xref: /openbmc/linux/kernel/fork.c (revision bf53de907dfdaac178c92d774aae7370d7b97d20)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64 
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71 
72 /*
73  * Protected counters by write_lock_irq(&tasklist_lock)
74  */
75 unsigned long total_forks;	/* Handle normal Linux uptimes. */
76 int nr_threads; 		/* The idle threads do not count.. */
77 
78 int max_threads;		/* tunable limit on nr_threads */
79 
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81 
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
83 
84 DEFINE_TRACE(sched_process_fork);
85 
86 int nr_processes(void)
87 {
88 	int cpu;
89 	int total = 0;
90 
91 	for_each_online_cpu(cpu)
92 		total += per_cpu(process_counts, cpu);
93 
94 	return total;
95 }
96 
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102 
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 	gfp_t mask = GFP_KERNEL;
110 #endif
111 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113 
114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119 
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122 
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125 
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128 
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131 
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134 
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137 
138 void free_task(struct task_struct *tsk)
139 {
140 	prop_local_destroy_single(&tsk->dirties);
141 	free_thread_info(tsk->stack);
142 	rt_mutex_debug_task_free(tsk);
143 	ftrace_graph_exit_task(tsk);
144 	free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147 
148 void __put_task_struct(struct task_struct *tsk)
149 {
150 	WARN_ON(!tsk->exit_state);
151 	WARN_ON(atomic_read(&tsk->usage));
152 	WARN_ON(tsk == current);
153 
154 	security_task_free(tsk);
155 	free_uid(tsk->user);
156 	put_group_info(tsk->group_info);
157 	delayacct_tsk_free(tsk);
158 
159 	if (!profile_handoff_task(tsk))
160 		free_task(tsk);
161 }
162 
163 /*
164  * macro override instead of weak attribute alias, to workaround
165  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166  */
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
170 
171 void __init fork_init(unsigned long mempages)
172 {
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
176 #endif
177 	/* create a slab on which task_structs can be allocated */
178 	task_struct_cachep =
179 		kmem_cache_create("task_struct", sizeof(struct task_struct),
180 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
181 #endif
182 
183 	/* do the arch specific task caches init */
184 	arch_task_cache_init();
185 
186 	/*
187 	 * The default maximum number of threads is set to a safe
188 	 * value: the thread structures can take up at most half
189 	 * of memory.
190 	 */
191 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
192 
193 	/*
194 	 * we need to allow at least 20 threads to boot a system
195 	 */
196 	if(max_threads < 20)
197 		max_threads = 20;
198 
199 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 		init_task.signal->rlim[RLIMIT_NPROC];
203 }
204 
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 					       struct task_struct *src)
207 {
208 	*dst = *src;
209 	return 0;
210 }
211 
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 {
214 	struct task_struct *tsk;
215 	struct thread_info *ti;
216 	int err;
217 
218 	prepare_to_copy(orig);
219 
220 	tsk = alloc_task_struct();
221 	if (!tsk)
222 		return NULL;
223 
224 	ti = alloc_thread_info(tsk);
225 	if (!ti) {
226 		free_task_struct(tsk);
227 		return NULL;
228 	}
229 
230  	err = arch_dup_task_struct(tsk, orig);
231 	if (err)
232 		goto out;
233 
234 	tsk->stack = ti;
235 
236 	err = prop_local_init_single(&tsk->dirties);
237 	if (err)
238 		goto out;
239 
240 	setup_thread_stack(tsk, orig);
241 
242 #ifdef CONFIG_CC_STACKPROTECTOR
243 	tsk->stack_canary = get_random_int();
244 #endif
245 
246 	/* One for us, one for whoever does the "release_task()" (usually parent) */
247 	atomic_set(&tsk->usage,2);
248 	atomic_set(&tsk->fs_excl, 0);
249 #ifdef CONFIG_BLK_DEV_IO_TRACE
250 	tsk->btrace_seq = 0;
251 #endif
252 	tsk->splice_pipe = NULL;
253 	return tsk;
254 
255 out:
256 	free_thread_info(ti);
257 	free_task_struct(tsk);
258 	return NULL;
259 }
260 
261 #ifdef CONFIG_MMU
262 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
263 {
264 	struct vm_area_struct *mpnt, *tmp, **pprev;
265 	struct rb_node **rb_link, *rb_parent;
266 	int retval;
267 	unsigned long charge;
268 	struct mempolicy *pol;
269 
270 	down_write(&oldmm->mmap_sem);
271 	flush_cache_dup_mm(oldmm);
272 	/*
273 	 * Not linked in yet - no deadlock potential:
274 	 */
275 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
276 
277 	mm->locked_vm = 0;
278 	mm->mmap = NULL;
279 	mm->mmap_cache = NULL;
280 	mm->free_area_cache = oldmm->mmap_base;
281 	mm->cached_hole_size = ~0UL;
282 	mm->map_count = 0;
283 	cpus_clear(mm->cpu_vm_mask);
284 	mm->mm_rb = RB_ROOT;
285 	rb_link = &mm->mm_rb.rb_node;
286 	rb_parent = NULL;
287 	pprev = &mm->mmap;
288 
289 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
290 		struct file *file;
291 
292 		if (mpnt->vm_flags & VM_DONTCOPY) {
293 			long pages = vma_pages(mpnt);
294 			mm->total_vm -= pages;
295 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
296 								-pages);
297 			continue;
298 		}
299 		charge = 0;
300 		if (mpnt->vm_flags & VM_ACCOUNT) {
301 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
302 			if (security_vm_enough_memory(len))
303 				goto fail_nomem;
304 			charge = len;
305 		}
306 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
307 		if (!tmp)
308 			goto fail_nomem;
309 		*tmp = *mpnt;
310 		pol = mpol_dup(vma_policy(mpnt));
311 		retval = PTR_ERR(pol);
312 		if (IS_ERR(pol))
313 			goto fail_nomem_policy;
314 		vma_set_policy(tmp, pol);
315 		tmp->vm_flags &= ~VM_LOCKED;
316 		tmp->vm_mm = mm;
317 		tmp->vm_next = NULL;
318 		anon_vma_link(tmp);
319 		file = tmp->vm_file;
320 		if (file) {
321 			struct inode *inode = file->f_path.dentry->d_inode;
322 			struct address_space *mapping = file->f_mapping;
323 
324 			get_file(file);
325 			if (tmp->vm_flags & VM_DENYWRITE)
326 				atomic_dec(&inode->i_writecount);
327 			spin_lock(&mapping->i_mmap_lock);
328 			if (tmp->vm_flags & VM_SHARED)
329 				mapping->i_mmap_writable++;
330 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
331 			flush_dcache_mmap_lock(mapping);
332 			/* insert tmp into the share list, just after mpnt */
333 			vma_prio_tree_add(tmp, mpnt);
334 			flush_dcache_mmap_unlock(mapping);
335 			spin_unlock(&mapping->i_mmap_lock);
336 		}
337 
338 		/*
339 		 * Clear hugetlb-related page reserves for children. This only
340 		 * affects MAP_PRIVATE mappings. Faults generated by the child
341 		 * are not guaranteed to succeed, even if read-only
342 		 */
343 		if (is_vm_hugetlb_page(tmp))
344 			reset_vma_resv_huge_pages(tmp);
345 
346 		/*
347 		 * Link in the new vma and copy the page table entries.
