xref: /openbmc/linux/kernel/irq/manage.c (revision a6f844da39af8046798ba5cadf92a0c54da80b26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affinity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 }
208 
209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 					       const struct cpumask *mask)
211 {
212 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 					       const struct cpumask *mask) { }
218 #endif
219 
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 			bool force)
222 {
223 	struct irq_desc *desc = irq_data_to_desc(data);
224 	struct irq_chip *chip = irq_data_get_irq_chip(data);
225 	int ret;
226 
227 	if (!chip || !chip->irq_set_affinity)
228 		return -EINVAL;
229 
230 	/*
231 	 * If this is a managed interrupt and housekeeping is enabled on
232 	 * it check whether the requested affinity mask intersects with
233 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
234 	 * the mask and just keep the housekeeping CPU(s). This prevents
235 	 * the affinity setter from routing the interrupt to an isolated
236 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
237 	 * interrupts on an isolated one.
238 	 *
239 	 * If the masks do not intersect or include online CPU(s) then
240 	 * keep the requested mask. The isolated target CPUs are only
241 	 * receiving interrupts when the I/O operation was submitted
242 	 * directly from them.
243 	 *
244 	 * If all housekeeping CPUs in the affinity mask are offline, the
245 	 * interrupt will be migrated by the CPU hotplug code once a
246 	 * housekeeping CPU which belongs to the affinity mask comes
247 	 * online.
248 	 */
249 	if (irqd_affinity_is_managed(data) &&
250 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
251 		const struct cpumask *hk_mask, *prog_mask;
252 
253 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
254 		static struct cpumask tmp_mask;
255 
256 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
257 
258 		raw_spin_lock(&tmp_mask_lock);
259 		cpumask_and(&tmp_mask, mask, hk_mask);
260 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
261 			prog_mask = mask;
262 		else
263 			prog_mask = &tmp_mask;
264 		ret = chip->irq_set_affinity(data, prog_mask, force);
265 		raw_spin_unlock(&tmp_mask_lock);
266 	} else {
267 		ret = chip->irq_set_affinity(data, mask, force);
268 	}
269 	switch (ret) {
270 	case IRQ_SET_MASK_OK:
271 	case IRQ_SET_MASK_OK_DONE:
272 		cpumask_copy(desc->irq_common_data.affinity, mask);
273 		fallthrough;
274 	case IRQ_SET_MASK_OK_NOCOPY:
275 		irq_validate_effective_affinity(data);
276 		irq_set_thread_affinity(desc);
277 		ret = 0;
278 	}
279 
280 	return ret;
281 }
282 
283 #ifdef CONFIG_GENERIC_PENDING_IRQ
284 static inline int irq_set_affinity_pending(struct irq_data *data,
285 					   const struct cpumask *dest)
286 {
287 	struct irq_desc *desc = irq_data_to_desc(data);
288 
289 	irqd_set_move_pending(data);
290 	irq_copy_pending(desc, dest);
291 	return 0;
292 }
293 #else
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 					   const struct cpumask *dest)
296 {
297 	return -EBUSY;
298 }
299 #endif
300 
301 static int irq_try_set_affinity(struct irq_data *data,
302 				const struct cpumask *dest, bool force)
303 {
304 	int ret = irq_do_set_affinity(data, dest, force);
305 
306 	/*
307 	 * In case that the underlying vector management is busy and the
308 	 * architecture supports the generic pending mechanism then utilize
309 	 * this to avoid returning an error to user space.
310 	 */
311 	if (ret == -EBUSY && !force)
312 		ret = irq_set_affinity_pending(data, dest);
313 	return ret;
314 }
315 
316 static bool irq_set_affinity_deactivated(struct irq_data *data,
317 					 const struct cpumask *mask, bool force)
318 {
319 	struct irq_desc *desc = irq_data_to_desc(data);
320 
321 	/*
322 	 * Handle irq chips which can handle affinity only in activated
323 	 * state correctly
324 	 *
325 	 * If the interrupt is not yet activated, just store the affinity
326 	 * mask and do not call the chip driver at all. On activation the
327 	 * driver has to make sure anyway that the interrupt is in a
328 	 * usable state so startup works.
329 	 */
330 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
331 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
332 		return false;
333 
334 	cpumask_copy(desc->irq_common_data.affinity, mask);
335 	irq_init_effective_affinity(data, mask);
336 	irqd_set(data, IRQD_AFFINITY_SET);
337 	return true;
338 }
339 
340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
341 			    bool force)
342 {
343 	struct irq_chip *chip = irq_data_get_irq_chip(data);
344 	struct irq_desc *desc = irq_data_to_desc(data);
345 	int ret = 0;
346 
347 	if (!chip || !chip->irq_set_affinity)
348 		return -EINVAL;
349 
350 	if (irq_set_affinity_deactivated(data, mask, force))
351 		return 0;
352 
353 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
354 		ret = irq_try_set_affinity(data, mask, force);
355 	} else {
356 		irqd_set_move_pending(data);
357 		irq_copy_pending(desc, mask);
358 	}
359 
360 	if (desc->affinity_notify) {
361 		kref_get(&desc->affinity_notify->kref);
362 		if (!schedule_work(&desc->affinity_notify->work)) {
363 			/* Work was already scheduled, drop our extra ref */
364 			kref_put(&desc->affinity_notify->kref,
365 				 desc->affinity_notify->release);
366 		}
367 	}
368 	irqd_set(data, IRQD_AFFINITY_SET);
369 
370 	return ret;
371 }
372 
373 /**
374  * irq_update_affinity_desc - Update affinity management for an interrupt
375  * @irq:	The interrupt number to update
376  * @affinity:	Pointer to the affinity descriptor
377  *
378  * This interface can be used to configure the affinity management of
379  * interrupts which have been allocated already.
380  *
381  * There are certain limitations on when it may be used - attempts to use it
382  * for when the kernel is configured for generic IRQ reservation mode (in
383  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
384  * managed/non-managed interrupt accounting. In addition, attempts to use it on
385  * an interrupt which is already started or which has already been configured
386  * as managed will also fail, as these mean invalid init state or double init.
387  */
388 int irq_update_affinity_desc(unsigned int irq,
389 			     struct irq_affinity_desc *affinity)
390 {
391 	struct irq_desc *desc;
392 	unsigned long flags;
393 	bool activated;
394 	int ret = 0;
395 
396 	/*
397 	 * Supporting this with the reservation scheme used by x86 needs
398 	 * some more thought. Fail it for now.
399 	 */
400 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
401 		return -EOPNOTSUPP;
402 
403 	desc = irq_get_desc_buslock(irq, &flags, 0);
404 	if (!desc)
405 		return -EINVAL;
406 
407 	/* Requires the interrupt to be shut down */
408 	if (irqd_is_started(&desc->irq_data)) {
409 		ret = -EBUSY;
410 		goto out_unlock;
411 	}
412 
413 	/* Interrupts which are already managed cannot be modified */
414 	if (irqd_affinity_is_managed(&desc->irq_data)) {
415 		ret = -EBUSY;
416 		goto out_unlock;
417 	}
418 
419 	/*
420 	 * Deactivate the interrupt. That's required to undo
421 	 * anything an earlier activation has established.
422 	 */
423 	activated = irqd_is_activated(&desc->irq_data);
424 	if (activated)
425 		irq_domain_deactivate_irq(&desc->irq_data);
426 
427 	if (affinity->is_managed) {
428 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
429 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
430 	}
431 
432 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
433 
434 	/* Restore the activation state */
435 	if (activated)
436 		irq_domain_activate_irq(&desc->irq_data, false);
437 
438 out_unlock:
439 	irq_put_desc_busunlock(desc, flags);
440 	return ret;
441 }
442 
443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
444 			      bool force)
445 {
446 	struct irq_desc *desc = irq_to_desc(irq);
447 	unsigned long flags;
448 	int ret;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	raw_spin_lock_irqsave(&desc->lock, flags);
454 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455 	raw_spin_unlock_irqrestore(&desc->lock, flags);
456 	return ret;
457 }
458 
459 /**
460  * irq_set_affinity - Set the irq affinity of a given irq
461  * @irq:	Interrupt to set affinity
462  * @cpumask:	cpumask
463  *
464  * Fails if cpumask does not contain an online CPU
465  */
466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
467 {
468 	return __irq_set_affinity(irq, cpumask, false);
469 }
470 EXPORT_SYMBOL_GPL(irq_set_affinity);
471 
472 /**
473  * irq_force_affinity - Force the irq affinity of a given irq
474  * @irq:	Interrupt to set affinity
475  * @cpumask:	cpumask
476  *
477  * Same as irq_set_affinity, but without checking the mask against
478  * online cpus.
479  *
480  * Solely for low level cpu hotplug code, where we need to make per
481  * cpu interrupts affine before the cpu becomes online.
482  */
483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
484 {
485 	return __irq_set_affinity(irq, cpumask, true);
486 }
487 EXPORT_SYMBOL_GPL(irq_force_affinity);
488 
489 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
490 			      bool setaffinity)
491 {
492 	unsigned long flags;
493 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
494 
495 	if (!desc)
496 		return -EINVAL;
497 	desc->affinity_hint = m;
498 	irq_put_desc_unlock(desc, flags);
499 	if (m && setaffinity)
500 		__irq_set_affinity(irq, m, false);
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
504 
505 static void irq_affinity_notify(struct work_struct *work)
506 {
507 	struct irq_affinity_notify *notify =
508 		container_of(work, struct irq_affinity_notify, work);
509 	struct irq_desc *desc = irq_to_desc(notify->irq);
510 	cpumask_var_t cpumask;
511 	unsigned long flags;
512 
513 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
514 		goto out;
515 
516 	raw_spin_lock_irqsave(&desc->lock, flags);
517 	if (irq_move_pending(&desc->irq_data))
518 		irq_get_pending(cpumask, desc);
519 	else
520 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
521 	raw_spin_unlock_irqrestore(&desc->lock, flags);
522 
523 	notify->notify(notify, cpumask);
524 
525 	free_cpumask_var(cpumask);
526 out:
527 	kref_put(&notify->kref, notify->release);
528 }
529 
530 /**
531  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
532  *	@irq:		Interrupt for which to enable/disable notification
533  *	@notify:	Context for notification, or %NULL to disable
534  *			notification.  Function pointers must be initialised;
535  *			the other fields will be initialised by this function.
536  *
537  *	Must be called in process context.  Notification may only be enabled
538  *	after the IRQ is allocated and must be disabled before the IRQ is
539  *	freed using free_irq().
