xref: /openbmc/linux/kernel/fork.c (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	return page ? page_address(page) : NULL;
252 #endif
253 }
254 
255 static inline void free_thread_stack(struct task_struct *tsk)
256 {
257 #ifdef CONFIG_VMAP_STACK
258 	struct vm_struct *vm = task_stack_vm_area(tsk);
259 
260 	if (vm) {
261 		int i;
262 
263 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 			mod_memcg_page_state(vm->pages[i],
265 					     MEMCG_KERNEL_STACK_KB,
266 					     -(int)(PAGE_SIZE / 1024));
267 
268 			memcg_kmem_uncharge(vm->pages[i], 0);
269 		}
270 
271 		for (i = 0; i < NR_CACHED_STACKS; i++) {
272 			if (this_cpu_cmpxchg(cached_stacks[i],
273 					NULL, tsk->stack_vm_area) != NULL)
274 				continue;
275 
276 			return;
277 		}
278 
279 		vfree_atomic(tsk->stack);
280 		return;
281 	}
282 #endif
283 
284 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
285 }
286 # else
287 static struct kmem_cache *thread_stack_cache;
288 
289 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
290 						  int node)
291 {
292 	unsigned long *stack;
293 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
294 	tsk->stack = stack;
295 	return stack;
296 }
297 
298 static void free_thread_stack(struct task_struct *tsk)
299 {
300 	kmem_cache_free(thread_stack_cache, tsk->stack);
301 }
302 
303 void thread_stack_cache_init(void)
304 {
305 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
306 					THREAD_SIZE, THREAD_SIZE, 0, 0,
307 					THREAD_SIZE, NULL);
308 	BUG_ON(thread_stack_cache == NULL);
309 }
310 # endif
311 #endif
312 
313 /* SLAB cache for signal_struct structures (tsk->signal) */
314 static struct kmem_cache *signal_cachep;
315 
316 /* SLAB cache for sighand_struct structures (tsk->sighand) */
317 struct kmem_cache *sighand_cachep;
318 
319 /* SLAB cache for files_struct structures (tsk->files) */
320 struct kmem_cache *files_cachep;
321 
322 /* SLAB cache for fs_struct structures (tsk->fs) */
323 struct kmem_cache *fs_cachep;
324 
325 /* SLAB cache for vm_area_struct structures */
326 static struct kmem_cache *vm_area_cachep;
327 
328 /* SLAB cache for mm_struct structures (tsk->mm) */
329 static struct kmem_cache *mm_cachep;
330 
331 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
332 {
333 	struct vm_area_struct *vma;
334 
335 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 	if (vma)
337 		vma_init(vma, mm);
338 	return vma;
339 }
340 
341 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
342 {
343 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
344 
345 	if (new) {
346 		*new = *orig;
347 		INIT_LIST_HEAD(&new->anon_vma_chain);
348 	}
349 	return new;
350 }
351 
352 void vm_area_free(struct vm_area_struct *vma)
353 {
354 	kmem_cache_free(vm_area_cachep, vma);
355 }
356 
357 static void account_kernel_stack(struct task_struct *tsk, int account)
358 {
359 	void *stack = task_stack_page(tsk);
360 	struct vm_struct *vm = task_stack_vm_area(tsk);
361 
362 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
363 
364 	if (vm) {
365 		int i;
366 
367 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
368 
369 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
370 			mod_zone_page_state(page_zone(vm->pages[i]),
371 					    NR_KERNEL_STACK_KB,
372 					    PAGE_SIZE / 1024 * account);
373 		}
374 	} else {
375 		/*
376 		 * All stack pages are in the same zone and belong to the
377 		 * same memcg.
378 		 */
379 		struct page *first_page = virt_to_page(stack);
380 
381 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
382 				    THREAD_SIZE / 1024 * account);
383 
384 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
385 				     account * (THREAD_SIZE / 1024));
386 	}
387 }
388 
389 static int memcg_charge_kernel_stack(struct task_struct *tsk)
390 {
391 #ifdef CONFIG_VMAP_STACK
392 	struct vm_struct *vm = task_stack_vm_area(tsk);
393 	int ret;
394 
395 	if (vm) {
396 		int i;
397 
398 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
399 			/*
400 			 * If memcg_kmem_charge() fails, page->mem_cgroup
401 			 * pointer is NULL, and both memcg_kmem_uncharge()
402 			 * and mod_memcg_page_state() in free_thread_stack()
403 			 * will ignore this page. So it's safe.
404 			 */
405 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
406 			if (ret)
407 				return ret;
408 
409 			mod_memcg_page_state(vm->pages[i],
410 					     MEMCG_KERNEL_STACK_KB,
411 					     PAGE_SIZE / 1024);
412 		}
413 	}
414 #endif
415 	return 0;
416 }
417 
418 static void release_task_stack(struct task_struct *tsk)
419 {
420 	if (WARN_ON(tsk->state != TASK_DEAD))
421 		return;  /* Better to leak the stack than to free prematurely */
422 
423 	account_kernel_stack(tsk, -1);
424 	free_thread_stack(tsk);
425 	tsk->stack = NULL;
426 #ifdef CONFIG_VMAP_STACK
427 	tsk->stack_vm_area = NULL;
428 #endif
429 }
430 
431 #ifdef CONFIG_THREAD_INFO_IN_TASK
432 void put_task_stack(struct task_struct *tsk)
433 {
434 	if (refcount_dec_and_test(&tsk->stack_refcount))
435 		release_task_stack(tsk);
436 }
437 #endif
438 
439 void free_task(struct task_struct *tsk)
440 {
441 #ifndef CONFIG_THREAD_INFO_IN_TASK
442 	/*
443 	 * The task is finally done with both the stack and thread_info,
444 	 * so free both.
445 	 */
446 	release_task_stack(tsk);
447 #else
448 	/*
449 	 * If the task had a separate stack allocation, it should be gone
450 	 * by now.
451 	 */
452 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
453 #endif
454 	rt_mutex_debug_task_free(tsk);
455 	ftrace_graph_exit_task(tsk);
456 	put_seccomp_filter(tsk);
457 	arch_release_task_struct(tsk);
458 	if (tsk->flags & PF_KTHREAD)
459 		free_kthread_struct(tsk);
460 	free_task_struct(tsk);
461 }
462 EXPORT_SYMBOL(free_task);
463 
464 #ifdef CONFIG_MMU
465 static __latent_entropy int dup_mmap(struct mm_struct *mm,
466 					struct mm_struct *oldmm)
467 {
468 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
469 	struct rb_node **rb_link, *rb_parent;
470 	int retval;
471 	unsigned long charge;
472 	LIST_HEAD(uf);
473 
474 	uprobe_start_dup_mmap();
475 	if (down_write_killable(&oldmm->mmap_sem)) {
476 		retval = -EINTR;
477 		goto fail_uprobe_end;
478 	}
479 	flush_cache_dup_mm(oldmm);
480 	uprobe_dup_mmap(oldmm, mm);
481 	/*
482 	 * Not linked in yet - no deadlock potential:
483 	 */
484 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
485 
486 	/* No ordering required: file already has been exposed. */
487 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
488 
489 	mm->total_vm = oldmm->total_vm;
490 	mm->data_vm = oldmm->data_vm;
491 	mm->exec_vm = oldmm->exec_vm;
492 	mm->stack_vm = oldmm->stack_vm;
493 
494 	rb_link = &mm->mm_rb.rb_node;
495 	rb_parent = NULL;
496 	pprev = &mm->mmap;
497 	retval = ksm_fork(mm, oldmm);
498 	if (retval)
499 		goto out;
500 	retval = khugepaged_fork(mm, oldmm);
501 	if (retval)
502 		goto out;
503 
504 	prev = NULL;
505 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
506 		struct file *file;
507 
508 		if (mpnt->vm_flags & VM_DONTCOPY) {
509 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
510 			continue;
511 		}
512 		charge = 0;
513 		/*
514 		 * Don't duplicate many vmas if we've been oom-killed (for
515 		 * example)
516 		 */
517 		if (fatal_signal_pending(current)) {
518 			retval = -EINTR;
519 			goto out;
520 		}
521 		if (mpnt->vm_flags & VM_ACCOUNT) {
522 			unsigned long len = vma_pages(mpnt);
523 
524 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
525 				goto fail_nomem;
526 			charge = len;
527 		}
528 		tmp = vm_area_dup(mpnt);
529 		if (!tmp)
530 			goto fail_nomem;
531 		retval = vma_dup_policy(mpnt, tmp);
532 		if (retval)
533 			goto fail_nomem_policy;
534 		tmp->vm_mm = mm;
535 		retval = dup_userfaultfd(tmp, &uf);
536 		if (retval)
537 			goto fail_nomem_anon_vma_fork;
538 		if (tmp->vm_flags & VM_WIPEONFORK) {
539 			/* VM_WIPEONFORK gets a clean slate in the child. */
540 			tmp->anon_vma = NULL;
541 			if (anon_vma_prepare(tmp))
542 				goto fail_nomem_anon_vma_fork;
543 		} else if (anon_vma_fork(tmp, mpnt))
544 			goto fail_nomem_anon_vma_fork;
545 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
546 		tmp->vm_next = tmp->vm_prev = NULL;
547 		file = tmp->vm_file;
548 		if (file) {
549 			struct inode *inode = file_inode(file);
550 			struct address_space *mapping = file->f_mapping;
551 
552 			get_file(file);
553 			if (tmp->vm_flags & VM_DENYWRITE)
554 				atomic_dec(&inode->i_writecount);
555 			i_mmap_lock_write(mapping);
556 			if (tmp->vm_flags & VM_SHARED)
557 				atomic_inc(&mapping->i_mmap_writable);
558 			flush_dcache_mmap_lock(mapping);
559 			/* insert tmp into the share list, just after mpnt */
560 			vma_interval_tree_insert_after(tmp, mpnt,
561 					&mapping->i_mmap);
562 			flush_dcache_mmap_unlock(mapping);
563 			i_mmap_unlock_write(mapping);
564 		}
565 
566 		/*
567 		 * Clear hugetlb-related page reserves for children. This only
568 		 * affects MAP_PRIVATE mappings. Faults generated by the child
569 		 * are not guaranteed to succeed, even if read-only
570 		 */
571 		if (is_vm_hugetlb_page(tmp))
572 			reset_vma_resv_huge_pages(tmp);
573 
574 		/*
575 		 * Link in the new vma and copy the page table entries.
