1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 #include <linux/sysctl.h> 78 79 #include <asm/pgtable.h> 80 #include <asm/pgalloc.h> 81 #include <asm/uaccess.h> 82 #include <asm/mmu_context.h> 83 #include <asm/cacheflush.h> 84 #include <asm/tlbflush.h> 85 86 #include <trace/events/sched.h> 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/task.h> 90 91 /* 92 * Minimum number of threads to boot the kernel 93 */ 94 #define MIN_THREADS 20 95 96 /* 97 * Maximum number of threads 98 */ 99 #define MAX_THREADS FUTEX_TID_MASK 100 101 /* 102 * Protected counters by write_lock_irq(&tasklist_lock) 103 */ 104 unsigned long total_forks; /* Handle normal Linux uptimes. */ 105 int nr_threads; /* The idle threads do not count.. */ 106 107 int max_threads; /* tunable limit on nr_threads */ 108 109 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 110 111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 112 113 #ifdef CONFIG_PROVE_RCU 114 int lockdep_tasklist_lock_is_held(void) 115 { 116 return lockdep_is_held(&tasklist_lock); 117 } 118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 119 #endif /* #ifdef CONFIG_PROVE_RCU */ 120 121 int nr_processes(void) 122 { 123 int cpu; 124 int total = 0; 125 126 for_each_possible_cpu(cpu) 127 total += per_cpu(process_counts, cpu); 128 129 return total; 130 } 131 132 void __weak arch_release_task_struct(struct task_struct *tsk) 133 { 134 } 135 136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 137 static struct kmem_cache *task_struct_cachep; 138 139 static inline struct task_struct *alloc_task_struct_node(int node) 140 { 141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 142 } 143 144 static inline void free_task_struct(struct task_struct *tsk) 145 { 146 kmem_cache_free(task_struct_cachep, tsk); 147 } 148 #endif 149 150 void __weak arch_release_thread_info(struct thread_info *ti) 151 { 152 } 153 154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 155 156 /* 157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 158 * kmemcache based allocator. 159 */ 160 # if THREAD_SIZE >= PAGE_SIZE 161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 162 int node) 163 { 164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, 165 THREAD_SIZE_ORDER); 166 167 return page ? page_address(page) : NULL; 168 } 169 170 static inline void free_thread_info(struct thread_info *ti) 171 { 172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 173 } 174 # else 175 static struct kmem_cache *thread_info_cache; 176 177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 178 int node) 179 { 180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 181 } 182 183 static void free_thread_info(struct thread_info *ti) 184 { 185 kmem_cache_free(thread_info_cache, ti); 186 } 187 188 void thread_info_cache_init(void) 189 { 190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 191 THREAD_SIZE, 0, NULL); 192 BUG_ON(thread_info_cache == NULL); 193 } 194 # endif 195 #endif 196 197 /* SLAB cache for signal_struct structures (tsk->signal) */ 198 static struct kmem_cache *signal_cachep; 199 200 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 201 struct kmem_cache *sighand_cachep; 202 203 /* SLAB cache for files_struct structures (tsk->files) */ 204 struct kmem_cache *files_cachep; 205 206 /* SLAB cache for fs_struct structures (tsk->fs) */ 207 struct kmem_cache *fs_cachep; 208 209 /* SLAB cache for vm_area_struct structures */ 210 struct kmem_cache *vm_area_cachep; 211 212 /* SLAB cache for mm_struct structures (tsk->mm) */ 213 static struct kmem_cache *mm_cachep; 214 215 static void account_kernel_stack(struct thread_info *ti, int account) 216 { 217 struct zone *zone = page_zone(virt_to_page(ti)); 218 219 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 220 } 221 222 void free_task(struct task_struct *tsk) 223 { 224 account_kernel_stack(tsk->stack, -1); 225 arch_release_thread_info(tsk->stack); 226 free_thread_info(tsk->stack); 227 rt_mutex_debug_task_free(tsk); 228 ftrace_graph_exit_task(tsk); 229 put_seccomp_filter(tsk); 230 arch_release_task_struct(tsk); 231 free_task_struct(tsk); 232 } 233 EXPORT_SYMBOL(free_task); 234 235 static inline void free_signal_struct(struct signal_struct *sig) 236 { 237 taskstats_tgid_free(sig); 238 sched_autogroup_exit(sig); 239 kmem_cache_free(signal_cachep, sig); 240 } 241 242 static inline void put_signal_struct(struct signal_struct *sig) 243 { 244 if (atomic_dec_and_test(&sig->sigcnt)) 245 free_signal_struct(sig); 246 } 247 248 void __put_task_struct(struct task_struct *tsk) 249 { 250 WARN_ON(!tsk->exit_state); 251 WARN_ON(atomic_read(&tsk->usage)); 252 WARN_ON(tsk == current); 253 254 task_numa_free(tsk); 255 security_task_free(tsk); 256 exit_creds(tsk); 257 delayacct_tsk_free(tsk); 258 put_signal_struct(tsk->signal); 259 260 if (!profile_handoff_task(tsk)) 261 free_task(tsk); 262 } 263 EXPORT_SYMBOL_GPL(__put_task_struct); 264 265 void __init __weak arch_task_cache_init(void) { } 266 267 /* 268 * set_max_threads 269 */ 270 static void set_max_threads(unsigned int max_threads_suggested) 271 { 272 u64 threads; 273 274 /* 275 * The number of threads shall be limited such that the thread 276 * structures may only consume a small part of the available memory. 277 */ 278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64) 279 threads = MAX_THREADS; 280 else 281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, 282 (u64) THREAD_SIZE * 8UL); 283 284 if (threads > max_threads_suggested) 285 threads = max_threads_suggested; 286 287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 288 } 289 290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 291 /* Initialized by the architecture: */ 292 int arch_task_struct_size __read_mostly; 293 #endif 294 295 void __init fork_init(void) 296 { 297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 298 #ifndef ARCH_MIN_TASKALIGN 299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 300 #endif 301 /* create a slab on which task_structs can be allocated */ 302 task_struct_cachep = 303 kmem_cache_create("task_struct", arch_task_struct_size, 304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 305 #endif 306 307 /* do the arch specific task caches init */ 308 arch_task_cache_init(); 309 310 set_max_threads(MAX_THREADS); 311 312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 314 init_task.signal->rlim[RLIMIT_SIGPENDING] = 315 init_task.signal->rlim[RLIMIT_NPROC]; 316 } 317 318 int __weak arch_dup_task_struct(struct task_struct *dst, 319 struct task_struct *src) 320 { 321 *dst = *src; 322 return 0; 323 } 324 325 void set_task_stack_end_magic(struct task_struct *tsk) 326 { 327 unsigned long *stackend; 328 329 stackend = end_of_stack(tsk); 330 *stackend = STACK_END_MAGIC; /* for overflow detection */ 331 } 332 333 static struct task_struct *dup_task_struct(struct task_struct *orig) 334 { 335 struct task_struct *tsk; 336 struct thread_info *ti; 337 int node = tsk_fork_get_node(orig); 338 int err; 339 340 tsk = alloc_task_struct_node(node); 341 if (!tsk) 342 