xref: /openbmc/linux/kernel/fork.c (revision de60f5f10c58d4f34b68622442c0e04180367f3f)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294 
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
300 #endif
301 	/* create a slab on which task_structs can be allocated */
302 	task_struct_cachep =
303 		kmem_cache_create("task_struct", arch_task_struct_size,
304 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306 
307 	/* do the arch specific task caches init */
308 	arch_task_cache_init();
309 
310 	set_max_threads(MAX_THREADS);
311 
312 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 		init_task.signal->rlim[RLIMIT_NPROC];
316 }
317 
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 					       struct task_struct *src)
320 {
321 	*dst = *src;
322 	return 0;
323 }
324 
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327 	unsigned long *stackend;
328 
329 	stackend = end_of_stack(tsk);
330 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
331 }
332 
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335 	struct task_struct *tsk;
336 	struct thread_info *ti;
337 	int node = tsk_fork_get_node(orig);
338 	int err;
339 
340 	tsk = alloc_task_struct_node(node);
341 	if (!tsk)
342 		return NULL;
343 
344 	ti = alloc_thread_info_node(tsk, node);
345 	if (!ti)
346 		goto free_tsk;
347 
348 	err = arch_dup_task_struct(tsk, orig);
349 	if (err)
350 		goto free_ti;
351 
352 	tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354 	/*
355 	 * We must handle setting up seccomp filters once we're under
356 	 * the sighand lock in case orig has changed between now and
357 	 * then. Until then, filter must be NULL to avoid messing up
358 	 * the usage counts on the error path calling free_task.
359 	 */
360 	tsk->seccomp.filter = NULL;
361 #endif
362 
363 	setup_thread_stack(tsk, orig);
364 	clear_user_return_notifier(tsk);
365 	clear_tsk_need_resched(tsk);
366 	set_task_stack_end_magic(tsk);
367 
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 	tsk->stack_canary = get_random_int();
370 #endif
371 
372 	/*
373 	 * One for us, one for whoever does the "release_task()" (usually
374 	 * parent)
375 	 */
376 	atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 	tsk->btrace_seq = 0;
379 #endif
380 	tsk->splice_pipe = NULL;
381 	tsk->task_frag.page = NULL;
382 
383 	account_kernel_stack(ti, 1);
384 
385 	return tsk;
386 
387 free_ti:
388 	free_thread_info(ti);
389 free_tsk:
390 	free_task_struct(tsk);
391 	return NULL;
392 }
393 
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 	struct rb_node **rb_link, *rb_parent;
399 	int retval;
400 	unsigned long charge;
401 
402 	uprobe_start_dup_mmap();
403 	down_write(&oldmm->mmap_sem);
404 	flush_cache_dup_mm(oldmm);
405 	uprobe_dup_mmap(oldmm, mm);
406 	/*
407 	 * Not linked in yet - no deadlock potential:
408 	 */
409 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410 
411 	/* No ordering required: file already has been exposed. */
412 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413 
414 	mm->total_vm = oldmm->total_vm;
415 	mm->shared_vm = oldmm->shared_vm;
416 	mm->exec_vm = oldmm->exec_vm;
417 	mm->stack_vm = oldmm->stack_vm;
418 
419 	rb_link = &mm->mm_rb.rb_node;
420 	rb_parent = NULL;
421 	pprev = &mm->mmap;
422 	retval = ksm_fork(mm, oldmm);
423 	if (retval)
424 		goto out;
425 	retval = khugepaged_fork(mm, oldmm);
426 	if (retval)
427 		goto out;
428 
429 	prev = NULL;
430 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 		struct file *file;
432 
433 		if (mpnt->vm_flags & VM_DONTCOPY) {
434 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 							-vma_pages(mpnt));
436 			continue;
437 		}
438 		charge = 0;
439 		if (mpnt->vm_flags & VM_ACCOUNT) {
440 			unsigned long len = vma_pages(mpnt);
441 
442 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 				goto fail_nomem;
444 			charge = len;
445 		}
446 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 		if (!tmp)
448 			goto fail_nomem;
449 		*tmp = *mpnt;
450 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 		retval = vma_dup_policy(mpnt, tmp);
452 		if (retval)
453 			goto fail_nomem_policy;
454 		tmp->vm_mm = mm;
455 		if (anon_vma_fork(tmp, mpnt))
456 			goto fail_nomem_anon_vma_fork;
457 		tmp->vm_flags &=
458 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
459 		tmp->vm_next = tmp->vm_prev = NULL;
460 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
461 		file = tmp->vm_file;
462 		if (file) {
463 			struct inode *inode = file_inode(file);
464 			struct address_space *mapping = file->f_mapping;
465 
466 			get_file(file);
467 			if (tmp->vm_flags & VM_DENYWRITE)
468 				atomic_dec(&inode->i_writecount);
469 			i_mmap_lock_write(mapping);
470 			if (tmp->vm_flags & VM_SHARED)
471 				atomic_inc(&mapping->i_mmap_writable);
472 			flush_dcache_mmap_lock(mapping);
473 			/* insert tmp into the share list, just after mpnt */
474 			vma_interval_tree_insert_after(tmp, mpnt,
475 					&mapping->i_mmap);
476 			flush_dcache_mmap_unlock(mapping);
477 			i_mmap_unlock_write(mapping);
478 		}
479 
480 		/*
481 		 * Clear hugetlb-related page reserves for children. This only
482 		 * affects MAP_PRIVATE mappings. Faults generated by the child
483 		 * are not guaranteed to succeed, even if read-only
484 		 */
485 		if (is_vm_hugetlb_page(tmp))
486 			reset_vma_resv_huge_pages(tmp);
487 
488 		/*
489 		 * Link in the new vma and copy the page table entries.
