1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affinity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 } 208 209 static inline void irq_init_effective_affinity(struct irq_data *data, 210 const struct cpumask *mask) 211 { 212 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 213 } 214 #else 215 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 216 static inline void irq_init_effective_affinity(struct irq_data *data, 217 const struct cpumask *mask) { } 218 #endif 219 220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 221 bool force) 222 { 223 struct irq_desc *desc = irq_data_to_desc(data); 224 struct irq_chip *chip = irq_data_get_irq_chip(data); 225 int ret; 226 227 if (!chip || !chip->irq_set_affinity) 228 return -EINVAL; 229 230 /* 231 * If this is a managed interrupt and housekeeping is enabled on 232 * it check whether the requested affinity mask intersects with 233 * a housekeeping CPU. If so, then remove the isolated CPUs from 234 * the mask and just keep the housekeeping CPU(s). This prevents 235 * the affinity setter from routing the interrupt to an isolated 236 * CPU to avoid that I/O submitted from a housekeeping CPU causes 237 * interrupts on an isolated one. 238 * 239 * If the masks do not intersect or include online CPU(s) then 240 * keep the requested mask. The isolated target CPUs are only 241 * receiving interrupts when the I/O operation was submitted 242 * directly from them. 243 * 244 * If all housekeeping CPUs in the affinity mask are offline, the 245 * interrupt will be migrated by the CPU hotplug code once a 246 * housekeeping CPU which belongs to the affinity mask comes 247 * online. 248 */ 249 if (irqd_affinity_is_managed(data) && 250 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 251 const struct cpumask *hk_mask, *prog_mask; 252 253 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 254 static struct cpumask tmp_mask; 255 256 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 257 258 raw_spin_lock(&tmp_mask_lock); 259 cpumask_and(&tmp_mask, mask, hk_mask); 260 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 261 prog_mask = mask; 262 else 263 prog_mask = &tmp_mask; 264 ret = chip->irq_set_affinity(data, prog_mask, force); 265 raw_spin_unlock(&tmp_mask_lock); 266 } else { 267 ret = chip->irq_set_affinity(data, mask, force); 268 } 269 switch (ret) { 270 case IRQ_SET_MASK_OK: 271 case IRQ_SET_MASK_OK_DONE: 272 cpumask_copy(desc->irq_common_data.affinity, mask); 273 fallthrough; 274 case IRQ_SET_MASK_OK_NOCOPY: 275 irq_validate_effective_affinity(data); 276 irq_set_thread_affinity(desc); 277 ret = 0; 278 } 279 280 return ret; 281 } 282 283 #ifdef CONFIG_GENERIC_PENDING_IRQ 284 static inline int irq_set_affinity_pending(struct irq_data *data, 285 const struct cpumask *dest) 286 { 287 struct irq_desc *desc = irq_data_to_desc(data); 288 289 irqd_set_move_pending(data); 290 irq_copy_pending(desc, dest); 291 return 0; 292 } 293 #else 294 static inline int irq_set_affinity_pending(struct irq_data *data, 295 const struct cpumask *dest) 296 { 297 return -EBUSY; 298 } 299 #endif 300 301 static int irq_try_set_affinity(struct irq_data *data, 302 const struct cpumask *dest, bool force) 303 { 304 int ret = irq_do_set_affinity(data, dest, force); 305 306 /* 307 * In case that the underlying vector management is busy and the 308 * architecture supports the generic pending mechanism then utilize 309 * this to avoid returning an error to user space. 310 */ 311 if (ret == -EBUSY && !force) 312 ret = irq_set_affinity_pending(data, dest); 313 return ret; 314 } 315 316 static bool irq_set_affinity_deactivated(struct irq_data *data, 317 const struct cpumask *mask, bool force) 318 { 319 struct irq_desc *desc = irq_data_to_desc(data); 320 321 /* 322 * Handle irq chips which can handle affinity only in activated 323 * state correctly 324 * 325 * If the interrupt is not yet activated, just store the affinity 326 * mask and do not call the chip driver at all. On activation the 327 * driver has to make sure anyway that the interrupt is in a 328 * usable state so startup works. 329 */ 330 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 331 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 332 return false; 333 334 cpumask_copy(desc->irq_common_data.affinity, mask); 335 irq_init_effective_affinity(data, mask); 336 irqd_set(data, IRQD_AFFINITY_SET); 337 return true; 338 } 339 340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 341 bool force) 342 { 343 struct irq_chip *chip = irq_data_get_irq_chip(data); 344 struct irq_desc *desc = irq_data_to_desc(data); 345 int ret = 0; 346 347 if (!chip || !chip->irq_set_affinity) 348 return -EINVAL; 349 350 if (irq_set_affinity_deactivated(data, mask, force)) 351 return 0; 352 353 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 354 ret = irq_try_set_affinity(data, mask, force); 355 } else { 356 irqd_set_move_pending(data); 357 irq_copy_pending(desc, mask); 358 } 359 360 if (desc->affinity_notify) { 361 kref_get(&desc->affinity_notify->kref); 362 if (!schedule_work(&desc->affinity_notify->work)) { 363 /* Work was already scheduled, drop our extra ref */ 364 kref_put(&desc->affinity_notify->kref, 365 desc->affinity_notify->release); 366 } 367 } 368 irqd_set(data, IRQD_AFFINITY_SET); 369 370 return ret; 371 } 372 373 /** 374 * irq_update_affinity_desc - Update affinity management for an interrupt 375 * @irq: The interrupt number to update 376 * @affinity: Pointer to the affinity descriptor 377 * 378 * This interface can be used to configure the affinity management of 379 * interrupts which have been allocated already. 380 * 381 * There are certain limitations on when it may be used - attempts to use it 382 * for when the kernel is configured for generic IRQ reservation mode (in 383 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 384 * managed/non-managed interrupt accounting. In addition, attempts to use it on 385 * an interrupt which is already started or which has already been configured 386 * as managed will also fail, as these mean invalid init state or double init. 387 */ 388 int irq_update_affinity_desc(unsigned int irq, 389 struct irq_affinity_desc *affinity) 390 { 391 struct irq_desc *desc; 392 unsigned long flags; 393 bool activated; 394 int ret = 0; 395 396 /* 397 * Supporting this with the reservation scheme used by x86 needs 398 * some more thought. Fail it for now. 399 */ 400 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 401 return -EOPNOTSUPP; 402 403 desc = irq_get_desc_buslock(irq, &flags, 0); 404 if (!desc) 405 return -EINVAL; 406 407 /* Requires the interrupt to be shut down */ 408 if (irqd_is_started(&desc->irq_data)) { 409 ret = -EBUSY; 410 goto out_unlock; 411 } 412 413 /* Interrupts which are already managed cannot be modified */ 414 if (irqd_affinity_is_managed(&desc->irq_data)) { 415 ret = -EBUSY; 416 goto out_unlock; 417 } 418 419 /* 420 * Deactivate the interrupt. That's required to undo 421 * anything an earlier activation has established. 422 */ 423 activated = irqd_is_activated(&desc->irq_data); 424 if (activated) 425 irq_domain_deactivate_irq(&desc->irq_data); 426 427 if (affinity->is_managed) { 428 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 429 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 430 } 431 432 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 433 434 /* Restore the activation state */ 435 if (activated) 436 irq_domain_activate_irq(&desc->irq_data, false); 437 438 out_unlock: 439 irq_put_desc_busunlock(desc, flags); 440 return ret; 441 } 442 443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 444 bool force) 445 { 446 struct irq_desc *desc = irq_to_desc(irq); 447 unsigned long flags; 448 int ret; 449 450 if (!desc) 451 return -EINVAL; 452 453 raw_spin_lock_irqsave(&desc->lock, flags); 454 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 455 raw_spin_unlock_irqrestore(&desc->lock, flags); 456 return ret; 457 } 458 459 /** 460 * irq_set_affinity - Set the irq affinity of a given irq 461 * @irq: Interrupt to set affinity 462 * @cpumask: cpumask 463 * 464 * Fails if cpumask does not contain an online CPU 465 */ 466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 467 { 468 return __irq_set_affinity(irq, cpumask, false); 469 } 470 EXPORT_SYMBOL_GPL(irq_set_affinity); 471 472 /** 473 * irq_force_affinity - Force the irq affinity of a given irq 474 * @irq: Interrupt to set affinity 475 * @cpumask: cpumask 476 * 477 * Same as irq_set_affinity, but without checking the mask against 478 * online cpus. 479 * 480 * Solely for low level cpu hotplug code, where we need to make per 481 * cpu interrupts affine before the cpu becomes online. 482 */ 483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 484 { 485 return __irq_set_affinity(irq, cpumask, true); 486 } 487 EXPORT_SYMBOL_GPL(irq_force_affinity); 488 489 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 490 bool setaffinity) 491 { 492 unsigned long flags; 493 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 494 495 if (!desc) 496 return -EINVAL; 497 desc->affinity_hint = m; 498 irq_put_desc_unlock(desc, flags); 499 if (m && setaffinity) 500 __irq_set_affinity(irq, m, false); 501 return 0; 502 } 503 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 504 505 static void irq_affinity_notify(struct work_struct *work) 506 { 507 struct irq_affinity_notify *notify = 508 container_of(work, struct irq_affinity_notify, work); 509 struct irq_desc *desc = irq_to_desc(notify->irq); 510 cpumask_var_t cpumask; 511 unsigned long flags; 512 513 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 514 goto out; 515 516 raw_spin_lock_irqsave(&desc->lock, flags); 517 if (irq_move_pending(&desc->irq_data)) 518 irq_get_pending(cpumask, desc); 519 else 520 cpumask_copy(cpumask, desc->irq_common_data.affinity); 521 raw_spin_unlock_irqrestore(&desc->lock, flags); 522 523 notify->notify(notify, cpumask); 524 525 free_cpumask_var(cpumask); 526 out: 527 kref_put(¬ify->kref, notify->release); 528 } 529 530 /** 531 * irq_set_affinity_notifier - control notification of IRQ affinity changes 532 * @irq: Interrupt for which to enable/disable notification 533 * @notify: Context for notification, or %NULL to disable 534 * notification. Function pointers must be initialised; 535 * the other fields will be initialised by this function. 