of memory the xchg(&kexec_crash_image) would be
951 	 * sufficient.  But since I reuse the memory...
952 	 */
953 	if (mutex_trylock(&kexec_mutex)) {
954 		if (kexec_crash_image) {
955 			struct pt_regs fixed_regs;
956 
957 			crash_setup_regs(&fixed_regs, regs);
958 			crash_save_vmcoreinfo();
959 			machine_crash_shutdown(&fixed_regs);
960 			machine_kexec(kexec_crash_image);
961 		}
962 		mutex_unlock(&kexec_mutex);
963 	}
964 }
965 STACK_FRAME_NON_STANDARD(__crash_kexec);
966 
967 void crash_kexec(struct pt_regs *regs)
968 {
969 	int old_cpu, this_cpu;
970 
971 	/*
972 	 * Only one CPU is allowed to execute the crash_kexec() code as with
973 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
974 	 * may stop each other.  To exclude them, we use panic_cpu here too.
975 	 */
976 	this_cpu = raw_smp_processor_id();
977 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
978 	if (old_cpu == PANIC_CPU_INVALID) {
979 		/* This is the 1st CPU which comes here, so go ahead. */
980 		printk_safe_flush_on_panic();
981 		__crash_kexec(regs);
982 
983 		/*
984 		 * Reset panic_cpu to allow another panic()/crash_kexec()
985 		 * call.
986 		 */
987 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
988 	}
989 }
990 
991 size_t crash_get_memory_size(void)
992 {
993 	size_t size = 0;
994 
995 	mutex_lock(&kexec_mutex);
996 	if (crashk_res.end != crashk_res.start)
997 		size = resource_size(&crashk_res);
998 	mutex_unlock(&kexec_mutex);
999 	return size;
1000 }
1001 
1002 void __weak crash_free_reserved_phys_range(unsigned long begin,
1003 					   unsigned long end)
1004 {
1005 	unsigned long addr;
1006 
1007 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1008 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1009 }
1010 
1011 int crash_shrink_memory(unsigned long new_size)
1012 {
1013 	int ret = 0;
1014 	unsigned long start, end;
1015 	unsigned long old_size;
1016 	struct resource *ram_res;
1017 
1018 	mutex_lock(&kexec_mutex);
1019 
1020 	if (kexec_crash_image) {
1021 		ret = -ENOENT;
1022 		goto unlock;
1023 	}
1024 	start = crashk_res.start;
1025 	end = crashk_res.end;
1026 	old_size = (end == 0) ? 0 : end - start + 1;
1027 	if (new_size >= old_size) {
1028 		ret = (new_size == old_size) ? 0 : -EINVAL;
1029 		goto unlock;
1030 	}
1031 
1032 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1033 	if (!ram_res) {
1034 		ret = -ENOMEM;
1035 		goto unlock;
1036 	}
1037 
1038 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1039 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1040 
1041 	crash_free_reserved_phys_range(end, crashk_res.end);
1042 
1043 	if ((start == end) && (crashk_res.parent != NULL))
1044 		release_resource(&crashk_res);
1045 
1046 	ram_res->start = end;
1047 	ram_res->end = crashk_res.end;
1048 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1049 	ram_res->name = "System RAM";
1050 
1051 	crashk_res.end = end - 1;
1052 
1053 	insert_resource(&iomem_resource, ram_res);
1054 
1055 unlock:
1056 	mutex_unlock(&kexec_mutex);
1057 	return ret;
1058 }
1059 
1060 void crash_save_cpu(struct pt_regs *regs, int cpu)
1061 {
1062 	struct elf_prstatus prstatus;
1063 	u32 *buf;
1064 
1065 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1066 		return;
1067 
1068 	/* Using ELF notes here is opportunistic.
1069 	 * I need a well defined structure format
1070 	 * for the data I pass, and I need tags
1071 	 * on the data to indicate what information I have
1072 	 * squirrelled away.  ELF notes happen to provide
1073 	 * all of that, so there is no need to invent something new.
1074 	 */
1075 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1076 	if (!buf)
1077 		return;
1078 	memset(&prstatus, 0, sizeof(prstatus));
1079 	prstatus.common.pr_pid = current->pid;
1080 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1081 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1082 			      &prstatus, sizeof(prstatus));
1083 	final_note(buf);
1084 }
1085 
1086 static int __init crash_notes_memory_init(void)
1087 {
1088 	/* Allocate memory for saving cpu registers. */
1089 	size_t size, align;
1090 
1091 	/*
1092 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1093 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1094 	 * pages are also on 2 continuous physical pages. In this case the
1095 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1096 	 * starting address and size of crash_notes are exported through sysfs.