490 		 */
491 		*pprev = tmp;
492 		pprev = &tmp->vm_next;
493 		tmp->vm_prev = prev;
494 		prev = tmp;
495 
496 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
497 		rb_link = &tmp->vm_rb.rb_right;
498 		rb_parent = &tmp->vm_rb;
499 
500 		mm->map_count++;
501 		retval = copy_page_range(mm, oldmm, mpnt);
502 
503 		if (tmp->vm_ops && tmp->vm_ops->open)
504 			tmp->vm_ops->open(tmp);
505 
506 		if (retval)
507 			goto out;
508 	}
509 	/* a new mm has just been created */
510 	arch_dup_mmap(oldmm, mm);
511 	retval = 0;
512 out:
513 	up_write(&mm->mmap_sem);
514 	flush_tlb_mm(oldmm);
515 	up_write(&oldmm->mmap_sem);
516 	uprobe_end_dup_mmap();
517 	return retval;
518 fail_nomem_anon_vma_fork:
519 	mpol_put(vma_policy(tmp));
520 fail_nomem_policy:
521 	kmem_cache_free(vm_area_cachep, tmp);
522 fail_nomem:
523 	retval = -ENOMEM;
524 	vm_unacct_memory(charge);
525 	goto out;
526 }
527 
528 static inline int mm_alloc_pgd(struct mm_struct *mm)
529 {
530 	mm->pgd = pgd_alloc(mm);
531 	if (unlikely(!mm->pgd))
532 		return -ENOMEM;
533 	return 0;
534 }
535 
536 static inline void mm_free_pgd(struct mm_struct *mm)
537 {
538 	pgd_free(mm, mm->pgd);
539 }
540 #else
541 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
542 {
543 	down_write(&oldmm->mmap_sem);
544 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
545 	up_write(&oldmm->mmap_sem);
546 	return 0;
547 }
548 #define mm_alloc_pgd(mm)	(0)
549 #define mm_free_pgd(mm)
550 #endif /* CONFIG_MMU */
551 
552 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
553 
554 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
555 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
556 
557 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
558 
559 static int __init coredump_filter_setup(char *s)
560 {
561 	default_dump_filter =
562 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
563 		MMF_DUMP_FILTER_MASK;
564 	return 1;
565 }
566 
567 __setup("coredump_filter=", coredump_filter_setup);
568 
569 #include <linux/init_task.h>
570 
571 static void mm_init_aio(struct mm_struct *mm)
572 {
573 #ifdef CONFIG_AIO
574 	spin_lock_init(&mm->ioctx_lock);
575 	mm->ioctx_table = NULL;
576 #endif
577 }
578 
579 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
580 {
581 #ifdef CONFIG_MEMCG
582 	mm->owner = p;
583 #endif
584 }
585 
586 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
587 {
588 	mm->mmap = NULL;
589 	mm->mm_rb = RB_ROOT;
590 	mm->vmacache_seqnum = 0;
591 	atomic_set(&mm->mm_users, 1);
592 	atomic_set(&mm->mm_count, 1);
593 	init_rwsem(&mm->mmap_sem);
594 	INIT_LIST_HEAD(&mm->mmlist);
595 	mm->core_state = NULL;
596 	atomic_long_set(&mm->nr_ptes, 0);
597 	mm_nr_pmds_init(mm);
598 	mm->map_count = 0;
599 	mm->locked_vm = 0;
600 	mm->pinned_vm = 0;
601 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
602 	spin_lock_init(&mm->page_table_lock);
603 	mm_init_cpumask(mm);
604 	mm_init_aio(mm);
605 	mm_init_owner(mm, p);
606 	mmu_notifier_mm_init(mm);
607 	clear_tlb_flush_pending(mm);
608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
609 	mm->pmd_huge_pte = NULL;
610 #endif
611 
612 	if (current->mm) {
613 		mm->flags = current->mm->flags & MMF_INIT_MASK;
614 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
615 	} else {
616 		mm->flags = default_dump_filter;
617 		mm->def_flags = 0;
618 	}
619 
620 	if (mm_alloc_pgd(mm))
621 		goto fail_nopgd;
622 
623 	if (init_new_context(p, mm))
624 		goto fail_nocontext;
625 
626 	return mm;
627 
628 fail_nocontext:
629 	mm_free_pgd(mm);
630 fail_nopgd:
631 	free_mm(mm);
632 	return NULL;
633 }
634 
635 static void check_mm(struct mm_struct *mm)
636 {
637 	int i;
638 
639 	for (i = 0; i < NR_MM_COUNTERS; i++) {
640 		long x = atomic_long_read(&mm->rss_stat.count[i]);
641 
642 		if (unlikely(x))
643 			printk(KERN_ALERT "BUG: Bad rss-counter state "
644 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
645 	}
646 
647 	if (atomic_long_read(&mm->nr_ptes))
648 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
649 				atomic_long_read(&mm->nr_ptes));
650 	if (mm_nr_pmds(mm))
651 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
652 				mm_nr_pmds(mm));
653 
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
656 #endif
657 }
658 
659 /*
660  * Allocate and initialize an mm_struct.
661  */
662 struct mm_struct *mm_alloc(void)
663 {
664 	struct mm_struct *mm;
665 
666 	mm = allocate_mm();
667 	if (!mm)
668 		return NULL;
669 
670 	memset(mm, 0, sizeof(*mm));
671 	return mm_init(mm, current);
672 }
673 
674 /*
675  * Called when the last reference to the mm
676  * is dropped: either by a lazy thread or by
677  * mmput. Free the page directory and the mm.
678  */
679 void __mmdrop(struct mm_struct *mm)
680 {
681 	BUG_ON(mm == &init_mm);
682 	mm_free_pgd(mm);
683 	destroy_context(mm);
684 	mmu_notifier_mm_destroy(mm);
685 	check_mm(mm);
686 	free_mm(mm);
687 }
688 EXPORT_SYMBOL_GPL(__mmdrop);
689 
690 /*
691  * Decrement the use count and release all resources for an mm.
692  */
693 void mmput(struct mm_struct *mm)
694 {
695 	might_sleep();
696 
697 	if (atomic_dec_and_test(&mm->mm_users)) {
698 		uprobe_clear_state(mm);
699 		exit_aio(mm);
700 		ksm_exit(mm);
701 		khugepaged_exit(mm); /* must run before exit_mmap */
702 		exit_mmap(mm);
703 		set_mm_exe_file(mm, NULL);
704 		if (!list_empty(&mm->mmlist)) {
705 			spin_lock(&mmlist_lock);
706 			list_del(&mm->mmlist);
707 			spin_unlock(&mmlist_lock);
708 		}
709 		if (mm->binfmt)
710 			module_put(mm->binfmt->module);
711 		mmdrop(mm);
712 	}
713 }
714 EXPORT_SYMBOL_GPL(mmput);
715 
716 /**
717  * set_mm_exe_file - change a reference to the mm's executable file
718  *
719  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
720  *
721  * Main users are mmput() and sys_execve(). Callers prevent concurrent
722  * invocations: in mmput() nobody alive left, in execve task is single
723  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
724  * mm->exe_file, but does so without using set_mm_exe_file() in order
725  * to do avoid the need for any locks.
726  */
727 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
728 {
729 	struct file *old_exe_file;
730 
731 	/*
732 	 * It is safe to dereference the exe_file without RCU as
733 	 * this function is only called if nobody else can access
734 	 * this mm -- see comment above for justification.
735 	 */
736 	old_exe_file = rcu_dereference_raw(mm->exe_file);
737 
738 	if (new_exe_file)
739 		get_file(new_exe_file);
740 	rcu_assign_pointer(mm->exe_file, new_exe_file);
741 	if (old_exe_file)
742 		fput(old_exe_file);
743 }
744 
745 /**
746  * get_mm_exe_file - acquire a reference to the mm's executable file
747  *
748  * Returns %NULL if mm has no associated executable file.
749  * User must release file via fput().
750  */
751 struct file *get_mm_exe_file(struct mm_struct *mm)
752 {
753 	struct file *exe_file;
754 
755 	rcu_read_lock();
756 	exe_file = rcu_dereference(mm->exe_file);
757 	if (exe_file && !get_file_rcu(exe_file))
758 		exe_file = NULL;
759 	rcu_read_unlock();
760 	return exe_file;
761 }
762 EXPORT_SYMBOL(get_mm_exe_file);
763 
764 /**
765  * get_task_mm - acquire a reference to the task's mm
766  *
767  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
768  * this kernel workthread has transiently adopted a user mm with use_mm,
769  * to do its AIO) is not set and if so returns a reference to it, after
770  * bumping up the use count.  User must release the mm via mmput()
771  * after use.  Typically used by /proc and ptrace.
