1 /* 2 * linux/kernel/irq/manage.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006 Thomas Gleixner 6 * 7 * This file contains driver APIs to the irq subsystem. 8 */ 9 10 #define pr_fmt(fmt) "genirq: " fmt 11 12 #include <linux/irq.h> 13 #include <linux/kthread.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #ifdef CONFIG_IRQ_FORCED_THREADING 27 __read_mostly bool force_irqthreads; 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 case IRQ_SET_MASK_OK_NOCOPY: 200 irq_validate_effective_affinity(data); 201 irq_set_thread_affinity(desc); 202 ret = 0; 203 } 204 205 return ret; 206 } 207 208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 209 bool force) 210 { 211 struct irq_chip *chip = irq_data_get_irq_chip(data); 212 struct irq_desc *desc = irq_data_to_desc(data); 213 int ret = 0; 214 215 if (!chip || !chip->irq_set_affinity) 216 return -EINVAL; 217 218 if (irq_can_move_pcntxt(data)) { 219 ret = irq_do_set_affinity(data, mask, force); 220 } else { 221 irqd_set_move_pending(data); 222 irq_copy_pending(desc, mask); 223 } 224 225 if (desc->affinity_notify) { 226 kref_get(&desc->affinity_notify->kref); 227 schedule_work(&desc->affinity_notify->work); 228 } 229 irqd_set(data, IRQD_AFFINITY_SET); 230 231 return ret; 232 } 233 234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 235 { 236 struct irq_desc *desc = irq_to_desc(irq); 237 unsigned long flags; 238 int ret; 239 240 if (!desc) 241 return -EINVAL; 242 243 raw_spin_lock_irqsave(&desc->lock, flags); 244 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 245 raw_spin_unlock_irqrestore(&desc->lock, flags); 246 return ret; 247 } 248 249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 250 { 251 unsigned long flags; 252 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 253 254 if (!desc) 255 return -EINVAL; 256 desc->affinity_hint = m; 257 irq_put_desc_unlock(desc, flags); 258 /* set the initial affinity to prevent every interrupt being on CPU0 */ 259 if (m) 260 __irq_set_affinity(irq, m, false); 261 return 0; 262 } 263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 264 265 static void irq_affinity_notify(struct work_struct *work) 266 { 267 struct irq_affinity_notify *notify = 268 container_of(work, struct irq_affinity_notify, work); 269 struct irq_desc *desc = irq_to_desc(notify->irq); 270 cpumask_var_t cpumask; 271 unsigned long flags; 272 273 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 274 goto out; 275 276 raw_spin_lock_irqsave(&desc->lock, flags); 277 if (irq_move_pending(&desc->irq_data)) 278 irq_get_pending(cpumask, desc); 279 else 280 cpumask_copy(cpumask, desc->irq_common_data.affinity); 281 raw_spin_unlock_irqrestore(&desc->lock, flags); 282 283 notify->notify(notify, cpumask); 284 285 free_cpumask_var(cpumask); 286 out: 287 kref_put(¬ify->kref, notify->release); 288 } 289 290 /** 291 * irq_set_affinity_notifier - control notification of IRQ affinity changes 292 * @irq: Interrupt for which to enable/disable notification 293 * @notify: Context for notification, or %NULL to disable 294 * notification. Function pointers must be initialised; 295 * the other fields will be initialised by this function. 296 * 297 * Must be called in process context. Notification may only be enabled 298 * after the IRQ is allocated and must be disabled before the IRQ is 299 * freed using free_irq(). 300 */ 301 int 302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 303 { 304 struct irq_desc *desc = irq_to_desc(irq); 305 struct irq_affinity_notify *old_notify; 306 unsigned long flags; 307 308 /* The release function is promised process context */ 309 might_sleep(); 310 311 if (!desc) 312 return -EINVAL; 313 314 /* Complete initialisation of *notify */ 315 if (notify) { 316 notify->irq = irq; 317 kref_init(¬ify->kref); 318 INIT_WORK(¬ify->work, irq_affinity_notify); 319 } 320 321 raw_spin_lock_irqsave(&desc->lock, flags); 322 old_notify = desc->affinity_notify; 323 desc->affinity_notify = notify; 324 raw_spin_unlock_irqrestore(&desc->lock, flags); 325 326 if (old_notify) 327 kref_put(&old_notify->kref, old_notify->release); 328 329 return 0; 330 } 331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 332 333 #ifndef CONFIG_AUTO_IRQ_AFFINITY 334 /* 335 * Generic version of the affinity autoselector. 336 */ 337 int irq_setup_affinity(struct irq_desc *desc) 338 { 339 struct cpumask *set = irq_default_affinity; 340 int ret, node = irq_desc_get_node(desc); 341 static DEFINE_RAW_SPINLOCK(mask_lock); 342 static struct cpumask mask; 343 344 /* Excludes PER_CPU and NO_BALANCE interrupts */ 345 if (!__irq_can_set_affinity(desc)) 346 return 0; 347 348 raw_spin_lock(&mask_lock); 349 /* 350 * Preserve the managed affinity setting and a userspace affinity 351 * setup, but make sure that one of the targets is online. 352 */ 353 if (irqd_affinity_is_managed(&desc->irq_data) || 354 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 355 if (cpumask_intersects(desc->irq_common_data.affinity, 356 cpu_online_mask)) 357 set = desc->irq_common_data.affinity; 358 else 359 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 360 } 361 362 cpumask_and(&mask, cpu_online_mask, set); 363 if (node != NUMA_NO_NODE) { 364 const struct cpumask *nodemask = cpumask_of_node(node); 365 366 /* make sure at least one of the cpus in nodemask is online */ 367 if (cpumask_intersects(&mask, nodemask)) 368 cpumask_and(&mask, &mask, nodemask); 369 } 370 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 371 raw_spin_unlock(&mask_lock); 372 return ret; 373 } 374 #else 375 /* Wrapper for ALPHA specific affinity selector magic */ 376 int irq_setup_affinity(struct irq_desc *desc) 377 { 378 return irq_select_affinity(irq_desc_get_irq(desc)); 379 } 380 #endif 381 382 /* 383 * Called when a bogus affinity is set via /proc/irq 384 */ 385 int irq_select_affinity_usr(unsigned int irq) 386 { 387 struct irq_desc *desc = irq_to_desc(irq); 388 unsigned long flags; 389 int ret; 390 391 raw_spin_lock_irqsave(&desc->lock, flags); 392 ret = irq_setup_affinity(desc); 393 raw_spin_unlock_irqrestore(&desc->lock, flags); 394 return ret; 395 } 396 #endif 397 398 /** 399 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 400 * @irq: interrupt number to set affinity 401 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 402 * specific data for percpu_devid interrupts 403 * 404 * This function uses the vCPU specific data to set the vCPU 405 * affinity for an irq. The vCPU specific data is passed from 406 * outside, such as KVM. One example code path is as below: 407 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 408 */ 409 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 410 { 411 unsigned long flags; 412 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 413 struct irq_data *data; 414 struct irq_chip *chip; 415 int ret = -ENOSYS; 416 417 if (!desc) 418 return -EINVAL; 419 420 data = irq_desc_get_irq_data(desc); 421 do { 422 chip = irq_data_get_irq_chip(data); 423 if (chip && chip->irq_set_vcpu_affinity) 424 break; 425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 426 data = data->parent_data; 427 #else 428 data = NULL; 429 #endif 430 } while (data); 431 432 if (data) 433 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 434 irq_put_desc_unlock(desc, flags); 435 436 return ret; 437 } 438 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 439 440 void __disable_irq(struct irq_desc *desc) 441 { 442 if (!desc->depth++) 443 irq_disable(desc); 444 } 445 446 static int __disable_irq_nosync(unsigned int irq) 447 { 448 unsigned long flags; 449 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 450 451 if (!desc) 452 return -EINVAL; 453 __disable_irq(desc); 454 irq_put_desc_busunlock(desc, flags); 455 return 0; 456 } 457 458 /** 459 * disable_irq_nosync - disable an irq without waiting 460 * @irq: Interrupt to disable 461 * 462 * Disable the selected interrupt line. Disables and Enables are 463 * nested. 