return NULL; 343 344 ti = alloc_thread_info_node(tsk, node); 345 if (!ti) 346 goto free_tsk; 347 348 err = arch_dup_task_struct(tsk, orig); 349 if (err) 350 goto free_ti; 351 352 tsk->stack = ti; 353 #ifdef CONFIG_SECCOMP 354 /* 355 * We must handle setting up seccomp filters once we're under 356 * the sighand lock in case orig has changed between now and 357 * then. Until then, filter must be NULL to avoid messing up 358 * the usage counts on the error path calling free_task. 359 */ 360 tsk->seccomp.filter = NULL; 361 #endif 362 363 setup_thread_stack(tsk, orig); 364 clear_user_return_notifier(tsk); 365 clear_tsk_need_resched(tsk); 366 set_task_stack_end_magic(tsk); 367 368 #ifdef CONFIG_CC_STACKPROTECTOR 369 tsk->stack_canary = get_random_int(); 370 #endif 371 372 /* 373 * One for us, one for whoever does the "release_task()" (usually 374 * parent) 375 */ 376 atomic_set(&tsk->usage, 2); 377 #ifdef CONFIG_BLK_DEV_IO_TRACE 378 tsk->btrace_seq = 0; 379 #endif 380 tsk->splice_pipe = NULL; 381 tsk->task_frag.page = NULL; 382 383 account_kernel_stack(ti, 1); 384 385 return tsk; 386 387 free_ti: 388 free_thread_info(ti); 389 free_tsk: 390 free_task_struct(tsk); 391 return NULL; 392 } 393 394 #ifdef CONFIG_MMU 395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 396 { 397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 398 struct rb_node **rb_link, *rb_parent; 399 int retval; 400 unsigned long charge; 401 402 uprobe_start_dup_mmap(); 403 down_write(&oldmm->mmap_sem); 404 flush_cache_dup_mm(oldmm); 405 uprobe_dup_mmap(oldmm, mm); 406 /* 407 * Not linked in yet - no deadlock potential: 408 */ 409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 410 411 /* No ordering required: file already has been exposed. */ 412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 413 414 mm->total_vm = oldmm->total_vm; 415 mm->shared_vm = oldmm->shared_vm; 416 mm->exec_vm = oldmm->exec_vm; 417 mm->stack_vm = oldmm->stack_vm; 418 419 rb_link = &mm->mm_rb.rb_node; 420 rb_parent = NULL; 421 pprev = &mm->mmap; 422 retval = ksm_fork(mm, oldmm); 423 if (retval) 424 goto out; 425 retval = khugepaged_fork(mm, oldmm); 426 if (retval) 427 goto out; 428 429 prev = NULL; 430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 431 struct file *file; 432 433 if (mpnt->vm_flags & VM_DONTCOPY) { 434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 435 -vma_pages(mpnt)); 436 continue; 437 } 438 charge = 0; 439 if (mpnt->vm_flags & VM_ACCOUNT) { 440 unsigned long len = vma_pages(mpnt); 441 442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 443 goto fail_nomem; 444 charge = len; 445 } 446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 447 if (!tmp) 448 goto fail_nomem; 449 *tmp = *mpnt; 450 INIT_LIST_HEAD(&tmp->anon_vma_chain); 451 retval = vma_dup_policy(mpnt, tmp); 452 if (retval) 453 goto fail_nomem_policy; 454 tmp->vm_mm = mm; 455 if (anon_vma_fork(tmp, mpnt)) 456 goto fail_nomem_anon_vma_fork; 457 tmp->vm_flags &= 458 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP); 459 tmp->vm_next = tmp->vm_prev = NULL; 460 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 461 file = tmp->vm_file; 462 if (file) { 463 struct inode *inode = file_inode(file); 464 struct address_space *mapping = file->f_mapping; 465 466 get_file(file); 467 if (tmp->vm_flags & VM_DENYWRITE) 468 atomic_dec(&inode->i_writecount); 469 i_mmap_lock_write(mapping); 470 if (tmp->vm_flags & VM_SHARED) 471 atomic_inc(&mapping->i_mmap_writable); 472 flush_dcache_mmap_lock(mapping); 473 /* insert tmp into the share list, just after mpnt */ 474 vma_interval_tree_insert_after(tmp, mpnt, 475 &mapping->i_mmap); 476 flush_dcache_mmap_unlock(mapping); 477 i_mmap_unlock_write(mapping); 478 } 479 480 /* 481 * Clear hugetlb-related page reserves for children. This only 482 * affects MAP_PRIVATE mappings. Faults generated by the child 483 * are not guaranteed to succeed, even if read-only 484 */ 485 if (is_vm_hugetlb_page(tmp)) 486 reset_vma_resv_huge_pages(tmp); 487 488 /* 489 * Link in the new vma and copy the page table entries. 490 */ 491 *pprev = tmp; 492 pprev = &tmp->vm_next; 493 tmp->vm_prev = prev; 494 prev = tmp; 495 496 __vma_link_rb(mm, tmp, rb_link, rb_parent); 497 rb_link = &tmp->vm_rb.rb_right; 498 rb_parent = &tmp->vm_rb; 499 500 mm->map_count++; 501 retval = copy_page_range(mm, oldmm, mpnt); 502 503 if (tmp->vm_ops && tmp->vm_ops->open) 504 tmp->vm_ops->open(tmp); 505 506 if (retval) 507 goto out; 508 } 509 /* a new mm has just been created */ 510 arch_dup_mmap(oldmm, mm); 511 retval = 0; 512 out: 513 up_write(&mm->mmap_sem); 514 flush_tlb_mm(oldmm); 515 up_write(&oldmm->mmap_sem); 516 uprobe_end_dup_mmap(); 517 return retval; 518 fail_nomem_anon_vma_fork: 519 mpol_put(vma_policy(tmp)); 520 fail_nomem_policy: 521 kmem_cache_free(vm_area_cachep, tmp); 522 fail_nomem: 523 retval = -ENOMEM; 524 vm_unacct_memory(charge); 525 goto out; 526 } 527 528 static inline int mm_alloc_pgd(struct mm_struct *mm) 529 { 530 mm->pgd = pgd_alloc(mm); 531 if (unlikely(!mm->pgd)) 532 return -ENOMEM; 533 return 0; 534 } 535 536 static inline void mm_free_pgd(struct mm_struct *mm) 537 { 538 pgd_free(mm, mm->pgd); 539 } 540 #else 541 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 542 { 543 down_write(&oldmm->mmap_sem); 544 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 545 up_write(&oldmm->mmap_sem); 546 return 0; 547 } 548 #define mm_alloc_pgd(mm) (0) 549 #define mm_free_pgd(mm) 550 #endif /* CONFIG_MMU */ 551 552 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 553 554 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 555 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 556 557 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 558 559 static int __init coredump_filter_setup(char *s) 560 { 561 default_dump_filter = 562 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 563 MMF_DUMP_FILTER_MASK; 564 return 1; 565 } 566 567 __setup("coredump_filter=", coredump_filter_setup); 568 569 #include <linux/init_task.h> 570 571 static void mm_init_aio(struct mm_struct *mm) 572 { 573 #ifdef CONFIG_AIO 574 spin_lock_init(&mm->ioctx_lock); 575 mm->ioctx_table = NULL; 576 #endif 577 } 578 579 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 580 { 581 #ifdef CONFIG_MEMCG 582 mm->owner = p; 583 #endif 584 } 585 586 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 587 { 588 mm->mmap = NULL; 589 mm->mm_rb = RB_ROOT; 590 mm->vmacache_seqnum = 0; 591 atomic_set(&mm->mm_users, 1); 592 atomic_set(&mm->mm_count, 1); 593 init_rwsem(&mm->mmap_sem); 594 INIT_LIST_HEAD(&mm->mmlist); 595 mm->core_state = NULL; 596 atomic_long_set(&mm->nr_ptes, 0); 597 mm_nr_pmds_init(mm); 598 mm->map_count = 0; 599 mm->locked_vm = 0; 600 mm->pinned_vm = 0; 601 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 602 spin_lock_init(&mm->page_table_lock); 603 mm_init_cpumask(mm); 604 mm_init_aio(mm); 605 mm_init_owner(mm, p); 606 mmu_notifier_mm_init(mm); 607 clear_tlb_flush_pending(mm); 608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 