536 * 537 * Must be called in process context. Notification may only be enabled 538 * after the IRQ is allocated and must be disabled before the IRQ is 539 * freed using free_irq(). 540 */ 541 int 542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 543 { 544 struct irq_desc *desc = irq_to_desc(irq); 545 struct irq_affinity_notify *old_notify; 546 unsigned long flags; 547 548 /* The release function is promised process context */ 549 might_sleep(); 550 551 if (!desc || desc->istate & IRQS_NMI) 552 return -EINVAL; 553 554 /* Complete initialisation of *notify */ 555 if (notify) { 556 notify->irq = irq; 557 kref_init(¬ify->kref); 558 INIT_WORK(¬ify->work, irq_affinity_notify); 559 } 560 561 raw_spin_lock_irqsave(&desc->lock, flags); 562 old_notify = desc->affinity_notify; 563 desc->affinity_notify = notify; 564 raw_spin_unlock_irqrestore(&desc->lock, flags); 565 566 if (old_notify) { 567 if (cancel_work_sync(&old_notify->work)) { 568 /* Pending work had a ref, put that one too */ 569 kref_put(&old_notify->kref, old_notify->release); 570 } 571 kref_put(&old_notify->kref, old_notify->release); 572 } 573 574 return 0; 575 } 576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 577 578 #ifndef CONFIG_AUTO_IRQ_AFFINITY 579 /* 580 * Generic version of the affinity autoselector. 581 */ 582 int irq_setup_affinity(struct irq_desc *desc) 583 { 584 struct cpumask *set = irq_default_affinity; 585 int ret, node = irq_desc_get_node(desc); 586 static DEFINE_RAW_SPINLOCK(mask_lock); 587 static struct cpumask mask; 588 589 /* Excludes PER_CPU and NO_BALANCE interrupts */ 590 if (!__irq_can_set_affinity(desc)) 591 return 0; 592 593 raw_spin_lock(&mask_lock); 594 /* 595 * Preserve the managed affinity setting and a userspace affinity 596 * setup, but make sure that one of the targets is online. 597 */ 598 if (irqd_affinity_is_managed(&desc->irq_data) || 599 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 600 if (cpumask_intersects(desc->irq_common_data.affinity, 601 cpu_online_mask)) 602 set = desc->irq_common_data.affinity; 603 else 604 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 605 } 606 607 cpumask_and(&mask, cpu_online_mask, set); 608 if (cpumask_empty(&mask)) 609 cpumask_copy(&mask, cpu_online_mask); 610 611 if (node != NUMA_NO_NODE) { 612 const struct cpumask *nodemask = cpumask_of_node(node); 613 614 /* make sure at least one of the cpus in nodemask is online */ 615 if (cpumask_intersects(&mask, nodemask)) 616 cpumask_and(&mask, &mask, nodemask); 617 } 618 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 619 raw_spin_unlock(&mask_lock); 620 return ret; 621 } 622 #else 623 /* Wrapper for ALPHA specific affinity selector magic */ 624 int irq_setup_affinity(struct irq_desc *desc) 625 { 626 return irq_select_affinity(irq_desc_get_irq(desc)); 627 } 628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 629 #endif /* CONFIG_SMP */ 630 631 632 /** 633 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 634 * @irq: interrupt number to set affinity 635 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 636 * specific data for percpu_devid interrupts 637 * 638 * This function uses the vCPU specific data to set the vCPU 639 * affinity for an irq. The vCPU specific data is passed from 640 * outside, such as KVM. One example code path is as below: 641 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 642 */ 643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 644 { 645 unsigned long flags; 646 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 647 struct irq_data *data; 648 struct irq_chip *chip; 649 int ret = -ENOSYS; 650 651 if (!desc) 652 return -EINVAL; 653 654 data = irq_desc_get_irq_data(desc); 655 do { 656 chip = irq_data_get_irq_chip(data); 657 if (chip && chip->irq_set_vcpu_affinity) 658 break; 659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 660 data = data->parent_data; 661 #else 662 data = NULL; 663 #endif 664 } while (data); 665 666 if (data) 667 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 668 irq_put_desc_unlock(desc, flags); 669 670 return ret; 671 } 672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 673 674 void __disable_irq(struct irq_desc *desc) 675 { 676 if (!desc->depth++) 677 irq_disable(desc); 678 } 679 680 static int __disable_irq_nosync(unsigned int irq) 681 { 682 unsigned long flags; 683 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 684 685 if (!desc) 686 return -EINVAL; 687 __disable_irq(desc); 688 irq_put_desc_busunlock(desc, flags); 689 return 0; 690 } 691 692 /** 693 * disable_irq_nosync - disable an irq without waiting 694 * @irq: Interrupt to disable 695 * 696 * Disable the selected interrupt line. Disables and Enables are 697 * nested. 698 * Unlike disable_irq(), this function does not ensure existing 699 * instances of the IRQ handler have completed before returning. 700 * 701 * This function may be called from IRQ context. 702 */ 703 void disable_irq_nosync(unsigned int irq) 704 { 705 __disable_irq_nosync(irq); 706 } 707 EXPORT_SYMBOL(disable_irq_nosync); 708 709 /** 710 * disable_irq - disable an irq and wait for completion 711 * @irq: Interrupt to disable 712 * 713 * Disable the selected interrupt line. Enables and Disables are 714 * nested. 715 * This function waits for any pending IRQ handlers for this interrupt 716 * to complete before returning. If you use this function while 717 * holding a resource the IRQ handler may need you will deadlock. 718 * 719 * This function may be called - with care - from IRQ context. 720 */ 721 void disable_irq(unsigned int irq) 722 { 723 if (!__disable_irq_nosync(irq)) 724 synchronize_irq(irq); 725 } 726 EXPORT_SYMBOL(disable_irq); 727 728 /** 729 * disable_hardirq - disables an irq and waits for hardirq completion 730 * @irq: Interrupt to disable 731 * 732 * Disable the selected interrupt line. Enables and Disables are 733 * nested. 734 * This function waits for any pending hard IRQ handlers for this 735 * interrupt to complete before returning. If you use this function while 736 * holding a resource the hard IRQ handler may need you will deadlock. 737 * 738 * When used to optimistically disable an interrupt from atomic context 739 * the return value must be checked. 740 * 741 * Returns: false if a threaded handler is active. 742 * 743 * This function may be called - with care - from IRQ context. 744 */ 745 bool disable_hardirq(unsigned int irq) 746 { 747 if (!__disable_irq_nosync(irq)) 748 return synchronize_hardirq(irq); 749 750 return false; 751 } 752 EXPORT_SYMBOL_GPL(disable_hardirq); 753 754 /** 755 * disable_nmi_nosync - disable an nmi without waiting 756 * @irq: Interrupt to disable 757 * 758 * Disable the selected interrupt line. Disables and enables are 759 * nested. 760 * The interrupt to disable must have been requested through request_nmi. 761 * Unlike disable_nmi(), this function does not ensure existing 762 * instances of the IRQ handler have completed before returning. 763 */ 764 void disable_nmi_nosync(unsigned int irq) 765 { 766 disable_irq_nosync(irq); 767 } 768 769 void __enable_irq(struct irq_desc *desc) 770 { 771 switch (desc->depth) { 772 case 0: 773 err_out: 774 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 775 irq_desc_get_irq(desc)); 776 break; 777 case 1: { 778 if (desc->istate & IRQS_SUSPENDED) 779 goto err_out; 780 /* Prevent probing on this irq: */ 781 irq_settings_set_noprobe(desc); 782 /* 783 * Call irq_startup() not irq_enable() here because the 784 * interrupt might be marked NOAUTOEN. So irq_startup() 785 * needs to be invoked when it gets enabled the first 786 * time. If it was already started up, then irq_startup() 787 * will invoke irq_enable() under the hood. 788 */ 789 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 790 break; 791 } 792 default: 793 desc->depth--; 794 } 795 } 796 797 /** 798 * enable_irq - enable handling of an irq 799 * @irq: Interrupt to enable 800 * 801 * Undoes the effect of one call to disable_irq(). If this 802 * matches the last disable, processing of interrupts on this 803 * IRQ line is re-enabled. 804 * 805 * This function may be called from IRQ context only when 806 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 807 */ 808 void enable_irq(unsigned int irq) 809 { 810 unsigned long flags; 811 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 812 813 if (!desc) 814 return; 815 if (WARN(!desc->irq_data.chip, 816 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 817 goto out; 818 819 __enable_irq(desc); 820 out: 821 irq_put_desc_busunlock(desc, flags); 822 } 823 EXPORT_SYMBOL(enable_irq); 824 825 /** 826 * enable_nmi - enable handling of an nmi 827 * @irq: Interrupt to enable 828 * 829 * The interrupt to enable must have been requested through request_nmi. 830 * Undoes the effect of one call to disable_nmi(). If this 831 * matches the last disable, processing of interrupts on this 832 * IRQ line is re-enabled. 833 */ 834 void enable_nmi(unsigned int irq) 835 { 836 enable_irq(irq); 837 } 838 839 static int set_irq_wake_real(unsigned int irq, unsigned int on) 840 { 841 struct irq_desc *desc = irq_to_desc(irq); 842 int ret = -ENXIO; 843 844 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 845 return 0; 846 847 if (desc->irq_data.chip->irq_set_wake) 848 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 849 850 return ret; 851 } 852 853 /** 854 * irq_set_irq_wake - control irq power management wakeup 855 * @irq: interrupt to control 856 * @on: enable/disable power management wakeup 857 * 858 * Enable/disable power management wakeup mode, which is 859 * disabled by default. Enables and disables must match, 860 * just as they match for non-wakeup mode support. 861 * 862 * Wakeup mode lets this IRQ wake the system from sleep 863 * states like "suspend to RAM". 864 * 865 * Note: irq enable/disable state is completely orthogonal 866 * to the enable/disable state of irq wake. An irq can be 867 * disabled with disable_irq() and still wake the system as 868 * long as the irq has wake enabled. If this does not hold, 869 * then the underlying irq chip and the related driver need 870 * to be investigated. 