464 * Unlike disable_irq(), this function does not ensure existing 465 * instances of the IRQ handler have completed before returning. 466 * 467 * This function may be called from IRQ context. 468 */ 469 void disable_irq_nosync(unsigned int irq) 470 { 471 __disable_irq_nosync(irq); 472 } 473 EXPORT_SYMBOL(disable_irq_nosync); 474 475 /** 476 * disable_irq - disable an irq and wait for completion 477 * @irq: Interrupt to disable 478 * 479 * Disable the selected interrupt line. Enables and Disables are 480 * nested. 481 * This function waits for any pending IRQ handlers for this interrupt 482 * to complete before returning. If you use this function while 483 * holding a resource the IRQ handler may need you will deadlock. 484 * 485 * This function may be called - with care - from IRQ context. 486 */ 487 void disable_irq(unsigned int irq) 488 { 489 if (!__disable_irq_nosync(irq)) 490 synchronize_irq(irq); 491 } 492 EXPORT_SYMBOL(disable_irq); 493 494 /** 495 * disable_hardirq - disables an irq and waits for hardirq completion 496 * @irq: Interrupt to disable 497 * 498 * Disable the selected interrupt line. Enables and Disables are 499 * nested. 500 * This function waits for any pending hard IRQ handlers for this 501 * interrupt to complete before returning. If you use this function while 502 * holding a resource the hard IRQ handler may need you will deadlock. 503 * 504 * When used to optimistically disable an interrupt from atomic context 505 * the return value must be checked. 506 * 507 * Returns: false if a threaded handler is active. 508 * 509 * This function may be called - with care - from IRQ context. 510 */ 511 bool disable_hardirq(unsigned int irq) 512 { 513 if (!__disable_irq_nosync(irq)) 514 return synchronize_hardirq(irq); 515 516 return false; 517 } 518 EXPORT_SYMBOL_GPL(disable_hardirq); 519 520 void __enable_irq(struct irq_desc *desc) 521 { 522 switch (desc->depth) { 523 case 0: 524 err_out: 525 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 526 irq_desc_get_irq(desc)); 527 break; 528 case 1: { 529 if (desc->istate & IRQS_SUSPENDED) 530 goto err_out; 531 /* Prevent probing on this irq: */ 532 irq_settings_set_noprobe(desc); 533 /* 534 * Call irq_startup() not irq_enable() here because the 535 * interrupt might be marked NOAUTOEN. So irq_startup() 536 * needs to be invoked when it gets enabled the first 537 * time. If it was already started up, then irq_startup() 538 * will invoke irq_enable() under the hood. 539 */ 540 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 541 break; 542 } 543 default: 544 desc->depth--; 545 } 546 } 547 548 /** 549 * enable_irq - enable handling of an irq 550 * @irq: Interrupt to enable 551 * 552 * Undoes the effect of one call to disable_irq(). If this 553 * matches the last disable, processing of interrupts on this 554 * IRQ line is re-enabled. 555 * 556 * This function may be called from IRQ context only when 557 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 558 */ 559 void enable_irq(unsigned int irq) 560 { 561 unsigned long flags; 562 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 563 564 if (!desc) 565 return; 566 if (WARN(!desc->irq_data.chip, 567 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 568 goto out; 569 570 __enable_irq(desc); 571 out: 572 irq_put_desc_busunlock(desc, flags); 573 } 574 EXPORT_SYMBOL(enable_irq); 575 576 static int set_irq_wake_real(unsigned int irq, unsigned int on) 577 { 578 struct irq_desc *desc = irq_to_desc(irq); 579 int ret = -ENXIO; 580 581 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 582 return 0; 583 584 if (desc->irq_data.chip->irq_set_wake) 585 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 586 587 return ret; 588 } 589 590 /** 591 * irq_set_irq_wake - control irq power management wakeup 592 * @irq: interrupt to control 593 * @on: enable/disable power management wakeup 594 * 595 * Enable/disable power management wakeup mode, which is 596 * disabled by default. Enables and disables must match, 597 * just as they match for non-wakeup mode support. 598 * 599 * Wakeup mode lets this IRQ wake the system from sleep 600 * states like "suspend to RAM". 601 */ 602 int irq_set_irq_wake(unsigned int irq, unsigned int on) 603 { 604 unsigned long flags; 605 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 606 int ret = 0; 607 608 if (!desc) 609 return -EINVAL; 610 611 /* wakeup-capable irqs can be shared between drivers that 612 * don't need to have the same sleep mode behaviors. 613 */ 614 if (on) { 615 if (desc->wake_depth++ == 0) { 616 ret = set_irq_wake_real(irq, on); 617 if (ret) 618 desc->wake_depth = 0; 619 else 620 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 621 } 622 } else { 623 if (desc->wake_depth == 0) { 624 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 625 } else if (--desc->wake_depth == 0) { 626 ret = set_irq_wake_real(irq, on); 627 if (ret) 628 desc->wake_depth = 1; 629 else 630 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 631 } 632 } 633 irq_put_desc_busunlock(desc, flags); 634 return ret; 635 } 636 EXPORT_SYMBOL(irq_set_irq_wake); 637 638 /* 639 * Internal function that tells the architecture code whether a 640 * particular irq has been exclusively allocated or is available 641 * for driver use. 642 */ 643 int can_request_irq(unsigned int irq, unsigned long irqflags) 644 { 645 unsigned long flags; 646 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 647 int canrequest = 0; 648 649 if (!desc) 650 return 0; 651 652 if (irq_settings_can_request(desc)) { 653 if (!desc->action || 654 irqflags & desc->action->flags & IRQF_SHARED) 655 canrequest = 1; 656 } 657 irq_put_desc_unlock(desc, flags); 658 return canrequest; 659 } 660 661 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 662 { 663 struct irq_chip *chip = desc->irq_data.chip; 664 int ret, unmask = 0; 665 666 if (!chip || !chip->irq_set_type) { 667 /* 668 * IRQF_TRIGGER_* but the PIC does not support multiple 669 * flow-types? 670 */ 671 pr_debug("No set_type function for IRQ %d (%s)\n", 672 irq_desc_get_irq(desc), 673 chip ? (chip->name ? : "unknown") : "unknown"); 674 return 0; 675 } 676 677 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 678 if (!irqd_irq_masked(&desc->irq_data)) 679 mask_irq(desc); 680 if (!irqd_irq_disabled(&desc->irq_data)) 681 unmask = 1; 682 } 683 684 /* Mask all flags except trigger mode */ 685 flags &= IRQ_TYPE_SENSE_MASK; 686 ret = chip->irq_set_type(&desc->irq_data, flags); 687 688 switch (ret) { 689 case IRQ_SET_MASK_OK: 690 case IRQ_SET_MASK_OK_DONE: 691 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 692 irqd_set(&desc->irq_data, flags); 693 694 case IRQ_SET_MASK_OK_NOCOPY: 695 flags = irqd_get_trigger_type(&desc->irq_data); 696 irq_settings_set_trigger_mask(desc, flags); 697 irqd_clear(&desc->irq_data, IRQD_LEVEL); 698 irq_settings_clr_level(desc); 699 if (flags & IRQ_TYPE_LEVEL_MASK) { 700 irq_settings_set_level(desc); 701 irqd_set(&desc->irq_data, IRQD_LEVEL); 702 } 703 704 ret = 0; 705 break; 706 default: 707 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 708 flags, irq_desc_get_irq(desc), chip->irq_set_type); 709 } 710 if (unmask) 711 unmask_irq(desc); 712 return ret; 713 } 714 715 #ifdef CONFIG_HARDIRQS_SW_RESEND 716 int irq_set_parent(int irq, int parent_irq) 717 { 718 unsigned long flags; 719 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 720 721 if (!desc) 722 return -EINVAL; 723 724 desc->parent_irq = parent_irq; 725 726 irq_put_desc_unlock(desc, flags); 727 return 0; 728 } 729 EXPORT_SYMBOL_GPL(irq_set_parent); 730 #endif 731 732 /* 733 * Default primary interrupt handler for threaded interrupts. Is 734 * assigned as primary handler when request_threaded_irq is called 735 * with handler == NULL. Useful for oneshot interrupts. 