348 		 */
349 		*pprev = tmp;
350 		pprev = &tmp->vm_next;
351 
352 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
353 		rb_link = &tmp->vm_rb.rb_right;
354 		rb_parent = &tmp->vm_rb;
355 
356 		mm->map_count++;
357 		retval = copy_page_range(mm, oldmm, mpnt);
358 
359 		if (tmp->vm_ops && tmp->vm_ops->open)
360 			tmp->vm_ops->open(tmp);
361 
362 		if (retval)
363 			goto out;
364 	}
365 	/* a new mm has just been created */
366 	arch_dup_mmap(oldmm, mm);
367 	retval = 0;
368 out:
369 	up_write(&mm->mmap_sem);
370 	flush_tlb_mm(oldmm);
371 	up_write(&oldmm->mmap_sem);
372 	return retval;
373 fail_nomem_policy:
374 	kmem_cache_free(vm_area_cachep, tmp);
375 fail_nomem:
376 	retval = -ENOMEM;
377 	vm_unacct_memory(charge);
378 	goto out;
379 }
380 
381 static inline int mm_alloc_pgd(struct mm_struct * mm)
382 {
383 	mm->pgd = pgd_alloc(mm);
384 	if (unlikely(!mm->pgd))
385 		return -ENOMEM;
386 	return 0;
387 }
388 
389 static inline void mm_free_pgd(struct mm_struct * mm)
390 {
391 	pgd_free(mm, mm->pgd);
392 }
393 #else
394 #define dup_mmap(mm, oldmm)	(0)
395 #define mm_alloc_pgd(mm)	(0)
396 #define mm_free_pgd(mm)
397 #endif /* CONFIG_MMU */
398 
399 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
400 
401 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
402 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
403 
404 #include <linux/init_task.h>
405 
406 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
407 {
408 	atomic_set(&mm->mm_users, 1);
409 	atomic_set(&mm->mm_count, 1);
410 	init_rwsem(&mm->mmap_sem);
411 	INIT_LIST_HEAD(&mm->mmlist);
412 	mm->flags = (current->mm) ? current->mm->flags
413 				  : MMF_DUMP_FILTER_DEFAULT;
414 	mm->core_state = NULL;
415 	mm->nr_ptes = 0;
416 	set_mm_counter(mm, file_rss, 0);
417 	set_mm_counter(mm, anon_rss, 0);
418 	spin_lock_init(&mm->page_table_lock);
419 	rwlock_init(&mm->ioctx_list_lock);
420 	mm->ioctx_list = NULL;
421 	mm->free_area_cache = TASK_UNMAPPED_BASE;
422 	mm->cached_hole_size = ~0UL;
423 	mm_init_owner(mm, p);
424 
425 	if (likely(!mm_alloc_pgd(mm))) {
426 		mm->def_flags = 0;
427 		mmu_notifier_mm_init(mm);
428 		return mm;
429 	}
430 
431 	free_mm(mm);
432 	return NULL;
433 }
434 
435 /*
436  * Allocate and initialize an mm_struct.
437  */
438 struct mm_struct * mm_alloc(void)
439 {
440 	struct mm_struct * mm;
441 
442 	mm = allocate_mm();
443 	if (mm) {
444 		memset(mm, 0, sizeof(*mm));
445 		mm = mm_init(mm, current);
446 	}
447 	return mm;
448 }
449 
450 /*
451  * Called when the last reference to the mm
452  * is dropped: either by a lazy thread or by
453  * mmput. Free the page directory and the mm.
454  */
455 void __mmdrop(struct mm_struct *mm)
456 {
457 	BUG_ON(mm == &init_mm);
458 	mm_free_pgd(mm);
459 	destroy_context(mm);
460 	mmu_notifier_mm_destroy(mm);
461 	free_mm(mm);
462 }
463 EXPORT_SYMBOL_GPL(__mmdrop);
464 
465 /*
466  * Decrement the use count and release all resources for an mm.
467  */
468 void mmput(struct mm_struct *mm)
469 {
470 	might_sleep();
471 
472 	if (atomic_dec_and_test(&mm->mm_users)) {
473 		exit_aio(mm);
474 		exit_mmap(mm);
475 		set_mm_exe_file(mm, NULL);
476 		if (!list_empty(&mm->mmlist)) {
477 			spin_lock(&mmlist_lock);
478 			list_del(&mm->mmlist);
479 			spin_unlock(&mmlist_lock);
480 		}
481 		put_swap_token(mm);
482 		mmdrop(mm);
483 	}
484 }
485 EXPORT_SYMBOL_GPL(mmput);
486 
487 /**
488  * get_task_mm - acquire a reference to the task's mm
489  *
490  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
491  * this kernel workthread has transiently adopted a user mm with use_mm,
492  * to do its AIO) is not set and if so returns a reference to it, after
493  * bumping up the use count.  User must release the mm via mmput()
494  * after use.  Typically used by /proc and ptrace.
495  */
496 struct mm_struct *get_task_mm(struct task_struct *task)
497 {
498 	struct mm_struct *mm;
499 
500 	task_lock(task);
501 	mm = task->mm;
502 	if (mm) {
503 		if (task->flags & PF_KTHREAD)
504 			mm = NULL;
505 		else
506 			atomic_inc(&mm->mm_users);
507 	}
508 	task_unlock(task);
509 	return mm;
510 }
511 EXPORT_SYMBOL_GPL(get_task_mm);
512 
513 /* Please note the differences between mmput and mm_release.
514  * mmput is called whenever we stop holding onto a mm_struct,
515  * error success whatever.
516  *
517  * mm_release is called after a mm_struct has been removed
518  * from the current process.
519  *
520  * This difference is important for error handling, when we
521  * only half set up a mm_struct for a new process and need to restore
522  * the old one.  Because we mmput the new mm_struct before
523  * restoring the old one. . .