871 */ 872 int irq_set_irq_wake(unsigned int irq, unsigned int on) 873 { 874 unsigned long flags; 875 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 876 int ret = 0; 877 878 if (!desc) 879 return -EINVAL; 880 881 /* Don't use NMIs as wake up interrupts please */ 882 if (desc->istate & IRQS_NMI) { 883 ret = -EINVAL; 884 goto out_unlock; 885 } 886 887 /* wakeup-capable irqs can be shared between drivers that 888 * don't need to have the same sleep mode behaviors. 889 */ 890 if (on) { 891 if (desc->wake_depth++ == 0) { 892 ret = set_irq_wake_real(irq, on); 893 if (ret) 894 desc->wake_depth = 0; 895 else 896 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 897 } 898 } else { 899 if (desc->wake_depth == 0) { 900 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 901 } else if (--desc->wake_depth == 0) { 902 ret = set_irq_wake_real(irq, on); 903 if (ret) 904 desc->wake_depth = 1; 905 else 906 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 907 } 908 } 909 910 out_unlock: 911 irq_put_desc_busunlock(desc, flags); 912 return ret; 913 } 914 EXPORT_SYMBOL(irq_set_irq_wake); 915 916 /* 917 * Internal function that tells the architecture code whether a 918 * particular irq has been exclusively allocated or is available 919 * for driver use. 920 */ 921 int can_request_irq(unsigned int irq, unsigned long irqflags) 922 { 923 unsigned long flags; 924 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 925 int canrequest = 0; 926 927 if (!desc) 928 return 0; 929 930 if (irq_settings_can_request(desc)) { 931 if (!desc->action || 932 irqflags & desc->action->flags & IRQF_SHARED) 933 canrequest = 1; 934 } 935 irq_put_desc_unlock(desc, flags); 936 return canrequest; 937 } 938 939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 940 { 941 struct irq_chip *chip = desc->irq_data.chip; 942 int ret, unmask = 0; 943 944 if (!chip || !chip->irq_set_type) { 945 /* 946 * IRQF_TRIGGER_* but the PIC does not support multiple 947 * flow-types? 948 */ 949 pr_debug("No set_type function for IRQ %d (%s)\n", 950 irq_desc_get_irq(desc), 951 chip ? (chip->name ? : "unknown") : "unknown"); 952 return 0; 953 } 954 955 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 956 if (!irqd_irq_masked(&desc->irq_data)) 957 mask_irq(desc); 958 if (!irqd_irq_disabled(&desc->irq_data)) 959 unmask = 1; 960 } 961 962 /* Mask all flags except trigger mode */ 963 flags &= IRQ_TYPE_SENSE_MASK; 964 ret = chip->irq_set_type(&desc->irq_data, flags); 965 966 switch (ret) { 967 case IRQ_SET_MASK_OK: 968 case IRQ_SET_MASK_OK_DONE: 969 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 970 irqd_set(&desc->irq_data, flags); 971 fallthrough; 972 973 case IRQ_SET_MASK_OK_NOCOPY: 974 flags = irqd_get_trigger_type(&desc->irq_data); 975 irq_settings_set_trigger_mask(desc, flags); 976 irqd_clear(&desc->irq_data, IRQD_LEVEL); 977 irq_settings_clr_level(desc); 978 if (flags & IRQ_TYPE_LEVEL_MASK) { 979 irq_settings_set_level(desc); 980 irqd_set(&desc->irq_data, IRQD_LEVEL); 981 } 982 983 ret = 0; 984 break; 985 default: 986 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 987 flags, irq_desc_get_irq(desc), chip->irq_set_type); 988 } 989 if (unmask) 990 unmask_irq(desc); 991 return ret; 992 } 993 994 #ifdef CONFIG_HARDIRQS_SW_RESEND 995 int irq_set_parent(int irq, int parent_irq) 996 { 997 unsigned long flags; 998 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 999 1000 if (!desc) 1001 return -EINVAL; 1002 1003 desc->parent_irq = parent_irq; 1004 1005 irq_put_desc_unlock(desc, flags); 1006 return 0; 1007 } 1008 EXPORT_SYMBOL_GPL(irq_set_parent); 1009 #endif 1010 1011 /* 1012 * Default primary interrupt handler for threaded interrupts. Is 1013 * assigned as primary handler when request_threaded_irq is called 1014 * with handler == NULL. Useful for oneshot interrupts. 1015 */ 1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1017 { 1018 return IRQ_WAKE_THREAD; 1019 } 1020 1021 /* 1022 * Primary handler for nested threaded interrupts. Should never be 1023 * called. 1024 */ 1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1026 { 1027 WARN(1, "Primary handler called for nested irq %d\n", irq); 1028 return IRQ_NONE; 1029 } 1030 1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1032 { 1033 WARN(1, "Secondary action handler called for irq %d\n", irq); 1034 return IRQ_NONE; 1035 } 1036 1037 static int irq_wait_for_interrupt(struct irqaction *action) 1038 { 1039 for (;;) { 1040 set_current_state(TASK_INTERRUPTIBLE); 1041 1042 if (kthread_should_stop()) { 1043 /* may need to run one last time */ 1044 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1045 &action->thread_flags)) { 1046 __set_current_state(TASK_RUNNING); 1047 return 0; 1048 } 1049 __set_current_state(TASK_RUNNING); 1050 return -1; 1051 } 1052 1053 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1054 &action->thread_flags)) { 1055 __set_current_state(TASK_RUNNING); 1056 return 0; 1057 } 1058 schedule(); 1059 } 1060 } 1061 1062 /* 1063 * Oneshot interrupts keep the irq line masked until the threaded 1064 * handler finished. unmask if the interrupt has not been disabled and 1065 * is marked MASKED. 1066 */ 1067 static void irq_finalize_oneshot(struct irq_desc *desc, 1068 struct irqaction *action) 1069 { 1070 if (!(desc->istate & IRQS_ONESHOT) || 1071 action->handler == irq_forced_secondary_handler) 1072 return; 1073 again: 1074 chip_bus_lock(desc); 1075 raw_spin_lock_irq(&desc->lock); 1076 1077 /* 1078 * Implausible though it may be we need to protect us against 1079 * the following scenario: 1080 * 1081 * The thread is faster done than the hard interrupt handler 1082 * on the other CPU. If we unmask the irq line then the 1083 * interrupt can come in again and masks the line, leaves due 1084 * to IRQS_INPROGRESS and the irq line is masked forever. 1085 * 1086 * This also serializes the state of shared oneshot handlers 1087 * versus "desc->threads_oneshot |= action->thread_mask;" in 1088 * irq_wake_thread(). See the comment there which explains the 1089 * serialization. 1090 */ 1091 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1092 raw_spin_unlock_irq(&desc->lock); 1093 chip_bus_sync_unlock(desc); 1094 cpu_relax(); 1095 goto again; 1096 } 1097 1098 /* 1099 * Now check again, whether the thread should run. Otherwise 1100 * we would clear the threads_oneshot bit of this thread which 1101 * was just set. 1102 */ 1103 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1104 goto out_unlock; 1105 1106 desc->threads_oneshot &= ~action->thread_mask; 1107 1108 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1109 irqd_irq_masked(&desc->irq_data)) 1110 unmask_threaded_irq(desc); 1111 1112 out_unlock: 1113 raw_spin_unlock_irq(&desc->lock); 1114 chip_bus_sync_unlock(desc); 1115 } 1116 1117 #ifdef CONFIG_SMP 1118 /* 1119 * Check whether we need to change the affinity of the interrupt thread. 1120 */ 1121 static void 1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1123 { 1124 cpumask_var_t mask; 1125 bool valid = true; 1126 1127 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1128 return; 1129 1130 /* 1131 * In case we are out of memory we set IRQTF_AFFINITY again and 1132 * try again next time 1133 */ 1134 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1135 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1136 return; 1137 } 1138 1139 raw_spin_lock_irq(&desc->lock); 1140 /* 1141 * This code is triggered unconditionally. Check the affinity 1142 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1143 */ 1144 if (cpumask_available(desc->irq_common_data.affinity)) { 1145 const struct cpumask *m; 1146 1147 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1148 cpumask_copy(mask, m); 1149 } else { 1150 valid = false; 1151 } 1152 raw_spin_unlock_irq(&desc->lock); 1153 1154 if (valid) 1155 set_cpus_allowed_ptr(current, mask); 1156 free_cpumask_var(mask); 1157 } 1158 #else 1159 static inline void 1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1161 #endif 1162 1163 /* 1164 * Interrupts which are not explicitly requested as threaded 1165 * interrupts rely on the implicit bh/preempt disable of the hard irq 1166 * context. So we need to disable bh here to avoid deadlocks and other 1167 * side effects. 1168 */ 1169 static irqreturn_t 1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1171 { 1172 irqreturn_t ret; 1173 1174 local_bh_disable(); 1175 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1176 local_irq_disable(); 1177 ret = action->thread_fn(action->irq, action->dev_id); 1178 if (ret == IRQ_HANDLED) 1179 atomic_inc(&desc->threads_handled); 1180 1181 irq_finalize_oneshot(desc, action); 1182 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1183 local_irq_enable(); 1184 local_bh_enable(); 1185 return ret; 1186 } 1187 1188 /* 1189 * Interrupts explicitly requested as threaded interrupts want to be 1190 * preemptible - many of them need to sleep and wait for slow busses to 1191 * complete. 1192 */ 1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1194 struct irqaction *action) 1195 { 1196 irqreturn_t ret; 1197 1198 ret = action->thread_fn(action->irq, action->dev_id); 1199 if (ret == IRQ_HANDLED) 1200 atomic_inc(&desc->threads_handled); 1201 1202 irq_finalize_oneshot(desc, action); 1203 return ret; 1204 } 1205 1206 static void wake_threads_waitq(struct irq_desc *desc) 1207 { 1208 if (atomic_dec_and_test(&desc->threads_active)) 1209 wake_up(&desc->wait_for_threads); 1210 } 1211 1212 static void irq_thread_dtor(struct callback_head *unused) 1213 { 1214 struct task_struct *tsk = current; 1215 struct irq_desc *desc; 1216 struct irqaction *action; 1217 1218 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1219 return; 1220 1221 action = kthread_data(tsk); 1222 1223 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1224 tsk->comm, tsk->pid, action->irq); 1225 1226 1227 desc = irq_to_desc(action->irq); 1228 /* 1229 * If IRQTF_RUNTHREAD is set, we need to decrement 1230 * desc->threads_active and wake possible waiters. 