736 */ 737 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 738 { 739 return IRQ_WAKE_THREAD; 740 } 741 742 /* 743 * Primary handler for nested threaded interrupts. Should never be 744 * called. 745 */ 746 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 747 { 748 WARN(1, "Primary handler called for nested irq %d\n", irq); 749 return IRQ_NONE; 750 } 751 752 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 753 { 754 WARN(1, "Secondary action handler called for irq %d\n", irq); 755 return IRQ_NONE; 756 } 757 758 static int irq_wait_for_interrupt(struct irqaction *action) 759 { 760 set_current_state(TASK_INTERRUPTIBLE); 761 762 while (!kthread_should_stop()) { 763 764 if (test_and_clear_bit(IRQTF_RUNTHREAD, 765 &action->thread_flags)) { 766 __set_current_state(TASK_RUNNING); 767 return 0; 768 } 769 schedule(); 770 set_current_state(TASK_INTERRUPTIBLE); 771 } 772 __set_current_state(TASK_RUNNING); 773 return -1; 774 } 775 776 /* 777 * Oneshot interrupts keep the irq line masked until the threaded 778 * handler finished. unmask if the interrupt has not been disabled and 779 * is marked MASKED. 780 */ 781 static void irq_finalize_oneshot(struct irq_desc *desc, 782 struct irqaction *action) 783 { 784 if (!(desc->istate & IRQS_ONESHOT) || 785 action->handler == irq_forced_secondary_handler) 786 return; 787 again: 788 chip_bus_lock(desc); 789 raw_spin_lock_irq(&desc->lock); 790 791 /* 792 * Implausible though it may be we need to protect us against 793 * the following scenario: 794 * 795 * The thread is faster done than the hard interrupt handler 796 * on the other CPU. If we unmask the irq line then the 797 * interrupt can come in again and masks the line, leaves due 798 * to IRQS_INPROGRESS and the irq line is masked forever. 799 * 800 * This also serializes the state of shared oneshot handlers 801 * versus "desc->threads_onehsot |= action->thread_mask;" in 802 * irq_wake_thread(). See the comment there which explains the 803 * serialization. 804 */ 805 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 806 raw_spin_unlock_irq(&desc->lock); 807 chip_bus_sync_unlock(desc); 808 cpu_relax(); 809 goto again; 810 } 811 812 /* 813 * Now check again, whether the thread should run. Otherwise 814 * we would clear the threads_oneshot bit of this thread which 815 * was just set. 816 */ 817 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 818 goto out_unlock; 819 820 desc->threads_oneshot &= ~action->thread_mask; 821 822 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 823 irqd_irq_masked(&desc->irq_data)) 824 unmask_threaded_irq(desc); 825 826 out_unlock: 827 raw_spin_unlock_irq(&desc->lock); 828 chip_bus_sync_unlock(desc); 829 } 830 831 #ifdef CONFIG_SMP 832 /* 833 * Check whether we need to change the affinity of the interrupt thread. 834 */ 835 static void 836 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 837 { 838 cpumask_var_t mask; 839 bool valid = true; 840 841 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 842 return; 843 844 /* 845 * In case we are out of memory we set IRQTF_AFFINITY again and 846 * try again next time 847 */ 848 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 849 set_bit(IRQTF_AFFINITY, &action->thread_flags); 850 return; 851 } 852 853 raw_spin_lock_irq(&desc->lock); 854 /* 855 * This code is triggered unconditionally. Check the affinity 856 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 857 */ 858 if (cpumask_available(desc->irq_common_data.affinity)) { 859 const struct cpumask *m; 860 861 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 862 cpumask_copy(mask, m); 863 } else { 864 valid = false; 865 } 866 raw_spin_unlock_irq(&desc->lock); 867 868 if (valid) 869 set_cpus_allowed_ptr(current, mask); 870 free_cpumask_var(mask); 871 } 872 #else 873 static inline void 874 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 875 #endif 876 877 /* 878 * Interrupts which are not explicitely requested as threaded 879 * interrupts rely on the implicit bh/preempt disable of the hard irq 880 * context. So we need to disable bh here to avoid deadlocks and other 881 * side effects. 882 */ 883 static irqreturn_t 884 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 885 { 886 irqreturn_t ret; 887 888 local_bh_disable(); 889 ret = action->thread_fn(action->irq, action->dev_id); 890 irq_finalize_oneshot(desc, action); 891 local_bh_enable(); 892 return ret; 893 } 894 895 /* 896 * Interrupts explicitly requested as threaded interrupts want to be 897 * preemtible - many of them need to sleep and wait for slow busses to 898 * complete. 899 */ 900 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 901 struct irqaction *action) 902 { 903 irqreturn_t ret; 904 905 ret = action->thread_fn(action->irq, action->dev_id); 906 irq_finalize_oneshot(desc, action); 907 return ret; 908 } 909 910 static void wake_threads_waitq(struct irq_desc *desc) 911 { 912 if (atomic_dec_and_test(&desc->threads_active)) 913 wake_up(&desc->wait_for_threads); 914 } 915 916 static void irq_thread_dtor(struct callback_head *unused) 917 { 918 struct task_struct *tsk = current; 919 struct irq_desc *desc; 920 struct irqaction *action; 921 922 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 923 return; 924 925 action = kthread_data(tsk); 926 927 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 928 tsk->comm, tsk->pid, action->irq); 929 930 931 desc = irq_to_desc(action->irq); 932 /* 933 * If IRQTF_RUNTHREAD is set, we need to decrement 934 * desc->threads_active and wake possible waiters. 935 */ 936 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 937 wake_threads_waitq(desc); 938 939 /* Prevent a stale desc->threads_oneshot */ 940 irq_finalize_oneshot(desc, action); 941 } 942 943 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 944 { 945 struct irqaction *secondary = action->secondary; 946 947 if (WARN_ON_ONCE(!secondary)) 948 return; 949 950 raw_spin_lock_irq(&desc->lock); 951 __irq_wake_thread(desc, secondary); 952 raw_spin_unlock_irq(&desc->lock); 953 } 954 955 /* 956 * Interrupt handler thread 957 */ 958 static int irq_thread(void *data) 959 { 960 struct callback_head on_exit_work; 961 struct irqaction *action = data; 962 struct irq_desc *desc = irq_to_desc(action->irq); 963 irqreturn_t (*handler_fn)(struct irq_desc *desc, 964 struct irqaction *action); 965 966 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 967 &action->thread_flags)) 968 handler_fn = irq_forced_thread_fn; 969 else 970 handler_fn = irq_thread_fn; 971 972 init_task_work(&on_exit_work, irq_thread_dtor); 973 task_work_add(current, &on_exit_work, false); 974 975 irq_thread_check_affinity(desc, action); 976 977 while (!irq_wait_for_interrupt(action)) { 978 irqreturn_t action_ret; 979 980 irq_thread_check_affinity(desc, action); 981 982 action_ret = handler_fn(desc, action); 983 if (action_ret == IRQ_HANDLED) 984 atomic_inc(&desc->threads_handled); 985 if (action_ret == IRQ_WAKE_THREAD) 986 irq_wake_secondary(desc, action); 987 988 wake_threads_waitq(desc); 989 } 990 991 /* 992 * This is the regular exit path. __free_irq() is stopping the 993 * thread via kthread_stop() after calling 994 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 995 * oneshot mask bit can be set. We cannot verify that as we 996 * cannot touch the oneshot mask at this point anymore as 997 * __setup_irq() might have given out currents thread_mask 998 * again. 