xref: /openbmc/linux/kernel/irq/manage.c (revision cbf8699996a6e7f2f674b3a2a4cef9f666ff613e)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209 			    bool force)
210 {
211 	struct irq_chip *chip = irq_data_get_irq_chip(data);
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 	int ret = 0;
214 
215 	if (!chip || !chip->irq_set_affinity)
216 		return -EINVAL;
217 
218 	if (irq_can_move_pcntxt(data)) {
219 		ret = irq_do_set_affinity(data, mask, force);
220 	} else {
221 		irqd_set_move_pending(data);
222 		irq_copy_pending(desc, mask);
223 	}
224 
225 	if (desc->affinity_notify) {
226 		kref_get(&desc->affinity_notify->kref);
227 		schedule_work(&desc->affinity_notify->work);
228 	}
229 	irqd_set(data, IRQD_AFFINITY_SET);
230 
231 	return ret;
232 }
233 
234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
235 {
236 	struct irq_desc *desc = irq_to_desc(irq);
237 	unsigned long flags;
238 	int ret;
239 
240 	if (!desc)
241 		return -EINVAL;
242 
243 	raw_spin_lock_irqsave(&desc->lock, flags);
244 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
245 	raw_spin_unlock_irqrestore(&desc->lock, flags);
246 	return ret;
247 }
248 
249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
250 {
251 	unsigned long flags;
252 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
253 
254 	if (!desc)
255 		return -EINVAL;
256 	desc->affinity_hint = m;
257 	irq_put_desc_unlock(desc, flags);
258 	/* set the initial affinity to prevent every interrupt being on CPU0 */
259 	if (m)
260 		__irq_set_affinity(irq, m, false);
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
264 
265 static void irq_affinity_notify(struct work_struct *work)
266 {
267 	struct irq_affinity_notify *notify =
268 		container_of(work, struct irq_affinity_notify, work);
269 	struct irq_desc *desc = irq_to_desc(notify->irq);
270 	cpumask_var_t cpumask;
271 	unsigned long flags;
272 
273 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
274 		goto out;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	if (irq_move_pending(&desc->irq_data))
278 		irq_get_pending(cpumask, desc);
279 	else
280 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
281 	raw_spin_unlock_irqrestore(&desc->lock, flags);
282 
283 	notify->notify(notify, cpumask);
284 
285 	free_cpumask_var(cpumask);
286 out:
287 	kref_put(&notify->kref, notify->release);
288 }
289 
290 /**
291  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
292  *	@irq:		Interrupt for which to enable/disable notification
293  *	@notify:	Context for notification, or %NULL to disable
294  *			notification.  Function pointers must be initialised;
295  *			the other fields will be initialised by this function.
296  *
297  *	Must be called in process context.  Notification may only be enabled
298  *	after the IRQ is allocated and must be disabled before the IRQ is
299  *	freed using free_irq().
300  */
301 int
302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
303 {
304 	struct irq_desc *desc = irq_to_desc(irq);
305 	struct irq_affinity_notify *old_notify;
306 	unsigned long flags;
307 
308 	/* The release function is promised process context */
309 	might_sleep();
310 
311 	if (!desc)
312 		return -EINVAL;
313 
314 	/* Complete initialisation of *notify */
315 	if (notify) {
316 		notify->irq = irq;
317 		kref_init(&notify->kref);
318 		INIT_WORK(&notify->work, irq_affinity_notify);
319 	}
320 
321 	raw_spin_lock_irqsave(&desc->lock, flags);
322 	old_notify = desc->affinity_notify;
323 	desc->affinity_notify = notify;
324 	raw_spin_unlock_irqrestore(&desc->lock, flags);
325 
326 	if (old_notify)
327 		kref_put(&old_notify->kref, old_notify->release);
328 
329 	return 0;
330 }
331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
332 
333 #ifndef CONFIG_AUTO_IRQ_AFFINITY
334 /*
335  * Generic version of the affinity autoselector.
336  */
337 int irq_setup_affinity(struct irq_desc *desc)
338 {
339 	struct cpumask *set = irq_default_affinity;
340 	int ret, node = irq_desc_get_node(desc);
341 	static DEFINE_RAW_SPINLOCK(mask_lock);
342 	static struct cpumask mask;
343 
344 	/* Excludes PER_CPU and NO_BALANCE interrupts */
345 	if (!__irq_can_set_affinity(desc))
346 		return 0;
347 
348 	raw_spin_lock(&mask_lock);
349 	/*
350 	 * Preserve the managed affinity setting and a userspace affinity
351 	 * setup, but make sure that one of the targets is online.
352 	 */
353 	if (irqd_affinity_is_managed(&desc->irq_data) ||
354 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
355 		if (cpumask_intersects(desc->irq_common_data.affinity,
356 				       cpu_online_mask))
357 			set = desc->irq_common_data.affinity;
358 		else
359 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
360 	}
361 
362 	cpumask_and(&mask, cpu_online_mask, set);
363 	if (node != NUMA_NO_NODE) {
364 		const struct cpumask *nodemask = cpumask_of_node(node);
365 
366 		/* make sure at least one of the cpus in nodemask is online */
367 		if (cpumask_intersects(&mask, nodemask))
368 			cpumask_and(&mask, &mask, nodemask);
369 	}
370 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
371 	raw_spin_unlock(&mask_lock);
372 	return ret;
373 }
374 #else
375 /* Wrapper for ALPHA specific affinity selector magic */
376 int irq_setup_affinity(struct irq_desc *desc)
377 {
378 	return irq_select_affinity(irq_desc_get_irq(desc));
379 }
380 #endif
381 
382 /*
383  * Called when a bogus affinity is set via /proc/irq
384  */
385 int irq_select_affinity_usr(unsigned int irq)
386 {
387 	struct irq_desc *desc = irq_to_desc(irq);
388 	unsigned long flags;
389 	int ret;
390 
391 	raw_spin_lock_irqsave(&desc->lock, flags);
392 	ret = irq_setup_affinity(desc);
393 	raw_spin_unlock_irqrestore(&desc->lock, flags);
394 	return ret;
395 }
396 #endif
397 
398 /**
399  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
400  *	@irq: interrupt number to set affinity
401  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
402  *	            specific data for percpu_devid interrupts
403  *
404  *	This function uses the vCPU specific data to set the vCPU
405  *	affinity for an irq. The vCPU specific data is passed from
406  *	outside, such as KVM. One example code path is as below:
407  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
408  */
409 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
410 {
411 	unsigned long flags;
412 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
413 	struct irq_data *data;
414 	struct irq_chip *chip;
415 	int ret = -ENOSYS;
416 
417 	if (!desc)
418 		return -EINVAL;
419 
420 	data = irq_desc_get_irq_data(desc);
421 	do {
422 		chip = irq_data_get_irq_chip(data);
423 		if (chip && chip->irq_set_vcpu_affinity)
424 			break;
425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
426 		data = data->parent_data;
427 #else
428 		data = NULL;
429 #endif
430 	} while (data);
431 
432 	if (data)
433 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
434 	irq_put_desc_unlock(desc, flags);
435 
436 	return ret;
437 }
438 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
439 
440 void __disable_irq(struct irq_desc *desc)
441 {
442 	if (!desc->depth++)
443 		irq_disable(desc);
444 }
445 
446 static int __disable_irq_nosync(unsigned int irq)
447 {
448 	unsigned long flags;
449 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
450 
451 	if (!desc)
452 		return -EINVAL;
453 	__disable_irq(desc);
454 	irq_put_desc_busunlock(desc, flags);
455 	return 0;
456 }
457 
458 /**
459  *	disable_irq_nosync - disable an irq without waiting
460  *	@irq: Interrupt to disable
461  *
462  *	Disable the selected interrupt line.  Disables and Enables are
463  *	nested.
464  *	Unlike disable_irq(), this function does not ensure existing
465  *	instances of the IRQ handler have completed before returning.
