1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/mnt_namespace.h> 21 #include <linux/personality.h> 22 #include <linux/mempolicy.h> 23 #include <linux/sem.h> 24 #include <linux/file.h> 25 #include <linux/key.h> 26 #include <linux/binfmts.h> 27 #include <linux/mman.h> 28 #include <linux/fs.h> 29 #include <linux/nsproxy.h> 30 #include <linux/capability.h> 31 #include <linux/cpu.h> 32 #include <linux/cpuset.h> 33 #include <linux/security.h> 34 #include <linux/swap.h> 35 #include <linux/syscalls.h> 36 #include <linux/jiffies.h> 37 #include <linux/futex.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/rcupdate.h> 40 #include <linux/ptrace.h> 41 #include <linux/mount.h> 42 #include <linux/audit.h> 43 #include <linux/profile.h> 44 #include <linux/rmap.h> 45 #include <linux/acct.h> 46 #include <linux/tsacct_kern.h> 47 #include <linux/cn_proc.h> 48 #include <linux/freezer.h> 49 #include <linux/delayacct.h> 50 #include <linux/taskstats_kern.h> 51 #include <linux/random.h> 52 #include <linux/tty.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/pgalloc.h> 56 #include <asm/uaccess.h> 57 #include <asm/mmu_context.h> 58 #include <asm/cacheflush.h> 59 #include <asm/tlbflush.h> 60 61 /* 62 * Protected counters by write_lock_irq(&tasklist_lock) 63 */ 64 unsigned long total_forks; /* Handle normal Linux uptimes. */ 65 int nr_threads; /* The idle threads do not count.. */ 66 67 int max_threads; /* tunable limit on nr_threads */ 68 69 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 70 71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 72 73 int nr_processes(void) 74 { 75 int cpu; 76 int total = 0; 77 78 for_each_online_cpu(cpu) 79 total += per_cpu(process_counts, cpu); 80 81 return total; 82 } 83 84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 85 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 86 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 87 static struct kmem_cache *task_struct_cachep; 88 #endif 89 90 /* SLAB cache for signal_struct structures (tsk->signal) */ 91 static struct kmem_cache *signal_cachep; 92 93 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 94 struct kmem_cache *sighand_cachep; 95 96 /* SLAB cache for files_struct structures (tsk->files) */ 97 struct kmem_cache *files_cachep; 98 99 /* SLAB cache for fs_struct structures (tsk->fs) */ 100 struct kmem_cache *fs_cachep; 101 102 /* SLAB cache for vm_area_struct structures */ 103 struct kmem_cache *vm_area_cachep; 104 105 /* SLAB cache for mm_struct structures (tsk->mm) */ 106 static struct kmem_cache *mm_cachep; 107 108 void free_task(struct task_struct *tsk) 109 { 110 free_thread_info(tsk->stack); 111 rt_mutex_debug_task_free(tsk); 112 free_task_struct(tsk); 113 } 114 EXPORT_SYMBOL(free_task); 115 116 void __put_task_struct(struct task_struct *tsk) 117 { 118 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); 119 WARN_ON(atomic_read(&tsk->usage)); 120 WARN_ON(tsk == current); 121 122 security_task_free(tsk); 123 free_uid(tsk->user); 124 put_group_info(tsk->group_info); 125 delayacct_tsk_free(tsk); 126 127 if (!profile_handoff_task(tsk)) 128 free_task(tsk); 129 } 130 131 void __init fork_init(unsigned long mempages) 132 { 133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 134 #ifndef ARCH_MIN_TASKALIGN 135 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 136 #endif 137 /* create a slab on which task_structs can be allocated */ 138 task_struct_cachep = 139 kmem_cache_create("task_struct", sizeof(struct task_struct), 140 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); 141 #endif 142 143 /* 144 * The default maximum number of threads is set to a safe 145 * value: the thread structures can take up at most half 146 * of memory. 147 */ 148 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 149 150 /* 151 * we need to allow at least 20 threads to boot a system 152 */ 153 if(max_threads < 20) 154 max_threads = 20; 155 156 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 157 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 158 init_task.signal->rlim[RLIMIT_SIGPENDING] = 159 init_task.signal->rlim[RLIMIT_NPROC]; 160 } 161 162 static struct task_struct *dup_task_struct(struct task_struct *orig) 163 { 164 struct task_struct *tsk; 165 struct thread_info *ti; 166 167 prepare_to_copy(orig); 168 169 tsk = alloc_task_struct(); 170 if (!tsk) 171 return NULL; 172 173 ti = alloc_thread_info(tsk); 174 if (!ti) { 175 free_task_struct(tsk); 176 return NULL; 177 } 178 179 *tsk = *orig; 180 tsk->stack = ti; 181 setup_thread_stack(tsk, orig); 182 183 #ifdef CONFIG_CC_STACKPROTECTOR 