1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/sched/task.h> 4 #include <linux/sched/signal.h> 5 #include <linux/freezer.h> 6 7 #include "futex.h" 8 9 /* 10 * READ this before attempting to hack on futexes! 11 * 12 * Basic futex operation and ordering guarantees 13 * ============================================= 14 * 15 * The waiter reads the futex value in user space and calls 16 * futex_wait(). This function computes the hash bucket and acquires 17 * the hash bucket lock. After that it reads the futex user space value 18 * again and verifies that the data has not changed. If it has not changed 19 * it enqueues itself into the hash bucket, releases the hash bucket lock 20 * and schedules. 21 * 22 * The waker side modifies the user space value of the futex and calls 23 * futex_wake(). This function computes the hash bucket and acquires the 24 * hash bucket lock. Then it looks for waiters on that futex in the hash 25 * bucket and wakes them. 26 * 27 * In futex wake up scenarios where no tasks are blocked on a futex, taking 28 * the hb spinlock can be avoided and simply return. In order for this 29 * optimization to work, ordering guarantees must exist so that the waiter 30 * being added to the list is acknowledged when the list is concurrently being 31 * checked by the waker, avoiding scenarios like the following: 32 * 33 * CPU 0 CPU 1 34 * val = *futex; 35 * sys_futex(WAIT, futex, val); 36 * futex_wait(futex, val); 37 * uval = *futex; 38 * *futex = newval; 39 * sys_futex(WAKE, futex); 40 * futex_wake(futex); 41 * if (queue_empty()) 42 * return; 43 * if (uval == val) 44 * lock(hash_bucket(futex)); 45 * queue(); 46 * unlock(hash_bucket(futex)); 47 * schedule(); 48 * 49 * This would cause the waiter on CPU 0 to wait forever because it 50 * missed the transition of the user space value from val to newval 51 * and the waker did not find the waiter in the hash bucket queue. 52 * 53 * The correct serialization ensures that a waiter either observes 54 * the changed user space value before blocking or is woken by a 55 * concurrent waker: 56 * 57 * CPU 0 CPU 1 58 * val = *futex; 59 * sys_futex(WAIT, futex, val); 60 * futex_wait(futex, val); 61 * 62 * waiters++; (a) 63 * smp_mb(); (A) <-- paired with -. 64 * | 65 * lock(hash_bucket(futex)); | 66 * | 67 * uval = *futex; | 68 * | *futex = newval; 69 * | sys_futex(WAKE, futex); 70 * | futex_wake(futex); 71 * | 72 * `--------> smp_mb(); (B) 73 * if (uval == val) 74 * queue(); 75 * unlock(hash_bucket(futex)); 76 * schedule(); if (waiters) 77 * lock(hash_bucket(futex)); 78 * else wake_waiters(futex); 79 * waiters--; (b) unlock(hash_bucket(futex)); 80 * 81 * Where (A) orders the waiters increment and the futex value read through 82 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write 83 * to futex and the waiters read (see futex_hb_waiters_pending()). 84 * 85 * This yields the following case (where X:=waiters, Y:=futex): 86 * 87 * X = Y = 0 88 * 89 * w[X]=1 w[Y]=1 90 * MB MB 91 * r[Y]=y r[X]=x 92 * 93 * Which guarantees that x==0 && y==0 is impossible; which translates back into 94 * the guarantee that we cannot both miss the futex variable change and the 95 * enqueue. 96 * 97 * Note that a new waiter is accounted for in (a) even when it is possible that 98 * the wait call can return error, in which case we backtrack from it in (b). 99 * Refer to the comment in futex_q_lock(). 100 * 101 * Similarly, in order to account for waiters being requeued on another 102 * address we always increment the waiters for the destination bucket before 103 * acquiring the lock. It then decrements them again after releasing it - 104 * the code that actually moves the futex(es) between hash buckets (requeue_futex) 105 * will do the additional required waiter count housekeeping. This is done for 106 * double_lock_hb() and double_unlock_hb(), respectively. 