772  */
773 struct mm_struct *get_task_mm(struct task_struct *task)
774 {
775 	struct mm_struct *mm;
776 
777 	task_lock(task);
778 	mm = task->mm;
779 	if (mm) {
780 		if (task->flags & PF_KTHREAD)
781 			mm = NULL;
782 		else
783 			atomic_inc(&mm->mm_users);
784 	}
785 	task_unlock(task);
786 	return mm;
787 }
788 EXPORT_SYMBOL_GPL(get_task_mm);
789 
790 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
791 {
792 	struct mm_struct *mm;
793 	int err;
794 
795 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
796 	if (err)
797 		return ERR_PTR(err);
798 
799 	mm = get_task_mm(task);
800 	if (mm && mm != current->mm &&
801 			!ptrace_may_access(task, mode)) {
802 		mmput(mm);
803 		mm = ERR_PTR(-EACCES);
804 	}
805 	mutex_unlock(&task->signal->cred_guard_mutex);
806 
807 	return mm;
808 }
809 
810 static void complete_vfork_done(struct task_struct *tsk)
811 {
812 	struct completion *vfork;
813 
814 	task_lock(tsk);
815 	vfork = tsk->vfork_done;
816 	if (likely(vfork)) {
817 		tsk->vfork_done = NULL;
818 		complete(vfork);
819 	}
820 	task_unlock(tsk);
821 }
822 
823 static int wait_for_vfork_done(struct task_struct *child,
824 				struct completion *vfork)
825 {
826 	int killed;
827 
828 	freezer_do_not_count();
829 	killed = wait_for_completion_killable(vfork);
830 	freezer_count();
831 
832 	if (killed) {
833 		task_lock(child);
834 		child->vfork_done = NULL;
835 		task_unlock(child);
836 	}
837 
838 	put_task_struct(child);
839 	return killed;
840 }
841 
842 /* Please note the differences between mmput and mm_release.
843  * mmput is called whenever we stop holding onto a mm_struct,
844  * error success whatever.
845  *
846  * mm_release is called after a mm_struct has been removed
847  * from the current process.
848  *
849  * This difference is important for error handling, when we
850  * only half set up a mm_struct for a new process and need to restore
851  * the old one.  Because we mmput the new mm_struct before
852  * restoring the old one. . .
853  * Eric Biederman 10 January 1998
854  */
855 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
856 {
857 	/* Get rid of any futexes when releasing the mm */
858 #ifdef CONFIG_FUTEX
859 	if (unlikely(tsk->robust_list)) {
860 		exit_robust_list(tsk);
861 		tsk->robust_list = NULL;
862 	}
863 #ifdef CONFIG_COMPAT
864 	if (unlikely(tsk->compat_robust_list)) {
865 		compat_exit_robust_list(tsk);
866 		tsk->compat_robust_list = NULL;
867 	}
868 #endif
869 	if (unlikely(!list_empty(&tsk->pi_state_list)))
870 		exit_pi_state_list(tsk);
871 #endif
872 
873 	uprobe_free_utask(tsk);
874 
875 	/* Get rid of any cached register state */
876 	deactivate_mm(tsk, mm);
877 
878 	/*
879 	 * If we're exiting normally, clear a user-space tid field if
880 	 * requested.  We leave this alone when dying by signal, to leave
881 	 * the value intact in a core dump, and to save the unnecessary
882 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
883 	 * Userland only wants this done for a sys_exit.
884 	 */
885 	if (tsk->clear_child_tid) {
886 		if (!(tsk->flags & PF_SIGNALED) &&
887 		    atomic_read(&mm->mm_users) > 1) {
888 			/*
889 			 * We don't check the error code - if userspace has
890 			 * not set up a proper pointer then tough luck.
891 			 */
892 			put_user(0, tsk->clear_child_tid);
893 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
894 					1, NULL, NULL, 0);
895 		}
896 		tsk->clear_child_tid = NULL;
897 	}
898 
899 	/*
900 	 * All done, finally we can wake up parent and return this mm to him.
901 	 * Also kthread_stop() uses this completion for synchronization.
902 	 */
903 	if (tsk->vfork_done)
904 		complete_vfork_done(tsk);
905 }
906 
907 /*
908  * Allocate a new mm structure and copy contents from the
909  * mm structure of the passed in task structure.
910  */
911 static struct mm_struct *dup_mm(struct task_struct *tsk)
912 {
913 	struct mm_struct *mm, *oldmm = current->mm;
914 	int err;
915 
916 	mm = allocate_mm();
917 	if (!mm)
918 		goto fail_nomem;
919 
920 	memcpy(mm, oldmm, sizeof(*mm));
921 
922 	if (!mm_init(mm, tsk))
923 		goto fail_nomem;
924 
925 	err = dup_mmap(mm, oldmm);
926 	if (err)
927 		goto free_pt;
928 
929 	mm->hiwater_rss = get_mm_rss(mm);
930 	mm->hiwater_vm = mm->total_vm;
931 
932 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
933 		goto free_pt;
934 
935 	return mm;
936 
937 free_pt:
938 	/* don't put binfmt in mmput, we haven't got module yet */
939 	mm->binfmt = NULL;
940 	mmput(mm);
941 
942 fail_nomem:
943 	return NULL;
944 }
945 
946 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
947 {
948 	struct mm_struct *mm, *oldmm;
949 	int retval;
950 
951 	tsk->min_flt = tsk->maj_flt = 0;
952 	tsk->nvcsw = tsk->nivcsw = 0;
953 #ifdef CONFIG_DETECT_HUNG_TASK
954 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
955 #endif
956 
957 	tsk->mm = NULL;
958 	tsk->active_mm = NULL;
959 
960 	/*
961 	 * Are we cloning a kernel thread?
962 	 *
963 	 * We need to steal a active VM for that..
964 	 */
965 	oldmm = current->mm;
966 	if (!oldmm)
967 		return 0;
968 
969 	/* initialize the new vmacache entries */
970 	vmacache_flush(tsk);
971 
972 	if (clone_flags & CLONE_VM) {
973 		atomic_inc(&oldmm->mm_users);
974 		mm = oldmm;
975 		goto good_mm;
976 	}
977 
978 	retval = -ENOMEM;
979 	mm = dup_mm(tsk);
980 	if (!mm)
981 		goto fail_nomem;
982 
983 good_mm:
984 	tsk->mm = mm;
985 	tsk->active_mm = mm;
986 	return 0;
987 
988 fail_nomem:
989 	return retval;
990 }
991 
992 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
993 {
994 	struct fs_struct *fs = current->fs;
995 	if (clone_flags & CLONE_FS) {
996 		/* tsk->fs is already what we want */
997 		spin_lock(&fs->lock);
998 		if (fs->in_exec) {
999 			spin_unlock(&fs->lock);
1000 			return -EAGAIN;
1001 		}
1002 		fs->users++;
1003 		spin_unlock(&fs->lock);
1004 		return 0;
1005 	}
1006 	tsk->fs = copy_fs_struct(fs);
1007 	if (!tsk->fs)
1008 		return -ENOMEM;
1009 	return 0;
1010 }
1011 
1012 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1013 {
1014 	struct files_struct *oldf, *newf;
1015 	int error = 0;
1016 
1017 	/*
1018 	 * A background process may not have any files ...