999 */ 1000 task_work_cancel(current, irq_thread_dtor); 1001 return 0; 1002 } 1003 1004 /** 1005 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1006 * @irq: Interrupt line 1007 * @dev_id: Device identity for which the thread should be woken 1008 * 1009 */ 1010 void irq_wake_thread(unsigned int irq, void *dev_id) 1011 { 1012 struct irq_desc *desc = irq_to_desc(irq); 1013 struct irqaction *action; 1014 unsigned long flags; 1015 1016 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1017 return; 1018 1019 raw_spin_lock_irqsave(&desc->lock, flags); 1020 for_each_action_of_desc(desc, action) { 1021 if (action->dev_id == dev_id) { 1022 if (action->thread) 1023 __irq_wake_thread(desc, action); 1024 break; 1025 } 1026 } 1027 raw_spin_unlock_irqrestore(&desc->lock, flags); 1028 } 1029 EXPORT_SYMBOL_GPL(irq_wake_thread); 1030 1031 static int irq_setup_forced_threading(struct irqaction *new) 1032 { 1033 if (!force_irqthreads) 1034 return 0; 1035 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1036 return 0; 1037 1038 new->flags |= IRQF_ONESHOT; 1039 1040 /* 1041 * Handle the case where we have a real primary handler and a 1042 * thread handler. We force thread them as well by creating a 1043 * secondary action. 1044 */ 1045 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1046 /* Allocate the secondary action */ 1047 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1048 if (!new->secondary) 1049 return -ENOMEM; 1050 new->secondary->handler = irq_forced_secondary_handler; 1051 new->secondary->thread_fn = new->thread_fn; 1052 new->secondary->dev_id = new->dev_id; 1053 new->secondary->irq = new->irq; 1054 new->secondary->name = new->name; 1055 } 1056 /* Deal with the primary handler */ 1057 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1058 new->thread_fn = new->handler; 1059 new->handler = irq_default_primary_handler; 1060 return 0; 1061 } 1062 1063 static int irq_request_resources(struct irq_desc *desc) 1064 { 1065 struct irq_data *d = &desc->irq_data; 1066 struct irq_chip *c = d->chip; 1067 1068 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1069 } 1070 1071 static void irq_release_resources(struct irq_desc *desc) 1072 { 1073 struct irq_data *d = &desc->irq_data; 1074 struct irq_chip *c = d->chip; 1075 1076 if (c->irq_release_resources) 1077 c->irq_release_resources(d); 1078 } 1079 1080 static int 1081 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1082 { 1083 struct task_struct *t; 1084 struct sched_param param = { 1085 .sched_priority = MAX_USER_RT_PRIO/2, 1086 }; 1087 1088 if (!secondary) { 1089 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1090 new->name); 1091 } else { 1092 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1093 new->name); 1094 param.sched_priority -= 1; 1095 } 1096 1097 if (IS_ERR(t)) 1098 return PTR_ERR(t); 1099 1100 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1101 1102 /* 1103 * We keep the reference to the task struct even if 1104 * the thread dies to avoid that the interrupt code 1105 * references an already freed task_struct. 1106 */ 1107 get_task_struct(t); 1108 new->thread = t; 1109 /* 1110 * Tell the thread to set its affinity. This is 1111 * important for shared interrupt handlers as we do 1112 * not invoke setup_affinity() for the secondary 1113 * handlers as everything is already set up. Even for 1114 * interrupts marked with IRQF_NO_BALANCE this is 1115 * correct as we want the thread to move to the cpu(s) 1116 * on which the requesting code placed the interrupt. 1117 */ 1118 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1119 return 0; 1120 } 1121 1122 /* 1123 * Internal function to register an irqaction - typically used to 1124 * allocate special interrupts that are part of the architecture. 1125 * 1126 * Locking rules: 1127 * 1128 * desc->request_mutex Provides serialization against a concurrent free_irq() 1129 * chip_bus_lock Provides serialization for slow bus operations 1130 * desc->lock Provides serialization against hard interrupts 1131 * 1132 * chip_bus_lock and desc->lock are sufficient for all other management and 1133 * interrupt related functions. desc->request_mutex solely serializes 1134 * request/free_irq(). 1135 */ 1136 static int 1137 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1138 { 1139 struct irqaction *old, **old_ptr; 1140 unsigned long flags, thread_mask = 0; 1141 int ret, nested, shared = 0; 1142 1143 if (!desc) 1144 return -EINVAL; 1145 1146 if (desc->irq_data.chip == &no_irq_chip) 1147 return -ENOSYS; 1148 if (!try_module_get(desc->owner)) 1149 return -ENODEV; 1150 1151 new->irq = irq; 1152 1153 /* 1154 * If the trigger type is not specified by the caller, 1155 * then use the default for this interrupt. 1156 */ 1157 if (!(new->flags & IRQF_TRIGGER_MASK)) 1158 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1159 1160 /* 1161 * Check whether the interrupt nests into another interrupt 1162 * thread. 1163 */ 1164 nested = irq_settings_is_nested_thread(desc); 1165 if (nested) { 1166 if (!new->thread_fn) { 1167 ret = -EINVAL; 1168 goto out_mput; 1169 } 1170 /* 1171 * Replace the primary handler which was provided from 1172 * the driver for non nested interrupt handling by the 1173 * dummy function which warns when called. 1174 */ 1175 new->handler = irq_nested_primary_handler; 1176 } else { 1177 if (irq_settings_can_thread(desc)) { 1178 ret = irq_setup_forced_threading(new); 1179 if (ret) 1180 goto out_mput; 1181 } 1182 } 1183 1184 /* 1185 * Create a handler thread when a thread function is supplied 1186 * and the interrupt does not nest into another interrupt 1187 * thread. 1188 */ 1189 if (new->thread_fn && !nested) { 1190 ret = setup_irq_thread(new, irq, false); 1191 if (ret) 1192 goto out_mput; 1193 if (new->secondary) { 1194 ret = setup_irq_thread(new->secondary, irq, true); 1195 if (ret) 1196 goto out_thread; 1197 } 1198 } 1199 1200 /* 1201 * Drivers are often written to work w/o knowledge about the 1202 * underlying irq chip implementation, so a request for a 1203 * threaded irq without a primary hard irq context handler 1204 * requires the ONESHOT flag to be set. Some irq chips like 1205 * MSI based interrupts are per se one shot safe. Check the 1206 * chip flags, so we can avoid the unmask dance at the end of 1207 * the threaded handler for those. 