609 mm->pmd_huge_pte = NULL; 610 #endif 611 612 if (current->mm) { 613 mm->flags = current->mm->flags & MMF_INIT_MASK; 614 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 615 } else { 616 mm->flags = default_dump_filter; 617 mm->def_flags = 0; 618 } 619 620 if (mm_alloc_pgd(mm)) 621 goto fail_nopgd; 622 623 if (init_new_context(p, mm)) 624 goto fail_nocontext; 625 626 return mm; 627 628 fail_nocontext: 629 mm_free_pgd(mm); 630 fail_nopgd: 631 free_mm(mm); 632 return NULL; 633 } 634 635 static void check_mm(struct mm_struct *mm) 636 { 637 int i; 638 639 for (i = 0; i < NR_MM_COUNTERS; i++) { 640 long x = atomic_long_read(&mm->rss_stat.count[i]); 641 642 if (unlikely(x)) 643 printk(KERN_ALERT "BUG: Bad rss-counter state " 644 "mm:%p idx:%d val:%ld\n", mm, i, x); 645 } 646 647 if (atomic_long_read(&mm->nr_ptes)) 648 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n", 649 atomic_long_read(&mm->nr_ptes)); 650 if (mm_nr_pmds(mm)) 651 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n", 652 mm_nr_pmds(mm)); 653 654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 655 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 656 #endif 657 } 658 659 /* 660 * Allocate and initialize an mm_struct. 661 */ 662 struct mm_struct *mm_alloc(void) 663 { 664 struct mm_struct *mm; 665 666 mm = allocate_mm(); 667 if (!mm) 668 return NULL; 669 670 memset(mm, 0, sizeof(*mm)); 671 return mm_init(mm, current); 672 } 673 674 /* 675 * Called when the last reference to the mm 676 * is dropped: either by a lazy thread or by 677 * mmput. Free the page directory and the mm. 678 */ 679 void __mmdrop(struct mm_struct *mm) 680 { 681 BUG_ON(mm == &init_mm); 682 mm_free_pgd(mm); 683 destroy_context(mm); 684 mmu_notifier_mm_destroy(mm); 685 check_mm(mm); 686 free_mm(mm); 687 } 688 EXPORT_SYMBOL_GPL(__mmdrop); 689 690 /* 691 * Decrement the use count and release all resources for an mm. 692 */ 693 void mmput(struct mm_struct *mm) 694 { 695 might_sleep(); 696 697 if (atomic_dec_and_test(&mm->mm_users)) { 698 uprobe_clear_state(mm); 699 exit_aio(mm); 700 ksm_exit(mm); 701 khugepaged_exit(mm); /* must run before exit_mmap */ 702 exit_mmap(mm); 703 set_mm_exe_file(mm, NULL); 704 if (!list_empty(&mm->mmlist)) { 705 spin_lock(&mmlist_lock); 706 list_del(&mm->mmlist); 707 spin_unlock(&mmlist_lock); 708 } 709 if (mm->binfmt) 710 module_put(mm->binfmt->module); 711 mmdrop(mm); 712 } 713 } 714 EXPORT_SYMBOL_GPL(mmput); 715 716 /** 717 * set_mm_exe_file - change a reference to the mm's executable file 718 * 719 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 720 * 721 * Main users are mmput() and sys_execve(). Callers prevent concurrent 722 * invocations: in mmput() nobody alive left, in execve task is single 723 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 724 * mm->exe_file, but does so without using set_mm_exe_file() in order 725 * to do avoid the need for any locks. 726 */ 727 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 728 { 729 struct file *old_exe_file; 730 731 /* 732 * It is safe to dereference the exe_file without RCU as 733 * this function is only called if nobody else can access 734 * this mm -- see comment above for justification. 735 */ 736 old_exe_file = rcu_dereference_raw(mm->exe_file); 737 738 if (new_exe_file) 739 get_file(new_exe_file); 740 rcu_assign_pointer(mm->exe_file, new_exe_file); 741 if (old_exe_file) 742 fput(old_exe_file); 743 } 744 745 /** 746 * get_mm_exe_file - acquire a reference to the mm's executable file 747 * 748 * Returns %NULL if mm has no associated executable file. 749 * User must release file via fput(). 750 */ 751 struct file *get_mm_exe_file(struct mm_struct *mm) 752 { 753 struct file *exe_file; 754 755 rcu_read_lock(); 756 exe_file = rcu_dereference(mm->exe_file); 757 if (exe_file && !get_file_rcu(exe_file)) 758 exe_file = NULL; 759 rcu_read_unlock(); 760 return exe_file; 761 } 762 EXPORT_SYMBOL(get_mm_exe_file); 763 764 /** 765 * get_task_mm - acquire a reference to the task's mm 766 * 767 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 768 * this kernel workthread has transiently adopted a user mm with use_mm, 769 * to do its AIO) is not set and if so returns a reference to it, after 770 * bumping up the use count. User must release the mm via mmput() 771 * after use. Typically used by /proc and ptrace. 772 */ 773 struct mm_struct *get_task_mm(struct task_struct *task) 774 { 775 struct mm_struct *mm; 776 777 task_lock(task); 778 mm = task->mm; 779 if (mm) { 780 if (task->flags & PF_KTHREAD) 781 mm = NULL; 782 else 783 atomic_inc(&mm->mm_users); 784 } 785 task_unlock(task); 786 return mm; 787 } 788 EXPORT_SYMBOL_GPL(get_task_mm); 789 790 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 791 { 792 struct mm_struct *mm; 793 int err; 794 795 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 796 if (err) 797 return ERR_PTR(err); 798 799 mm = get_task_mm(task); 800 if (mm && mm != current->mm && 801 !ptrace_may_access(task, mode)) { 802 mmput(mm); 803 mm = ERR_PTR(-EACCES); 804 } 805 mutex_unlock(&task->signal->cred_guard_mutex); 806 807 return mm; 808 } 809 810 static void complete_vfork_done(struct task_struct *tsk) 811 { 812 struct completion *vfork; 813 814 task_lock(tsk); 815 vfork = tsk->vfork_done; 816 if (likely(vfork)) { 817 tsk->vfork_done = NULL; 818 complete(vfork); 819 } 820 task_unlock(tsk); 821 } 822 823 static int wait_for_vfork_done(struct task_struct *child, 824 struct completion *vfork) 825 { 826 int killed; 827 828 freezer_do_not_count(); 829 killed = wait_for_completion_killable(vfork); 830 freezer_count(); 831 832 if (killed) { 833 task_lock(child); 834 child->vfork_done = NULL; 835 task_unlock(child); 836 } 837 838 put_task_struct(child); 839 return killed; 840 } 841 842 /* Please note the differences between mmput and mm_release. 843 * mmput is called whenever we stop holding onto a mm_struct, 844 * error success whatever. 845 * 846 * mm_release is called after a mm_struct has been removed 847 * from the current process. 848 * 849 * This difference is important for error handling, when we 850 * only half set up a mm_struct for a new process and need to restore 851 * the old one. Because we mmput the new mm_struct before 852 * restoring the old one. . . 853 * Eric Biederman 10 January 1998 854 */ 855 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 856 { 857 /* Get rid of any futexes when releasing the mm */ 858 #ifdef CONFIG_FUTEX 859 if (unlikely(tsk->robust_list)) { 860 exit_robust_list(tsk); 861 tsk->robust_list = NULL; 862 } 863 #ifdef CONFIG_COMPAT 864 if (unlikely(tsk->compat_robust_list)) { 865 compat_exit_robust_list(tsk); 866 tsk->compat_robust_list = NULL; 867 } 868 #endif 869 if (unlikely(!list_empty(&tsk->pi_state_list))) 870 exit_pi_state_list(tsk); 871 #endif 872 873 uprobe_free_utask(tsk); 874 875 /* Get rid of any cached register state */ 876 deactivate_mm(tsk, mm); 877 878 /* 879 * If we're exiting normally, clear a user-space tid field if 880 * requested. We leave this alone when dying by signal, to leave 881 * the value intact in a core dump, and to save the unnecessary 882 * trouble, say, a killed vfork parent shouldn't touch this mm. 883 * Userland only wants this done for a sys_exit. 884 */ 885 if (tsk->clear_child_tid) { 886 if (!