466  *
467  *	This function may be called from IRQ context.
468  */
469 void disable_irq_nosync(unsigned int irq)
470 {
471 	__disable_irq_nosync(irq);
472 }
473 EXPORT_SYMBOL(disable_irq_nosync);
474 
475 /**
476  *	disable_irq - disable an irq and wait for completion
477  *	@irq: Interrupt to disable
478  *
479  *	Disable the selected interrupt line.  Enables and Disables are
480  *	nested.
481  *	This function waits for any pending IRQ handlers for this interrupt
482  *	to complete before returning. If you use this function while
483  *	holding a resource the IRQ handler may need you will deadlock.
484  *
485  *	This function may be called - with care - from IRQ context.
486  */
487 void disable_irq(unsigned int irq)
488 {
489 	if (!__disable_irq_nosync(irq))
490 		synchronize_irq(irq);
491 }
492 EXPORT_SYMBOL(disable_irq);
493 
494 /**
495  *	disable_hardirq - disables an irq and waits for hardirq completion
496  *	@irq: Interrupt to disable
497  *
498  *	Disable the selected interrupt line.  Enables and Disables are
499  *	nested.
500  *	This function waits for any pending hard IRQ handlers for this
501  *	interrupt to complete before returning. If you use this function while
502  *	holding a resource the hard IRQ handler may need you will deadlock.
503  *
504  *	When used to optimistically disable an interrupt from atomic context
505  *	the return value must be checked.
506  *
507  *	Returns: false if a threaded handler is active.
508  *
509  *	This function may be called - with care - from IRQ context.
510  */
511 bool disable_hardirq(unsigned int irq)
512 {
513 	if (!__disable_irq_nosync(irq))
514 		return synchronize_hardirq(irq);
515 
516 	return false;
517 }
518 EXPORT_SYMBOL_GPL(disable_hardirq);
519 
520 void __enable_irq(struct irq_desc *desc)
521 {
522 	switch (desc->depth) {
523 	case 0:
524  err_out:
525 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
526 		     irq_desc_get_irq(desc));
527 		break;
528 	case 1: {
529 		if (desc->istate & IRQS_SUSPENDED)
530 			goto err_out;
531 		/* Prevent probing on this irq: */
532 		irq_settings_set_noprobe(desc);
533 		/*
534 		 * Call irq_startup() not irq_enable() here because the
535 		 * interrupt might be marked NOAUTOEN. So irq_startup()
536 		 * needs to be invoked when it gets enabled the first
537 		 * time. If it was already started up, then irq_startup()
538 		 * will invoke irq_enable() under the hood.
539 		 */
540 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
541 		break;
542 	}
543 	default:
544 		desc->depth--;
545 	}
546 }
547 
548 /**
549  *	enable_irq - enable handling of an irq
550  *	@irq: Interrupt to enable
551  *
552  *	Undoes the effect of one call to disable_irq().  If this
553  *	matches the last disable, processing of interrupts on this
554  *	IRQ line is re-enabled.
555  *
556  *	This function may be called from IRQ context only when
557  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
558  */
559 void enable_irq(unsigned int irq)
560 {
561 	unsigned long flags;
562 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
563 
564 	if (!desc)
565 		return;
566 	if (WARN(!desc->irq_data.chip,
567 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
568 		goto out;
569 
570 	__enable_irq(desc);
571 out:
572 	irq_put_desc_busunlock(desc, flags);
573 }
574 EXPORT_SYMBOL(enable_irq);
575 
576 static int set_irq_wake_real(unsigned int irq, unsigned int on)
577 {
578 	struct irq_desc *desc = irq_to_desc(irq);
579 	int ret = -ENXIO;
580 
581 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
582 		return 0;
583 
584 	if (desc->irq_data.chip->irq_set_wake)
585 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
586 
587 	return ret;
588 }
589 
590 /**
591  *	irq_set_irq_wake - control irq power management wakeup
592  *	@irq:	interrupt to control
593  *	@on:	enable/disable power management wakeup
594  *
595  *	Enable/disable power management wakeup mode, which is
596  *	disabled by default.  Enables and disables must match,
597  *	just as they match for non-wakeup mode support.
598  *
599  *	Wakeup mode lets this IRQ wake the system from sleep
600  *	states like "suspend to RAM".
601  */
602 int irq_set_irq_wake(unsigned int irq, unsigned int on)
603 {
604 	unsigned long flags;
605 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
606 	int ret = 0;
607 
608 	if (!desc)
609 		return -EINVAL;
610 
611 	/* wakeup-capable irqs can be shared between drivers that
612 	 * don't need to have the same sleep mode behaviors.
613 	 */
614 	if (on) {
615 		if (desc->wake_depth++ == 0) {
616 			ret = set_irq_wake_real(irq, on);
617 			if (ret)
618 				desc->wake_depth = 0;
619 			else
620 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
621 		}
622 	} else {
623 		if (desc->wake_depth == 0) {
624 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
625 		} else if (--desc->wake_depth == 0) {
626 			ret = set_irq_wake_real(irq, on);
627 			if (ret)
628 				desc->wake_depth = 1;
629 			else
630 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
631 		}
632 	}
633 	irq_put_desc_busunlock(desc, flags);
634 	return ret;
635 }
636 EXPORT_SYMBOL(irq_set_irq_wake);
637 
638 /*
639  * Internal function that tells the architecture code whether a
640  * particular irq has been exclusively allocated or is available
641  * for driver use.
642  */
643 int can_request_irq(unsigned int irq, unsigned long irqflags)
644 {
645 	unsigned long flags;
646 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 	int canrequest = 0;
648 
649 	if (!desc)
650 		return 0;
651 
652 	if (irq_settings_can_request(desc)) {
653 		if (!desc->action ||
654 		    irqflags & desc->action->flags & IRQF_SHARED)
655 			canrequest = 1;
656 	}
657 	irq_put_desc_unlock(desc, flags);
658 	return canrequest;
659 }
660 
661 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
662 {
663 	struct irq_chip *chip = desc->irq_data.chip;
664 	int ret, unmask = 0;
665 
666 	if (!chip || !chip->irq_set_type) {
667 		/*
668 		 * IRQF_TRIGGER_* but the PIC does not support multiple
669 		 * flow-types?
670 		 */
671 		pr_debug("No set_type function for IRQ %d (%s)\n",
672 			 irq_desc_get_irq(desc),
673 			 chip ? (chip->name ? : "unknown") : "unknown");
674 		return 0;
675 	}
676 
677 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
678 		if (!irqd_irq_masked(&desc->irq_data))
679 			mask_irq(desc);
680 		if (!irqd_irq_disabled(&desc->irq_data))
681 			unmask = 1;
682 	}
683 
684 	/* Mask all flags except trigger mode */
685 	flags &= IRQ_TYPE_SENSE_MASK;
686 	ret = chip->irq_set_type(&desc->irq_data, flags);
687 
688 	switch (ret) {
689 	case IRQ_SET_MASK_OK:
690 	case IRQ_SET_MASK_OK_DONE:
691 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
692 		irqd_set(&desc->irq_data, flags);
693 
694 	case IRQ_SET_MASK_OK_NOCOPY:
695 		flags = irqd_get_trigger_type(&desc->irq_data);
696 		irq_settings_set_trigger_mask(desc, flags);
697 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
698 		irq_settings_clr_level(desc);
699 		if (flags & IRQ_TYPE_LEVEL_MASK) {
700 			irq_settings_set_level(desc);
701 			irqd_set(&desc->irq_data, IRQD_LEVEL);
702 		}
703 
704 		ret = 0;
705 		break;
706 	default:
707 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
708 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
709 	}
710 	if (unmask)
711 		unmask_irq(desc);
712 	return ret;
713 }
714 
715 #ifdef CONFIG_HARDIRQS_SW_RESEND
716 int irq_set_parent(int irq, int parent_irq)
717 {
718 	unsigned long flags;
719 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
720 
721 	if (!desc)
722 		return -EINVAL;
723 
724 	desc->parent_irq = parent_irq;
725 
726 	irq_put_desc_unlock(desc, flags);
727 	return 0;
728 }
729 EXPORT_SYMBOL_GPL(irq_set_parent);
730 #endif
731 
732 /*
733  * Default primary interrupt handler for threaded interrupts. Is
734  * assigned as primary handler when request_threaded_irq is called
735  * with handler == NULL. Useful for oneshot interrupts.
