xref: /openbmc/linux/kernel/kexec.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/spinlock.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 
28 #include <asm/page.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/system.h>
32 #include <asm/semaphore.h>
33 #include <asm/sections.h>
34 
35 /* Per cpu memory for storing cpu states in case of system crash. */
36 note_buf_t* crash_notes;
37 
38 /* vmcoreinfo stuff */
39 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
40 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
41 size_t vmcoreinfo_size;
42 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
43 
44 /* Location of the reserved area for the crash kernel */
45 struct resource crashk_res = {
46 	.name  = "Crash kernel",
47 	.start = 0,
48 	.end   = 0,
49 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
50 };
51 
52 int kexec_should_crash(struct task_struct *p)
53 {
54 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
55 		return 1;
56 	return 0;
57 }
58 
59 /*
60  * When kexec transitions to the new kernel there is a one-to-one
61  * mapping between physical and virtual addresses.  On processors
62  * where you can disable the MMU this is trivial, and easy.  For
63  * others it is still a simple predictable page table to setup.
64  *
65  * In that environment kexec copies the new kernel to its final
66  * resting place.  This means I can only support memory whose
67  * physical address can fit in an unsigned long.  In particular
68  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
69  * If the assembly stub has more restrictive requirements
70  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
71  * defined more restrictively in <asm/kexec.h>.
72  *
73  * The code for the transition from the current kernel to the
74  * the new kernel is placed in the control_code_buffer, whose size
75  * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
76  * page of memory is necessary, but some architectures require more.
77  * Because this memory must be identity mapped in the transition from
78  * virtual to physical addresses it must live in the range
79  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
80  * modifiable.
81  *
82  * The assembly stub in the control code buffer is passed a linked list
83  * of descriptor pages detailing the source pages of the new kernel,
84  * and the destination addresses of those source pages.  As this data
85  * structure is not used in the context of the current OS, it must
86  * be self-contained.
87  *
88  * The code has been made to work with highmem pages and will use a
89  * destination page in its final resting place (if it happens
90  * to allocate it).  The end product of this is that most of the
91  * physical address space, and most of RAM can be used.
92  *
93  * Future directions include:
94  *  - allocating a page table with the control code buffer identity
95  *    mapped, to simplify machine_kexec and make kexec_on_panic more
96  *    reliable.
97  */
98 
99 /*
100  * KIMAGE_NO_DEST is an impossible destination address..., for
101  * allocating pages whose destination address we do not care about.
102  */
103 #define KIMAGE_NO_DEST (-1UL)
104 
105 static int kimage_is_destination_range(struct kimage *image,
106 				       unsigned long start, unsigned long end);
107 static struct page *kimage_alloc_page(struct kimage *image,
108 				       gfp_t gfp_mask,
109 				       unsigned long dest);
110 
111 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
112 	                    unsigned long nr_segments,
113                             struct kexec_segment __user *segments)
114 {
115 	size_t segment_bytes;
116 	struct kimage *image;
117 	unsigned long i;
118 	int result;
119 
120 	/* Allocate a controlling structure */
121 	result = -ENOMEM;
122 	image = kzalloc(sizeof(*image), GFP_KERNEL);
123 	if (!image)
124 		goto out;
125 
126 	image->head = 0;
127 	image->entry = &image->head;
128 	image->last_entry = &image->head;
129 	image->control_page = ~0; /* By default this does not apply */
130 	image->start = entry;
131 	image->type = KEXEC_TYPE_DEFAULT;
132 
133 	/* Initialize the list of control pages */
134 	INIT_LIST_HEAD(&image->control_pages);
135 
136 	/* Initialize the list of destination pages */
137 	INIT_LIST_HEAD(&image->dest_pages);
138 
139 	/* Initialize the list of unuseable pages */
140 	INIT_LIST_HEAD(&image->unuseable_pages);
141 
142 	/* Read in the segments */
143 	image->nr_segments = nr_segments;
144 	segment_bytes = nr_segments * sizeof(*segments);
145 	result = copy_from_user(image->segment, segments, segment_bytes);
146 	if (result)
147 		goto out;
148 
149 	/*
150 	 * Verify we have good destination addresses.  The caller is
151 	 * responsible for making certain we don't attempt to load
152 	 * the new image into invalid or reserved areas of RAM.  This
153 	 * just verifies it is an address we can use.
154 	 *
155 	 * Since the kernel does everything in page size chunks ensure
156 	 * the destination addreses are page aligned.  Too many
157 	 * special cases crop of when we don't do this.  The most
158 	 * insidious is getting overlapping destination addresses
159 	 * simply because addresses are changed to page size
160 	 * granularity.
161 	 */
162 	result = -EADDRNOTAVAIL;
163 	for (i = 0; i < nr_segments; i++) {
164 		unsigned long mstart, mend;
165 
166 		mstart = image->segment[i].mem;
167 		mend   = mstart + image->segment[i].memsz;
168 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
169 			goto out;
170 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
171 			goto out;
172 	}
173 
174 	/* Verify our destination addresses do not overlap.
175 	 * If we alloed overlapping destination addresses
176 	 * through very weird things can happen with no
177 	 * easy explanation as one segment stops on another.