(tsk->flags & PF_SIGNALED) && 887 atomic_read(&mm->mm_users) > 1) { 888 /* 889 * We don't check the error code - if userspace has 890 * not set up a proper pointer then tough luck. 891 */ 892 put_user(0, tsk->clear_child_tid); 893 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 894 1, NULL, NULL, 0); 895 } 896 tsk->clear_child_tid = NULL; 897 } 898 899 /* 900 * All done, finally we can wake up parent and return this mm to him. 901 * Also kthread_stop() uses this completion for synchronization. 902 */ 903 if (tsk->vfork_done) 904 complete_vfork_done(tsk); 905 } 906 907 /* 908 * Allocate a new mm structure and copy contents from the 909 * mm structure of the passed in task structure. 910 */ 911 static struct mm_struct *dup_mm(struct task_struct *tsk) 912 { 913 struct mm_struct *mm, *oldmm = current->mm; 914 int err; 915 916 mm = allocate_mm(); 917 if (!mm) 918 goto fail_nomem; 919 920 memcpy(mm, oldmm, sizeof(*mm)); 921 922 if (!mm_init(mm, tsk)) 923 goto fail_nomem; 924 925 err = dup_mmap(mm, oldmm); 926 if (err) 927 goto free_pt; 928 929 mm->hiwater_rss = get_mm_rss(mm); 930 mm->hiwater_vm = mm->total_vm; 931 932 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 933 goto free_pt; 934 935 return mm; 936 937 free_pt: 938 /* don't put binfmt in mmput, we haven't got module yet */ 939 mm->binfmt = NULL; 940 mmput(mm); 941 942 fail_nomem: 943 return NULL; 944 } 945 946 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 947 { 948 struct mm_struct *mm, *oldmm; 949 int retval; 950 951 tsk->min_flt = tsk->maj_flt = 0; 952 tsk->nvcsw = tsk->nivcsw = 0; 953 #ifdef CONFIG_DETECT_HUNG_TASK 954 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 955 #endif 956 957 tsk->mm = NULL; 958 tsk->active_mm = NULL; 959 960 /* 961 * Are we cloning a kernel thread? 962 * 963 * We need to steal a active VM for that.. 964 */ 965 oldmm = current->mm; 966 if (!oldmm) 967 return 0; 968 969 /* initialize the new vmacache entries */ 970 vmacache_flush(tsk); 971 972 if (clone_flags & CLONE_VM) { 973 atomic_inc(&oldmm->mm_users); 974 mm = oldmm; 975 goto good_mm; 976 } 977 978 retval = -ENOMEM; 979 mm = dup_mm(tsk); 980 if (!mm) 981 goto fail_nomem; 982 983 good_mm: 984 tsk->mm = mm; 985 tsk->active_mm = mm; 986 return 0; 987 988 fail_nomem: 989 return retval; 990 } 991 992 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 993 { 994 struct fs_struct *fs = current->fs; 995 if (clone_flags & CLONE_FS) { 996 /* tsk->fs is already what we want */ 997 spin_lock(&fs->lock); 998 if (fs->in_exec) { 999 spin_unlock(&fs->lock); 1000 return -EAGAIN; 1001 } 1002 fs->users++; 1003 spin_unlock(&fs->lock); 1004 return 0; 1005 } 1006 tsk->fs = copy_fs_struct(fs); 1007 if (!tsk->fs) 1008 return -ENOMEM; 1009 return 0; 1010 } 1011 1012 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1013 { 1014 struct files_struct *oldf, *newf; 1015 int error = 0; 1016 1017 /* 1018 * A background process may not have any files ... 1019 */ 1020 oldf = current->files; 1021 if (!oldf) 1022 goto out; 1023 1024 if (clone_flags & CLONE_FILES) { 1025 atomic_inc(&oldf->count); 1026 goto out; 1027 } 1028 1029 newf = dup_fd(oldf, &error); 1030 if (!newf) 1031 goto out; 1032 1033 tsk->files = newf; 1034 error = 0; 1035 out: 1036 return error; 1037 } 1038 1039 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1040 { 1041 #ifdef CONFIG_BLOCK 1042 struct io_context *ioc = current->io_context; 1043 struct io_context *new_ioc; 1044 1045 if (!ioc) 1046 return 0; 1047 /* 1048 * Share io context with parent, if CLONE_IO is set 1049 */ 1050 if (clone_flags & CLONE_IO) { 1051 ioc_task_link(ioc); 1052 tsk->io_context = ioc; 1053 } else if (ioprio_valid(ioc->ioprio)) { 1054 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1055 if (unlikely(!new_ioc)) 1056 return -ENOMEM; 1057 1058 new_ioc->ioprio = ioc->ioprio; 1059 put_io_context(new_ioc); 1060 } 1061 #endif 1062 return 0; 1063 } 1064 1065 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1066 { 1067 struct sighand_struct *sig; 1068 1069 if (clone_flags & CLONE_SIGHAND) { 1070 atomic_inc(¤t->sighand->count); 1071 return 0; 1072 } 1073 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1074 rcu_assign_pointer(tsk->sighand, sig); 1075 if (!sig) 1076 return -ENOMEM; 1077 1078 atomic_set(&sig->count, 1); 1079 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1080 return 0; 1081 } 1082 1083 void __cleanup_sighand(struct sighand_struct *sighand) 1084 { 1085 if (atomic_dec_and_test(&sighand->count)) { 1086 signalfd_cleanup(sighand); 1087 /* 1088 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it 1089 * without an RCU grace period, see __lock_task_sighand(). 1090 */ 1091 kmem_cache_free(sighand_cachep, sighand); 1092 } 1093 } 1094 1095 /* 1096 * Initialize POSIX timer handling for a thread group. 1097 */ 1098 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1099 { 1100 unsigned long cpu_limit; 1101 1102 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1103 if (cpu_limit != RLIM_INFINITY) { 1104 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1105 sig->cputimer.running = true; 1106 } 1107 1108 /* The timer lists. */ 1109 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1110 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1111 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1112 } 1113 1114 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1115 { 1116 struct signal_struct *sig; 1117 1118 if (clone_flags & CLONE_THREAD) 1119 return 0; 1120 1121 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1122 tsk->signal = sig; 1123 if (!sig) 1124 return -ENOMEM; 1125 1126 sig->nr_threads = 1; 1127 atomic_set(&sig->live, 1); 1128 atomic_set(&sig->sigcnt, 1); 1129 1130 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1131 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1132 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1133 1134 init_waitqueue_head(&sig->wait_chldexit); 1135 sig->curr_target = tsk; 1136 init_sigpending(&sig->shared_pending); 1137 INIT_LIST_HEAD(&sig->posix_timers); 1138 seqlock_init(&sig->stats_lock); 1139 prev_cputime_init(&sig->prev_cputime); 1140 1141 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1142 sig->real_timer.function = it_real_fn; 1143 1144 task_lock(current->group_leader); 1145 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1146 task_unlock(current->group_leader); 1147 1148 posix_cpu_timers_init_group(sig); 1149 1150 tty_audit_fork(sig); 1151 sched_autogroup_fork(sig); 1152 1153 #ifdef CONFIG_CGROUPS 1154 init_rwsem(&sig->group_rwsem); 1155 #endif 1156 1157 sig->oom_score_adj = current->signal->oom_score_adj; 1158 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1159 1160 sig->has_child_subreaper = current->signal->has_child_subreaper || 1161 