184 tsk->stack_canary = get_random_int(); 185 #endif 186 187 /* One for us, one for whoever does the "release_task()" (usually parent) */ 188 atomic_set(&tsk->usage,2); 189 atomic_set(&tsk->fs_excl, 0); 190 #ifdef CONFIG_BLK_DEV_IO_TRACE 191 tsk->btrace_seq = 0; 192 #endif 193 tsk->splice_pipe = NULL; 194 return tsk; 195 } 196 197 #ifdef CONFIG_MMU 198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 199 { 200 struct vm_area_struct *mpnt, *tmp, **pprev; 201 struct rb_node **rb_link, *rb_parent; 202 int retval; 203 unsigned long charge; 204 struct mempolicy *pol; 205 206 down_write(&oldmm->mmap_sem); 207 flush_cache_dup_mm(oldmm); 208 /* 209 * Not linked in yet - no deadlock potential: 210 */ 211 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 212 213 mm->locked_vm = 0; 214 mm->mmap = NULL; 215 mm->mmap_cache = NULL; 216 mm->free_area_cache = oldmm->mmap_base; 217 mm->cached_hole_size = ~0UL; 218 mm->map_count = 0; 219 cpus_clear(mm->cpu_vm_mask); 220 mm->mm_rb = RB_ROOT; 221 rb_link = &mm->mm_rb.rb_node; 222 rb_parent = NULL; 223 pprev = &mm->mmap; 224 225 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 226 struct file *file; 227 228 if (mpnt->vm_flags & VM_DONTCOPY) { 229 long pages = vma_pages(mpnt); 230 mm->total_vm -= pages; 231 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 232 -pages); 233 continue; 234 } 235 charge = 0; 236 if (mpnt->vm_flags & VM_ACCOUNT) { 237 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 238 if (security_vm_enough_memory(len)) 239 goto fail_nomem; 240 charge = len; 241 } 242 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 243 if (!tmp) 244 goto fail_nomem; 245 *tmp = *mpnt; 246 pol = mpol_copy(vma_policy(mpnt)); 247 retval = PTR_ERR(pol); 248 if (IS_ERR(pol)) 249 goto fail_nomem_policy; 250 vma_set_policy(tmp, pol); 251 tmp->vm_flags &= ~VM_LOCKED; 252 tmp->vm_mm = mm; 253 tmp->vm_next = NULL; 254 anon_vma_link(tmp); 255 file = tmp->vm_file; 256 if (file) { 257 struct inode *inode = file->f_path.dentry->d_inode; 258 get_file(file); 259 if (tmp->vm_flags & VM_DENYWRITE) 260 atomic_dec(&inode->i_writecount); 261 262 /* insert tmp into the share list, just after mpnt */ 263 spin_lock(&file->f_mapping->i_mmap_lock); 264 tmp->vm_truncate_count = mpnt->vm_truncate_count; 265 flush_dcache_mmap_lock(file->f_mapping); 266 vma_prio_tree_add(tmp, mpnt); 267 flush_dcache_mmap_unlock(file->f_mapping); 268 spin_unlock(&file->f_mapping->i_mmap_lock); 269 } 270 271 /* 272 * Link in the new vma and copy the page table entries. 273 */ 274 *pprev = tmp; 275 pprev = &tmp->vm_next; 276 277 __vma_link_rb(mm, tmp, rb_link, rb_parent); 278 rb_link = &tmp->vm_rb.rb_right; 279 rb_parent = &tmp->vm_rb; 280 281 mm->map_count++; 282 retval = copy_page_range(mm, oldmm, mpnt); 283 284 if (tmp->vm_ops && tmp->vm_ops->open) 285 tmp->vm_ops->open(tmp); 286 287 if (retval) 288 goto out; 289 } 290 /* a new mm has just been created */ 291 arch_dup_mmap(oldmm, mm); 292 retval = 0; 293 out: 294 up_write(&mm->mmap_sem); 295 flush_tlb_mm(oldmm); 296 up_write(&oldmm->mmap_sem); 297 return retval; 298 fail_nomem_policy: 299 kmem_cache_free(vm_area_cachep, tmp); 300 fail_nomem: 301 retval = -ENOMEM; 302 vm_unacct_memory(charge); 303 goto out; 304 } 305 306 static inline int mm_alloc_pgd(struct mm_struct * mm) 307 { 308 mm->pgd = pgd_alloc(mm); 309 if (unlikely(!mm->pgd)) 310 return -ENOMEM; 311 return 0; 312 } 313 314 static inline void mm_free_pgd(struct mm_struct * mm) 315 { 316 pgd_free(mm->pgd); 317 } 318 #else 319 #define dup_mmap(mm, oldmm) (0) 320 #define mm_alloc_pgd(mm) (0) 321 #define mm_free_pgd(mm) 322 #endif /* CONFIG_MMU */ 323 324 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 325 326 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 327 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 328 329 #include <linux/init_task.h> 330 331 static struct mm_struct * mm_init(struct mm_struct * mm) 332 { 333 atomic_set(&mm->mm_users, 1); 334 atomic_set(&mm->mm_count, 1); 335 init_rwsem(&mm->mmap_sem); 336 INIT_LIST_HEAD(&mm->mmlist); 337 mm->flags = (current->mm) ? current->mm->flags 338 : MMF_DUMP_FILTER_DEFAULT; 339 mm->core_waiters = 0; 340 mm->nr_ptes = 0; 341 set_mm_counter(mm, file_rss, 0); 342 set_mm_counter(mm, anon_rss, 0); 343 spin_lock_init(&mm->page_table_lock); 344 rwlock_init(&mm->ioctx_list_lock); 345 mm->ioctx_list = NULL; 346 mm->free_area_cache = TASK_UNMAPPED_BASE; 347 mm->cached_hole_size = ~0UL; 348 349 if (likely(!mm_alloc_pgd(mm))) { 350 mm->def_flags = 0; 351 return mm; 352 } 353 free_mm(mm); 354 return NULL; 355 } 356 357 /* 358 * Allocate and initialize an mm_struct. 