xref: /openbmc/linux/kernel/fork.c (revision b69c49b78457f681ecfb3147bd968434ee6559c1)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/rcupdate.h>
43 #include <linux/ptrace.h>
44 #include <linux/mount.h>
45 #include <linux/audit.h>
46 #include <linux/memcontrol.h>
47 #include <linux/profile.h>
48 #include <linux/rmap.h>
49 #include <linux/acct.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/freezer.h>
53 #include <linux/delayacct.h>
54 #include <linux/taskstats_kern.h>
55 #include <linux/random.h>
56 #include <linux/tty.h>
57 #include <linux/proc_fs.h>
58 #include <linux/blkdev.h>
59 
60 #include <asm/pgtable.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/mmu_context.h>
64 #include <asm/cacheflush.h>
65 #include <asm/tlbflush.h>
66 
67 /*
68  * Protected counters by write_lock_irq(&tasklist_lock)
69  */
70 unsigned long total_forks;	/* Handle normal Linux uptimes. */
71 int nr_threads; 		/* The idle threads do not count.. */
72 
73 int max_threads;		/* tunable limit on nr_threads */
74 
75 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
76 
77 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
78 
79 int nr_processes(void)
80 {
81 	int cpu;
82 	int total = 0;
83 
84 	for_each_online_cpu(cpu)
85 		total += per_cpu(process_counts, cpu);
86 
87 	return total;
88 }
89 
90 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
91 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
92 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
93 static struct kmem_cache *task_struct_cachep;
94 #endif
95 
96 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
97 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
98 {
99 #ifdef CONFIG_DEBUG_STACK_USAGE
100 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
101 #else
102 	gfp_t mask = GFP_KERNEL;
103 #endif
104 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
105 }
106 
107 static inline void free_thread_info(struct thread_info *ti)
108 {
109 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
110 }
111 #endif
112 
113 /* SLAB cache for signal_struct structures (tsk->signal) */
114 static struct kmem_cache *signal_cachep;
115 
116 /* SLAB cache for sighand_struct structures (tsk->sighand) */
117 struct kmem_cache *sighand_cachep;
118 
119 /* SLAB cache for files_struct structures (tsk->files) */
120 struct kmem_cache *files_cachep;
121 
122 /* SLAB cache for fs_struct structures (tsk->fs) */
123 struct kmem_cache *fs_cachep;
124 
125 /* SLAB cache for vm_area_struct structures */
126 struct kmem_cache *vm_area_cachep;
127 
128 /* SLAB cache for mm_struct structures (tsk->mm) */
129 static struct kmem_cache *mm_cachep;
130 
131 void free_task(struct task_struct *tsk)
132 {
133 	prop_local_destroy_single(&tsk->dirties);
134 	free_thread_info(tsk->stack);
135 	rt_mutex_debug_task_free(tsk);
136 	free_task_struct(tsk);
137 }
138 EXPORT_SYMBOL(free_task);
139 
140 void __put_task_struct(struct task_struct *tsk)
141 {
142 	WARN_ON(!tsk->exit_state);
143 	WARN_ON(atomic_read(&tsk->usage));
144 	WARN_ON(tsk == current);
145 
146 	security_task_free(tsk);
147 	free_uid(tsk->user);
148 	put_group_info(tsk->group_info);
149 	delayacct_tsk_free(tsk);
150 
151 	if (!profile_handoff_task(tsk))
152 		free_task(tsk);
153 }
154 
155 /*
156  * macro override instead of weak attribute alias, to workaround
157  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
158  */
159 #ifndef arch_task_cache_init
160 #define arch_task_cache_init()
161 #endif
162 
163 void __init fork_init(unsigned long mempages)
164 {
165 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
166 #ifndef ARCH_MIN_TASKALIGN
167 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
168 #endif
169 	/* create a slab on which task_structs can be allocated */
170 	task_struct_cachep =
171 		kmem_cache_create("task_struct", sizeof(struct task_struct),
172 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
173 #endif
174 
175 	/* do the arch specific task caches init */
176 	arch_task_cache_init();
177 
178 	/*
179 	 * The default maximum number of threads is set to a safe
180 	 * value: the thread structures can take up at most half
181 	 * of memory.
182 	 */
183 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
184 
185 	/*
186 	 * we need to allow at least 20 threads to boot a system
187 	 */
188 	if(max_threads < 20)
189 		max_threads = 20;
190 
191 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
192 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
193 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
194 		init_task.signal->rlim[RLIMIT_NPROC];
195 }
196 
197 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
198 					       struct task_struct *src)
199 {
200 	*dst = *src;
201 	return 0;
202 }
203 
204 static struct task_struct *dup_task_struct(struct task_struct *orig)
205 {
206 	struct task_struct *tsk;
207 	struct thread_info *ti;
208 	int err;
209 
210 	prepare_to_copy(orig);
211 
212 	tsk = alloc_task_struct();
213 	if (!tsk)
214 		return NULL;
215 
216 	ti = alloc_thread_info(tsk);
217 	if (!ti) {
218 		free_task_struct(tsk);
219 		return NULL;
220 	}
221 
222  	err = arch_dup_task_struct(tsk, orig);
223 	if (err)
224 		goto out;
225 
226 	tsk->stack = ti;
227 
228 	err = prop_local_init_single(&tsk->dirties);
229 	if (err)
230 		goto out;
231 
232 	setup_thread_stack(tsk, orig);
233 
234 #ifdef CONFIG_CC_STACKPROTECTOR
235 	tsk->stack_canary = get_random_int();
236 #endif
237 
238 	/* One for us, one for whoever does the "release_task()" (usually parent) */
239 	atomic_set(&tsk->usage,2);
240 	atomic_set(&tsk->fs_excl, 0);
241 #ifdef CONFIG_BLK_DEV_IO_TRACE
242 	tsk->btrace_seq = 0;