1208 */ 1209 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1210 new->flags &= ~IRQF_ONESHOT; 1211 1212 /* 1213 * Protects against a concurrent __free_irq() call which might wait 1214 * for synchronize_irq() to complete without holding the optional 1215 * chip bus lock and desc->lock. 1216 */ 1217 mutex_lock(&desc->request_mutex); 1218 1219 /* 1220 * Acquire bus lock as the irq_request_resources() callback below 1221 * might rely on the serialization or the magic power management 1222 * functions which are abusing the irq_bus_lock() callback, 1223 */ 1224 chip_bus_lock(desc); 1225 1226 /* First installed action requests resources. */ 1227 if (!desc->action) { 1228 ret = irq_request_resources(desc); 1229 if (ret) { 1230 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1231 new->name, irq, desc->irq_data.chip->name); 1232 goto out_bus_unlock; 1233 } 1234 } 1235 1236 /* 1237 * The following block of code has to be executed atomically 1238 * protected against a concurrent interrupt and any of the other 1239 * management calls which are not serialized via 1240 * desc->request_mutex or the optional bus lock. 1241 */ 1242 raw_spin_lock_irqsave(&desc->lock, flags); 1243 old_ptr = &desc->action; 1244 old = *old_ptr; 1245 if (old) { 1246 /* 1247 * Can't share interrupts unless both agree to and are 1248 * the same type (level, edge, polarity). So both flag 1249 * fields must have IRQF_SHARED set and the bits which 1250 * set the trigger type must match. Also all must 1251 * agree on ONESHOT. 1252 */ 1253 unsigned int oldtype; 1254 1255 /* 1256 * If nobody did set the configuration before, inherit 1257 * the one provided by the requester. 1258 */ 1259 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1260 oldtype = irqd_get_trigger_type(&desc->irq_data); 1261 } else { 1262 oldtype = new->flags & IRQF_TRIGGER_MASK; 1263 irqd_set_trigger_type(&desc->irq_data, oldtype); 1264 } 1265 1266 if (!((old->flags & new->flags) & IRQF_SHARED) || 1267 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1268 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1269 goto mismatch; 1270 1271 /* All handlers must agree on per-cpuness */ 1272 if ((old->flags & IRQF_PERCPU) != 1273 (new->flags & IRQF_PERCPU)) 1274 goto mismatch; 1275 1276 /* add new interrupt at end of irq queue */ 1277 do { 1278 /* 1279 * Or all existing action->thread_mask bits, 1280 * so we can find the next zero bit for this 1281 * new action. 1282 */ 1283 thread_mask |= old->thread_mask; 1284 old_ptr = &old->next; 1285 old = *old_ptr; 1286 } while (old); 1287 shared = 1; 1288 } 1289 1290 /* 1291 * Setup the thread mask for this irqaction for ONESHOT. For 1292 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1293 * conditional in irq_wake_thread(). 1294 */ 1295 if (new->flags & IRQF_ONESHOT) { 1296 /* 1297 * Unlikely to have 32 resp 64 irqs sharing one line, 1298 * but who knows. 1299 */ 1300 if (thread_mask == ~0UL) { 1301 ret = -EBUSY; 1302 goto out_unlock; 1303 } 1304 /* 1305 * The thread_mask for the action is or'ed to 1306 * desc->thread_active to indicate that the 1307 * IRQF_ONESHOT thread handler has been woken, but not 1308 * yet finished. The bit is cleared when a thread 1309 * completes. When all threads of a shared interrupt 1310 * line have completed desc->threads_active becomes 1311 * zero and the interrupt line is unmasked. See 1312 * handle.c:irq_wake_thread() for further information. 1313 * 1314 * If no thread is woken by primary (hard irq context) 1315 * interrupt handlers, then desc->threads_active is 1316 * also checked for zero to unmask the irq line in the 1317 * affected hard irq flow handlers 1318 * (handle_[fasteoi|level]_irq). 1319 * 1320 * The new action gets the first zero bit of 1321 * thread_mask assigned. See the loop above which or's 1322 * all existing action->thread_mask bits. 1323 */ 1324 new->thread_mask = 1UL << ffz(thread_mask); 1325 1326 } else if (new->handler == irq_default_primary_handler && 1327 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1328 /* 1329 * The interrupt was requested with handler = NULL, so 1330 * we use the default primary handler for it. But it 1331 * does not have the oneshot flag set. In combination 1332 * with level interrupts this is deadly, because the 1333 * default primary handler just wakes the thread, then 1334 * the irq lines is reenabled, but the device still 1335 * has the level irq asserted. Rinse and repeat.... 1336 * 1337 * While this works for edge type interrupts, we play 1338 * it safe and reject unconditionally because we can't 1339 * say for sure which type this interrupt really 1340 * has. The type flags are unreliable as the 1341 * underlying chip implementation can override them. 1342 */ 1343 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1344 irq); 1345 ret = -EINVAL; 1346 goto out_unlock; 1347 } 1348 1349 if (!shared) { 1350 init_waitqueue_head(&desc->wait_for_threads); 1351 1352 /* Setup the type (level, edge polarity) if configured: */ 1353 if (new->flags & IRQF_TRIGGER_MASK) { 1354 ret = __irq_set_trigger(desc, 1355 new->flags & IRQF_TRIGGER_MASK); 1356 1357 if (ret) 1358 goto out_unlock; 1359 } 1360 1361 /* 1362 * Activate the interrupt. That activation must happen 1363 * independently of IRQ_NOAUTOEN. request_irq() can fail 1364 * and the callers are supposed to handle 1365 * that. enable_irq() of an interrupt requested with 1366 * IRQ_NOAUTOEN is not supposed to fail. The activation 1367 * keeps it in shutdown mode, it merily associates 1368 * resources if necessary and if that's not possible it 1369 * fails. Interrupts which are in managed shutdown mode 1370 * will simply ignore that activation request. 1371 */ 1372 ret = irq_activate(desc); 1373 if (ret) 1374 goto out_unlock; 1375 1376 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1377 IRQS_ONESHOT | IRQS_WAITING); 1378 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1379 1380 if (new->flags & IRQF_PERCPU) { 1381 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1382 irq_settings_set_per_cpu(desc); 1383 } 1384 1385 if (new->flags & IRQF_ONESHOT) 1386 desc->istate |= IRQS_ONESHOT; 1387 1388 /* Exclude IRQ from balancing if requested */ 1389 if (new->flags & IRQF_NOBALANCING) { 1390 irq_settings_set_no_balancing(desc); 1391 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1392 } 1393 1394 if (irq_settings_can_autoenable(desc)) { 1395 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1396 } else { 1397 /* 1398 * Shared interrupts do not go well with disabling 1399 * auto enable. The sharing interrupt might request 1400 * it while it's still disabled and then wait for 1401 * interrupts forever. 1402 */ 1403 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1404 /* Undo nested disables: */ 1405 desc->depth = 1; 1406 } 1407 1408 } else if (new->flags & IRQF_TRIGGER_MASK) { 1409 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1410 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1411 1412 if (nmsk != omsk) 1413 /* hope the handler works with current trigger mode */ 1414 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1415 irq, omsk, nmsk); 1416 } 1417 1418 *old_ptr = new; 1419 1420 irq_pm_install_action(desc, new); 1421 1422 /* Reset broken irq detection when installing new handler */ 1423 desc->irq_count = 0; 1424 desc->irqs_unhandled = 0; 1425 1426 /* 1427 * Check whether we disabled the irq via the spurious handler 1428 * before. Reenable it and give it another chance. 1429 */ 1430 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1431 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1432 __enable_irq(desc); 1433 } 1434 1435 raw_spin_unlock_irqrestore(&desc->lock, flags); 1436 chip_bus_sync_unlock(desc); 1437 mutex_unlock(&desc->request_mutex); 1438 1439 irq_setup_timings(desc, new); 1440 1441 /* 1442 * Strictly no need to wake it up, but hung_task complains 1443 * when no hard interrupt wakes the thread up. 1444 */ 1445 if (new->thread) 1446 wake_up_process(new->thread); 1447 if (new->secondary) 1448 wake_up_process(new->secondary->thread); 1449 1450 register_irq_proc(irq, desc); 1451 new->dir = NULL; 1452 register_handler_proc(irq, new); 1453 return 0; 1454 1455 mismatch: 1456 if (!