current->signal->is_child_subreaper; 1162 1163 mutex_init(&sig->cred_guard_mutex); 1164 1165 return 0; 1166 } 1167 1168 static void copy_seccomp(struct task_struct *p) 1169 { 1170 #ifdef CONFIG_SECCOMP 1171 /* 1172 * Must be called with sighand->lock held, which is common to 1173 * all threads in the group. Holding cred_guard_mutex is not 1174 * needed because this new task is not yet running and cannot 1175 * be racing exec. 1176 */ 1177 assert_spin_locked(¤t->sighand->siglock); 1178 1179 /* Ref-count the new filter user, and assign it. */ 1180 get_seccomp_filter(current); 1181 p->seccomp = current->seccomp; 1182 1183 /* 1184 * Explicitly enable no_new_privs here in case it got set 1185 * between the task_struct being duplicated and holding the 1186 * sighand lock. The seccomp state and nnp must be in sync. 1187 */ 1188 if (task_no_new_privs(current)) 1189 task_set_no_new_privs(p); 1190 1191 /* 1192 * If the parent gained a seccomp mode after copying thread 1193 * flags and between before we held the sighand lock, we have 1194 * to manually enable the seccomp thread flag here. 1195 */ 1196 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1197 set_tsk_thread_flag(p, TIF_SECCOMP); 1198 #endif 1199 } 1200 1201 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1202 { 1203 current->clear_child_tid = tidptr; 1204 1205 return task_pid_vnr(current); 1206 } 1207 1208 static void rt_mutex_init_task(struct task_struct *p) 1209 { 1210 raw_spin_lock_init(&p->pi_lock); 1211 #ifdef CONFIG_RT_MUTEXES 1212 p->pi_waiters = RB_ROOT; 1213 p->pi_waiters_leftmost = NULL; 1214 p->pi_blocked_on = NULL; 1215 #endif 1216 } 1217 1218 /* 1219 * Initialize POSIX timer handling for a single task. 1220 */ 1221 static void posix_cpu_timers_init(struct task_struct *tsk) 1222 { 1223 tsk->cputime_expires.prof_exp = 0; 1224 tsk->cputime_expires.virt_exp = 0; 1225 tsk->cputime_expires.sched_exp = 0; 1226 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1227 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1228 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1229 } 1230 1231 static inline void 1232 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1233 { 1234 task->pids[type].pid = pid; 1235 } 1236 1237 /* 1238 * This creates a new process as a copy of the old one, 1239 * but does not actually start it yet. 1240 * 1241 * It copies the registers, and all the appropriate 1242 * parts of the process environment (as per the clone 1243 * flags). The actual kick-off is left to the caller. 1244 */ 1245 static struct task_struct *copy_process(unsigned long clone_flags, 1246 unsigned long stack_start, 1247 unsigned long stack_size, 1248 int __user *child_tidptr, 1249 struct pid *pid, 1250 int trace, 1251 unsigned long tls) 1252 { 1253 int retval; 1254 struct task_struct *p; 1255 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {}; 1256 1257 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1258 return ERR_PTR(-EINVAL); 1259 1260 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1261 return ERR_PTR(-EINVAL); 1262 1263 /* 1264 * Thread groups must share signals as well, and detached threads 1265 * can only be started up within the thread group. 1266 */ 1267 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1268 return ERR_PTR(-EINVAL); 1269 1270 /* 1271 * Shared signal handlers imply shared VM. By way of the above, 1272 * thread groups also imply shared VM. Blocking this case allows 1273 * for various simplifications in other code. 1274 */ 1275 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1276 return ERR_PTR(-EINVAL); 1277 1278 /* 1279 * Siblings of global init remain as zombies on exit since they are 1280 * not reaped by their parent (swapper). To solve this and to avoid 1281 * multi-rooted process trees, prevent global and container-inits 1282 * from creating siblings. 1283 */ 1284 if ((clone_flags & CLONE_PARENT) && 1285 current->signal->flags & SIGNAL_UNKILLABLE) 1286 return ERR_PTR(-EINVAL); 1287 1288 /* 1289 * If the new process will be in a different pid or user namespace 1290 * do not allow it to share a thread group with the forking task. 1291 */ 1292 if (clone_flags & CLONE_THREAD) { 1293 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1294 (task_active_pid_ns(current) != 1295 current->nsproxy->pid_ns_for_children)) 1296 return ERR_PTR(-EINVAL); 1297 } 1298 1299 retval = security_task_create(clone_flags); 1300 if (retval) 1301 goto fork_out; 1302 1303 retval = -ENOMEM; 1304 p = dup_task_struct(current); 1305 if (!p) 1306 goto fork_out; 1307 1308 ftrace_graph_init_task(p); 1309 1310 rt_mutex_init_task(p); 1311 1312 #ifdef CONFIG_PROVE_LOCKING 1313 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1314 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1315 #endif 1316 retval = -EAGAIN; 1317 if (atomic_read(&p->real_cred->user->processes) >= 1318 task_rlimit(p, RLIMIT_NPROC)) { 1319 if (p->real_cred->user != INIT_USER && 1320 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1321 goto bad_fork_free; 1322 } 1323 current->flags &= ~PF_NPROC_EXCEEDED; 1324 1325 retval = copy_creds(p, clone_flags); 1326 if (retval < 0) 1327 goto bad_fork_free; 1328 1329 /* 1330 * If multiple threads are within copy_process(), then this check 1331 * triggers too late. This doesn't hurt, the check is only there 1332 * to stop root fork bombs. 1333 */ 1334 retval = -EAGAIN; 1335 if (nr_threads >= max_threads) 1336 goto bad_fork_cleanup_count; 1337 1338 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1339 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1340 p->flags |= PF_FORKNOEXEC; 1341 INIT_LIST_HEAD(&p->children); 1342 INIT_LIST_HEAD(&p->sibling); 1343 rcu_copy_process(p); 1344 p->vfork_done = NULL; 1345 spin_lock_init(&p->alloc_lock); 1346 1347 init_sigpending(&p->pending); 1348 1349 p->utime = p->stime = p->gtime = 0; 1350 p->utimescaled = p->stimescaled = 0; 1351 prev_cputime_init(&p->prev_cputime); 1352 1353 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1354 seqlock_init(&p->vtime_seqlock); 1355 p->vtime_snap = 0; 1356 p->vtime_snap_whence = VTIME_SLEEPING; 1357 #endif 1358 1359 #if defined(SPLIT_RSS_COUNTING) 1360 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1361 #endif 1362 1363 p->default_timer_slack_ns = current->timer_slack_ns; 1364 1365 task_io_accounting_init(&p->ioac); 1366 acct_clear_integrals(p); 1367 1368 posix_cpu_timers_init(p); 1369 1370 p->start_time = ktime_get_ns(); 1371 p->real_start_time = ktime_get_boot_ns(); 1372 p->io_context = NULL; 1373 p->audit_context = NULL; 1374 if (clone_flags & CLONE_THREAD) 1375 threadgroup_change_begin(current); 1376 cgroup_fork(p); 1377 #ifdef CONFIG_NUMA 1378 p->mempolicy = mpol_dup(p->mempolicy); 1379 if (IS_ERR(p->mempolicy)) { 1380 retval = PTR_ERR(p->mempolicy); 1381 p->mempolicy = NULL; 1382 goto bad_fork_cleanup_threadgroup_lock; 1383 } 1384 #endif 1385 #ifdef CONFIG_CPUSETS 1386 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1387 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1388 