243 #endif
244 	tsk->splice_pipe = NULL;
245 	return tsk;
246 
247 out:
248 	free_thread_info(ti);
249 	free_task_struct(tsk);
250 	return NULL;
251 }
252 
253 #ifdef CONFIG_MMU
254 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
255 {
256 	struct vm_area_struct *mpnt, *tmp, **pprev;
257 	struct rb_node **rb_link, *rb_parent;
258 	int retval;
259 	unsigned long charge;
260 	struct mempolicy *pol;
261 
262 	down_write(&oldmm->mmap_sem);
263 	flush_cache_dup_mm(oldmm);
264 	/*
265 	 * Not linked in yet - no deadlock potential:
266 	 */
267 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
268 
269 	mm->locked_vm = 0;
270 	mm->mmap = NULL;
271 	mm->mmap_cache = NULL;
272 	mm->free_area_cache = oldmm->mmap_base;
273 	mm->cached_hole_size = ~0UL;
274 	mm->map_count = 0;
275 	cpus_clear(mm->cpu_vm_mask);
276 	mm->mm_rb = RB_ROOT;
277 	rb_link = &mm->mm_rb.rb_node;
278 	rb_parent = NULL;
279 	pprev = &mm->mmap;
280 
281 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
282 		struct file *file;
283 
284 		if (mpnt->vm_flags & VM_DONTCOPY) {
285 			long pages = vma_pages(mpnt);
286 			mm->total_vm -= pages;
287 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
288 								-pages);
289 			continue;
290 		}
291 		charge = 0;
292 		if (mpnt->vm_flags & VM_ACCOUNT) {
293 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
294 			if (security_vm_enough_memory(len))
295 				goto fail_nomem;
296 			charge = len;
297 		}
298 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
299 		if (!tmp)
300 			goto fail_nomem;
301 		*tmp = *mpnt;
302 		pol = mpol_dup(vma_policy(mpnt));
303 		retval = PTR_ERR(pol);
304 		if (IS_ERR(pol))
305 			goto fail_nomem_policy;
306 		vma_set_policy(tmp, pol);
307 		tmp->vm_flags &= ~VM_LOCKED;
308 		tmp->vm_mm = mm;
309 		tmp->vm_next = NULL;
310 		anon_vma_link(tmp);
311 		file = tmp->vm_file;
312 		if (file) {
313 			struct inode *inode = file->f_path.dentry->d_inode;
314 			get_file(file);
315 			if (tmp->vm_flags & VM_DENYWRITE)
316 				atomic_dec(&inode->i_writecount);
317 
318 			/* insert tmp into the share list, just after mpnt */
319 			spin_lock(&file->f_mapping->i_mmap_lock);
320 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
321 			flush_dcache_mmap_lock(file->f_mapping);
322 			vma_prio_tree_add(tmp, mpnt);
323 			flush_dcache_mmap_unlock(file->f_mapping);
324 			spin_unlock(&file->f_mapping->i_mmap_lock);
325 		}
326 
327 		/*
328 		 * Clear hugetlb-related page reserves for children. This only
329 		 * affects MAP_PRIVATE mappings. Faults generated by the child
330 		 * are not guaranteed to succeed, even if read-only
331 		 */
332 		if (is_vm_hugetlb_page(tmp))
333 			reset_vma_resv_huge_pages(tmp);
334 
335 		/*
336 		 * Link in the new vma and copy the page table entries.
337 		 */
338 		*pprev = tmp;
339 		pprev = &tmp->vm_next;
340 
341 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
342 		rb_link = &tmp->vm_rb.rb_right;
343 		rb_parent = &tmp->vm_rb;
344 
345 		mm->map_count++;
346 		retval = copy_page_range(mm, oldmm, mpnt);
347 
348 		if (tmp->vm_ops && tmp->vm_ops->open)
349 			tmp->vm_ops->open(tmp);
350 
351 		if (retval)
352 			goto out;
353 	}
354 	/* a new mm has just been created */
355 	arch_dup_mmap(oldmm, mm);
356 	retval = 0;
357 out:
358 	up_write(&mm->mmap_sem);
359 	flush_tlb_mm(oldmm);
360 	up_write(&oldmm->mmap_sem);
361 	return retval;
362 fail_nomem_policy:
363 	kmem_cache_free(vm_area_cachep, tmp);
364 fail_nomem:
365 	retval = -ENOMEM;
366 	vm_unacct_memory(charge);
367 	goto out;
368 }
369 
370 static inline int mm_alloc_pgd(struct mm_struct * mm)
371 {
372 	mm->pgd = pgd_alloc(mm);
373 	if (unlikely(!mm->pgd))
374 		return -ENOMEM;
375 	return 0;
376 }
377 
378 static inline void mm_free_pgd(struct mm_struct * mm)
379 {
380 	pgd_free(mm, mm->pgd);
381 }
382 #else
383 #define dup_mmap(mm, oldmm)	(0)
384 #define mm_alloc_pgd(mm)	(0)
385 #define mm_free_pgd(mm)
386 #endif /* CONFIG_MMU */
387 
388 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
389 
390 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
391 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
392 
393 #include <linux/init_task.h>
394 
395 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
396 {
397 	atomic_set(&mm->mm_users, 1);
398 	atomic_set(&mm->mm_count, 1);
399 	init_rwsem(&mm->mmap_sem);
400 	INIT_LIST_HEAD(&mm->mmlist);
401 	mm->flags = (current->mm) ? current->mm->flags
402 				  : MMF_DUMP_FILTER_DEFAULT;
403 	mm->core_waiters = 0;
404 	mm->nr_ptes = 0;
405 	set_mm_counter(mm, file_rss, 0);
406 	set_mm_counter(mm, anon_rss, 0);
407 	spin_lock_init(&mm->page_table_lock);
408 	rwlock_init(&mm->ioctx_list_lock);
409 	mm->ioctx_list = NULL;
410 	mm->free_area_cache = TASK_UNMAPPED_BASE;
411 	mm->cached_hole_size = ~0UL;
412 	mm_init_owner(mm, p);
413 
414 	if (likely(!mm_alloc_pgd(mm))) {
415 		mm->def_flags = 0;
416 		return mm;
417 	}
418 
419 	free_mm(mm);
420 	return NULL;
421 }
422 
423 /*
424  * Allocate and initialize an mm_struct.
425  */
426 struct mm_struct * mm_alloc(void)
427 {
428 	struct mm_struct * mm;
429 
430 	mm = allocate_mm();
431 	if (mm) {
432 		memset(mm, 0, sizeof(*mm));
433 		mm = mm_init(mm, current);
434 	}
435 	return mm;
436 }
437 
438 /*
439  * Called when the last reference to the mm
440  * is dropped: either by a lazy thread or by
441  * mmput. Free the page directory and the mm.
442  */
443 void __mmdrop(struct mm_struct *mm)
444 {
445 	BUG_ON(mm == &init_mm);
446 	mm_free_pgd(mm);
447 	destroy_context(mm);
448 	free_mm(mm);
449 }
450 EXPORT_SYMBOL_GPL(__mmdrop);
451 
452 /*
453  * Decrement the use count and release all resources for an mm.