540  */
541 int
542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
543 {
544 	struct irq_desc *desc = irq_to_desc(irq);
545 	struct irq_affinity_notify *old_notify;
546 	unsigned long flags;
547 
548 	/* The release function is promised process context */
549 	might_sleep();
550 
551 	if (!desc || desc->istate & IRQS_NMI)
552 		return -EINVAL;
553 
554 	/* Complete initialisation of *notify */
555 	if (notify) {
556 		notify->irq = irq;
557 		kref_init(&notify->kref);
558 		INIT_WORK(&notify->work, irq_affinity_notify);
559 	}
560 
561 	raw_spin_lock_irqsave(&desc->lock, flags);
562 	old_notify = desc->affinity_notify;
563 	desc->affinity_notify = notify;
564 	raw_spin_unlock_irqrestore(&desc->lock, flags);
565 
566 	if (old_notify) {
567 		if (cancel_work_sync(&old_notify->work)) {
568 			/* Pending work had a ref, put that one too */
569 			kref_put(&old_notify->kref, old_notify->release);
570 		}
571 		kref_put(&old_notify->kref, old_notify->release);
572 	}
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
577 
578 #ifndef CONFIG_AUTO_IRQ_AFFINITY
579 /*
580  * Generic version of the affinity autoselector.
581  */
582 int irq_setup_affinity(struct irq_desc *desc)
583 {
584 	struct cpumask *set = irq_default_affinity;
585 	int ret, node = irq_desc_get_node(desc);
586 	static DEFINE_RAW_SPINLOCK(mask_lock);
587 	static struct cpumask mask;
588 
589 	/* Excludes PER_CPU and NO_BALANCE interrupts */
590 	if (!__irq_can_set_affinity(desc))
591 		return 0;
592 
593 	raw_spin_lock(&mask_lock);
594 	/*
595 	 * Preserve the managed affinity setting and a userspace affinity
596 	 * setup, but make sure that one of the targets is online.
597 	 */
598 	if (irqd_affinity_is_managed(&desc->irq_data) ||
599 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
600 		if (cpumask_intersects(desc->irq_common_data.affinity,
601 				       cpu_online_mask))
602 			set = desc->irq_common_data.affinity;
603 		else
604 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
605 	}
606 
607 	cpumask_and(&mask, cpu_online_mask, set);
608 	if (cpumask_empty(&mask))
609 		cpumask_copy(&mask, cpu_online_mask);
610 
611 	if (node != NUMA_NO_NODE) {
612 		const struct cpumask *nodemask = cpumask_of_node(node);
613 
614 		/* make sure at least one of the cpus in nodemask is online */
615 		if (cpumask_intersects(&mask, nodemask))
616 			cpumask_and(&mask, &mask, nodemask);
617 	}
618 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
619 	raw_spin_unlock(&mask_lock);
620 	return ret;
621 }
622 #else
623 /* Wrapper for ALPHA specific affinity selector magic */
624 int irq_setup_affinity(struct irq_desc *desc)
625 {
626 	return irq_select_affinity(irq_desc_get_irq(desc));
627 }
628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
629 #endif /* CONFIG_SMP */
630 
631 
632 /**
633  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
634  *	@irq: interrupt number to set affinity
635  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
636  *	            specific data for percpu_devid interrupts
637  *
638  *	This function uses the vCPU specific data to set the vCPU
639  *	affinity for an irq. The vCPU specific data is passed from
640  *	outside, such as KVM. One example code path is as below:
641  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
642  */
643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
644 {
645 	unsigned long flags;
646 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 	struct irq_data *data;
648 	struct irq_chip *chip;
649 	int ret = -ENOSYS;
650 
651 	if (!desc)
652 		return -EINVAL;
653 
654 	data = irq_desc_get_irq_data(desc);
655 	do {
656 		chip = irq_data_get_irq_chip(data);
657 		if (chip && chip->irq_set_vcpu_affinity)
658 			break;
659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
660 		data = data->parent_data;
661 #else
662 		data = NULL;
663 #endif
664 	} while (data);
665 
666 	if (data)
667 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
668 	irq_put_desc_unlock(desc, flags);
669 
670 	return ret;
671 }
672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
673 
674 void __disable_irq(struct irq_desc *desc)
675 {
676 	if (!desc->depth++)
677 		irq_disable(desc);
678 }
679 
680 static int __disable_irq_nosync(unsigned int irq)
681 {
682 	unsigned long flags;
683 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
684 
685 	if (!desc)
686 		return -EINVAL;
687 	__disable_irq(desc);
688 	irq_put_desc_busunlock(desc, flags);
689 	return 0;
690 }
691 
692 /**
693  *	disable_irq_nosync - disable an irq without waiting
694  *	@irq: Interrupt to disable
695  *
696  *	Disable the selected interrupt line.  Disables and Enables are
697  *	nested.
698  *	Unlike disable_irq(), this function does not ensure existing
699  *	instances of the IRQ handler have completed before returning.
700  *
701  *	This function may be called from IRQ context.
702  */
703 void disable_irq_nosync(unsigned int irq)
704 {
705 	__disable_irq_nosync(irq);
706 }
707 EXPORT_SYMBOL(disable_irq_nosync);
708 
709 /**
710  *	disable_irq - disable an irq and wait for completion
711  *	@irq: Interrupt to disable
712  *
713  *	Disable the selected interrupt line.  Enables and Disables are
714  *	nested.
715  *	This function waits for any pending IRQ handlers for this interrupt
716  *	to complete before returning. If you use this function while
717  *	holding a resource the IRQ handler may need you will deadlock.
718  *
719  *	This function may be called - with care - from IRQ context.
720  */
721 void disable_irq(unsigned int irq)
722 {
723 	if (!__disable_irq_nosync(irq))
724 		synchronize_irq(irq);
725 }
726 EXPORT_SYMBOL(disable_irq);
727 
728 /**
729  *	disable_hardirq - disables an irq and waits for hardirq completion
730  *	@irq: Interrupt to disable
731  *
732  *	Disable the selected interrupt line.  Enables and Disables are
733  *	nested.
734  *	This function waits for any pending hard IRQ handlers for this
735  *	interrupt to complete before returning. If you use this function while
736  *	holding a resource the hard IRQ handler may need you will deadlock.
737  *
738  *	When used to optimistically disable an interrupt from atomic context
739  *	the return value must be checked.
740  *
741  *	Returns: false if a threaded handler is active.
742  *
743  *	This function may be called - with care - from IRQ context.
744  */
745 bool disable_hardirq(unsigned int irq)
746 {
747 	if (!__disable_irq_nosync(irq))
748 		return synchronize_hardirq(irq);
749 
750 	return false;
751 }
752 EXPORT_SYMBOL_GPL(disable_hardirq);
753 
754 /**
755  *	disable_nmi_nosync - disable an nmi without waiting
756  *	@irq: Interrupt to disable
757  *
758  *	Disable the selected interrupt line. Disables and enables are
759  *	nested.
760  *	The interrupt to disable must have been requested through request_nmi.
761  *	Unlike disable_nmi(), this function does not ensure existing
762  *	instances of the IRQ handler have completed before returning.
763  */
764 void disable_nmi_nosync(unsigned int irq)
765 {
766 	disable_irq_nosync(irq);
767 }
768 
769 void __enable_irq(struct irq_desc *desc)
770 {
771 	switch (desc->depth) {
772 	case 0:
773  err_out:
774 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
775 		     irq_desc_get_irq(desc));
776 		break;
777 	case 1: {
778 		if (desc->istate & IRQS_SUSPENDED)
779 			goto err_out;
780 		/* Prevent probing on this irq: */
781 		irq_settings_set_noprobe(desc);
782 		/*
783 		 * Call irq_startup() not irq_enable() here because the
784 		 * interrupt might be marked NOAUTOEN. So irq_startup()
785 		 * needs to be invoked when it gets enabled the first
786 		 * time. If it was already started up, then irq_startup()
787 		 * will invoke irq_enable() under the hood.
788 		 */
789 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
790 		break;
791 	}
792 	default:
793 		desc->depth--;
794 	}
795 }
796 
797 /**
798  *	enable_irq - enable handling of an irq
799  *	@irq: Interrupt to enable
800  *
801  *	Undoes the effect of one call to disable_irq().  If this
802  *	matches the last disable, processing of interrupts on this
803  *	IRQ line is re-enabled.
804  *
805  *	This function may be called from IRQ context only when
806  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
807  */
808 void enable_irq(unsigned int irq)
809 {
810 	unsigned long flags;
811 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
812 
813 	if (!desc)
814 		return;
815 	if (WARN(!desc->irq_data.chip,
816 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
817 		goto out;
818 
819 	__enable_irq(desc);
820 out:
821 	irq_put_desc_busunlock(desc, flags);
822 }
823 EXPORT_SYMBOL(enable_irq);
824 
825 /**
826  *	enable_nmi - enable handling of an nmi
827  *	@irq: Interrupt to enable
828  *
829  *	The interrupt to enable must have been requested through request_nmi.
830  *	Undoes the effect of one call to disable_nmi(). If this
831  *	matches the last disable, processing of interrupts on this
832  *	IRQ line is re-enabled.
833  */
834 void enable_nmi(unsigned int irq)
835 {
836 	enable_irq(irq);
837 }
838 
839 static int set_irq_wake_real(unsigned int irq, unsigned int on)
840 {
841 	struct irq_desc *desc = irq_to_desc(irq);
842 	int ret = -ENXIO;
843 
844 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
845 		return 0;
846 
847 	if (desc->irq_data.chip->irq_set_wake)
848 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
849 
850 	return ret;
851 }
852 
853 /**
854  *	irq_set_irq_wake - control irq power management wakeup
855  *	@irq:	interrupt to control
856  *	@on:	enable/disable power management wakeup
857  *
858  *	Enable/disable power management wakeup mode, which is
859  *	disabled by default.  Enables and disables must match,
860  *	just as they match for non-wakeup mode support.
861  *
862  *	Wakeup mode lets this IRQ wake the system from sleep
863  *	states like "suspend to RAM".
864  *
865  *	Note: irq enable/disable state is completely orthogonal
866  *	to the enable/disable state of irq wake. An irq can be
867  *	disabled with disable_irq() and still wake the system as
868  *	long as the irq has wake enabled. If this does not hold,
869  *	then the underlying irq chip and the related driver need
870  *	to be investigated.
871  */
872 int irq_set_irq_wake(unsigned int irq, unsigned int on)
873 {
874 	unsigned long flags;
875 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
876 	int ret = 0;
877 
878 	if (!desc)
879 		return -EINVAL;
880 
881 	/* Don't use NMIs as wake up interrupts please */
882 	if (desc->istate & IRQS_NMI) {
883 		ret = -EINVAL;
884 		goto out_unlock;
885 	}
886 
887 	/* wakeup-capable irqs can be shared between drivers that
888 	 * don't need to have the same sleep mode behaviors.