524  * Eric Biederman 10 January 1998
525  */
526 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
527 {
528 	struct completion *vfork_done = tsk->vfork_done;
529 
530 	/* Get rid of any futexes when releasing the mm */
531 #ifdef CONFIG_FUTEX
532 	if (unlikely(tsk->robust_list))
533 		exit_robust_list(tsk);
534 #ifdef CONFIG_COMPAT
535 	if (unlikely(tsk->compat_robust_list))
536 		compat_exit_robust_list(tsk);
537 #endif
538 #endif
539 
540 	/* Get rid of any cached register state */
541 	deactivate_mm(tsk, mm);
542 
543 	/* notify parent sleeping on vfork() */
544 	if (vfork_done) {
545 		tsk->vfork_done = NULL;
546 		complete(vfork_done);
547 	}
548 
549 	/*
550 	 * If we're exiting normally, clear a user-space tid field if
551 	 * requested.  We leave this alone when dying by signal, to leave
552 	 * the value intact in a core dump, and to save the unnecessary
553 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
554 	 */
555 	if (tsk->clear_child_tid
556 	    && !(tsk->flags & PF_SIGNALED)
557 	    && atomic_read(&mm->mm_users) > 1) {
558 		u32 __user * tidptr = tsk->clear_child_tid;
559 		tsk->clear_child_tid = NULL;
560 
561 		/*
562 		 * We don't check the error code - if userspace has
563 		 * not set up a proper pointer then tough luck.
564 		 */
565 		put_user(0, tidptr);
566 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
567 	}
568 }
569 
570 /*
571  * Allocate a new mm structure and copy contents from the
572  * mm structure of the passed in task structure.
573  */
574 struct mm_struct *dup_mm(struct task_struct *tsk)
575 {
576 	struct mm_struct *mm, *oldmm = current->mm;
577 	int err;
578 
579 	if (!oldmm)
580 		return NULL;
581 
582 	mm = allocate_mm();
583 	if (!mm)
584 		goto fail_nomem;
585 
586 	memcpy(mm, oldmm, sizeof(*mm));
587 
588 	/* Initializing for Swap token stuff */
589 	mm->token_priority = 0;
590 	mm->last_interval = 0;
591 
592 	if (!mm_init(mm, tsk))
593 		goto fail_nomem;
594 
595 	if (init_new_context(tsk, mm))
596 		goto fail_nocontext;
597 
598 	dup_mm_exe_file(oldmm, mm);
599 
600 	err = dup_mmap(mm, oldmm);
601 	if (err)
602 		goto free_pt;
603 
604 	mm->hiwater_rss = get_mm_rss(mm);
605 	mm->hiwater_vm = mm->total_vm;
606 
607 	return mm;
608 
609 free_pt:
610 	mmput(mm);
611 
612 fail_nomem:
613 	return NULL;
614 
615 fail_nocontext:
616 	/*
617 	 * If init_new_context() failed, we cannot use mmput() to free the mm
618 	 * because it calls destroy_context()
619 	 */
620 	mm_free_pgd(mm);
621 	free_mm(mm);
622 	return NULL;
623 }
624 
625 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
626 {
627 	struct mm_struct * mm, *oldmm;
628 	int retval;
629 
630 	tsk->min_flt = tsk->maj_flt = 0;
631 	tsk->nvcsw = tsk->nivcsw = 0;
632 
633 	tsk->mm = NULL;
634 	tsk->active_mm = NULL;
635 
636 	/*
637 	 * Are we cloning a kernel thread?
638 	 *
639 	 * We need to steal a active VM for that..
640 	 */
641 	oldmm = current->mm;
642 	if (!oldmm)
643 		return 0;
644 
645 	if (clone_flags & CLONE_VM) {
646 		atomic_inc(&oldmm->mm_users);
647 		mm = oldmm;
648 		goto good_mm;
649 	}
650 
651 	retval = -ENOMEM;
652 	mm = dup_mm(tsk);
653 	if (!mm)
654 		goto fail_nomem;
655 
656 good_mm:
657 	/* Initializing for Swap token stuff */
658 	mm->token_priority = 0;
659 	mm->last_interval = 0;
660 
661 	tsk->mm = mm;
662 	tsk->active_mm = mm;
663 	return 0;
664 
665 fail_nomem:
666 	return retval;
667 }
668 
669 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
670 {
671 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
672 	/* We don't need to lock fs - think why ;-) */
673 	if (fs) {
674 		atomic_set(&fs->count, 1);
675 		rwlock_init(&fs->lock);
676 		fs->umask = old->umask;
677 		read_lock(&old->lock);
678 		fs->root = old->root;
679 		path_get(&old->root);
680 		fs->pwd = old->pwd;
681 		path_get(&old->pwd);
682 		read_unlock(&old->lock);
683 	}
684 	return fs;
685 }
686 
687 struct fs_struct *copy_fs_struct(struct fs_struct *old)
688 {
689 	return __copy_fs_struct(old);
690 }
691 
692 EXPORT_SYMBOL_GPL(copy_fs_struct);
693 
694 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
695 {
696 	if (clone_flags & CLONE_FS) {
697 		atomic_inc(&current->fs->count);
698 		return 0;
699 	}
700 	tsk->fs = __copy_fs_struct(current->fs);
701 	if (!tsk->fs)
702 		return -ENOMEM;
703 	return 0;
704 }
705 
706 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
707 {
708 	struct files_struct *oldf, *newf;
709 	int error = 0;
710 
711 	/*
712 	 * A background process may not have any files ...
713 	 */
714 	oldf = current->files;
715 	if (!oldf)
716 		goto out;
717 
718 	if (clone_flags & CLONE_FILES) {
719 		atomic_inc(&oldf->count);
720 		goto out;
721 	}
722 
723 	newf = dup_fd(oldf, &error);
724 	if (!newf)
725 		goto out;
726 
727 	tsk->files = newf;
728 	error = 0;
729 out:
730 	return error;
731 }
732 
733 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
734 {
735 #ifdef CONFIG_BLOCK
736 	struct io_context *ioc = current->io_context;
737 
738 	if (!ioc)
739 		return 0;
740 	/*
741 	 * Share io context with parent, if CLONE_IO is set
742 	 */
743 	if (clone_flags & CLONE_IO) {
744 		tsk->io_context = ioc_task_link(ioc);
745 		if (unlikely(!tsk->io_context))
746 			return -ENOMEM;
747 	} else if (ioprio_valid(ioc->ioprio)) {
748 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
749 		if (unlikely(!tsk->io_context))
750 			return -ENOMEM;
751 
752 		tsk->io_context->ioprio = ioc->ioprio;
753 	}
754 #endif
755 	return 0;
756 }
757 
758 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
759 {
760 	struct sighand_struct *sig;
761 
762 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
763 		atomic_inc(&current->sighand->count);
764 		return 0;
765 	}
766 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
767 	rcu_assign_pointer(tsk->sighand, sig);
768 	if (!sig)
769 		return -ENOMEM;
770 	atomic_set(&sig->count, 1);
771 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
772 	return 0;
773 }
774 
775 void __cleanup_sighand(struct sighand_struct *sighand)
776 {
777 	if (atomic_dec_and_test(&sighand->count))
778 		kmem_cache_free(sighand_cachep, sighand);
779 }
780 
781 
782 /*
783  * Initialize POSIX timer handling for a thread group.
