1 /* 2 * linux/kernel/irq/handle.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King 6 * 7 * This file contains the core interrupt handling code. 8 * 9 * Detailed information is available in Documentation/DocBook/genericirq 10 * 11 */ 12 13 #include <linux/irq.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/kernel_stat.h> 18 19 #include "internals.h" 20 21 #ifdef CONFIG_TRACE_IRQFLAGS 22 23 /* 24 * lockdep: we want to handle all irq_desc locks as a single lock-class: 25 */ 26 static struct lock_class_key irq_desc_lock_class; 27 #endif 28 29 /** 30 * handle_bad_irq - handle spurious and unhandled irqs 31 * @irq: the interrupt number 32 * @desc: description of the interrupt 33 * 34 * Handles spurious and unhandled IRQ's. It also prints a debugmessage. 35 */ 36 void 37 handle_bad_irq(unsigned int irq, struct irq_desc *desc) 38 { 39 print_irq_desc(irq, desc); 40 kstat_irqs_this_cpu(desc)++; 41 ack_bad_irq(irq); 42 } 43 44 /* 45 * Linux has a controller-independent interrupt architecture. 46 * Every controller has a 'controller-template', that is used 47 * by the main code to do the right thing. Each driver-visible 48 * interrupt source is transparently wired to the appropriate 49 * controller. Thus drivers need not be aware of the 50 * interrupt-controller. 51 * 52 * The code is designed to be easily extended with new/different 53 * interrupt controllers, without having to do assembly magic or 54 * having to touch the generic code. 55 * 56 * Controller mappings for all interrupt sources: 57 */ 58 int nr_irqs = NR_IRQS; 59 EXPORT_SYMBOL_GPL(nr_irqs); 60 61 #ifdef CONFIG_HAVE_DYN_ARRAY 62 static struct irq_desc irq_desc_init = { 63 .irq = -1U, 64 .status = IRQ_DISABLED, 65 .chip = &no_irq_chip, 66 .handle_irq = handle_bad_irq, 67 .depth = 1, 68 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), 69 #ifdef CONFIG_SMP 70 .affinity = CPU_MASK_ALL 71 #endif 72 }; 73 74 75 static void init_one_irq_desc(struct irq_desc *desc) 76 { 77 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc)); 78 #ifdef CONFIG_TRACE_IRQFLAGS 79 lockdep_set_class(&desc->lock, &irq_desc_lock_class); 80 #endif 81 } 82 83 extern int after_bootmem; 84 extern void *__alloc_bootmem_nopanic(unsigned long size, 85 unsigned long align, 86 unsigned long goal); 87 88 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr) 89 { 90 unsigned long bytes, total_bytes; 91 char *ptr; 92 int i; 93 unsigned long phys; 94 95 /* Compute how many bytes we need per irq and allocate them */ 96 bytes = nr * sizeof(unsigned int); 97 total_bytes = bytes * nr_desc; 98 if (after_bootmem) 99 ptr = kzalloc(total_bytes, GFP_ATOMIC); 100 else 101 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0); 102 103 if (!ptr) 104 panic(" can not allocate kstat_irqs\n"); 105 106 phys = __pa(ptr); 107 printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes); 108 109 for (i = 0; i < nr_desc; i++) { 110 desc[i].kstat_irqs = (unsigned int *)ptr; 111 ptr += bytes; 112 } 113 } 114 115 static void __init init_work(void *data) 116 { 117 struct dyn_array *da = data; 118 int i; 119 struct irq_desc *desc; 120 121 desc = *da->name; 122 123 for (i = 0; i < *da->nr; i++) { 124 init_one_irq_desc(&desc[i]); 125 #ifndef CONFIG_HAVE_SPARSE_IRQ 126 desc[i].irq = i; 127 #endif 128 } 129 130 #ifdef CONFIG_HAVE_SPARSE_IRQ 131 for (i = 1; i < *da->nr; i++) 132 desc[i-1].next = &desc[i]; 133 #endif 134 135 /* init kstat_irqs, nr_cpu_ids is ready already */ 136 init_kstat_irqs(desc, *da->nr, nr_cpu_ids); 137 } 138 139 #ifdef CONFIG_HAVE_SPARSE_IRQ 140 static int nr_irq_desc = 32; 141 142 static int __init parse_nr_irq_desc(char *arg) 143 { 144 if (arg) 145 nr_irq_desc = simple_strtoul(arg, NULL, 0); 146 return 0; 147 } 148 149 early_param("nr_irq_desc", parse_nr_irq_desc); 150 151 struct irq_desc *sparse_irqs; 152 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work); 153 154 struct irq_desc *__irq_to_desc(unsigned int irq) 155 { 156 struct irq_desc *desc; 157 158 BUG_ON(irq == -1U); 159 160 desc = &sparse_irqs[0]; 161 while (desc) { 162 if (desc->irq == irq) 163 return desc; 164 165 if (desc->irq == -1U) 166 return NULL; 167 168 desc = desc->next; 169 } 170 return NULL; 171 } 172 