454  */
455 void mmput(struct mm_struct *mm)
456 {
457 	might_sleep();
458 
459 	if (atomic_dec_and_test(&mm->mm_users)) {
460 		exit_aio(mm);
461 		exit_mmap(mm);
462 		set_mm_exe_file(mm, NULL);
463 		if (!list_empty(&mm->mmlist)) {
464 			spin_lock(&mmlist_lock);
465 			list_del(&mm->mmlist);
466 			spin_unlock(&mmlist_lock);
467 		}
468 		put_swap_token(mm);
469 		mmdrop(mm);
470 	}
471 }
472 EXPORT_SYMBOL_GPL(mmput);
473 
474 /**
475  * get_task_mm - acquire a reference to the task's mm
476  *
477  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
478  * this kernel workthread has transiently adopted a user mm with use_mm,
479  * to do its AIO) is not set and if so returns a reference to it, after
480  * bumping up the use count.  User must release the mm via mmput()
481  * after use.  Typically used by /proc and ptrace.
482  */
483 struct mm_struct *get_task_mm(struct task_struct *task)
484 {
485 	struct mm_struct *mm;
486 
487 	task_lock(task);
488 	mm = task->mm;
489 	if (mm) {
490 		if (task->flags & PF_BORROWED_MM)
491 			mm = NULL;
492 		else
493 			atomic_inc(&mm->mm_users);
494 	}
495 	task_unlock(task);
496 	return mm;
497 }
498 EXPORT_SYMBOL_GPL(get_task_mm);
499 
500 /* Please note the differences between mmput and mm_release.
501  * mmput is called whenever we stop holding onto a mm_struct,
502  * error success whatever.
503  *
504  * mm_release is called after a mm_struct has been removed
505  * from the current process.
506  *
507  * This difference is important for error handling, when we
508  * only half set up a mm_struct for a new process and need to restore
509  * the old one.  Because we mmput the new mm_struct before
510  * restoring the old one. . .
511  * Eric Biederman 10 January 1998
512  */
513 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
514 {
515 	struct completion *vfork_done = tsk->vfork_done;
516 
517 	/* Get rid of any cached register state */
518 	deactivate_mm(tsk, mm);
519 
520 	/* notify parent sleeping on vfork() */
521 	if (vfork_done) {
522 		tsk->vfork_done = NULL;
523 		complete(vfork_done);
524 	}
525 
526 	/*
527 	 * If we're exiting normally, clear a user-space tid field if
528 	 * requested.  We leave this alone when dying by signal, to leave
529 	 * the value intact in a core dump, and to save the unnecessary
530 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
531 	 */
532 	if (tsk->clear_child_tid
533 	    && !(tsk->flags & PF_SIGNALED)
534 	    && atomic_read(&mm->mm_users) > 1) {
535 		u32 __user * tidptr = tsk->clear_child_tid;
536 		tsk->clear_child_tid = NULL;
537 
538 		/*
539 		 * We don't check the error code - if userspace has
540 		 * not set up a proper pointer then tough luck.
541 		 */
542 		put_user(0, tidptr);
543 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
544 	}
545 }
546 
547 /*
548  * Allocate a new mm structure and copy contents from the
549  * mm structure of the passed in task structure.
550  */
551 struct mm_struct *dup_mm(struct task_struct *tsk)
552 {
553 	struct mm_struct *mm, *oldmm = current->mm;
554 	int err;
555 
556 	if (!oldmm)
557 		return NULL;
558 
559 	mm = allocate_mm();
560 	if (!mm)
561 		goto fail_nomem;
562 
563 	memcpy(mm, oldmm, sizeof(*mm));
564 
565 	/* Initializing for Swap token stuff */
566 	mm->token_priority = 0;
567 	mm->last_interval = 0;
568 
569 	if (!mm_init(mm, tsk))
570 		goto fail_nomem;
571 
572 	if (init_new_context(tsk, mm))
573 		goto fail_nocontext;
574 
575 	dup_mm_exe_file(oldmm, mm);
576 
577 	err = dup_mmap(mm, oldmm);
578 	if (err)
579 		goto free_pt;
580 
581 	mm->hiwater_rss = get_mm_rss(mm);
582 	mm->hiwater_vm = mm->total_vm;
583 
584 	return mm;
585 
586 free_pt:
587 	mmput(mm);
588 
589 fail_nomem:
590 	return NULL;
591 
592 fail_nocontext:
593 	/*
594 	 * If init_new_context() failed, we cannot use mmput() to free the mm
595 	 * because it calls destroy_context()
596 	 */
597 	mm_free_pgd(mm);
598 	free_mm(mm);
599 	return NULL;
600 }
601 
602 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
603 {
604 	struct mm_struct * mm, *oldmm;
605 	int retval;
606 
607 	tsk->min_flt = tsk->maj_flt = 0;
608 	tsk->nvcsw = tsk->nivcsw = 0;
609 
610 	tsk->mm = NULL;
611 	tsk->active_mm = NULL;
612 
613 	/*
614 	 * Are we cloning a kernel thread?
615 	 *
616 	 * We need to steal a active VM for that..
617 	 */
618 	oldmm = current->mm;
619 	if (!oldmm)
620 		return 0;
621 
622 	if (clone_flags & CLONE_VM) {
623 		atomic_inc(&oldmm->mm_users);
624 		mm = oldmm;
625 		goto good_mm;
626 	}
627 
628 	retval = -ENOMEM;
629 	mm = dup_mm(tsk);
630 	if (!mm)
631 		goto fail_nomem;
632 
633 good_mm:
634 	/* Initializing for Swap token stuff */
635 	mm->token_priority = 0;
636 	mm->last_interval = 0;
637 
638 	tsk->mm = mm;
639 	tsk->active_mm = mm;
640 	return 0;
641 
642 fail_nomem:
643 	return retval;
644 }
645 
646 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
647 {
648 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
649 	/* We don't need to lock fs - think why ;-) */
650 	if (fs) {
651 		atomic_set(&fs->count, 1);
652 		rwlock_init(&fs->lock);
653 		fs->umask = old->umask;
654 		read_lock(&old->lock);
655 		fs->root = old->root;
656 		path_get(&old->root);
657 		fs->pwd = old->pwd;
658 		path_get(&old->pwd);
659 		if (old->altroot.dentry) {
660 			fs->altroot = old->altroot;
661 			path_get(&old->altroot);
662 		} else {
663 			fs->altroot.mnt = NULL;
664 			fs->altroot.dentry = NULL;
665 		}
666 		read_unlock(&old->lock);
667 	}
668 	return fs;
669 }
670 
671 struct fs_struct *copy_fs_struct(struct fs_struct *old)
672 {
673 	return __copy_fs_struct(old);
674 }
675 
676 EXPORT_SYMBOL_GPL(copy_fs_struct);
677 
678 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
679 {
680 	if (clone_flags & CLONE_FS) {
681 		atomic_inc(&current->fs->count);
682 		return 0;
683 	}
684 	tsk->fs = __copy_fs_struct(current->fs);
685 	if (!tsk->fs)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
691 {
692 	struct files_struct *oldf, *newf;
693 	int error = 0;
694 
695 	/*
696 	 * A background process may not have any files ...