576 		 */
577 		*pprev = tmp;
578 		pprev = &tmp->vm_next;
579 		tmp->vm_prev = prev;
580 		prev = tmp;
581 
582 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
583 		rb_link = &tmp->vm_rb.rb_right;
584 		rb_parent = &tmp->vm_rb;
585 
586 		mm->map_count++;
587 		if (!(tmp->vm_flags & VM_WIPEONFORK))
588 			retval = copy_page_range(mm, oldmm, mpnt);
589 
590 		if (tmp->vm_ops && tmp->vm_ops->open)
591 			tmp->vm_ops->open(tmp);
592 
593 		if (retval)
594 			goto out;
595 	}
596 	/* a new mm has just been created */
597 	retval = arch_dup_mmap(oldmm, mm);
598 out:
599 	up_write(&mm->mmap_sem);
600 	flush_tlb_mm(oldmm);
601 	up_write(&oldmm->mmap_sem);
602 	dup_userfaultfd_complete(&uf);
603 fail_uprobe_end:
604 	uprobe_end_dup_mmap();
605 	return retval;
606 fail_nomem_anon_vma_fork:
607 	mpol_put(vma_policy(tmp));
608 fail_nomem_policy:
609 	vm_area_free(tmp);
610 fail_nomem:
611 	retval = -ENOMEM;
612 	vm_unacct_memory(charge);
613 	goto out;
614 }
615 
616 static inline int mm_alloc_pgd(struct mm_struct *mm)
617 {
618 	mm->pgd = pgd_alloc(mm);
619 	if (unlikely(!mm->pgd))
620 		return -ENOMEM;
621 	return 0;
622 }
623 
624 static inline void mm_free_pgd(struct mm_struct *mm)
625 {
626 	pgd_free(mm, mm->pgd);
627 }
628 #else
629 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
630 {
631 	down_write(&oldmm->mmap_sem);
632 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
633 	up_write(&oldmm->mmap_sem);
634 	return 0;
635 }
636 #define mm_alloc_pgd(mm)	(0)
637 #define mm_free_pgd(mm)
638 #endif /* CONFIG_MMU */
639 
640 static void check_mm(struct mm_struct *mm)
641 {
642 	int i;
643 
644 	for (i = 0; i < NR_MM_COUNTERS; i++) {
645 		long x = atomic_long_read(&mm->rss_stat.count[i]);
646 
647 		if (unlikely(x))
648 			printk(KERN_ALERT "BUG: Bad rss-counter state "
649 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
650 	}
651 
652 	if (mm_pgtables_bytes(mm))
653 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
654 				mm_pgtables_bytes(mm));
655 
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #endif
659 }
660 
661 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
662 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
663 
664 /*
665  * Called when the last reference to the mm
666  * is dropped: either by a lazy thread or by
667  * mmput. Free the page directory and the mm.
668  */
669 void __mmdrop(struct mm_struct *mm)
670 {
671 	BUG_ON(mm == &init_mm);
672 	WARN_ON_ONCE(mm == current->mm);
673 	WARN_ON_ONCE(mm == current->active_mm);
674 	mm_free_pgd(mm);
675 	destroy_context(mm);
676 	hmm_mm_destroy(mm);
677 	mmu_notifier_mm_destroy(mm);
678 	check_mm(mm);
679 	put_user_ns(mm->user_ns);
680 	free_mm(mm);
681 }
682 EXPORT_SYMBOL_GPL(__mmdrop);
683 
684 static void mmdrop_async_fn(struct work_struct *work)
685 {
686 	struct mm_struct *mm;
687 
688 	mm = container_of(work, struct mm_struct, async_put_work);
689 	__mmdrop(mm);
690 }
691 
692 static void mmdrop_async(struct mm_struct *mm)
693 {
694 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
695 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
696 		schedule_work(&mm->async_put_work);
697 	}
698 }
699 
700 static inline void free_signal_struct(struct signal_struct *sig)
701 {
702 	taskstats_tgid_free(sig);
703 	sched_autogroup_exit(sig);
704 	/*
705 	 * __mmdrop is not safe to call from softirq context on x86 due to
706 	 * pgd_dtor so postpone it to the async context
707 	 */
708 	if (sig->oom_mm)
709 		mmdrop_async(sig->oom_mm);
710 	kmem_cache_free(signal_cachep, sig);
711 }
712 
713 static inline void put_signal_struct(struct signal_struct *sig)
714 {
715 	if (refcount_dec_and_test(&sig->sigcnt))
716 		free_signal_struct(sig);
717 }
718 
719 void __put_task_struct(struct task_struct *tsk)
720 {
721 	WARN_ON(!tsk->exit_state);
722 	WARN_ON(refcount_read(&tsk->usage));
723 	WARN_ON(tsk == current);
724 
725 	cgroup_free(tsk);
726 	task_numa_free(tsk);
727 	security_task_free(tsk);
728 	exit_creds(tsk);
729 	delayacct_tsk_free(tsk);
730 	put_signal_struct(tsk->signal);
731 
732 	if (!profile_handoff_task(tsk))
733 		free_task(tsk);
734 }
735 EXPORT_SYMBOL_GPL(__put_task_struct);
736 
737 void __init __weak arch_task_cache_init(void) { }
738 
739 /*
740  * set_max_threads
741  */
742 static void set_max_threads(unsigned int max_threads_suggested)
743 {
744 	u64 threads;
745 	unsigned long nr_pages = totalram_pages();
746 
747 	/*
748 	 * The number of threads shall be limited such that the thread
749 	 * structures may only consume a small part of the available memory.
750 	 */
751 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
752 		threads = MAX_THREADS;
753 	else
754 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
755 				    (u64) THREAD_SIZE * 8UL);
756 
757 	if (threads > max_threads_suggested)
758 		threads = max_threads_suggested;
759 
760 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
761 }
762 
763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
764 /* Initialized by the architecture: */
765 int arch_task_struct_size __read_mostly;
766 #endif
767 
768 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
769 {
770 	/* Fetch thread_struct whitelist for the architecture. */
771 	arch_thread_struct_whitelist(offset, size);
772 
773 	/*
774 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
775 	 * adjust offset to position of thread_struct in task_struct.
776 	 */
777 	if (unlikely(*size == 0))
778 		*offset = 0;
779 	else
780 		*offset += offsetof(struct task_struct, thread);
781 }
782 
783 void __init fork_init(void)
784 {
785 	int i;
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 #ifndef ARCH_MIN_TASKALIGN
788 #define ARCH_MIN_TASKALIGN	0
789 #endif
790 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
791 	unsigned long useroffset, usersize;
792 
793 	/* create a slab on which task_structs can be allocated */
794 	task_struct_whitelist(&useroffset, &usersize);
795 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
796 			arch_task_struct_size, align,
797 			SLAB_PANIC|SLAB_ACCOUNT,
798 			useroffset, usersize, NULL);
799 #endif
800 
801 	/* do the arch specific task caches init */
802 	arch_task_cache_init();
803 
804 	set_max_threads(MAX_THREADS);
805 
806 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
807 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
808 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
809 		init_task.signal->rlim[RLIMIT_NPROC];
810 
811 	for (i = 0; i < UCOUNT_COUNTS; i++) {
812 		init_user_ns.ucount_max[i] = max_threads/2;
813 	}
814 
815 #ifdef CONFIG_VMAP_STACK
816 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
817 			  NULL, free_vm_stack_cache);
818 #endif
819 
820 	lockdep_init_task(&init_task);
821 	uprobes_init();
822 }
823 
824 int __weak arch_dup_task_struct(struct task_struct *dst,
825 					       struct task_struct *src)
826 {
827 	*dst = *src;
828 	return 0;
829 }
830 
831 void set_task_stack_end_magic(struct task_struct *tsk)
832 {
833 	unsigned long *stackend;
834 
835 	stackend = end_of_stack(tsk);
836 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
837 }
838 
839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
840 {
841 	struct task_struct *tsk;
842 	unsigned long *stack;
843 	struct vm_struct *stack_vm_area __maybe_unused;
844 	int err;
845 
846 	if (node == NUMA_NO_NODE)
847 		node = tsk_fork_get_node(orig);
848 	tsk = alloc_task_struct_node(node);
849 	if (!tsk)
850 		return NULL;
851 
852 	stack = alloc_thread_stack_node(tsk, node);
853 	if (!stack)
854 		goto free_tsk;
855 
856 	if (memcg_charge_kernel_stack(tsk))
857 		goto free_stack;
858 
859 	stack_vm_area = task_stack_vm_area(tsk);
860 
861 	err = arch_dup_task_struct(tsk, orig);
862 
863 	/*
864 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
865 	 * sure they're properly initialized before using any stack-related
866 	 * functions again.
867 	 */
868 	tsk->stack = stack;
869 #ifdef CONFIG_VMAP_STACK
870 	tsk->stack_vm_area = stack_vm_area;
871 #endif
872 #ifdef CONFIG_THREAD_INFO_IN_TASK
873 	refcount_set(&tsk->stack_refcount, 1);
874 #endif
875 
876 	if (err)
877 		goto free_stack;
878 
879 #ifdef CONFIG_SECCOMP
880 	/*
881 	 * We must handle setting up seccomp filters once we're under
882 	 * the sighand lock in case orig has changed between now and
883 	 * then. Until then, filter must be NULL to avoid messing up
884 	 * the usage counts on the error path calling free_task.