736  */
737 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
738 {
739 	return IRQ_WAKE_THREAD;
740 }
741 
742 /*
743  * Primary handler for nested threaded interrupts. Should never be
744  * called.
745  */
746 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
747 {
748 	WARN(1, "Primary handler called for nested irq %d\n", irq);
749 	return IRQ_NONE;
750 }
751 
752 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
753 {
754 	WARN(1, "Secondary action handler called for irq %d\n", irq);
755 	return IRQ_NONE;
756 }
757 
758 static int irq_wait_for_interrupt(struct irqaction *action)
759 {
760 	set_current_state(TASK_INTERRUPTIBLE);
761 
762 	while (!kthread_should_stop()) {
763 
764 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
765 				       &action->thread_flags)) {
766 			__set_current_state(TASK_RUNNING);
767 			return 0;
768 		}
769 		schedule();
770 		set_current_state(TASK_INTERRUPTIBLE);
771 	}
772 	__set_current_state(TASK_RUNNING);
773 	return -1;
774 }
775 
776 /*
777  * Oneshot interrupts keep the irq line masked until the threaded
778  * handler finished. unmask if the interrupt has not been disabled and
779  * is marked MASKED.
780  */
781 static void irq_finalize_oneshot(struct irq_desc *desc,
782 				 struct irqaction *action)
783 {
784 	if (!(desc->istate & IRQS_ONESHOT) ||
785 	    action->handler == irq_forced_secondary_handler)
786 		return;
787 again:
788 	chip_bus_lock(desc);
789 	raw_spin_lock_irq(&desc->lock);
790 
791 	/*
792 	 * Implausible though it may be we need to protect us against
793 	 * the following scenario:
794 	 *
795 	 * The thread is faster done than the hard interrupt handler
796 	 * on the other CPU. If we unmask the irq line then the
797 	 * interrupt can come in again and masks the line, leaves due
798 	 * to IRQS_INPROGRESS and the irq line is masked forever.
799 	 *
800 	 * This also serializes the state of shared oneshot handlers
801 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
802 	 * irq_wake_thread(). See the comment there which explains the
803 	 * serialization.
804 	 */
805 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
806 		raw_spin_unlock_irq(&desc->lock);
807 		chip_bus_sync_unlock(desc);
808 		cpu_relax();
809 		goto again;
810 	}
811 
812 	/*
813 	 * Now check again, whether the thread should run. Otherwise
814 	 * we would clear the threads_oneshot bit of this thread which
815 	 * was just set.
816 	 */
817 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
818 		goto out_unlock;
819 
820 	desc->threads_oneshot &= ~action->thread_mask;
821 
822 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
823 	    irqd_irq_masked(&desc->irq_data))
824 		unmask_threaded_irq(desc);
825 
826 out_unlock:
827 	raw_spin_unlock_irq(&desc->lock);
828 	chip_bus_sync_unlock(desc);
829 }
830 
831 #ifdef CONFIG_SMP
832 /*
833  * Check whether we need to change the affinity of the interrupt thread.
834  */
835 static void
836 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
837 {
838 	cpumask_var_t mask;
839 	bool valid = true;
840 
841 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
842 		return;
843 
844 	/*
845 	 * In case we are out of memory we set IRQTF_AFFINITY again and
846 	 * try again next time
847 	 */
848 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
849 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
850 		return;
851 	}
852 
853 	raw_spin_lock_irq(&desc->lock);
854 	/*
855 	 * This code is triggered unconditionally. Check the affinity
856 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
857 	 */
858 	if (cpumask_available(desc->irq_common_data.affinity)) {
859 		const struct cpumask *m;
860 
861 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
862 		cpumask_copy(mask, m);
863 	} else {
864 		valid = false;
865 	}
866 	raw_spin_unlock_irq(&desc->lock);
867 
868 	if (valid)
869 		set_cpus_allowed_ptr(current, mask);
870 	free_cpumask_var(mask);
871 }
872 #else
873 static inline void
874 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
875 #endif
876 
877 /*
878  * Interrupts which are not explicitely requested as threaded
879  * interrupts rely on the implicit bh/preempt disable of the hard irq
880  * context. So we need to disable bh here to avoid deadlocks and other
881  * side effects.
882  */
883 static irqreturn_t
884 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
885 {
886 	irqreturn_t ret;
887 
888 	local_bh_disable();
889 	ret = action->thread_fn(action->irq, action->dev_id);
890 	irq_finalize_oneshot(desc, action);
891 	local_bh_enable();
892 	return ret;
893 }
894 
895 /*
896  * Interrupts explicitly requested as threaded interrupts want to be
897  * preemtible - many of them need to sleep and wait for slow busses to
898  * complete.
899  */
900 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
901 		struct irqaction *action)
902 {
903 	irqreturn_t ret;
904 
905 	ret = action->thread_fn(action->irq, action->dev_id);
906 	irq_finalize_oneshot(desc, action);
907 	return ret;
908 }
909 
910 static void wake_threads_waitq(struct irq_desc *desc)
911 {
912 	if (atomic_dec_and_test(&desc->threads_active))
913 		wake_up(&desc->wait_for_threads);
914 }
915 
916 static void irq_thread_dtor(struct callback_head *unused)
917 {
918 	struct task_struct *tsk = current;
919 	struct irq_desc *desc;
920 	struct irqaction *action;
921 
922 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
923 		return;
924 
925 	action = kthread_data(tsk);
926 
927 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
928 	       tsk->comm, tsk->pid, action->irq);
929 
930 
931 	desc = irq_to_desc(action->irq);
932 	/*
933 	 * If IRQTF_RUNTHREAD is set, we need to decrement
934 	 * desc->threads_active and wake possible waiters.
935 	 */
936 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
937 		wake_threads_waitq(desc);
938 
939 	/* Prevent a stale desc->threads_oneshot */
940 	irq_finalize_oneshot(desc, action);
941 }
942 
943 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
944 {
945 	struct irqaction *secondary = action->secondary;
946 
947 	if (WARN_ON_ONCE(!secondary))
948 		return;
949 
950 	raw_spin_lock_irq(&desc->lock);
951 	__irq_wake_thread(desc, secondary);
952 	raw_spin_unlock_irq(&desc->lock);
953 }
954 
955 /*
956  * Interrupt handler thread
957  */
958 static int irq_thread(void *data)
959 {
960 	struct callback_head on_exit_work;
961 	struct irqaction *action = data;
962 	struct irq_desc *desc = irq_to_desc(action->irq);
963 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
964 			struct irqaction *action);
965 
966 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
967 					&action->thread_flags))
968 		handler_fn = irq_forced_thread_fn;
969 	else
970 		handler_fn = irq_thread_fn;
971 
972 	init_task_work(&on_exit_work, irq_thread_dtor);
973 	task_work_add(current, &on_exit_work, false);
974 
975 	irq_thread_check_affinity(desc, action);
976 
977 	while (!irq_wait_for_interrupt(action)) {
978 		irqreturn_t action_ret;
979 
980 		irq_thread_check_affinity(desc, action);
981 
982 		action_ret = handler_fn(desc, action);
983 		if (action_ret == IRQ_HANDLED)
984 			atomic_inc(&desc->threads_handled);
985 		if (action_ret == IRQ_WAKE_THREAD)
986 			irq_wake_secondary(desc, action);
987 
988 		wake_threads_waitq(desc);
989 	}
990 
991 	/*
992 	 * This is the regular exit path. __free_irq() is stopping the
993 	 * thread via kthread_stop() after calling
994 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
995 	 * oneshot mask bit can be set. We cannot verify that as we
996 	 * cannot touch the oneshot mask at this point anymore as
997 	 * __setup_irq() might have given out currents thread_mask
998 	 * again.