178 	 */
179 	result = -EINVAL;
180 	for (i = 0; i < nr_segments; i++) {
181 		unsigned long mstart, mend;
182 		unsigned long j;
183 
184 		mstart = image->segment[i].mem;
185 		mend   = mstart + image->segment[i].memsz;
186 		for (j = 0; j < i; j++) {
187 			unsigned long pstart, pend;
188 			pstart = image->segment[j].mem;
189 			pend   = pstart + image->segment[j].memsz;
190 			/* Do the segments overlap ? */
191 			if ((mend > pstart) && (mstart < pend))
192 				goto out;
193 		}
194 	}
195 
196 	/* Ensure our buffer sizes are strictly less than
197 	 * our memory sizes.  This should always be the case,
198 	 * and it is easier to check up front than to be surprised
199 	 * later on.
200 	 */
201 	result = -EINVAL;
202 	for (i = 0; i < nr_segments; i++) {
203 		if (image->segment[i].bufsz > image->segment[i].memsz)
204 			goto out;
205 	}
206 
207 	result = 0;
208 out:
209 	if (result == 0)
210 		*rimage = image;
211 	else
212 		kfree(image);
213 
214 	return result;
215 
216 }
217 
218 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
219 				unsigned long nr_segments,
220 				struct kexec_segment __user *segments)
221 {
222 	int result;
223 	struct kimage *image;
224 
225 	/* Allocate and initialize a controlling structure */
226 	image = NULL;
227 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
228 	if (result)
229 		goto out;
230 
231 	*rimage = image;
232 
233 	/*
234 	 * Find a location for the control code buffer, and add it
235 	 * the vector of segments so that it's pages will also be
236 	 * counted as destination pages.
237 	 */
238 	result = -ENOMEM;
239 	image->control_code_page = kimage_alloc_control_pages(image,
240 					   get_order(KEXEC_CONTROL_CODE_SIZE));
241 	if (!image->control_code_page) {
242 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
243 		goto out;
244 	}
245 
246 	result = 0;
247  out:
248 	if (result == 0)
249 		*rimage = image;
250 	else
251 		kfree(image);
252 
253 	return result;
254 }
255 
256 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
257 				unsigned long nr_segments,
258 				struct kexec_segment __user *segments)
259 {
260 	int result;
261 	struct kimage *image;
262 	unsigned long i;
263 
264 	image = NULL;
265 	/* Verify we have a valid entry point */
266 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
267 		result = -EADDRNOTAVAIL;
268 		goto out;
269 	}
270 
271 	/* Allocate and initialize a controlling structure */
272 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
273 	if (result)
274 		goto out;
275 
276 	/* Enable the special crash kernel control page
277 	 * allocation policy.
278 	 */
279 	image->control_page = crashk_res.start;
280 	image->type = KEXEC_TYPE_CRASH;
281 
282 	/*
283 	 * Verify we have good destination addresses.  Normally
284 	 * the caller is responsible for making certain we don't
285 	 * attempt to load the new image into invalid or reserved
286 	 * areas of RAM.  But crash kernels are preloaded into a
287 	 * reserved area of ram.  We must ensure the addresses
288 	 * are in the reserved area otherwise preloading the
289 	 * kernel could corrupt things.
290 	 */
291 	result = -EADDRNOTAVAIL;
292 	for (i = 0; i < nr_segments; i++) {
293 		unsigned long mstart, mend;
294 
295 		mstart = image->segment[i].mem;
296 		mend = mstart + image->segment[i].memsz - 1;
297 		/* Ensure we are within the crash kernel limits */
298 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
299 			goto out;
300 	}
301 
302 	/*
303 	 * Find a location for the control code buffer, and add
304 	 * the vector of segments so that it's pages will also be
305 	 * counted as destination pages.
306 	 */
307 	result = -ENOMEM;
308 	image->control_code_page = kimage_alloc_control_pages(image,
309 					   get_order(KEXEC_CONTROL_CODE_SIZE));
310 	if (!image->control_code_page) {
311 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
312 		goto out;
313 	}
314 
315 	result = 0;
316 out:
317 	if (result == 0)
318 		*rimage = image;
319 	else
320 		kfree(image);
321 
322 	return result;
323 }
324 
325 static int kimage_is_destination_range(struct kimage *image,
326 					unsigned long start,
327 					unsigned long end)
328 {
329 	unsigned long i;
330 
331 	for (i = 0; i < image->nr_segments; i++) {
332 		unsigned long mstart, mend;
333 
334 		mstart = image->segment[i].mem;
335 		mend = mstart + image->segment[i].memsz;
336 		if ((end > mstart) && (start < mend))
337 			return 1;
338 	}
339 
340 	return 0;
341 }
342 
343 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
344 {
345 	struct page *pages;
346 
347 	pages = alloc_pages(gfp_mask, order);
348 	if (pages) {
349 		unsigned int count, i;
350 		pages->mapping = NULL;
351 		set_page_private(pages, order);
352 		count = 1 << order;
353 		for (i = 0; i < count; i++)
354 			SetPageReserved(pages + i);
355 	}
356 
357 	return pages;
358 }
359 
360 static void kimage_free_pages(struct page *page)
361 {
362 	unsigned int order, count, i;
363 
364 	order = page_private(page);
365 	count = 1 << order;
366 	for (i = 0; i < count; i++)
367 		ClearPageReserved(page + i);
368 	__free_pages(page, order);
369 }
370 
371 static void kimage_free_page_list(struct list_head *list)
372 {
373 	struct list_head *pos, *next;
374 
375 	list_for_each_safe(pos, next, list) {
376 		struct page *page;
377 
378 		page = list_entry(pos, struct page, lru);
379 		list_del(&page->lru);
380 		kimage_free_pages(page);
381 	}
382 }
383 
384 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
385 							unsigned int order)
386 {
387 	/* Control pages are special, they are the intermediaries
388 	 * that are needed while we copy the rest of the pages
389 	 * to their final resting place.  As such they must
390 	 * not conflict with either the destination addresses
391 	 * or memory the kernel is already using.