784  */
785 static void posix_cpu_timers_init_group(struct signal_struct *sig)
786 {
787 	/* Thread group counters. */
788 	thread_group_cputime_init(sig);
789 
790 	/* Expiration times and increments. */
791 	sig->it_virt_expires = cputime_zero;
792 	sig->it_virt_incr = cputime_zero;
793 	sig->it_prof_expires = cputime_zero;
794 	sig->it_prof_incr = cputime_zero;
795 
796 	/* Cached expiration times. */
797 	sig->cputime_expires.prof_exp = cputime_zero;
798 	sig->cputime_expires.virt_exp = cputime_zero;
799 	sig->cputime_expires.sched_exp = 0;
800 
801 	/* The timer lists. */
802 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
803 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
804 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
805 }
806 
807 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
808 {
809 	struct signal_struct *sig;
810 	int ret;
811 
812 	if (clone_flags & CLONE_THREAD) {
813 		ret = thread_group_cputime_clone_thread(current);
814 		if (likely(!ret)) {
815 			atomic_inc(&current->signal->count);
816 			atomic_inc(&current->signal->live);
817 		}
818 		return ret;
819 	}
820 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821 	tsk->signal = sig;
822 	if (!sig)
823 		return -ENOMEM;
824 
825 	ret = copy_thread_group_keys(tsk);
826 	if (ret < 0) {
827 		kmem_cache_free(signal_cachep, sig);
828 		return ret;
829 	}
830 
831 	atomic_set(&sig->count, 1);
832 	atomic_set(&sig->live, 1);
833 	init_waitqueue_head(&sig->wait_chldexit);
834 	sig->flags = 0;
835 	sig->group_exit_code = 0;
836 	sig->group_exit_task = NULL;
837 	sig->group_stop_count = 0;
838 	sig->curr_target = tsk;
839 	init_sigpending(&sig->shared_pending);
840 	INIT_LIST_HEAD(&sig->posix_timers);
841 
842 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
843 	sig->it_real_incr.tv64 = 0;
844 	sig->real_timer.function = it_real_fn;
845 
846 	sig->leader = 0;	/* session leadership doesn't inherit */
847 	sig->tty_old_pgrp = NULL;
848 	sig->tty = NULL;
849 
850 	sig->cutime = sig->cstime = cputime_zero;
851 	sig->gtime = cputime_zero;
852 	sig->cgtime = cputime_zero;
853 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
854 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
855 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
856 	task_io_accounting_init(&sig->ioac);
857 	taskstats_tgid_init(sig);
858 
859 	task_lock(current->group_leader);
860 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
861 	task_unlock(current->group_leader);
862 
863 	posix_cpu_timers_init_group(sig);
864 
865 	acct_init_pacct(&sig->pacct);
866 
867 	tty_audit_fork(sig);
868 
869 	return 0;
870 }
871 
872 void __cleanup_signal(struct signal_struct *sig)
873 {
874 	thread_group_cputime_free(sig);
875 	exit_thread_group_keys(sig);
876 	tty_kref_put(sig->tty);
877 	kmem_cache_free(signal_cachep, sig);
878 }
879 
880 static void cleanup_signal(struct task_struct *tsk)
881 {
882 	struct signal_struct *sig = tsk->signal;
883 
884 	atomic_dec(&sig->live);
885 
886 	if (atomic_dec_and_test(&sig->count))
887 		__cleanup_signal(sig);
888 }
889 
890 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
891 {
892 	unsigned long new_flags = p->flags;
893 
894 	new_flags &= ~PF_SUPERPRIV;
895 	new_flags |= PF_FORKNOEXEC;
896 	new_flags |= PF_STARTING;
897 	p->flags = new_flags;
898 	clear_freeze_flag(p);
899 }
900 
901 asmlinkage long sys_set_tid_address(int __user *tidptr)
902 {
903 	current->clear_child_tid = tidptr;
904 
905 	return task_pid_vnr(current);
906 }
907 
908 static void rt_mutex_init_task(struct task_struct *p)
909 {
910 	spin_lock_init(&p->pi_lock);
911 #ifdef CONFIG_RT_MUTEXES
912 	plist_head_init(&p->pi_waiters, &p->pi_lock);
913 	p->pi_blocked_on = NULL;
914 #endif
915 }
916 
917 #ifdef CONFIG_MM_OWNER
918 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
919 {
920 	mm->owner = p;
921 }
922 #endif /* CONFIG_MM_OWNER */
923 
924 /*
925  * Initialize POSIX timer handling for a single task.
926  */
927 static void posix_cpu_timers_init(struct task_struct *tsk)
928 {
929 	tsk->cputime_expires.prof_exp = cputime_zero;
930 	tsk->cputime_expires.virt_exp = cputime_zero;
931 	tsk->cputime_expires.sched_exp = 0;
932 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
933 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
934 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
935 }
936 
937 /*
938  * This creates a new process as a copy of the old one,
939  * but does not actually start it yet.
940  *
941  * It copies the registers, and all the appropriate
942  * parts of the process environment (as per the clone
943  * flags). The actual kick-off is left to the caller.
944  */
945 static struct task_struct *copy_process(unsigned long clone_flags,
946 					unsigned long stack_start,
947 					struct pt_regs *regs,
948 					unsigned long stack_size,
949 					int __user *child_tidptr,
950 					struct pid *pid,
951 					int trace)
952 {
953 	int retval;
954 	struct task_struct *p;
955 	int cgroup_callbacks_done = 0;
956 
957 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
958 		return ERR_PTR(-EINVAL);
959 
960 	/*
961 	 * Thread groups must share signals as well, and detached threads
962 	 * can only be started up within the thread group.