999 	 */
1000 	task_work_cancel(current, irq_thread_dtor);
1001 	return 0;
1002 }
1003 
1004 /**
1005  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1006  *	@irq:		Interrupt line
1007  *	@dev_id:	Device identity for which the thread should be woken
1008  *
1009  */
1010 void irq_wake_thread(unsigned int irq, void *dev_id)
1011 {
1012 	struct irq_desc *desc = irq_to_desc(irq);
1013 	struct irqaction *action;
1014 	unsigned long flags;
1015 
1016 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1017 		return;
1018 
1019 	raw_spin_lock_irqsave(&desc->lock, flags);
1020 	for_each_action_of_desc(desc, action) {
1021 		if (action->dev_id == dev_id) {
1022 			if (action->thread)
1023 				__irq_wake_thread(desc, action);
1024 			break;
1025 		}
1026 	}
1027 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1028 }
1029 EXPORT_SYMBOL_GPL(irq_wake_thread);
1030 
1031 static int irq_setup_forced_threading(struct irqaction *new)
1032 {
1033 	if (!force_irqthreads)
1034 		return 0;
1035 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1036 		return 0;
1037 
1038 	new->flags |= IRQF_ONESHOT;
1039 
1040 	/*
1041 	 * Handle the case where we have a real primary handler and a
1042 	 * thread handler. We force thread them as well by creating a
1043 	 * secondary action.
1044 	 */
1045 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1046 		/* Allocate the secondary action */
1047 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1048 		if (!new->secondary)
1049 			return -ENOMEM;
1050 		new->secondary->handler = irq_forced_secondary_handler;
1051 		new->secondary->thread_fn = new->thread_fn;
1052 		new->secondary->dev_id = new->dev_id;
1053 		new->secondary->irq = new->irq;
1054 		new->secondary->name = new->name;
1055 	}
1056 	/* Deal with the primary handler */
1057 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1058 	new->thread_fn = new->handler;
1059 	new->handler = irq_default_primary_handler;
1060 	return 0;
1061 }
1062 
1063 static int irq_request_resources(struct irq_desc *desc)
1064 {
1065 	struct irq_data *d = &desc->irq_data;
1066 	struct irq_chip *c = d->chip;
1067 
1068 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1069 }
1070 
1071 static void irq_release_resources(struct irq_desc *desc)
1072 {
1073 	struct irq_data *d = &desc->irq_data;
1074 	struct irq_chip *c = d->chip;
1075 
1076 	if (c->irq_release_resources)
1077 		c->irq_release_resources(d);
1078 }
1079 
1080 static int
1081 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1082 {
1083 	struct task_struct *t;
1084 	struct sched_param param = {
1085 		.sched_priority = MAX_USER_RT_PRIO/2,
1086 	};
1087 
1088 	if (!secondary) {
1089 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1090 				   new->name);
1091 	} else {
1092 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1093 				   new->name);
1094 		param.sched_priority -= 1;
1095 	}
1096 
1097 	if (IS_ERR(t))
1098 		return PTR_ERR(t);
1099 
1100 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1101 
1102 	/*
1103 	 * We keep the reference to the task struct even if
1104 	 * the thread dies to avoid that the interrupt code
1105 	 * references an already freed task_struct.
1106 	 */
1107 	get_task_struct(t);
1108 	new->thread = t;
1109 	/*
1110 	 * Tell the thread to set its affinity. This is
1111 	 * important for shared interrupt handlers as we do
1112 	 * not invoke setup_affinity() for the secondary
1113 	 * handlers as everything is already set up. Even for
1114 	 * interrupts marked with IRQF_NO_BALANCE this is
1115 	 * correct as we want the thread to move to the cpu(s)
1116 	 * on which the requesting code placed the interrupt.
1117 	 */
1118 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Internal function to register an irqaction - typically used to
1124  * allocate special interrupts that are part of the architecture.
1125  *
1126  * Locking rules:
1127  *
1128  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1129  *   chip_bus_lock	Provides serialization for slow bus operations
1130  *     desc->lock	Provides serialization against hard interrupts
1131  *
1132  * chip_bus_lock and desc->lock are sufficient for all other management and
1133  * interrupt related functions. desc->request_mutex solely serializes
1134  * request/free_irq().
1135  */
1136 static int
1137 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1138 {
1139 	struct irqaction *old, **old_ptr;
1140 	unsigned long flags, thread_mask = 0;
1141 	int ret, nested, shared = 0;
1142 
1143 	if (!desc)
1144 		return -EINVAL;
1145 
1146 	if (desc->irq_data.chip == &no_irq_chip)
1147 		return -ENOSYS;
1148 	if (!try_module_get(desc->owner))
1149 		return -ENODEV;
1150 
1151 	new->irq = irq;
1152 
1153 	/*
1154 	 * If the trigger type is not specified by the caller,
1155 	 * then use the default for this interrupt.
1156 	 */
1157 	if (!(new->flags & IRQF_TRIGGER_MASK))
1158 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1159 
1160 	/*
1161 	 * Check whether the interrupt nests into another interrupt
1162 	 * thread.
1163 	 */
1164 	nested = irq_settings_is_nested_thread(desc);
1165 	if (nested) {
1166 		if (!new->thread_fn) {
1167 			ret = -EINVAL;
1168 			goto out_mput;
1169 		}
1170 		/*
1171 		 * Replace the primary handler which was provided from
1172 		 * the driver for non nested interrupt handling by the
1173 		 * dummy function which warns when called.
1174 		 */
1175 		new->handler = irq_nested_primary_handler;
1176 	} else {
1177 		if (irq_settings_can_thread(desc)) {
1178 			ret = irq_setup_forced_threading(new);
1179 			if (ret)
1180 				goto out_mput;
1181 		}
1182 	}
1183 
1184 	/*
1185 	 * Create a handler thread when a thread function is supplied
1186 	 * and the interrupt does not nest into another interrupt
1187 	 * thread.
1188 	 */
1189 	if (new->thread_fn && !nested) {
1190 		ret = setup_irq_thread(new, irq, false);
1191 		if (ret)
1192 			goto out_mput;
1193 		if (new->secondary) {
1194 			ret = setup_irq_thread(new->secondary, irq, true);
1195 			if (ret)
1196 				goto out_thread;
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Drivers are often written to work w/o knowledge about the
1202 	 * underlying irq chip implementation, so a request for a
1203 	 * threaded irq without a primary hard irq context handler
1204 	 * requires the ONESHOT flag to be set. Some irq chips like
1205 	 * MSI based interrupts are per se one shot safe. Check the
1206 	 * chip flags, so we can avoid the unmask dance at the end of
1207 	 * the threaded handler for those.
1208 	 */
1209 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1210 		new->flags &= ~IRQF_ONESHOT;
1211 
1212 	/*
1213 	 * Protects against a concurrent __free_irq() call which might wait
1214 	 * for synchronize_irq() to complete without holding the optional
1215 	 * chip bus lock and desc->lock.
1216 	 */
1217 	mutex_lock(&desc->request_mutex);
1218 
1219 	/*
1220 	 * Acquire bus lock as the irq_request_resources() callback below
1221 	 * might rely on the serialization or the magic power management
1222 	 * functions which are abusing the irq_bus_lock() callback,
1223 	 */
1224 	chip_bus_lock(desc);
1225 
1226 	/* First installed action requests resources. */
1227 	if (!desc->action) {
1228 		ret = irq_request_resources(desc);
1229 		if (ret) {
1230 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1231 			       new->name, irq, desc->irq_data.chip->name);
1232 			goto out_bus_unlock;
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * The following block of code has to be executed atomically
1238 	 * protected against a concurrent interrupt and any of the other
1239 	 * management calls which are not serialized via
1240 	 * desc->request_mutex or the optional bus lock.