697 	 */
698 	oldf = current->files;
699 	if (!oldf)
700 		goto out;
701 
702 	if (clone_flags & CLONE_FILES) {
703 		atomic_inc(&oldf->count);
704 		goto out;
705 	}
706 
707 	newf = dup_fd(oldf, &error);
708 	if (!newf)
709 		goto out;
710 
711 	tsk->files = newf;
712 	error = 0;
713 out:
714 	return error;
715 }
716 
717 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
718 {
719 #ifdef CONFIG_BLOCK
720 	struct io_context *ioc = current->io_context;
721 
722 	if (!ioc)
723 		return 0;
724 	/*
725 	 * Share io context with parent, if CLONE_IO is set
726 	 */
727 	if (clone_flags & CLONE_IO) {
728 		tsk->io_context = ioc_task_link(ioc);
729 		if (unlikely(!tsk->io_context))
730 			return -ENOMEM;
731 	} else if (ioprio_valid(ioc->ioprio)) {
732 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
733 		if (unlikely(!tsk->io_context))
734 			return -ENOMEM;
735 
736 		tsk->io_context->ioprio = ioc->ioprio;
737 	}
738 #endif
739 	return 0;
740 }
741 
742 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
743 {
744 	struct sighand_struct *sig;
745 
746 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
747 		atomic_inc(&current->sighand->count);
748 		return 0;
749 	}
750 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
751 	rcu_assign_pointer(tsk->sighand, sig);
752 	if (!sig)
753 		return -ENOMEM;
754 	atomic_set(&sig->count, 1);
755 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
756 	return 0;
757 }
758 
759 void __cleanup_sighand(struct sighand_struct *sighand)
760 {
761 	if (atomic_dec_and_test(&sighand->count))
762 		kmem_cache_free(sighand_cachep, sighand);
763 }
764 
765 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
766 {
767 	struct signal_struct *sig;
768 	int ret;
769 
770 	if (clone_flags & CLONE_THREAD) {
771 		atomic_inc(&current->signal->count);
772 		atomic_inc(&current->signal->live);
773 		return 0;
774 	}
775 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
776 	tsk->signal = sig;
777 	if (!sig)
778 		return -ENOMEM;
779 
780 	ret = copy_thread_group_keys(tsk);
781 	if (ret < 0) {
782 		kmem_cache_free(signal_cachep, sig);
783 		return ret;
784 	}
785 
786 	atomic_set(&sig->count, 1);
787 	atomic_set(&sig->live, 1);
788 	init_waitqueue_head(&sig->wait_chldexit);
789 	sig->flags = 0;
790 	sig->group_exit_code = 0;
791 	sig->group_exit_task = NULL;
792 	sig->group_stop_count = 0;
793 	sig->curr_target = tsk;
794 	init_sigpending(&sig->shared_pending);
795 	INIT_LIST_HEAD(&sig->posix_timers);
796 
797 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
798 	sig->it_real_incr.tv64 = 0;
799 	sig->real_timer.function = it_real_fn;
800 
801 	sig->it_virt_expires = cputime_zero;
802 	sig->it_virt_incr = cputime_zero;
803 	sig->it_prof_expires = cputime_zero;
804 	sig->it_prof_incr = cputime_zero;
805 
806 	sig->leader = 0;	/* session leadership doesn't inherit */
807 	sig->tty_old_pgrp = NULL;
808 
809 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
810 	sig->gtime = cputime_zero;
811 	sig->cgtime = cputime_zero;
812 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
813 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
814 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
815 	sig->sum_sched_runtime = 0;
816 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
817 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
818 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
819 	taskstats_tgid_init(sig);
820 
821 	task_lock(current->group_leader);
822 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
823 	task_unlock(current->group_leader);
824 
825 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
826 		/*
827 		 * New sole thread in the process gets an expiry time
828 		 * of the whole CPU time limit.
829 		 */
830 		tsk->it_prof_expires =
831 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
832 	}
833 	acct_init_pacct(&sig->pacct);
834 
835 	tty_audit_fork(sig);
836 
837 	return 0;
838 }
839 
840 void __cleanup_signal(struct signal_struct *sig)
841 {
842 	exit_thread_group_keys(sig);
843 	kmem_cache_free(signal_cachep, sig);
844 }
845 
846 static void cleanup_signal(struct task_struct *tsk)
847 {
848 	struct signal_struct *sig = tsk->signal;
849 
850 	atomic_dec(&sig->live);
851 
852 	if (atomic_dec_and_test(&sig->count))
853 		__cleanup_signal(sig);
854 }
855 
856 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
857 {
858 	unsigned long new_flags = p->flags;
859 
860 	new_flags &= ~PF_SUPERPRIV;
861 	new_flags |= PF_FORKNOEXEC;
862 	if (!(clone_flags & CLONE_PTRACE))
863 		p->ptrace = 0;
864 	p->flags = new_flags;
865 	clear_freeze_flag(p);
866 }
867 
868 asmlinkage long sys_set_tid_address(int __user *tidptr)
869 {
870 	current->clear_child_tid = tidptr;
871 
872 	return task_pid_vnr(current);
873 }
874 
875 static void rt_mutex_init_task(struct task_struct *p)
876 {
877 	spin_lock_init(&p->pi_lock);
878 #ifdef CONFIG_RT_MUTEXES
879 	plist_head_init(&p->pi_waiters, &p->pi_lock);
880 	p->pi_blocked_on = NULL;
881 #endif
882 }
883 
884 #ifdef CONFIG_MM_OWNER
885 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
886 {
887 	mm->owner = p;
888 }
889 #endif /* CONFIG_MM_OWNER */
890 
891 /*
892  * This creates a new process as a copy of the old one,
893  * but does not actually start it yet.
894  *
895  * It copies the registers, and all the appropriate
896  * parts of the process environment (as per the clone
897  * flags). The actual kick-off is left to the caller.
898  */
899 static struct task_struct *copy_process(unsigned long clone_flags,
900 					unsigned long stack_start,
901 					struct pt_regs *regs,
902 					unsigned long stack_size,
903 					int __user *child_tidptr,
904 					struct pid *pid)
905 {
906 	int retval;
907 	struct task_struct *p;
908 	int cgroup_callbacks_done = 0;
909 
910 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
911 		return ERR_PTR(-EINVAL);
912 
913 	/*
914 	 * Thread groups must share signals as well, and detached threads
915 	 * can only be started up within the thread group.
916 	 */
917 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
918 		return ERR_PTR(-EINVAL);
919 
920 	/*
921 	 * Shared signal handlers imply shared VM. By way of the above,
922 	 * thread groups also imply shared VM. Blocking this case allows
923 	 * for various simplifications in other code.