359 */ 360 struct mm_struct * mm_alloc(void) 361 { 362 struct mm_struct * mm; 363 364 mm = allocate_mm(); 365 if (mm) { 366 memset(mm, 0, sizeof(*mm)); 367 mm = mm_init(mm); 368 } 369 return mm; 370 } 371 372 /* 373 * Called when the last reference to the mm 374 * is dropped: either by a lazy thread or by 375 * mmput. Free the page directory and the mm. 376 */ 377 void fastcall __mmdrop(struct mm_struct *mm) 378 { 379 BUG_ON(mm == &init_mm); 380 mm_free_pgd(mm); 381 destroy_context(mm); 382 free_mm(mm); 383 } 384 385 /* 386 * Decrement the use count and release all resources for an mm. 387 */ 388 void mmput(struct mm_struct *mm) 389 { 390 might_sleep(); 391 392 if (atomic_dec_and_test(&mm->mm_users)) { 393 exit_aio(mm); 394 exit_mmap(mm); 395 if (!list_empty(&mm->mmlist)) { 396 spin_lock(&mmlist_lock); 397 list_del(&mm->mmlist); 398 spin_unlock(&mmlist_lock); 399 } 400 put_swap_token(mm); 401 mmdrop(mm); 402 } 403 } 404 EXPORT_SYMBOL_GPL(mmput); 405 406 /** 407 * get_task_mm - acquire a reference to the task's mm 408 * 409 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning 410 * this kernel workthread has transiently adopted a user mm with use_mm, 411 * to do its AIO) is not set and if so returns a reference to it, after 412 * bumping up the use count. User must release the mm via mmput() 413 * after use. Typically used by /proc and ptrace. 414 */ 415 struct mm_struct *get_task_mm(struct task_struct *task) 416 { 417 struct mm_struct *mm; 418 419 task_lock(task); 420 mm = task->mm; 421 if (mm) { 422 if (task->flags & PF_BORROWED_MM) 423 mm = NULL; 424 else 425 atomic_inc(&mm->mm_users); 426 } 427 task_unlock(task); 428 return mm; 429 } 430 EXPORT_SYMBOL_GPL(get_task_mm); 431 432 /* Please note the differences between mmput and mm_release. 433 * mmput is called whenever we stop holding onto a mm_struct, 434 * error success whatever. 435 * 436 * mm_release is called after a mm_struct has been removed 437 * from the current process. 438 * 439 * This difference is important for error handling, when we 440 * only half set up a mm_struct for a new process and need to restore 441 * the old one. Because we mmput the new mm_struct before 442 * restoring the old one. . . 443 * Eric Biederman 10 January 1998 444 */ 445 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 446 { 447 struct completion *vfork_done = tsk->vfork_done; 448 449 /* Get rid of any cached register state */ 450 deactivate_mm(tsk, mm); 451 452 /* notify parent sleeping on vfork() */ 453 if (vfork_done) { 454 tsk->vfork_done = NULL; 455 complete(vfork_done); 456 } 457 458 /* 459 * If we're exiting normally, clear a user-space tid field if 460 * requested. We leave this alone when dying by signal, to leave 461 * the value intact in a core dump, and to save the unnecessary 462 * trouble otherwise. Userland only wants this done for a sys_exit. 463 */ 464 if (tsk->clear_child_tid 465 && !(tsk->flags & PF_SIGNALED) 466 && atomic_read(&mm->mm_users) > 1) { 467 u32 __user * tidptr = tsk->clear_child_tid; 468 tsk->clear_child_tid = NULL; 469 470 /* 471 * We don't check the error code - if userspace has 472 * not set up a proper pointer then tough luck. 473 */ 474 put_user(0, tidptr); 475 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 476 } 477 } 478 479 /* 480 * Allocate a new mm structure and copy contents from the 481 * mm structure of the passed in task structure. 482 */ 483 static struct mm_struct *dup_mm(struct task_struct *tsk) 484 { 485 struct mm_struct *mm, *oldmm = current->mm; 486 int err; 487 488 if (!oldmm) 489 return NULL; 490 491 mm = allocate_mm(); 492 if (!mm) 493 goto fail_nomem; 494 495 memcpy(mm, oldmm, sizeof(*mm)); 496 497 /* Initializing for Swap token stuff */ 498 mm->token_priority = 0; 499 mm->last_interval = 0; 500 501 if (!mm_init(mm)) 502 goto fail_nomem; 503 504 if (init_new_context(tsk, mm)) 505 goto fail_nocontext; 506 507 err = dup_mmap(mm, oldmm); 508 if (err) 509 goto free_pt; 510 511 mm->hiwater_rss = get_mm_rss(mm); 512 mm->hiwater_vm = mm->total_vm; 513 514 return mm; 515 516 free_pt: 517 mmput(mm); 518 519 fail_nomem: 520 return NULL; 521 522 fail_nocontext: 523 /* 524 * If init_new_context() failed, we cannot use mmput() to free the mm 525 * because it calls destroy_context() 526 */ 527 mm_free_pgd(mm); 528 free_mm(mm); 529 return NULL; 530 } 531 532 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 533 { 534 struct mm_struct * mm, *oldmm; 535 int retval; 536 537 tsk->min_flt = tsk->maj_flt = 0; 538 tsk->nvcsw = tsk->nivcsw = 0; 539 540 tsk->mm = NULL; 541 tsk->active_mm = NULL; 542 543 /* 544 * Are we cloning a kernel thread? 