889 	 */
890 	if (on) {
891 		if (desc->wake_depth++ == 0) {
892 			ret = set_irq_wake_real(irq, on);
893 			if (ret)
894 				desc->wake_depth = 0;
895 			else
896 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
897 		}
898 	} else {
899 		if (desc->wake_depth == 0) {
900 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
901 		} else if (--desc->wake_depth == 0) {
902 			ret = set_irq_wake_real(irq, on);
903 			if (ret)
904 				desc->wake_depth = 1;
905 			else
906 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
907 		}
908 	}
909 
910 out_unlock:
911 	irq_put_desc_busunlock(desc, flags);
912 	return ret;
913 }
914 EXPORT_SYMBOL(irq_set_irq_wake);
915 
916 /*
917  * Internal function that tells the architecture code whether a
918  * particular irq has been exclusively allocated or is available
919  * for driver use.
920  */
921 int can_request_irq(unsigned int irq, unsigned long irqflags)
922 {
923 	unsigned long flags;
924 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
925 	int canrequest = 0;
926 
927 	if (!desc)
928 		return 0;
929 
930 	if (irq_settings_can_request(desc)) {
931 		if (!desc->action ||
932 		    irqflags & desc->action->flags & IRQF_SHARED)
933 			canrequest = 1;
934 	}
935 	irq_put_desc_unlock(desc, flags);
936 	return canrequest;
937 }
938 
939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
940 {
941 	struct irq_chip *chip = desc->irq_data.chip;
942 	int ret, unmask = 0;
943 
944 	if (!chip || !chip->irq_set_type) {
945 		/*
946 		 * IRQF_TRIGGER_* but the PIC does not support multiple
947 		 * flow-types?
948 		 */
949 		pr_debug("No set_type function for IRQ %d (%s)\n",
950 			 irq_desc_get_irq(desc),
951 			 chip ? (chip->name ? : "unknown") : "unknown");
952 		return 0;
953 	}
954 
955 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
956 		if (!irqd_irq_masked(&desc->irq_data))
957 			mask_irq(desc);
958 		if (!irqd_irq_disabled(&desc->irq_data))
959 			unmask = 1;
960 	}
961 
962 	/* Mask all flags except trigger mode */
963 	flags &= IRQ_TYPE_SENSE_MASK;
964 	ret = chip->irq_set_type(&desc->irq_data, flags);
965 
966 	switch (ret) {
967 	case IRQ_SET_MASK_OK:
968 	case IRQ_SET_MASK_OK_DONE:
969 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
970 		irqd_set(&desc->irq_data, flags);
971 		fallthrough;
972 
973 	case IRQ_SET_MASK_OK_NOCOPY:
974 		flags = irqd_get_trigger_type(&desc->irq_data);
975 		irq_settings_set_trigger_mask(desc, flags);
976 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
977 		irq_settings_clr_level(desc);
978 		if (flags & IRQ_TYPE_LEVEL_MASK) {
979 			irq_settings_set_level(desc);
980 			irqd_set(&desc->irq_data, IRQD_LEVEL);
981 		}
982 
983 		ret = 0;
984 		break;
985 	default:
986 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
987 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
988 	}
989 	if (unmask)
990 		unmask_irq(desc);
991 	return ret;
992 }
993 
994 #ifdef CONFIG_HARDIRQS_SW_RESEND
995 int irq_set_parent(int irq, int parent_irq)
996 {
997 	unsigned long flags;
998 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
999 
1000 	if (!desc)
1001 		return -EINVAL;
1002 
1003 	desc->parent_irq = parent_irq;
1004 
1005 	irq_put_desc_unlock(desc, flags);
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(irq_set_parent);
1009 #endif
1010 
1011 /*
1012  * Default primary interrupt handler for threaded interrupts. Is
1013  * assigned as primary handler when request_threaded_irq is called
1014  * with handler == NULL. Useful for oneshot interrupts.
1015  */
1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1017 {
1018 	return IRQ_WAKE_THREAD;
1019 }
1020 
1021 /*
1022  * Primary handler for nested threaded interrupts. Should never be
1023  * called.
1024  */
1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1026 {
1027 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1028 	return IRQ_NONE;
1029 }
1030 
1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1032 {
1033 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1034 	return IRQ_NONE;
1035 }
1036 
1037 static int irq_wait_for_interrupt(struct irqaction *action)
1038 {
1039 	for (;;) {
1040 		set_current_state(TASK_INTERRUPTIBLE);
1041 
1042 		if (kthread_should_stop()) {
1043 			/* may need to run one last time */
1044 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1045 					       &action->thread_flags)) {
1046 				__set_current_state(TASK_RUNNING);
1047 				return 0;
1048 			}
1049 			__set_current_state(TASK_RUNNING);
1050 			return -1;
1051 		}
1052 
1053 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1054 				       &action->thread_flags)) {
1055 			__set_current_state(TASK_RUNNING);
1056 			return 0;
1057 		}
1058 		schedule();
1059 	}
1060 }
1061 
1062 /*
1063  * Oneshot interrupts keep the irq line masked until the threaded
1064  * handler finished. unmask if the interrupt has not been disabled and
1065  * is marked MASKED.
1066  */
1067 static void irq_finalize_oneshot(struct irq_desc *desc,
1068 				 struct irqaction *action)
1069 {
1070 	if (!(desc->istate & IRQS_ONESHOT) ||
1071 	    action->handler == irq_forced_secondary_handler)
1072 		return;
1073 again:
1074 	chip_bus_lock(desc);
1075 	raw_spin_lock_irq(&desc->lock);
1076 
1077 	/*
1078 	 * Implausible though it may be we need to protect us against
1079 	 * the following scenario:
1080 	 *
1081 	 * The thread is faster done than the hard interrupt handler
1082 	 * on the other CPU. If we unmask the irq line then the
1083 	 * interrupt can come in again and masks the line, leaves due
1084 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1085 	 *
1086 	 * This also serializes the state of shared oneshot handlers
1087 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1088 	 * irq_wake_thread(). See the comment there which explains the
1089 	 * serialization.
1090 	 */
1091 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1092 		raw_spin_unlock_irq(&desc->lock);
1093 		chip_bus_sync_unlock(desc);
1094 		cpu_relax();
1095 		goto again;
1096 	}
1097 
1098 	/*
1099 	 * Now check again, whether the thread should run. Otherwise
1100 	 * we would clear the threads_oneshot bit of this thread which
1101 	 * was just set.
1102 	 */
1103 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1104 		goto out_unlock;
1105 
1106 	desc->threads_oneshot &= ~action->thread_mask;
1107 
1108 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1109 	    irqd_irq_masked(&desc->irq_data))
1110 		unmask_threaded_irq(desc);
1111 
1112 out_unlock:
1113 	raw_spin_unlock_irq(&desc->lock);
1114 	chip_bus_sync_unlock(desc);
1115 }
1116 
1117 #ifdef CONFIG_SMP
1118 /*
1119  * Check whether we need to change the affinity of the interrupt thread.
1120  */
1121 static void
1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1123 {
1124 	cpumask_var_t mask;
1125 	bool valid = true;
1126 
1127 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1128 		return;
1129 
1130 	/*
1131 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1132 	 * try again next time
1133 	 */
1134 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1135 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1136 		return;
1137 	}
1138 
1139 	raw_spin_lock_irq(&desc->lock);
1140 	/*
1141 	 * This code is triggered unconditionally. Check the affinity
1142 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1143 	 */
1144 	if (cpumask_available(desc->irq_common_data.affinity)) {
1145 		const struct cpumask *m;
1146 
1147 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1148 		cpumask_copy(mask, m);
1149 	} else {
1150 		valid = false;
1151 	}
1152 	raw_spin_unlock_irq(&desc->lock);
1153 
1154 	if (valid)
1155 		set_cpus_allowed_ptr(current, mask);
1156 	free_cpumask_var(mask);
1157 }
1158 #else
1159 static inline void
1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1161 #endif
1162 
1163 /*
1164  * Interrupts which are not explicitly requested as threaded
1165  * interrupts rely on the implicit bh/preempt disable of the hard irq
1166  * context. So we need to disable bh here to avoid deadlocks and other
1167  * side effects.
1168  */
1169 static irqreturn_t
1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1171 {
1172 	irqreturn_t ret;
1173 
1174 	local_bh_disable();
1175 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1176 		local_irq_disable();
1177 	ret = action->thread_fn(action->irq, action->dev_id);
1178 	if (ret == IRQ_HANDLED)
1179 		atomic_inc(&desc->threads_handled);
1180 
1181 	irq_finalize_oneshot(desc, action);
1182 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183 		local_irq_enable();
1184 	local_bh_enable();
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Interrupts explicitly requested as threaded interrupts want to be
1190  * preemptible - many of them need to sleep and wait for slow busses to
1191  * complete.
1192  */
1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1194 		struct irqaction *action)
1195 {
1196 	irqreturn_t ret;
1197 
1198 	ret = action->thread_fn(action->irq, action->dev_id);
1199 	if (ret == IRQ_HANDLED)
1200 		atomic_inc(&desc->threads_handled);
1201 
1202 	irq_finalize_oneshot(desc, action);
1203 	return ret;
1204 }
1205 
1206 static void wake_threads_waitq(struct irq_desc *desc)
1207 {
1208 	if (atomic_dec_and_test(&desc->threads_active))
1209 		wake_up(&desc->wait_for_threads);
1210 }
1211 
1212 static void irq_thread_dtor(struct callback_head *unused)
1213 {
1214 	struct task_struct *tsk = current;
1215 	struct irq_desc *desc;
1216 	struct irqaction *action;
1217 
1218 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1219 		return;
1220 
1221 	action = kthread_data(tsk);
1222 
1223 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1224 	       tsk->comm, tsk->pid, action->irq);
1225 
1226 
1227 	desc = irq_to_desc(action->irq);
1228 	/*
1229 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1230 	 * desc->threads_active and wake possible waiters.
1231 	 */
1232 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1233 		wake_threads_waitq(desc);
1234 
1235 	/* Prevent a stale desc->threads_oneshot */
1236 	irq_finalize_oneshot(desc, action);
1237 }
1238 
1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1240 {
1241 	struct irqaction *secondary = action->secondary;
1242 
1243 	if (WARN_ON_ONCE(!secondary))
1244 		return;
1245 
1246 	raw_spin_lock_irq(&desc->lock);
1247 	__irq_wake_thread(desc, secondary);
1248 	raw_spin_unlock_irq(&desc->lock);
1249 }
1250 
1251 /*
1252  * Internal function to notify that a interrupt thread is ready.