392 	 *
393 	 * The only case where we really need more than one of
394 	 * these are for architectures where we cannot disable
395 	 * the MMU and must instead generate an identity mapped
396 	 * page table for all of the memory.
397 	 *
398 	 * At worst this runs in O(N) of the image size.
399 	 */
400 	struct list_head extra_pages;
401 	struct page *pages;
402 	unsigned int count;
403 
404 	count = 1 << order;
405 	INIT_LIST_HEAD(&extra_pages);
406 
407 	/* Loop while I can allocate a page and the page allocated
408 	 * is a destination page.
409 	 */
410 	do {
411 		unsigned long pfn, epfn, addr, eaddr;
412 
413 		pages = kimage_alloc_pages(GFP_KERNEL, order);
414 		if (!pages)
415 			break;
416 		pfn   = page_to_pfn(pages);
417 		epfn  = pfn + count;
418 		addr  = pfn << PAGE_SHIFT;
419 		eaddr = epfn << PAGE_SHIFT;
420 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
421 			      kimage_is_destination_range(image, addr, eaddr)) {
422 			list_add(&pages->lru, &extra_pages);
423 			pages = NULL;
424 		}
425 	} while (!pages);
426 
427 	if (pages) {
428 		/* Remember the allocated page... */
429 		list_add(&pages->lru, &image->control_pages);
430 
431 		/* Because the page is already in it's destination
432 		 * location we will never allocate another page at
433 		 * that address.  Therefore kimage_alloc_pages
434 		 * will not return it (again) and we don't need
435 		 * to give it an entry in image->segment[].
436 		 */
437 	}
438 	/* Deal with the destination pages I have inadvertently allocated.
439 	 *
440 	 * Ideally I would convert multi-page allocations into single
441 	 * page allocations, and add everyting to image->dest_pages.
442 	 *
443 	 * For now it is simpler to just free the pages.
444 	 */
445 	kimage_free_page_list(&extra_pages);
446 
447 	return pages;
448 }
449 
450 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
451 						      unsigned int order)
452 {
453 	/* Control pages are special, they are the intermediaries
454 	 * that are needed while we copy the rest of the pages
455 	 * to their final resting place.  As such they must
456 	 * not conflict with either the destination addresses
457 	 * or memory the kernel is already using.
458 	 *
459 	 * Control pages are also the only pags we must allocate
460 	 * when loading a crash kernel.  All of the other pages
461 	 * are specified by the segments and we just memcpy
462 	 * into them directly.
463 	 *
464 	 * The only case where we really need more than one of
465 	 * these are for architectures where we cannot disable
466 	 * the MMU and must instead generate an identity mapped
467 	 * page table for all of the memory.
468 	 *
469 	 * Given the low demand this implements a very simple
470 	 * allocator that finds the first hole of the appropriate
471 	 * size in the reserved memory region, and allocates all
472 	 * of the memory up to and including the hole.
473 	 */
474 	unsigned long hole_start, hole_end, size;
475 	struct page *pages;
476 
477 	pages = NULL;
478 	size = (1 << order) << PAGE_SHIFT;
479 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
480 	hole_end   = hole_start + size - 1;
481 	while (hole_end <= crashk_res.end) {
482 		unsigned long i;
483 
484 		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
485 			break;
486 		if (hole_end > crashk_res.end)
487 			break;
488 		/* See if I overlap any of the segments */
489 		for (i = 0; i < image->nr_segments; i++) {
490 			unsigned long mstart, mend;
491 
492 			mstart = image->segment[i].mem;
493 			mend   = mstart + image->segment[i].memsz - 1;
494 			if ((hole_end >= mstart) && (hole_start <= mend)) {
495 				/* Advance the hole to the end of the segment */
496 				hole_start = (mend + (size - 1)) & ~(size - 1);
497 				hole_end   = hole_start + size - 1;
498 				break;
499 			}
500 		}
501 		/* If I don't overlap any segments I have found my hole! */
502 		if (i == image->nr_segments) {
503 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
504 			break;
505 		}
506 	}
507 	if (pages)
508 		image->control_page = hole_end;
509 
510 	return pages;
511 }
512 
513 
514 struct page *kimage_alloc_control_pages(struct kimage *image,
515 					 unsigned int order)
516 {
517 	struct page *pages = NULL;
518 
519 	switch (image->type) {
520 	case KEXEC_TYPE_DEFAULT:
521 		pages = kimage_alloc_normal_control_pages(image, order);
522 		break;
523 	case KEXEC_TYPE_CRASH:
524 		pages = kimage_alloc_crash_control_pages(image, order);
525 		break;
526 	}
527 
528 	return pages;
529 }
530 
531 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
532 {
533 	if (*image->entry != 0)
534 		image->entry++;
535 
536 	if (image->entry == image->last_entry) {
537 		kimage_entry_t *ind_page;
538 		struct page *page;
539 
540 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
541 		if (!page)
542 			return -ENOMEM;
543 
544 		ind_page = page_address(page);
545 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
546 		image->entry = ind_page;
547 		image->last_entry = ind_page +
548 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
549 	}
550 	*image->entry = entry;
551 	image->entry++;