1231 */ 1232 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1233 wake_threads_waitq(desc); 1234 1235 /* Prevent a stale desc->threads_oneshot */ 1236 irq_finalize_oneshot(desc, action); 1237 } 1238 1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1240 { 1241 struct irqaction *secondary = action->secondary; 1242 1243 if (WARN_ON_ONCE(!secondary)) 1244 return; 1245 1246 raw_spin_lock_irq(&desc->lock); 1247 __irq_wake_thread(desc, secondary); 1248 raw_spin_unlock_irq(&desc->lock); 1249 } 1250 1251 /* 1252 * Internal function to notify that a interrupt thread is ready. 1253 */ 1254 static void irq_thread_set_ready(struct irq_desc *desc, 1255 struct irqaction *action) 1256 { 1257 set_bit(IRQTF_READY, &action->thread_flags); 1258 wake_up(&desc->wait_for_threads); 1259 } 1260 1261 /* 1262 * Internal function to wake up a interrupt thread and wait until it is 1263 * ready. 1264 */ 1265 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1266 struct irqaction *action) 1267 { 1268 if (!action || !action->thread) 1269 return; 1270 1271 wake_up_process(action->thread); 1272 wait_event(desc->wait_for_threads, 1273 test_bit(IRQTF_READY, &action->thread_flags)); 1274 } 1275 1276 /* 1277 * Interrupt handler thread 1278 */ 1279 static int irq_thread(void *data) 1280 { 1281 struct callback_head on_exit_work; 1282 struct irqaction *action = data; 1283 struct irq_desc *desc = irq_to_desc(action->irq); 1284 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1285 struct irqaction *action); 1286 1287 irq_thread_set_ready(desc, action); 1288 1289 sched_set_fifo(current); 1290 1291 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1292 &action->thread_flags)) 1293 handler_fn = irq_forced_thread_fn; 1294 else 1295 handler_fn = irq_thread_fn; 1296 1297 init_task_work(&on_exit_work, irq_thread_dtor); 1298 task_work_add(current, &on_exit_work, TWA_NONE); 1299 1300 irq_thread_check_affinity(desc, action); 1301 1302 while (!irq_wait_for_interrupt(action)) { 1303 irqreturn_t action_ret; 1304 1305 irq_thread_check_affinity(desc, action); 1306 1307 action_ret = handler_fn(desc, action); 1308 if (action_ret == IRQ_WAKE_THREAD) 1309 irq_wake_secondary(desc, action); 1310 1311 wake_threads_waitq(desc); 1312 } 1313 1314 /* 1315 * This is the regular exit path. __free_irq() is stopping the 1316 * thread via kthread_stop() after calling 1317 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1318 * oneshot mask bit can be set. 1319 */ 1320 task_work_cancel(current, irq_thread_dtor); 1321 return 0; 1322 } 1323 1324 /** 1325 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1326 * @irq: Interrupt line 1327 * @dev_id: Device identity for which the thread should be woken 1328 * 1329 */ 1330 void irq_wake_thread(unsigned int irq, void *dev_id) 1331 { 1332 struct irq_desc *desc = irq_to_desc(irq); 1333 struct irqaction *action; 1334 unsigned long flags; 1335 1336 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1337 return; 1338 1339 raw_spin_lock_irqsave(&desc->lock, flags); 1340 for_each_action_of_desc(desc, action) { 1341 if (action->dev_id == dev_id) { 1342 if (action->thread) 1343 __irq_wake_thread(desc, action); 1344 break; 1345 } 1346 } 1347 raw_spin_unlock_irqrestore(&desc->lock, flags); 1348 } 1349 EXPORT_SYMBOL_GPL(irq_wake_thread); 1350 1351 static int irq_setup_forced_threading(struct irqaction *new) 1352 { 1353 if (!force_irqthreads()) 1354 return 0; 1355 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1356 return 0; 1357 1358 /* 1359 * No further action required for interrupts which are requested as 1360 * threaded interrupts already 1361 */ 1362 if (new->handler == irq_default_primary_handler) 1363 return 0; 1364 1365 new->flags |= IRQF_ONESHOT; 1366 1367 /* 1368 * Handle the case where we have a real primary handler and a 1369 * thread handler. We force thread them as well by creating a 1370 * secondary action. 1371 */ 1372 if (new->handler && new->thread_fn) { 1373 /* Allocate the secondary action */ 1374 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1375 if (!new->secondary) 1376 return -ENOMEM; 1377 new->secondary->handler = irq_forced_secondary_handler; 1378 new->secondary->thread_fn = new->thread_fn; 1379 new->secondary->dev_id = new->dev_id; 1380 new->secondary->irq = new->irq; 1381 new->secondary->name = new->name; 1382 } 1383 /* Deal with the primary handler */ 1384 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1385 new->thread_fn = new->handler; 1386 new->handler = irq_default_primary_handler; 1387 return 0; 1388 } 1389 1390 static int irq_request_resources(struct irq_desc *desc) 1391 { 1392 struct irq_data *d = &desc->irq_data; 1393 struct irq_chip *c = d->chip; 1394 1395 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1396 } 1397 1398 static void irq_release_resources(struct irq_desc *desc) 1399 { 1400 struct irq_data *d = &desc->irq_data; 1401 struct irq_chip *c = d->chip; 1402 1403 if (c->irq_release_resources) 1404 c->irq_release_resources(d); 1405 } 1406 1407 static bool irq_supports_nmi(struct irq_desc *desc) 1408 { 1409 struct irq_data *d = irq_desc_get_irq_data(desc); 1410 1411 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1412 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1413 if (d->parent_data) 1414 return false; 1415 #endif 1416 /* Don't support NMIs for chips behind a slow bus */ 1417 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1418 return false; 1419 1420 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1421 } 1422 1423 static int irq_nmi_setup(struct irq_desc *desc) 1424 { 1425 struct irq_data *d = irq_desc_get_irq_data(desc); 1426 struct irq_chip *c = d->chip; 1427 1428 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1429 } 1430 1431 static void irq_nmi_teardown(struct irq_desc *desc) 1432 { 1433 struct irq_data *d = irq_desc_get_irq_data(desc); 1434 struct irq_chip *c = d->chip; 1435 1436 if (c->irq_nmi_teardown) 1437 c->irq_nmi_teardown(d); 1438 } 1439 1440 static int 1441 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1442 { 1443 struct task_struct *t; 1444 1445 if (!secondary) { 1446 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1447 new->name); 1448 } else { 1449 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1450 new->name); 1451 } 1452 1453 if (IS_ERR(t)) 1454 return PTR_ERR(t); 1455 1456 /* 1457 * We keep the reference to the task struct even if 1458 * the thread dies to avoid that the interrupt code 1459 * references an already freed task_struct. 1460 */ 1461 new->thread = get_task_struct(t); 1462 /* 1463 * Tell the thread to set its affinity. This is 1464 * important for shared interrupt handlers as we do 1465 * not invoke setup_affinity() for the secondary 1466 * handlers as everything is already set up. Even for 1467 * interrupts marked with IRQF_NO_BALANCE this is 1468 * correct as we want the thread to move to the cpu(s) 1469 * on which the requesting code placed the interrupt. 1470 */ 1471 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1472 return 0; 1473 } 1474 1475 /* 1476 * Internal function to register an irqaction - typically used to 1477 * allocate special interrupts that are part of the architecture. 1478 * 1479 * Locking rules: 1480 * 1481 * desc->request_mutex Provides serialization against a concurrent free_irq() 1482 * chip_bus_lock Provides serialization for slow bus operations 1483 * desc->lock Provides serialization against hard interrupts 1484 * 1485 * chip_bus_lock and desc->lock are sufficient for all other management and 1486 * interrupt related functions. desc->request_mutex solely serializes 1487 * request/free_irq(). 1488 */ 1489 static int 1490 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1491 { 1492 struct irqaction *old, **old_ptr; 1493 unsigned long flags, thread_mask = 0; 1494 int ret, nested, shared = 0; 1495 1496 if (!desc) 1497 return -EINVAL; 1498 1499 if (desc->irq_data.chip == &no_irq_chip) 1500 return -ENOSYS; 1501 if (!try_module_get(desc->owner)) 1502 return -ENODEV; 1503 1504 new->irq = irq; 1505 1506 /* 1507 * If the trigger type is not specified by the caller, 1508 * then use the default for this interrupt. 1509 */ 1510 if (!(new->flags & IRQF_TRIGGER_MASK)) 1511 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1512 1513 /* 1514 * Check whether the interrupt nests into another interrupt 1515 * thread. 1516 */ 1517 nested = irq_settings_is_nested_thread(desc); 1518 if (nested) { 1519 if (!new->thread_fn) { 1520 ret = -EINVAL; 1521 goto out_mput; 1522 } 1523 /* 1524 * Replace the primary handler which was provided from 1525 * the driver for non nested interrupt handling by the 1526 * dummy function which warns when called. 1527 */ 1528 new->handler = irq_nested_primary_handler; 1529 } else { 1530 if (irq_settings_can_thread(desc)) { 1531 ret = irq_setup_forced_threading(new); 1532 if (ret) 1533 goto out_mput; 1534 } 1535 } 1536 1537 /* 1538 * Create a handler thread when a thread function is supplied 1539 * and the interrupt does not nest into another interrupt 1540 * thread. 1541 */ 1542 if (new->thread_fn && !nested) { 1543 ret = setup_irq_thread(new, irq, false); 1544 if (ret) 1545 goto out_mput; 1546 if (new->secondary) { 1547 ret = setup_irq_thread(new->secondary, irq, true); 1548 if (ret) 1549 goto out_thread; 1550 } 1551 } 1552 1553 /* 1554 * Drivers are often written to work w/o knowledge about the 1555 * underlying irq chip implementation, so a request for a 1556 * threaded irq without a primary hard irq context handler 1557 * requires the ONESHOT flag to be set. Some irq chips like 1558 * MSI based interrupts are per se one shot safe. Check the 1559 * chip flags, so we can avoid the unmask dance at the end of 1560 * the threaded handler for those. 1561 */ 1562 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1563 new->flags &= ~IRQF_ONESHOT; 1564 1565 /* 1566 * Protects against a concurrent __free_irq() call which might wait 1567 * for synchronize_hardirq() to complete without holding the optional 1568 * chip bus lock and desc->lock. Also protects against handing out 1569 * a recycled oneshot thread_mask bit while it's still in use by 1570 * its previous owner. 