1253  */
1254 static void irq_thread_set_ready(struct irq_desc *desc,
1255 				 struct irqaction *action)
1256 {
1257 	set_bit(IRQTF_READY, &action->thread_flags);
1258 	wake_up(&desc->wait_for_threads);
1259 }
1260 
1261 /*
1262  * Internal function to wake up a interrupt thread and wait until it is
1263  * ready.
1264  */
1265 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1266 						  struct irqaction *action)
1267 {
1268 	if (!action || !action->thread)
1269 		return;
1270 
1271 	wake_up_process(action->thread);
1272 	wait_event(desc->wait_for_threads,
1273 		   test_bit(IRQTF_READY, &action->thread_flags));
1274 }
1275 
1276 /*
1277  * Interrupt handler thread
1278  */
1279 static int irq_thread(void *data)
1280 {
1281 	struct callback_head on_exit_work;
1282 	struct irqaction *action = data;
1283 	struct irq_desc *desc = irq_to_desc(action->irq);
1284 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1285 			struct irqaction *action);
1286 
1287 	irq_thread_set_ready(desc, action);
1288 
1289 	sched_set_fifo(current);
1290 
1291 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1292 					   &action->thread_flags))
1293 		handler_fn = irq_forced_thread_fn;
1294 	else
1295 		handler_fn = irq_thread_fn;
1296 
1297 	init_task_work(&on_exit_work, irq_thread_dtor);
1298 	task_work_add(current, &on_exit_work, TWA_NONE);
1299 
1300 	irq_thread_check_affinity(desc, action);
1301 
1302 	while (!irq_wait_for_interrupt(action)) {
1303 		irqreturn_t action_ret;
1304 
1305 		irq_thread_check_affinity(desc, action);
1306 
1307 		action_ret = handler_fn(desc, action);
1308 		if (action_ret == IRQ_WAKE_THREAD)
1309 			irq_wake_secondary(desc, action);
1310 
1311 		wake_threads_waitq(desc);
1312 	}
1313 
1314 	/*
1315 	 * This is the regular exit path. __free_irq() is stopping the
1316 	 * thread via kthread_stop() after calling
1317 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1318 	 * oneshot mask bit can be set.
1319 	 */
1320 	task_work_cancel(current, irq_thread_dtor);
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1326  *	@irq:		Interrupt line
1327  *	@dev_id:	Device identity for which the thread should be woken
1328  *
1329  */
1330 void irq_wake_thread(unsigned int irq, void *dev_id)
1331 {
1332 	struct irq_desc *desc = irq_to_desc(irq);
1333 	struct irqaction *action;
1334 	unsigned long flags;
1335 
1336 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1337 		return;
1338 
1339 	raw_spin_lock_irqsave(&desc->lock, flags);
1340 	for_each_action_of_desc(desc, action) {
1341 		if (action->dev_id == dev_id) {
1342 			if (action->thread)
1343 				__irq_wake_thread(desc, action);
1344 			break;
1345 		}
1346 	}
1347 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1348 }
1349 EXPORT_SYMBOL_GPL(irq_wake_thread);
1350 
1351 static int irq_setup_forced_threading(struct irqaction *new)
1352 {
1353 	if (!force_irqthreads())
1354 		return 0;
1355 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1356 		return 0;
1357 
1358 	/*
1359 	 * No further action required for interrupts which are requested as
1360 	 * threaded interrupts already
1361 	 */
1362 	if (new->handler == irq_default_primary_handler)
1363 		return 0;
1364 
1365 	new->flags |= IRQF_ONESHOT;
1366 
1367 	/*
1368 	 * Handle the case where we have a real primary handler and a
1369 	 * thread handler. We force thread them as well by creating a
1370 	 * secondary action.
1371 	 */
1372 	if (new->handler && new->thread_fn) {
1373 		/* Allocate the secondary action */
1374 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1375 		if (!new->secondary)
1376 			return -ENOMEM;
1377 		new->secondary->handler = irq_forced_secondary_handler;
1378 		new->secondary->thread_fn = new->thread_fn;
1379 		new->secondary->dev_id = new->dev_id;
1380 		new->secondary->irq = new->irq;
1381 		new->secondary->name = new->name;
1382 	}
1383 	/* Deal with the primary handler */
1384 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1385 	new->thread_fn = new->handler;
1386 	new->handler = irq_default_primary_handler;
1387 	return 0;
1388 }
1389 
1390 static int irq_request_resources(struct irq_desc *desc)
1391 {
1392 	struct irq_data *d = &desc->irq_data;
1393 	struct irq_chip *c = d->chip;
1394 
1395 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1396 }
1397 
1398 static void irq_release_resources(struct irq_desc *desc)
1399 {
1400 	struct irq_data *d = &desc->irq_data;
1401 	struct irq_chip *c = d->chip;
1402 
1403 	if (c->irq_release_resources)
1404 		c->irq_release_resources(d);
1405 }
1406 
1407 static bool irq_supports_nmi(struct irq_desc *desc)
1408 {
1409 	struct irq_data *d = irq_desc_get_irq_data(desc);
1410 
1411 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1412 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1413 	if (d->parent_data)
1414 		return false;
1415 #endif
1416 	/* Don't support NMIs for chips behind a slow bus */
1417 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1418 		return false;
1419 
1420 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1421 }
1422 
1423 static int irq_nmi_setup(struct irq_desc *desc)
1424 {
1425 	struct irq_data *d = irq_desc_get_irq_data(desc);
1426 	struct irq_chip *c = d->chip;
1427 
1428 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1429 }
1430 
1431 static void irq_nmi_teardown(struct irq_desc *desc)
1432 {
1433 	struct irq_data *d = irq_desc_get_irq_data(desc);
1434 	struct irq_chip *c = d->chip;
1435 
1436 	if (c->irq_nmi_teardown)
1437 		c->irq_nmi_teardown(d);
1438 }
1439 
1440 static int
1441 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1442 {
1443 	struct task_struct *t;
1444 
1445 	if (!secondary) {
1446 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1447 				   new->name);
1448 	} else {
1449 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1450 				   new->name);
1451 	}
1452 
1453 	if (IS_ERR(t))
1454 		return PTR_ERR(t);
1455 
1456 	/*
1457 	 * We keep the reference to the task struct even if
1458 	 * the thread dies to avoid that the interrupt code
1459 	 * references an already freed task_struct.
1460 	 */
1461 	new->thread = get_task_struct(t);
1462 	/*
1463 	 * Tell the thread to set its affinity. This is
1464 	 * important for shared interrupt handlers as we do
1465 	 * not invoke setup_affinity() for the secondary
1466 	 * handlers as everything is already set up. Even for
1467 	 * interrupts marked with IRQF_NO_BALANCE this is
1468 	 * correct as we want the thread to move to the cpu(s)
1469 	 * on which the requesting code placed the interrupt.
1470 	 */
1471 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Internal function to register an irqaction - typically used to
1477  * allocate special interrupts that are part of the architecture.
1478  *
1479  * Locking rules:
1480  *
1481  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1482  *   chip_bus_lock	Provides serialization for slow bus operations
1483  *     desc->lock	Provides serialization against hard interrupts
1484  *
1485  * chip_bus_lock and desc->lock are sufficient for all other management and
1486  * interrupt related functions. desc->request_mutex solely serializes
1487  * request/free_irq().
1488  */
1489 static int
1490 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1491 {
1492 	struct irqaction *old, **old_ptr;
1493 	unsigned long flags, thread_mask = 0;
1494 	int ret, nested, shared = 0;
1495 
1496 	if (!desc)
1497 		return -EINVAL;
1498 
1499 	if (desc->irq_data.chip == &no_irq_chip)
1500 		return -ENOSYS;
1501 	if (!try_module_get(desc->owner))
1502 		return -ENODEV;
1503 
1504 	new->irq = irq;
1505 
1506 	/*
1507 	 * If the trigger type is not specified by the caller,
1508 	 * then use the default for this interrupt.
1509 	 */
1510 	if (!(new->flags & IRQF_TRIGGER_MASK))
1511 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1512 
1513 	/*
1514 	 * Check whether the interrupt nests into another interrupt
1515 	 * thread.
1516 	 */
1517 	nested = irq_settings_is_nested_thread(desc);
1518 	if (nested) {
1519 		if (!new->thread_fn) {
1520 			ret = -EINVAL;
1521 			goto out_mput;
1522 		}
1523 		/*
1524 		 * Replace the primary handler which was provided from
1525 		 * the driver for non nested interrupt handling by the
1526 		 * dummy function which warns when called.
1527 		 */
1528 		new->handler = irq_nested_primary_handler;
1529 	} else {
1530 		if (irq_settings_can_thread(desc)) {
1531 			ret = irq_setup_forced_threading(new);
1532 			if (ret)
1533 				goto out_mput;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Create a handler thread when a thread function is supplied
1539 	 * and the interrupt does not nest into another interrupt
1540 	 * thread.
1541 	 */
1542 	if (new->thread_fn && !nested) {
1543 		ret = setup_irq_thread(new, irq, false);
1544 		if (ret)
1545 			goto out_mput;
1546 		if (new->secondary) {
1547 			ret = setup_irq_thread(new->secondary, irq, true);
1548 			if (ret)
1549 				goto out_thread;
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Drivers are often written to work w/o knowledge about the
1555 	 * underlying irq chip implementation, so a request for a
1556 	 * threaded irq without a primary hard irq context handler
1557 	 * requires the ONESHOT flag to be set. Some irq chips like
1558 	 * MSI based interrupts are per se one shot safe. Check the
1559 	 * chip flags, so we can avoid the unmask dance at the end of
1560 	 * the threaded handler for those.
1561 	 */
1562 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1563 		new->flags &= ~IRQF_ONESHOT;
1564 
1565 	/*
1566 	 * Protects against a concurrent __free_irq() call which might wait
1567 	 * for synchronize_hardirq() to complete without holding the optional
1568 	 * chip bus lock and desc->lock. Also protects against handing out
1569 	 * a recycled oneshot thread_mask bit while it's still in use by
1570 	 * its previous owner.
1571 	 */
1572 	mutex_lock(&desc->request_mutex);
1573 
1574 	/*
1575 	 * Acquire bus lock as the irq_request_resources() callback below
1576 	 * might rely on the serialization or the magic power management
1577 	 * functions which are abusing the irq_bus_lock() callback,
1578 	 */
1579 	chip_bus_lock(desc);
1580 
1581 	/* First installed action requests resources. */
1582 	if (!desc->action) {
1583 		ret = irq_request_resources(desc);
1584 		if (ret) {
1585 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1586 			       new->name, irq, desc->irq_data.chip->name);
1587 			goto out_bus_unlock;
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * The following block of code has to be executed atomically
1593 	 * protected against a concurrent interrupt and any of the other
1594 	 * management calls which are not serialized via
1595 	 * desc->request_mutex or the optional bus lock.