924 	 */
925 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
926 		return ERR_PTR(-EINVAL);
927 
928 	retval = security_task_create(clone_flags);
929 	if (retval)
930 		goto fork_out;
931 
932 	retval = -ENOMEM;
933 	p = dup_task_struct(current);
934 	if (!p)
935 		goto fork_out;
936 
937 	rt_mutex_init_task(p);
938 
939 #ifdef CONFIG_PROVE_LOCKING
940 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
941 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
942 #endif
943 	retval = -EAGAIN;
944 	if (atomic_read(&p->user->processes) >=
945 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
946 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
947 		    p->user != current->nsproxy->user_ns->root_user)
948 			goto bad_fork_free;
949 	}
950 
951 	atomic_inc(&p->user->__count);
952 	atomic_inc(&p->user->processes);
953 	get_group_info(p->group_info);
954 
955 	/*
956 	 * If multiple threads are within copy_process(), then this check
957 	 * triggers too late. This doesn't hurt, the check is only there
958 	 * to stop root fork bombs.
959 	 */
960 	if (nr_threads >= max_threads)
961 		goto bad_fork_cleanup_count;
962 
963 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
964 		goto bad_fork_cleanup_count;
965 
966 	if (p->binfmt && !try_module_get(p->binfmt->module))
967 		goto bad_fork_cleanup_put_domain;
968 
969 	p->did_exec = 0;
970 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
971 	copy_flags(clone_flags, p);
972 	INIT_LIST_HEAD(&p->children);
973 	INIT_LIST_HEAD(&p->sibling);
974 #ifdef CONFIG_PREEMPT_RCU
975 	p->rcu_read_lock_nesting = 0;
976 	p->rcu_flipctr_idx = 0;
977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
978 	p->vfork_done = NULL;
979 	spin_lock_init(&p->alloc_lock);
980 
981 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
982 	init_sigpending(&p->pending);
983 
984 	p->utime = cputime_zero;
985 	p->stime = cputime_zero;
986 	p->gtime = cputime_zero;
987 	p->utimescaled = cputime_zero;
988 	p->stimescaled = cputime_zero;
989 	p->prev_utime = cputime_zero;
990 	p->prev_stime = cputime_zero;
991 
992 #ifdef CONFIG_DETECT_SOFTLOCKUP
993 	p->last_switch_count = 0;
994 	p->last_switch_timestamp = 0;
995 #endif
996 
997 #ifdef CONFIG_TASK_XACCT
998 	p->rchar = 0;		/* I/O counter: bytes read */
999 	p->wchar = 0;		/* I/O counter: bytes written */
1000 	p->syscr = 0;		/* I/O counter: read syscalls */
1001 	p->syscw = 0;		/* I/O counter: write syscalls */
1002 #endif
1003 	task_io_accounting_init(p);
1004 	acct_clear_integrals(p);
1005 
1006 	p->it_virt_expires = cputime_zero;
1007 	p->it_prof_expires = cputime_zero;
1008 	p->it_sched_expires = 0;
1009 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1010 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1011 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1012 
1013 	p->lock_depth = -1;		/* -1 = no lock */
1014 	do_posix_clock_monotonic_gettime(&p->start_time);
1015 	p->real_start_time = p->start_time;
1016 	monotonic_to_bootbased(&p->real_start_time);
1017 #ifdef CONFIG_SECURITY
1018 	p->security = NULL;
1019 #endif
1020 	p->cap_bset = current->cap_bset;
1021 	p->io_context = NULL;
1022 	p->audit_context = NULL;
1023 	cgroup_fork(p);
1024 #ifdef CONFIG_NUMA
1025 	p->mempolicy = mpol_dup(p->mempolicy);
1026  	if (IS_ERR(p->mempolicy)) {
1027  		retval = PTR_ERR(p->mempolicy);
1028  		p->mempolicy = NULL;
1029  		goto bad_fork_cleanup_cgroup;
1030  	}
1031 	mpol_fix_fork_child_flag(p);
1032 #endif
1033 #ifdef CONFIG_TRACE_IRQFLAGS
1034 	p->irq_events = 0;
1035 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1036 	p->hardirqs_enabled = 1;
1037 #else
1038 	p->hardirqs_enabled = 0;
1039 #endif
1040 	p->hardirq_enable_ip = 0;
1041 	p->hardirq_enable_event = 0;
1042 	p->hardirq_disable_ip = _THIS_IP_;
1043 	p->hardirq_disable_event = 0;
1044 	p->softirqs_enabled = 1;
1045 	p->softirq_enable_ip = _THIS_IP_;
1046 	p->softirq_enable_event = 0;
1047 	p->softirq_disable_ip = 0;
1048 	p->softirq_disable_event = 0;
1049 	p->hardirq_context = 0;
1050 	p->softirq_context = 0;
1051 #endif
1052 #ifdef CONFIG_LOCKDEP
1053 	p->lockdep_depth = 0; /* no locks held yet */
1054 	p->curr_chain_key = 0;
1055 	p->lockdep_recursion = 0;
1056 #endif
1057 
1058 #ifdef CONFIG_DEBUG_MUTEXES
1059 	p->blocked_on = NULL; /* not blocked yet */
1060 #endif
1061 
1062 	/* Perform scheduler related setup. Assign this task to a CPU. */
1063 	sched_fork(p, clone_flags);
1064 
1065 	if ((retval = security_task_alloc(p)))
1066 		goto bad_fork_cleanup_policy;
1067 	if ((retval = audit_alloc(p)))
1068 		goto bad_fork_cleanup_security;
1069 	/* copy all the process information */
1070 	if ((retval = copy_semundo(clone_flags, p)))
1071 		goto bad_fork_cleanup_audit;
1072 	if ((retval = copy_files(clone_flags, p)))
1073 		goto bad_fork_cleanup_semundo;
1074 	if ((retval = copy_fs(clone_flags, p)))
1075 		goto bad_fork_cleanup_files;
1076 	if ((retval = copy_sighand(clone_flags, p)))
1077 		goto bad_fork_cleanup_fs;
1078 	if ((retval = copy_signal(clone_flags, p)))
1079 		goto bad_fork_cleanup_sighand;
1080 	if ((retval = copy_mm(clone_flags, p)))
1081 		goto bad_fork_cleanup_signal;
1082 	if ((retval = copy_keys(clone_flags, p)))
1083 		goto bad_fork_cleanup_mm;
1084 	if ((retval = copy_namespaces(clone_flags, p)))
1085 		goto bad_fork_cleanup_keys;
1086 	if ((retval = copy_io(clone_flags, p)))
1087 		goto bad_fork_cleanup_namespaces;
1088 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1089 	if (retval)
1090 		goto bad_fork_cleanup_io;
1091 
1092 	if (pid != &init_struct_pid) {
1093 		retval = -ENOMEM;
1094 		pid = alloc_pid(task_active_pid_ns(p));
1095 		if (!pid)
1096 			goto bad_fork_cleanup_io;
1097 
1098 		if (clone_flags & CLONE_NEWPID) {
1099 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1100 			if (retval < 0)
1101 				goto bad_fork_free_pid;
1102 		}
1103 	}
1104 
1105 	p->pid = pid_nr(pid);
1106 	p->tgid = p->pid;
1107 	if (clone_flags & CLONE_THREAD)
1108 		p->tgid = current->tgid;
1109 
1110 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1111 	/*
1112 	 * Clear TID on mm_release()?