545 * 546 * We need to steal a active VM for that.. 547 */ 548 oldmm = current->mm; 549 if (!oldmm) 550 return 0; 551 552 if (clone_flags & CLONE_VM) { 553 atomic_inc(&oldmm->mm_users); 554 mm = oldmm; 555 goto good_mm; 556 } 557 558 retval = -ENOMEM; 559 mm = dup_mm(tsk); 560 if (!mm) 561 goto fail_nomem; 562 563 good_mm: 564 /* Initializing for Swap token stuff */ 565 mm->token_priority = 0; 566 mm->last_interval = 0; 567 568 tsk->mm = mm; 569 tsk->active_mm = mm; 570 return 0; 571 572 fail_nomem: 573 return retval; 574 } 575 576 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) 577 { 578 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 579 /* We don't need to lock fs - think why ;-) */ 580 if (fs) { 581 atomic_set(&fs->count, 1); 582 rwlock_init(&fs->lock); 583 fs->umask = old->umask; 584 read_lock(&old->lock); 585 fs->rootmnt = mntget(old->rootmnt); 586 fs->root = dget(old->root); 587 fs->pwdmnt = mntget(old->pwdmnt); 588 fs->pwd = dget(old->pwd); 589 if (old->altroot) { 590 fs->altrootmnt = mntget(old->altrootmnt); 591 fs->altroot = dget(old->altroot); 592 } else { 593 fs->altrootmnt = NULL; 594 fs->altroot = NULL; 595 } 596 read_unlock(&old->lock); 597 } 598 return fs; 599 } 600 601 struct fs_struct *copy_fs_struct(struct fs_struct *old) 602 { 603 return __copy_fs_struct(old); 604 } 605 606 EXPORT_SYMBOL_GPL(copy_fs_struct); 607 608 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) 609 { 610 if (clone_flags & CLONE_FS) { 611 atomic_inc(¤t->fs->count); 612 return 0; 613 } 614 tsk->fs = __copy_fs_struct(current->fs); 615 if (!tsk->fs) 616 return -ENOMEM; 617 return 0; 618 } 619 620 static int count_open_files(struct fdtable *fdt) 621 { 622 int size = fdt->max_fds; 623 int i; 624 625 /* Find the last open fd */ 626 for (i = size/(8*sizeof(long)); i > 0; ) { 627 if (fdt->open_fds->fds_bits[--i]) 628 break; 629 } 630 i = (i+1) * 8 * sizeof(long); 631 return i; 632 } 633 634 static struct files_struct *alloc_files(void) 635 { 636 struct files_struct *newf; 637 struct fdtable *fdt; 638 639 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 640 if (!newf) 641 goto out; 642 643 atomic_set(&newf->count, 1); 644 645 spin_lock_init(&newf->file_lock); 646 newf->next_fd = 0; 647 fdt = &newf->fdtab; 648 fdt->max_fds = NR_OPEN_DEFAULT; 649 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; 650 fdt->open_fds = (fd_set *)&newf->open_fds_init; 651 fdt->fd = &newf->fd_array[0]; 652 INIT_RCU_HEAD(&fdt->rcu); 653 fdt->next = NULL; 654 rcu_assign_pointer(newf->fdt, fdt); 655 out: 656 return newf; 657 } 658 659 /* 660 * Allocate a new files structure and copy contents from the 661 * passed in files structure. 662 * errorp will be valid only when the returned files_struct is NULL. 663 */ 664 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 665 { 666 struct files_struct *newf; 667 struct file **old_fds, **new_fds; 668 int open_files, size, i; 669 struct fdtable *old_fdt, *new_fdt; 670 671 *errorp = -ENOMEM; 672 newf = alloc_files(); 673 if (!newf) 674 goto out; 675 676 spin_lock(&oldf->file_lock); 677 old_fdt = files_fdtable(oldf); 678 new_fdt = files_fdtable(newf); 679 open_files = count_open_files(old_fdt); 680 681 /* 682 * Check whether we need to allocate a larger fd array and fd set. 683 * Note: we're not a clone task, so the open count won't change. 684 */ 685 if (open_files > new_fdt->max_fds) { 686 new_fdt->max_fds = 0; 687 spin_unlock(&oldf->file_lock); 688 spin_lock(&newf->file_lock); 689 *errorp = expand_files(newf, open_files-1); 690 spin_unlock(&newf->file_lock); 691 if (*errorp < 0) 692 goto out_release; 693 new_fdt = files_fdtable(newf); 694 /* 695 * Reacquire the oldf lock and a pointer to its fd table 696 * who knows it may have a new bigger fd table. We need 697 * the latest pointer. 698 */ 699 spin_lock(&oldf->file_lock); 700 old_fdt = files_fdtable(oldf); 701 } 702 703 old_fds = old_fdt->fd; 704 new_fds = new_fdt->fd; 705 706 memcpy(new_fdt->open_fds->fds_bits, 707 old_fdt->open_fds->fds_bits, open_files/8); 708 memcpy(new_fdt->close_on_exec->fds_bits, 709 old_fdt->close_on_exec->fds_bits, open_files/8); 710 711 for (i = open_files; i != 0; i--) { 712 struct file *f = *old_fds++; 713 if (f) { 714 get_file(f); 715 } else { 716 /* 717 * The fd may be claimed in the fd bitmap but not yet 718 * instantiated in the files array if a sibling thread 719 * is partway through open(). So make sure that this 720 * fd is available to the new process. 