1241 	 */
1242 	raw_spin_lock_irqsave(&desc->lock, flags);
1243 	old_ptr = &desc->action;
1244 	old = *old_ptr;
1245 	if (old) {
1246 		/*
1247 		 * Can't share interrupts unless both agree to and are
1248 		 * the same type (level, edge, polarity). So both flag
1249 		 * fields must have IRQF_SHARED set and the bits which
1250 		 * set the trigger type must match. Also all must
1251 		 * agree on ONESHOT.
1252 		 */
1253 		unsigned int oldtype;
1254 
1255 		/*
1256 		 * If nobody did set the configuration before, inherit
1257 		 * the one provided by the requester.
1258 		 */
1259 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1260 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1261 		} else {
1262 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1263 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1264 		}
1265 
1266 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1267 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1268 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1269 			goto mismatch;
1270 
1271 		/* All handlers must agree on per-cpuness */
1272 		if ((old->flags & IRQF_PERCPU) !=
1273 		    (new->flags & IRQF_PERCPU))
1274 			goto mismatch;
1275 
1276 		/* add new interrupt at end of irq queue */
1277 		do {
1278 			/*
1279 			 * Or all existing action->thread_mask bits,
1280 			 * so we can find the next zero bit for this
1281 			 * new action.
1282 			 */
1283 			thread_mask |= old->thread_mask;
1284 			old_ptr = &old->next;
1285 			old = *old_ptr;
1286 		} while (old);
1287 		shared = 1;
1288 	}
1289 
1290 	/*
1291 	 * Setup the thread mask for this irqaction for ONESHOT. For
1292 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1293 	 * conditional in irq_wake_thread().
1294 	 */
1295 	if (new->flags & IRQF_ONESHOT) {
1296 		/*
1297 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1298 		 * but who knows.
1299 		 */
1300 		if (thread_mask == ~0UL) {
1301 			ret = -EBUSY;
1302 			goto out_unlock;
1303 		}
1304 		/*
1305 		 * The thread_mask for the action is or'ed to
1306 		 * desc->thread_active to indicate that the
1307 		 * IRQF_ONESHOT thread handler has been woken, but not
1308 		 * yet finished. The bit is cleared when a thread
1309 		 * completes. When all threads of a shared interrupt
1310 		 * line have completed desc->threads_active becomes
1311 		 * zero and the interrupt line is unmasked. See
1312 		 * handle.c:irq_wake_thread() for further information.
1313 		 *
1314 		 * If no thread is woken by primary (hard irq context)
1315 		 * interrupt handlers, then desc->threads_active is
1316 		 * also checked for zero to unmask the irq line in the
1317 		 * affected hard irq flow handlers
1318 		 * (handle_[fasteoi|level]_irq).
1319 		 *
1320 		 * The new action gets the first zero bit of
1321 		 * thread_mask assigned. See the loop above which or's
1322 		 * all existing action->thread_mask bits.
1323 		 */
1324 		new->thread_mask = 1UL << ffz(thread_mask);
1325 
1326 	} else if (new->handler == irq_default_primary_handler &&
1327 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1328 		/*
1329 		 * The interrupt was requested with handler = NULL, so
1330 		 * we use the default primary handler for it. But it
1331 		 * does not have the oneshot flag set. In combination
1332 		 * with level interrupts this is deadly, because the
1333 		 * default primary handler just wakes the thread, then
1334 		 * the irq lines is reenabled, but the device still
1335 		 * has the level irq asserted. Rinse and repeat....
1336 		 *
1337 		 * While this works for edge type interrupts, we play
1338 		 * it safe and reject unconditionally because we can't
1339 		 * say for sure which type this interrupt really
1340 		 * has. The type flags are unreliable as the
1341 		 * underlying chip implementation can override them.
1342 		 */
1343 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1344 		       irq);
1345 		ret = -EINVAL;
1346 		goto out_unlock;
1347 	}
1348 
1349 	if (!shared) {
1350 		init_waitqueue_head(&desc->wait_for_threads);
1351 
1352 		/* Setup the type (level, edge polarity) if configured: */
1353 		if (new->flags & IRQF_TRIGGER_MASK) {
1354 			ret = __irq_set_trigger(desc,
1355 						new->flags & IRQF_TRIGGER_MASK);
1356 
1357 			if (ret)
1358 				goto out_unlock;
1359 		}
1360 
1361 		/*
1362 		 * Activate the interrupt. That activation must happen
1363 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1364 		 * and the callers are supposed to handle
1365 		 * that. enable_irq() of an interrupt requested with
1366 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1367 		 * keeps it in shutdown mode, it merily associates
1368 		 * resources if necessary and if that's not possible it
1369 		 * fails. Interrupts which are in managed shutdown mode
1370 		 * will simply ignore that activation request.
1371 		 */
1372 		ret = irq_activate(desc);
1373 		if (ret)
1374 			goto out_unlock;
1375 
1376 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1377 				  IRQS_ONESHOT | IRQS_WAITING);
1378 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1379 
1380 		if (new->flags & IRQF_PERCPU) {
1381 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1382 			irq_settings_set_per_cpu(desc);
1383 		}
1384 
1385 		if (new->flags & IRQF_ONESHOT)
1386 			desc->istate |= IRQS_ONESHOT;
1387 
1388 		/* Exclude IRQ from balancing if requested */
1389 		if (new->flags & IRQF_NOBALANCING) {
1390 			irq_settings_set_no_balancing(desc);
1391 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1392 		}
1393 
1394 		if (irq_settings_can_autoenable(desc)) {
1395 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1396 		} else {
1397 			/*
1398 			 * Shared interrupts do not go well with disabling
1399 			 * auto enable. The sharing interrupt might request
1400 			 * it while it's still disabled and then wait for
1401 			 * interrupts forever.
1402 			 */
1403 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1404 			/* Undo nested disables: */
1405 			desc->depth = 1;
1406 		}
1407 
1408 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1409 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1410 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1411 
1412 		if (nmsk != omsk)
1413 			/* hope the handler works with current  trigger mode */
1414 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1415 				irq, omsk, nmsk);
1416 	}
1417 
1418 	*old_ptr = new;
1419 
1420 	irq_pm_install_action(desc, new);
1421 
1422 	/* Reset broken irq detection when installing new handler */
1423 	desc->irq_count = 0;
1424 	desc->irqs_unhandled = 0;
1425 
1426 	/*
1427 	 * Check whether we disabled the irq via the spurious handler
1428 	 * before. Reenable it and give it another chance.
1429 	 */
1430 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1431 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1432 		__enable_irq(desc);
1433 	}
1434 
1435 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1436 	chip_bus_sync_unlock(desc);
1437 	mutex_unlock(&desc->request_mutex);
1438 
1439 	irq_setup_timings(desc, new);
1440 
1441 	/*
1442 	 * Strictly no need to wake it up, but hung_task complains
1443 	 * when no hard interrupt wakes the thread up.
1444 	 */
1445 	if (new->thread)
1446 		wake_up_process(new->thread);
1447 	if (new->secondary)
1448 		wake_up_process(new->secondary->thread);
1449 
1450 	register_irq_proc(irq, desc);
1451 	new->dir = NULL;
1452 	register_handler_proc(irq, new);
1453 	return 0;
1454 
1455 mismatch:
1456 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1457 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1458 		       irq, new->flags, new->name, old->flags, old->name);
1459 #ifdef CONFIG_DEBUG_SHIRQ
1460 		dump_stack();
1461 #endif
1462 	}
1463 	ret = -EBUSY;
1464 
1465 out_unlock:
1466 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1467 
1468 	if (!desc->action)
1469 		irq_release_resources(desc);
1470 out_bus_unlock:
1471 	chip_bus_sync_unlock(desc);
1472 	mutex_unlock(&desc->request_mutex);
1473 
1474 out_thread:
1475 	if (new->thread) {
1476 		struct task_struct *t = new->thread;
1477 
1478 		new->thread = NULL;
1479 		kthread_stop(t);
1480 		put_task_struct(t);
1481 	}
1482 	if (new->secondary && new->secondary->thread) {
1483 		struct task_struct *t = new->secondary->thread;
1484 
1485 		new->secondary->thread = NULL;
1486 		kthread_stop(t);
1487 		put_task_struct(t);
1488 	}
1489 out_mput:
1490 	module_put(desc->owner);
1491 	return ret;
1492 }
1493 
1494 /**
1495  *	setup_irq - setup an interrupt
1496  *	@irq: Interrupt line to setup
1497  *	@act: irqaction for the interrupt
1498  *
1499  * Used to statically setup interrupts in the early boot process.