1113 	 */
1114 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1115 #ifdef CONFIG_FUTEX
1116 	p->robust_list = NULL;
1117 #ifdef CONFIG_COMPAT
1118 	p->compat_robust_list = NULL;
1119 #endif
1120 	INIT_LIST_HEAD(&p->pi_state_list);
1121 	p->pi_state_cache = NULL;
1122 #endif
1123 	/*
1124 	 * sigaltstack should be cleared when sharing the same VM
1125 	 */
1126 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1127 		p->sas_ss_sp = p->sas_ss_size = 0;
1128 
1129 	/*
1130 	 * Syscall tracing should be turned off in the child regardless
1131 	 * of CLONE_PTRACE.
1132 	 */
1133 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1134 #ifdef TIF_SYSCALL_EMU
1135 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1136 #endif
1137 	clear_all_latency_tracing(p);
1138 
1139 	/* Our parent execution domain becomes current domain
1140 	   These must match for thread signalling to apply */
1141 	p->parent_exec_id = p->self_exec_id;
1142 
1143 	/* ok, now we should be set up.. */
1144 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1145 	p->pdeath_signal = 0;
1146 	p->exit_state = 0;
1147 
1148 	/*
1149 	 * Ok, make it visible to the rest of the system.
1150 	 * We dont wake it up yet.
1151 	 */
1152 	p->group_leader = p;
1153 	INIT_LIST_HEAD(&p->thread_group);
1154 	INIT_LIST_HEAD(&p->ptrace_entry);
1155 	INIT_LIST_HEAD(&p->ptraced);
1156 
1157 	/* Now that the task is set up, run cgroup callbacks if
1158 	 * necessary. We need to run them before the task is visible
1159 	 * on the tasklist. */
1160 	cgroup_fork_callbacks(p);
1161 	cgroup_callbacks_done = 1;
1162 
1163 	/* Need tasklist lock for parent etc handling! */
1164 	write_lock_irq(&tasklist_lock);
1165 
1166 	/*
1167 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1168 	 * not be changed, nor will its assigned CPU.
1169 	 *
1170 	 * The cpus_allowed mask of the parent may have changed after it was
1171 	 * copied first time - so re-copy it here, then check the child's CPU
1172 	 * to ensure it is on a valid CPU (and if not, just force it back to
1173 	 * parent's CPU). This avoids alot of nasty races.
1174 	 */
1175 	p->cpus_allowed = current->cpus_allowed;
1176 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1177 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1178 			!cpu_online(task_cpu(p))))
1179 		set_task_cpu(p, smp_processor_id());
1180 
1181 	/* CLONE_PARENT re-uses the old parent */
1182 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1183 		p->real_parent = current->real_parent;
1184 	else
1185 		p->real_parent = current;
1186 	p->parent = p->real_parent;
1187 
1188 	spin_lock(&current->sighand->siglock);
1189 
1190 	/*
1191 	 * Process group and session signals need to be delivered to just the
1192 	 * parent before the fork or both the parent and the child after the
1193 	 * fork. Restart if a signal comes in before we add the new process to
1194 	 * it's process group.
1195 	 * A fatal signal pending means that current will exit, so the new
1196 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1197  	 */
1198 	recalc_sigpending();
1199 	if (signal_pending(current)) {
1200 		spin_unlock(&current->sighand->siglock);
1201 		write_unlock_irq(&tasklist_lock);
1202 		retval = -ERESTARTNOINTR;
1203 		goto bad_fork_free_pid;
1204 	}
1205 
1206 	if (clone_flags & CLONE_THREAD) {
1207 		p->group_leader = current->group_leader;
1208 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1209 
1210 		if (!cputime_eq(current->signal->it_virt_expires,
1211 				cputime_zero) ||
1212 		    !cputime_eq(current->signal->it_prof_expires,
1213 				cputime_zero) ||
1214 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1215 		    !list_empty(&current->signal->cpu_timers[0]) ||
1216 		    !list_empty(&current->signal->cpu_timers[1]) ||
1217 		    !list_empty(&current->signal->cpu_timers[2])) {
1218 			/*
1219 			 * Have child wake up on its first tick to check
1220 			 * for process CPU timers.