963 	 */
964 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
965 		return ERR_PTR(-EINVAL);
966 
967 	/*
968 	 * Shared signal handlers imply shared VM. By way of the above,
969 	 * thread groups also imply shared VM. Blocking this case allows
970 	 * for various simplifications in other code.
971 	 */
972 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
973 		return ERR_PTR(-EINVAL);
974 
975 	retval = security_task_create(clone_flags);
976 	if (retval)
977 		goto fork_out;
978 
979 	retval = -ENOMEM;
980 	p = dup_task_struct(current);
981 	if (!p)
982 		goto fork_out;
983 
984 	rt_mutex_init_task(p);
985 
986 #ifdef CONFIG_PROVE_LOCKING
987 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
988 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
989 #endif
990 	retval = -EAGAIN;
991 	if (atomic_read(&p->user->processes) >=
992 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
993 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
994 		    p->user != current->nsproxy->user_ns->root_user)
995 			goto bad_fork_free;
996 	}
997 
998 	atomic_inc(&p->user->__count);
999 	atomic_inc(&p->user->processes);
1000 	get_group_info(p->group_info);
1001 
1002 	/*
1003 	 * If multiple threads are within copy_process(), then this check
1004 	 * triggers too late. This doesn't hurt, the check is only there
1005 	 * to stop root fork bombs.
1006 	 */
1007 	if (nr_threads >= max_threads)
1008 		goto bad_fork_cleanup_count;
1009 
1010 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1011 		goto bad_fork_cleanup_count;
1012 
1013 	if (p->binfmt && !try_module_get(p->binfmt->module))
1014 		goto bad_fork_cleanup_put_domain;
1015 
1016 	p->did_exec = 0;
1017 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1018 	copy_flags(clone_flags, p);
1019 	INIT_LIST_HEAD(&p->children);
1020 	INIT_LIST_HEAD(&p->sibling);
1021 #ifdef CONFIG_PREEMPT_RCU
1022 	p->rcu_read_lock_nesting = 0;
1023 	p->rcu_flipctr_idx = 0;
1024 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1025 	p->vfork_done = NULL;
1026 	spin_lock_init(&p->alloc_lock);
1027 
1028 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1029 	init_sigpending(&p->pending);
1030 
1031 	p->utime = cputime_zero;
1032 	p->stime = cputime_zero;
1033 	p->gtime = cputime_zero;
1034 	p->utimescaled = cputime_zero;
1035 	p->stimescaled = cputime_zero;
1036 	p->prev_utime = cputime_zero;
1037 	p->prev_stime = cputime_zero;
1038 
1039 	p->default_timer_slack_ns = current->timer_slack_ns;
1040 
1041 #ifdef CONFIG_DETECT_SOFTLOCKUP
1042 	p->last_switch_count = 0;
1043 	p->last_switch_timestamp = 0;
1044 #endif
1045 
1046 	task_io_accounting_init(&p->ioac);
1047 	acct_clear_integrals(p);
1048 
1049 	posix_cpu_timers_init(p);
1050 
1051 	p->lock_depth = -1;		/* -1 = no lock */
1052 	do_posix_clock_monotonic_gettime(&p->start_time);
1053 	p->real_start_time = p->start_time;
1054 	monotonic_to_bootbased(&p->real_start_time);
1055 #ifdef CONFIG_SECURITY
1056 	p->security = NULL;
1057 #endif
1058 	p->cap_bset = current->cap_bset;
1059 	p->io_context = NULL;
1060 	p->audit_context = NULL;
1061 	cgroup_fork(p);
1062 #ifdef CONFIG_NUMA
1063 	p->mempolicy = mpol_dup(p->mempolicy);
1064  	if (IS_ERR(p->mempolicy)) {
1065  		retval = PTR_ERR(p->mempolicy);
1066  		p->mempolicy = NULL;
1067  		goto bad_fork_cleanup_cgroup;
1068  	}
1069 	mpol_fix_fork_child_flag(p);
1070 #endif
1071 #ifdef CONFIG_TRACE_IRQFLAGS
1072 	p->irq_events = 0;
1073 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1074 	p->hardirqs_enabled = 1;
1075 #else
1076 	p->hardirqs_enabled = 0;
1077 #endif
1078 	p->hardirq_enable_ip = 0;
1079 	p->hardirq_enable_event = 0;
1080 	p->hardirq_disable_ip = _THIS_IP_;
1081 	p->hardirq_disable_event = 0;
1082 	p->softirqs_enabled = 1;
1083 	p->softirq_enable_ip = _THIS_IP_;
1084 	p->softirq_enable_event = 0;
1085 	p->softirq_disable_ip = 0;
1086 	p->softirq_disable_event = 0;
1087 	p->hardirq_context = 0;
1088 	p->softirq_context = 0;
1089 #endif
1090 #ifdef CONFIG_LOCKDEP
1091 	p->lockdep_depth = 0; /* no locks held yet */
1092 	p->curr_chain_key = 0;
1093 	p->lockdep_recursion = 0;
1094 #endif
1095 
1096 #ifdef CONFIG_DEBUG_MUTEXES
1097 	p->blocked_on = NULL; /* not blocked yet */
1098 #endif
1099 	if (unlikely(ptrace_reparented(current)))
1100 		ptrace_fork(p, clone_flags);
1101 
1102 	/* Perform scheduler related setup. Assign this task to a CPU. */
1103 	sched_fork(p, clone_flags);
1104 
1105 	if ((retval = security_task_alloc(p)))
1106 		goto bad_fork_cleanup_policy;
1107 	if ((retval = audit_alloc(p)))
1108 		goto bad_fork_cleanup_security;
1109 	/* copy all the process information */
1110 	if ((retval = copy_semundo(clone_flags, p)))
1111 		goto bad_fork_cleanup_audit;
1112 	if ((retval = copy_files(clone_flags, p)))
1113 		goto bad_fork_cleanup_semundo;
1114 	if ((retval = copy_fs(clone_flags, p)))
1115 		goto bad_fork_cleanup_files;
1116 	if ((retval = copy_sighand(clone_flags, p)))
1117 		goto bad_fork_cleanup_fs;
1118 	if ((retval = copy_signal(clone_flags, p)))
1119 		goto bad_fork_cleanup_sighand;
1120 	if ((retval = copy_mm(clone_flags, p)))
1121 		goto bad_fork_cleanup_signal;
1122 	if ((retval = copy_keys(clone_flags, p)))
1123 		goto bad_fork_cleanup_mm;
1124 	if ((retval = copy_namespaces(clone_flags, p)))
1125 		goto bad_fork_cleanup_keys;
1126 	if ((retval = copy_io(clone_flags, p)))
1127 		goto bad_fork_cleanup_namespaces;
1128 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1129 	if (retval)
1130 		goto bad_fork_cleanup_io;
1131 
1132 	if (pid != &init_struct_pid) {
1133 		retval = -ENOMEM;
1134 		pid = alloc_pid(task_active_pid_ns(p));
1135 		if (!pid)
1136 			goto bad_fork_cleanup_io;
1137 
1138 		if (clone_flags & CLONE_NEWPID) {
1139 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1140 			if (retval < 0)
1141 				goto bad_fork_free_pid;
1142 		}
1143 	}
1144 
1145 	ftrace_graph_init_task(p);
1146 
1147 	p->pid = pid_nr(pid);
1148 	p->tgid = p->pid;
1149 	if (clone_flags & CLONE_THREAD)
1150 		p->tgid = current->tgid;
1151 
1152 	if (current->nsproxy != p->nsproxy) {
1153 		retval = ns_cgroup_clone(p, pid);
1154 		if (retval)
1155 			goto bad_fork_free_graph;
1156 	}
1157 
1158 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1159 	/*
1160 	 * Clear TID on mm_release()?