1019 	 */
1020 	oldf = current->files;
1021 	if (!oldf)
1022 		goto out;
1023 
1024 	if (clone_flags & CLONE_FILES) {
1025 		atomic_inc(&oldf->count);
1026 		goto out;
1027 	}
1028 
1029 	newf = dup_fd(oldf, &error);
1030 	if (!newf)
1031 		goto out;
1032 
1033 	tsk->files = newf;
1034 	error = 0;
1035 out:
1036 	return error;
1037 }
1038 
1039 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1040 {
1041 #ifdef CONFIG_BLOCK
1042 	struct io_context *ioc = current->io_context;
1043 	struct io_context *new_ioc;
1044 
1045 	if (!ioc)
1046 		return 0;
1047 	/*
1048 	 * Share io context with parent, if CLONE_IO is set
1049 	 */
1050 	if (clone_flags & CLONE_IO) {
1051 		ioc_task_link(ioc);
1052 		tsk->io_context = ioc;
1053 	} else if (ioprio_valid(ioc->ioprio)) {
1054 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1055 		if (unlikely(!new_ioc))
1056 			return -ENOMEM;
1057 
1058 		new_ioc->ioprio = ioc->ioprio;
1059 		put_io_context(new_ioc);
1060 	}
1061 #endif
1062 	return 0;
1063 }
1064 
1065 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1066 {
1067 	struct sighand_struct *sig;
1068 
1069 	if (clone_flags & CLONE_SIGHAND) {
1070 		atomic_inc(&current->sighand->count);
1071 		return 0;
1072 	}
1073 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1074 	rcu_assign_pointer(tsk->sighand, sig);
1075 	if (!sig)
1076 		return -ENOMEM;
1077 
1078 	atomic_set(&sig->count, 1);
1079 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1080 	return 0;
1081 }
1082 
1083 void __cleanup_sighand(struct sighand_struct *sighand)
1084 {
1085 	if (atomic_dec_and_test(&sighand->count)) {
1086 		signalfd_cleanup(sighand);
1087 		/*
1088 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1089 		 * without an RCU grace period, see __lock_task_sighand().
1090 		 */
1091 		kmem_cache_free(sighand_cachep, sighand);
1092 	}
1093 }
1094 
1095 /*
1096  * Initialize POSIX timer handling for a thread group.
1097  */
1098 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1099 {
1100 	unsigned long cpu_limit;
1101 
1102 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1103 	if (cpu_limit != RLIM_INFINITY) {
1104 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1105 		sig->cputimer.running = true;
1106 	}
1107 
1108 	/* The timer lists. */
1109 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1110 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1111 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1112 }
1113 
1114 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1115 {
1116 	struct signal_struct *sig;
1117 
1118 	if (clone_flags & CLONE_THREAD)
1119 		return 0;
1120 
1121 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1122 	tsk->signal = sig;
1123 	if (!sig)
1124 		return -ENOMEM;
1125 
1126 	sig->nr_threads = 1;
1127 	atomic_set(&sig->live, 1);
1128 	atomic_set(&sig->sigcnt, 1);
1129 
1130 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1131 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1132 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1133 
1134 	init_waitqueue_head(&sig->wait_chldexit);
1135 	sig->curr_target = tsk;
1136 	init_sigpending(&sig->shared_pending);
1137 	INIT_LIST_HEAD(&sig->posix_timers);
1138 	seqlock_init(&sig->stats_lock);
1139 	prev_cputime_init(&sig->prev_cputime);
1140 
1141 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 	sig->real_timer.function = it_real_fn;
1143 
1144 	task_lock(current->group_leader);
1145 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1146 	task_unlock(current->group_leader);
1147 
1148 	posix_cpu_timers_init_group(sig);
1149 
1150 	tty_audit_fork(sig);
1151 	sched_autogroup_fork(sig);
1152 
1153 #ifdef CONFIG_CGROUPS
1154 	init_rwsem(&sig->group_rwsem);
1155 #endif
1156 
1157 	sig->oom_score_adj = current->signal->oom_score_adj;
1158 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1159 
1160 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1161 				   current->signal->is_child_subreaper;
1162 
1163 	mutex_init(&sig->cred_guard_mutex);
1164 
1165 	return 0;
1166 }
1167 
1168 static void copy_seccomp(struct task_struct *p)
1169 {
1170 #ifdef CONFIG_SECCOMP
1171 	/*
1172 	 * Must be called with sighand->lock held, which is common to
1173 	 * all threads in the group. Holding cred_guard_mutex is not
1174 	 * needed because this new task is not yet running and cannot
1175 	 * be racing exec.
1176 	 */
1177 	assert_spin_locked(&current->sighand->siglock);
1178 
1179 	/* Ref-count the new filter user, and assign it. */
1180 	get_seccomp_filter(current);
1181 	p->seccomp = current->seccomp;
1182 
1183 	/*
1184 	 * Explicitly enable no_new_privs here in case it got set
1185 	 * between the task_struct being duplicated and holding the
1186 	 * sighand lock. The seccomp state and nnp must be in sync.
1187 	 */
1188 	if (task_no_new_privs(current))
1189 		task_set_no_new_privs(p);
1190 
1191 	/*
1192 	 * If the parent gained a seccomp mode after copying thread
1193 	 * flags and between before we held the sighand lock, we have
1194 	 * to manually enable the seccomp thread flag here.
1195 	 */
1196 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1197 		set_tsk_thread_flag(p, TIF_SECCOMP);
1198 #endif
1199 }
1200 
1201 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1202 {
1203 	current->clear_child_tid = tidptr;
1204 
1205 	return task_pid_vnr(current);
1206 }
1207 
1208 static void rt_mutex_init_task(struct task_struct *p)
1209 {
1210 	raw_spin_lock_init(&p->pi_lock);
1211 #ifdef CONFIG_RT_MUTEXES
1212 	p->pi_waiters = RB_ROOT;
1213 	p->pi_waiters_leftmost = NULL;
1214 	p->pi_blocked_on = NULL;
1215 #endif
1216 }
1217 
1218 /*
1219  * Initialize POSIX timer handling for a single task.
1220  */
1221 static void posix_cpu_timers_init(struct task_struct *tsk)
1222 {
1223 	tsk->cputime_expires.prof_exp = 0;
1224 	tsk->cputime_expires.virt_exp = 0;
1225 	tsk->cputime_expires.sched_exp = 0;
1226 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1227 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1228 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1229 }
1230 
1231 static inline void
1232 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1233 {
1234 	 task->pids[type].pid = pid;
1235 }
1236 
1237 /*
1238  * This creates a new process as a copy of the old one,
1239  * but does not actually start it yet.
1240  *
1241  * It copies the registers, and all the appropriate
1242  * parts of the process environment (as per the clone
1243  * flags). The actual kick-off is left to the caller.
1244  */
1245 static struct task_struct *copy_process(unsigned long clone_flags,
1246 					unsigned long stack_start,
1247 					unsigned long stack_size,
1248 					int __user *child_tidptr,
1249 					struct pid *pid,
1250 					int trace,
1251 					unsigned long tls)
1252 {
1253 	int retval;
1254 	struct task_struct *p;
1255 	void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1256 
1257 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1258 		return ERR_PTR(-EINVAL);
1259 
1260 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	/*
1264 	 * Thread groups must share signals as well, and detached threads
1265 	 * can only be started up within the thread group.
1266 	 */
1267 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1268 		return ERR_PTR(-EINVAL);
1269 
1270 	/*
1271 	 * Shared signal handlers imply shared VM. By way of the above,
1272 	 * thread groups also imply shared VM. Blocking this case allows
1273 	 * for various simplifications in other code.