885 	 */
886 	tsk->seccomp.filter = NULL;
887 #endif
888 
889 	setup_thread_stack(tsk, orig);
890 	clear_user_return_notifier(tsk);
891 	clear_tsk_need_resched(tsk);
892 	set_task_stack_end_magic(tsk);
893 
894 #ifdef CONFIG_STACKPROTECTOR
895 	tsk->stack_canary = get_random_canary();
896 #endif
897 
898 	/*
899 	 * One for us, one for whoever does the "release_task()" (usually
900 	 * parent)
901 	 */
902 	refcount_set(&tsk->usage, 2);
903 #ifdef CONFIG_BLK_DEV_IO_TRACE
904 	tsk->btrace_seq = 0;
905 #endif
906 	tsk->splice_pipe = NULL;
907 	tsk->task_frag.page = NULL;
908 	tsk->wake_q.next = NULL;
909 
910 	account_kernel_stack(tsk, 1);
911 
912 	kcov_task_init(tsk);
913 
914 #ifdef CONFIG_FAULT_INJECTION
915 	tsk->fail_nth = 0;
916 #endif
917 
918 #ifdef CONFIG_BLK_CGROUP
919 	tsk->throttle_queue = NULL;
920 	tsk->use_memdelay = 0;
921 #endif
922 
923 #ifdef CONFIG_MEMCG
924 	tsk->active_memcg = NULL;
925 #endif
926 	return tsk;
927 
928 free_stack:
929 	free_thread_stack(tsk);
930 free_tsk:
931 	free_task_struct(tsk);
932 	return NULL;
933 }
934 
935 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
936 
937 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
938 
939 static int __init coredump_filter_setup(char *s)
940 {
941 	default_dump_filter =
942 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
943 		MMF_DUMP_FILTER_MASK;
944 	return 1;
945 }
946 
947 __setup("coredump_filter=", coredump_filter_setup);
948 
949 #include <linux/init_task.h>
950 
951 static void mm_init_aio(struct mm_struct *mm)
952 {
953 #ifdef CONFIG_AIO
954 	spin_lock_init(&mm->ioctx_lock);
955 	mm->ioctx_table = NULL;
956 #endif
957 }
958 
959 static __always_inline void mm_clear_owner(struct mm_struct *mm,
960 					   struct task_struct *p)
961 {
962 #ifdef CONFIG_MEMCG
963 	if (mm->owner == p)
964 		WRITE_ONCE(mm->owner, NULL);
965 #endif
966 }
967 
968 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
969 {
970 #ifdef CONFIG_MEMCG
971 	mm->owner = p;
972 #endif
973 }
974 
975 static void mm_init_uprobes_state(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_UPROBES
978 	mm->uprobes_state.xol_area = NULL;
979 #endif
980 }
981 
982 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
983 	struct user_namespace *user_ns)
984 {
985 	mm->mmap = NULL;
986 	mm->mm_rb = RB_ROOT;
987 	mm->vmacache_seqnum = 0;
988 	atomic_set(&mm->mm_users, 1);
989 	atomic_set(&mm->mm_count, 1);
990 	init_rwsem(&mm->mmap_sem);
991 	INIT_LIST_HEAD(&mm->mmlist);
992 	mm->core_state = NULL;
993 	mm_pgtables_bytes_init(mm);
994 	mm->map_count = 0;
995 	mm->locked_vm = 0;
996 	atomic64_set(&mm->pinned_vm, 0);
997 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
998 	spin_lock_init(&mm->page_table_lock);
999 	spin_lock_init(&mm->arg_lock);
1000 	mm_init_cpumask(mm);
1001 	mm_init_aio(mm);
1002 	mm_init_owner(mm, p);
1003 	RCU_INIT_POINTER(mm->exe_file, NULL);
1004 	mmu_notifier_mm_init(mm);
1005 	hmm_mm_init(mm);
1006 	init_tlb_flush_pending(mm);
1007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1008 	mm->pmd_huge_pte = NULL;
1009 #endif
1010 	mm_init_uprobes_state(mm);
1011 
1012 	if (current->mm) {
1013 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1014 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1015 	} else {
1016 		mm->flags = default_dump_filter;
1017 		mm->def_flags = 0;
1018 	}
1019 
1020 	if (mm_alloc_pgd(mm))
1021 		goto fail_nopgd;
1022 
1023 	if (init_new_context(p, mm))
1024 		goto fail_nocontext;
1025 
1026 	mm->user_ns = get_user_ns(user_ns);
1027 	return mm;
1028 
1029 fail_nocontext:
1030 	mm_free_pgd(mm);
1031 fail_nopgd:
1032 	free_mm(mm);
1033 	return NULL;
1034 }
1035 
1036 /*
1037  * Allocate and initialize an mm_struct.
1038  */
1039 struct mm_struct *mm_alloc(void)
1040 {
1041 	struct mm_struct *mm;
1042 
1043 	mm = allocate_mm();
1044 	if (!mm)
1045 		return NULL;
1046 
1047 	memset(mm, 0, sizeof(*mm));
1048 	return mm_init(mm, current, current_user_ns());
1049 }
1050 
1051 static inline void __mmput(struct mm_struct *mm)
1052 {
1053 	VM_BUG_ON(atomic_read(&mm->mm_users));
1054 
1055 	uprobe_clear_state(mm);
1056 	exit_aio(mm);
1057 	ksm_exit(mm);
1058 	khugepaged_exit(mm); /* must run before exit_mmap */
1059 	exit_mmap(mm);
1060 	mm_put_huge_zero_page(mm);
1061 	set_mm_exe_file(mm, NULL);
1062 	if (!list_empty(&mm->mmlist)) {
1063 		spin_lock(&mmlist_lock);
1064 		list_del(&mm->mmlist);
1065 		spin_unlock(&mmlist_lock);
1066 	}
1067 	if (mm->binfmt)
1068 		module_put(mm->binfmt->module);
1069 	mmdrop(mm);
1070 }
1071 
1072 /*
1073  * Decrement the use count and release all resources for an mm.
1074  */
1075 void mmput(struct mm_struct *mm)
1076 {
1077 	might_sleep();
1078 
1079 	if (atomic_dec_and_test(&mm->mm_users))
1080 		__mmput(mm);
1081 }
1082 EXPORT_SYMBOL_GPL(mmput);
1083 
1084 #ifdef CONFIG_MMU
1085 static void mmput_async_fn(struct work_struct *work)
1086 {
1087 	struct mm_struct *mm = container_of(work, struct mm_struct,
1088 					    async_put_work);
1089 
1090 	__mmput(mm);
1091 }
1092 
1093 void mmput_async(struct mm_struct *mm)
1094 {
1095 	if (atomic_dec_and_test(&mm->mm_users)) {
1096 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1097 		schedule_work(&mm->async_put_work);
1098 	}
1099 }
1100 #endif
1101 
1102 /**
1103  * set_mm_exe_file - change a reference to the mm's executable file
1104  *
1105  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1106  *
1107  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1108  * invocations: in mmput() nobody alive left, in execve task is single
1109  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1110  * mm->exe_file, but does so without using set_mm_exe_file() in order
1111  * to do avoid the need for any locks.
1112  */
1113 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1114 {
1115 	struct file *old_exe_file;
1116 
1117 	/*
1118 	 * It is safe to dereference the exe_file without RCU as
1119 	 * this function is only called if nobody else can access
1120 	 * this mm -- see comment above for justification.
1121 	 */
1122 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1123 
1124 	if (new_exe_file)
1125 		get_file(new_exe_file);
1126 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1127 	if (old_exe_file)
1128 		fput(old_exe_file);
1129 }
1130 
1131 /**
1132  * get_mm_exe_file - acquire a reference to the mm's executable file
1133  *
1134  * Returns %NULL if mm has no associated executable file.
1135  * User must release file via fput().
1136  */
1137 struct file *get_mm_exe_file(struct mm_struct *mm)
1138 {
1139 	struct file *exe_file;
1140 
1141 	rcu_read_lock();
1142 	exe_file = rcu_dereference(mm->exe_file);
1143 	if (exe_file && !get_file_rcu(exe_file))
1144 		exe_file = NULL;
1145 	rcu_read_unlock();
1146 	return exe_file;
1147 }
1148 EXPORT_SYMBOL(get_mm_exe_file);
1149 
1150 /**
1151  * get_task_exe_file - acquire a reference to the task's executable file
1152  *
1153  * Returns %NULL if task's mm (if any) has no associated executable file or
1154  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1155  * User must release file via fput().
1156  */
1157 struct file *get_task_exe_file(struct task_struct *task)
1158 {
1159 	struct file *exe_file = NULL;
1160 	struct mm_struct *mm;
1161 
1162 	task_lock(task);
1163 	mm = task->mm;
1164 	if (mm) {
1165 		if (!(task->flags & PF_KTHREAD))
1166 			exe_file = get_mm_exe_file(mm);
1167 	}
1168 	task_unlock(task);
1169 	return exe_file;
1170 }
1171 EXPORT_SYMBOL(get_task_exe_file);
1172 
1173 /**
1174  * get_task_mm - acquire a reference to the task's mm
1175  *
1176  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1177  * this kernel workthread has transiently adopted a user mm with use_mm,
1178  * to do its AIO) is not set and if so returns a reference to it, after
1179  * bumping up the use count.  User must release the mm via mmput()
1180  * after use.  Typically used by /proc and ptrace.
1181  */
1182 struct mm_struct *get_task_mm(struct task_struct *task)
1183 {
1184 	struct mm_struct *mm;
1185 
1186 	task_lock(task);
1187 	mm = task->mm;
1188 	if (mm) {
1189 		if (task->flags & PF_KTHREAD)
1190 			mm = NULL;
1191 		else
1192 			mmget(mm);
1193 	}
1194 	task_unlock(task);
1195 	return mm;
1196 }
1197 EXPORT_SYMBOL_GPL(get_task_mm);
1198 
1199 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1200 {
1201 	struct mm_struct *mm;
1202 	int err;
1203 
1204 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1205 	if (err)
1206 		return ERR_PTR(err);
1207 
1208 	mm = get_task_mm(task);
1209 	if (mm && mm != current->mm &&
1210 			!ptrace_may_access(task, mode)) {
1211 		mmput(mm);
1212 		mm = ERR_PTR(-EACCES);
1213 	}
1214 	mutex_unlock(&task->signal->cred_guard_mutex);
1215 
1216 	return mm;
1217 }
1218 
1219 static void complete_vfork_done(struct task_struct *tsk)
1220 {
1221 	struct completion *vfork;
1222 
1223 	task_lock(tsk);
1224 	vfork = tsk->vfork_done;
1225 	if (likely(vfork)) {
1226 		tsk->vfork_done = NULL;
1227 		complete(vfork);
1228 	}
1229 	task_unlock(tsk);
1230 }
1231 
1232 static int wait_for_vfork_done(struct task_struct *child,
1233 				struct completion *vfork)
1234 {
1235 	int killed;
1236 
1237 	freezer_do_not_count();
1238 	cgroup_enter_frozen();
1239 	killed = wait_for_completion_killable(vfork);
1240 	cgroup_leave_frozen(false);
1241 	freezer_count();
1242 
1243 	if (killed) {
1244 		task_lock(child);
1245 		child->vfork_done = NULL;
1246 		task_unlock(child);
1247 	}
1248 
1249 	put_task_struct(child);
1250 	return killed;
1251 }
1252 
1253 /* Please note the differences between mmput and mm_release.