1500  */
1501 int setup_irq(unsigned int irq, struct irqaction *act)
1502 {
1503 	int retval;
1504 	struct irq_desc *desc = irq_to_desc(irq);
1505 
1506 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1507 		return -EINVAL;
1508 
1509 	retval = irq_chip_pm_get(&desc->irq_data);
1510 	if (retval < 0)
1511 		return retval;
1512 
1513 	retval = __setup_irq(irq, desc, act);
1514 
1515 	if (retval)
1516 		irq_chip_pm_put(&desc->irq_data);
1517 
1518 	return retval;
1519 }
1520 EXPORT_SYMBOL_GPL(setup_irq);
1521 
1522 /*
1523  * Internal function to unregister an irqaction - used to free
1524  * regular and special interrupts that are part of the architecture.
1525  */
1526 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1527 {
1528 	struct irq_desc *desc = irq_to_desc(irq);
1529 	struct irqaction *action, **action_ptr;
1530 	unsigned long flags;
1531 
1532 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1533 
1534 	if (!desc)
1535 		return NULL;
1536 
1537 	mutex_lock(&desc->request_mutex);
1538 	chip_bus_lock(desc);
1539 	raw_spin_lock_irqsave(&desc->lock, flags);
1540 
1541 	/*
1542 	 * There can be multiple actions per IRQ descriptor, find the right
1543 	 * one based on the dev_id:
1544 	 */
1545 	action_ptr = &desc->action;
1546 	for (;;) {
1547 		action = *action_ptr;
1548 
1549 		if (!action) {
1550 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1551 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1552 			chip_bus_sync_unlock(desc);
1553 			mutex_unlock(&desc->request_mutex);
1554 			return NULL;
1555 		}
1556 
1557 		if (action->dev_id == dev_id)
1558 			break;
1559 		action_ptr = &action->next;
1560 	}
1561 
1562 	/* Found it - now remove it from the list of entries: */
1563 	*action_ptr = action->next;
1564 
1565 	irq_pm_remove_action(desc, action);
1566 
1567 	/* If this was the last handler, shut down the IRQ line: */
1568 	if (!desc->action) {
1569 		irq_settings_clr_disable_unlazy(desc);
1570 		irq_shutdown(desc);
1571 	}
1572 
1573 #ifdef CONFIG_SMP
1574 	/* make sure affinity_hint is cleaned up */
1575 	if (WARN_ON_ONCE(desc->affinity_hint))
1576 		desc->affinity_hint = NULL;
1577 #endif
1578 
1579 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1580 	/*
1581 	 * Drop bus_lock here so the changes which were done in the chip
1582 	 * callbacks above are synced out to the irq chips which hang
1583 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1584 	 *
1585 	 * Aside of that the bus_lock can also be taken from the threaded
1586 	 * handler in irq_finalize_oneshot() which results in a deadlock
1587 	 * because synchronize_irq() would wait forever for the thread to
1588 	 * complete, which is blocked on the bus lock.
1589 	 *
1590 	 * The still held desc->request_mutex() protects against a
1591 	 * concurrent request_irq() of this irq so the release of resources
1592 	 * and timing data is properly serialized.
1593 	 */
1594 	chip_bus_sync_unlock(desc);
1595 
1596 	unregister_handler_proc(irq, action);
1597 
1598 	/* Make sure it's not being used on another CPU: */
1599 	synchronize_irq(irq);
1600 
1601 #ifdef CONFIG_DEBUG_SHIRQ
1602 	/*
1603 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1604 	 * event to happen even now it's being freed, so let's make sure that
1605 	 * is so by doing an extra call to the handler ....
1606 	 *
1607 	 * ( We do this after actually deregistering it, to make sure that a
1608 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1609 	 */
1610 	if (action->flags & IRQF_SHARED) {
1611 		local_irq_save(flags);
1612 		action->handler(irq, dev_id);
1613 		local_irq_restore(flags);
1614 	}
1615 #endif
1616 
1617 	if (action->thread) {
1618 		kthread_stop(action->thread);
1619 		put_task_struct(action->thread);
1620 		if (action->secondary && action->secondary->thread) {
1621 			kthread_stop(action->secondary->thread);
1622 			put_task_struct(action->secondary->thread);
1623 		}
1624 	}
1625 
1626 	/* Last action releases resources */
1627 	if (!desc->action) {
1628 		/*
1629 		 * Reaquire bus lock as irq_release_resources() might
1630 		 * require it to deallocate resources over the slow bus.
1631 		 */
1632 		chip_bus_lock(desc);
1633 		irq_release_resources(desc);
1634 		chip_bus_sync_unlock(desc);
1635 		irq_remove_timings(desc);
1636 	}
1637 
1638 	mutex_unlock(&desc->request_mutex);
1639 
1640 	irq_chip_pm_put(&desc->irq_data);
1641 	module_put(desc->owner);
1642 	kfree(action->secondary);
1643 	return action;
1644 }
1645 
1646 /**
1647  *	remove_irq - free an interrupt
1648  *	@irq: Interrupt line to free
1649  *	@act: irqaction for the interrupt
1650  *
1651  * Used to remove interrupts statically setup by the early boot process.
1652  */
1653 void remove_irq(unsigned int irq, struct irqaction *act)
1654 {
1655 	struct irq_desc *desc = irq_to_desc(irq);
1656 
1657 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1658 		__free_irq(irq, act->dev_id);
1659 }
1660 EXPORT_SYMBOL_GPL(remove_irq);
1661 
1662 /**
1663  *	free_irq - free an interrupt allocated with request_irq
1664  *	@irq: Interrupt line to free
1665  *	@dev_id: Device identity to free
1666  *
1667  *	Remove an interrupt handler. The handler is removed and if the
1668  *	interrupt line is no longer in use by any driver it is disabled.
1669  *	On a shared IRQ the caller must ensure the interrupt is disabled
1670  *	on the card it drives before calling this function. The function
1671  *	does not return until any executing interrupts for this IRQ
1672  *	have completed.
1673  *
1674  *	This function must not be called from interrupt context.
1675  *
1676  *	Returns the devname argument passed to request_irq.
1677  */
1678 const void *free_irq(unsigned int irq, void *dev_id)
1679 {
1680 	struct irq_desc *desc = irq_to_desc(irq);
1681 	struct irqaction *action;
1682 	const char *devname;
1683 
1684 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1685 		return NULL;
1686 
1687 #ifdef CONFIG_SMP
1688 	if (WARN_ON(desc->affinity_notify))
1689 		desc->affinity_notify = NULL;
1690 #endif
1691 
1692 	action = __free_irq(irq, dev_id);
1693 
1694 	if (!action)
1695 		return NULL;
1696 
1697 	devname = action->name;
1698 	kfree(action);
1699 	return devname;
1700 }
1701 EXPORT_SYMBOL(free_irq);
1702 
1703 /**
1704  *	request_threaded_irq - allocate an interrupt line
1705  *	@irq: Interrupt line to allocate
1706  *	@handler: Function to be called when the IRQ occurs.