1274 	 */
1275 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1276 		return ERR_PTR(-EINVAL);
1277 
1278 	/*
1279 	 * Siblings of global init remain as zombies on exit since they are
1280 	 * not reaped by their parent (swapper). To solve this and to avoid
1281 	 * multi-rooted process trees, prevent global and container-inits
1282 	 * from creating siblings.
1283 	 */
1284 	if ((clone_flags & CLONE_PARENT) &&
1285 				current->signal->flags & SIGNAL_UNKILLABLE)
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	/*
1289 	 * If the new process will be in a different pid or user namespace
1290 	 * do not allow it to share a thread group with the forking task.
1291 	 */
1292 	if (clone_flags & CLONE_THREAD) {
1293 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1294 		    (task_active_pid_ns(current) !=
1295 				current->nsproxy->pid_ns_for_children))
1296 			return ERR_PTR(-EINVAL);
1297 	}
1298 
1299 	retval = security_task_create(clone_flags);
1300 	if (retval)
1301 		goto fork_out;
1302 
1303 	retval = -ENOMEM;
1304 	p = dup_task_struct(current);
1305 	if (!p)
1306 		goto fork_out;
1307 
1308 	ftrace_graph_init_task(p);
1309 
1310 	rt_mutex_init_task(p);
1311 
1312 #ifdef CONFIG_PROVE_LOCKING
1313 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1314 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1315 #endif
1316 	retval = -EAGAIN;
1317 	if (atomic_read(&p->real_cred->user->processes) >=
1318 			task_rlimit(p, RLIMIT_NPROC)) {
1319 		if (p->real_cred->user != INIT_USER &&
1320 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1321 			goto bad_fork_free;
1322 	}
1323 	current->flags &= ~PF_NPROC_EXCEEDED;
1324 
1325 	retval = copy_creds(p, clone_flags);
1326 	if (retval < 0)
1327 		goto bad_fork_free;
1328 
1329 	/*
1330 	 * If multiple threads are within copy_process(), then this check
1331 	 * triggers too late. This doesn't hurt, the check is only there
1332 	 * to stop root fork bombs.
1333 	 */
1334 	retval = -EAGAIN;
1335 	if (nr_threads >= max_threads)
1336 		goto bad_fork_cleanup_count;
1337 
1338 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1339 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1340 	p->flags |= PF_FORKNOEXEC;
1341 	INIT_LIST_HEAD(&p->children);
1342 	INIT_LIST_HEAD(&p->sibling);
1343 	rcu_copy_process(p);
1344 	p->vfork_done = NULL;
1345 	spin_lock_init(&p->alloc_lock);
1346 
1347 	init_sigpending(&p->pending);
1348 
1349 	p->utime = p->stime = p->gtime = 0;
1350 	p->utimescaled = p->stimescaled = 0;
1351 	prev_cputime_init(&p->prev_cputime);
1352 
1353 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1354 	seqlock_init(&p->vtime_seqlock);
1355 	p->vtime_snap = 0;
1356 	p->vtime_snap_whence = VTIME_SLEEPING;
1357 #endif
1358 
1359 #if defined(SPLIT_RSS_COUNTING)
1360 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1361 #endif
1362 
1363 	p->default_timer_slack_ns = current->timer_slack_ns;
1364 
1365 	task_io_accounting_init(&p->ioac);
1366 	acct_clear_integrals(p);
1367 
1368 	posix_cpu_timers_init(p);
1369 
1370 	p->start_time = ktime_get_ns();
1371 	p->real_start_time = ktime_get_boot_ns();
1372 	p->io_context = NULL;
1373 	p->audit_context = NULL;
1374 	if (clone_flags & CLONE_THREAD)
1375 		threadgroup_change_begin(current);
1376 	cgroup_fork(p);
1377 #ifdef CONFIG_NUMA
1378 	p->mempolicy = mpol_dup(p->mempolicy);
1379 	if (IS_ERR(p->mempolicy)) {
1380 		retval = PTR_ERR(p->mempolicy);
1381 		p->mempolicy = NULL;
1382 		goto bad_fork_cleanup_threadgroup_lock;
1383 	}
1384 #endif
1385 #ifdef CONFIG_CPUSETS
1386 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1387 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1388 	seqcount_init(&p->mems_allowed_seq);
1389 #endif
1390 #ifdef CONFIG_TRACE_IRQFLAGS
1391 	p->irq_events = 0;
1392 	p->hardirqs_enabled = 0;
1393 	p->hardirq_enable_ip = 0;
1394 	p->hardirq_enable_event = 0;
1395 	p->hardirq_disable_ip = _THIS_IP_;
1396 	p->hardirq_disable_event = 0;
1397 	p->softirqs_enabled = 1;
1398 	p->softirq_enable_ip = _THIS_IP_;
1399 	p->softirq_enable_event = 0;
1400 	p->softirq_disable_ip = 0;
1401 	p->softirq_disable_event = 0;
1402 	p->hardirq_context = 0;
1403 	p->softirq_context = 0;
1404 #endif
1405 
1406 	p->pagefault_disabled = 0;
1407 
1408 #ifdef CONFIG_LOCKDEP
1409 	p->lockdep_depth = 0; /* no locks held yet */
1410 	p->curr_chain_key = 0;
1411 	p->lockdep_recursion = 0;
1412 #endif
1413 
1414 #ifdef CONFIG_DEBUG_MUTEXES
1415 	p->blocked_on = NULL; /* not blocked yet */
1416 #endif
1417 #ifdef CONFIG_BCACHE
1418 	p->sequential_io	= 0;
1419 	p->sequential_io_avg	= 0;
1420 #endif
1421 
1422 	/* Perform scheduler related setup. Assign this task to a CPU. */
1423 	retval = sched_fork(clone_flags, p);
1424 	if (retval)
1425 		goto bad_fork_cleanup_policy;
1426 
1427 	retval = perf_event_init_task(p);
1428 	if (retval)
1429 		goto bad_fork_cleanup_policy;
1430 	retval = audit_alloc(p);
1431 	if (retval)
1432 		goto bad_fork_cleanup_perf;
1433 	/* copy all the process information */
1434 	shm_init_task(p);
1435 	retval = copy_semundo(clone_flags, p);
1436 	if (retval)
1437 		goto bad_fork_cleanup_audit;
1438 	retval = copy_files(clone_flags, p);
1439 	if (retval)
1440 		goto bad_fork_cleanup_semundo;
1441 	retval = copy_fs(clone_flags, p);
1442 	if (retval)
1443 		goto bad_fork_cleanup_files;
1444 	retval = copy_sighand(clone_flags, p);
1445 	if (retval)
1446 		goto bad_fork_cleanup_fs;
1447 	retval = copy_signal(clone_flags, p);
1448 	if (retval)
1449 		goto bad_fork_cleanup_sighand;
1450 	retval = copy_mm(clone_flags, p);
1451 	if (retval)
1452 		goto bad_fork_cleanup_signal;
1453 	retval = copy_namespaces(clone_flags, p);
1454 	if (retval)
1455 		goto bad_fork_cleanup_mm;
1456 	retval = copy_io(clone_flags, p);
1457 	if (retval)
1458 		goto bad_fork_cleanup_namespaces;
1459 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1460 	if (retval)
1461 		goto bad_fork_cleanup_io;
1462 
1463 	if (pid != &init_struct_pid) {
1464 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1465 		if (IS_ERR(pid)) {
1466 			retval = PTR_ERR(pid);
1467 			goto bad_fork_cleanup_io;
1468 		}
1469 	}
1470 
1471 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1472 	/*
1473 	 * Clear TID on mm_release()?