107 */ 108 109 /* 110 * The hash bucket lock must be held when this is called. 111 * Afterwards, the futex_q must not be accessed. Callers 112 * must ensure to later call wake_up_q() for the actual 113 * wakeups to occur. 114 */ 115 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) 116 { 117 struct task_struct *p = q->task; 118 119 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) 120 return; 121 122 get_task_struct(p); 123 __futex_unqueue(q); 124 /* 125 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL 126 * is written, without taking any locks. This is possible in the event 127 * of a spurious wakeup, for example. A memory barrier is required here 128 * to prevent the following store to lock_ptr from getting ahead of the 129 * plist_del in __futex_unqueue(). 130 */ 131 smp_store_release(&q->lock_ptr, NULL); 132 133 /* 134 * Queue the task for later wakeup for after we've released 135 * the hb->lock. 136 */ 137 wake_q_add_safe(wake_q, p); 138 } 139 140 /* 141 * Wake up waiters matching bitset queued on this futex (uaddr). 142 */ 143 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) 144 { 145 struct futex_hash_bucket *hb; 146 struct futex_q *this, *next; 147 union futex_key key = FUTEX_KEY_INIT; 148 int ret; 149 DEFINE_WAKE_Q(wake_q); 150 151 if (!bitset) 152 return -EINVAL; 153 154 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ); 155 if (unlikely(ret != 0)) 156 return ret; 157 158 hb = futex_hash(&key); 159 160 /* Make sure we really have tasks to wakeup */ 161 if (!futex_hb_waiters_pending(hb)) 162 return ret; 163 164 spin_lock(&hb->lock); 165 166 plist_for_each_entry_safe(this, next, &hb->chain, list) { 167 if (futex_match (&this->key, &key)) { 168 if (this->pi_state || this->rt_waiter) { 169 ret = -EINVAL; 170 break; 171 } 172 173 /* Check if one of the bits is set in both bitsets */ 174 if (!(this->bitset & bitset)) 175 continue; 176 177 futex_wake_mark(&wake_q, this); 178 if (++ret >= nr_wake) 179 break; 180 } 181 } 182 183 spin_unlock(&hb->lock); 184 wake_up_q(&wake_q); 185 return ret; 186 } 187 188 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) 189 { 190 unsigned int op = (encoded_op & 0x70000000) >> 28; 191 unsigned int cmp = (encoded_op & 0x0f000000) >> 24; 192 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); 193 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); 194 int oldval, ret; 195 196 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { 197 if (oparg < 0 || oparg > 31) { 198 char comm[sizeof(current->comm)]; 199 /* 200 * kill this print and return -EINVAL when userspace 201 * is sane again 202 */ 203 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", 204 get_task_comm(comm, current), oparg); 205 oparg &= 31; 206 } 207 oparg = 1 << oparg; 208 } 209 210 pagefault_disable(); 211 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); 212 pagefault_enable(); 213 if (ret) 214 return ret; 215 216 switch (cmp) { 217 case FUTEX_OP_CMP_EQ: 218 return oldval == cmparg; 219 case FUTEX_OP_CMP_NE: 220 return oldval != cmparg; 221 case FUTEX_OP_CMP_LT: 222 return oldval < cmparg; 223 case FUTEX_OP_CMP_GE: 224 return oldval >= cmparg; 225 case FUTEX_OP_CMP_LE: 226 return oldval <= cmparg; 227 case FUTEX_OP_CMP_GT: 228 return oldval > cmparg; 229 default: 230 return -ENOSYS; 231 } 232 } 233 234 /* 235 * Wake up all waiters hashed on the physical page that is mapped 236 * to this virtual address: 237 */ 238 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, 239 int nr_wake, int