struct irq_desc *irq_to_desc(unsigned int irq) 173 { 174 struct irq_desc *desc, *desc_pri; 175 int i; 176 int count = 0; 177 unsigned long phys; 178 unsigned long total_bytes; 179 180 BUG_ON(irq == -1U); 181 182 desc_pri = desc = &sparse_irqs[0]; 183 while (desc) { 184 if (desc->irq == irq) 185 return desc; 186 187 if (desc->irq == -1U) { 188 desc->irq = irq; 189 return desc; 190 } 191 desc_pri = desc; 192 desc = desc->next; 193 count++; 194 } 195 196 /* 197 * we run out of pre-allocate ones, allocate more 198 */ 199 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc); 200 { 201 /* double check if some one mess up the list */ 202 struct irq_desc *desc; 203 int count = 0; 204 205 desc = &sparse_irqs[0]; 206 while (desc) { 207 printk(KERN_DEBUG "found irq_desc for irq %d\n", desc->irq); 208 if (desc->next) 209 printk(KERN_DEBUG "found irq_desc for irq %d and next will be irq %d\n", desc->irq, desc->next->irq); 210 desc = desc->next; 211 count++; 212 } 213 printk(KERN_DEBUG "all preallocted %d\n", count); 214 } 215 216 total_bytes = sizeof(struct irq_desc) * nr_irq_desc; 217 if (after_bootmem) 218 desc = kzalloc(total_bytes, GFP_ATOMIC); 219 else 220 desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0); 221 222 if (!desc) 223 panic("please boot with nr_irq_desc= %d\n", count * 2); 224 225 phys = __pa(desc); 226 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes); 227 228 for (i = 0; i < nr_irq_desc; i++) 229 init_one_irq_desc(&desc[i]); 230 231 for (i = 1; i < nr_irq_desc; i++) 232 desc[i-1].next = &desc[i]; 233 234 /* init kstat_irqs, nr_cpu_ids is ready already */ 235 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids); 236 237 desc->irq = irq; 238 desc_pri->next = desc; 239 { 240 /* double check if some one mess up the list */ 241 struct irq_desc *desc; 242 int count = 0; 243 244 desc = &sparse_irqs[0]; 245 while (desc) { 246 printk(KERN_DEBUG "1 found irq_desc for irq %d\n", desc->irq); 247 if (desc->next) 248 printk(KERN_DEBUG "1 found irq_desc for irq %d and next will be irq %d\n", desc->irq, desc->next->irq); 249 desc = desc->next; 250 count++; 251 } 252 printk(KERN_DEBUG "1 all preallocted %d\n", count); 253 } 254 255 return desc; 256 } 257 #else 258 struct irq_desc *irq_desc; 259 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work); 260 261 #endif 262 263 #else 264 265 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { 266 [0 ... NR_IRQS-1] = { 267 .status = IRQ_DISABLED, 268 .chip = &no_irq_chip, 269 .handle_irq = handle_bad_irq, 270 .depth = 1, 271 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock), 272 #ifdef CONFIG_SMP 273 .affinity = CPU_MASK_ALL 274 #endif 275 } 276 }; 277 278 #endif 279 280 #ifndef CONFIG_HAVE_SPARSE_IRQ 281 struct irq_desc *irq_to_desc(unsigned int irq) 282 { 283 if (irq < nr_irqs) 284 return &irq_desc[irq]; 285 286 return NULL; 287 } 288 struct irq_desc *__irq_to_desc(unsigned int irq) 289 { 290 return irq_to_desc(irq); 291 } 292 #endif 293 294 /* 295 * What should we do if we get a hw irq event on an illegal vector? 296 * Each architecture has to answer this themself. 297 */ 298 static void ack_bad(unsigned int irq) 299 { 300 struct irq_desc *desc; 301 302 desc = irq_to_desc(irq); 303 print_irq_desc(irq, desc); 304 ack_bad_irq(irq); 305 } 306 307 /* 308 * NOP functions 309 */ 310 static void noop(unsigned int irq) 311 { 312 } 313 314 static unsigned int noop_ret(unsigned int irq) 315 { 316 return 0; 317 } 318 319 /* 320 * Generic no controller implementation 321 */ 322 struct irq_chip no_irq_chip = { 323 .name = "none", 324 .startup = noop_ret, 325 .shutdown = noop, 326 .enable = noop, 327 .disable = noop, 328 .ack = ack_bad, 329 .end = noop, 330 }; 331 332 /* 333 * Generic dummy implementation which can be used for 334 * real dumb interrupt sources 335 */ 336 struct irq_chip dummy_irq_chip = { 337 .name = "dummy", 338 .startup = noop_ret, 339 .shutdown = noop, 340 .enable = noop, 341 .disable = noop, 342 .ack = noop, 343 .mask = noop, 344 .unmask = noop, 345 .end = noop, 346 }; 347 348 /* 349 * Special, empty irq handler: 350 */ 351 irqreturn_t no_action(int cpl, void *dev_id) 352 { 353 return IRQ_NONE; 354 } 355 356 /** 357 * handle_IRQ_event - irq action chain handler 358 * @irq: the interrupt number 359 * @action: the interrupt action chain for this irq 360 * 361 * Handles the action chain of an irq event 362 */ 363 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) 364 { 365 irqreturn_t ret, retval = IRQ_NONE; 366 unsigned int status = 0; 367 368 if (!