721 */ 722 FD_CLR(open_files - i, new_fdt->open_fds); 723 } 724 rcu_assign_pointer(*new_fds++, f); 725 } 726 spin_unlock(&oldf->file_lock); 727 728 /* compute the remainder to be cleared */ 729 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 730 731 /* This is long word aligned thus could use a optimized version */ 732 memset(new_fds, 0, size); 733 734 if (new_fdt->max_fds > open_files) { 735 int left = (new_fdt->max_fds-open_files)/8; 736 int start = open_files / (8 * sizeof(unsigned long)); 737 738 memset(&new_fdt->open_fds->fds_bits[start], 0, left); 739 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); 740 } 741 742 return newf; 743 744 out_release: 745 kmem_cache_free(files_cachep, newf); 746 out: 747 return NULL; 748 } 749 750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 751 { 752 struct files_struct *oldf, *newf; 753 int error = 0; 754 755 /* 756 * A background process may not have any files ... 757 */ 758 oldf = current->files; 759 if (!oldf) 760 goto out; 761 762 if (clone_flags & CLONE_FILES) { 763 atomic_inc(&oldf->count); 764 goto out; 765 } 766 767 /* 768 * Note: we may be using current for both targets (See exec.c) 769 * This works because we cache current->files (old) as oldf. Don't 770 * break this. 771 */ 772 tsk->files = NULL; 773 newf = dup_fd(oldf, &error); 774 if (!newf) 775 goto out; 776 777 tsk->files = newf; 778 error = 0; 779 out: 780 return error; 781 } 782 783 /* 784 * Helper to unshare the files of the current task. 785 * We don't want to expose copy_files internals to 786 * the exec layer of the kernel. 787 */ 788 789 int unshare_files(void) 790 { 791 struct files_struct *files = current->files; 792 int rc; 793 794 BUG_ON(!files); 795 796 /* This can race but the race causes us to copy when we don't 797 need to and drop the copy */ 798 if(atomic_read(&files->count) == 1) 799 { 800 atomic_inc(&files->count); 801 return 0; 802 } 803 rc = copy_files(0, current); 804 if(rc) 805 current->files = files; 806 return rc; 807 } 808 809 EXPORT_SYMBOL(unshare_files); 810 811 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) 812 { 813 struct sighand_struct *sig; 814 815 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 816 atomic_inc(¤t->sighand->count); 817 return 0; 818 } 819 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 820 rcu_assign_pointer(tsk->sighand, sig); 821 if (!sig) 822 return -ENOMEM; 823 atomic_set(&sig->count, 1); 824 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 825 return 0; 826 } 827 828 void __cleanup_sighand(struct sighand_struct *sighand) 829 { 830 if (atomic_dec_and_test(&sighand->count)) 831 kmem_cache_free(sighand_cachep, sighand); 832 } 833 834 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) 835 { 836 struct signal_struct *sig; 837 int ret; 838 839 if (clone_flags & CLONE_THREAD) { 840 atomic_inc(¤t->signal->count); 841 atomic_inc(¤t->signal->live); 842 return 0; 843 } 844 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 845 tsk->signal = sig; 846 if (!sig) 847 return -ENOMEM; 848 849 ret = copy_thread_group_keys(tsk); 850 if (ret < 0) { 851 kmem_cache_free(signal_cachep, sig); 852 return ret; 853 } 854 855 atomic_set(&sig->count, 1); 856 atomic_set(&sig->live, 1); 857 init_waitqueue_head(&sig->wait_chldexit); 858 sig->flags = 0; 859 sig->group_exit_code = 0; 860 sig->group_exit_task = NULL; 861 sig->group_stop_count = 0; 862 sig->curr_target = NULL; 863 init_sigpending(&sig->shared_pending); 864 INIT_LIST_HEAD(&sig->posix_timers); 865 866 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 867 sig->it_real_incr.tv64 = 0; 868 sig->real_timer.function = it_real_fn; 869 sig->tsk = tsk; 870 871 sig->it_virt_expires = cputime_zero; 872 sig->it_virt_incr = cputime_zero; 873 sig->it_prof_expires = cputime_zero; 874 sig->it_prof_incr = cputime_zero; 875 876 sig->leader = 0; /* session leadership doesn't inherit */ 877 sig->tty_old_pgrp = NULL; 878 879 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 880 sig->gtime = cputime_zero; 881 sig->cgtime = cputime_zero; 882 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 883 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 884 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; 885 sig->sum_sched_runtime = 0; 886 INIT_LIST_HEAD(&sig->cpu_timers[0]); 887 INIT_LIST_HEAD(&sig->cpu_timers[1]); 888 INIT_LIST_HEAD(&sig->cpu_timers[2]); 889 taskstats_tgid_init(sig); 890 891 task_lock(current->group_leader); 892 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 893 task_unlock(current->group_leader); 894 895 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 896 /* 897 * New sole thread in the process gets an expiry time 898 * of the whole CPU time limit. 