(new->flags & IRQF_PROBE_SHARED)) { 1457 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1458 irq, new->flags, new->name, old->flags, old->name); 1459 #ifdef CONFIG_DEBUG_SHIRQ 1460 dump_stack(); 1461 #endif 1462 } 1463 ret = -EBUSY; 1464 1465 out_unlock: 1466 raw_spin_unlock_irqrestore(&desc->lock, flags); 1467 1468 if (!desc->action) 1469 irq_release_resources(desc); 1470 out_bus_unlock: 1471 chip_bus_sync_unlock(desc); 1472 mutex_unlock(&desc->request_mutex); 1473 1474 out_thread: 1475 if (new->thread) { 1476 struct task_struct *t = new->thread; 1477 1478 new->thread = NULL; 1479 kthread_stop(t); 1480 put_task_struct(t); 1481 } 1482 if (new->secondary && new->secondary->thread) { 1483 struct task_struct *t = new->secondary->thread; 1484 1485 new->secondary->thread = NULL; 1486 kthread_stop(t); 1487 put_task_struct(t); 1488 } 1489 out_mput: 1490 module_put(desc->owner); 1491 return ret; 1492 } 1493 1494 /** 1495 * setup_irq - setup an interrupt 1496 * @irq: Interrupt line to setup 1497 * @act: irqaction for the interrupt 1498 * 1499 * Used to statically setup interrupts in the early boot process. 1500 */ 1501 int setup_irq(unsigned int irq, struct irqaction *act) 1502 { 1503 int retval; 1504 struct irq_desc *desc = irq_to_desc(irq); 1505 1506 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1507 return -EINVAL; 1508 1509 retval = irq_chip_pm_get(&desc->irq_data); 1510 if (retval < 0) 1511 return retval; 1512 1513 retval = __setup_irq(irq, desc, act); 1514 1515 if (retval) 1516 irq_chip_pm_put(&desc->irq_data); 1517 1518 return retval; 1519 } 1520 EXPORT_SYMBOL_GPL(setup_irq); 1521 1522 /* 1523 * Internal function to unregister an irqaction - used to free 1524 * regular and special interrupts that are part of the architecture. 1525 */ 1526 static struct irqaction *__free_irq(unsigned int irq, void *dev_id) 1527 { 1528 struct irq_desc *desc = irq_to_desc(irq); 1529 struct irqaction *action, **action_ptr; 1530 unsigned long flags; 1531 1532 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1533 1534 if (!desc) 1535 return NULL; 1536 1537 mutex_lock(&desc->request_mutex); 1538 chip_bus_lock(desc); 1539 raw_spin_lock_irqsave(&desc->lock, flags); 1540 1541 /* 1542 * There can be multiple actions per IRQ descriptor, find the right 1543 * one based on the dev_id: 1544 */ 1545 action_ptr = &desc->action; 1546 for (;;) { 1547 action = *action_ptr; 1548 1549 if (!action) { 1550 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1551 raw_spin_unlock_irqrestore(&desc->lock, flags); 1552 chip_bus_sync_unlock(desc); 1553 mutex_unlock(&desc->request_mutex); 1554 return NULL; 1555 } 1556 1557 if (action->dev_id == dev_id) 1558 break; 1559 action_ptr = &action->next; 1560 } 1561 1562 /* Found it - now remove it from the list of entries: */ 1563 *action_ptr = action->next; 1564 1565 irq_pm_remove_action(desc, action); 1566 1567 /* If this was the last handler, shut down the IRQ line: */ 1568 if (!desc->action) { 1569 irq_settings_clr_disable_unlazy(desc); 1570 irq_shutdown(desc); 1571 } 1572 1573 #ifdef CONFIG_SMP 1574 /* make sure affinity_hint is cleaned up */ 1575 if (WARN_ON_ONCE(desc->affinity_hint)) 1576 desc->affinity_hint = NULL; 1577 #endif 1578 1579 raw_spin_unlock_irqrestore(&desc->lock, flags); 1580 /* 1581 * Drop bus_lock here so the changes which were done in the chip 1582 * callbacks above are synced out to the irq chips which hang 1583 * behind a slow bus (I2C, SPI) before calling synchronize_irq(). 1584 * 1585 * Aside of that the bus_lock can also be taken from the threaded 1586 * handler in irq_finalize_oneshot() which results in a deadlock 1587 * because synchronize_irq() would wait forever for the thread to 1588 * complete, which is blocked on the bus lock. 1589 * 1590 * The still held desc->request_mutex() protects against a 1591 * concurrent request_irq() of this irq so the release of resources 1592 * and timing data is properly serialized. 1593 */ 1594 chip_bus_sync_unlock(desc); 1595 1596 unregister_handler_proc(irq, action); 1597 1598 /* Make sure it's not being used on another CPU: */ 1599 synchronize_irq(irq); 1600 1601 #ifdef CONFIG_DEBUG_SHIRQ 1602 /* 1603 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1604 * event to happen even now it's being freed, so let's make sure that 1605 * is so by doing an extra call to the handler .... 1606 * 1607 * ( We do this after actually deregistering it, to make sure that a 1608 * 'real' IRQ doesn't run in * parallel with our fake. ) 1609 */ 1610 if (action->flags & IRQF_SHARED) { 1611 local_irq_save(flags); 1612 action->handler(irq, dev_id); 1613 local_irq_restore(flags); 1614 } 1615 #endif 1616 1617 if (action->thread) { 1618 kthread_stop(action->thread); 1619 put_task_struct(action->thread); 1620 if (action->secondary && action->secondary->thread) { 1621 kthread_stop(action->secondary->thread); 1622 put_task_struct(action->secondary->thread); 1623 } 1624 } 1625 1626 /* Last action releases resources */ 1627 if (!desc->action) { 1628 /* 1629 * Reaquire bus lock as irq_release_resources() might 1630 * require it to deallocate resources over the slow bus. 1631 */ 1632 chip_bus_lock(desc); 1633 irq_release_resources(desc); 1634 chip_bus_sync_unlock(desc); 1635 irq_remove_timings(desc); 1636 } 1637 1638 mutex_unlock(&desc->request_mutex); 1639 1640 irq_chip_pm_put(&desc->irq_data); 1641 module_put(desc->owner); 1642 kfree(action->secondary); 1643 return action; 1644 } 1645 1646 /** 1647 * remove_irq - free an interrupt 1648 * @irq: Interrupt line to free 1649 * @act: irqaction for the interrupt 1650 * 1651 * Used to remove interrupts statically setup by the early boot process. 1652 */ 1653 void remove_irq(unsigned int irq, struct irqaction *act) 1654 { 1655 struct irq_desc *desc = irq_to_desc(irq); 1656 1657 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1658 __free_irq(irq, act->dev_id); 1659 } 1660 EXPORT_SYMBOL_GPL(remove_irq); 1661 1662 /** 1663 * free_irq - free an interrupt allocated with request_irq 1664 * @irq: Interrupt line to free 1665 * @dev_id: Device identity to free 1666 * 1667 * Remove an interrupt handler. The handler is removed and if the 1668 * interrupt line is no longer in use by any driver it is disabled. 1669 * On a shared IRQ the caller must ensure the interrupt is disabled 1670 * on the card it drives before calling this function. The function 1671 * does not return until any executing interrupts for this IRQ 1672 * have completed. 1673 * 1674 * This function must not be called from interrupt context. 1675 * 1676 * Returns the devname argument passed to request_irq. 1677 */ 1678 const void *free_irq(unsigned int irq, void *dev_id) 1679 { 1680 struct irq_desc *desc = irq_to_desc(irq); 1681 struct irqaction *action; 1682 const char *devname; 1683 1684 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1685 return NULL; 1686 1687 #ifdef CONFIG_SMP 1688 if (WARN_ON(desc->affinity_notify)) 1689 desc->affinity_notify = NULL; 1690 #endif 1691 1692 action = __free_irq(irq, dev_id); 1693 1694 if (!action) 1695 return NULL; 1696 1697 devname = action->name; 1698 kfree(action); 1699 return devname; 1700 } 1701 EXPORT_SYMBOL(free_irq); 1702 1703 /** 1704 * request_threaded_irq - allocate an interrupt line 1705 * @irq: Interrupt line to allocate 1706 * @handler: Function to be called when the IRQ occurs. 