1161 	 */
1162 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1163 #ifdef CONFIG_FUTEX
1164 	p->robust_list = NULL;
1165 #ifdef CONFIG_COMPAT
1166 	p->compat_robust_list = NULL;
1167 #endif
1168 	INIT_LIST_HEAD(&p->pi_state_list);
1169 	p->pi_state_cache = NULL;
1170 #endif
1171 	/*
1172 	 * sigaltstack should be cleared when sharing the same VM
1173 	 */
1174 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1175 		p->sas_ss_sp = p->sas_ss_size = 0;
1176 
1177 	/*
1178 	 * Syscall tracing should be turned off in the child regardless
1179 	 * of CLONE_PTRACE.
1180 	 */
1181 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1182 #ifdef TIF_SYSCALL_EMU
1183 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1184 #endif
1185 	clear_all_latency_tracing(p);
1186 
1187 	/* Our parent execution domain becomes current domain
1188 	   These must match for thread signalling to apply */
1189 	p->parent_exec_id = p->self_exec_id;
1190 
1191 	/* ok, now we should be set up.. */
1192 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1193 	p->pdeath_signal = 0;
1194 	p->exit_state = 0;
1195 
1196 	/*
1197 	 * Ok, make it visible to the rest of the system.
1198 	 * We dont wake it up yet.
1199 	 */
1200 	p->group_leader = p;
1201 	INIT_LIST_HEAD(&p->thread_group);
1202 
1203 	/* Now that the task is set up, run cgroup callbacks if
1204 	 * necessary. We need to run them before the task is visible
1205 	 * on the tasklist. */
1206 	cgroup_fork_callbacks(p);
1207 	cgroup_callbacks_done = 1;
1208 
1209 	/* Need tasklist lock for parent etc handling! */
1210 	write_lock_irq(&tasklist_lock);
1211 
1212 	/*
1213 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1214 	 * not be changed, nor will its assigned CPU.
1215 	 *
1216 	 * The cpus_allowed mask of the parent may have changed after it was
1217 	 * copied first time - so re-copy it here, then check the child's CPU
1218 	 * to ensure it is on a valid CPU (and if not, just force it back to
1219 	 * parent's CPU). This avoids alot of nasty races.
1220 	 */
1221 	p->cpus_allowed = current->cpus_allowed;
1222 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1223 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1224 			!cpu_online(task_cpu(p))))
1225 		set_task_cpu(p, smp_processor_id());
1226 
1227 	/* CLONE_PARENT re-uses the old parent */
1228 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1229 		p->real_parent = current->real_parent;
1230 	else
1231 		p->real_parent = current;
1232 
1233 	spin_lock(&current->sighand->siglock);
1234 
1235 	/*
1236 	 * Process group and session signals need to be delivered to just the
1237 	 * parent before the fork or both the parent and the child after the
1238 	 * fork. Restart if a signal comes in before we add the new process to
1239 	 * it's process group.
1240 	 * A fatal signal pending means that current will exit, so the new
1241 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1242  	 */
1243 	recalc_sigpending();
1244 	if (signal_pending(current)) {
1245 		spin_unlock(&current->sighand->siglock);
1246 		write_unlock_irq(&tasklist_lock);
1247 		retval = -ERESTARTNOINTR;
1248 		goto bad_fork_free_graph;
1249 	}
1250 
1251 	if (clone_flags & CLONE_THREAD) {
1252 		p->group_leader = current->group_leader;
1253 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1254 	}
1255 
1256 	if (likely(p->pid)) {
1257 		list_add_tail(&p->sibling, &p->real_parent->children);
1258 		tracehook_finish_clone(p, clone_flags, trace);
1259 
1260 		if (thread_group_leader(p)) {
1261 			if (clone_flags & CLONE_NEWPID)
1262 				p->nsproxy->pid_ns->child_reaper = p;
1263 
1264 			p->signal->leader_pid = pid;
1265 			tty_kref_put(p->signal->tty);
1266 			p->signal->tty = tty_kref_get(current->signal->tty);
1267 			set_task_pgrp(p, task_pgrp_nr(current));
1268 			set_task_session(p, task_session_nr(current));
1269 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1270 			attach_pid(p, PIDTYPE_SID, task_session(current));
1271 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1272 			__get_cpu_var(process_counts)++;
1273 		}
1274 		attach_pid(p, PIDTYPE_PID, pid);
1275 		nr_threads++;
1276 	}
1277 
1278 	total_forks++;
1279 	spin_unlock(&current->sighand->siglock);
1280 	write_unlock_irq(&tasklist_lock);
1281 	proc_fork_connector(p);
1282 	cgroup_post_fork(p);
1283 	return p;
1284 
1285 bad_fork_free_graph:
1286 	ftrace_graph_exit_task(p);
1287 bad_fork_free_pid:
1288 	if (pid != &init_struct_pid)
1289 		free_pid(pid);
1290 bad_fork_cleanup_io:
1291 	put_io_context(p->io_context);
1292 bad_fork_cleanup_namespaces:
1293 	exit_task_namespaces(p);
1294 bad_fork_cleanup_keys:
1295 	exit_keys(p);
1296 bad_fork_cleanup_mm:
1297 	if (p->mm)
1298 		mmput(p->mm);
1299 bad_fork_cleanup_signal:
1300 	cleanup_signal(p);
1301 bad_fork_cleanup_sighand:
1302 	__cleanup_sighand(p->sighand);
1303 bad_fork_cleanup_fs:
1304 	exit_fs(p); /* blocking */
1305 bad_fork_cleanup_files:
1306 	exit_files(p); /* blocking */
1307 bad_fork_cleanup_semundo:
1308 	exit_sem(p);
1309 bad_fork_cleanup_audit:
1310 	audit_free(p);
1311 bad_fork_cleanup_security:
1312 	security_task_free(p);
1313 bad_fork_cleanup_policy:
1314 #ifdef CONFIG_NUMA
1315 	mpol_put(p->mempolicy);
1316 bad_fork_cleanup_cgroup:
1317 #endif
1318 	cgroup_exit(p, cgroup_callbacks_done);
1319 	delayacct_tsk_free(p);
1320 	if (p->binfmt)
1321 		module_put(p->binfmt->module);
1322 bad_fork_cleanup_put_domain:
1323 	module_put(task_thread_info(p)->exec_domain->module);
1324 bad_fork_cleanup_count:
1325 	put_group_info(p->group_info);
1326 	atomic_dec(&p->user->processes);
1327 	free_uid(p->user);
1328 bad_fork_free:
1329 	free_task(p);
1330 fork_out:
1331 	return ERR_PTR(retval);
1332 }
1333 
1334 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1335 {
1336 	memset(regs, 0, sizeof(struct pt_regs));
1337 	return regs;
1338 }
1339 
1340 struct task_struct * __cpuinit fork_idle(int cpu)
1341 {
1342 	struct task_struct *task;
1343 	struct pt_regs regs;
1344 
1345 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1346 			    &init_struct_pid, 0);
1347 	if (!IS_ERR(task))
1348 		init_idle(task, cpu);
1349 
1350 	return task;
1351 }
1352 
1353 /*
1354  *  Ok, this is the main fork-routine.