899 */ 900 tsk->it_prof_expires = 901 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); 902 } 903 acct_init_pacct(&sig->pacct); 904 905 tty_audit_fork(sig); 906 907 return 0; 908 } 909 910 void __cleanup_signal(struct signal_struct *sig) 911 { 912 exit_thread_group_keys(sig); 913 kmem_cache_free(signal_cachep, sig); 914 } 915 916 static inline void cleanup_signal(struct task_struct *tsk) 917 { 918 struct signal_struct *sig = tsk->signal; 919 920 atomic_dec(&sig->live); 921 922 if (atomic_dec_and_test(&sig->count)) 923 __cleanup_signal(sig); 924 } 925 926 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) 927 { 928 unsigned long new_flags = p->flags; 929 930 new_flags &= ~PF_SUPERPRIV; 931 new_flags |= PF_FORKNOEXEC; 932 if (!(clone_flags & CLONE_PTRACE)) 933 p->ptrace = 0; 934 p->flags = new_flags; 935 } 936 937 asmlinkage long sys_set_tid_address(int __user *tidptr) 938 { 939 current->clear_child_tid = tidptr; 940 941 return current->pid; 942 } 943 944 static inline void rt_mutex_init_task(struct task_struct *p) 945 { 946 spin_lock_init(&p->pi_lock); 947 #ifdef CONFIG_RT_MUTEXES 948 plist_head_init(&p->pi_waiters, &p->pi_lock); 949 p->pi_blocked_on = NULL; 950 #endif 951 } 952 953 /* 954 * This creates a new process as a copy of the old one, 955 * but does not actually start it yet. 956 * 957 * It copies the registers, and all the appropriate 958 * parts of the process environment (as per the clone 959 * flags). The actual kick-off is left to the caller. 960 */ 961 static struct task_struct *copy_process(unsigned long clone_flags, 962 unsigned long stack_start, 963 struct pt_regs *regs, 964 unsigned long stack_size, 965 int __user *parent_tidptr, 966 int __user *child_tidptr, 967 struct pid *pid) 968 { 969 int retval; 970 struct task_struct *p = NULL; 971 972 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 973 return ERR_PTR(-EINVAL); 974 975 /* 976 * Thread groups must share signals as well, and detached threads 977 * can only be started up within the thread group. 978 */ 979 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 980 return ERR_PTR(-EINVAL); 981 982 /* 983 * Shared signal handlers imply shared VM. By way of the above, 984 * thread groups also imply shared VM. Blocking this case allows 985 * for various simplifications in other code. 986 */ 987 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 988 return ERR_PTR(-EINVAL); 989 990 retval = security_task_create(clone_flags); 991 if (retval) 992 goto fork_out; 993 994 retval = -ENOMEM; 995 p = dup_task_struct(current); 996 if (!p) 997 goto fork_out; 998 999 rt_mutex_init_task(p); 1000 1001 #ifdef CONFIG_TRACE_IRQFLAGS 1002 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1003 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1004 #endif 1005 retval = -EAGAIN; 1006 if (atomic_read(&p->user->processes) >= 1007 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 1008 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1009 p->user != current->nsproxy->user_ns->root_user) 1010 goto bad_fork_free; 1011 } 1012 1013 atomic_inc(&p->user->__count); 1014 atomic_inc(&p->user->processes); 1015 get_group_info(p->group_info); 1016 1017 /* 1018 * If multiple threads are within copy_process(), then this check 1019 * triggers too late. This doesn't hurt, the check is only there 1020 * to stop root fork bombs. 1021 */ 1022 if (nr_threads >= max_threads) 1023 goto bad_fork_cleanup_count; 1024 1025 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1026 goto bad_fork_cleanup_count; 1027 1028 if (p->binfmt && !try_module_get(p->binfmt->module)) 1029 goto bad_fork_cleanup_put_domain; 1030 1031 p->did_exec = 0; 1032 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1033 copy_flags(clone_flags, p); 1034 p->pid = pid_nr(pid); 1035 retval = -EFAULT; 1036 if (clone_flags & CLONE_PARENT_SETTID) 1037 if (put_user(p->pid, parent_tidptr)) 1038 goto bad_fork_cleanup_delays_binfmt; 1039 1040 INIT_LIST_HEAD(&p->children); 1041 INIT_LIST_HEAD(&p->sibling); 1042 p->vfork_done = NULL; 1043 spin_lock_init(&p->alloc_lock); 1044 1045 clear_tsk_thread_flag(p, TIF_SIGPENDING); 1046 init_sigpending(&p->pending); 1047 1048 p->utime = cputime_zero; 1049 p->stime = cputime_zero; 1050 p->gtime = cputime_zero; 1051 1052 #ifdef CONFIG_TASK_XACCT 1053 p->rchar = 0; /* I/O counter: bytes read */ 1054 p->wchar = 0; /* I/O counter: bytes written */ 1055 p->syscr = 0; /* I/O counter: read syscalls */ 1056 p->syscw = 0; /* I/O counter: write