nr_wake2, int op) 240 { 241 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 242 struct futex_hash_bucket *hb1, *hb2; 243 struct futex_q *this, *next; 244 int ret, op_ret; 245 DEFINE_WAKE_Q(wake_q); 246 247 retry: 248 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); 249 if (unlikely(ret != 0)) 250 return ret; 251 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); 252 if (unlikely(ret != 0)) 253 return ret; 254 255 hb1 = futex_hash(&key1); 256 hb2 = futex_hash(&key2); 257 258 retry_private: 259 double_lock_hb(hb1, hb2); 260 op_ret = futex_atomic_op_inuser(op, uaddr2); 261 if (unlikely(op_ret < 0)) { 262 double_unlock_hb(hb1, hb2); 263 264 if (!IS_ENABLED(CONFIG_MMU) || 265 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { 266 /* 267 * we don't get EFAULT from MMU faults if we don't have 268 * an MMU, but we might get them from range checking 269 */ 270 ret = op_ret; 271 return ret; 272 } 273 274 if (op_ret == -EFAULT) { 275 ret = fault_in_user_writeable(uaddr2); 276 if (ret) 277 return ret; 278 } 279 280 cond_resched(); 281 if (!(flags & FLAGS_SHARED)) 282 goto retry_private; 283 goto retry; 284 } 285 286 plist_for_each_entry_safe(this, next, &hb1->chain, list) { 287 if (futex_match (&this->key, &key1)) { 288 if (this->pi_state || this->rt_waiter) { 289 ret = -EINVAL; 290 goto out_unlock; 291 } 292 futex_wake_mark(&wake_q, this); 293 if (++ret >= nr_wake) 294 break; 295 } 296 } 297 298 if (op_ret > 0) { 299 op_ret = 0; 300 plist_for_each_entry_safe(this, next, &hb2->chain, list) { 301 if (futex_match (&this->key, &key2)) { 302 if (this->pi_state || this->rt_waiter) { 303 ret = -EINVAL; 304 goto out_unlock; 305 } 306 futex_wake_mark(&wake_q, this); 307 if (++op_ret >= nr_wake2) 308 break; 309 } 310 } 311 ret += op_ret; 312 } 313 314 out_unlock: 315 double_unlock_hb(hb1, hb2); 316 wake_up_q(&wake_q); 317 return ret; 318 } 319 320 static long futex_wait_restart(struct restart_block *restart); 321 322 /** 323 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal 324 * @hb: the futex hash bucket, must be locked by the caller 325 * @q: the futex_q to queue up on 326 * @timeout: the prepared hrtimer_sleeper, or null for no timeout 327 */ 328 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, 329 struct hrtimer_sleeper *timeout) 330 { 331 /* 332 * The task state is guaranteed to be set before another task can 333 * wake it. set_current_state() is implemented using smp_store_mb() and 334 * futex_queue() calls spin_unlock() upon completion, both serializing 335 * access to the hash list and forcing another memory barrier. 336 */ 337 set_current_state(TASK_INTERRUPTIBLE); 338 futex_queue(q, hb); 339 340 /* Arm the timer */ 341 if (timeout) 342 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); 343 344 /* 345 * If we have been removed from the hash list, then another task 346 * has tried to wake us, and we can skip the call to schedule(). 347 */ 348 if (likely(!plist_node_empty(&q->list))) { 349 /* 350 * If the timer has already expired, current will already be 351 * flagged for rescheduling. Only call schedule if there 352 * is no timeout, or if it has yet to expire. 353 */ 354 if (!timeout || timeout->task) 355 freezable_schedule(); 356 } 357 __set_current_state(TASK_RUNNING); 358 } 359 360 /** 361 * futex_wait_setup() - Prepare to wait on a futex 362 * @uaddr: the futex userspace address 363 * @val: the expected value 364 * @flags: futex flags (FLAGS_SHARED, etc.) 365 * @q: the associated futex_q 366 * @hb: storage for hash_bucket pointer to be returned to caller 367 * 368 * Setup the futex_q and locate the hash_bucket. Get the futex value and 369 * compare it with the expected value. Handle atomic faults internally. 