1707  *		  Primary handler for threaded interrupts
1708  *		  If NULL and thread_fn != NULL the default
1709  *		  primary handler is installed
1710  *	@thread_fn: Function called from the irq handler thread
1711  *		    If NULL, no irq thread is created
1712  *	@irqflags: Interrupt type flags
1713  *	@devname: An ascii name for the claiming device
1714  *	@dev_id: A cookie passed back to the handler function
1715  *
1716  *	This call allocates interrupt resources and enables the
1717  *	interrupt line and IRQ handling. From the point this
1718  *	call is made your handler function may be invoked. Since
1719  *	your handler function must clear any interrupt the board
1720  *	raises, you must take care both to initialise your hardware
1721  *	and to set up the interrupt handler in the right order.
1722  *
1723  *	If you want to set up a threaded irq handler for your device
1724  *	then you need to supply @handler and @thread_fn. @handler is
1725  *	still called in hard interrupt context and has to check
1726  *	whether the interrupt originates from the device. If yes it
1727  *	needs to disable the interrupt on the device and return
1728  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1729  *	@thread_fn. This split handler design is necessary to support
1730  *	shared interrupts.
1731  *
1732  *	Dev_id must be globally unique. Normally the address of the
1733  *	device data structure is used as the cookie. Since the handler
1734  *	receives this value it makes sense to use it.
1735  *
1736  *	If your interrupt is shared you must pass a non NULL dev_id
1737  *	as this is required when freeing the interrupt.
1738  *
1739  *	Flags:
1740  *
1741  *	IRQF_SHARED		Interrupt is shared
1742  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1743  *
1744  */
1745 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1746 			 irq_handler_t thread_fn, unsigned long irqflags,
1747 			 const char *devname, void *dev_id)
1748 {
1749 	struct irqaction *action;
1750 	struct irq_desc *desc;
1751 	int retval;
1752 
1753 	if (irq == IRQ_NOTCONNECTED)
1754 		return -ENOTCONN;
1755 
1756 	/*
1757 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1758 	 * otherwise we'll have trouble later trying to figure out
1759 	 * which interrupt is which (messes up the interrupt freeing
1760 	 * logic etc).
1761 	 *
1762 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1763 	 * it cannot be set along with IRQF_NO_SUSPEND.
1764 	 */
1765 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1766 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1767 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1768 		return -EINVAL;
1769 
1770 	desc = irq_to_desc(irq);
1771 	if (!desc)
1772 		return -EINVAL;
1773 
1774 	if (!irq_settings_can_request(desc) ||
1775 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1776 		return -EINVAL;
1777 
1778 	if (!handler) {
1779 		if (!thread_fn)
1780 			return -EINVAL;
1781 		handler = irq_default_primary_handler;
1782 	}
1783 
1784 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1785 	if (!action)
1786 		return -ENOMEM;
1787 
1788 	action->handler = handler;
1789 	action->thread_fn = thread_fn;
1790 	action->flags = irqflags;
1791 	action->name = devname;
1792 	action->dev_id = dev_id;
1793 
1794 	retval = irq_chip_pm_get(&desc->irq_data);
1795 	if (retval < 0) {
1796 		kfree(action);
1797 		return retval;
1798 	}
1799 
1800 	retval = __setup_irq(irq, desc, action);
1801 
1802 	if (retval) {
1803 		irq_chip_pm_put(&desc->irq_data);
1804 		kfree(action->secondary);
1805 		kfree(action);
1806 	}
1807 
1808 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1809 	if (!retval && (irqflags & IRQF_SHARED)) {
1810 		/*
1811 		 * It's a shared IRQ -- the driver ought to be prepared for it
1812 		 * to happen immediately, so let's make sure....
1813 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1814 		 * run in parallel with our fake.
1815 		 */
1816 		unsigned long flags;
1817 
1818 		disable_irq(irq);
1819 		local_irq_save(flags);
1820 
1821 		handler(irq, dev_id);
1822 
1823 		local_irq_restore(flags);
1824 		enable_irq(irq);
1825 	}
1826 #endif
1827 	return retval;
1828 }
1829 EXPORT_SYMBOL(request_threaded_irq);
1830 
1831 /**
1832  *	request_any_context_irq - allocate an interrupt line
1833  *	@irq: Interrupt line to allocate
1834  *	@handler: Function to be called when the IRQ occurs.
1835  *		  Threaded handler for threaded interrupts.
1836  *	@flags: Interrupt type flags
1837  *	@name: An ascii name for the claiming device
1838  *	@dev_id: A cookie passed back to the handler function
1839  *
1840  *	This call allocates interrupt resources and enables the
1841  *	interrupt line and IRQ handling. It selects either a
1842  *	hardirq or threaded handling method depending on the
1843  *	context.
1844  *
1845  *	On failure, it returns a negative value. On success,
1846  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1847  */
1848 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1849 			    unsigned long flags, const char *name, void *dev_id)
1850 {
1851 	struct irq_desc *desc;
1852 	int ret;
1853 
1854 	if (irq == IRQ_NOTCONNECTED)
1855 		return -ENOTCONN;
1856 
1857 	desc = irq_to_desc(irq);
1858 	if (!desc)
1859 		return -EINVAL;
1860 
1861 	if (irq_settings_is_nested_thread(desc)) {
1862 		ret = request_threaded_irq(irq, NULL, handler,
1863 					   flags, name, dev_id);
1864 		return !ret ? IRQC_IS_NESTED : ret;
1865 	}
1866 
1867 	ret = request_irq(irq, handler, flags, name, dev_id);
1868 	return !ret ? IRQC_IS_HARDIRQ : ret;
1869 }
1870 EXPORT_SYMBOL_GPL(request_any_context_irq);
1871 
1872 void enable_percpu_irq(unsigned int irq, unsigned int type)
1873 {
1874 	unsigned int cpu = smp_processor_id();
1875 	unsigned long flags;
1876 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1877 
1878 	if (!desc)
1879 		return;
1880 
1881 	/*
1882 	 * If the trigger type is not specified by the caller, then
1883 	 * use the default for this interrupt.
1884 	 */
1885 	type &= IRQ_TYPE_SENSE_MASK;
1886 	if (type == IRQ_TYPE_NONE)
1887 		type = irqd_get_trigger_type(&desc->irq_data);
1888 
1889 	if (type != IRQ_TYPE_NONE) {
1890 		int ret;
1891 
1892 		ret = __irq_set_trigger(desc, type);
1893 
1894 		if (ret) {
1895 			WARN(1, "failed to set type for IRQ%d\n", irq);
1896 			goto out;
1897 		}
1898 	}
1899 
1900 	irq_percpu_enable(desc, cpu);
1901 out:
1902 	irq_put_desc_unlock(desc, flags);
1903 }
1904 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1905 
1906 /**
1907  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1908  * @irq:	Linux irq number to check for
1909  *
1910  * Must be called from a non migratable context. Returns the enable
1911  * state of a per cpu interrupt on the current cpu.
1912  */
1913 bool irq_percpu_is_enabled(unsigned int irq)
1914 {
1915 	unsigned int cpu = smp_processor_id();
1916 	struct irq_desc *desc;
1917 	unsigned long flags;
1918 	bool is_enabled;
1919 
1920 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1921 	if (!desc)
1922 		return false;
1923 
1924 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1925 	irq_put_desc_unlock(desc, flags);
1926 
1927 	return is_enabled;
1928 }
1929 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1930 
1931 void disable_percpu_irq(unsigned int irq)
1932 {
1933 	unsigned int cpu = smp_processor_id();
1934 	unsigned long flags;
1935 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1936 
1937 	if (!desc)
1938 		return;
1939 
1940 	irq_percpu_disable(desc, cpu);
1941 	irq_put_desc_unlock(desc, flags);
1942 }
1943 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1944 
1945 /*
1946  * Internal function to unregister a percpu irqaction.