1596 	 */
1597 	raw_spin_lock_irqsave(&desc->lock, flags);
1598 	old_ptr = &desc->action;
1599 	old = *old_ptr;
1600 	if (old) {
1601 		/*
1602 		 * Can't share interrupts unless both agree to and are
1603 		 * the same type (level, edge, polarity). So both flag
1604 		 * fields must have IRQF_SHARED set and the bits which
1605 		 * set the trigger type must match. Also all must
1606 		 * agree on ONESHOT.
1607 		 * Interrupt lines used for NMIs cannot be shared.
1608 		 */
1609 		unsigned int oldtype;
1610 
1611 		if (desc->istate & IRQS_NMI) {
1612 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1613 				new->name, irq, desc->irq_data.chip->name);
1614 			ret = -EINVAL;
1615 			goto out_unlock;
1616 		}
1617 
1618 		/*
1619 		 * If nobody did set the configuration before, inherit
1620 		 * the one provided by the requester.
1621 		 */
1622 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1623 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1624 		} else {
1625 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1626 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1627 		}
1628 
1629 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1630 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1631 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1632 			goto mismatch;
1633 
1634 		/* All handlers must agree on per-cpuness */
1635 		if ((old->flags & IRQF_PERCPU) !=
1636 		    (new->flags & IRQF_PERCPU))
1637 			goto mismatch;
1638 
1639 		/* add new interrupt at end of irq queue */
1640 		do {
1641 			/*
1642 			 * Or all existing action->thread_mask bits,
1643 			 * so we can find the next zero bit for this
1644 			 * new action.
1645 			 */
1646 			thread_mask |= old->thread_mask;
1647 			old_ptr = &old->next;
1648 			old = *old_ptr;
1649 		} while (old);
1650 		shared = 1;
1651 	}
1652 
1653 	/*
1654 	 * Setup the thread mask for this irqaction for ONESHOT. For
1655 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1656 	 * conditional in irq_wake_thread().
1657 	 */
1658 	if (new->flags & IRQF_ONESHOT) {
1659 		/*
1660 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1661 		 * but who knows.
1662 		 */
1663 		if (thread_mask == ~0UL) {
1664 			ret = -EBUSY;
1665 			goto out_unlock;
1666 		}
1667 		/*
1668 		 * The thread_mask for the action is or'ed to
1669 		 * desc->thread_active to indicate that the
1670 		 * IRQF_ONESHOT thread handler has been woken, but not
1671 		 * yet finished. The bit is cleared when a thread
1672 		 * completes. When all threads of a shared interrupt
1673 		 * line have completed desc->threads_active becomes
1674 		 * zero and the interrupt line is unmasked. See
1675 		 * handle.c:irq_wake_thread() for further information.
1676 		 *
1677 		 * If no thread is woken by primary (hard irq context)
1678 		 * interrupt handlers, then desc->threads_active is
1679 		 * also checked for zero to unmask the irq line in the
1680 		 * affected hard irq flow handlers
1681 		 * (handle_[fasteoi|level]_irq).
1682 		 *
1683 		 * The new action gets the first zero bit of
1684 		 * thread_mask assigned. See the loop above which or's
1685 		 * all existing action->thread_mask bits.
1686 		 */
1687 		new->thread_mask = 1UL << ffz(thread_mask);
1688 
1689 	} else if (new->handler == irq_default_primary_handler &&
1690 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1691 		/*
1692 		 * The interrupt was requested with handler = NULL, so
1693 		 * we use the default primary handler for it. But it
1694 		 * does not have the oneshot flag set. In combination
1695 		 * with level interrupts this is deadly, because the
1696 		 * default primary handler just wakes the thread, then
1697 		 * the irq lines is reenabled, but the device still
1698 		 * has the level irq asserted. Rinse and repeat....
1699 		 *
1700 		 * While this works for edge type interrupts, we play
1701 		 * it safe and reject unconditionally because we can't
1702 		 * say for sure which type this interrupt really
1703 		 * has. The type flags are unreliable as the
1704 		 * underlying chip implementation can override them.
1705 		 */
1706 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1707 		       new->name, irq);
1708 		ret = -EINVAL;
1709 		goto out_unlock;
1710 	}
1711 
1712 	if (!shared) {
1713 		/* Setup the type (level, edge polarity) if configured: */
1714 		if (new->flags & IRQF_TRIGGER_MASK) {
1715 			ret = __irq_set_trigger(desc,
1716 						new->flags & IRQF_TRIGGER_MASK);
1717 
1718 			if (ret)
1719 				goto out_unlock;
1720 		}
1721 
1722 		/*
1723 		 * Activate the interrupt. That activation must happen
1724 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1725 		 * and the callers are supposed to handle
1726 		 * that. enable_irq() of an interrupt requested with
1727 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1728 		 * keeps it in shutdown mode, it merily associates
1729 		 * resources if necessary and if that's not possible it
1730 		 * fails. Interrupts which are in managed shutdown mode
1731 		 * will simply ignore that activation request.
1732 		 */
1733 		ret = irq_activate(desc);
1734 		if (ret)
1735 			goto out_unlock;
1736 
1737 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1738 				  IRQS_ONESHOT | IRQS_WAITING);
1739 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1740 
1741 		if (new->flags & IRQF_PERCPU) {
1742 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1743 			irq_settings_set_per_cpu(desc);
1744 			if (new->flags & IRQF_NO_DEBUG)
1745 				irq_settings_set_no_debug(desc);
1746 		}
1747 
1748 		if (noirqdebug)
1749 			irq_settings_set_no_debug(desc);
1750 
1751 		if (new->flags & IRQF_ONESHOT)
1752 			desc->istate |= IRQS_ONESHOT;
1753 
1754 		/* Exclude IRQ from balancing if requested */
1755 		if (new->flags & IRQF_NOBALANCING) {
1756 			irq_settings_set_no_balancing(desc);
1757 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1758 		}
1759 
1760 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1761 		    irq_settings_can_autoenable(desc)) {
1762 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1763 		} else {
1764 			/*
1765 			 * Shared interrupts do not go well with disabling
1766 			 * auto enable. The sharing interrupt might request
1767 			 * it while it's still disabled and then wait for
1768 			 * interrupts forever.
1769 			 */
1770 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1771 			/* Undo nested disables: */
1772 			desc->depth = 1;
1773 		}
1774 
1775 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1776 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1777 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1778 
1779 		if (nmsk != omsk)
1780 			/* hope the handler works with current  trigger mode */
1781 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1782 				irq, omsk, nmsk);
1783 	}
1784 
1785 	*old_ptr = new;
1786 
1787 	irq_pm_install_action(desc, new);
1788 
1789 	/* Reset broken irq detection when installing new handler */
1790 	desc->irq_count = 0;
1791 	desc->irqs_unhandled = 0;
1792 
1793 	/*
1794 	 * Check whether we disabled the irq via the spurious handler
1795 	 * before. Reenable it and give it another chance.
1796 	 */
1797 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1798 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1799 		__enable_irq(desc);
1800 	}
1801 
1802 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1803 	chip_bus_sync_unlock(desc);
1804 	mutex_unlock(&desc->request_mutex);
1805 
1806 	irq_setup_timings(desc, new);
1807 
1808 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1809 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1810 
1811 	register_irq_proc(irq, desc);
1812 	new->dir = NULL;
1813 	register_handler_proc(irq, new);
1814 	return 0;
1815 
1816 mismatch:
1817 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1818 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1819 		       irq, new->flags, new->name, old->flags, old->name);
1820 #ifdef CONFIG_DEBUG_SHIRQ
1821 		dump_stack();
1822 #endif
1823 	}
1824 	ret = -EBUSY;
1825 
1826 out_unlock:
1827 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1828 
1829 	if (!desc->action)
1830 		irq_release_resources(desc);
1831 out_bus_unlock:
1832 	chip_bus_sync_unlock(desc);
1833 	mutex_unlock(&desc->request_mutex);
1834 
1835 out_thread:
1836 	if (new->thread) {
1837 		struct task_struct *t = new->thread;
1838 
1839 		new->thread = NULL;
1840 		kthread_stop(t);
1841 		put_task_struct(t);
1842 	}
1843 	if (new->secondary && new->secondary->thread) {
1844 		struct task_struct *t = new->secondary->thread;
1845 
1846 		new->secondary->thread = NULL;
1847 		kthread_stop(t);
1848 		put_task_struct(t);
1849 	}
1850 out_mput:
1851 	module_put(desc->owner);
1852 	return ret;
1853 }
1854 
1855 /*
1856  * Internal function to unregister an irqaction - used to free
1857  * regular and special interrupts that are part of the architecture.
1858  */
1859 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1860 {
1861 	unsigned irq = desc->irq_data.irq;
1862 	struct irqaction *action, **action_ptr;
1863 	unsigned long flags;
1864 
1865 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1866 
1867 	mutex_lock(&desc->request_mutex);
1868 	chip_bus_lock(desc);
1869 	raw_spin_lock_irqsave(&desc->lock, flags);
1870 
1871 	/*
1872 	 * There can be multiple actions per IRQ descriptor, find the right
1873 	 * one based on the dev_id:
1874 	 */
1875 	action_ptr = &desc->action;
1876 	for (;;) {
1877 		action = *action_ptr;
1878 
1879 		if (!action) {
1880 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1881 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1882 			chip_bus_sync_unlock(desc);
1883 			mutex_unlock(&desc->request_mutex);
1884 			return NULL;
1885 		}
1886 
1887 		if (action->dev_id == dev_id)
1888 			break;
1889 		action_ptr = &action->next;
1890 	}
1891 
1892 	/* Found it - now remove it from the list of entries: */
1893 	*action_ptr = action->next;
1894 
1895 	irq_pm_remove_action(desc, action);
1896 
1897 	/* If this was the last handler, shut down the IRQ line: */
1898 	if (!desc->action) {
1899 		irq_settings_clr_disable_unlazy(desc);
1900 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1901 		irq_shutdown(desc);
1902 	}
1903 
1904 #ifdef CONFIG_SMP
1905 	/* make sure affinity_hint is cleaned up */
1906 	if (WARN_ON_ONCE(desc->affinity_hint))
1907 		desc->affinity_hint = NULL;
1908 #endif
1909 
1910 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1911 	/*
1912 	 * Drop bus_lock here so the changes which were done in the chip
1913 	 * callbacks above are synced out to the irq chips which hang
1914 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1915 	 *
1916 	 * Aside of that the bus_lock can also be taken from the threaded
1917 	 * handler in irq_finalize_oneshot() which results in a deadlock
1918 	 * because kthread_stop() would wait forever for the thread to
1919 	 * complete, which is blocked on the bus lock.