1254  * mmput is called whenever we stop holding onto a mm_struct,
1255  * error success whatever.
1256  *
1257  * mm_release is called after a mm_struct has been removed
1258  * from the current process.
1259  *
1260  * This difference is important for error handling, when we
1261  * only half set up a mm_struct for a new process and need to restore
1262  * the old one.  Because we mmput the new mm_struct before
1263  * restoring the old one. . .
1264  * Eric Biederman 10 January 1998
1265  */
1266 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1267 {
1268 	/* Get rid of any futexes when releasing the mm */
1269 #ifdef CONFIG_FUTEX
1270 	if (unlikely(tsk->robust_list)) {
1271 		exit_robust_list(tsk);
1272 		tsk->robust_list = NULL;
1273 	}
1274 #ifdef CONFIG_COMPAT
1275 	if (unlikely(tsk->compat_robust_list)) {
1276 		compat_exit_robust_list(tsk);
1277 		tsk->compat_robust_list = NULL;
1278 	}
1279 #endif
1280 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1281 		exit_pi_state_list(tsk);
1282 #endif
1283 
1284 	uprobe_free_utask(tsk);
1285 
1286 	/* Get rid of any cached register state */
1287 	deactivate_mm(tsk, mm);
1288 
1289 	/*
1290 	 * Signal userspace if we're not exiting with a core dump
1291 	 * because we want to leave the value intact for debugging
1292 	 * purposes.
1293 	 */
1294 	if (tsk->clear_child_tid) {
1295 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1296 		    atomic_read(&mm->mm_users) > 1) {
1297 			/*
1298 			 * We don't check the error code - if userspace has
1299 			 * not set up a proper pointer then tough luck.
1300 			 */
1301 			put_user(0, tsk->clear_child_tid);
1302 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1303 					1, NULL, NULL, 0, 0);
1304 		}
1305 		tsk->clear_child_tid = NULL;
1306 	}
1307 
1308 	/*
1309 	 * All done, finally we can wake up parent and return this mm to him.
1310 	 * Also kthread_stop() uses this completion for synchronization.
1311 	 */
1312 	if (tsk->vfork_done)
1313 		complete_vfork_done(tsk);
1314 }
1315 
1316 /**
1317  * dup_mm() - duplicates an existing mm structure
1318  * @tsk: the task_struct with which the new mm will be associated.
1319  * @oldmm: the mm to duplicate.
1320  *
1321  * Allocates a new mm structure and duplicates the provided @oldmm structure
1322  * content into it.
1323  *
1324  * Return: the duplicated mm or NULL on failure.
1325  */
1326 static struct mm_struct *dup_mm(struct task_struct *tsk,
1327 				struct mm_struct *oldmm)
1328 {
1329 	struct mm_struct *mm;
1330 	int err;
1331 
1332 	mm = allocate_mm();
1333 	if (!mm)
1334 		goto fail_nomem;
1335 
1336 	memcpy(mm, oldmm, sizeof(*mm));
1337 
1338 	if (!mm_init(mm, tsk, mm->user_ns))
1339 		goto fail_nomem;
1340 
1341 	err = dup_mmap(mm, oldmm);
1342 	if (err)
1343 		goto free_pt;
1344 
1345 	mm->hiwater_rss = get_mm_rss(mm);
1346 	mm->hiwater_vm = mm->total_vm;
1347 
1348 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1349 		goto free_pt;
1350 
1351 	return mm;
1352 
1353 free_pt:
1354 	/* don't put binfmt in mmput, we haven't got module yet */
1355 	mm->binfmt = NULL;
1356 	mm_init_owner(mm, NULL);
1357 	mmput(mm);
1358 
1359 fail_nomem:
1360 	return NULL;
1361 }
1362 
1363 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1364 {
1365 	struct mm_struct *mm, *oldmm;
1366 	int retval;
1367 
1368 	tsk->min_flt = tsk->maj_flt = 0;
1369 	tsk->nvcsw = tsk->nivcsw = 0;
1370 #ifdef CONFIG_DETECT_HUNG_TASK
1371 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1372 	tsk->last_switch_time = 0;
1373 #endif
1374 
1375 	tsk->mm = NULL;
1376 	tsk->active_mm = NULL;
1377 
1378 	/*
1379 	 * Are we cloning a kernel thread?
1380 	 *
1381 	 * We need to steal a active VM for that..
1382 	 */
1383 	oldmm = current->mm;
1384 	if (!oldmm)
1385 		return 0;
1386 
1387 	/* initialize the new vmacache entries */
1388 	vmacache_flush(tsk);
1389 
1390 	if (clone_flags & CLONE_VM) {
1391 		mmget(oldmm);
1392 		mm = oldmm;
1393 		goto good_mm;
1394 	}
1395 
1396 	retval = -ENOMEM;
1397 	mm = dup_mm(tsk, current->mm);
1398 	if (!mm)
1399 		goto fail_nomem;
1400 
1401 good_mm:
1402 	tsk->mm = mm;
1403 	tsk->active_mm = mm;
1404 	return 0;
1405 
1406 fail_nomem:
1407 	return retval;
1408 }
1409 
1410 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1411 {
1412 	struct fs_struct *fs = current->fs;
1413 	if (clone_flags & CLONE_FS) {
1414 		/* tsk->fs is already what we want */
1415 		spin_lock(&fs->lock);
1416 		if (fs->in_exec) {
1417 			spin_unlock(&fs->lock);
1418 			return -EAGAIN;
1419 		}
1420 		fs->users++;
1421 		spin_unlock(&fs->lock);
1422 		return 0;
1423 	}
1424 	tsk->fs = copy_fs_struct(fs);
1425 	if (!tsk->fs)
1426 		return -ENOMEM;
1427 	return 0;
1428 }
1429 
1430 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 	struct files_struct *oldf, *newf;
1433 	int error = 0;
1434 
1435 	/*
1436 	 * A background process may not have any files ...
1437 	 */
1438 	oldf = current->files;
1439 	if (!oldf)
1440 		goto out;
1441 
1442 	if (clone_flags & CLONE_FILES) {
1443 		atomic_inc(&oldf->count);
1444 		goto out;
1445 	}
1446 
1447 	newf = dup_fd(oldf, &error);
1448 	if (!newf)
1449 		goto out;
1450 
1451 	tsk->files = newf;
1452 	error = 0;
1453 out:
1454 	return error;
1455 }
1456 
1457 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1458 {
1459 #ifdef CONFIG_BLOCK
1460 	struct io_context *ioc = current->io_context;
1461 	struct io_context *new_ioc;
1462 
1463 	if (!ioc)
1464 		return 0;
1465 	/*
1466 	 * Share io context with parent, if CLONE_IO is set
1467 	 */
1468 	if (clone_flags & CLONE_IO) {
1469 		ioc_task_link(ioc);
1470 		tsk->io_context = ioc;
1471 	} else if (ioprio_valid(ioc->ioprio)) {
1472 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1473 		if (unlikely(!new_ioc))
1474 			return -ENOMEM;
1475 
1476 		new_ioc->ioprio = ioc->ioprio;
1477 		put_io_context(new_ioc);
1478 	}
1479 #endif
1480 	return 0;
1481 }
1482 
1483 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1484 {
1485 	struct sighand_struct *sig;
1486 
1487 	if (clone_flags & CLONE_SIGHAND) {
1488 		refcount_inc(&current->sighand->count);
1489 		return 0;
1490 	}
1491 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1492 	rcu_assign_pointer(tsk->sighand, sig);
1493 	if (!sig)
1494 		return -ENOMEM;
1495 
1496 	refcount_set(&sig->count, 1);
1497 	spin_lock_irq(&current->sighand->siglock);
1498 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1499 	spin_unlock_irq(&current->sighand->siglock);
1500 	return 0;
1501 }
1502 
1503 void __cleanup_sighand(struct sighand_struct *sighand)
1504 {
1505 	if (refcount_dec_and_test(&sighand->count)) {
1506 		signalfd_cleanup(sighand);
1507 		/*
1508 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1509 		 * without an RCU grace period, see __lock_task_sighand().
1510 		 */
1511 		kmem_cache_free(sighand_cachep, sighand);
1512 	}
1513 }
1514 
1515 #ifdef CONFIG_POSIX_TIMERS
1516 /*
1517  * Initialize POSIX timer handling for a thread group.
1518  */
1519 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1520 {
1521 	unsigned long cpu_limit;
1522 
1523 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1524 	if (cpu_limit != RLIM_INFINITY) {
1525 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1526 		sig->cputimer.running = true;
1527 	}
1528 
1529 	/* The timer lists. */
1530 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1531 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1532 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1533 }
1534 #else
1535 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1536 #endif
1537 
1538 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1539 {
1540 	struct signal_struct *sig;
1541 
1542 	if (clone_flags & CLONE_THREAD)
1543 		return 0;
1544 
1545 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1546 	tsk->signal = sig;
1547 	if (!sig)
1548 		return -ENOMEM;
1549 
1550 	sig->nr_threads = 1;
1551 	atomic_set(&sig->live, 1);
1552 	refcount_set(&sig->sigcnt, 1);
1553 
1554 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1555 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1556 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1557 
1558 	init_waitqueue_head(&sig->wait_chldexit);
1559 	sig->curr_target = tsk;
1560 	init_sigpending(&sig->shared_pending);
1561 	INIT_HLIST_HEAD(&sig->multiprocess);
1562 	seqlock_init(&sig->stats_lock);
1563 	prev_cputime_init(&sig->prev_cputime);
1564 
1565 #ifdef CONFIG_POSIX_TIMERS
1566 	INIT_LIST_HEAD(&sig->posix_timers);
1567 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1568 	sig->real_timer.function = it_real_fn;
1569 #endif
1570 
1571 	task_lock(current->group_leader);
1572 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1573 	task_unlock(current->group_leader);
1574 
1575 	posix_cpu_timers_init_group(sig);
1576 
1577 	tty_audit_fork(sig);
1578 	sched_autogroup_fork(sig);
1579 
1580 	sig->oom_score_adj = current->signal->oom_score_adj;
1581 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1582 
1583 	mutex_init(&sig->cred_guard_mutex);
1584 
1585 	return 0;
1586 }
1587 
1588 static void copy_seccomp(struct task_struct *p)
1589 {
1590 #ifdef CONFIG_SECCOMP
1591 	/*
1592 	 * Must be called with sighand->lock held, which is common to
1593 	 * all threads in the group. Holding cred_guard_mutex is not
1594 	 * needed because this new task is not yet running and cannot
1595 	 * be racing exec.