1221 			 */
1222 			p->it_prof_expires = jiffies_to_cputime(1);
1223 		}
1224 	}
1225 
1226 	if (likely(p->pid)) {
1227 		list_add_tail(&p->sibling, &p->real_parent->children);
1228 		if (unlikely(p->ptrace & PT_PTRACED))
1229 			__ptrace_link(p, current->parent);
1230 
1231 		if (thread_group_leader(p)) {
1232 			if (clone_flags & CLONE_NEWPID)
1233 				p->nsproxy->pid_ns->child_reaper = p;
1234 
1235 			p->signal->leader_pid = pid;
1236 			p->signal->tty = current->signal->tty;
1237 			set_task_pgrp(p, task_pgrp_nr(current));
1238 			set_task_session(p, task_session_nr(current));
1239 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1240 			attach_pid(p, PIDTYPE_SID, task_session(current));
1241 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1242 			__get_cpu_var(process_counts)++;
1243 		}
1244 		attach_pid(p, PIDTYPE_PID, pid);
1245 		nr_threads++;
1246 	}
1247 
1248 	total_forks++;
1249 	spin_unlock(&current->sighand->siglock);
1250 	write_unlock_irq(&tasklist_lock);
1251 	proc_fork_connector(p);
1252 	cgroup_post_fork(p);
1253 	return p;
1254 
1255 bad_fork_free_pid:
1256 	if (pid != &init_struct_pid)
1257 		free_pid(pid);
1258 bad_fork_cleanup_io:
1259 	put_io_context(p->io_context);
1260 bad_fork_cleanup_namespaces:
1261 	exit_task_namespaces(p);
1262 bad_fork_cleanup_keys:
1263 	exit_keys(p);
1264 bad_fork_cleanup_mm:
1265 	if (p->mm)
1266 		mmput(p->mm);
1267 bad_fork_cleanup_signal:
1268 	cleanup_signal(p);
1269 bad_fork_cleanup_sighand:
1270 	__cleanup_sighand(p->sighand);
1271 bad_fork_cleanup_fs:
1272 	exit_fs(p); /* blocking */
1273 bad_fork_cleanup_files:
1274 	exit_files(p); /* blocking */
1275 bad_fork_cleanup_semundo:
1276 	exit_sem(p);
1277 bad_fork_cleanup_audit:
1278 	audit_free(p);
1279 bad_fork_cleanup_security:
1280 	security_task_free(p);
1281 bad_fork_cleanup_policy:
1282 #ifdef CONFIG_NUMA
1283 	mpol_put(p->mempolicy);
1284 bad_fork_cleanup_cgroup:
1285 #endif
1286 	cgroup_exit(p, cgroup_callbacks_done);
1287 	delayacct_tsk_free(p);
1288 	if (p->binfmt)
1289 		module_put(p->binfmt->module);
1290 bad_fork_cleanup_put_domain:
1291 	module_put(task_thread_info(p)->exec_domain->module);
1292 bad_fork_cleanup_count:
1293 	put_group_info(p->group_info);
1294 	atomic_dec(&p->user->processes);
1295 	free_uid(p->user);
1296 bad_fork_free:
1297 	free_task(p);
1298 fork_out:
1299 	return ERR_PTR(retval);
1300 }
1301 
1302 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1303 {
1304 	memset(regs, 0, sizeof(struct pt_regs));
1305 	return regs;
1306 }
1307 
1308 struct task_struct * __cpuinit fork_idle(int cpu)
1309 {
1310 	struct task_struct *task;
1311 	struct pt_regs regs;
1312 
1313 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1314 				&init_struct_pid);
1315 	if (!IS_ERR(task))
1316 		init_idle(task, cpu);
1317 
1318 	return task;
1319 }
1320 
1321 static int fork_traceflag(unsigned clone_flags)
1322 {
1323 	if (clone_flags & CLONE_UNTRACED)
1324 		return 0;
1325 	else if (clone_flags & CLONE_VFORK) {
1326 		if (current->ptrace & PT_TRACE_VFORK)
1327 			return PTRACE_EVENT_VFORK;
1328 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1329 		if (current->ptrace & PT_TRACE_CLONE)
1330 			return PTRACE_EVENT_CLONE;
1331 	} else if (current->ptrace & PT_TRACE_FORK)
1332 		return PTRACE_EVENT_FORK;
1333 
1334 	return 0;
1335 }
1336 
1337 /*
1338  *  Ok, this is the main fork-routine.
1339  *
1340  * It copies the process, and if successful kick-starts
1341  * it and waits for it to finish using the VM if required.
1342  */
1343 long do_fork(unsigned long clone_flags,
1344 	      unsigned long stack_start,
1345 	      struct pt_regs *regs,
1346 	      unsigned long stack_size,
1347 	      int __user *parent_tidptr,
1348 	      int __user *child_tidptr)
1349 {
1350 	struct task_struct *p;
1351 	int trace = 0;
1352 	long nr;
1353 
1354 	/*
1355 	 * We hope to recycle these flags after 2.6.26
1356 	 */
1357 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1358 		static int __read_mostly count = 100;
1359 
1360 		if (count > 0 && printk_ratelimit()) {
1361 			char comm[TASK_COMM_LEN];
1362 
1363 			count--;
1364 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1365 					"clone flags 0x%lx\n",
1366 				get_task_comm(comm, current),
1367 				clone_flags & CLONE_STOPPED);
1368 		}
1369 	}
1370 
1371 	if (unlikely(current->ptrace)) {
1372 		trace = fork_traceflag (clone_flags);
1373 		if (trace)
1374 			clone_flags |= CLONE_PTRACE;
1375 	}
1376 
1377 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1378 			child_tidptr, NULL);
1379 	/*
1380 	 * Do this prior waking up the new thread - the thread pointer
1381 	 * might get invalid after that point, if the thread exits quickly.
1382 	 */
1383 	if (!IS_ERR(p)) {
1384 		struct completion vfork;
1385 
1386 		nr = task_pid_vnr(p);
1387 
1388 		if (clone_flags & CLONE_PARENT_SETTID)
1389 			put_user(nr, parent_tidptr);
1390 
1391 		if (clone_flags & CLONE_VFORK) {
1392 			p->vfork_done = &vfork;
1393 			init_completion(&vfork);
1394 		}
1395 
1396 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1397 			/*
1398 			 * We'll start up with an immediate SIGSTOP.
1399 			 */
1400 			sigaddset(&p->pending.signal, SIGSTOP);
1401 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1402 		}
1403 
1404 		if (!(clone_flags & CLONE_STOPPED))
1405 			wake_up_new_task(p, clone_flags);
1406 		else
1407 			__set_task_state(p, TASK_STOPPED);
1408 
1409 		if (unlikely (trace)) {
1410 			current->ptrace_message = nr;
1411 			ptrace_notify ((trace << 8) | SIGTRAP);
1412 		}
1413 
1414 		if (clone_flags & CLONE_VFORK) {
1415 			freezer_do_not_count();
1416 			wait_for_completion(&vfork);
1417 			freezer_count();
1418 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1419 				current->ptrace_message = nr;
1420 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1421 			}
1422 		}
1423 	} else {
1424 		nr = PTR_ERR(p);
1425 	}
1426 	return nr;
1427 }
1428 
1429 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1430 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1431 #endif
1432 
1433 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1434 {
1435 	struct sighand_struct *sighand = data;
1436 
1437 	spin_lock_init(&sighand->siglock);
1438 	init_waitqueue_head(&sighand->signalfd_wqh);
1439 }
1440 
1441 void __init proc_caches_init(void)
1442 {
1443 	sighand_cachep = kmem_cache_create("sighand_cache",
1444 			sizeof(struct sighand_struct), 0,
1445 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1446 			sighand_ctor);
1447 	signal_cachep = kmem_cache_create("signal_cache",
1448 			sizeof(struct signal_struct), 0,
1449 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1450 	files_cachep = kmem_cache_create("files_cache",
1451 			sizeof(struct files_struct), 0,
1452 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1453 	fs_cachep = kmem_cache_create("fs_cache",
1454 			sizeof(struct fs_struct), 0,
1455 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1456 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1457 			sizeof(struct vm_area_struct), 0,
1458 			SLAB_PANIC, NULL);
1459 	mm_cachep = kmem_cache_create("mm_struct",
1460 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1462 }
1463 
1464 /*
1465  * Check constraints on flags passed to the unshare system call and
1466  * force unsharing of additional process context as appropriate.
1467  */
1468 static void check_unshare_flags(unsigned long *flags_ptr)
1469 {
1470 	/*
1471 	 * If unsharing a thread from a thread group, must also
1472 	 * unshare vm.