1920 	 *
1921 	 * The still held desc->request_mutex() protects against a
1922 	 * concurrent request_irq() of this irq so the release of resources
1923 	 * and timing data is properly serialized.
1924 	 */
1925 	chip_bus_sync_unlock(desc);
1926 
1927 	unregister_handler_proc(irq, action);
1928 
1929 	/*
1930 	 * Make sure it's not being used on another CPU and if the chip
1931 	 * supports it also make sure that there is no (not yet serviced)
1932 	 * interrupt in flight at the hardware level.
1933 	 */
1934 	__synchronize_hardirq(desc, true);
1935 
1936 #ifdef CONFIG_DEBUG_SHIRQ
1937 	/*
1938 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1939 	 * event to happen even now it's being freed, so let's make sure that
1940 	 * is so by doing an extra call to the handler ....
1941 	 *
1942 	 * ( We do this after actually deregistering it, to make sure that a
1943 	 *   'real' IRQ doesn't run in parallel with our fake. )
1944 	 */
1945 	if (action->flags & IRQF_SHARED) {
1946 		local_irq_save(flags);
1947 		action->handler(irq, dev_id);
1948 		local_irq_restore(flags);
1949 	}
1950 #endif
1951 
1952 	/*
1953 	 * The action has already been removed above, but the thread writes
1954 	 * its oneshot mask bit when it completes. Though request_mutex is
1955 	 * held across this which prevents __setup_irq() from handing out
1956 	 * the same bit to a newly requested action.
1957 	 */
1958 	if (action->thread) {
1959 		kthread_stop(action->thread);
1960 		put_task_struct(action->thread);
1961 		if (action->secondary && action->secondary->thread) {
1962 			kthread_stop(action->secondary->thread);
1963 			put_task_struct(action->secondary->thread);
1964 		}
1965 	}
1966 
1967 	/* Last action releases resources */
1968 	if (!desc->action) {
1969 		/*
1970 		 * Reacquire bus lock as irq_release_resources() might
1971 		 * require it to deallocate resources over the slow bus.
1972 		 */
1973 		chip_bus_lock(desc);
1974 		/*
1975 		 * There is no interrupt on the fly anymore. Deactivate it
1976 		 * completely.
1977 		 */
1978 		raw_spin_lock_irqsave(&desc->lock, flags);
1979 		irq_domain_deactivate_irq(&desc->irq_data);
1980 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1981 
1982 		irq_release_resources(desc);
1983 		chip_bus_sync_unlock(desc);
1984 		irq_remove_timings(desc);
1985 	}
1986 
1987 	mutex_unlock(&desc->request_mutex);
1988 
1989 	irq_chip_pm_put(&desc->irq_data);
1990 	module_put(desc->owner);
1991 	kfree(action->secondary);
1992 	return action;
1993 }
1994 
1995 /**
1996  *	free_irq - free an interrupt allocated with request_irq
1997  *	@irq: Interrupt line to free
1998  *	@dev_id: Device identity to free
1999  *
2000  *	Remove an interrupt handler. The handler is removed and if the
2001  *	interrupt line is no longer in use by any driver it is disabled.
2002  *	On a shared IRQ the caller must ensure the interrupt is disabled
2003  *	on the card it drives before calling this function. The function
2004  *	does not return until any executing interrupts for this IRQ
2005  *	have completed.
2006  *
2007  *	This function must not be called from interrupt context.
2008  *
2009  *	Returns the devname argument passed to request_irq.
2010  */
2011 const void *free_irq(unsigned int irq, void *dev_id)
2012 {
2013 	struct irq_desc *desc = irq_to_desc(irq);
2014 	struct irqaction *action;
2015 	const char *devname;
2016 
2017 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2018 		return NULL;
2019 
2020 #ifdef CONFIG_SMP
2021 	if (WARN_ON(desc->affinity_notify))
2022 		desc->affinity_notify = NULL;
2023 #endif
2024 
2025 	action = __free_irq(desc, dev_id);
2026 
2027 	if (!action)
2028 		return NULL;
2029 
2030 	devname = action->name;
2031 	kfree(action);
2032 	return devname;
2033 }
2034 EXPORT_SYMBOL(free_irq);
2035 
2036 /* This function must be called with desc->lock held */
2037 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2038 {
2039 	const char *devname = NULL;
2040 
2041 	desc->istate &= ~IRQS_NMI;
2042 
2043 	if (!WARN_ON(desc->action == NULL)) {
2044 		irq_pm_remove_action(desc, desc->action);
2045 		devname = desc->action->name;
2046 		unregister_handler_proc(irq, desc->action);
2047 
2048 		kfree(desc->action);
2049 		desc->action = NULL;
2050 	}
2051 
2052 	irq_settings_clr_disable_unlazy(desc);
2053 	irq_shutdown_and_deactivate(desc);
2054 
2055 	irq_release_resources(desc);
2056 
2057 	irq_chip_pm_put(&desc->irq_data);
2058 	module_put(desc->owner);
2059 
2060 	return devname;
2061 }
2062 
2063 const void *free_nmi(unsigned int irq, void *dev_id)
2064 {
2065 	struct irq_desc *desc = irq_to_desc(irq);
2066 	unsigned long flags;
2067 	const void *devname;
2068 
2069 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2070 		return NULL;
2071 
2072 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2073 		return NULL;
2074 
2075 	/* NMI still enabled */
2076 	if (WARN_ON(desc->depth == 0))
2077 		disable_nmi_nosync(irq);
2078 
2079 	raw_spin_lock_irqsave(&desc->lock, flags);
2080 
2081 	irq_nmi_teardown(desc);
2082 	devname = __cleanup_nmi(irq, desc);
2083 
2084 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2085 
2086 	return devname;
2087 }
2088 
2089 /**
2090  *	request_threaded_irq - allocate an interrupt line
2091  *	@irq: Interrupt line to allocate
2092  *	@handler: Function to be called when the IRQ occurs.
2093  *		  Primary handler for threaded interrupts.
2094  *		  If handler is NULL and thread_fn != NULL
2095  *		  the default primary handler is installed.
2096  *	@thread_fn: Function called from the irq handler thread
2097  *		    If NULL, no irq thread is created
2098  *	@irqflags: Interrupt type flags
2099  *	@devname: An ascii name for the claiming device
2100  *	@dev_id: A cookie passed back to the handler function
2101  *
2102  *	This call allocates interrupt resources and enables the
2103  *	interrupt line and IRQ handling. From the point this
2104  *	call is made your handler function may be invoked. Since
2105  *	your handler function must clear any interrupt the board
2106  *	raises, you must take care both to initialise your hardware
2107  *	and to set up the interrupt handler in the right order.
2108  *
2109  *	If you want to set up a threaded irq handler for your device
2110  *	then you need to supply @handler and @thread_fn. @handler is
2111  *	still called in hard interrupt context and has to check
2112  *	whether the interrupt originates from the device. If yes it
2113  *	needs to disable the interrupt on the device and return
2114  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2115  *	@thread_fn. This split handler design is necessary to support
2116  *	shared interrupts.
2117  *
2118  *	Dev_id must be globally unique. Normally the address of the
2119  *	device data structure is used as the cookie. Since the handler
2120  *	receives this value it makes sense to use it.
2121  *
2122  *	If your interrupt is shared you must pass a non NULL dev_id
2123  *	as this is required when freeing the interrupt.
2124  *
2125  *	Flags:
2126  *
2127  *	IRQF_SHARED		Interrupt is shared
2128  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2129  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2130  */
2131 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2132 			 irq_handler_t thread_fn, unsigned long irqflags,
2133 			 const char *devname, void *dev_id)
2134 {
2135 	struct irqaction *action;
2136 	struct irq_desc *desc;
2137 	int retval;
2138 
2139 	if (irq == IRQ_NOTCONNECTED)
2140 		return -ENOTCONN;
2141 
2142 	/*
2143 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2144 	 * otherwise we'll have trouble later trying to figure out
2145 	 * which interrupt is which (messes up the interrupt freeing
2146 	 * logic etc).
2147 	 *
2148 	 * Also shared interrupts do not go well with disabling auto enable.
2149 	 * The sharing interrupt might request it while it's still disabled
2150 	 * and then wait for interrupts forever.
2151 	 *
2152 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2153 	 * it cannot be set along with IRQF_NO_SUSPEND.
2154 	 */
2155 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2156 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2157 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2158 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2159 		return -EINVAL;
2160 
2161 	desc = irq_to_desc(irq);
2162 	if (!desc)
2163 		return -EINVAL;
2164 
2165 	if (!irq_settings_can_request(desc) ||
2166 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2167 		return -EINVAL;
2168 
2169 	if (!handler) {
2170 		if (!thread_fn)
2171 			return -EINVAL;
2172 		handler = irq_default_primary_handler;
2173 	}
2174 
2175 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2176 	if (!action)
2177 		return -ENOMEM;
2178 
2179 	action->handler = handler;
2180 	action->thread_fn = thread_fn;
2181 	action->flags = irqflags;
2182 	action->name = devname;
2183 	action->dev_id = dev_id;
2184 
2185 	retval = irq_chip_pm_get(&desc->irq_data);
2186 	if (retval < 0) {
2187 		kfree(action);
2188 		return retval;
2189 	}
2190 
2191 	retval = __setup_irq(irq, desc, action);
2192 
2193 	if (retval) {
2194 		irq_chip_pm_put(&desc->irq_data);
2195 		kfree(action->secondary);
2196 		kfree(action);
2197 	}
2198 
2199 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2200 	if (!retval && (irqflags & IRQF_SHARED)) {
2201 		/*
2202 		 * It's a shared IRQ -- the driver ought to be prepared for it
2203 		 * to happen immediately, so let's make sure....
2204 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2205 		 * run in parallel with our fake.
2206 		 */
2207 		unsigned long flags;
2208 
2209 		disable_irq(irq);
2210 		local_irq_save(flags);
2211 
2212 		handler(irq, dev_id);
2213 
2214 		local_irq_restore(flags);
2215 		enable_irq(irq);
2216 	}
2217 #endif
2218 	return retval;
2219 }
2220 EXPORT_SYMBOL(request_threaded_irq);
2221 
2222 /**
2223  *	request_any_context_irq - allocate an interrupt line
2224  *	@irq: Interrupt line to allocate
2225  *	@handler: Function to be called when the IRQ occurs.
2226  *		  Threaded handler for threaded interrupts.