1474 	 */
1475 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1476 #ifdef CONFIG_BLOCK
1477 	p->plug = NULL;
1478 #endif
1479 #ifdef CONFIG_FUTEX
1480 	p->robust_list = NULL;
1481 #ifdef CONFIG_COMPAT
1482 	p->compat_robust_list = NULL;
1483 #endif
1484 	INIT_LIST_HEAD(&p->pi_state_list);
1485 	p->pi_state_cache = NULL;
1486 #endif
1487 	/*
1488 	 * sigaltstack should be cleared when sharing the same VM
1489 	 */
1490 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1491 		p->sas_ss_sp = p->sas_ss_size = 0;
1492 
1493 	/*
1494 	 * Syscall tracing and stepping should be turned off in the
1495 	 * child regardless of CLONE_PTRACE.
1496 	 */
1497 	user_disable_single_step(p);
1498 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1499 #ifdef TIF_SYSCALL_EMU
1500 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1501 #endif
1502 	clear_all_latency_tracing(p);
1503 
1504 	/* ok, now we should be set up.. */
1505 	p->pid = pid_nr(pid);
1506 	if (clone_flags & CLONE_THREAD) {
1507 		p->exit_signal = -1;
1508 		p->group_leader = current->group_leader;
1509 		p->tgid = current->tgid;
1510 	} else {
1511 		if (clone_flags & CLONE_PARENT)
1512 			p->exit_signal = current->group_leader->exit_signal;
1513 		else
1514 			p->exit_signal = (clone_flags & CSIGNAL);
1515 		p->group_leader = p;
1516 		p->tgid = p->pid;
1517 	}
1518 
1519 	p->nr_dirtied = 0;
1520 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1521 	p->dirty_paused_when = 0;
1522 
1523 	p->pdeath_signal = 0;
1524 	INIT_LIST_HEAD(&p->thread_group);
1525 	p->task_works = NULL;
1526 
1527 	/*
1528 	 * Ensure that the cgroup subsystem policies allow the new process to be
1529 	 * forked. It should be noted the the new process's css_set can be changed
1530 	 * between here and cgroup_post_fork() if an organisation operation is in
1531 	 * progress.
1532 	 */
1533 	retval = cgroup_can_fork(p, cgrp_ss_priv);
1534 	if (retval)
1535 		goto bad_fork_free_pid;
1536 
1537 	/*
1538 	 * Make it visible to the rest of the system, but dont wake it up yet.
1539 	 * Need tasklist lock for parent etc handling!
1540 	 */
1541 	write_lock_irq(&tasklist_lock);
1542 
1543 	/* CLONE_PARENT re-uses the old parent */
1544 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1545 		p->real_parent = current->real_parent;
1546 		p->parent_exec_id = current->parent_exec_id;
1547 	} else {
1548 		p->real_parent = current;
1549 		p->parent_exec_id = current->self_exec_id;
1550 	}
1551 
1552 	spin_lock(&current->sighand->siglock);
1553 
1554 	/*
1555 	 * Copy seccomp details explicitly here, in case they were changed
1556 	 * before holding sighand lock.
1557 	 */
1558 	copy_seccomp(p);
1559 
1560 	/*
1561 	 * Process group and session signals need to be delivered to just the
1562 	 * parent before the fork or both the parent and the child after the
1563 	 * fork. Restart if a signal comes in before we add the new process to
1564 	 * it's process group.
1565 	 * A fatal signal pending means that current will exit, so the new
1566 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1567 	*/
1568 	recalc_sigpending();
1569 	if (signal_pending(current)) {
1570 		spin_unlock(&current->sighand->siglock);
1571 		write_unlock_irq(&tasklist_lock);
1572 		retval = -ERESTARTNOINTR;
1573 		goto bad_fork_cancel_cgroup;
1574 	}
1575 
1576 	if (likely(p->pid)) {
1577 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1578 
1579 		init_task_pid(p, PIDTYPE_PID, pid);
1580 		if (thread_group_leader(p)) {
1581 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1582 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1583 
1584 			if (is_child_reaper(pid)) {
1585 				ns_of_pid(pid)->child_reaper = p;
1586 				p->signal->flags |= SIGNAL_UNKILLABLE;
1587 			}
1588 
1589 			p->signal->leader_pid = pid;
1590 			p->signal->tty = tty_kref_get(current->signal->tty);
1591 			list_add_tail(&p->sibling, &p->real_parent->children);
1592 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1593 			attach_pid(p, PIDTYPE_PGID);
1594 			attach_pid(p, PIDTYPE_SID);
1595 			__this_cpu_inc(process_counts);
1596 		} else {
1597 			current->signal->nr_threads++;
1598 			atomic_inc(&current->signal->live);
1599 			atomic_inc(&current->signal->sigcnt);
1600 			list_add_tail_rcu(&p->thread_group,
1601 					  &p->group_leader->thread_group);
1602 			list_add_tail_rcu(&p->thread_node,
1603 					  &p->signal->thread_head);
1604 		}
1605 		attach_pid(p, PIDTYPE_PID);
1606 		nr_threads++;
1607 	}
1608 
1609 	total_forks++;
1610 	spin_unlock(&current->sighand->siglock);
1611 	syscall_tracepoint_update(p);
1612 	write_unlock_irq(&tasklist_lock);
1613 
1614 	proc_fork_connector(p);
1615 	cgroup_post_fork(p, cgrp_ss_priv);
1616 	if (clone_flags & CLONE_THREAD)
1617 		threadgroup_change_end(current);
1618 	perf_event_fork(p);
1619 
1620 	trace_task_newtask(p, clone_flags);
1621 	uprobe_copy_process(p, clone_flags);
1622 
1623 	return p;
1624 
1625 bad_fork_cancel_cgroup:
1626 	cgroup_cancel_fork(p, cgrp_ss_priv);
1627 bad_fork_free_pid:
1628 	if (pid != &init_struct_pid)
1629 		free_pid(pid);
1630 bad_fork_cleanup_io:
1631 	if (p->io_context)
1632 		exit_io_context(p);
1633 bad_fork_cleanup_namespaces:
1634 	exit_task_namespaces(p);
1635 bad_fork_cleanup_mm:
1636 	if (p->mm)
1637 		mmput(p->mm);
1638 bad_fork_cleanup_signal:
1639 	if (!(clone_flags & CLONE_THREAD))
1640 		free_signal_struct(p->signal);
1641 bad_fork_cleanup_sighand:
1642 	__cleanup_sighand(p->sighand);
1643 bad_fork_cleanup_fs:
1644 	exit_fs(p); /* blocking */
1645 bad_fork_cleanup_files:
1646 	exit_files(p); /* blocking */
1647 bad_fork_cleanup_semundo:
1648 	exit_sem(p);
1649 bad_fork_cleanup_audit:
1650 	audit_free(p);
1651 bad_fork_cleanup_perf:
1652 	perf_event_free_task(p);
1653 bad_fork_cleanup_policy:
1654 #ifdef CONFIG_NUMA
1655 	mpol_put(p->mempolicy);
1656 bad_fork_cleanup_threadgroup_lock:
1657 #endif
1658 	if (clone_flags & CLONE_THREAD)
1659 		threadgroup_change_end(current);
1660 	delayacct_tsk_free(p);
1661 bad_fork_cleanup_count:
1662 	atomic_dec(&p->cred->user->processes);
1663 	exit_creds(p);
1664 bad_fork_free:
1665 	free_task(p);
1666 fork_out:
1667 	return ERR_PTR(retval);
1668 }
1669 
1670 static inline void init_idle_pids(struct pid_link *links)
1671 {
1672 	enum pid_type type;
1673 
1674 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1675 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1676 		links[type].pid = &init_struct_pid;
1677 	}
1678 }
1679 
1680 struct task_struct *fork_idle(int cpu)
1681 {
1682 	struct task_struct *task;
1683 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1684 	if (!IS_ERR(task)) {
1685 		init_idle_pids(task->pids);
1686 		init_idle(task, cpu);
1687 	}
1688 
1689 	return task;
1690 }
1691 
1692 /*
1693  *  Ok, this is the main fork-routine.