1355  *
1356  * It copies the process, and if successful kick-starts
1357  * it and waits for it to finish using the VM if required.
1358  */
1359 long do_fork(unsigned long clone_flags,
1360 	      unsigned long stack_start,
1361 	      struct pt_regs *regs,
1362 	      unsigned long stack_size,
1363 	      int __user *parent_tidptr,
1364 	      int __user *child_tidptr)
1365 {
1366 	struct task_struct *p;
1367 	int trace = 0;
1368 	long nr;
1369 
1370 	/*
1371 	 * We hope to recycle these flags after 2.6.26
1372 	 */
1373 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1374 		static int __read_mostly count = 100;
1375 
1376 		if (count > 0 && printk_ratelimit()) {
1377 			char comm[TASK_COMM_LEN];
1378 
1379 			count--;
1380 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1381 					"clone flags 0x%lx\n",
1382 				get_task_comm(comm, current),
1383 				clone_flags & CLONE_STOPPED);
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * When called from kernel_thread, don't do user tracing stuff.
1389 	 */
1390 	if (likely(user_mode(regs)))
1391 		trace = tracehook_prepare_clone(clone_flags);
1392 
1393 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1394 			 child_tidptr, NULL, trace);
1395 	/*
1396 	 * Do this prior waking up the new thread - the thread pointer
1397 	 * might get invalid after that point, if the thread exits quickly.
1398 	 */
1399 	if (!IS_ERR(p)) {
1400 		struct completion vfork;
1401 
1402 		trace_sched_process_fork(current, p);
1403 
1404 		nr = task_pid_vnr(p);
1405 
1406 		if (clone_flags & CLONE_PARENT_SETTID)
1407 			put_user(nr, parent_tidptr);
1408 
1409 		if (clone_flags & CLONE_VFORK) {
1410 			p->vfork_done = &vfork;
1411 			init_completion(&vfork);
1412 		}
1413 
1414 		audit_finish_fork(p);
1415 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1416 
1417 		/*
1418 		 * We set PF_STARTING at creation in case tracing wants to
1419 		 * use this to distinguish a fully live task from one that
1420 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1421 		 * clear it and set the child going.
1422 		 */
1423 		p->flags &= ~PF_STARTING;
1424 
1425 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1426 			/*
1427 			 * We'll start up with an immediate SIGSTOP.
1428 			 */
1429 			sigaddset(&p->pending.signal, SIGSTOP);
1430 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1431 			__set_task_state(p, TASK_STOPPED);
1432 		} else {
1433 			wake_up_new_task(p, clone_flags);
1434 		}
1435 
1436 		tracehook_report_clone_complete(trace, regs,
1437 						clone_flags, nr, p);
1438 
1439 		if (clone_flags & CLONE_VFORK) {
1440 			freezer_do_not_count();
1441 			wait_for_completion(&vfork);
1442 			freezer_count();
1443 			tracehook_report_vfork_done(p, nr);
1444 		}
1445 	} else {
1446 		nr = PTR_ERR(p);
1447 	}
1448 	return nr;
1449 }
1450 
1451 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1452 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1453 #endif
1454 
1455 static void sighand_ctor(void *data)
1456 {
1457 	struct sighand_struct *sighand = data;
1458 
1459 	spin_lock_init(&sighand->siglock);
1460 	init_waitqueue_head(&sighand->signalfd_wqh);
1461 }
1462 
1463 void __init proc_caches_init(void)
1464 {
1465 	sighand_cachep = kmem_cache_create("sighand_cache",
1466 			sizeof(struct sighand_struct), 0,
1467 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1468 			sighand_ctor);
1469 	signal_cachep = kmem_cache_create("signal_cache",
1470 			sizeof(struct signal_struct), 0,
1471 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1472 	files_cachep = kmem_cache_create("files_cache",
1473 			sizeof(struct files_struct), 0,
1474 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1475 	fs_cachep = kmem_cache_create("fs_cache",
1476 			sizeof(struct fs_struct), 0,
1477 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1478 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1479 			sizeof(struct vm_area_struct), 0,
1480 			SLAB_PANIC, NULL);
1481 	mm_cachep = kmem_cache_create("mm_struct",
1482 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1483 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1484 }
1485 
1486 /*
1487  * Check constraints on flags passed to the unshare system call and
1488  * force unsharing of additional process context as appropriate.
1489  */
1490 static void check_unshare_flags(unsigned long *flags_ptr)
1491 {
1492 	/*
1493 	 * If unsharing a thread from a thread group, must also
1494 	 * unshare vm.
1495 	 */
1496 	if (*flags_ptr & CLONE_THREAD)
1497 		*flags_ptr |= CLONE_VM;
1498 
1499 	/*
1500 	 * If unsharing vm, must also unshare signal handlers.