1596 	 */
1597 	assert_spin_locked(&current->sighand->siglock);
1598 
1599 	/* Ref-count the new filter user, and assign it. */
1600 	get_seccomp_filter(current);
1601 	p->seccomp = current->seccomp;
1602 
1603 	/*
1604 	 * Explicitly enable no_new_privs here in case it got set
1605 	 * between the task_struct being duplicated and holding the
1606 	 * sighand lock. The seccomp state and nnp must be in sync.
1607 	 */
1608 	if (task_no_new_privs(current))
1609 		task_set_no_new_privs(p);
1610 
1611 	/*
1612 	 * If the parent gained a seccomp mode after copying thread
1613 	 * flags and between before we held the sighand lock, we have
1614 	 * to manually enable the seccomp thread flag here.
1615 	 */
1616 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1617 		set_tsk_thread_flag(p, TIF_SECCOMP);
1618 #endif
1619 }
1620 
1621 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1622 {
1623 	current->clear_child_tid = tidptr;
1624 
1625 	return task_pid_vnr(current);
1626 }
1627 
1628 static void rt_mutex_init_task(struct task_struct *p)
1629 {
1630 	raw_spin_lock_init(&p->pi_lock);
1631 #ifdef CONFIG_RT_MUTEXES
1632 	p->pi_waiters = RB_ROOT_CACHED;
1633 	p->pi_top_task = NULL;
1634 	p->pi_blocked_on = NULL;
1635 #endif
1636 }
1637 
1638 #ifdef CONFIG_POSIX_TIMERS
1639 /*
1640  * Initialize POSIX timer handling for a single task.
1641  */
1642 static void posix_cpu_timers_init(struct task_struct *tsk)
1643 {
1644 	tsk->cputime_expires.prof_exp = 0;
1645 	tsk->cputime_expires.virt_exp = 0;
1646 	tsk->cputime_expires.sched_exp = 0;
1647 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1648 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1649 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1650 }
1651 #else
1652 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1653 #endif
1654 
1655 static inline void init_task_pid_links(struct task_struct *task)
1656 {
1657 	enum pid_type type;
1658 
1659 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 		INIT_HLIST_NODE(&task->pid_links[type]);
1661 	}
1662 }
1663 
1664 static inline void
1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666 {
1667 	if (type == PIDTYPE_PID)
1668 		task->thread_pid = pid;
1669 	else
1670 		task->signal->pids[type] = pid;
1671 }
1672 
1673 static inline void rcu_copy_process(struct task_struct *p)
1674 {
1675 #ifdef CONFIG_PREEMPT_RCU
1676 	p->rcu_read_lock_nesting = 0;
1677 	p->rcu_read_unlock_special.s = 0;
1678 	p->rcu_blocked_node = NULL;
1679 	INIT_LIST_HEAD(&p->rcu_node_entry);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682 	p->rcu_tasks_holdout = false;
1683 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 	p->rcu_tasks_idle_cpu = -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1686 }
1687 
1688 static int pidfd_release(struct inode *inode, struct file *file)
1689 {
1690 	struct pid *pid = file->private_data;
1691 
1692 	file->private_data = NULL;
1693 	put_pid(pid);
1694 	return 0;
1695 }
1696 
1697 #ifdef CONFIG_PROC_FS
1698 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1699 {
1700 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1701 	struct pid *pid = f->private_data;
1702 
1703 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1704 	seq_putc(m, '\n');
1705 }
1706 #endif
1707 
1708 const struct file_operations pidfd_fops = {
1709 	.release = pidfd_release,
1710 #ifdef CONFIG_PROC_FS
1711 	.show_fdinfo = pidfd_show_fdinfo,
1712 #endif
1713 };
1714 
1715 /**
1716  * pidfd_create() - Create a new pid file descriptor.
1717  *
1718  * @pid:  struct pid that the pidfd will reference
1719  *
1720  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1721  *
1722  * Note, that this function can only be called after the fd table has
1723  * been unshared to avoid leaking the pidfd to the new process.
1724  *
1725  * Return: On success, a cloexec pidfd is returned.
1726  *         On error, a negative errno number will be returned.
1727  */
1728 static int pidfd_create(struct pid *pid)
1729 {
1730 	int fd;
1731 
1732 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1733 			      O_RDWR | O_CLOEXEC);
1734 	if (fd < 0)
1735 		put_pid(pid);
1736 
1737 	return fd;
1738 }
1739 
1740 static void __delayed_free_task(struct rcu_head *rhp)
1741 {
1742 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1743 
1744 	free_task(tsk);
1745 }
1746 
1747 static __always_inline void delayed_free_task(struct task_struct *tsk)
1748 {
1749 	if (IS_ENABLED(CONFIG_MEMCG))
1750 		call_rcu(&tsk->rcu, __delayed_free_task);
1751 	else
1752 		free_task(tsk);
1753 }
1754 
1755 /*
1756  * This creates a new process as a copy of the old one,
1757  * but does not actually start it yet.
1758  *
1759  * It copies the registers, and all the appropriate
1760  * parts of the process environment (as per the clone
1761  * flags). The actual kick-off is left to the caller.
1762  */
1763 static __latent_entropy struct task_struct *copy_process(
1764 					unsigned long clone_flags,
1765 					unsigned long stack_start,
1766 					unsigned long stack_size,
1767 					int __user *parent_tidptr,
1768 					int __user *child_tidptr,
1769 					struct pid *pid,
1770 					int trace,
1771 					unsigned long tls,
1772 					int node)
1773 {
1774 	int pidfd = -1, retval;
1775 	struct task_struct *p;
1776 	struct multiprocess_signals delayed;
1777 
1778 	/*
1779 	 * Don't allow sharing the root directory with processes in a different
1780 	 * namespace
1781 	 */
1782 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1783 		return ERR_PTR(-EINVAL);
1784 
1785 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1786 		return ERR_PTR(-EINVAL);
1787 
1788 	/*
1789 	 * Thread groups must share signals as well, and detached threads
1790 	 * can only be started up within the thread group.
1791 	 */
1792 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1793 		return ERR_PTR(-EINVAL);
1794 
1795 	/*
1796 	 * Shared signal handlers imply shared VM. By way of the above,
1797 	 * thread groups also imply shared VM. Blocking this case allows
1798 	 * for various simplifications in other code.
1799 	 */
1800 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1801 		return ERR_PTR(-EINVAL);
1802 
1803 	/*
1804 	 * Siblings of global init remain as zombies on exit since they are
1805 	 * not reaped by their parent (swapper). To solve this and to avoid
1806 	 * multi-rooted process trees, prevent global and container-inits
1807 	 * from creating siblings.
1808 	 */
1809 	if ((clone_flags & CLONE_PARENT) &&
1810 				current->signal->flags & SIGNAL_UNKILLABLE)
1811 		return ERR_PTR(-EINVAL);
1812 
1813 	/*
1814 	 * If the new process will be in a different pid or user namespace
1815 	 * do not allow it to share a thread group with the forking task.
1816 	 */
1817 	if (clone_flags & CLONE_THREAD) {
1818 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1819 		    (task_active_pid_ns(current) !=
1820 				current->nsproxy->pid_ns_for_children))
1821 			return ERR_PTR(-EINVAL);
1822 	}
1823 
1824 	if (clone_flags & CLONE_PIDFD) {
1825 		int reserved;
1826 
1827 		/*
1828 		 * - CLONE_PARENT_SETTID is useless for pidfds and also
1829 		 *   parent_tidptr is used to return pidfds.
1830 		 * - CLONE_DETACHED is blocked so that we can potentially
1831 		 *   reuse it later for CLONE_PIDFD.
1832 		 * - CLONE_THREAD is blocked until someone really needs it.
1833 		 */
1834 		if (clone_flags &
1835 		    (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1836 			return ERR_PTR(-EINVAL);
1837 
1838 		/*
1839 		 * Verify that parent_tidptr is sane so we can potentially
1840 		 * reuse it later.
1841 		 */
1842 		if (get_user(reserved, parent_tidptr))
1843 			return ERR_PTR(-EFAULT);
1844 
1845 		if (reserved != 0)
1846 			return ERR_PTR(-EINVAL);
1847 	}
1848 
1849 	/*
1850 	 * Force any signals received before this point to be delivered
1851 	 * before the fork happens.  Collect up signals sent to multiple
1852 	 * processes that happen during the fork and delay them so that
1853 	 * they appear to happen after the fork.
1854 	 */
1855 	sigemptyset(&delayed.signal);
1856 	INIT_HLIST_NODE(&delayed.node);
1857 
1858 	spin_lock_irq(&current->sighand->siglock);
1859 	if (!(clone_flags & CLONE_THREAD))
1860 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1861 	recalc_sigpending();
1862 	spin_unlock_irq(&current->sighand->siglock);
1863 	retval = -ERESTARTNOINTR;
1864 	if (signal_pending(current))
1865 		goto fork_out;
1866 
1867 	retval = -ENOMEM;
1868 	p = dup_task_struct(current, node);
1869 	if (!p)
1870 		goto fork_out;
1871 
1872 	/*
1873 	 * This _must_ happen before we call free_task(), i.e. before we jump
1874 	 * to any of the bad_fork_* labels. This is to avoid freeing
1875 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1876 	 * kernel threads (PF_KTHREAD).
1877 	 */
1878 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1879 	/*
1880 	 * Clear TID on mm_release()?