370 * Return with the hb lock held on success, and unlocked on failure. 371 * 372 * Return: 373 * - 0 - uaddr contains val and hb has been locked; 374 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked 375 */ 376 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, 377 struct futex_q *q, struct futex_hash_bucket **hb) 378 { 379 u32 uval; 380 int ret; 381 382 /* 383 * Access the page AFTER the hash-bucket is locked. 384 * Order is important: 385 * 386 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); 387 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } 388 * 389 * The basic logical guarantee of a futex is that it blocks ONLY 390 * if cond(var) is known to be true at the time of blocking, for 391 * any cond. If we locked the hash-bucket after testing *uaddr, that 392 * would open a race condition where we could block indefinitely with 393 * cond(var) false, which would violate the guarantee. 394 * 395 * On the other hand, we insert q and release the hash-bucket only 396 * after testing *uaddr. This guarantees that futex_wait() will NOT 397 * absorb a wakeup if *uaddr does not match the desired values 398 * while the syscall executes. 399 */ 400 retry: 401 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ); 402 if (unlikely(ret != 0)) 403 return ret; 404 405 retry_private: 406 *hb = futex_q_lock(q); 407 408 ret = futex_get_value_locked(&uval, uaddr); 409 410 if (ret) { 411 futex_q_unlock(*hb); 412 413 ret = get_user(uval, uaddr); 414 if (ret) 415 return ret; 416 417 if (!(flags & FLAGS_SHARED)) 418 goto retry_private; 419 420 goto retry; 421 } 422 423 if (uval != val) { 424 futex_q_unlock(*hb); 425 ret = -EWOULDBLOCK; 426 } 427 428 return ret; 429 } 430 431 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) 432 { 433 struct hrtimer_sleeper timeout, *to; 434 struct restart_block *restart; 435 struct futex_hash_bucket *hb; 436 struct futex_q q = futex_q_init; 437 int ret; 438 439 if (!bitset) 440 return -EINVAL; 441 q.bitset = bitset; 442 443 to = futex_setup_timer(abs_time, &timeout, flags, 444 current->timer_slack_ns); 445 retry: 446 /* 447 * Prepare to wait on uaddr. On success, it holds hb->lock and q 448 * is initialized. 449 */ 450 ret = futex_wait_setup(uaddr, val, flags, &q, &hb); 451 if (ret) 452 goto out; 453 454 /* futex_queue and wait for wakeup, timeout, or a signal. */ 455 futex_wait_queue(hb, &q, to); 456 457 /* If we were woken (and unqueued), we succeeded, whatever. */ 458 ret = 0; 459 if (!futex_unqueue(&q)) 460 goto out; 461 ret = -ETIMEDOUT; 462 if (to && !to->task) 463 goto out; 464 465 /* 466 * We expect signal_pending(current), but we might be the 467 * victim of a spurious wakeup as well. 468 */ 469 if (!signal_pending(current)) 470 goto retry; 471 472 ret = -ERESTARTSYS; 473 if (!abs_time) 474 goto out; 475 476 restart = ¤t->restart_block; 477 restart->futex.uaddr = uaddr; 478 restart->futex.val = val; 479 restart->futex.time = *abs_time; 480 restart->futex.bitset = bitset; 481 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; 482 483 ret = set_restart_fn(restart, futex_wait_restart); 484 485 out: 486 if (to) { 487 hrtimer_cancel(&to->timer); 488 destroy_hrtimer_on_stack(&to->timer); 489 } 490 return ret; 491 } 492 493 static long futex_wait_restart(struct restart_block *restart) 494 { 495 u32 __user *uaddr = restart->futex.uaddr; 496 ktime_t t, *tp = NULL; 497 498 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { 499 t = restart->futex.time; 500 tp = &t; 501 } 502 restart->fn = do_no_restart_syscall; 503 504 return (long)futex_wait(uaddr, restart->futex.flags, 505 restart->futex.val, tp, restart->futex.bitset); 506 } 507 508