552 	*image->entry = 0;
553 
554 	return 0;
555 }
556 
557 static int kimage_set_destination(struct kimage *image,
558 				   unsigned long destination)
559 {
560 	int result;
561 
562 	destination &= PAGE_MASK;
563 	result = kimage_add_entry(image, destination | IND_DESTINATION);
564 	if (result == 0)
565 		image->destination = destination;
566 
567 	return result;
568 }
569 
570 
571 static int kimage_add_page(struct kimage *image, unsigned long page)
572 {
573 	int result;
574 
575 	page &= PAGE_MASK;
576 	result = kimage_add_entry(image, page | IND_SOURCE);
577 	if (result == 0)
578 		image->destination += PAGE_SIZE;
579 
580 	return result;
581 }
582 
583 
584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 	/* Walk through and free any extra destination pages I may have */
587 	kimage_free_page_list(&image->dest_pages);
588 
589 	/* Walk through and free any unuseable pages I have cached */
590 	kimage_free_page_list(&image->unuseable_pages);
591 
592 }
593 static int kimage_terminate(struct kimage *image)
594 {
595 	if (*image->entry != 0)
596 		image->entry++;
597 
598 	*image->entry = IND_DONE;
599 
600 	return 0;
601 }
602 
603 #define for_each_kimage_entry(image, ptr, entry) \
604 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
605 		ptr = (entry & IND_INDIRECTION)? \
606 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
607 
608 static void kimage_free_entry(kimage_entry_t entry)
609 {
610 	struct page *page;
611 
612 	page = pfn_to_page(entry >> PAGE_SHIFT);
613 	kimage_free_pages(page);
614 }
615 
616 static void kimage_free(struct kimage *image)
617 {
618 	kimage_entry_t *ptr, entry;
619 	kimage_entry_t ind = 0;
620 
621 	if (!image)
622 		return;
623 
624 	kimage_free_extra_pages(image);
625 	for_each_kimage_entry(image, ptr, entry) {
626 		if (entry & IND_INDIRECTION) {
627 			/* Free the previous indirection page */
628 			if (ind & IND_INDIRECTION)
629 				kimage_free_entry(ind);
630 			/* Save this indirection page until we are
631 			 * done with it.
632 			 */
633 			ind = entry;
634 		}
635 		else if (entry & IND_SOURCE)
636 			kimage_free_entry(entry);
637 	}
638 	/* Free the final indirection page */
639 	if (ind & IND_INDIRECTION)
640 		kimage_free_entry(ind);
641 
642 	/* Handle any machine specific cleanup */
643 	machine_kexec_cleanup(image);
644 
645 	/* Free the kexec control pages... */
646 	kimage_free_page_list(&image->control_pages);
647 	kfree(image);
648 }
649 
650 static kimage_entry_t *kimage_dst_used(struct kimage *image,
651 					unsigned long page)
652 {
653 	kimage_entry_t *ptr, entry;
654 	unsigned long destination = 0;
655 
656 	for_each_kimage_entry(image, ptr, entry) {
657 		if (entry & IND_DESTINATION)
658 			destination = entry & PAGE_MASK;
659 		else if (entry & IND_SOURCE) {
660 			if (page == destination)
661 				return ptr;
662 			destination += PAGE_SIZE;
663 		}
664 	}
665 
666 	return NULL;
667 }
668 
669 static struct page *kimage_alloc_page(struct kimage *image,
670 					gfp_t gfp_mask,
671 					unsigned long destination)
672 {
673 	/*
674 	 * Here we implement safeguards to ensure that a source page
675 	 * is not copied to its destination page before the data on
676 	 * the destination page is no longer useful.
677 	 *
678 	 * To do this we maintain the invariant that a source page is
679 	 * either its own destination page, or it is not a
680 	 * destination page at all.
681 	 *
682 	 * That is slightly stronger than required, but the proof
683 	 * that no problems will not occur is trivial, and the
684 	 * implementation is simply to verify.
685 	 *
686 	 * When allocating all pages normally this algorithm will run
687 	 * in O(N) time, but in the worst case it will run in O(N^2)
688 	 * time.   If the runtime is a problem the data structures can
689 	 * be fixed.
690 	 */
691 	struct page *page;
692 	unsigned long addr;
693 
694 	/*
695 	 * Walk through the list of destination pages, and see if I
696 	 * have a match.
697 	 */
698 	list_for_each_entry(page, &image->dest_pages, lru) {
699 		addr = page_to_pfn(page) << PAGE_SHIFT;
700 		if (addr == destination) {
701 			list_del(&page->lru);
702 			return page;
703 		}
704 	}
705 	page = NULL;
706 	while (1) {
707 		kimage_entry_t *old;
708 
709 		/* Allocate a page, if we run out of memory give up */
710 		page = kimage_alloc_pages(gfp_mask, 0);
711 		if (!page)
712 			return NULL;
713 		/* If the page cannot be used file it away */
714 		if (page_to_pfn(page) >
715 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
716 			list_add(&page->lru, &image->unuseable_pages);
717 			continue;
718 		}
719 		addr = page_to_pfn(page) << PAGE_SHIFT;
720 
721 		/* If it is the destination page we want use it */
722 		if (addr == destination)
723 			break;
724 
725 		/* If the page is not a destination page use it */
726 		if (!kimage_is_destination_range(image, addr,
727 						  addr + PAGE_SIZE))
728 			break;
729 
730 		/*
731 		 * I know that the page is someones destination page.
732 		 * See if there is already a source page for this
733 		 * destination page.  And if so swap the source pages.