1694  *
1695  * It copies the process, and if successful kick-starts
1696  * it and waits for it to finish using the VM if required.
1697  */
1698 long _do_fork(unsigned long clone_flags,
1699 	      unsigned long stack_start,
1700 	      unsigned long stack_size,
1701 	      int __user *parent_tidptr,
1702 	      int __user *child_tidptr,
1703 	      unsigned long tls)
1704 {
1705 	struct task_struct *p;
1706 	int trace = 0;
1707 	long nr;
1708 
1709 	/*
1710 	 * Determine whether and which event to report to ptracer.  When
1711 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1712 	 * requested, no event is reported; otherwise, report if the event
1713 	 * for the type of forking is enabled.
1714 	 */
1715 	if (!(clone_flags & CLONE_UNTRACED)) {
1716 		if (clone_flags & CLONE_VFORK)
1717 			trace = PTRACE_EVENT_VFORK;
1718 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1719 			trace = PTRACE_EVENT_CLONE;
1720 		else
1721 			trace = PTRACE_EVENT_FORK;
1722 
1723 		if (likely(!ptrace_event_enabled(current, trace)))
1724 			trace = 0;
1725 	}
1726 
1727 	p = copy_process(clone_flags, stack_start, stack_size,
1728 			 child_tidptr, NULL, trace, tls);
1729 	/*
1730 	 * Do this prior waking up the new thread - the thread pointer
1731 	 * might get invalid after that point, if the thread exits quickly.
1732 	 */
1733 	if (!IS_ERR(p)) {
1734 		struct completion vfork;
1735 		struct pid *pid;
1736 
1737 		trace_sched_process_fork(current, p);
1738 
1739 		pid = get_task_pid(p, PIDTYPE_PID);
1740 		nr = pid_vnr(pid);
1741 
1742 		if (clone_flags & CLONE_PARENT_SETTID)
1743 			put_user(nr, parent_tidptr);
1744 
1745 		if (clone_flags & CLONE_VFORK) {
1746 			p->vfork_done = &vfork;
1747 			init_completion(&vfork);
1748 			get_task_struct(p);
1749 		}
1750 
1751 		wake_up_new_task(p);
1752 
1753 		/* forking complete and child started to run, tell ptracer */
1754 		if (unlikely(trace))
1755 			ptrace_event_pid(trace, pid);
1756 
1757 		if (clone_flags & CLONE_VFORK) {
1758 			if (!wait_for_vfork_done(p, &vfork))
1759 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1760 		}
1761 
1762 		put_pid(pid);
1763 	} else {
1764 		nr = PTR_ERR(p);
1765 	}
1766 	return nr;
1767 }
1768 
1769 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1770 /* For compatibility with architectures that call do_fork directly rather than
1771  * using the syscall entry points below. */
1772 long do_fork(unsigned long clone_flags,
1773 	      unsigned long stack_start,
1774 	      unsigned long stack_size,
1775 	      int __user *parent_tidptr,
1776 	      int __user *child_tidptr)
1777 {
1778 	return _do_fork(clone_flags, stack_start, stack_size,
1779 			parent_tidptr, child_tidptr, 0);
1780 }
1781 #endif
1782 
1783 /*
1784  * Create a kernel thread.
1785  */
1786 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1787 {
1788 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1789 		(unsigned long)arg, NULL, NULL, 0);
1790 }
1791 
1792 #ifdef __ARCH_WANT_SYS_FORK
1793 SYSCALL_DEFINE0(fork)
1794 {
1795 #ifdef CONFIG_MMU
1796 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1797 #else
1798 	/* can not support in nommu mode */
1799 	return -EINVAL;
1800 #endif
1801 }
1802 #endif
1803 
1804 #ifdef __ARCH_WANT_SYS_VFORK
1805 SYSCALL_DEFINE0(vfork)
1806 {
1807 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1808 			0, NULL, NULL, 0);
1809 }
1810 #endif
1811 
1812 #ifdef __ARCH_WANT_SYS_CLONE
1813 #ifdef CONFIG_CLONE_BACKWARDS
1814 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1815 		 int __user *, parent_tidptr,
1816 		 unsigned long, tls,
1817 		 int __user *, child_tidptr)
1818 #elif defined(CONFIG_CLONE_BACKWARDS2)
1819 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1820 		 int __user *, parent_tidptr,
1821 		 int __user *, child_tidptr,
1822 		 unsigned long, tls)
1823 #elif defined(CONFIG_CLONE_BACKWARDS3)
1824 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1825 		int, stack_size,
1826 		int __user *, parent_tidptr,
1827 		int __user *, child_tidptr,
1828 		unsigned long, tls)
1829 #else
1830 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1831 		 int __user *, parent_tidptr,
1832 		 int __user *, child_tidptr,
1833 		 unsigned long, tls)
1834 #endif
1835 {
1836 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1837 }
1838 #endif
1839 
1840 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1841 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1842 #endif
1843 
1844 static void sighand_ctor(void *data)
1845 {
1846 	struct sighand_struct *sighand = data;
1847 
1848 	spin_lock_init(&sighand->siglock);
1849 	init_waitqueue_head(&sighand->signalfd_wqh);
1850 }
1851 
1852 void __init proc_caches_init(void)
1853 {
1854 	sighand_cachep = kmem_cache_create("sighand_cache",
1855 			sizeof(struct sighand_struct), 0,
1856 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1857 			SLAB_NOTRACK, sighand_ctor);
1858 	signal_cachep = kmem_cache_create("signal_cache",
1859 			sizeof(struct signal_struct), 0,
1860 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1861 	files_cachep = kmem_cache_create("files_cache",
1862 			sizeof(struct files_struct), 0,
1863 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1864 	fs_cachep = kmem_cache_create("fs_cache",
1865 			sizeof(struct fs_struct), 0,
1866 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1867 	/*
1868 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1869 	 * whole struct cpumask for the OFFSTACK case. We could change
1870 	 * this to *only* allocate as much of it as required by the
1871 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1872 	 * is at the end of the structure, exactly for that reason.