seqcount_init(&p->mems_allowed_seq); 1389 #endif 1390 #ifdef CONFIG_TRACE_IRQFLAGS 1391 p->irq_events = 0; 1392 p->hardirqs_enabled = 0; 1393 p->hardirq_enable_ip = 0; 1394 p->hardirq_enable_event = 0; 1395 p->hardirq_disable_ip = _THIS_IP_; 1396 p->hardirq_disable_event = 0; 1397 p->softirqs_enabled = 1; 1398 p->softirq_enable_ip = _THIS_IP_; 1399 p->softirq_enable_event = 0; 1400 p->softirq_disable_ip = 0; 1401 p->softirq_disable_event = 0; 1402 p->hardirq_context = 0; 1403 p->softirq_context = 0; 1404 #endif 1405 1406 p->pagefault_disabled = 0; 1407 1408 #ifdef CONFIG_LOCKDEP 1409 p->lockdep_depth = 0; /* no locks held yet */ 1410 p->curr_chain_key = 0; 1411 p->lockdep_recursion = 0; 1412 #endif 1413 1414 #ifdef CONFIG_DEBUG_MUTEXES 1415 p->blocked_on = NULL; /* not blocked yet */ 1416 #endif 1417 #ifdef CONFIG_BCACHE 1418 p->sequential_io = 0; 1419 p->sequential_io_avg = 0; 1420 #endif 1421 1422 /* Perform scheduler related setup. Assign this task to a CPU. */ 1423 retval = sched_fork(clone_flags, p); 1424 if (retval) 1425 goto bad_fork_cleanup_policy; 1426 1427 retval = perf_event_init_task(p); 1428 if (retval) 1429 goto bad_fork_cleanup_policy; 1430 retval = audit_alloc(p); 1431 if (retval) 1432 goto bad_fork_cleanup_perf; 1433 /* copy all the process information */ 1434 shm_init_task(p); 1435 retval = copy_semundo(clone_flags, p); 1436 if (retval) 1437 goto bad_fork_cleanup_audit; 1438 retval = copy_files(clone_flags, p); 1439 if (retval) 1440 goto bad_fork_cleanup_semundo; 1441 retval = copy_fs(clone_flags, p); 1442 if (retval) 1443 goto bad_fork_cleanup_files; 1444 retval = copy_sighand(clone_flags, p); 1445 if (retval) 1446 goto bad_fork_cleanup_fs; 1447 retval = copy_signal(clone_flags, p); 1448 if (retval) 1449 goto bad_fork_cleanup_sighand; 1450 retval = copy_mm(clone_flags, p); 1451 if (retval) 1452 goto bad_fork_cleanup_signal; 1453 retval = copy_namespaces(clone_flags, p); 1454 if (retval) 1455 goto bad_fork_cleanup_mm; 1456 retval = copy_io(clone_flags, p); 1457 if (retval) 1458 goto bad_fork_cleanup_namespaces; 1459 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 1460 if (retval) 1461 goto bad_fork_cleanup_io; 1462 1463 if (pid != &init_struct_pid) { 1464 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1465 if (IS_ERR(pid)) { 1466 retval = PTR_ERR(pid); 1467 goto bad_fork_cleanup_io; 1468 } 1469 } 1470 1471 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1472 /* 1473 * Clear TID on mm_release()? 1474 */ 1475 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1476 #ifdef CONFIG_BLOCK 1477 p->plug = NULL; 1478 #endif 1479 #ifdef CONFIG_FUTEX 1480 p->robust_list = NULL; 1481 #ifdef CONFIG_COMPAT 1482 p->compat_robust_list = NULL; 1483 #endif 1484 INIT_LIST_HEAD(&p->pi_state_list); 1485 p->pi_state_cache = NULL; 1486 #endif 1487 /* 1488 * sigaltstack should be cleared when sharing the same VM 1489 */ 1490 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1491 p->sas_ss_sp = p->sas_ss_size = 0; 1492 1493 /* 1494 * Syscall tracing and stepping should be turned off in the 1495 * child regardless of CLONE_PTRACE. 1496 */ 1497 user_disable_single_step(p); 1498 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1499 #ifdef TIF_SYSCALL_EMU 1500 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1501 #endif 1502 clear_all_latency_tracing(p); 1503 1504 /* ok, now we should be set up.. */ 1505 p->pid = pid_nr(pid); 1506 if (clone_flags & CLONE_THREAD) { 1507 p->exit_signal = -1; 1508 p->group_leader = current->group_leader; 1509 p->tgid = current->tgid; 1510 } else { 1511 if (clone_flags & CLONE_PARENT) 1512 p->exit_signal = current->group_leader->exit_signal; 1513 else 1514 p->exit_signal = (clone_flags & CSIGNAL); 1515 p->group_leader = p; 1516 p->tgid = p->pid; 1517 } 1518 1519 p->nr_dirtied = 0; 1520 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1521 p->dirty_paused_when = 0; 1522 1523 p->pdeath_signal = 0; 1524 INIT_LIST_HEAD(&p->thread_group); 1525 p->task_works = NULL; 1526 1527 /* 1528 * Ensure that the cgroup subsystem policies allow the new process to be 1529 * forked. It should be noted the the new process's css_set can be changed 1530 * between here and cgroup_post_fork() if an organisation operation is in 1531 * progress. 1532 */ 1533 retval = cgroup_can_fork(p, cgrp_ss_priv); 1534 if (retval) 1535 goto bad_fork_free_pid; 1536 1537 /* 1538 * Make it visible to the rest of the system, but dont wake it up yet. 1539 * Need tasklist lock for parent etc handling! 1540 */ 1541 write_lock_irq(&tasklist_lock); 1542 1543 /* CLONE_PARENT re-uses the old parent */ 1544 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1545 p->real_parent = current->real_parent; 1546 p->parent_exec_id = current->parent_exec_id; 1547 } else { 1548 p->real_parent = current; 1549 p->parent_exec_id = current->self_exec_id; 1550 } 1551 1552 spin_lock(¤t->sighand->siglock); 1553 1554 /* 1555 * Copy seccomp details explicitly here, in case they were changed 1556 * before holding sighand lock. 1557 */ 1558 copy_seccomp(p); 1559 1560 /* 1561 * Process group and session signals need to be delivered to just the 1562 * parent before the fork or both the parent and the child after the 1563 * fork. Restart if a signal comes in before we add the new process to 1564 * it's process group. 1565 * A fatal signal pending means that current will exit, so the new 1566 * thread can't slip out of an OOM kill (or normal SIGKILL). 1567 */ 1568 recalc_sigpending(); 1569 if (signal_pending(current)) { 1570 spin_unlock(¤t->sighand->siglock); 1571 write_unlock_irq(&tasklist_lock); 1572 retval = -ERESTARTNOINTR; 1573 goto bad_fork_cancel_cgroup; 1574 } 1575 1576 if (likely(p->pid)) { 1577 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1578 1579 init_task_pid(p, PIDTYPE_PID, pid); 1580 if (thread_group_leader(p)) { 1581 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1582 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1583 1584 if (is_child_reaper(pid)) { 1585 ns_of_pid(pid)->child_reaper = p; 1586 p->signal->flags |= SIGNAL_UNKILLABLE; 1587 } 1588 1589 p->signal->leader_pid = pid; 1590 p->signal->tty = tty_kref_get(current->signal->tty); 1591 list_add_tail(&p->sibling, &p->real_parent->children); 1592 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1593 attach_pid(p, PIDTYPE_PGID); 1594 attach_pid(p, PIDTYPE_SID); 1595 __this_cpu_inc(process_counts); 1596 } else { 1597 current->signal->nr_threads++; 1598 atomic_inc(¤t->signal->live); 1599 atomic_inc(¤t->signal->sigcnt); 1600 list_add_tail_rcu(&p->thread_group, 1601 &p->group_leader->thread_group); 1602 list_add_tail_rcu(&p->thread_node, 1603 &p->signal->thread_head); 1604 } 1605 attach_pid(p, PIDTYPE_PID); 1606 nr_threads++; 1607 } 1608 1609 total_forks++; 1610 spin_unlock(¤t->sighand->siglock); 1611 syscall_tracepoint_update(p); 1612 write_unlock_irq(&tasklist_lock); 1613 1614 proc_fork_connector(p); 1615 cgroup_post_fork(p, cgrp_ss_priv); 1616 if (clone_flags & CLONE_THREAD) 1617 threadgroup_change_end(current); 1618 perf_event_fork(p); 1619 1620 trace_task_newtask(p, clone_flags); 1621 uprobe_copy_process(p, clone_flags); 1622 1623 return p; 1624 1625 bad_fork_cancel_cgroup: 1626 cgroup_cancel_fork(p, cgrp_ss_priv); 1627 bad_fork_free_pid: 1628 if (pid != &init_struct_pid) 1629 free_pid(pid); 1630 bad_fork_cleanup_io: 1631 if (p->io_context) 1632 exit_io_context(p); 1633 bad_fork_cleanup_namespaces: 1634 exit_task_namespaces(p); 1635 bad_fork_cleanup_mm: 1636 if (p->mm) 1637 mmput(p->mm); 1638 bad_fork_cleanup_signal: 1639 if (!