734 		 */
735 		old = kimage_dst_used(image, addr);
736 		if (old) {
737 			/* If so move it */
738 			unsigned long old_addr;
739 			struct page *old_page;
740 
741 			old_addr = *old & PAGE_MASK;
742 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
743 			copy_highpage(page, old_page);
744 			*old = addr | (*old & ~PAGE_MASK);
745 
746 			/* The old page I have found cannot be a
747 			 * destination page, so return it.
748 			 */
749 			addr = old_addr;
750 			page = old_page;
751 			break;
752 		}
753 		else {
754 			/* Place the page on the destination list I
755 			 * will use it later.
756 			 */
757 			list_add(&page->lru, &image->dest_pages);
758 		}
759 	}
760 
761 	return page;
762 }
763 
764 static int kimage_load_normal_segment(struct kimage *image,
765 					 struct kexec_segment *segment)
766 {
767 	unsigned long maddr;
768 	unsigned long ubytes, mbytes;
769 	int result;
770 	unsigned char __user *buf;
771 
772 	result = 0;
773 	buf = segment->buf;
774 	ubytes = segment->bufsz;
775 	mbytes = segment->memsz;
776 	maddr = segment->mem;
777 
778 	result = kimage_set_destination(image, maddr);
779 	if (result < 0)
780 		goto out;
781 
782 	while (mbytes) {
783 		struct page *page;
784 		char *ptr;
785 		size_t uchunk, mchunk;
786 
787 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
788 		if (!page) {
789 			result  = -ENOMEM;
790 			goto out;
791 		}
792 		result = kimage_add_page(image, page_to_pfn(page)
793 								<< PAGE_SHIFT);
794 		if (result < 0)
795 			goto out;
796 
797 		ptr = kmap(page);
798 		/* Start with a clear page */
799 		memset(ptr, 0, PAGE_SIZE);
800 		ptr += maddr & ~PAGE_MASK;
801 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
802 		if (mchunk > mbytes)
803 			mchunk = mbytes;
804 
805 		uchunk = mchunk;
806 		if (uchunk > ubytes)
807 			uchunk = ubytes;
808 
809 		result = copy_from_user(ptr, buf, uchunk);
810 		kunmap(page);
811 		if (result) {
812 			result = (result < 0) ? result : -EIO;
813 			goto out;
814 		}
815 		ubytes -= uchunk;
816 		maddr  += mchunk;
817 		buf    += mchunk;
818 		mbytes -= mchunk;
819 	}
820 out:
821 	return result;
822 }
823 
824 static int kimage_load_crash_segment(struct kimage *image,
825 					struct kexec_segment *segment)
826 {
827 	/* For crash dumps kernels we simply copy the data from
828 	 * user space to it's destination.
829 	 * We do things a page at a time for the sake of kmap.
830 	 */
831 	unsigned long maddr;
832 	unsigned long ubytes, mbytes;
833 	int result;
834 	unsigned char __user *buf;
835 
836 	result = 0;
837 	buf = segment->buf;
838 	ubytes = segment->bufsz;
839 	mbytes = segment->memsz;
840 	maddr = segment->mem;
841 	while (mbytes) {
842 		struct page *page;
843 		char *ptr;
844 		size_t uchunk, mchunk;
845 
846 		page = pfn_to_page(maddr >> PAGE_SHIFT);
847 		if (!page) {
848 			result  = -ENOMEM;
849 			goto out;
850 		}
851 		ptr = kmap(page);
852 		ptr += maddr & ~PAGE_MASK;
853 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
854 		if (mchunk > mbytes)
855 			mchunk = mbytes;
856 
857 		uchunk = mchunk;
858 		if (uchunk > ubytes) {
859 			uchunk = ubytes;
860 			/* Zero the trailing part of the page */
861 			memset(ptr + uchunk, 0, mchunk - uchunk);
862 		}
863 		result = copy_from_user(ptr, buf, uchunk);
864 		kexec_flush_icache_page(page);
865 		kunmap(page);
866 		if (result) {
867 			result = (result < 0) ? result : -EIO;
868 			goto out;
869 		}
870 		ubytes -= uchunk;
871 		maddr  += mchunk;
872 		buf    += mchunk;
873 		mbytes -= mchunk;
874 	}
875 out:
876 	return result;
877 }
878 
879 static int kimage_load_segment(struct kimage *image,
880 				struct kexec_segment *segment)
881 {
882 	int result = -ENOMEM;
883 
884 	switch (image->type) {
885 	case KEXEC_TYPE_DEFAULT:
886 		result = kimage_load_normal_segment(image, segment);
887 		break;
888 	case KEXEC_TYPE_CRASH:
889 		result = kimage_load_crash_segment(image, segment);
890 		break;
891 	}
892 
893 	return result;
894 }
895 
896 /*
897  * Exec Kernel system call: for obvious reasons only root may call it.
898  *
899  * This call breaks up into three pieces.
900  * - A generic part which loads the new kernel from the current
901  *   address space, and very carefully places the data in the
902  *   allocated pages.
903  *
904  * - A generic part that interacts with the kernel and tells all of
905  *   the devices to shut down.  Preventing on-going dmas, and placing
906  *   the devices in a consistent state so a later kernel can
907  *   reinitialize them.
908  *
909  * - A machine specific part that includes the syscall number
910  *   and the copies the image to it's final destination.  And
911  *   jumps into the image at entry.
912  *
913  * kexec does not sync, or unmount filesystems so if you need
914  * that to happen you need to do that yourself.