(action->flags & IRQF_DISABLED)) 369 local_irq_enable_in_hardirq(); 370 371 do { 372 ret = action->handler(irq, action->dev_id); 373 if (ret == IRQ_HANDLED) 374 status |= action->flags; 375 retval |= ret; 376 action = action->next; 377 } while (action); 378 379 if (status & IRQF_SAMPLE_RANDOM) 380 add_interrupt_randomness(irq); 381 local_irq_disable(); 382 383 return retval; 384 } 385 386 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ 387 /** 388 * __do_IRQ - original all in one highlevel IRQ handler 389 * @irq: the interrupt number 390 * 391 * __do_IRQ handles all normal device IRQ's (the special 392 * SMP cross-CPU interrupts have their own specific 393 * handlers). 394 * 395 * This is the original x86 implementation which is used for every 396 * interrupt type. 397 */ 398 unsigned int __do_IRQ(unsigned int irq) 399 { 400 struct irq_desc *desc = irq_to_desc(irq); 401 struct irqaction *action; 402 unsigned int status; 403 404 kstat_irqs_this_cpu(desc)++; 405 if (CHECK_IRQ_PER_CPU(desc->status)) { 406 irqreturn_t action_ret; 407 408 /* 409 * No locking required for CPU-local interrupts: 410 */ 411 if (desc->chip->ack) 412 desc->chip->ack(irq); 413 if (likely(!(desc->status & IRQ_DISABLED))) { 414 action_ret = handle_IRQ_event(irq, desc->action); 415 if (!noirqdebug) 416 note_interrupt(irq, desc, action_ret); 417 } 418 desc->chip->end(irq); 419 return 1; 420 } 421 422 spin_lock(&desc->lock); 423 if (desc->chip->ack) 424 desc->chip->ack(irq); 425 /* 426 * REPLAY is when Linux resends an IRQ that was dropped earlier 427 * WAITING is used by probe to mark irqs that are being tested 428 */ 429 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); 430 status |= IRQ_PENDING; /* we _want_ to handle it */ 431 432 /* 433 * If the IRQ is disabled for whatever reason, we cannot 434 * use the action we have. 435 */ 436 action = NULL; 437 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { 438 action = desc->action; 439 status &= ~IRQ_PENDING; /* we commit to handling */ 440 status |= IRQ_INPROGRESS; /* we are handling it */ 441 } 442 desc->status = status; 443 444 /* 445 * If there is no IRQ handler or it was disabled, exit early. 446 * Since we set PENDING, if another processor is handling 447 * a different instance of this same irq, the other processor 448 * will take care of it. 449 */ 450 if (unlikely(!action)) 451 goto out; 452 453 /* 454 * Edge triggered interrupts need to remember 455 * pending events. 456 * This applies to any hw interrupts that allow a second 457 * instance of the same irq to arrive while we are in do_IRQ 458 * or in the handler. But the code here only handles the _second_ 459 * instance of the irq, not the third or fourth. So it is mostly 460 * useful for irq hardware that does not mask cleanly in an 461 * SMP environment. 462 */ 463 for (;;) { 464 irqreturn_t action_ret; 465 466 spin_unlock(&desc->lock); 467 468 action_ret = handle_IRQ_event(irq, action); 469 if (!noirqdebug) 470 note_interrupt(irq, desc, action_ret); 471 472 spin_lock(&desc->lock); 473 if (likely(!(desc->status & IRQ_PENDING))) 474 break; 475 desc->status &= ~IRQ_PENDING; 476 } 477 desc->status &= ~IRQ_INPROGRESS; 478 479 out: 480 /* 481 * The ->end() handler has to deal with interrupts which got 482 * disabled while the handler was running. 483 */ 484 desc->chip->end(irq); 485 spin_unlock(&desc->lock); 486 487 return 1; 488 } 489 #endif 490 491 492 #ifdef CONFIG_TRACE_IRQFLAGS 493 void early_init_irq_lock_class(void) 494 { 495 #ifndef CONFIG_HAVE_DYN_ARRAY 496 int i; 497 498 for (i = 0; i < nr_irqs; i++) 499 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class); 500 #endif 501 } 502 #endif 503 504 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) 505 { 506 struct irq_desc *desc = irq_to_desc(irq); 507 return desc->kstat_irqs[cpu]; 508 } 509 EXPORT_SYMBOL(kstat_irqs_cpu); 510 511