1571 */ 1572 mutex_lock(&desc->request_mutex); 1573 1574 /* 1575 * Acquire bus lock as the irq_request_resources() callback below 1576 * might rely on the serialization or the magic power management 1577 * functions which are abusing the irq_bus_lock() callback, 1578 */ 1579 chip_bus_lock(desc); 1580 1581 /* First installed action requests resources. */ 1582 if (!desc->action) { 1583 ret = irq_request_resources(desc); 1584 if (ret) { 1585 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1586 new->name, irq, desc->irq_data.chip->name); 1587 goto out_bus_unlock; 1588 } 1589 } 1590 1591 /* 1592 * The following block of code has to be executed atomically 1593 * protected against a concurrent interrupt and any of the other 1594 * management calls which are not serialized via 1595 * desc->request_mutex or the optional bus lock. 1596 */ 1597 raw_spin_lock_irqsave(&desc->lock, flags); 1598 old_ptr = &desc->action; 1599 old = *old_ptr; 1600 if (old) { 1601 /* 1602 * Can't share interrupts unless both agree to and are 1603 * the same type (level, edge, polarity). So both flag 1604 * fields must have IRQF_SHARED set and the bits which 1605 * set the trigger type must match. Also all must 1606 * agree on ONESHOT. 1607 * Interrupt lines used for NMIs cannot be shared. 1608 */ 1609 unsigned int oldtype; 1610 1611 if (desc->istate & IRQS_NMI) { 1612 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1613 new->name, irq, desc->irq_data.chip->name); 1614 ret = -EINVAL; 1615 goto out_unlock; 1616 } 1617 1618 /* 1619 * If nobody did set the configuration before, inherit 1620 * the one provided by the requester. 1621 */ 1622 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1623 oldtype = irqd_get_trigger_type(&desc->irq_data); 1624 } else { 1625 oldtype = new->flags & IRQF_TRIGGER_MASK; 1626 irqd_set_trigger_type(&desc->irq_data, oldtype); 1627 } 1628 1629 if (!((old->flags & new->flags) & IRQF_SHARED) || 1630 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1631 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1632 goto mismatch; 1633 1634 /* All handlers must agree on per-cpuness */ 1635 if ((old->flags & IRQF_PERCPU) != 1636 (new->flags & IRQF_PERCPU)) 1637 goto mismatch; 1638 1639 /* add new interrupt at end of irq queue */ 1640 do { 1641 /* 1642 * Or all existing action->thread_mask bits, 1643 * so we can find the next zero bit for this 1644 * new action. 1645 */ 1646 thread_mask |= old->thread_mask; 1647 old_ptr = &old->next; 1648 old = *old_ptr; 1649 } while (old); 1650 shared = 1; 1651 } 1652 1653 /* 1654 * Setup the thread mask for this irqaction for ONESHOT. For 1655 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1656 * conditional in irq_wake_thread(). 1657 */ 1658 if (new->flags & IRQF_ONESHOT) { 1659 /* 1660 * Unlikely to have 32 resp 64 irqs sharing one line, 1661 * but who knows. 1662 */ 1663 if (thread_mask == ~0UL) { 1664 ret = -EBUSY; 1665 goto out_unlock; 1666 } 1667 /* 1668 * The thread_mask for the action is or'ed to 1669 * desc->thread_active to indicate that the 1670 * IRQF_ONESHOT thread handler has been woken, but not 1671 * yet finished. The bit is cleared when a thread 1672 * completes. When all threads of a shared interrupt 1673 * line have completed desc->threads_active becomes 1674 * zero and the interrupt line is unmasked. See 1675 * handle.c:irq_wake_thread() for further information. 1676 * 1677 * If no thread is woken by primary (hard irq context) 1678 * interrupt handlers, then desc->threads_active is 1679 * also checked for zero to unmask the irq line in the 1680 * affected hard irq flow handlers 1681 * (handle_[fasteoi|level]_irq). 1682 * 1683 * The new action gets the first zero bit of 1684 * thread_mask assigned. See the loop above which or's 1685 * all existing action->thread_mask bits. 1686 */ 1687 new->thread_mask = 1UL << ffz(thread_mask); 1688 1689 } else if (new->handler == irq_default_primary_handler && 1690 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1691 /* 1692 * The interrupt was requested with handler = NULL, so 1693 * we use the default primary handler for it. But it 1694 * does not have the oneshot flag set. In combination 1695 * with level interrupts this is deadly, because the 1696 * default primary handler just wakes the thread, then 1697 * the irq lines is reenabled, but the device still 1698 * has the level irq asserted. Rinse and repeat.... 1699 * 1700 * While this works for edge type interrupts, we play 1701 * it safe and reject unconditionally because we can't 1702 * say for sure which type this interrupt really 1703 * has. The type flags are unreliable as the 1704 * underlying chip implementation can override them. 1705 */ 1706 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1707 new->name, irq); 1708 ret = -EINVAL; 1709 goto out_unlock; 1710 } 1711 1712 if (!shared) { 1713 /* Setup the type (level, edge polarity) if configured: */ 1714 if (new->flags & IRQF_TRIGGER_MASK) { 1715 ret = __irq_set_trigger(desc, 1716 new->flags & IRQF_TRIGGER_MASK); 1717 1718 if (ret) 1719 goto out_unlock; 1720 } 1721 1722 /* 1723 * Activate the interrupt. That activation must happen 1724 * independently of IRQ_NOAUTOEN. request_irq() can fail 1725 * and the callers are supposed to handle 1726 * that. enable_irq() of an interrupt requested with 1727 * IRQ_NOAUTOEN is not supposed to fail. The activation 1728 * keeps it in shutdown mode, it merily associates 1729 * resources if necessary and if that's not possible it 1730 * fails. Interrupts which are in managed shutdown mode 1731 * will simply ignore that activation request. 1732 */ 1733 ret = irq_activate(desc); 1734 if (ret) 1735 goto out_unlock; 1736 1737 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1738 IRQS_ONESHOT | IRQS_WAITING); 1739 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1740 1741 if (new->flags & IRQF_PERCPU) { 1742 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1743 irq_settings_set_per_cpu(desc); 1744 if (new->flags & IRQF_NO_DEBUG) 1745 irq_settings_set_no_debug(desc); 1746 } 1747 1748 if (noirqdebug) 1749 irq_settings_set_no_debug(desc); 1750 1751 if (new->flags & IRQF_ONESHOT) 1752 desc->istate |= IRQS_ONESHOT; 1753 1754 /* Exclude IRQ from balancing if requested */ 1755 if (new->flags & IRQF_NOBALANCING) { 1756 irq_settings_set_no_balancing(desc); 1757 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1758 } 1759 1760 if (!(new->flags & IRQF_NO_AUTOEN) && 1761 irq_settings_can_autoenable(desc)) { 1762 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1763 } else { 1764 /* 1765 * Shared interrupts do not go well with disabling 1766 * auto enable. The sharing interrupt might request 1767 * it while it's still disabled and then wait for 1768 * interrupts forever. 1769 */ 1770 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1771 /* Undo nested disables: */ 1772 desc->depth = 1; 1773 } 1774 1775 } else if (new->flags & IRQF_TRIGGER_MASK) { 1776 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1777 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1778 1779 if (nmsk != omsk) 1780 /* hope the handler works with current trigger mode */ 1781 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1782 irq, omsk, nmsk); 1783 } 1784 1785 *old_ptr = new; 1786 1787 irq_pm_install_action(desc, new); 1788 1789 /* Reset broken irq detection when installing new handler */ 1790 desc->irq_count = 0; 1791 desc->irqs_unhandled = 0; 1792 1793 /* 1794 * Check whether we disabled the irq via the spurious handler 1795 * before. Reenable it and give it another chance. 1796 */ 1797 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1798 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1799 __enable_irq(desc); 1800 } 1801 1802 raw_spin_unlock_irqrestore(&desc->lock, flags); 1803 chip_bus_sync_unlock(desc); 1804 mutex_unlock(&desc->request_mutex); 1805 1806 irq_setup_timings(desc, new); 1807 1808 wake_up_and_wait_for_irq_thread_ready(desc, new); 1809 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1810 1811 register_irq_proc(irq, desc); 1812 new->dir = NULL; 1813 register_handler_proc(irq, new); 1814 return 0; 1815 1816 mismatch: 1817 if (!(new->flags & IRQF_PROBE_SHARED)) { 1818 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1819 irq, new->flags, new->name, old->flags, old->name); 1820 #ifdef CONFIG_DEBUG_SHIRQ 1821 dump_stack(); 1822 #endif 1823 } 1824 ret = -EBUSY; 1825 1826 out_unlock: 1827 raw_spin_unlock_irqrestore(&desc->lock, flags); 1828 1829 if (!desc->action) 1830 irq_release_resources(desc); 1831 out_bus_unlock: 1832 chip_bus_sync_unlock(desc); 1833 mutex_unlock(&desc->request_mutex); 1834 1835 out_thread: 1836 if (new->thread) { 1837 struct task_struct *t = new->thread; 1838 1839 new->thread = NULL; 1840 kthread_stop(t); 1841 put_task_struct(t); 1842 } 1843 if (new->secondary && new->secondary->thread) { 1844 struct task_struct *t = new->secondary->thread; 1845 1846 new->secondary->thread = NULL; 1847 kthread_stop(t); 1848 put_task_struct(t); 1849 } 1850 out_mput: 1851 module_put(desc->owner); 1852 return ret; 1853 } 1854 1855 /* 1856 * Internal function to unregister an irqaction - used to free 1857 * regular and special interrupts that are part of the architecture. 