1947  */
1948 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1949 {
1950 	struct irq_desc *desc = irq_to_desc(irq);
1951 	struct irqaction *action;
1952 	unsigned long flags;
1953 
1954 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1955 
1956 	if (!desc)
1957 		return NULL;
1958 
1959 	raw_spin_lock_irqsave(&desc->lock, flags);
1960 
1961 	action = desc->action;
1962 	if (!action || action->percpu_dev_id != dev_id) {
1963 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1964 		goto bad;
1965 	}
1966 
1967 	if (!cpumask_empty(desc->percpu_enabled)) {
1968 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1969 		     irq, cpumask_first(desc->percpu_enabled));
1970 		goto bad;
1971 	}
1972 
1973 	/* Found it - now remove it from the list of entries: */
1974 	desc->action = NULL;
1975 
1976 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1977 
1978 	unregister_handler_proc(irq, action);
1979 
1980 	irq_chip_pm_put(&desc->irq_data);
1981 	module_put(desc->owner);
1982 	return action;
1983 
1984 bad:
1985 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1986 	return NULL;
1987 }
1988 
1989 /**
1990  *	remove_percpu_irq - free a per-cpu interrupt
1991  *	@irq: Interrupt line to free
1992  *	@act: irqaction for the interrupt
1993  *
1994  * Used to remove interrupts statically setup by the early boot process.
1995  */
1996 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1997 {
1998 	struct irq_desc *desc = irq_to_desc(irq);
1999 
2000 	if (desc && irq_settings_is_per_cpu_devid(desc))
2001 	    __free_percpu_irq(irq, act->percpu_dev_id);
2002 }
2003 
2004 /**
2005  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2006  *	@irq: Interrupt line to free
2007  *	@dev_id: Device identity to free
2008  *
2009  *	Remove a percpu interrupt handler. The handler is removed, but
2010  *	the interrupt line is not disabled. This must be done on each
2011  *	CPU before calling this function. The function does not return
2012  *	until any executing interrupts for this IRQ have completed.
2013  *
2014  *	This function must not be called from interrupt context.
2015  */
2016 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2017 {
2018 	struct irq_desc *desc = irq_to_desc(irq);
2019 
2020 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2021 		return;
2022 
2023 	chip_bus_lock(desc);
2024 	kfree(__free_percpu_irq(irq, dev_id));
2025 	chip_bus_sync_unlock(desc);
2026 }
2027 EXPORT_SYMBOL_GPL(free_percpu_irq);
2028 
2029 /**
2030  *	setup_percpu_irq - setup a per-cpu interrupt
2031  *	@irq: Interrupt line to setup
2032  *	@act: irqaction for the interrupt
2033  *
2034  * Used to statically setup per-cpu interrupts in the early boot process.
2035  */
2036 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2037 {
2038 	struct irq_desc *desc = irq_to_desc(irq);
2039 	int retval;
2040 
2041 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2042 		return -EINVAL;
2043 
2044 	retval = irq_chip_pm_get(&desc->irq_data);
2045 	if (retval < 0)
2046 		return retval;
2047 
2048 	retval = __setup_irq(irq, desc, act);
2049 
2050 	if (retval)
2051 		irq_chip_pm_put(&desc->irq_data);
2052 
2053 	return retval;
2054 }
2055 
2056 /**
2057  *	__request_percpu_irq - allocate a percpu interrupt line
2058  *	@irq: Interrupt line to allocate
2059  *	@handler: Function to be called when the IRQ occurs.
2060  *	@flags: Interrupt type flags (IRQF_TIMER only)
2061  *	@devname: An ascii name for the claiming device
2062  *	@dev_id: A percpu cookie passed back to the handler function
2063  *
2064  *	This call allocates interrupt resources and enables the
2065  *	interrupt on the local CPU. If the interrupt is supposed to be
2066  *	enabled on other CPUs, it has to be done on each CPU using
2067  *	enable_percpu_irq().
2068  *
2069  *	Dev_id must be globally unique. It is a per-cpu variable, and
2070  *	the handler gets called with the interrupted CPU's instance of
2071  *	that variable.
2072  */
2073 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2074 			 unsigned long flags, const char *devname,
2075 			 void __percpu *dev_id)
2076 {
2077 	struct irqaction *action;
2078 	struct irq_desc *desc;
2079 	int retval;
2080 
2081 	if (!dev_id)
2082 		return -EINVAL;
2083 
2084 	desc = irq_to_desc(irq);
2085 	if (!desc || !irq_settings_can_request(desc) ||
2086 	    !irq_settings_is_per_cpu_devid(desc))
2087 		return -EINVAL;
2088 
2089 	if (flags && flags != IRQF_TIMER)
2090 		return -EINVAL;
2091 
2092 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2093 	if (!action)
2094 		return -ENOMEM;
2095 
2096 	action->handler = handler;
2097 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2098 	action->name = devname;
2099 	action->percpu_dev_id = dev_id;
2100 
2101 	retval = irq_chip_pm_get(&desc->irq_data);
2102 	if (retval < 0) {
2103 		kfree(action);
2104 		return retval;
2105 	}
2106 
2107 	retval = __setup_irq(irq, desc, action);
2108 
2109 	if (retval) {
2110 		irq_chip_pm_put(&desc->irq_data);
2111 		kfree(action);
2112 	}
2113 
2114 	return retval;
2115 }
2116 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2117 
2118 /**
2119  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2120  *	@irq: Interrupt line that is forwarded to a VM
2121  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2122  *	@state: a pointer to a boolean where the state is to be storeed
2123  *
2124  *	This call snapshots the internal irqchip state of an
2125  *	interrupt, returning into @state the bit corresponding to
2126  *	stage @which
2127  *
2128  *	This function should be called with preemption disabled if the
2129  *	interrupt controller has per-cpu registers.
2130  */
2131 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2132 			  bool *state)
2133 {
2134 	struct irq_desc *desc;
2135 	struct irq_data *data;
2136 	struct irq_chip *chip;
2137 	unsigned long flags;
2138 	int err = -EINVAL;
2139 
2140 	desc = irq_get_desc_buslock(irq, &flags, 0);
2141 	if (!desc)
2142 		return err;
2143 
2144 	data = irq_desc_get_irq_data(desc);
2145 
2146 	do {
2147 		chip = irq_data_get_irq_chip(data);
2148 		if (chip->irq_get_irqchip_state)
2149 			break;
2150 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2151 		data = data->parent_data;
2152 #else
2153 		data = NULL;
2154 #endif
2155 	} while (data);
2156 
2157 	if (data)
2158 		err = chip->irq_get_irqchip_state(data, which, state);
2159 
2160 	irq_put_desc_busunlock(desc, flags);
2161 	return err;
2162 }
2163 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2164 
2165 /**
2166  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2167  *	@irq: Interrupt line that is forwarded to a VM
2168  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2169  *	@val: Value corresponding to @which
2170  *
2171  *	This call sets the internal irqchip state of an interrupt,
2172  *	depending on the value of @which.
2173  *
2174  *	This function should be called with preemption disabled if the
2175  *	interrupt controller has per-cpu registers.
2176  */
2177 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2178 			  bool val)
2179 {
2180 	struct irq_desc *desc;
2181 	struct irq_data *data;
2182 	struct irq_chip *chip;
2183 	unsigned long flags;
2184 	int err = -EINVAL;
2185 
2186 	desc = irq_get_desc_buslock(irq, &flags, 0);
2187 	if (!desc)
2188 		return err;
2189 
2190 	data = irq_desc_get_irq_data(desc);
2191 
2192 	do {
2193 		chip = irq_data_get_irq_chip(data);
2194 		if (chip->irq_set_irqchip_state)
2195 			break;
2196 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2197 		data = data->parent_data;
2198 #else
2199 		data = NULL;
2200 #endif
2201 	} while (data);
2202 
2203 	if (data)
2204 		err = chip->irq_set_irqchip_state(data, which, val);
2205 
2206 	irq_put_desc_busunlock(desc, flags);
2207 	return err;
2208 }
2209 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2210