1473 	 */
1474 	if (*flags_ptr & CLONE_THREAD)
1475 		*flags_ptr |= CLONE_VM;
1476 
1477 	/*
1478 	 * If unsharing vm, must also unshare signal handlers.
1479 	 */
1480 	if (*flags_ptr & CLONE_VM)
1481 		*flags_ptr |= CLONE_SIGHAND;
1482 
1483 	/*
1484 	 * If unsharing signal handlers and the task was created
1485 	 * using CLONE_THREAD, then must unshare the thread
1486 	 */
1487 	if ((*flags_ptr & CLONE_SIGHAND) &&
1488 	    (atomic_read(&current->signal->count) > 1))
1489 		*flags_ptr |= CLONE_THREAD;
1490 
1491 	/*
1492 	 * If unsharing namespace, must also unshare filesystem information.
1493 	 */
1494 	if (*flags_ptr & CLONE_NEWNS)
1495 		*flags_ptr |= CLONE_FS;
1496 }
1497 
1498 /*
1499  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1500  */
1501 static int unshare_thread(unsigned long unshare_flags)
1502 {
1503 	if (unshare_flags & CLONE_THREAD)
1504 		return -EINVAL;
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Unshare the filesystem structure if it is being shared
1511  */
1512 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1513 {
1514 	struct fs_struct *fs = current->fs;
1515 
1516 	if ((unshare_flags & CLONE_FS) &&
1517 	    (fs && atomic_read(&fs->count) > 1)) {
1518 		*new_fsp = __copy_fs_struct(current->fs);
1519 		if (!*new_fsp)
1520 			return -ENOMEM;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Unsharing of sighand is not supported yet
1528  */
1529 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1530 {
1531 	struct sighand_struct *sigh = current->sighand;
1532 
1533 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1534 		return -EINVAL;
1535 	else
1536 		return 0;
1537 }
1538 
1539 /*
1540  * Unshare vm if it is being shared
1541  */
1542 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1543 {
1544 	struct mm_struct *mm = current->mm;
1545 
1546 	if ((unshare_flags & CLONE_VM) &&
1547 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1548 		return -EINVAL;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Unshare file descriptor table if it is being shared
1556  */
1557 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1558 {
1559 	struct files_struct *fd = current->files;
1560 	int error = 0;
1561 
1562 	if ((unshare_flags & CLONE_FILES) &&
1563 	    (fd && atomic_read(&fd->count) > 1)) {
1564 		*new_fdp = dup_fd(fd, &error);
1565 		if (!*new_fdp)
1566 			return error;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * unshare allows a process to 'unshare' part of the process
1574  * context which was originally shared using clone.  copy_*
1575  * functions used by do_fork() cannot be used here directly
1576  * because they modify an inactive task_struct that is being
1577  * constructed. Here we are modifying the current, active,
1578  * task_struct.
1579  */
1580 asmlinkage long sys_unshare(unsigned long unshare_flags)
1581 {
1582 	int err = 0;
1583 	struct fs_struct *fs, *new_fs = NULL;
1584 	struct sighand_struct *new_sigh = NULL;
1585 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1586 	struct files_struct *fd, *new_fd = NULL;
1587 	struct nsproxy *new_nsproxy = NULL;
1588 	int do_sysvsem = 0;
1589 
1590 	check_unshare_flags(&unshare_flags);
1591 
1592 	/* Return -EINVAL for all unsupported flags */
1593 	err = -EINVAL;
1594 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1595 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1596 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1597 				CLONE_NEWNET))
1598 		goto bad_unshare_out;
1599 
1600 	/*
1601 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1602 	 * to a new ipc namespace, the semaphore arrays from the old
1603 	 * namespace are unreachable.
1604 	 */
1605 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1606 		do_sysvsem = 1;
1607 	if ((err = unshare_thread(unshare_flags)))
1608 		goto bad_unshare_out;
1609 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1610 		goto bad_unshare_cleanup_thread;
1611 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1612 		goto bad_unshare_cleanup_fs;
1613 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1614 		goto bad_unshare_cleanup_sigh;
1615 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1616 		goto bad_unshare_cleanup_vm;
1617 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1618 			new_fs)))
1619 		goto bad_unshare_cleanup_fd;
1620 
1621 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1622 		if (do_sysvsem) {
1623 			/*
1624 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1625 			 */
1626 			exit_sem(current);
1627 		}
1628 
1629 		if (new_nsproxy) {
1630 			switch_task_namespaces(current, new_nsproxy);
1631 			new_nsproxy = NULL;
1632 		}
1633 
1634 		task_lock(current);
1635 
1636 		if (new_fs) {
1637 			fs = current->fs;
1638 			current->fs = new_fs;
1639 			new_fs = fs;
1640 		}
1641 
1642 		if (new_mm) {
1643 			mm = current->mm;
1644 			active_mm = current->active_mm;
1645 			current->mm = new_mm;
1646 			current->active_mm = new_mm;
1647 			activate_mm(active_mm, new_mm);
1648 			new_mm = mm;
1649 		}
1650 
1651 		if (new_fd) {
1652 			fd = current->files;
1653 			current->files = new_fd;
1654 			new_fd = fd;
1655 		}
1656 
1657 		task_unlock(current);
1658 	}
1659 
1660 	if (new_nsproxy)
1661 		put_nsproxy(new_nsproxy);
1662 
1663 bad_unshare_cleanup_fd:
1664 	if (new_fd)
1665 		put_files_struct(new_fd);
1666 
1667 bad_unshare_cleanup_vm:
1668 	if (new_mm)
1669 		mmput(new_mm);
1670 
1671 bad_unshare_cleanup_sigh:
1672 	if (new_sigh)
1673 		if (atomic_dec_and_test(&new_sigh->count))
1674 			kmem_cache_free(sighand_cachep, new_sigh);
1675 
1676 bad_unshare_cleanup_fs:
1677 	if (new_fs)
1678 		put_fs_struct(new_fs);
1679 
1680 bad_unshare_cleanup_thread:
1681 bad_unshare_out:
1682 	return err;
1683 }
1684 
1685 /*
1686  *	Helper to unshare the files of the current task.
1687  *	We don't want to expose copy_files internals to
1688  *	the exec layer of the kernel.
1689  */
1690 
1691 int unshare_files(struct files_struct **displaced)
1692 {
1693 	struct task_struct *task = current;
1694 	struct files_struct *copy = NULL;
1695 	int error;
1696 
1697 	error = unshare_fd(CLONE_FILES, &copy);
1698 	if (error || !copy) {
1699 		*displaced = NULL;
1700 		return error;
1701 	}
1702 	*displaced = task->files;
1703 	task_lock(task);
1704 	task->files = copy;
1705 	task_unlock(task);
1706 	return 0;
1707 }
1708