1881 	 */
1882 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1883 
1884 	ftrace_graph_init_task(p);
1885 
1886 	rt_mutex_init_task(p);
1887 
1888 #ifdef CONFIG_PROVE_LOCKING
1889 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1890 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1891 #endif
1892 	retval = -EAGAIN;
1893 	if (atomic_read(&p->real_cred->user->processes) >=
1894 			task_rlimit(p, RLIMIT_NPROC)) {
1895 		if (p->real_cred->user != INIT_USER &&
1896 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1897 			goto bad_fork_free;
1898 	}
1899 	current->flags &= ~PF_NPROC_EXCEEDED;
1900 
1901 	retval = copy_creds(p, clone_flags);
1902 	if (retval < 0)
1903 		goto bad_fork_free;
1904 
1905 	/*
1906 	 * If multiple threads are within copy_process(), then this check
1907 	 * triggers too late. This doesn't hurt, the check is only there
1908 	 * to stop root fork bombs.
1909 	 */
1910 	retval = -EAGAIN;
1911 	if (nr_threads >= max_threads)
1912 		goto bad_fork_cleanup_count;
1913 
1914 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1915 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1916 	p->flags |= PF_FORKNOEXEC;
1917 	INIT_LIST_HEAD(&p->children);
1918 	INIT_LIST_HEAD(&p->sibling);
1919 	rcu_copy_process(p);
1920 	p->vfork_done = NULL;
1921 	spin_lock_init(&p->alloc_lock);
1922 
1923 	init_sigpending(&p->pending);
1924 
1925 	p->utime = p->stime = p->gtime = 0;
1926 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1927 	p->utimescaled = p->stimescaled = 0;
1928 #endif
1929 	prev_cputime_init(&p->prev_cputime);
1930 
1931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1932 	seqcount_init(&p->vtime.seqcount);
1933 	p->vtime.starttime = 0;
1934 	p->vtime.state = VTIME_INACTIVE;
1935 #endif
1936 
1937 #if defined(SPLIT_RSS_COUNTING)
1938 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1939 #endif
1940 
1941 	p->default_timer_slack_ns = current->timer_slack_ns;
1942 
1943 #ifdef CONFIG_PSI
1944 	p->psi_flags = 0;
1945 #endif
1946 
1947 	task_io_accounting_init(&p->ioac);
1948 	acct_clear_integrals(p);
1949 
1950 	posix_cpu_timers_init(p);
1951 
1952 	p->io_context = NULL;
1953 	audit_set_context(p, NULL);
1954 	cgroup_fork(p);
1955 #ifdef CONFIG_NUMA
1956 	p->mempolicy = mpol_dup(p->mempolicy);
1957 	if (IS_ERR(p->mempolicy)) {
1958 		retval = PTR_ERR(p->mempolicy);
1959 		p->mempolicy = NULL;
1960 		goto bad_fork_cleanup_threadgroup_lock;
1961 	}
1962 #endif
1963 #ifdef CONFIG_CPUSETS
1964 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1965 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1966 	seqcount_init(&p->mems_allowed_seq);
1967 #endif
1968 #ifdef CONFIG_TRACE_IRQFLAGS
1969 	p->irq_events = 0;
1970 	p->hardirqs_enabled = 0;
1971 	p->hardirq_enable_ip = 0;
1972 	p->hardirq_enable_event = 0;
1973 	p->hardirq_disable_ip = _THIS_IP_;
1974 	p->hardirq_disable_event = 0;
1975 	p->softirqs_enabled = 1;
1976 	p->softirq_enable_ip = _THIS_IP_;
1977 	p->softirq_enable_event = 0;
1978 	p->softirq_disable_ip = 0;
1979 	p->softirq_disable_event = 0;
1980 	p->hardirq_context = 0;
1981 	p->softirq_context = 0;
1982 #endif
1983 
1984 	p->pagefault_disabled = 0;
1985 
1986 #ifdef CONFIG_LOCKDEP
1987 	p->lockdep_depth = 0; /* no locks held yet */
1988 	p->curr_chain_key = 0;
1989 	p->lockdep_recursion = 0;
1990 	lockdep_init_task(p);
1991 #endif
1992 
1993 #ifdef CONFIG_DEBUG_MUTEXES
1994 	p->blocked_on = NULL; /* not blocked yet */
1995 #endif
1996 #ifdef CONFIG_BCACHE
1997 	p->sequential_io	= 0;
1998 	p->sequential_io_avg	= 0;
1999 #endif
2000 
2001 	/* Perform scheduler related setup. Assign this task to a CPU. */
2002 	retval = sched_fork(clone_flags, p);
2003 	if (retval)
2004 		goto bad_fork_cleanup_policy;
2005 
2006 	retval = perf_event_init_task(p);
2007 	if (retval)
2008 		goto bad_fork_cleanup_policy;
2009 	retval = audit_alloc(p);
2010 	if (retval)
2011 		goto bad_fork_cleanup_perf;
2012 	/* copy all the process information */
2013 	shm_init_task(p);
2014 	retval = security_task_alloc(p, clone_flags);
2015 	if (retval)
2016 		goto bad_fork_cleanup_audit;
2017 	retval = copy_semundo(clone_flags, p);
2018 	if (retval)
2019 		goto bad_fork_cleanup_security;
2020 	retval = copy_files(clone_flags, p);
2021 	if (retval)
2022 		goto bad_fork_cleanup_semundo;
2023 	retval = copy_fs(clone_flags, p);
2024 	if (retval)
2025 		goto bad_fork_cleanup_files;
2026 	retval = copy_sighand(clone_flags, p);
2027 	if (retval)
2028 		goto bad_fork_cleanup_fs;
2029 	retval = copy_signal(clone_flags, p);
2030 	if (retval)
2031 		goto bad_fork_cleanup_sighand;
2032 	retval = copy_mm(clone_flags, p);
2033 	if (retval)
2034 		goto bad_fork_cleanup_signal;
2035 	retval = copy_namespaces(clone_flags, p);
2036 	if (retval)
2037 		goto bad_fork_cleanup_mm;
2038 	retval = copy_io(clone_flags, p);
2039 	if (retval)
2040 		goto bad_fork_cleanup_namespaces;
2041 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2042 	if (retval)
2043 		goto bad_fork_cleanup_io;
2044 
2045 	stackleak_task_init(p);
2046 
2047 	if (pid != &init_struct_pid) {
2048 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2049 		if (IS_ERR(pid)) {
2050 			retval = PTR_ERR(pid);
2051 			goto bad_fork_cleanup_thread;
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * This has to happen after we've potentially unshared the file
2057 	 * descriptor table (so that the pidfd doesn't leak into the child
2058 	 * if the fd table isn't shared).
2059 	 */
2060 	if (clone_flags & CLONE_PIDFD) {
2061 		retval = pidfd_create(pid);
2062 		if (retval < 0)
2063 			goto bad_fork_free_pid;
2064 
2065 		pidfd = retval;
2066 		retval = put_user(pidfd, parent_tidptr);
2067 		if (retval)
2068 			goto bad_fork_put_pidfd;
2069 	}
2070 
2071 #ifdef CONFIG_BLOCK
2072 	p->plug = NULL;
2073 #endif
2074 #ifdef CONFIG_FUTEX
2075 	p->robust_list = NULL;
2076 #ifdef CONFIG_COMPAT
2077 	p->compat_robust_list = NULL;
2078 #endif
2079 	INIT_LIST_HEAD(&p->pi_state_list);
2080 	p->pi_state_cache = NULL;
2081 #endif
2082 	/*
2083 	 * sigaltstack should be cleared when sharing the same VM
2084 	 */
2085 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2086 		sas_ss_reset(p);
2087 
2088 	/*
2089 	 * Syscall tracing and stepping should be turned off in the
2090 	 * child regardless of CLONE_PTRACE.
2091 	 */
2092 	user_disable_single_step(p);
2093 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2094 #ifdef TIF_SYSCALL_EMU
2095 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2096 #endif
2097 	clear_tsk_latency_tracing(p);
2098 
2099 	/* ok, now we should be set up.. */
2100 	p->pid = pid_nr(pid);
2101 	if (clone_flags & CLONE_THREAD) {
2102 		p->exit_signal = -1;
2103 		p->group_leader = current->group_leader;
2104 		p->tgid = current->tgid;
2105 	} else {
2106 		if (clone_flags & CLONE_PARENT)
2107 			p->exit_signal = current->group_leader->exit_signal;
2108 		else
2109 			p->exit_signal = (clone_flags & CSIGNAL);
2110 		p->group_leader = p;
2111 		p->tgid = p->pid;
2112 	}
2113 
2114 	p->nr_dirtied = 0;
2115 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2116 	p->dirty_paused_when = 0;
2117 
2118 	p->pdeath_signal = 0;
2119 	INIT_LIST_HEAD(&p->thread_group);
2120 	p->task_works = NULL;
2121 
2122 	cgroup_threadgroup_change_begin(current);
2123 	/*
2124 	 * Ensure that the cgroup subsystem policies allow the new process to be
2125 	 * forked. It should be noted the the new process's css_set can be changed
2126 	 * between here and cgroup_post_fork() if an organisation operation is in
2127 	 * progress.
2128 	 */
2129 	retval = cgroup_can_fork(p);
2130 	if (retval)
2131 		goto bad_fork_cgroup_threadgroup_change_end;
2132 
2133 	/*
2134 	 * From this point on we must avoid any synchronous user-space
2135 	 * communication until we take the tasklist-lock. In particular, we do
2136 	 * not want user-space to be able to predict the process start-time by
2137 	 * stalling fork(2) after we recorded the start_time but before it is
2138 	 * visible to the system.
2139 	 */
2140 
2141 	p->start_time = ktime_get_ns();
2142 	p->real_start_time = ktime_get_boot_ns();
2143 
2144 	/*
2145 	 * Make it visible to the rest of the system, but dont wake it up yet.
2146 	 * Need tasklist lock for parent etc handling!
2147 	 */
2148 	write_lock_irq(&tasklist_lock);
2149 
2150 	/* CLONE_PARENT re-uses the old parent */
2151 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2152 		p->real_parent = current->real_parent;
2153 		p->parent_exec_id = current->parent_exec_id;
2154 	} else {
2155 		p->real_parent = current;
2156 		p->parent_exec_id = current->self_exec_id;
2157 	}
2158 
2159 	klp_copy_process(p);
2160 
2161 	spin_lock(&current->sighand->siglock);
2162 
2163 	/*
2164 	 * Copy seccomp details explicitly here, in case they were changed
2165 	 * before holding sighand lock.