syscalls */ 1057 #endif 1058 task_io_accounting_init(p); 1059 acct_clear_integrals(p); 1060 1061 p->it_virt_expires = cputime_zero; 1062 p->it_prof_expires = cputime_zero; 1063 p->it_sched_expires = 0; 1064 INIT_LIST_HEAD(&p->cpu_timers[0]); 1065 INIT_LIST_HEAD(&p->cpu_timers[1]); 1066 INIT_LIST_HEAD(&p->cpu_timers[2]); 1067 1068 p->lock_depth = -1; /* -1 = no lock */ 1069 do_posix_clock_monotonic_gettime(&p->start_time); 1070 p->real_start_time = p->start_time; 1071 monotonic_to_bootbased(&p->real_start_time); 1072 p->security = NULL; 1073 p->io_context = NULL; 1074 p->io_wait = NULL; 1075 p->audit_context = NULL; 1076 cpuset_fork(p); 1077 #ifdef CONFIG_NUMA 1078 p->mempolicy = mpol_copy(p->mempolicy); 1079 if (IS_ERR(p->mempolicy)) { 1080 retval = PTR_ERR(p->mempolicy); 1081 p->mempolicy = NULL; 1082 goto bad_fork_cleanup_cpuset; 1083 } 1084 mpol_fix_fork_child_flag(p); 1085 #endif 1086 #ifdef CONFIG_TRACE_IRQFLAGS 1087 p->irq_events = 0; 1088 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1089 p->hardirqs_enabled = 1; 1090 #else 1091 p->hardirqs_enabled = 0; 1092 #endif 1093 p->hardirq_enable_ip = 0; 1094 p->hardirq_enable_event = 0; 1095 p->hardirq_disable_ip = _THIS_IP_; 1096 p->hardirq_disable_event = 0; 1097 p->softirqs_enabled = 1; 1098 p->softirq_enable_ip = _THIS_IP_; 1099 p->softirq_enable_event = 0; 1100 p->softirq_disable_ip = 0; 1101 p->softirq_disable_event = 0; 1102 p->hardirq_context = 0; 1103 p->softirq_context = 0; 1104 #endif 1105 #ifdef CONFIG_LOCKDEP 1106 p->lockdep_depth = 0; /* no locks held yet */ 1107 p->curr_chain_key = 0; 1108 p->lockdep_recursion = 0; 1109 #endif 1110 1111 #ifdef CONFIG_DEBUG_MUTEXES 1112 p->blocked_on = NULL; /* not blocked yet */ 1113 #endif 1114 1115 p->tgid = p->pid; 1116 if (clone_flags & CLONE_THREAD) 1117 p->tgid = current->tgid; 1118 1119 if ((retval = security_task_alloc(p))) 1120 goto bad_fork_cleanup_policy; 1121 if ((retval = audit_alloc(p))) 1122 goto bad_fork_cleanup_security; 1123 /* copy all the process information */ 1124 if ((retval = copy_semundo(clone_flags, p))) 1125 goto bad_fork_cleanup_audit; 1126 if ((retval = copy_files(clone_flags, p))) 1127 goto bad_fork_cleanup_semundo; 1128 if ((retval = copy_fs(clone_flags, p))) 1129 goto bad_fork_cleanup_files; 1130 if ((retval = copy_sighand(clone_flags, p))) 1131 goto bad_fork_cleanup_fs; 1132 if ((retval = copy_signal(clone_flags, p))) 1133 goto bad_fork_cleanup_sighand; 1134 if ((retval = copy_mm(clone_flags, p))) 1135 goto bad_fork_cleanup_signal; 1136 if ((retval = copy_keys(clone_flags, p))) 1137 goto bad_fork_cleanup_mm; 1138 if ((retval = copy_namespaces(clone_flags, p))) 1139 goto bad_fork_cleanup_keys; 1140 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 1141 if (retval) 1142 goto bad_fork_cleanup_namespaces; 1143 1144 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1145 /* 1146 * Clear TID on mm_release()? 1147 */ 1148 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1149 p->robust_list = NULL; 1150 #ifdef CONFIG_COMPAT 1151 p->compat_robust_list = NULL; 1152 #endif 1153 INIT_LIST_HEAD(&p->pi_state_list); 1154 p->pi_state_cache = NULL; 1155 1156 /* 1157 * sigaltstack should be cleared when sharing the same VM 1158 */ 1159 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1160 p->sas_ss_sp = p->sas_ss_size = 0; 1161 1162 /* 1163 * Syscall tracing should be turned off in the child regardless 1164 * of CLONE_PTRACE. 1165 */ 1166 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1167 #ifdef TIF_SYSCALL_EMU 1168 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1169 #endif 1170 1171 /* Our parent execution domain becomes current domain 1172 These must match for thread signalling to apply */ 1173 p->parent_exec_id = p->self_exec_id; 1174 1175 /* ok, now we should be set up.. */ 1176 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1177 p->pdeath_signal = 0; 1178 p->exit_state = 0; 1179 1180 /* 1181 * Ok, make it visible to the rest of the system. 1182 * We dont wake it up yet. 1183 */ 1184 p->group_leader = p; 1185 INIT_LIST_HEAD(&p->thread_group); 1186 INIT_LIST_HEAD(&p->ptrace_children); 1187 INIT_LIST_HEAD(&p->ptrace_list); 1188 1189 /* Perform scheduler related setup. Assign this task to a CPU. */ 1190 sched_fork(p, clone_flags); 1191 1192 /* Need tasklist lock for parent etc handling! */ 1193 write_lock_irq(&tasklist_lock); 1194 1195 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */ 1196 p->ioprio = current->ioprio; 1197 1198 /* 1199 * The task hasn't been attached yet, so its cpus_allowed mask will 1200 * not be changed, nor will its assigned CPU. 1201 * 1202 * The cpus_allowed mask of the parent may have changed after it was 1203 * copied first time - so re-copy it here, then check the child's CPU 1204 * to ensure it is on a valid CPU (and if not, just force it back to 1205 * parent's CPU). This avoids alot of nasty races. 