(clone_flags & CLONE_THREAD)) 1640 free_signal_struct(p->signal); 1641 bad_fork_cleanup_sighand: 1642 __cleanup_sighand(p->sighand); 1643 bad_fork_cleanup_fs: 1644 exit_fs(p); /* blocking */ 1645 bad_fork_cleanup_files: 1646 exit_files(p); /* blocking */ 1647 bad_fork_cleanup_semundo: 1648 exit_sem(p); 1649 bad_fork_cleanup_audit: 1650 audit_free(p); 1651 bad_fork_cleanup_perf: 1652 perf_event_free_task(p); 1653 bad_fork_cleanup_policy: 1654 #ifdef CONFIG_NUMA 1655 mpol_put(p->mempolicy); 1656 bad_fork_cleanup_threadgroup_lock: 1657 #endif 1658 if (clone_flags & CLONE_THREAD) 1659 threadgroup_change_end(current); 1660 delayacct_tsk_free(p); 1661 bad_fork_cleanup_count: 1662 atomic_dec(&p->cred->user->processes); 1663 exit_creds(p); 1664 bad_fork_free: 1665 free_task(p); 1666 fork_out: 1667 return ERR_PTR(retval); 1668 } 1669 1670 static inline void init_idle_pids(struct pid_link *links) 1671 { 1672 enum pid_type type; 1673 1674 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1675 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1676 links[type].pid = &init_struct_pid; 1677 } 1678 } 1679 1680 struct task_struct *fork_idle(int cpu) 1681 { 1682 struct task_struct *task; 1683 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0); 1684 if (!IS_ERR(task)) { 1685 init_idle_pids(task->pids); 1686 init_idle(task, cpu); 1687 } 1688 1689 return task; 1690 } 1691 1692 /* 1693 * Ok, this is the main fork-routine. 1694 * 1695 * It copies the process, and if successful kick-starts 1696 * it and waits for it to finish using the VM if required. 1697 */ 1698 long _do_fork(unsigned long clone_flags, 1699 unsigned long stack_start, 1700 unsigned long stack_size, 1701 int __user *parent_tidptr, 1702 int __user *child_tidptr, 1703 unsigned long tls) 1704 { 1705 struct task_struct *p; 1706 int trace = 0; 1707 long nr; 1708 1709 /* 1710 * Determine whether and which event to report to ptracer. When 1711 * called from kernel_thread or CLONE_UNTRACED is explicitly 1712 * requested, no event is reported; otherwise, report if the event 1713 * for the type of forking is enabled. 1714 */ 1715 if (!(clone_flags & CLONE_UNTRACED)) { 1716 if (clone_flags & CLONE_VFORK) 1717 trace = PTRACE_EVENT_VFORK; 1718 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1719 trace = PTRACE_EVENT_CLONE; 1720 else 1721 trace = PTRACE_EVENT_FORK; 1722 1723 if (likely(!ptrace_event_enabled(current, trace))) 1724 trace = 0; 1725 } 1726 1727 p = copy_process(clone_flags, stack_start, stack_size, 1728 child_tidptr, NULL, trace, tls); 1729 /* 1730 * Do this prior waking up the new thread - the thread pointer 1731 * might get invalid after that point, if the thread exits quickly. 1732 */ 1733 if (!IS_ERR(p)) { 1734 struct completion vfork; 1735 struct pid *pid; 1736 1737 trace_sched_process_fork(current, p); 1738 1739 pid = get_task_pid(p, PIDTYPE_PID); 1740 nr = pid_vnr(pid); 1741 1742 if (clone_flags & CLONE_PARENT_SETTID) 1743 put_user(nr, parent_tidptr); 1744 1745 if (clone_flags & CLONE_VFORK) { 1746 p->vfork_done = &vfork; 1747 init_completion(&vfork); 1748 get_task_struct(p); 1749 } 1750 1751 wake_up_new_task(p); 1752 1753 /* forking complete and child started to run, tell ptracer */ 1754 if (unlikely(trace)) 1755 ptrace_event_pid(trace, pid); 1756 1757 if (clone_flags & CLONE_VFORK) { 1758 if (!wait_for_vfork_done(p, &vfork)) 1759 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1760 } 1761 1762 put_pid(pid); 1763 } else { 1764 nr = PTR_ERR(p); 1765 } 1766 return nr; 1767 } 1768 1769 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 1770 /* For compatibility with architectures that call do_fork directly rather than 1771 * using the syscall entry points below. */ 1772 long do_fork(unsigned long clone_flags, 1773 unsigned long stack_start, 1774 unsigned long stack_size, 1775 int __user *parent_tidptr, 1776 int __user *child_tidptr) 1777 { 1778 return _do_fork(clone_flags, stack_start, stack_size, 1779 parent_tidptr, child_tidptr, 0); 1780 } 1781 #endif 1782 1783 /* 1784 * Create a kernel thread. 1785 */ 1786 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1787 { 1788 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1789 (unsigned long)arg, NULL, NULL, 0); 1790 } 1791 1792 #ifdef __ARCH_WANT_SYS_FORK 1793 SYSCALL_DEFINE0(fork) 1794 { 1795 #ifdef CONFIG_MMU 1796 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 1797 #else 1798 /* can not support in nommu mode */ 1799 return -EINVAL; 1800 #endif 1801 } 1802 #endif 1803 1804 #ifdef __ARCH_WANT_SYS_VFORK 1805 SYSCALL_DEFINE0(vfork) 1806 { 1807 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1808 0, NULL, NULL, 0); 1809 } 1810 #endif 1811 1812 #ifdef __ARCH_WANT_SYS_CLONE 1813 #ifdef CONFIG_CLONE_BACKWARDS 1814 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1815 int __user *, parent_tidptr, 1816 unsigned long, tls, 1817 int __user *, child_tidptr) 1818 #elif defined(CONFIG_CLONE_BACKWARDS2) 1819 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1820 int __user *, parent_tidptr, 1821 int __user *, child_tidptr, 1822 unsigned long, tls) 1823 #elif defined(CONFIG_CLONE_BACKWARDS3) 1824 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1825 int, stack_size, 1826 int __user *, parent_tidptr, 1827 int __user *, child_tidptr, 1828 unsigned long, tls) 1829 #else 1830 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1831 int __user *, parent_tidptr, 1832 int __user *, child_tidptr, 1833 unsigned long, tls) 1834 #endif 1835 { 1836 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 1837 } 1838 #endif 1839 1840 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1841 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1842 #endif 1843 1844 static void sighand_ctor(void *data) 1845 { 1846 struct sighand_struct *sighand = data; 1847 1848 spin_lock_init(&sighand->siglock); 1849 init_waitqueue_head(&sighand->signalfd_wqh); 1850 } 1851 1852 void __init proc_caches_init(void) 1853 { 1854 sighand_cachep = kmem_cache_create("sighand_cache", 1855 sizeof(struct sighand_struct), 0, 1856 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1857 SLAB_NOTRACK, sighand_ctor); 1858 signal_cachep = kmem_cache_create("signal_cache", 1859 sizeof(struct signal_struct), 0, 1860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1861 files_cachep = kmem_cache_create("files_cache", 1862 sizeof(struct files_struct), 0, 1863 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1864 fs_cachep = kmem_cache_create("fs_cache", 1865 sizeof(struct fs_struct), 0, 1866 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1867 /* 1868 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1869 * whole struct cpumask for the OFFSTACK case. We could change 1870 * this to *only* allocate as much of it as required by the 1871 * maximum number of CPU's we can ever have. The cpumask_allocation 1872 * is at the end of the structure, exactly for that reason. 