2166 	 */
2167 	copy_seccomp(p);
2168 
2169 	rseq_fork(p, clone_flags);
2170 
2171 	/* Don't start children in a dying pid namespace */
2172 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2173 		retval = -ENOMEM;
2174 		goto bad_fork_cancel_cgroup;
2175 	}
2176 
2177 	/* Let kill terminate clone/fork in the middle */
2178 	if (fatal_signal_pending(current)) {
2179 		retval = -EINTR;
2180 		goto bad_fork_cancel_cgroup;
2181 	}
2182 
2183 
2184 	init_task_pid_links(p);
2185 	if (likely(p->pid)) {
2186 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2187 
2188 		init_task_pid(p, PIDTYPE_PID, pid);
2189 		if (thread_group_leader(p)) {
2190 			init_task_pid(p, PIDTYPE_TGID, pid);
2191 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2192 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2193 
2194 			if (is_child_reaper(pid)) {
2195 				ns_of_pid(pid)->child_reaper = p;
2196 				p->signal->flags |= SIGNAL_UNKILLABLE;
2197 			}
2198 			p->signal->shared_pending.signal = delayed.signal;
2199 			p->signal->tty = tty_kref_get(current->signal->tty);
2200 			/*
2201 			 * Inherit has_child_subreaper flag under the same
2202 			 * tasklist_lock with adding child to the process tree
2203 			 * for propagate_has_child_subreaper optimization.
2204 			 */
2205 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2206 							 p->real_parent->signal->is_child_subreaper;
2207 			list_add_tail(&p->sibling, &p->real_parent->children);
2208 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2209 			attach_pid(p, PIDTYPE_TGID);
2210 			attach_pid(p, PIDTYPE_PGID);
2211 			attach_pid(p, PIDTYPE_SID);
2212 			__this_cpu_inc(process_counts);
2213 		} else {
2214 			current->signal->nr_threads++;
2215 			atomic_inc(&current->signal->live);
2216 			refcount_inc(&current->signal->sigcnt);
2217 			task_join_group_stop(p);
2218 			list_add_tail_rcu(&p->thread_group,
2219 					  &p->group_leader->thread_group);
2220 			list_add_tail_rcu(&p->thread_node,
2221 					  &p->signal->thread_head);
2222 		}
2223 		attach_pid(p, PIDTYPE_PID);
2224 		nr_threads++;
2225 	}
2226 	total_forks++;
2227 	hlist_del_init(&delayed.node);
2228 	spin_unlock(&current->sighand->siglock);
2229 	syscall_tracepoint_update(p);
2230 	write_unlock_irq(&tasklist_lock);
2231 
2232 	proc_fork_connector(p);
2233 	cgroup_post_fork(p);
2234 	cgroup_threadgroup_change_end(current);
2235 	perf_event_fork(p);
2236 
2237 	trace_task_newtask(p, clone_flags);
2238 	uprobe_copy_process(p, clone_flags);
2239 
2240 	return p;
2241 
2242 bad_fork_cancel_cgroup:
2243 	spin_unlock(&current->sighand->siglock);
2244 	write_unlock_irq(&tasklist_lock);
2245 	cgroup_cancel_fork(p);
2246 bad_fork_cgroup_threadgroup_change_end:
2247 	cgroup_threadgroup_change_end(current);
2248 bad_fork_put_pidfd:
2249 	if (clone_flags & CLONE_PIDFD)
2250 		ksys_close(pidfd);
2251 bad_fork_free_pid:
2252 	if (pid != &init_struct_pid)
2253 		free_pid(pid);
2254 bad_fork_cleanup_thread:
2255 	exit_thread(p);
2256 bad_fork_cleanup_io:
2257 	if (p->io_context)
2258 		exit_io_context(p);
2259 bad_fork_cleanup_namespaces:
2260 	exit_task_namespaces(p);
2261 bad_fork_cleanup_mm:
2262 	if (p->mm) {
2263 		mm_clear_owner(p->mm, p);
2264 		mmput(p->mm);
2265 	}
2266 bad_fork_cleanup_signal:
2267 	if (!(clone_flags & CLONE_THREAD))
2268 		free_signal_struct(p->signal);
2269 bad_fork_cleanup_sighand:
2270 	__cleanup_sighand(p->sighand);
2271 bad_fork_cleanup_fs:
2272 	exit_fs(p); /* blocking */
2273 bad_fork_cleanup_files:
2274 	exit_files(p); /* blocking */
2275 bad_fork_cleanup_semundo:
2276 	exit_sem(p);
2277 bad_fork_cleanup_security:
2278 	security_task_free(p);
2279 bad_fork_cleanup_audit:
2280 	audit_free(p);
2281 bad_fork_cleanup_perf:
2282 	perf_event_free_task(p);
2283 bad_fork_cleanup_policy:
2284 	lockdep_free_task(p);
2285 #ifdef CONFIG_NUMA
2286 	mpol_put(p->mempolicy);
2287 bad_fork_cleanup_threadgroup_lock:
2288 #endif
2289 	delayacct_tsk_free(p);
2290 bad_fork_cleanup_count:
2291 	atomic_dec(&p->cred->user->processes);
2292 	exit_creds(p);
2293 bad_fork_free:
2294 	p->state = TASK_DEAD;
2295 	put_task_stack(p);
2296 	delayed_free_task(p);
2297 fork_out:
2298 	spin_lock_irq(&current->sighand->siglock);
2299 	hlist_del_init(&delayed.node);
2300 	spin_unlock_irq(&current->sighand->siglock);
2301 	return ERR_PTR(retval);
2302 }
2303 
2304 static inline void init_idle_pids(struct task_struct *idle)
2305 {
2306 	enum pid_type type;
2307 
2308 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2309 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2310 		init_task_pid(idle, type, &init_struct_pid);
2311 	}
2312 }
2313 
2314 struct task_struct *fork_idle(int cpu)
2315 {
2316 	struct task_struct *task;
2317 	task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2318 			    cpu_to_node(cpu));
2319 	if (!IS_ERR(task)) {
2320 		init_idle_pids(task);
2321 		init_idle(task, cpu);
2322 	}
2323 
2324 	return task;
2325 }
2326 
2327 struct mm_struct *copy_init_mm(void)
2328 {
2329 	return dup_mm(NULL, &init_mm);
2330 }
2331 
2332 /*
2333  *  Ok, this is the main fork-routine.
2334  *
2335  * It copies the process, and if successful kick-starts
2336  * it and waits for it to finish using the VM if required.
2337  */
2338 long _do_fork(unsigned long clone_flags,
2339 	      unsigned long stack_start,
2340 	      unsigned long stack_size,
2341 	      int __user *parent_tidptr,
2342 	      int __user *child_tidptr,
2343 	      unsigned long tls)
2344 {
2345 	struct completion vfork;
2346 	struct pid *pid;
2347 	struct task_struct *p;
2348 	int trace = 0;
2349 	long nr;
2350 
2351 	/*
2352 	 * Determine whether and which event to report to ptracer.  When
2353 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 	 * requested, no event is reported; otherwise, report if the event
2355 	 * for the type of forking is enabled.
2356 	 */
2357 	if (!(clone_flags & CLONE_UNTRACED)) {
2358 		if (clone_flags & CLONE_VFORK)
2359 			trace = PTRACE_EVENT_VFORK;
2360 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2361 			trace = PTRACE_EVENT_CLONE;
2362 		else
2363 			trace = PTRACE_EVENT_FORK;
2364 
2365 		if (likely(!ptrace_event_enabled(current, trace)))
2366 			trace = 0;
2367 	}
2368 
2369 	p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2370 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2371 	add_latent_entropy();
2372 
2373 	if (IS_ERR(p))
2374 		return PTR_ERR(p);
2375 
2376 	/*
2377 	 * Do this prior waking up the new thread - the thread pointer
2378 	 * might get invalid after that point, if the thread exits quickly.
2379 	 */
2380 	trace_sched_process_fork(current, p);
2381 
2382 	pid = get_task_pid(p, PIDTYPE_PID);
2383 	nr = pid_vnr(pid);
2384 
2385 	if (clone_flags & CLONE_PARENT_SETTID)
2386 		put_user(nr, parent_tidptr);
2387 
2388 	if (clone_flags & CLONE_VFORK) {
2389 		p->vfork_done = &vfork;
2390 		init_completion(&vfork);
2391 		get_task_struct(p);
2392 	}
2393 
2394 	wake_up_new_task(p);
2395 
2396 	/* forking complete and child started to run, tell ptracer */
2397 	if (unlikely(trace))
2398 		ptrace_event_pid(trace, pid);
2399 
2400 	if (clone_flags & CLONE_VFORK) {
2401 		if (!wait_for_vfork_done(p, &vfork))
2402 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2403 	}
2404 
2405 	put_pid(pid);
2406 	return nr;
2407 }
2408 
2409 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2410 /* For compatibility with architectures that call do_fork directly rather than
2411  * using the syscall entry points below. */
2412 long do_fork(unsigned long clone_flags,
2413 	      unsigned long stack_start,
2414 	      unsigned long stack_size,
2415 	      int __user *parent_tidptr,
2416 	      int __user *child_tidptr)
2417 {
2418 	return _do_fork(clone_flags, stack_start, stack_size,
2419 			parent_tidptr, child_tidptr, 0);
2420 }
2421 #endif
2422 
2423 /*
2424  * Create a kernel thread.