1707 * Primary handler for threaded interrupts 1708 * If NULL and thread_fn != NULL the default 1709 * primary handler is installed 1710 * @thread_fn: Function called from the irq handler thread 1711 * If NULL, no irq thread is created 1712 * @irqflags: Interrupt type flags 1713 * @devname: An ascii name for the claiming device 1714 * @dev_id: A cookie passed back to the handler function 1715 * 1716 * This call allocates interrupt resources and enables the 1717 * interrupt line and IRQ handling. From the point this 1718 * call is made your handler function may be invoked. Since 1719 * your handler function must clear any interrupt the board 1720 * raises, you must take care both to initialise your hardware 1721 * and to set up the interrupt handler in the right order. 1722 * 1723 * If you want to set up a threaded irq handler for your device 1724 * then you need to supply @handler and @thread_fn. @handler is 1725 * still called in hard interrupt context and has to check 1726 * whether the interrupt originates from the device. If yes it 1727 * needs to disable the interrupt on the device and return 1728 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1729 * @thread_fn. This split handler design is necessary to support 1730 * shared interrupts. 1731 * 1732 * Dev_id must be globally unique. Normally the address of the 1733 * device data structure is used as the cookie. Since the handler 1734 * receives this value it makes sense to use it. 1735 * 1736 * If your interrupt is shared you must pass a non NULL dev_id 1737 * as this is required when freeing the interrupt. 1738 * 1739 * Flags: 1740 * 1741 * IRQF_SHARED Interrupt is shared 1742 * IRQF_TRIGGER_* Specify active edge(s) or level 1743 * 1744 */ 1745 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1746 irq_handler_t thread_fn, unsigned long irqflags, 1747 const char *devname, void *dev_id) 1748 { 1749 struct irqaction *action; 1750 struct irq_desc *desc; 1751 int retval; 1752 1753 if (irq == IRQ_NOTCONNECTED) 1754 return -ENOTCONN; 1755 1756 /* 1757 * Sanity-check: shared interrupts must pass in a real dev-ID, 1758 * otherwise we'll have trouble later trying to figure out 1759 * which interrupt is which (messes up the interrupt freeing 1760 * logic etc). 1761 * 1762 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1763 * it cannot be set along with IRQF_NO_SUSPEND. 1764 */ 1765 if (((irqflags & IRQF_SHARED) && !dev_id) || 1766 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1767 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1768 return -EINVAL; 1769 1770 desc = irq_to_desc(irq); 1771 if (!desc) 1772 return -EINVAL; 1773 1774 if (!irq_settings_can_request(desc) || 1775 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1776 return -EINVAL; 1777 1778 if (!handler) { 1779 if (!thread_fn) 1780 return -EINVAL; 1781 handler = irq_default_primary_handler; 1782 } 1783 1784 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1785 if (!action) 1786 return -ENOMEM; 1787 1788 action->handler = handler; 1789 action->thread_fn = thread_fn; 1790 action->flags = irqflags; 1791 action->name = devname; 1792 action->dev_id = dev_id; 1793 1794 retval = irq_chip_pm_get(&desc->irq_data); 1795 if (retval < 0) { 1796 kfree(action); 1797 return retval; 1798 } 1799 1800 retval = __setup_irq(irq, desc, action); 1801 1802 if (retval) { 1803 irq_chip_pm_put(&desc->irq_data); 1804 kfree(action->secondary); 1805 kfree(action); 1806 } 1807 1808 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1809 if (!retval && (irqflags & IRQF_SHARED)) { 1810 /* 1811 * It's a shared IRQ -- the driver ought to be prepared for it 1812 * to happen immediately, so let's make sure.... 1813 * We disable the irq to make sure that a 'real' IRQ doesn't 1814 * run in parallel with our fake. 1815 */ 1816 unsigned long flags; 1817 1818 disable_irq(irq); 1819 local_irq_save(flags); 1820 1821 handler(irq, dev_id); 1822 1823 local_irq_restore(flags); 1824 enable_irq(irq); 1825 } 1826 #endif 1827 return retval; 1828 } 1829 EXPORT_SYMBOL(request_threaded_irq); 1830 1831 /** 1832 * request_any_context_irq - allocate an interrupt line 1833 * @irq: Interrupt line to allocate 1834 * @handler: Function to be called when the IRQ occurs. 1835 * Threaded handler for threaded interrupts. 1836 * @flags: Interrupt type flags 1837 * @name: An ascii name for the claiming device 1838 * @dev_id: A cookie passed back to the handler function 1839 * 1840 * This call allocates interrupt resources and enables the 1841 * interrupt line and IRQ handling. It selects either a 1842 * hardirq or threaded handling method depending on the 1843 * context. 1844 * 1845 * On failure, it returns a negative value. On success, 1846 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1847 */ 1848 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1849 unsigned long flags, const char *name, void *dev_id) 1850 { 1851 struct irq_desc *desc; 1852 int ret; 1853 1854 if (irq == IRQ_NOTCONNECTED) 1855 return -ENOTCONN; 1856 1857 desc = irq_to_desc(irq); 1858 if (!desc) 1859 return -EINVAL; 1860 1861 if (irq_settings_is_nested_thread(desc)) { 1862 ret = request_threaded_irq(irq, NULL, handler, 1863 flags, name, dev_id); 1864 return !ret ? IRQC_IS_NESTED : ret; 1865 } 1866 1867 ret = request_irq(irq, handler, flags, name, dev_id); 1868 return !ret ? IRQC_IS_HARDIRQ : ret; 1869 } 1870 EXPORT_SYMBOL_GPL(request_any_context_irq); 1871 1872 void enable_percpu_irq(unsigned int irq, unsigned int type) 1873 { 1874 unsigned int cpu = smp_processor_id(); 1875 unsigned long flags; 1876 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1877 1878 if (!desc) 1879 return; 1880 1881 /* 1882 * If the trigger type is not specified by the caller, then 1883 * use the default for this interrupt. 1884 */ 1885 type &= IRQ_TYPE_SENSE_MASK; 1886 if (type == IRQ_TYPE_NONE) 1887 type = irqd_get_trigger_type(&desc->irq_data); 1888 1889 if (type != IRQ_TYPE_NONE) { 1890 int ret; 1891 1892 ret = __irq_set_trigger(desc, type); 1893 1894 if (ret) { 1895 WARN(1, "failed to set type for IRQ%d\n", irq); 1896 goto out; 1897 } 1898 } 1899 1900 irq_percpu_enable(desc, cpu); 1901 out: 1902 irq_put_desc_unlock(desc, flags); 1903 } 1904 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1905 1906 /** 1907 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1908 * @irq: Linux irq number to check for 1909 * 1910 * Must be called from a non migratable context. Returns the enable 1911 * state of a per cpu interrupt on the current cpu. 1912 */ 1913 bool irq_percpu_is_enabled(unsigned int irq) 1914 { 1915 unsigned int cpu = smp_processor_id(); 1916 struct irq_desc *desc; 1917 unsigned long flags; 1918 bool is_enabled; 1919 1920 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1921 if (!desc) 1922 return false; 1923 1924 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1925 irq_put_desc_unlock(desc, flags); 1926 1927 return is_enabled; 1928 } 1929 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1930 1931 void disable_percpu_irq(unsigned int irq) 1932 { 1933 unsigned int cpu = smp_processor_id(); 1934 unsigned long flags; 1935 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1936 1937 if (!desc) 1938 return; 1939 1940 irq_percpu_disable(desc, cpu); 1941 irq_put_desc_unlock(desc, flags); 1942 } 1943 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1944 1945 /* 1946 * Internal function to unregister a percpu irqaction. 