915  */
916 struct kimage *kexec_image;
917 struct kimage *kexec_crash_image;
918 /*
919  * A home grown binary mutex.
920  * Nothing can wait so this mutex is safe to use
921  * in interrupt context :)
922  */
923 static int kexec_lock;
924 
925 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
926 				struct kexec_segment __user *segments,
927 				unsigned long flags)
928 {
929 	struct kimage **dest_image, *image;
930 	int locked;
931 	int result;
932 
933 	/* We only trust the superuser with rebooting the system. */
934 	if (!capable(CAP_SYS_BOOT))
935 		return -EPERM;
936 
937 	/*
938 	 * Verify we have a legal set of flags
939 	 * This leaves us room for future extensions.
940 	 */
941 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
942 		return -EINVAL;
943 
944 	/* Verify we are on the appropriate architecture */
945 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
946 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
947 		return -EINVAL;
948 
949 	/* Put an artificial cap on the number
950 	 * of segments passed to kexec_load.
951 	 */
952 	if (nr_segments > KEXEC_SEGMENT_MAX)
953 		return -EINVAL;
954 
955 	image = NULL;
956 	result = 0;
957 
958 	/* Because we write directly to the reserved memory
959 	 * region when loading crash kernels we need a mutex here to
960 	 * prevent multiple crash  kernels from attempting to load
961 	 * simultaneously, and to prevent a crash kernel from loading
962 	 * over the top of a in use crash kernel.
963 	 *
964 	 * KISS: always take the mutex.
965 	 */
966 	locked = xchg(&kexec_lock, 1);
967 	if (locked)
968 		return -EBUSY;
969 
970 	dest_image = &kexec_image;
971 	if (flags & KEXEC_ON_CRASH)
972 		dest_image = &kexec_crash_image;
973 	if (nr_segments > 0) {
974 		unsigned long i;
975 
976 		/* Loading another kernel to reboot into */
977 		if ((flags & KEXEC_ON_CRASH) == 0)
978 			result = kimage_normal_alloc(&image, entry,
979 							nr_segments, segments);
980 		/* Loading another kernel to switch to if this one crashes */
981 		else if (flags & KEXEC_ON_CRASH) {
982 			/* Free any current crash dump kernel before
983 			 * we corrupt it.
984 			 */
985 			kimage_free(xchg(&kexec_crash_image, NULL));
986 			result = kimage_crash_alloc(&image, entry,
987 						     nr_segments, segments);
988 		}
989 		if (result)
990 			goto out;
991 
992 		result = machine_kexec_prepare(image);
993 		if (result)
994 			goto out;
995 
996 		for (i = 0; i < nr_segments; i++) {
997 			result = kimage_load_segment(image, &image->segment[i]);
998 			if (result)
999 				goto out;
1000 		}
1001 		result = kimage_terminate(image);
1002 		if (result)
1003 			goto out;
1004 	}
1005 	/* Install the new kernel, and  Uninstall the old */
1006 	image = xchg(dest_image, image);
1007 
1008 out:
1009 	locked = xchg(&kexec_lock, 0); /* Release the mutex */
1010 	BUG_ON(!locked);
1011 	kimage_free(image);
1012 
1013 	return result;
1014 }
1015 
1016 #ifdef CONFIG_COMPAT
1017 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1018 				unsigned long nr_segments,
1019 				struct compat_kexec_segment __user *segments,
1020 				unsigned long flags)
1021 {
1022 	struct compat_kexec_segment in;
1023 	struct kexec_segment out, __user *ksegments;
1024 	unsigned long i, result;
1025 
1026 	/* Don't allow clients that don't understand the native
1027 	 * architecture to do anything.
1028 	 */
1029 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1030 		return -EINVAL;
1031 
1032 	if (nr_segments > KEXEC_SEGMENT_MAX)
1033 		return -EINVAL;
1034 
1035 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1036 	for (i=0; i < nr_segments; i++) {
1037 		result = copy_from_user(&in, &segments[i], sizeof(in));
1038 		if (result)
1039 			return -EFAULT;
1040 
1041 		out.buf   = compat_ptr(in.buf);
1042 		out.bufsz = in.bufsz;
1043 		out.mem   = in.mem;
1044 		out.memsz = in.memsz;
1045 
1046 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1047 		if (result)
1048 			return -EFAULT;
1049 	}
1050 
1051 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1052 }
1053 #endif
1054 
1055 void crash_kexec(struct pt_regs *regs)
1056 {
1057 	int locked;
1058 
1059 
1060 	/* Take the kexec_lock here to prevent sys_kexec_load
1061 	 * running on one cpu from replacing the crash kernel
1062 	 * we are using after a panic on a different cpu.
1063 	 *
1064 	 * If the crash kernel was not located in a fixed area
1065 	 * of memory the xchg(&kexec_crash_image) would be
1066 	 * sufficient.  But since I reuse the memory...