2227  *	@flags: Interrupt type flags
2228  *	@name: An ascii name for the claiming device
2229  *	@dev_id: A cookie passed back to the handler function
2230  *
2231  *	This call allocates interrupt resources and enables the
2232  *	interrupt line and IRQ handling. It selects either a
2233  *	hardirq or threaded handling method depending on the
2234  *	context.
2235  *
2236  *	On failure, it returns a negative value. On success,
2237  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2238  */
2239 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2240 			    unsigned long flags, const char *name, void *dev_id)
2241 {
2242 	struct irq_desc *desc;
2243 	int ret;
2244 
2245 	if (irq == IRQ_NOTCONNECTED)
2246 		return -ENOTCONN;
2247 
2248 	desc = irq_to_desc(irq);
2249 	if (!desc)
2250 		return -EINVAL;
2251 
2252 	if (irq_settings_is_nested_thread(desc)) {
2253 		ret = request_threaded_irq(irq, NULL, handler,
2254 					   flags, name, dev_id);
2255 		return !ret ? IRQC_IS_NESTED : ret;
2256 	}
2257 
2258 	ret = request_irq(irq, handler, flags, name, dev_id);
2259 	return !ret ? IRQC_IS_HARDIRQ : ret;
2260 }
2261 EXPORT_SYMBOL_GPL(request_any_context_irq);
2262 
2263 /**
2264  *	request_nmi - allocate an interrupt line for NMI delivery
2265  *	@irq: Interrupt line to allocate
2266  *	@handler: Function to be called when the IRQ occurs.
2267  *		  Threaded handler for threaded interrupts.
2268  *	@irqflags: Interrupt type flags
2269  *	@name: An ascii name for the claiming device
2270  *	@dev_id: A cookie passed back to the handler function
2271  *
2272  *	This call allocates interrupt resources and enables the
2273  *	interrupt line and IRQ handling. It sets up the IRQ line
2274  *	to be handled as an NMI.
2275  *
2276  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2277  *	cannot be threaded.
2278  *
2279  *	Interrupt lines requested for NMI delivering must produce per cpu
2280  *	interrupts and have auto enabling setting disabled.
2281  *
2282  *	Dev_id must be globally unique. Normally the address of the
2283  *	device data structure is used as the cookie. Since the handler
2284  *	receives this value it makes sense to use it.
2285  *
2286  *	If the interrupt line cannot be used to deliver NMIs, function
2287  *	will fail and return a negative value.
2288  */
2289 int request_nmi(unsigned int irq, irq_handler_t handler,
2290 		unsigned long irqflags, const char *name, void *dev_id)
2291 {
2292 	struct irqaction *action;
2293 	struct irq_desc *desc;
2294 	unsigned long flags;
2295 	int retval;
2296 
2297 	if (irq == IRQ_NOTCONNECTED)
2298 		return -ENOTCONN;
2299 
2300 	/* NMI cannot be shared, used for Polling */
2301 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2302 		return -EINVAL;
2303 
2304 	if (!(irqflags & IRQF_PERCPU))
2305 		return -EINVAL;
2306 
2307 	if (!handler)
2308 		return -EINVAL;
2309 
2310 	desc = irq_to_desc(irq);
2311 
2312 	if (!desc || (irq_settings_can_autoenable(desc) &&
2313 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2314 	    !irq_settings_can_request(desc) ||
2315 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2316 	    !irq_supports_nmi(desc))
2317 		return -EINVAL;
2318 
2319 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2320 	if (!action)
2321 		return -ENOMEM;
2322 
2323 	action->handler = handler;
2324 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2325 	action->name = name;
2326 	action->dev_id = dev_id;
2327 
2328 	retval = irq_chip_pm_get(&desc->irq_data);
2329 	if (retval < 0)
2330 		goto err_out;
2331 
2332 	retval = __setup_irq(irq, desc, action);
2333 	if (retval)
2334 		goto err_irq_setup;
2335 
2336 	raw_spin_lock_irqsave(&desc->lock, flags);
2337 
2338 	/* Setup NMI state */
2339 	desc->istate |= IRQS_NMI;
2340 	retval = irq_nmi_setup(desc);
2341 	if (retval) {
2342 		__cleanup_nmi(irq, desc);
2343 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2344 		return -EINVAL;
2345 	}
2346 
2347 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2348 
2349 	return 0;
2350 
2351 err_irq_setup:
2352 	irq_chip_pm_put(&desc->irq_data);
2353 err_out:
2354 	kfree(action);
2355 
2356 	return retval;
2357 }
2358 
2359 void enable_percpu_irq(unsigned int irq, unsigned int type)
2360 {
2361 	unsigned int cpu = smp_processor_id();
2362 	unsigned long flags;
2363 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2364 
2365 	if (!desc)
2366 		return;
2367 
2368 	/*
2369 	 * If the trigger type is not specified by the caller, then
2370 	 * use the default for this interrupt.
2371 	 */
2372 	type &= IRQ_TYPE_SENSE_MASK;
2373 	if (type == IRQ_TYPE_NONE)
2374 		type = irqd_get_trigger_type(&desc->irq_data);
2375 
2376 	if (type != IRQ_TYPE_NONE) {
2377 		int ret;
2378 
2379 		ret = __irq_set_trigger(desc, type);
2380 
2381 		if (ret) {
2382 			WARN(1, "failed to set type for IRQ%d\n", irq);
2383 			goto out;
2384 		}
2385 	}
2386 
2387 	irq_percpu_enable(desc, cpu);
2388 out:
2389 	irq_put_desc_unlock(desc, flags);
2390 }
2391 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2392 
2393 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2394 {
2395 	enable_percpu_irq(irq, type);
2396 }
2397 
2398 /**
2399  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2400  * @irq:	Linux irq number to check for
2401  *
2402  * Must be called from a non migratable context. Returns the enable
2403  * state of a per cpu interrupt on the current cpu.
2404  */
2405 bool irq_percpu_is_enabled(unsigned int irq)
2406 {
2407 	unsigned int cpu = smp_processor_id();
2408 	struct irq_desc *desc;
2409 	unsigned long flags;
2410 	bool is_enabled;
2411 
2412 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2413 	if (!desc)
2414 		return false;
2415 
2416 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2417 	irq_put_desc_unlock(desc, flags);
2418 
2419 	return is_enabled;
2420 }
2421 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2422 
2423 void disable_percpu_irq(unsigned int irq)
2424 {
2425 	unsigned int cpu = smp_processor_id();
2426 	unsigned long flags;
2427 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428 
2429 	if (!desc)
2430 		return;
2431 
2432 	irq_percpu_disable(desc, cpu);
2433 	irq_put_desc_unlock(desc, flags);
2434 }
2435 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2436 
2437 void disable_percpu_nmi(unsigned int irq)
2438 {
2439 	disable_percpu_irq(irq);
2440 }
2441 
2442 /*
2443  * Internal function to unregister a percpu irqaction.
2444  */
2445 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2446 {
2447 	struct irq_desc *desc = irq_to_desc(irq);
2448 	struct irqaction *action;
2449 	unsigned long flags;
2450 
2451 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2452 
2453 	if (!desc)
2454 		return NULL;
2455 
2456 	raw_spin_lock_irqsave(&desc->lock, flags);
2457 
2458 	action = desc->action;
2459 	if (!action || action->percpu_dev_id != dev_id) {
2460 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2461 		goto bad;
2462 	}
2463 
2464 	if (!cpumask_empty(desc->percpu_enabled)) {
2465 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2466 		     irq, cpumask_first(desc->percpu_enabled));
2467 		goto bad;
2468 	}
2469 
2470 	/* Found it - now remove it from the list of entries: */
2471 	desc->action = NULL;
2472 
2473 	desc->istate &= ~IRQS_NMI;
2474 
2475 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2476 
2477 	unregister_handler_proc(irq, action);
2478 
2479 	irq_chip_pm_put(&desc->irq_data);
2480 	module_put(desc->owner);
2481 	return action;
2482 
2483 bad:
2484 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2485 	return NULL;
2486 }
2487 
2488 /**
2489  *	remove_percpu_irq - free a per-cpu interrupt
2490  *	@irq: Interrupt line to free
2491  *	@act: irqaction for the interrupt
2492  *
2493  * Used to remove interrupts statically setup by the early boot process.
2494  */
2495 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2496 {
2497 	struct irq_desc *desc = irq_to_desc(irq);
2498 
2499 	if (desc && irq_settings_is_per_cpu_devid(desc))
2500 	    __free_percpu_irq(irq, act->percpu_dev_id);
2501 }
2502 
2503 /**
2504  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2505  *	@irq: Interrupt line to free
2506  *	@dev_id: Device identity to free
2507  *
2508  *	Remove a percpu interrupt handler. The handler is removed, but
2509  *	the interrupt line is not disabled. This must be done on each
2510  *	CPU before calling this function. The function does not return
2511  *	until any executing interrupts for this IRQ have completed.
2512  *
2513  *	This function must not be called from interrupt context.
2514  */
2515 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2516 {
2517 	struct irq_desc *desc = irq_to_desc(irq);
2518 
2519 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2520 		return;
2521 
2522 	chip_bus_lock(desc);
2523 	kfree(__free_percpu_irq(irq, dev_id));
2524 	chip_bus_sync_unlock(desc);
2525 }
2526 EXPORT_SYMBOL_GPL(free_percpu_irq);
2527 
2528 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2529 {
2530 	struct irq_desc *desc = irq_to_desc(irq);
2531 
2532 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2533 		return;
2534 
2535 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2536 		return;
2537 
2538 	kfree(__free_percpu_irq(irq, dev_id));
2539 }
2540 
2541 /**
2542  *	setup_percpu_irq - setup a per-cpu interrupt
2543  *	@irq: Interrupt line to setup
2544  *	@act: irqaction for the interrupt
2545  *
2546  * Used to statically setup per-cpu interrupts in the early boot process.
2547  */
2548 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2549 {
2550 	struct irq_desc *desc = irq_to_desc(irq);
2551 	int retval;
2552 
2553 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2554 		return -EINVAL;
2555 
2556 	retval = irq_chip_pm_get(&desc->irq_data);
2557 	if (retval < 0)
2558 		return retval;
2559 
2560 	retval = __setup_irq(irq, desc, act);
2561 
2562 	if (retval)
2563 		irq_chip_pm_put(&desc->irq_data);
2564 
2565 	return retval;
2566 }
2567 
2568 /**
2569  *	__request_percpu_irq - allocate a percpu interrupt line
2570  *	@irq: Interrupt line to allocate
2571  *	@handler: Function to be called when the IRQ occurs.