1947 */ 1948 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1949 { 1950 struct irq_desc *desc = irq_to_desc(irq); 1951 struct irqaction *action; 1952 unsigned long flags; 1953 1954 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1955 1956 if (!desc) 1957 return NULL; 1958 1959 raw_spin_lock_irqsave(&desc->lock, flags); 1960 1961 action = desc->action; 1962 if (!action || action->percpu_dev_id != dev_id) { 1963 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1964 goto bad; 1965 } 1966 1967 if (!cpumask_empty(desc->percpu_enabled)) { 1968 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1969 irq, cpumask_first(desc->percpu_enabled)); 1970 goto bad; 1971 } 1972 1973 /* Found it - now remove it from the list of entries: */ 1974 desc->action = NULL; 1975 1976 raw_spin_unlock_irqrestore(&desc->lock, flags); 1977 1978 unregister_handler_proc(irq, action); 1979 1980 irq_chip_pm_put(&desc->irq_data); 1981 module_put(desc->owner); 1982 return action; 1983 1984 bad: 1985 raw_spin_unlock_irqrestore(&desc->lock, flags); 1986 return NULL; 1987 } 1988 1989 /** 1990 * remove_percpu_irq - free a per-cpu interrupt 1991 * @irq: Interrupt line to free 1992 * @act: irqaction for the interrupt 1993 * 1994 * Used to remove interrupts statically setup by the early boot process. 1995 */ 1996 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1997 { 1998 struct irq_desc *desc = irq_to_desc(irq); 1999 2000 if (desc && irq_settings_is_per_cpu_devid(desc)) 2001 __free_percpu_irq(irq, act->percpu_dev_id); 2002 } 2003 2004 /** 2005 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2006 * @irq: Interrupt line to free 2007 * @dev_id: Device identity to free 2008 * 2009 * Remove a percpu interrupt handler. The handler is removed, but 2010 * the interrupt line is not disabled. This must be done on each 2011 * CPU before calling this function. The function does not return 2012 * until any executing interrupts for this IRQ have completed. 2013 * 2014 * This function must not be called from interrupt context. 2015 */ 2016 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2017 { 2018 struct irq_desc *desc = irq_to_desc(irq); 2019 2020 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2021 return; 2022 2023 chip_bus_lock(desc); 2024 kfree(__free_percpu_irq(irq, dev_id)); 2025 chip_bus_sync_unlock(desc); 2026 } 2027 EXPORT_SYMBOL_GPL(free_percpu_irq); 2028 2029 /** 2030 * setup_percpu_irq - setup a per-cpu interrupt 2031 * @irq: Interrupt line to setup 2032 * @act: irqaction for the interrupt 2033 * 2034 * Used to statically setup per-cpu interrupts in the early boot process. 2035 */ 2036 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2037 { 2038 struct irq_desc *desc = irq_to_desc(irq); 2039 int retval; 2040 2041 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2042 return -EINVAL; 2043 2044 retval = irq_chip_pm_get(&desc->irq_data); 2045 if (retval < 0) 2046 return retval; 2047 2048 retval = __setup_irq(irq, desc, act); 2049 2050 if (retval) 2051 irq_chip_pm_put(&desc->irq_data); 2052 2053 return retval; 2054 } 2055 2056 /** 2057 * __request_percpu_irq - allocate a percpu interrupt line 2058 * @irq: Interrupt line to allocate 2059 * @handler: Function to be called when the IRQ occurs. 2060 * @flags: Interrupt type flags (IRQF_TIMER only) 2061 * @devname: An ascii name for the claiming device 2062 * @dev_id: A percpu cookie passed back to the handler function 2063 * 2064 * This call allocates interrupt resources and enables the 2065 * interrupt on the local CPU. If the interrupt is supposed to be 2066 * enabled on other CPUs, it has to be done on each CPU using 2067 * enable_percpu_irq(). 2068 * 2069 * Dev_id must be globally unique. It is a per-cpu variable, and 2070 * the handler gets called with the interrupted CPU's instance of 2071 * that variable. 2072 */ 2073 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2074 unsigned long flags, const char *devname, 2075 void __percpu *dev_id) 2076 { 2077 struct irqaction *action; 2078 struct irq_desc *desc; 2079 int retval; 2080 2081 if (!dev_id) 2082 return -EINVAL; 2083 2084 desc = irq_to_desc(irq); 2085 if (!desc || !irq_settings_can_request(desc) || 2086 !irq_settings_is_per_cpu_devid(desc)) 2087 return -EINVAL; 2088 2089 if (flags && flags != IRQF_TIMER) 2090 return -EINVAL; 2091 2092 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2093 if (!action) 2094 return -ENOMEM; 2095 2096 action->handler = handler; 2097 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2098 action->name = devname; 2099 action->percpu_dev_id = dev_id; 2100 2101 retval = irq_chip_pm_get(&desc->irq_data); 2102 if (retval < 0) { 2103 kfree(action); 2104 return retval; 2105 } 2106 2107 retval = __setup_irq(irq, desc, action); 2108 2109 if (retval) { 2110 irq_chip_pm_put(&desc->irq_data); 2111 kfree(action); 2112 } 2113 2114 return retval; 2115 } 2116 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2117 2118 /** 2119 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2120 * @irq: Interrupt line that is forwarded to a VM 2121 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2122 * @state: a pointer to a boolean where the state is to be storeed 2123 * 2124 * This call snapshots the internal irqchip state of an 2125 * interrupt, returning into @state the bit corresponding to 2126 * stage @which 2127 * 2128 * This function should be called with preemption disabled if the 2129 * interrupt controller has per-cpu registers. 2130 */ 2131 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2132 bool *state) 2133 { 2134 struct irq_desc *desc; 2135 struct irq_data *data; 2136 struct irq_chip *chip; 2137 unsigned long flags; 2138 int err = -EINVAL; 2139 2140 desc = irq_get_desc_buslock(irq, &flags, 0); 2141 if (!desc) 2142 return err; 2143 2144 data = irq_desc_get_irq_data(desc); 2145 2146 do { 2147 chip = irq_data_get_irq_chip(data); 2148 if (chip->irq_get_irqchip_state) 2149 break; 2150 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2151 data = data->parent_data; 2152 #else 2153 data = NULL; 2154 #endif 2155 } while (data); 2156 2157 if (data) 2158 err = chip->irq_get_irqchip_state(data, which, state); 2159 2160 irq_put_desc_busunlock(desc, flags); 2161 return err; 2162 } 2163 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2164 2165 /** 2166 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2167 * @irq: Interrupt line that is forwarded to a VM 2168 * @which: State to be restored (one of IRQCHIP_STATE_*) 2169 * @val: Value corresponding to @which 2170 * 2171 * This call sets the internal irqchip state of an interrupt, 2172 * depending on the value of @which. 2173 * 2174 * This function should be called with preemption disabled if the 2175 * interrupt controller has per-cpu registers. 2176 */ 2177 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2178 bool val) 2179 { 2180 struct irq_desc *desc; 2181 struct irq_data *data; 2182 struct irq_chip *chip; 2183 unsigned long flags; 2184 int err = -EINVAL; 2185 2186 desc = irq_get_desc_buslock(irq, &flags, 0); 2187 if (!desc) 2188 return err; 2189 2190 data = irq_desc_get_irq_data(desc); 2191 2192 do { 2193 chip = irq_data_get_irq_chip(data); 2194 if (chip->irq_set_irqchip_state) 2195 break; 2196 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2197 data = data->parent_data; 2198 #else 2199 data = NULL; 2200 #endif 2201 } while (data); 2202 2203 if (data) 2204 err = chip->irq_set_irqchip_state(data, which, val); 2205 2206 irq_put_desc_busunlock(desc, flags); 2207 return err; 2208 } 2209 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2210