1858 */ 1859 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1860 { 1861 unsigned irq = desc->irq_data.irq; 1862 struct irqaction *action, **action_ptr; 1863 unsigned long flags; 1864 1865 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1866 1867 mutex_lock(&desc->request_mutex); 1868 chip_bus_lock(desc); 1869 raw_spin_lock_irqsave(&desc->lock, flags); 1870 1871 /* 1872 * There can be multiple actions per IRQ descriptor, find the right 1873 * one based on the dev_id: 1874 */ 1875 action_ptr = &desc->action; 1876 for (;;) { 1877 action = *action_ptr; 1878 1879 if (!action) { 1880 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1881 raw_spin_unlock_irqrestore(&desc->lock, flags); 1882 chip_bus_sync_unlock(desc); 1883 mutex_unlock(&desc->request_mutex); 1884 return NULL; 1885 } 1886 1887 if (action->dev_id == dev_id) 1888 break; 1889 action_ptr = &action->next; 1890 } 1891 1892 /* Found it - now remove it from the list of entries: */ 1893 *action_ptr = action->next; 1894 1895 irq_pm_remove_action(desc, action); 1896 1897 /* If this was the last handler, shut down the IRQ line: */ 1898 if (!desc->action) { 1899 irq_settings_clr_disable_unlazy(desc); 1900 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1901 irq_shutdown(desc); 1902 } 1903 1904 #ifdef CONFIG_SMP 1905 /* make sure affinity_hint is cleaned up */ 1906 if (WARN_ON_ONCE(desc->affinity_hint)) 1907 desc->affinity_hint = NULL; 1908 #endif 1909 1910 raw_spin_unlock_irqrestore(&desc->lock, flags); 1911 /* 1912 * Drop bus_lock here so the changes which were done in the chip 1913 * callbacks above are synced out to the irq chips which hang 1914 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1915 * 1916 * Aside of that the bus_lock can also be taken from the threaded 1917 * handler in irq_finalize_oneshot() which results in a deadlock 1918 * because kthread_stop() would wait forever for the thread to 1919 * complete, which is blocked on the bus lock. 1920 * 1921 * The still held desc->request_mutex() protects against a 1922 * concurrent request_irq() of this irq so the release of resources 1923 * and timing data is properly serialized. 1924 */ 1925 chip_bus_sync_unlock(desc); 1926 1927 unregister_handler_proc(irq, action); 1928 1929 /* 1930 * Make sure it's not being used on another CPU and if the chip 1931 * supports it also make sure that there is no (not yet serviced) 1932 * interrupt in flight at the hardware level. 1933 */ 1934 __synchronize_hardirq(desc, true); 1935 1936 #ifdef CONFIG_DEBUG_SHIRQ 1937 /* 1938 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1939 * event to happen even now it's being freed, so let's make sure that 1940 * is so by doing an extra call to the handler .... 1941 * 1942 * ( We do this after actually deregistering it, to make sure that a 1943 * 'real' IRQ doesn't run in parallel with our fake. ) 1944 */ 1945 if (action->flags & IRQF_SHARED) { 1946 local_irq_save(flags); 1947 action->handler(irq, dev_id); 1948 local_irq_restore(flags); 1949 } 1950 #endif 1951 1952 /* 1953 * The action has already been removed above, but the thread writes 1954 * its oneshot mask bit when it completes. Though request_mutex is 1955 * held across this which prevents __setup_irq() from handing out 1956 * the same bit to a newly requested action. 1957 */ 1958 if (action->thread) { 1959 kthread_stop(action->thread); 1960 put_task_struct(action->thread); 1961 if (action->secondary && action->secondary->thread) { 1962 kthread_stop(action->secondary->thread); 1963 put_task_struct(action->secondary->thread); 1964 } 1965 } 1966 1967 /* Last action releases resources */ 1968 if (!desc->action) { 1969 /* 1970 * Reacquire bus lock as irq_release_resources() might 1971 * require it to deallocate resources over the slow bus. 1972 */ 1973 chip_bus_lock(desc); 1974 /* 1975 * There is no interrupt on the fly anymore. Deactivate it 1976 * completely. 1977 */ 1978 raw_spin_lock_irqsave(&desc->lock, flags); 1979 irq_domain_deactivate_irq(&desc->irq_data); 1980 raw_spin_unlock_irqrestore(&desc->lock, flags); 1981 1982 irq_release_resources(desc); 1983 chip_bus_sync_unlock(desc); 1984 irq_remove_timings(desc); 1985 } 1986 1987 mutex_unlock(&desc->request_mutex); 1988 1989 irq_chip_pm_put(&desc->irq_data); 1990 module_put(desc->owner); 1991 kfree(action->secondary); 1992 return action; 1993 } 1994 1995 /** 1996 * free_irq - free an interrupt allocated with request_irq 1997 * @irq: Interrupt line to free 1998 * @dev_id: Device identity to free 1999 * 2000 * Remove an interrupt handler. The handler is removed and if the 2001 * interrupt line is no longer in use by any driver it is disabled. 2002 * On a shared IRQ the caller must ensure the interrupt is disabled 2003 * on the card it drives before calling this function. The function 2004 * does not return until any executing interrupts for this IRQ 2005 * have completed. 2006 * 2007 * This function must not be called from interrupt context. 2008 * 2009 * Returns the devname argument passed to request_irq. 2010 */ 2011 const void *free_irq(unsigned int irq, void *dev_id) 2012 { 2013 struct irq_desc *desc = irq_to_desc(irq); 2014 struct irqaction *action; 2015 const char *devname; 2016 2017 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2018 return NULL; 2019 2020 #ifdef CONFIG_SMP 2021 if (WARN_ON(desc->affinity_notify)) 2022 desc->affinity_notify = NULL; 2023 #endif 2024 2025 action = __free_irq(desc, dev_id); 2026 2027 if (!action) 2028 return NULL; 2029 2030 devname = action->name; 2031 kfree(action); 2032 return devname; 2033 } 2034 EXPORT_SYMBOL(free_irq); 2035 2036 /* This function must be called with desc->lock held */ 2037 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2038 { 2039 const char *devname = NULL; 2040 2041 desc->istate &= ~IRQS_NMI; 2042 2043 if (!WARN_ON(desc->action == NULL)) { 2044 irq_pm_remove_action(desc, desc->action); 2045 devname = desc->action->name; 2046 unregister_handler_proc(irq, desc->action); 2047 2048 kfree(desc->action); 2049 desc->action = NULL; 2050 } 2051 2052 irq_settings_clr_disable_unlazy(desc); 2053 irq_shutdown_and_deactivate(desc); 2054 2055 irq_release_resources(desc); 2056 2057 irq_chip_pm_put(&desc->irq_data); 2058 module_put(desc->owner); 2059 2060 return devname; 2061 } 2062 2063 const void *free_nmi(unsigned int irq, void *dev_id) 2064 { 2065 struct irq_desc *desc = irq_to_desc(irq); 2066 unsigned long flags; 2067 const void *devname; 2068 2069 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2070 return NULL; 2071 2072 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2073 return NULL; 2074 2075 /* NMI still enabled */ 2076 if (WARN_ON(desc->depth == 0)) 2077 disable_nmi_nosync(irq); 2078 2079 raw_spin_lock_irqsave(&desc->lock, flags); 2080 2081 irq_nmi_teardown(desc); 2082 devname = __cleanup_nmi(irq, desc); 2083 2084 raw_spin_unlock_irqrestore(&desc->lock, flags); 2085 2086 return devname; 2087 } 2088 2089 /** 2090 * request_threaded_irq - allocate an interrupt line 2091 * @irq: Interrupt line to allocate 2092 * @handler: Function to be called when the IRQ occurs. 2093 * Primary handler for threaded interrupts. 2094 * If handler is NULL and thread_fn != NULL 2095 * the default primary handler is installed. 2096 * @thread_fn: Function called from the irq handler thread 2097 * If NULL, no irq thread is created 2098 * @irqflags: Interrupt type flags 2099 * @devname: An ascii name for the claiming device 2100 * @dev_id: A cookie passed back to the handler function 2101 * 2102 * This call allocates interrupt resources and enables the 2103 * interrupt line and IRQ handling. From the point this 2104 * call is made your handler function may be invoked. Since 2105 * your handler function must clear any interrupt the board 2106 * raises, you must take care both to initialise your hardware 2107 * and to set up the interrupt handler in the right order. 2108 * 2109 * If you want to set up a threaded irq handler for your device 2110 * then you need to supply @handler and @thread_fn. @handler is 2111 * still called in hard interrupt context and has to check 2112 * whether the interrupt originates from the device. If yes it 2113 * needs to disable the interrupt on the device and return 2114 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2115 * @thread_fn. This split handler design is necessary to support 2116 * shared interrupts. 2117 * 2118 * Dev_id must be globally unique. Normally the address of the 2119 * device data structure is used as the cookie. Since the handler 2120 * receives this value it makes sense to use it. 2121 * 2122 * If your interrupt is shared you must pass a non NULL dev_id 2123 * as this is required when freeing the interrupt. 2124 * 2125 * Flags: 2126 * 2127 * IRQF_SHARED Interrupt is shared 2128 * IRQF_TRIGGER_* Specify active edge(s) or level 2129 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2130 */ 2131 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2132 irq_handler_t thread_fn, unsigned long irqflags, 2133 const char *devname, void *dev_id) 2134 { 2135 struct irqaction *action; 2136 struct irq_desc *desc; 2137 int retval; 2138 2139 if (irq == IRQ_NOTCONNECTED) 2140 return -ENOTCONN; 2141 2142 /* 2143 * Sanity-check: shared interrupts must pass in a real dev-ID, 2144 * otherwise we'll have trouble later trying to figure out 2145 * which interrupt is which (messes up the interrupt freeing 2146 * logic etc). 2147 * 2148 * Also shared interrupts do not go well with disabling auto enable. 2149 * The sharing interrupt might request it while it's still disabled 2150 * and then wait for interrupts forever. 2151 * 2152 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2153 * it cannot be set along with IRQF_NO_SUSPEND. 2154 */ 2155 if (((irqflags & IRQF_SHARED) && !dev_id) || 2156 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2157 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2158 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2159 return -EINVAL; 2160 2161 desc = irq_to_desc(irq); 2162 if (!desc) 2163 return -EINVAL; 2164 2165 if (!irq_settings_can_request(desc) || 2166 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2167 return -EINVAL; 2168 2169 if (!handler) { 2170 if (!thread_fn) 2171 return -EINVAL; 2172 handler = irq_default_primary_handler; 2173 } 2174 2175 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2176 if (!action) 2177 return -ENOMEM; 2178 2179 action->handler = handler; 2180 action->thread_fn = thread_fn; 2181 action->flags = irqflags; 2182 action->name = devname; 2183 action->dev_id = dev_id; 2184 2185 retval = irq_chip_pm_get(&desc->irq_data); 2186 if (retval < 0) { 2187 kfree(action); 2188 return retval; 2189 } 2190 2191 retval = __setup_irq(irq, desc, action); 2192 2193 if (retval) { 2194 irq_chip_pm_put(&desc->irq_data); 2195 kfree(action->secondary); 2196 kfree(action); 2197 } 2198 2199 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2200 if (!retval && (irqflags & IRQF_SHARED)) { 2201 /* 2202 * It's a shared IRQ -- the driver ought to be prepared for it 2203 * to happen immediately, so let's make sure.... 2204 * We disable the irq to make sure that a 'real' IRQ doesn't 2205 * run in parallel with our fake. 2206 */ 2207 unsigned long flags; 2208 2209 disable_irq(irq); 2210 local_irq_save(flags); 2211 2212 handler(irq, dev_id); 2213 2214 local_irq_restore(flags); 2215 enable_irq(irq); 2216 } 2217 #endif 2218 return retval; 2219 } 2220 EXPORT_SYMBOL(request_threaded_irq); 2221 2222 /** 2223 * request_any_context_irq - allocate an interrupt line 2224 * @irq: Interrupt line to allocate 2225 * @handler: Function to be called when the IRQ occurs. 