1873 	 */
1874 	mm_cachep = kmem_cache_create("mm_struct",
1875 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1876 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1877 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1878 	mmap_init();
1879 	nsproxy_cache_init();
1880 }
1881 
1882 /*
1883  * Check constraints on flags passed to the unshare system call.
1884  */
1885 static int check_unshare_flags(unsigned long unshare_flags)
1886 {
1887 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1888 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1889 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1890 				CLONE_NEWUSER|CLONE_NEWPID))
1891 		return -EINVAL;
1892 	/*
1893 	 * Not implemented, but pretend it works if there is nothing
1894 	 * to unshare.  Note that unsharing the address space or the
1895 	 * signal handlers also need to unshare the signal queues (aka
1896 	 * CLONE_THREAD).
1897 	 */
1898 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1899 		if (!thread_group_empty(current))
1900 			return -EINVAL;
1901 	}
1902 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1903 		if (atomic_read(&current->sighand->count) > 1)
1904 			return -EINVAL;
1905 	}
1906 	if (unshare_flags & CLONE_VM) {
1907 		if (!current_is_single_threaded())
1908 			return -EINVAL;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 /*
1915  * Unshare the filesystem structure if it is being shared
1916  */
1917 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1918 {
1919 	struct fs_struct *fs = current->fs;
1920 
1921 	if (!(unshare_flags & CLONE_FS) || !fs)
1922 		return 0;
1923 
1924 	/* don't need lock here; in the worst case we'll do useless copy */
1925 	if (fs->users == 1)
1926 		return 0;
1927 
1928 	*new_fsp = copy_fs_struct(fs);
1929 	if (!*new_fsp)
1930 		return -ENOMEM;
1931 
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Unshare file descriptor table if it is being shared
1937  */
1938 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1939 {
1940 	struct files_struct *fd = current->files;
1941 	int error = 0;
1942 
1943 	if ((unshare_flags & CLONE_FILES) &&
1944 	    (fd && atomic_read(&fd->count) > 1)) {
1945 		*new_fdp = dup_fd(fd, &error);
1946 		if (!*new_fdp)
1947 			return error;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * unshare allows a process to 'unshare' part of the process
1955  * context which was originally shared using clone.  copy_*
1956  * functions used by do_fork() cannot be used here directly
1957  * because they modify an inactive task_struct that is being
1958  * constructed. Here we are modifying the current, active,
1959  * task_struct.
1960  */
1961 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1962 {
1963 	struct fs_struct *fs, *new_fs = NULL;
1964 	struct files_struct *fd, *new_fd = NULL;
1965 	struct cred *new_cred = NULL;
1966 	struct nsproxy *new_nsproxy = NULL;
1967 	int do_sysvsem = 0;
1968 	int err;
1969 
1970 	/*
1971 	 * If unsharing a user namespace must also unshare the thread group
1972 	 * and unshare the filesystem root and working directories.
1973 	 */
1974 	if (unshare_flags & CLONE_NEWUSER)
1975 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1976 	/*
1977 	 * If unsharing vm, must also unshare signal handlers.
1978 	 */
1979 	if (unshare_flags & CLONE_VM)
1980 		unshare_flags |= CLONE_SIGHAND;
1981 	/*
1982 	 * If unsharing a signal handlers, must also unshare the signal queues.
1983 	 */
1984 	if (unshare_flags & CLONE_SIGHAND)
1985 		unshare_flags |= CLONE_THREAD;
1986 	/*
1987 	 * If unsharing namespace, must also unshare filesystem information.
1988 	 */
1989 	if (unshare_flags & CLONE_NEWNS)
1990 		unshare_flags |= CLONE_FS;
1991 
1992 	err = check_unshare_flags(unshare_flags);
1993 	if (err)
1994 		goto bad_unshare_out;
1995 	/*
1996 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1997 	 * to a new ipc namespace, the semaphore arrays from the old
1998 	 * namespace are unreachable.
1999 	 */
2000 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2001 		do_sysvsem = 1;
2002 	err = unshare_fs(unshare_flags, &new_fs);
2003 	if (err)
2004 		goto bad_unshare_out;
2005 	err = unshare_fd(unshare_flags, &new_fd);
2006 	if (err)
2007 		goto bad_unshare_cleanup_fs;
2008 	err = unshare_userns(unshare_flags, &new_cred);
2009 	if (err)
2010 		goto bad_unshare_cleanup_fd;
2011 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2012 					 new_cred, new_fs);
2013 	if (err)
2014 		goto bad_unshare_cleanup_cred;
2015 
2016 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2017 		if (do_sysvsem) {
2018 			/*
2019 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2020 			 */
2021 			exit_sem(current);
2022 		}
2023 		if (unshare_flags & CLONE_NEWIPC) {
2024 			/* Orphan segments in old ns (see sem above). */
2025 			exit_shm(current);
2026 			shm_init_task(current);
2027 		}
2028 
2029 		if (new_nsproxy)
2030 			switch_task_namespaces(current, new_nsproxy);
2031 
2032 		task_lock(current);
2033 
2034 		if (new_fs) {
2035 			fs = current->fs;
2036 			spin_lock(&fs->lock);
2037 			current->fs = new_fs;
2038 			if (--fs->users)
2039 				new_fs = NULL;
2040 			else
2041 				new_fs = fs;
2042 			spin_unlock(&fs->lock);
2043 		}
2044 
2045 		if (new_fd) {
2046 			fd = current->files;
2047 			current->files = new_fd;
2048 			new_fd = fd;
2049 		}
2050 
2051 		task_unlock(current);
2052 
2053 		if (new_cred) {
2054 			/* Install the new user namespace */
2055 			commit_creds(new_cred);
2056 			new_cred = NULL;
2057 		}
2058 	}
2059 
2060 bad_unshare_cleanup_cred:
2061 	if (new_cred)
2062 		put_cred(new_cred);
2063 bad_unshare_cleanup_fd:
2064 	if (new_fd)
2065 		put_files_struct(new_fd);
2066 
2067 bad_unshare_cleanup_fs:
2068 	if (new_fs)
2069 		free_fs_struct(new_fs);
2070 
2071 bad_unshare_out:
2072 	return err;
2073 }
2074 
2075 /*
2076  *	Helper to unshare the files of the current task.
2077  *	We don't want to expose copy_files internals to
2078  *	the exec layer of the kernel.
2079  */
2080 
2081 int unshare_files(struct files_struct **displaced)
2082 {
2083 	struct task_struct *task = current;
2084 	struct files_struct *copy = NULL;
2085 	int error;
2086 
2087 	error = unshare_fd(CLONE_FILES, &copy);
2088 	if (error || !copy) {
2089 		*displaced = NULL;
2090 		return error;
2091 	}
2092 	*displaced = task->files;
2093 	task_lock(task);
2094 	task->files = copy;
2095 	task_unlock(task);
2096 	return 0;
2097 }
2098 
2099 int sysctl_max_threads(struct ctl_table *table, int write,
2100 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2101 {
2102 	struct ctl_table t;
2103 	int ret;
2104 	int threads = max_threads;
2105 	int min = MIN_THREADS;
2106 	int max = MAX_THREADS;
2107 
2108 	t = *table;
2109 	t.data = &threads;
2110 	t.extra1 = &min;
2111 	t.extra2 = &max;
2112 
2113 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2114 	if (ret || !write)
2115 		return ret;
2116 
2117 	set_max_threads(threads);
2118 
2119 	return 0;
2120 }
2121