2425  */
2426 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2427 {
2428 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2429 		(unsigned long)arg, NULL, NULL, 0);
2430 }
2431 
2432 #ifdef __ARCH_WANT_SYS_FORK
2433 SYSCALL_DEFINE0(fork)
2434 {
2435 #ifdef CONFIG_MMU
2436 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2437 #else
2438 	/* can not support in nommu mode */
2439 	return -EINVAL;
2440 #endif
2441 }
2442 #endif
2443 
2444 #ifdef __ARCH_WANT_SYS_VFORK
2445 SYSCALL_DEFINE0(vfork)
2446 {
2447 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2448 			0, NULL, NULL, 0);
2449 }
2450 #endif
2451 
2452 #ifdef __ARCH_WANT_SYS_CLONE
2453 #ifdef CONFIG_CLONE_BACKWARDS
2454 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2455 		 int __user *, parent_tidptr,
2456 		 unsigned long, tls,
2457 		 int __user *, child_tidptr)
2458 #elif defined(CONFIG_CLONE_BACKWARDS2)
2459 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2460 		 int __user *, parent_tidptr,
2461 		 int __user *, child_tidptr,
2462 		 unsigned long, tls)
2463 #elif defined(CONFIG_CLONE_BACKWARDS3)
2464 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2465 		int, stack_size,
2466 		int __user *, parent_tidptr,
2467 		int __user *, child_tidptr,
2468 		unsigned long, tls)
2469 #else
2470 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2471 		 int __user *, parent_tidptr,
2472 		 int __user *, child_tidptr,
2473 		 unsigned long, tls)
2474 #endif
2475 {
2476 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2477 }
2478 #endif
2479 
2480 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2481 {
2482 	struct task_struct *leader, *parent, *child;
2483 	int res;
2484 
2485 	read_lock(&tasklist_lock);
2486 	leader = top = top->group_leader;
2487 down:
2488 	for_each_thread(leader, parent) {
2489 		list_for_each_entry(child, &parent->children, sibling) {
2490 			res = visitor(child, data);
2491 			if (res) {
2492 				if (res < 0)
2493 					goto out;
2494 				leader = child;
2495 				goto down;
2496 			}
2497 up:
2498 			;
2499 		}
2500 	}
2501 
2502 	if (leader != top) {
2503 		child = leader;
2504 		parent = child->real_parent;
2505 		leader = parent->group_leader;
2506 		goto up;
2507 	}
2508 out:
2509 	read_unlock(&tasklist_lock);
2510 }
2511 
2512 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2513 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2514 #endif
2515 
2516 static void sighand_ctor(void *data)
2517 {
2518 	struct sighand_struct *sighand = data;
2519 
2520 	spin_lock_init(&sighand->siglock);
2521 	init_waitqueue_head(&sighand->signalfd_wqh);
2522 }
2523 
2524 void __init proc_caches_init(void)
2525 {
2526 	unsigned int mm_size;
2527 
2528 	sighand_cachep = kmem_cache_create("sighand_cache",
2529 			sizeof(struct sighand_struct), 0,
2530 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2531 			SLAB_ACCOUNT, sighand_ctor);
2532 	signal_cachep = kmem_cache_create("signal_cache",
2533 			sizeof(struct signal_struct), 0,
2534 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2535 			NULL);
2536 	files_cachep = kmem_cache_create("files_cache",
2537 			sizeof(struct files_struct), 0,
2538 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2539 			NULL);
2540 	fs_cachep = kmem_cache_create("fs_cache",
2541 			sizeof(struct fs_struct), 0,
2542 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2543 			NULL);
2544 
2545 	/*
2546 	 * The mm_cpumask is located at the end of mm_struct, and is
2547 	 * dynamically sized based on the maximum CPU number this system
2548 	 * can have, taking hotplug into account (nr_cpu_ids).
2549 	 */
2550 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2551 
2552 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2553 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2554 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2555 			offsetof(struct mm_struct, saved_auxv),
2556 			sizeof_field(struct mm_struct, saved_auxv),
2557 			NULL);
2558 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2559 	mmap_init();
2560 	nsproxy_cache_init();
2561 }
2562 
2563 /*
2564  * Check constraints on flags passed to the unshare system call.
2565  */
2566 static int check_unshare_flags(unsigned long unshare_flags)
2567 {
2568 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2569 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2570 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2571 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2572 		return -EINVAL;
2573 	/*
2574 	 * Not implemented, but pretend it works if there is nothing
2575 	 * to unshare.  Note that unsharing the address space or the
2576 	 * signal handlers also need to unshare the signal queues (aka
2577 	 * CLONE_THREAD).
2578 	 */
2579 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2580 		if (!thread_group_empty(current))
2581 			return -EINVAL;
2582 	}
2583 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2584 		if (refcount_read(&current->sighand->count) > 1)
2585 			return -EINVAL;
2586 	}
2587 	if (unshare_flags & CLONE_VM) {
2588 		if (!current_is_single_threaded())
2589 			return -EINVAL;
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 /*
2596  * Unshare the filesystem structure if it is being shared
2597  */
2598 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2599 {
2600 	struct fs_struct *fs = current->fs;
2601 
2602 	if (!(unshare_flags & CLONE_FS) || !fs)
2603 		return 0;
2604 
2605 	/* don't need lock here; in the worst case we'll do useless copy */
2606 	if (fs->users == 1)
2607 		return 0;
2608 
2609 	*new_fsp = copy_fs_struct(fs);
2610 	if (!*new_fsp)
2611 		return -ENOMEM;
2612 
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Unshare file descriptor table if it is being shared
2618  */
2619 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2620 {
2621 	struct files_struct *fd = current->files;
2622 	int error = 0;
2623 
2624 	if ((unshare_flags & CLONE_FILES) &&
2625 	    (fd && atomic_read(&fd->count) > 1)) {
2626 		*new_fdp = dup_fd(fd, &error);
2627 		if (!*new_fdp)
2628 			return error;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 /*
2635  * unshare allows a process to 'unshare' part of the process
2636  * context which was originally shared using clone.  copy_*
2637  * functions used by do_fork() cannot be used here directly
2638  * because they modify an inactive task_struct that is being
2639  * constructed. Here we are modifying the current, active,
2640  * task_struct.
2641  */
2642 int ksys_unshare(unsigned long unshare_flags)
2643 {
2644 	struct fs_struct *fs, *new_fs = NULL;
2645 	struct files_struct *fd, *new_fd = NULL;
2646 	struct cred *new_cred = NULL;
2647 	struct nsproxy *new_nsproxy = NULL;
2648 	int do_sysvsem = 0;
2649 	int err;
2650 
2651 	/*
2652 	 * If unsharing a user namespace must also unshare the thread group
2653 	 * and unshare the filesystem root and working directories.
2654 	 */
2655 	if (unshare_flags & CLONE_NEWUSER)
2656 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2657 	/*
2658 	 * If unsharing vm, must also unshare signal handlers.
2659 	 */
2660 	if (unshare_flags & CLONE_VM)
2661 		unshare_flags |= CLONE_SIGHAND;
2662 	/*
2663 	 * If unsharing a signal handlers, must also unshare the signal queues.
2664 	 */
2665 	if (unshare_flags & CLONE_SIGHAND)
2666 		unshare_flags |= CLONE_THREAD;
2667 	/*
2668 	 * If unsharing namespace, must also unshare filesystem information.
2669 	 */
2670 	if (unshare_flags & CLONE_NEWNS)
2671 		unshare_flags |= CLONE_FS;
2672 
2673 	err = check_unshare_flags(unshare_flags);
2674 	if (err)
2675 		goto bad_unshare_out;
2676 	/*
2677 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2678 	 * to a new ipc namespace, the semaphore arrays from the old
2679 	 * namespace are unreachable.
2680 	 */
2681 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2682 		do_sysvsem = 1;
2683 	err = unshare_fs(unshare_flags, &new_fs);
2684 	if (err)
2685 		goto bad_unshare_out;
2686 	err = unshare_fd(unshare_flags, &new_fd);
2687 	if (err)
2688 		goto bad_unshare_cleanup_fs;
2689 	err = unshare_userns(unshare_flags, &new_cred);
2690 	if (err)
2691 		goto bad_unshare_cleanup_fd;
2692 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2693 					 new_cred, new_fs);
2694 	if (err)
2695 		goto bad_unshare_cleanup_cred;
2696 
2697 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2698 		if (do_sysvsem) {
2699 			/*
2700 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2701 			 */
2702 			exit_sem(current);
2703 		}
2704 		if (unshare_flags & CLONE_NEWIPC) {
2705 			/* Orphan segments in old ns (see sem above). */
2706 			exit_shm(current);
2707 			shm_init_task(current);
2708 		}
2709 
2710 		if (new_nsproxy)
2711 			switch_task_namespaces(current, new_nsproxy);
2712 
2713 		task_lock(current);
2714 
2715 		if (new_fs) {
2716 			fs = current->fs;
2717 			spin_lock(&fs->lock);
2718 			current->fs = new_fs;
2719 			if (--fs->users)
2720 				new_fs = NULL;
2721 			else
2722 				new_fs = fs;
2723 			spin_unlock(&fs->lock);
2724 		}
2725 
2726 		if (new_fd) {
2727 			fd = current->files;
2728 			current->files = new_fd;
2729 			new_fd = fd;
2730 		}
2731 
2732 		task_unlock(current);
2733 
2734 		if (new_cred) {
2735 			/* Install the new user namespace */
2736 			commit_creds(new_cred);
2737 			new_cred = NULL;
2738 		}
2739 	}
2740 
2741 	perf_event_namespaces(current);
2742 
2743 bad_unshare_cleanup_cred:
2744 	if (new_cred)
2745 		put_cred(new_cred);
2746 bad_unshare_cleanup_fd:
2747 	if (new_fd)
2748 		put_files_struct(new_fd);
2749 
2750 bad_unshare_cleanup_fs:
2751 	if (new_fs)
2752 		free_fs_struct(new_fs);
2753 
2754 bad_unshare_out:
2755 	return err;
2756 }
2757 
2758 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2759 {
2760 	return ksys_unshare(unshare_flags);
2761 }
2762 
2763 /*
2764  *	Helper to unshare the files of the current task.
2765  *	We don't want to expose copy_files internals to
2766  *	the exec layer of the kernel.
2767  */
2768 
2769 int unshare_files(struct files_struct **displaced)
2770 {
2771 	struct task_struct *task = current;
2772 	struct files_struct *copy = NULL;
2773 	int error;
2774 
2775 	error = unshare_fd(CLONE_FILES, &copy);
2776 	if (error || !copy) {
2777 		*displaced = NULL;
2778 		return error;
2779 	}
2780 	*displaced = task->files;
2781 	task_lock(task);
2782 	task->files = copy;
2783 	task_unlock(task);
2784 	return 0;
2785 }
2786 
2787 int sysctl_max_threads(struct ctl_table *table, int write,
2788 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2789 {
2790 	struct ctl_table t;
2791 	int ret;
2792 	int threads = max_threads;
2793 	int min = MIN_THREADS;
2794 	int max = MAX_THREADS;
2795 
2796 	t = *table;
2797 	t.data = &threads;
2798 	t.extra1 = &min;
2799 	t.extra2 = &max;
2800 
2801 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2802 	if (ret || !write)
2803 		return ret;
2804 
2805 	set_max_threads(threads);
2806 
2807 	return 0;
2808 }
2809