2226 * Threaded handler for threaded interrupts. 2227 * @flags: Interrupt type flags 2228 * @name: An ascii name for the claiming device 2229 * @dev_id: A cookie passed back to the handler function 2230 * 2231 * This call allocates interrupt resources and enables the 2232 * interrupt line and IRQ handling. It selects either a 2233 * hardirq or threaded handling method depending on the 2234 * context. 2235 * 2236 * On failure, it returns a negative value. On success, 2237 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2238 */ 2239 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2240 unsigned long flags, const char *name, void *dev_id) 2241 { 2242 struct irq_desc *desc; 2243 int ret; 2244 2245 if (irq == IRQ_NOTCONNECTED) 2246 return -ENOTCONN; 2247 2248 desc = irq_to_desc(irq); 2249 if (!desc) 2250 return -EINVAL; 2251 2252 if (irq_settings_is_nested_thread(desc)) { 2253 ret = request_threaded_irq(irq, NULL, handler, 2254 flags, name, dev_id); 2255 return !ret ? IRQC_IS_NESTED : ret; 2256 } 2257 2258 ret = request_irq(irq, handler, flags, name, dev_id); 2259 return !ret ? IRQC_IS_HARDIRQ : ret; 2260 } 2261 EXPORT_SYMBOL_GPL(request_any_context_irq); 2262 2263 /** 2264 * request_nmi - allocate an interrupt line for NMI delivery 2265 * @irq: Interrupt line to allocate 2266 * @handler: Function to be called when the IRQ occurs. 2267 * Threaded handler for threaded interrupts. 2268 * @irqflags: Interrupt type flags 2269 * @name: An ascii name for the claiming device 2270 * @dev_id: A cookie passed back to the handler function 2271 * 2272 * This call allocates interrupt resources and enables the 2273 * interrupt line and IRQ handling. It sets up the IRQ line 2274 * to be handled as an NMI. 2275 * 2276 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2277 * cannot be threaded. 2278 * 2279 * Interrupt lines requested for NMI delivering must produce per cpu 2280 * interrupts and have auto enabling setting disabled. 2281 * 2282 * Dev_id must be globally unique. Normally the address of the 2283 * device data structure is used as the cookie. Since the handler 2284 * receives this value it makes sense to use it. 2285 * 2286 * If the interrupt line cannot be used to deliver NMIs, function 2287 * will fail and return a negative value. 2288 */ 2289 int request_nmi(unsigned int irq, irq_handler_t handler, 2290 unsigned long irqflags, const char *name, void *dev_id) 2291 { 2292 struct irqaction *action; 2293 struct irq_desc *desc; 2294 unsigned long flags; 2295 int retval; 2296 2297 if (irq == IRQ_NOTCONNECTED) 2298 return -ENOTCONN; 2299 2300 /* NMI cannot be shared, used for Polling */ 2301 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2302 return -EINVAL; 2303 2304 if (!(irqflags & IRQF_PERCPU)) 2305 return -EINVAL; 2306 2307 if (!handler) 2308 return -EINVAL; 2309 2310 desc = irq_to_desc(irq); 2311 2312 if (!desc || (irq_settings_can_autoenable(desc) && 2313 !(irqflags & IRQF_NO_AUTOEN)) || 2314 !irq_settings_can_request(desc) || 2315 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2316 !irq_supports_nmi(desc)) 2317 return -EINVAL; 2318 2319 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2320 if (!action) 2321 return -ENOMEM; 2322 2323 action->handler = handler; 2324 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2325 action->name = name; 2326 action->dev_id = dev_id; 2327 2328 retval = irq_chip_pm_get(&desc->irq_data); 2329 if (retval < 0) 2330 goto err_out; 2331 2332 retval = __setup_irq(irq, desc, action); 2333 if (retval) 2334 goto err_irq_setup; 2335 2336 raw_spin_lock_irqsave(&desc->lock, flags); 2337 2338 /* Setup NMI state */ 2339 desc->istate |= IRQS_NMI; 2340 retval = irq_nmi_setup(desc); 2341 if (retval) { 2342 __cleanup_nmi(irq, desc); 2343 raw_spin_unlock_irqrestore(&desc->lock, flags); 2344 return -EINVAL; 2345 } 2346 2347 raw_spin_unlock_irqrestore(&desc->lock, flags); 2348 2349 return 0; 2350 2351 err_irq_setup: 2352 irq_chip_pm_put(&desc->irq_data); 2353 err_out: 2354 kfree(action); 2355 2356 return retval; 2357 } 2358 2359 void enable_percpu_irq(unsigned int irq, unsigned int type) 2360 { 2361 unsigned int cpu = smp_processor_id(); 2362 unsigned long flags; 2363 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2364 2365 if (!desc) 2366 return; 2367 2368 /* 2369 * If the trigger type is not specified by the caller, then 2370 * use the default for this interrupt. 2371 */ 2372 type &= IRQ_TYPE_SENSE_MASK; 2373 if (type == IRQ_TYPE_NONE) 2374 type = irqd_get_trigger_type(&desc->irq_data); 2375 2376 if (type != IRQ_TYPE_NONE) { 2377 int ret; 2378 2379 ret = __irq_set_trigger(desc, type); 2380 2381 if (ret) { 2382 WARN(1, "failed to set type for IRQ%d\n", irq); 2383 goto out; 2384 } 2385 } 2386 2387 irq_percpu_enable(desc, cpu); 2388 out: 2389 irq_put_desc_unlock(desc, flags); 2390 } 2391 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2392 2393 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2394 { 2395 enable_percpu_irq(irq, type); 2396 } 2397 2398 /** 2399 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2400 * @irq: Linux irq number to check for 2401 * 2402 * Must be called from a non migratable context. Returns the enable 2403 * state of a per cpu interrupt on the current cpu. 2404 */ 2405 bool irq_percpu_is_enabled(unsigned int irq) 2406 { 2407 unsigned int cpu = smp_processor_id(); 2408 struct irq_desc *desc; 2409 unsigned long flags; 2410 bool is_enabled; 2411 2412 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2413 if (!desc) 2414 return false; 2415 2416 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2417 irq_put_desc_unlock(desc, flags); 2418 2419 return is_enabled; 2420 } 2421 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2422 2423 void disable_percpu_irq(unsigned int irq) 2424 { 2425 unsigned int cpu = smp_processor_id(); 2426 unsigned long flags; 2427 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2428 2429 if (!desc) 2430 return; 2431 2432 irq_percpu_disable(desc, cpu); 2433 irq_put_desc_unlock(desc, flags); 2434 } 2435 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2436 2437 void disable_percpu_nmi(unsigned int irq) 2438 { 2439 disable_percpu_irq(irq); 2440 } 2441 2442 /* 2443 * Internal function to unregister a percpu irqaction. 2444 */ 2445 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2446 { 2447 struct irq_desc *desc = irq_to_desc(irq); 2448 struct irqaction *action; 2449 unsigned long flags; 2450 2451 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2452 2453 if (!desc) 2454 return NULL; 2455 2456 raw_spin_lock_irqsave(&desc->lock, flags); 2457 2458 action = desc->action; 2459 if (!action || action->percpu_dev_id != dev_id) { 2460 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2461 goto bad; 2462 } 2463 2464 if (!cpumask_empty(desc->percpu_enabled)) { 2465 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2466 irq, cpumask_first(desc->percpu_enabled)); 2467 goto bad; 2468 } 2469 2470 /* Found it - now remove it from the list of entries: */ 2471 desc->action = NULL; 2472 2473 desc->istate &= ~IRQS_NMI; 2474 2475 raw_spin_unlock_irqrestore(&desc->lock, flags); 2476 2477 unregister_handler_proc(irq, action); 2478 2479 irq_chip_pm_put(&desc->irq_data); 2480 module_put(desc->owner); 2481 return action; 2482 2483 bad: 2484 raw_spin_unlock_irqrestore(&desc->lock, flags); 2485 return NULL; 2486 } 2487 2488 /** 2489 * remove_percpu_irq - free a per-cpu interrupt 2490 * @irq: Interrupt line to free 2491 * @act: irqaction for the interrupt 2492 * 2493 * Used to remove interrupts statically setup by the early boot process. 2494 */ 2495 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2496 { 2497 struct irq_desc *desc = irq_to_desc(irq); 2498 2499 if (desc && irq_settings_is_per_cpu_devid(desc)) 2500 __free_percpu_irq(irq, act->percpu_dev_id); 2501 } 2502 2503 /** 2504 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2505 * @irq: Interrupt line to free 2506 * @dev_id: Device identity to free 2507 * 2508 * Remove a percpu interrupt handler. The handler is removed, but 2509 * the interrupt line is not disabled. This must be done on each 2510 * CPU before calling this function. The function does not return 2511 * until any executing interrupts for this IRQ have completed. 2512 * 2513 * This function must not be called from interrupt context. 2514 */ 2515 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2516 { 2517 struct irq_desc *desc = irq_to_desc(irq); 2518 2519 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2520 return; 2521 2522 chip_bus_lock(desc); 2523 kfree(__free_percpu_irq(irq, dev_id)); 2524 chip_bus_sync_unlock(desc); 2525 } 2526 EXPORT_SYMBOL_GPL(free_percpu_irq); 2527 2528 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2529 { 2530 struct irq_desc *desc = irq_to_desc(irq); 2531 2532 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2533 return; 2534 2535 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2536 return; 2537 2538 kfree(__free_percpu_irq(irq, dev_id)); 2539 } 2540 2541 /** 2542 * setup_percpu_irq - setup a per-cpu interrupt 2543 * @irq: Interrupt line to setup 2544 * @act: irqaction for the interrupt 2545 * 2546 * Used to statically setup per-cpu interrupts in the early boot process. 2547 */ 2548 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2549 { 2550 struct irq_desc *desc = irq_to_desc(irq); 2551 int retval; 2552 2553 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2554 return -EINVAL; 2555 2556 retval = irq_chip_pm_get(&desc->irq_data); 2557 if (retval < 0) 2558 return retval; 2559 2560 retval = __setup_irq(irq, desc, act); 2561 2562 if (retval) 2563 irq_chip_pm_put(&desc->irq_data); 2564 2565 return retval; 2566 } 2567 2568 /** 2569 * __request_percpu_irq - allocate a percpu interrupt line 2570 * @irq: Interrupt line to allocate 2571 * @handler: Function to be called when the IRQ occurs. 