1873 */ 1874 mm_cachep = kmem_cache_create("mm_struct", 1875 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1876 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1877 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1878 mmap_init(); 1879 nsproxy_cache_init(); 1880 } 1881 1882 /* 1883 * Check constraints on flags passed to the unshare system call. 1884 */ 1885 static int check_unshare_flags(unsigned long unshare_flags) 1886 { 1887 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1888 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1889 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1890 CLONE_NEWUSER|CLONE_NEWPID)) 1891 return -EINVAL; 1892 /* 1893 * Not implemented, but pretend it works if there is nothing 1894 * to unshare. Note that unsharing the address space or the 1895 * signal handlers also need to unshare the signal queues (aka 1896 * CLONE_THREAD). 1897 */ 1898 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1899 if (!thread_group_empty(current)) 1900 return -EINVAL; 1901 } 1902 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 1903 if (atomic_read(¤t->sighand->count) > 1) 1904 return -EINVAL; 1905 } 1906 if (unshare_flags & CLONE_VM) { 1907 if (!current_is_single_threaded()) 1908 return -EINVAL; 1909 } 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * Unshare the filesystem structure if it is being shared 1916 */ 1917 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1918 { 1919 struct fs_struct *fs = current->fs; 1920 1921 if (!(unshare_flags & CLONE_FS) || !fs) 1922 return 0; 1923 1924 /* don't need lock here; in the worst case we'll do useless copy */ 1925 if (fs->users == 1) 1926 return 0; 1927 1928 *new_fsp = copy_fs_struct(fs); 1929 if (!*new_fsp) 1930 return -ENOMEM; 1931 1932 return 0; 1933 } 1934 1935 /* 1936 * Unshare file descriptor table if it is being shared 1937 */ 1938 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1939 { 1940 struct files_struct *fd = current->files; 1941 int error = 0; 1942 1943 if ((unshare_flags & CLONE_FILES) && 1944 (fd && atomic_read(&fd->count) > 1)) { 1945 *new_fdp = dup_fd(fd, &error); 1946 if (!*new_fdp) 1947 return error; 1948 } 1949 1950 return 0; 1951 } 1952 1953 /* 1954 * unshare allows a process to 'unshare' part of the process 1955 * context which was originally shared using clone. copy_* 1956 * functions used by do_fork() cannot be used here directly 1957 * because they modify an inactive task_struct that is being 1958 * constructed. Here we are modifying the current, active, 1959 * task_struct. 1960 */ 1961 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1962 { 1963 struct fs_struct *fs, *new_fs = NULL; 1964 struct files_struct *fd, *new_fd = NULL; 1965 struct cred *new_cred = NULL; 1966 struct nsproxy *new_nsproxy = NULL; 1967 int do_sysvsem = 0; 1968 int err; 1969 1970 /* 1971 * If unsharing a user namespace must also unshare the thread group 1972 * and unshare the filesystem root and working directories. 1973 */ 1974 if (unshare_flags & CLONE_NEWUSER) 1975 unshare_flags |= CLONE_THREAD | CLONE_FS; 1976 /* 1977 * If unsharing vm, must also unshare signal handlers. 1978 */ 1979 if (unshare_flags & CLONE_VM) 1980 unshare_flags |= CLONE_SIGHAND; 1981 /* 1982 * If unsharing a signal handlers, must also unshare the signal queues. 1983 */ 1984 if (unshare_flags & CLONE_SIGHAND) 1985 unshare_flags |= CLONE_THREAD; 1986 /* 1987 * If unsharing namespace, must also unshare filesystem information. 1988 */ 1989 if (unshare_flags & CLONE_NEWNS) 1990 unshare_flags |= CLONE_FS; 1991 1992 err = check_unshare_flags(unshare_flags); 1993 if (err) 1994 goto bad_unshare_out; 1995 /* 1996 * CLONE_NEWIPC must also detach from the undolist: after switching 1997 * to a new ipc namespace, the semaphore arrays from the old 1998 * namespace are unreachable. 1999 */ 2000 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2001 do_sysvsem = 1; 2002 err = unshare_fs(unshare_flags, &new_fs); 2003 if (err) 2004 goto bad_unshare_out; 2005 err = unshare_fd(unshare_flags, &new_fd); 2006 if (err) 2007 goto bad_unshare_cleanup_fs; 2008 err = unshare_userns(unshare_flags, &new_cred); 2009 if (err) 2010 goto bad_unshare_cleanup_fd; 2011 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2012 new_cred, new_fs); 2013 if (err) 2014 goto bad_unshare_cleanup_cred; 2015 2016 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2017 if (do_sysvsem) { 2018 /* 2019 * CLONE_SYSVSEM is equivalent to sys_exit(). 2020 */ 2021 exit_sem(current); 2022 } 2023 if (unshare_flags & CLONE_NEWIPC) { 2024 /* Orphan segments in old ns (see sem above). */ 2025 exit_shm(current); 2026 shm_init_task(current); 2027 } 2028 2029 if (new_nsproxy) 2030 switch_task_namespaces(current, new_nsproxy); 2031 2032 task_lock(current); 2033 2034 if (new_fs) { 2035 fs = current->fs; 2036 spin_lock(&fs->lock); 2037 current->fs = new_fs; 2038 if (--fs->users) 2039 new_fs = NULL; 2040 else 2041 new_fs = fs; 2042 spin_unlock(&fs->lock); 2043 } 2044 2045 if (new_fd) { 2046 fd = current->files; 2047 current->files = new_fd; 2048 new_fd = fd; 2049 } 2050 2051 task_unlock(current); 2052 2053 if (new_cred) { 2054 /* Install the new user namespace */ 2055 commit_creds(new_cred); 2056 new_cred = NULL; 2057 } 2058 } 2059 2060 bad_unshare_cleanup_cred: 2061 if (new_cred) 2062 put_cred(new_cred); 2063 bad_unshare_cleanup_fd: 2064 if (new_fd) 2065 put_files_struct(new_fd); 2066 2067 bad_unshare_cleanup_fs: 2068 if (new_fs) 2069 free_fs_struct(new_fs); 2070 2071 bad_unshare_out: 2072 return err; 2073 } 2074 2075 /* 2076 * Helper to unshare the files of the current task. 2077 * We don't want to expose copy_files internals to 2078 * the exec layer of the kernel. 2079 */ 2080 2081 int unshare_files(struct files_struct **displaced) 2082 { 2083 struct task_struct *task = current; 2084 struct files_struct *copy = NULL; 2085 int error; 2086 2087 error = unshare_fd(CLONE_FILES, ©); 2088 if (error || !copy) { 2089 *displaced = NULL; 2090 return error; 2091 } 2092 *displaced = task->files; 2093 task_lock(task); 2094 task->files = copy; 2095 task_unlock(task); 2096 return 0; 2097 } 2098 2099 int sysctl_max_threads(struct ctl_table *table, int write, 2100 void __user *buffer, size_t *lenp, loff_t *ppos) 2101 { 2102 struct ctl_table t; 2103 int ret; 2104 int threads = max_threads; 2105 int min = MIN_THREADS; 2106 int max = MAX_THREADS; 2107 2108 t = *table; 2109 t.data = &threads; 2110 t.extra1 = &min; 2111 t.extra2 = &max; 2112 2113 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2114 if (ret || !write) 2115 return ret; 2116 2117 set_max_threads(threads); 2118 2119 return 0; 2120 } 2121