1067 	 */
1068 	locked = xchg(&kexec_lock, 1);
1069 	if (!locked) {
1070 		if (kexec_crash_image) {
1071 			struct pt_regs fixed_regs;
1072 			crash_setup_regs(&fixed_regs, regs);
1073 			crash_save_vmcoreinfo();
1074 			machine_crash_shutdown(&fixed_regs);
1075 			machine_kexec(kexec_crash_image);
1076 		}
1077 		locked = xchg(&kexec_lock, 0);
1078 		BUG_ON(!locked);
1079 	}
1080 }
1081 
1082 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1083 			    size_t data_len)
1084 {
1085 	struct elf_note note;
1086 
1087 	note.n_namesz = strlen(name) + 1;
1088 	note.n_descsz = data_len;
1089 	note.n_type   = type;
1090 	memcpy(buf, &note, sizeof(note));
1091 	buf += (sizeof(note) + 3)/4;
1092 	memcpy(buf, name, note.n_namesz);
1093 	buf += (note.n_namesz + 3)/4;
1094 	memcpy(buf, data, note.n_descsz);
1095 	buf += (note.n_descsz + 3)/4;
1096 
1097 	return buf;
1098 }
1099 
1100 static void final_note(u32 *buf)
1101 {
1102 	struct elf_note note;
1103 
1104 	note.n_namesz = 0;
1105 	note.n_descsz = 0;
1106 	note.n_type   = 0;
1107 	memcpy(buf, &note, sizeof(note));
1108 }
1109 
1110 void crash_save_cpu(struct pt_regs *regs, int cpu)
1111 {
1112 	struct elf_prstatus prstatus;
1113 	u32 *buf;
1114 
1115 	if ((cpu < 0) || (cpu >= NR_CPUS))
1116 		return;
1117 
1118 	/* Using ELF notes here is opportunistic.
1119 	 * I need a well defined structure format
1120 	 * for the data I pass, and I need tags
1121 	 * on the data to indicate what information I have
1122 	 * squirrelled away.  ELF notes happen to provide
1123 	 * all of that, so there is no need to invent something new.
1124 	 */
1125 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1126 	if (!buf)
1127 		return;
1128 	memset(&prstatus, 0, sizeof(prstatus));
1129 	prstatus.pr_pid = current->pid;
1130 	elf_core_copy_regs(&prstatus.pr_reg, regs);
1131 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1132 		      	      &prstatus, sizeof(prstatus));
1133 	final_note(buf);
1134 }
1135 
1136 static int __init crash_notes_memory_init(void)
1137 {
1138 	/* Allocate memory for saving cpu registers. */
1139 	crash_notes = alloc_percpu(note_buf_t);
1140 	if (!crash_notes) {
1141 		printk("Kexec: Memory allocation for saving cpu register"
1142 		" states failed\n");
1143 		return -ENOMEM;
1144 	}
1145 	return 0;
1146 }
1147 module_init(crash_notes_memory_init)
1148 
1149 
1150 /*
1151  * parsing the "crashkernel" commandline
1152  *
1153  * this code is intended to be called from architecture specific code
1154  */
1155 
1156 
1157 /*
1158  * This function parses command lines in the format
1159  *
1160  *   crashkernel=ramsize-range:size[,...][@offset]
1161  *
1162  * The function returns 0 on success and -EINVAL on failure.
1163  */
1164 static int __init parse_crashkernel_mem(char 			*cmdline,
1165 					unsigned long long	system_ram,
1166 					unsigned long long	*crash_size,
1167 					unsigned long long	*crash_base)
1168 {
1169 	char *cur = cmdline, *tmp;
1170 
1171 	/* for each entry of the comma-separated list */
1172 	do {
1173 		unsigned long long start, end = ULLONG_MAX, size;
1174 
1175 		/* get the start of the range */
1176 		start = memparse(cur, &tmp);
1177 		if (cur == tmp) {
1178 			pr_warning("crashkernel: Memory value expected\n");
1179 			return -EINVAL;
1180 		}
1181 		cur = tmp;
1182 		if (*cur != '-') {
1183 			pr_warning("crashkernel: '-' expected\n");
1184 			return -EINVAL;
1185 		}
1186 		cur++;
1187 
1188 		/* if no ':' is here, than we read the end */
1189 		if (*cur != ':') {
1190 			end = memparse(cur, &tmp);
1191 			if (cur == tmp) {
1192 				pr_warning("crashkernel: Memory "
1193 						"value expected\n");
1194 				return -EINVAL;
1195 			}
1196 			cur = tmp;
1197 			if (end <= start) {
1198 				pr_warning("crashkernel: end <= start\n");
1199 				return -EINVAL;
1200 			}
1201 		}
1202 
1203 		if (*cur != ':') {
1204 			pr_warning("crashkernel: ':' expected\n");
1205 			return -EINVAL;
1206 		}
1207 		cur++;
1208 
1209 		size = memparse(cur, &tmp);
1210 		if (cur == tmp) {
1211 			pr_warning("Memory value expected\n");
1212 			return -EINVAL;
1213 		}
1214 		cur = tmp;
1215 		if (size >= system_ram) {
1216 			pr_warning("crashkernel: invalid size\n");
1217 			return -EINVAL;
1218 		}
1219 
1220 		/* match ? */
1221 		if (system_ram >= start && system_ram <= end) {
1222 			*crash_size = size;
1223 			break;
1224 		}
1225 	} while (*cur++ == ',');
1226 
1227 	if (*crash_size > 0) {
1228 		while (*cur != ' ' && *cur != '@')
1229 			cur++;
1230 		if (*cur == '@') {
1231 			cur++;
1232 			*crash_base = memparse(cur, &tmp);
1233 			if (cur == tmp) {
1234 				pr_warning("Memory value expected "
1235 						"after '@'\n");
1236 				return -EINVAL;
1237 			}
1238 		}
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * That function parses "simple" (old) crashkernel command lines like
1246  *
1247  * 	crashkernel=size[@offset]
1248  *
1249  * It returns 0 on success and -EINVAL on failure.