2572 * @flags: Interrupt type flags (IRQF_TIMER only) 2573 * @devname: An ascii name for the claiming device 2574 * @dev_id: A percpu cookie passed back to the handler function 2575 * 2576 * This call allocates interrupt resources and enables the 2577 * interrupt on the local CPU. If the interrupt is supposed to be 2578 * enabled on other CPUs, it has to be done on each CPU using 2579 * enable_percpu_irq(). 2580 * 2581 * Dev_id must be globally unique. It is a per-cpu variable, and 2582 * the handler gets called with the interrupted CPU's instance of 2583 * that variable. 2584 */ 2585 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2586 unsigned long flags, const char *devname, 2587 void __percpu *dev_id) 2588 { 2589 struct irqaction *action; 2590 struct irq_desc *desc; 2591 int retval; 2592 2593 if (!dev_id) 2594 return -EINVAL; 2595 2596 desc = irq_to_desc(irq); 2597 if (!desc || !irq_settings_can_request(desc) || 2598 !irq_settings_is_per_cpu_devid(desc)) 2599 return -EINVAL; 2600 2601 if (flags && flags != IRQF_TIMER) 2602 return -EINVAL; 2603 2604 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2605 if (!action) 2606 return -ENOMEM; 2607 2608 action->handler = handler; 2609 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2610 action->name = devname; 2611 action->percpu_dev_id = dev_id; 2612 2613 retval = irq_chip_pm_get(&desc->irq_data); 2614 if (retval < 0) { 2615 kfree(action); 2616 return retval; 2617 } 2618 2619 retval = __setup_irq(irq, desc, action); 2620 2621 if (retval) { 2622 irq_chip_pm_put(&desc->irq_data); 2623 kfree(action); 2624 } 2625 2626 return retval; 2627 } 2628 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2629 2630 /** 2631 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2632 * @irq: Interrupt line to allocate 2633 * @handler: Function to be called when the IRQ occurs. 2634 * @name: An ascii name for the claiming device 2635 * @dev_id: A percpu cookie passed back to the handler function 2636 * 2637 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2638 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2639 * being enabled on the same CPU by using enable_percpu_nmi(). 2640 * 2641 * Dev_id must be globally unique. It is a per-cpu variable, and 2642 * the handler gets called with the interrupted CPU's instance of 2643 * that variable. 2644 * 2645 * Interrupt lines requested for NMI delivering should have auto enabling 2646 * setting disabled. 2647 * 2648 * If the interrupt line cannot be used to deliver NMIs, function 2649 * will fail returning a negative value. 2650 */ 2651 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2652 const char *name, void __percpu *dev_id) 2653 { 2654 struct irqaction *action; 2655 struct irq_desc *desc; 2656 unsigned long flags; 2657 int retval; 2658 2659 if (!handler) 2660 return -EINVAL; 2661 2662 desc = irq_to_desc(irq); 2663 2664 if (!desc || !irq_settings_can_request(desc) || 2665 !irq_settings_is_per_cpu_devid(desc) || 2666 irq_settings_can_autoenable(desc) || 2667 !irq_supports_nmi(desc)) 2668 return -EINVAL; 2669 2670 /* The line cannot already be NMI */ 2671 if (desc->istate & IRQS_NMI) 2672 return -EINVAL; 2673 2674 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2675 if (!action) 2676 return -ENOMEM; 2677 2678 action->handler = handler; 2679 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2680 | IRQF_NOBALANCING; 2681 action->name = name; 2682 action->percpu_dev_id = dev_id; 2683 2684 retval = irq_chip_pm_get(&desc->irq_data); 2685 if (retval < 0) 2686 goto err_out; 2687 2688 retval = __setup_irq(irq, desc, action); 2689 if (retval) 2690 goto err_irq_setup; 2691 2692 raw_spin_lock_irqsave(&desc->lock, flags); 2693 desc->istate |= IRQS_NMI; 2694 raw_spin_unlock_irqrestore(&desc->lock, flags); 2695 2696 return 0; 2697 2698 err_irq_setup: 2699 irq_chip_pm_put(&desc->irq_data); 2700 err_out: 2701 kfree(action); 2702 2703 return retval; 2704 } 2705 2706 /** 2707 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2708 * @irq: Interrupt line to prepare for NMI delivery 2709 * 2710 * This call prepares an interrupt line to deliver NMI on the current CPU, 2711 * before that interrupt line gets enabled with enable_percpu_nmi(). 2712 * 2713 * As a CPU local operation, this should be called from non-preemptible 2714 * context. 2715 * 2716 * If the interrupt line cannot be used to deliver NMIs, function 2717 * will fail returning a negative value. 2718 */ 2719 int prepare_percpu_nmi(unsigned int irq) 2720 { 2721 unsigned long flags; 2722 struct irq_desc *desc; 2723 int ret = 0; 2724 2725 WARN_ON(preemptible()); 2726 2727 desc = irq_get_desc_lock(irq, &flags, 2728 IRQ_GET_DESC_CHECK_PERCPU); 2729 if (!desc) 2730 return -EINVAL; 2731 2732 if (WARN(!(desc->istate & IRQS_NMI), 2733 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2734 irq)) { 2735 ret = -EINVAL; 2736 goto out; 2737 } 2738 2739 ret = irq_nmi_setup(desc); 2740 if (ret) { 2741 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2742 goto out; 2743 } 2744 2745 out: 2746 irq_put_desc_unlock(desc, flags); 2747 return ret; 2748 } 2749 2750 /** 2751 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2752 * @irq: Interrupt line from which CPU local NMI configuration should be 2753 * removed 2754 * 2755 * This call undoes the setup done by prepare_percpu_nmi(). 2756 * 2757 * IRQ line should not be enabled for the current CPU. 2758 * 2759 * As a CPU local operation, this should be called from non-preemptible 2760 * context. 2761 */ 2762 void teardown_percpu_nmi(unsigned int irq) 2763 { 2764 unsigned long flags; 2765 struct irq_desc *desc; 2766 2767 WARN_ON(preemptible()); 2768 2769 desc = irq_get_desc_lock(irq, &flags, 2770 IRQ_GET_DESC_CHECK_PERCPU); 2771 if (!desc) 2772 return; 2773 2774 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2775 goto out; 2776 2777 irq_nmi_teardown(desc); 2778 out: 2779 irq_put_desc_unlock(desc, flags); 2780 } 2781 2782 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2783 bool *state) 2784 { 2785 struct irq_chip *chip; 2786 int err = -EINVAL; 2787 2788 do { 2789 chip = irq_data_get_irq_chip(data); 2790 if (WARN_ON_ONCE(!chip)) 2791 return -ENODEV; 2792 if (chip->irq_get_irqchip_state) 2793 break; 2794 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2795 data = data->parent_data; 2796 #else 2797 data = NULL; 2798 #endif 2799 } while (data); 2800 2801 if (data) 2802 err = chip->irq_get_irqchip_state(data, which, state); 2803 return err; 2804 } 2805 2806 /** 2807 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2808 * @irq: Interrupt line that is forwarded to a VM 2809 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2810 * @state: a pointer to a boolean where the state is to be stored 2811 * 2812 * This call snapshots the internal irqchip state of an 2813 * interrupt, returning into @state the bit corresponding to 2814 * stage @which 2815 * 2816 * This function should be called with preemption disabled if the 2817 * interrupt controller has per-cpu registers. 2818 */ 2819 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2820 bool *state) 2821 { 2822 struct irq_desc *desc; 2823 struct irq_data *data; 2824 unsigned long flags; 2825 int err = -EINVAL; 2826 2827 desc = irq_get_desc_buslock(irq, &flags, 0); 2828 if (!desc) 2829 return err; 2830 2831 data = irq_desc_get_irq_data(desc); 2832 2833 err = __irq_get_irqchip_state(data, which, state); 2834 2835 irq_put_desc_busunlock(desc, flags); 2836 return err; 2837 } 2838 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2839 2840 /** 2841 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2842 * @irq: Interrupt line that is forwarded to a VM 2843 * @which: State to be restored (one of IRQCHIP_STATE_*) 2844 * @val: Value corresponding to @which 2845 * 2846 * This call sets the internal irqchip state of an interrupt, 2847 * depending on the value of @which. 2848 * 2849 * This function should be called with migration disabled if the 2850 * interrupt controller has per-cpu registers. 2851 */ 2852 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2853 bool val) 2854 { 2855 struct irq_desc *desc; 2856 struct irq_data *data; 2857 struct irq_chip *chip; 2858 unsigned long flags; 2859 int err = -EINVAL; 2860 2861 desc = irq_get_desc_buslock(irq, &flags, 0); 2862 if (!desc) 2863 return err; 2864 2865 data = irq_desc_get_irq_data(desc); 2866 2867 do { 2868 chip = irq_data_get_irq_chip(data); 2869 if (WARN_ON_ONCE(!chip)) { 2870 err = -ENODEV; 2871 goto out_unlock; 2872 } 2873 if (chip->irq_set_irqchip_state) 2874 break; 2875 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2876 data = data->parent_data; 2877 #else 2878 data = NULL; 2879 #endif 2880 } while (data); 2881 2882 if (data) 2883 err = chip->irq_set_irqchip_state(data, which, val); 2884 2885 out_unlock: 2886 irq_put_desc_busunlock(desc, flags); 2887 return err; 2888 } 2889 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2890 2891 /** 2892 * irq_has_action - Check whether an interrupt is requested 2893 * @irq: The linux irq number 2894 * 2895 * Returns: A snapshot of the current state 2896 */ 2897 bool irq_has_action(unsigned int irq) 2898 { 2899 bool res; 2900 2901 rcu_read_lock(); 2902 res = irq_desc_has_action(irq_to_desc(irq)); 2903 rcu_read_unlock(); 2904 return res; 2905 } 2906 EXPORT_SYMBOL_GPL(irq_has_action); 2907 2908 /** 2909 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2910 * @irq: The linux irq number 2911 * @bitmask: The bitmask to evaluate 2912 * 2913 * Returns: True if one of the bits in @bitmask is set 2914 */ 2915 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2916 { 2917 struct irq_desc *desc; 2918 bool res = false; 2919 2920 rcu_read_lock(); 2921 desc = irq_to_desc(irq); 2922 if (desc) 2923 res = !!(desc->status_use_accessors & bitmask); 2924 rcu_read_unlock(); 2925 return res; 2926 } 2927 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2928