1501 	 */
1502 	if (*flags_ptr & CLONE_VM)
1503 		*flags_ptr |= CLONE_SIGHAND;
1504 
1505 	/*
1506 	 * If unsharing signal handlers and the task was created
1507 	 * using CLONE_THREAD, then must unshare the thread
1508 	 */
1509 	if ((*flags_ptr & CLONE_SIGHAND) &&
1510 	    (atomic_read(&current->signal->count) > 1))
1511 		*flags_ptr |= CLONE_THREAD;
1512 
1513 	/*
1514 	 * If unsharing namespace, must also unshare filesystem information.
1515 	 */
1516 	if (*flags_ptr & CLONE_NEWNS)
1517 		*flags_ptr |= CLONE_FS;
1518 }
1519 
1520 /*
1521  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1522  */
1523 static int unshare_thread(unsigned long unshare_flags)
1524 {
1525 	if (unshare_flags & CLONE_THREAD)
1526 		return -EINVAL;
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Unshare the filesystem structure if it is being shared
1533  */
1534 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1535 {
1536 	struct fs_struct *fs = current->fs;
1537 
1538 	if ((unshare_flags & CLONE_FS) &&
1539 	    (fs && atomic_read(&fs->count) > 1)) {
1540 		*new_fsp = __copy_fs_struct(current->fs);
1541 		if (!*new_fsp)
1542 			return -ENOMEM;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 /*
1549  * Unsharing of sighand is not supported yet
1550  */
1551 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1552 {
1553 	struct sighand_struct *sigh = current->sighand;
1554 
1555 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1556 		return -EINVAL;
1557 	else
1558 		return 0;
1559 }
1560 
1561 /*
1562  * Unshare vm if it is being shared
1563  */
1564 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1565 {
1566 	struct mm_struct *mm = current->mm;
1567 
1568 	if ((unshare_flags & CLONE_VM) &&
1569 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1570 		return -EINVAL;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Unshare file descriptor table if it is being shared
1578  */
1579 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1580 {
1581 	struct files_struct *fd = current->files;
1582 	int error = 0;
1583 
1584 	if ((unshare_flags & CLONE_FILES) &&
1585 	    (fd && atomic_read(&fd->count) > 1)) {
1586 		*new_fdp = dup_fd(fd, &error);
1587 		if (!*new_fdp)
1588 			return error;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  * unshare allows a process to 'unshare' part of the process
1596  * context which was originally shared using clone.  copy_*
1597  * functions used by do_fork() cannot be used here directly
1598  * because they modify an inactive task_struct that is being
1599  * constructed. Here we are modifying the current, active,
1600  * task_struct.
1601  */
1602 asmlinkage long sys_unshare(unsigned long unshare_flags)
1603 {
1604 	int err = 0;
1605 	struct fs_struct *fs, *new_fs = NULL;
1606 	struct sighand_struct *new_sigh = NULL;
1607 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1608 	struct files_struct *fd, *new_fd = NULL;
1609 	struct nsproxy *new_nsproxy = NULL;
1610 	int do_sysvsem = 0;
1611 
1612 	check_unshare_flags(&unshare_flags);
1613 
1614 	/* Return -EINVAL for all unsupported flags */
1615 	err = -EINVAL;
1616 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1617 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1618 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1619 				CLONE_NEWNET))
1620 		goto bad_unshare_out;
1621 
1622 	/*
1623 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1624 	 * to a new ipc namespace, the semaphore arrays from the old
1625 	 * namespace are unreachable.
1626 	 */
1627 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1628 		do_sysvsem = 1;
1629 	if ((err = unshare_thread(unshare_flags)))
1630 		goto bad_unshare_out;
1631 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1632 		goto bad_unshare_cleanup_thread;
1633 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1634 		goto bad_unshare_cleanup_fs;
1635 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1636 		goto bad_unshare_cleanup_sigh;
1637 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1638 		goto bad_unshare_cleanup_vm;
1639 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1640 			new_fs)))
1641 		goto bad_unshare_cleanup_fd;
1642 
1643 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1644 		if (do_sysvsem) {
1645 			/*
1646 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1647 			 */
1648 			exit_sem(current);
1649 		}
1650 
1651 		if (new_nsproxy) {
1652 			switch_task_namespaces(current, new_nsproxy);
1653 			new_nsproxy = NULL;
1654 		}
1655 
1656 		task_lock(current);
1657 
1658 		if (new_fs) {
1659 			fs = current->fs;
1660 			current->fs = new_fs;
1661 			new_fs = fs;
1662 		}
1663 
1664 		if (new_mm) {
1665 			mm = current->mm;
1666 			active_mm = current->active_mm;
1667 			current->mm = new_mm;
1668 			current->active_mm = new_mm;
1669 			activate_mm(active_mm, new_mm);
1670 			new_mm = mm;
1671 		}
1672 
1673 		if (new_fd) {
1674 			fd = current->files;
1675 			current->files = new_fd;
1676 			new_fd = fd;
1677 		}
1678 
1679 		task_unlock(current);
1680 	}
1681 
1682 	if (new_nsproxy)
1683 		put_nsproxy(new_nsproxy);
1684 
1685 bad_unshare_cleanup_fd:
1686 	if (new_fd)
1687 		put_files_struct(new_fd);
1688 
1689 bad_unshare_cleanup_vm:
1690 	if (new_mm)
1691 		mmput(new_mm);
1692 
1693 bad_unshare_cleanup_sigh:
1694 	if (new_sigh)
1695 		if (atomic_dec_and_test(&new_sigh->count))
1696 			kmem_cache_free(sighand_cachep, new_sigh);
1697 
1698 bad_unshare_cleanup_fs:
1699 	if (new_fs)
1700 		put_fs_struct(new_fs);
1701 
1702 bad_unshare_cleanup_thread:
1703 bad_unshare_out:
1704 	return err;
1705 }
1706 
1707 /*
1708  *	Helper to unshare the files of the current task.
1709  *	We don't want to expose copy_files internals to
1710  *	the exec layer of the kernel.
1711  */
1712 
1713 int unshare_files(struct files_struct **displaced)
1714 {
1715 	struct task_struct *task = current;
1716 	struct files_struct *copy = NULL;
1717 	int error;
1718 
1719 	error = unshare_fd(CLONE_FILES, &copy);
1720 	if (error || !copy) {
1721 		*displaced = NULL;
1722 		return error;
1723 	}
1724 	*displaced = task->files;
1725 	task_lock(task);
1726 	task->files = copy;
1727 	task_unlock(task);
1728 	return 0;
1729 }
1730