1097 	 * Here round up the size of crash_notes to the nearest power of two
1098 	 * and pass it to __alloc_percpu as align value. This can make sure
1099 	 * crash_notes is allocated inside one physical page.
1100 	 */
1101 	size = sizeof(note_buf_t);
1102 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1103 
1104 	/*
1105 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1106 	 * definitely will be in 2 pages with that.
1107 	 */
1108 	BUILD_BUG_ON(size > PAGE_SIZE);
1109 
1110 	crash_notes = __alloc_percpu(size, align);
1111 	if (!crash_notes) {
1112 		pr_warn("Memory allocation for saving cpu register states failed\n");
1113 		return -ENOMEM;
1114 	}
1115 	return 0;
1116 }
1117 subsys_initcall(crash_notes_memory_init);
1118 
1119 
1120 /*
1121  * Move into place and start executing a preloaded standalone
1122  * executable.  If nothing was preloaded return an error.
1123  */
1124 int kernel_kexec(void)
1125 {
1126 	int error = 0;
1127 
1128 	if (!mutex_trylock(&kexec_mutex))
1129 		return -EBUSY;
1130 	if (!kexec_image) {
1131 		error = -EINVAL;
1132 		goto Unlock;
1133 	}
1134 
1135 #ifdef CONFIG_KEXEC_JUMP
1136 	if (kexec_image->preserve_context) {
1137 		pm_prepare_console();
1138 		error = freeze_processes();
1139 		if (error) {
1140 			error = -EBUSY;
1141 			goto Restore_console;
1142 		}
1143 		suspend_console();
1144 		error = dpm_suspend_start(PMSG_FREEZE);
1145 		if (error)
1146 			goto Resume_console;
1147 		/* At this point, dpm_suspend_start() has been called,
1148 		 * but *not* dpm_suspend_end(). We *must* call
1149 		 * dpm_suspend_end() now.  Otherwise, drivers for
1150 		 * some devices (e.g. interrupt controllers) become
1151 		 * desynchronized with the actual state of the
1152 		 * hardware at resume time, and evil weirdness ensues.
1153 		 */
1154 		error = dpm_suspend_end(PMSG_FREEZE);
1155 		if (error)
1156 			goto Resume_devices;
1157 		error = suspend_disable_secondary_cpus();
1158 		if (error)
1159 			goto Enable_cpus;
1160 		local_irq_disable();
1161 		error = syscore_suspend();
1162 		if (error)
1163 			goto Enable_irqs;
1164 	} else
1165 #endif
1166 	{
1167 		kexec_in_progress = true;
1168 		kernel_restart_prepare(NULL);
1169 		migrate_to_reboot_cpu();
1170 
1171 		/*
1172 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1173 		 * no further code needs to use CPU hotplug (which is true in
1174 		 * the reboot case). However, the kexec path depends on using
1175 		 * CPU hotplug again; so re-enable it here.
1176 		 */
1177 		cpu_hotplug_enable();
1178 		pr_notice("Starting new kernel\n");
1179 		machine_shutdown();
1180 	}
1181 
1182 	machine_kexec(kexec_image);
1183 
1184 #ifdef CONFIG_KEXEC_JUMP
1185 	if (kexec_image->preserve_context) {
1186 		syscore_resume();
1187  Enable_irqs:
1188 		local_irq_enable();
1189  Enable_cpus:
1190 		suspend_enable_secondary_cpus();
1191 		dpm_resume_start(PMSG_RESTORE);
1192  Resume_devices:
1193 		dpm_resume_end(PMSG_RESTORE);
1194  Resume_console:
1195 		resume_console();
1196 		thaw_processes();
1197  Restore_console:
1198 		pm_restore_console();
1199 	}
1200 #endif
1201 
1202  Unlock:
1203 	mutex_unlock(&kexec_mutex);
1204 	return error;
1205 }
1206 
1207 /*
1208  * Protection mechanism for crashkernel reserved memory after
1209  * the kdump kernel is loaded.
1210  *
1211  * Provide an empty default implementation here -- architecture
1212  * code may override this
1213  */
1214 void __weak arch_kexec_protect_crashkres(void)
1215 {}
1216 
1217 void __weak arch_kexec_unprotect_crashkres(void)
1218 {}
1219