2572  *	@flags: Interrupt type flags (IRQF_TIMER only)
2573  *	@devname: An ascii name for the claiming device
2574  *	@dev_id: A percpu cookie passed back to the handler function
2575  *
2576  *	This call allocates interrupt resources and enables the
2577  *	interrupt on the local CPU. If the interrupt is supposed to be
2578  *	enabled on other CPUs, it has to be done on each CPU using
2579  *	enable_percpu_irq().
2580  *
2581  *	Dev_id must be globally unique. It is a per-cpu variable, and
2582  *	the handler gets called with the interrupted CPU's instance of
2583  *	that variable.
2584  */
2585 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2586 			 unsigned long flags, const char *devname,
2587 			 void __percpu *dev_id)
2588 {
2589 	struct irqaction *action;
2590 	struct irq_desc *desc;
2591 	int retval;
2592 
2593 	if (!dev_id)
2594 		return -EINVAL;
2595 
2596 	desc = irq_to_desc(irq);
2597 	if (!desc || !irq_settings_can_request(desc) ||
2598 	    !irq_settings_is_per_cpu_devid(desc))
2599 		return -EINVAL;
2600 
2601 	if (flags && flags != IRQF_TIMER)
2602 		return -EINVAL;
2603 
2604 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2605 	if (!action)
2606 		return -ENOMEM;
2607 
2608 	action->handler = handler;
2609 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2610 	action->name = devname;
2611 	action->percpu_dev_id = dev_id;
2612 
2613 	retval = irq_chip_pm_get(&desc->irq_data);
2614 	if (retval < 0) {
2615 		kfree(action);
2616 		return retval;
2617 	}
2618 
2619 	retval = __setup_irq(irq, desc, action);
2620 
2621 	if (retval) {
2622 		irq_chip_pm_put(&desc->irq_data);
2623 		kfree(action);
2624 	}
2625 
2626 	return retval;
2627 }
2628 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2629 
2630 /**
2631  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2632  *	@irq: Interrupt line to allocate
2633  *	@handler: Function to be called when the IRQ occurs.
2634  *	@name: An ascii name for the claiming device
2635  *	@dev_id: A percpu cookie passed back to the handler function
2636  *
2637  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2638  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2639  *	being enabled on the same CPU by using enable_percpu_nmi().
2640  *
2641  *	Dev_id must be globally unique. It is a per-cpu variable, and
2642  *	the handler gets called with the interrupted CPU's instance of
2643  *	that variable.
2644  *
2645  *	Interrupt lines requested for NMI delivering should have auto enabling
2646  *	setting disabled.
2647  *
2648  *	If the interrupt line cannot be used to deliver NMIs, function
2649  *	will fail returning a negative value.
2650  */
2651 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2652 		       const char *name, void __percpu *dev_id)
2653 {
2654 	struct irqaction *action;
2655 	struct irq_desc *desc;
2656 	unsigned long flags;
2657 	int retval;
2658 
2659 	if (!handler)
2660 		return -EINVAL;
2661 
2662 	desc = irq_to_desc(irq);
2663 
2664 	if (!desc || !irq_settings_can_request(desc) ||
2665 	    !irq_settings_is_per_cpu_devid(desc) ||
2666 	    irq_settings_can_autoenable(desc) ||
2667 	    !irq_supports_nmi(desc))
2668 		return -EINVAL;
2669 
2670 	/* The line cannot already be NMI */
2671 	if (desc->istate & IRQS_NMI)
2672 		return -EINVAL;
2673 
2674 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2675 	if (!action)
2676 		return -ENOMEM;
2677 
2678 	action->handler = handler;
2679 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2680 		| IRQF_NOBALANCING;
2681 	action->name = name;
2682 	action->percpu_dev_id = dev_id;
2683 
2684 	retval = irq_chip_pm_get(&desc->irq_data);
2685 	if (retval < 0)
2686 		goto err_out;
2687 
2688 	retval = __setup_irq(irq, desc, action);
2689 	if (retval)
2690 		goto err_irq_setup;
2691 
2692 	raw_spin_lock_irqsave(&desc->lock, flags);
2693 	desc->istate |= IRQS_NMI;
2694 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2695 
2696 	return 0;
2697 
2698 err_irq_setup:
2699 	irq_chip_pm_put(&desc->irq_data);
2700 err_out:
2701 	kfree(action);
2702 
2703 	return retval;
2704 }
2705 
2706 /**
2707  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2708  *	@irq: Interrupt line to prepare for NMI delivery
2709  *
2710  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2711  *	before that interrupt line gets enabled with enable_percpu_nmi().
2712  *
2713  *	As a CPU local operation, this should be called from non-preemptible
2714  *	context.
2715  *
2716  *	If the interrupt line cannot be used to deliver NMIs, function
2717  *	will fail returning a negative value.
2718  */
2719 int prepare_percpu_nmi(unsigned int irq)
2720 {
2721 	unsigned long flags;
2722 	struct irq_desc *desc;
2723 	int ret = 0;
2724 
2725 	WARN_ON(preemptible());
2726 
2727 	desc = irq_get_desc_lock(irq, &flags,
2728 				 IRQ_GET_DESC_CHECK_PERCPU);
2729 	if (!desc)
2730 		return -EINVAL;
2731 
2732 	if (WARN(!(desc->istate & IRQS_NMI),
2733 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2734 		 irq)) {
2735 		ret = -EINVAL;
2736 		goto out;
2737 	}
2738 
2739 	ret = irq_nmi_setup(desc);
2740 	if (ret) {
2741 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2742 		goto out;
2743 	}
2744 
2745 out:
2746 	irq_put_desc_unlock(desc, flags);
2747 	return ret;
2748 }
2749 
2750 /**
2751  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2752  *	@irq: Interrupt line from which CPU local NMI configuration should be
2753  *	      removed
2754  *
2755  *	This call undoes the setup done by prepare_percpu_nmi().
2756  *
2757  *	IRQ line should not be enabled for the current CPU.
2758  *
2759  *	As a CPU local operation, this should be called from non-preemptible
2760  *	context.
2761  */
2762 void teardown_percpu_nmi(unsigned int irq)
2763 {
2764 	unsigned long flags;
2765 	struct irq_desc *desc;
2766 
2767 	WARN_ON(preemptible());
2768 
2769 	desc = irq_get_desc_lock(irq, &flags,
2770 				 IRQ_GET_DESC_CHECK_PERCPU);
2771 	if (!desc)
2772 		return;
2773 
2774 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2775 		goto out;
2776 
2777 	irq_nmi_teardown(desc);
2778 out:
2779 	irq_put_desc_unlock(desc, flags);
2780 }
2781 
2782 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2783 			    bool *state)
2784 {
2785 	struct irq_chip *chip;
2786 	int err = -EINVAL;
2787 
2788 	do {
2789 		chip = irq_data_get_irq_chip(data);
2790 		if (WARN_ON_ONCE(!chip))
2791 			return -ENODEV;
2792 		if (chip->irq_get_irqchip_state)
2793 			break;
2794 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2795 		data = data->parent_data;
2796 #else
2797 		data = NULL;
2798 #endif
2799 	} while (data);
2800 
2801 	if (data)
2802 		err = chip->irq_get_irqchip_state(data, which, state);
2803 	return err;
2804 }
2805 
2806 /**
2807  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2808  *	@irq: Interrupt line that is forwarded to a VM
2809  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2810  *	@state: a pointer to a boolean where the state is to be stored
2811  *
2812  *	This call snapshots the internal irqchip state of an
2813  *	interrupt, returning into @state the bit corresponding to
2814  *	stage @which
2815  *
2816  *	This function should be called with preemption disabled if the
2817  *	interrupt controller has per-cpu registers.
2818  */
2819 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2820 			  bool *state)
2821 {
2822 	struct irq_desc *desc;
2823 	struct irq_data *data;
2824 	unsigned long flags;
2825 	int err = -EINVAL;
2826 
2827 	desc = irq_get_desc_buslock(irq, &flags, 0);
2828 	if (!desc)
2829 		return err;
2830 
2831 	data = irq_desc_get_irq_data(desc);
2832 
2833 	err = __irq_get_irqchip_state(data, which, state);
2834 
2835 	irq_put_desc_busunlock(desc, flags);
2836 	return err;
2837 }
2838 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2839 
2840 /**
2841  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2842  *	@irq: Interrupt line that is forwarded to a VM
2843  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2844  *	@val: Value corresponding to @which
2845  *
2846  *	This call sets the internal irqchip state of an interrupt,
2847  *	depending on the value of @which.
2848  *
2849  *	This function should be called with migration disabled if the
2850  *	interrupt controller has per-cpu registers.
2851  */
2852 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2853 			  bool val)
2854 {
2855 	struct irq_desc *desc;
2856 	struct irq_data *data;
2857 	struct irq_chip *chip;
2858 	unsigned long flags;
2859 	int err = -EINVAL;
2860 
2861 	desc = irq_get_desc_buslock(irq, &flags, 0);
2862 	if (!desc)
2863 		return err;
2864 
2865 	data = irq_desc_get_irq_data(desc);
2866 
2867 	do {
2868 		chip = irq_data_get_irq_chip(data);
2869 		if (WARN_ON_ONCE(!chip)) {
2870 			err = -ENODEV;
2871 			goto out_unlock;
2872 		}
2873 		if (chip->irq_set_irqchip_state)
2874 			break;
2875 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2876 		data = data->parent_data;
2877 #else
2878 		data = NULL;
2879 #endif
2880 	} while (data);
2881 
2882 	if (data)
2883 		err = chip->irq_set_irqchip_state(data, which, val);
2884 
2885 out_unlock:
2886 	irq_put_desc_busunlock(desc, flags);
2887 	return err;
2888 }
2889 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2890 
2891 /**
2892  * irq_has_action - Check whether an interrupt is requested
2893  * @irq:	The linux irq number
2894  *
2895  * Returns: A snapshot of the current state
2896  */
2897 bool irq_has_action(unsigned int irq)
2898 {
2899 	bool res;
2900 
2901 	rcu_read_lock();
2902 	res = irq_desc_has_action(irq_to_desc(irq));
2903 	rcu_read_unlock();
2904 	return res;
2905 }
2906 EXPORT_SYMBOL_GPL(irq_has_action);
2907 
2908 /**
2909  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2910  * @irq:	The linux irq number
2911  * @bitmask:	The bitmask to evaluate
2912  *
2913  * Returns: True if one of the bits in @bitmask is set
2914  */
2915 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2916 {
2917 	struct irq_desc *desc;
2918 	bool res = false;
2919 
2920 	rcu_read_lock();
2921 	desc = irq_to_desc(irq);
2922 	if (desc)
2923 		res = !!(desc->status_use_accessors & bitmask);
2924 	rcu_read_unlock();
2925 	return res;
2926 }
2927 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2928