1250  */
1251 static int __init parse_crashkernel_simple(char 		*cmdline,
1252 					   unsigned long long 	*crash_size,
1253 					   unsigned long long 	*crash_base)
1254 {
1255 	char *cur = cmdline;
1256 
1257 	*crash_size = memparse(cmdline, &cur);
1258 	if (cmdline == cur) {
1259 		pr_warning("crashkernel: memory value expected\n");
1260 		return -EINVAL;
1261 	}
1262 
1263 	if (*cur == '@')
1264 		*crash_base = memparse(cur+1, &cur);
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * That function is the entry point for command line parsing and should be
1271  * called from the arch-specific code.
1272  */
1273 int __init parse_crashkernel(char 		 *cmdline,
1274 			     unsigned long long system_ram,
1275 			     unsigned long long *crash_size,
1276 			     unsigned long long *crash_base)
1277 {
1278 	char 	*p = cmdline, *ck_cmdline = NULL;
1279 	char	*first_colon, *first_space;
1280 
1281 	BUG_ON(!crash_size || !crash_base);
1282 	*crash_size = 0;
1283 	*crash_base = 0;
1284 
1285 	/* find crashkernel and use the last one if there are more */
1286 	p = strstr(p, "crashkernel=");
1287 	while (p) {
1288 		ck_cmdline = p;
1289 		p = strstr(p+1, "crashkernel=");
1290 	}
1291 
1292 	if (!ck_cmdline)
1293 		return -EINVAL;
1294 
1295 	ck_cmdline += 12; /* strlen("crashkernel=") */
1296 
1297 	/*
1298 	 * if the commandline contains a ':', then that's the extended
1299 	 * syntax -- if not, it must be the classic syntax
1300 	 */
1301 	first_colon = strchr(ck_cmdline, ':');
1302 	first_space = strchr(ck_cmdline, ' ');
1303 	if (first_colon && (!first_space || first_colon < first_space))
1304 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1305 				crash_size, crash_base);
1306 	else
1307 		return parse_crashkernel_simple(ck_cmdline, crash_size,
1308 				crash_base);
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 
1315 void crash_save_vmcoreinfo(void)
1316 {
1317 	u32 *buf;
1318 
1319 	if (!vmcoreinfo_size)
1320 		return;
1321 
1322 	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1323 
1324 	buf = (u32 *)vmcoreinfo_note;
1325 
1326 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1327 			      vmcoreinfo_size);
1328 
1329 	final_note(buf);
1330 }
1331 
1332 void vmcoreinfo_append_str(const char *fmt, ...)
1333 {
1334 	va_list args;
1335 	char buf[0x50];
1336 	int r;
1337 
1338 	va_start(args, fmt);
1339 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1340 	va_end(args);
1341 
1342 	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1343 		r = vmcoreinfo_max_size - vmcoreinfo_size;
1344 
1345 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1346 
1347 	vmcoreinfo_size += r;
1348 }
1349 
1350 /*
1351  * provide an empty default implementation here -- architecture
1352  * code may override this
1353  */
1354 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1355 {}
1356 
1357 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1358 {
1359 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1360 }
1361 
1362 static int __init crash_save_vmcoreinfo_init(void)
1363 {
1364 	vmcoreinfo_append_str("OSRELEASE=%s\n", init_uts_ns.name.release);
1365 	vmcoreinfo_append_str("PAGESIZE=%ld\n", PAGE_SIZE);
1366 
1367 	VMCOREINFO_SYMBOL(init_uts_ns);
1368 	VMCOREINFO_SYMBOL(node_online_map);
1369 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1370 	VMCOREINFO_SYMBOL(_stext);
1371 
1372 #ifndef CONFIG_NEED_MULTIPLE_NODES
1373 	VMCOREINFO_SYMBOL(mem_map);
1374 	VMCOREINFO_SYMBOL(contig_page_data);
1375 #endif
1376 #ifdef CONFIG_SPARSEMEM
1377 	VMCOREINFO_SYMBOL(mem_section);
1378 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1379 	VMCOREINFO_SIZE(mem_section);
1380 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1381 #endif
1382 	VMCOREINFO_SIZE(page);
1383 	VMCOREINFO_SIZE(pglist_data);
1384 	VMCOREINFO_SIZE(zone);
1385 	VMCOREINFO_SIZE(free_area);
1386 	VMCOREINFO_SIZE(list_head);
1387 	VMCOREINFO_TYPEDEF_SIZE(nodemask_t);
1388 	VMCOREINFO_OFFSET(page, flags);
1389 	VMCOREINFO_OFFSET(page, _count);
1390 	VMCOREINFO_OFFSET(page, mapping);
1391 	VMCOREINFO_OFFSET(page, lru);
1392 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1393 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1394 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1395 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1396 #endif
1397 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1398 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1399 	VMCOREINFO_OFFSET(pglist_data, node_id);
1400 	VMCOREINFO_OFFSET(zone, free_area);
1401 	VMCOREINFO_OFFSET(zone, vm_stat);
1402 	VMCOREINFO_OFFSET(zone, spanned_pages);
1403 	VMCOREINFO_OFFSET(free_area, free_list);
1404 	VMCOREINFO_OFFSET(list_head, next);
1405 	VMCOREINFO_OFFSET(list_head, prev);
1406 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1407 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1408 
1409 	arch_crash_save_vmcoreinfo();
1410 
1411 	return 0;
1412 }
1413 
1414 module_init(crash_save_vmcoreinfo_init)
1415