1206 */ 1207 p->cpus_allowed = current->cpus_allowed; 1208 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || 1209 !cpu_online(task_cpu(p)))) 1210 set_task_cpu(p, smp_processor_id()); 1211 1212 /* CLONE_PARENT re-uses the old parent */ 1213 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1214 p->real_parent = current->real_parent; 1215 else 1216 p->real_parent = current; 1217 p->parent = p->real_parent; 1218 1219 spin_lock(¤t->sighand->siglock); 1220 1221 /* 1222 * Process group and session signals need to be delivered to just the 1223 * parent before the fork or both the parent and the child after the 1224 * fork. Restart if a signal comes in before we add the new process to 1225 * it's process group. 1226 * A fatal signal pending means that current will exit, so the new 1227 * thread can't slip out of an OOM kill (or normal SIGKILL). 1228 */ 1229 recalc_sigpending(); 1230 if (signal_pending(current)) { 1231 spin_unlock(¤t->sighand->siglock); 1232 write_unlock_irq(&tasklist_lock); 1233 retval = -ERESTARTNOINTR; 1234 goto bad_fork_cleanup_namespaces; 1235 } 1236 1237 if (clone_flags & CLONE_THREAD) { 1238 p->group_leader = current->group_leader; 1239 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1240 1241 if (!cputime_eq(current->signal->it_virt_expires, 1242 cputime_zero) || 1243 !cputime_eq(current->signal->it_prof_expires, 1244 cputime_zero) || 1245 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || 1246 !list_empty(¤t->signal->cpu_timers[0]) || 1247 !list_empty(¤t->signal->cpu_timers[1]) || 1248 !list_empty(¤t->signal->cpu_timers[2])) { 1249 /* 1250 * Have child wake up on its first tick to check 1251 * for process CPU timers. 1252 */ 1253 p->it_prof_expires = jiffies_to_cputime(1); 1254 } 1255 } 1256 1257 if (likely(p->pid)) { 1258 add_parent(p); 1259 if (unlikely(p->ptrace & PT_PTRACED)) 1260 __ptrace_link(p, current->parent); 1261 1262 if (thread_group_leader(p)) { 1263 p->signal->tty = current->signal->tty; 1264 p->signal->pgrp = process_group(current); 1265 set_signal_session(p->signal, process_session(current)); 1266 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1267 attach_pid(p, PIDTYPE_SID, task_session(current)); 1268 1269 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1270 __get_cpu_var(process_counts)++; 1271 } 1272 attach_pid(p, PIDTYPE_PID, pid); 1273 nr_threads++; 1274 } 1275 1276 total_forks++; 1277 spin_unlock(¤t->sighand->siglock); 1278 write_unlock_irq(&tasklist_lock); 1279 proc_fork_connector(p); 1280 return p; 1281 1282 bad_fork_cleanup_namespaces: 1283 exit_task_namespaces(p); 1284 bad_fork_cleanup_keys: 1285 exit_keys(p); 1286 bad_fork_cleanup_mm: 1287 if (p->mm) 1288 mmput(p->mm); 1289 bad_fork_cleanup_signal: 1290 cleanup_signal(p); 1291 bad_fork_cleanup_sighand: 1292 __cleanup_sighand(p->sighand); 1293 bad_fork_cleanup_fs: 1294 exit_fs(p); /* blocking */ 1295 bad_fork_cleanup_files: 1296 exit_files(p); /* blocking */ 1297 bad_fork_cleanup_semundo: 1298 exit_sem(p); 1299 bad_fork_cleanup_audit: 1300 audit_free(p); 1301 bad_fork_cleanup_security: 1302 security_task_free(p); 1303 bad_fork_cleanup_policy: 1304 #ifdef CONFIG_NUMA 1305 mpol_free(p->mempolicy); 1306 bad_fork_cleanup_cpuset: 1307 #endif 1308 cpuset_exit(p); 1309 bad_fork_cleanup_delays_binfmt: 1310 delayacct_tsk_free(p); 1311 if (p->binfmt) 1312 module_put(p->binfmt->module); 1313 bad_fork_cleanup_put_domain: 1314 module_put(task_thread_info(p)->exec_domain->module); 1315 bad_fork_cleanup_count: 1316 put_group_info(p->group_info); 1317 atomic_dec(&p->user->processes); 1318 free_uid(p->user); 1319 bad_fork_free: 1320 free_task(p); 1321 fork_out: 1322 return ERR_PTR(retval); 1323 } 1324 1325 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1326 { 1327 memset(regs, 0, sizeof(struct pt_regs)); 1328 return regs; 1329 } 1330 1331 struct task_struct * __cpuinit fork_idle(int cpu) 1332 { 1333 struct task_struct *task; 1334 struct pt_regs regs; 1335 1336 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 1337 &init_struct_pid); 1338 if (!IS_ERR(task)) 1339 init_idle(task, cpu); 1340 1341 return task; 1342 } 1343 1344 static inline int fork_traceflag (unsigned clone_flags) 1345 { 1346 if (clone_flags & CLONE_UNTRACED) 1347 return 0; 1348 else if (clone_flags & CLONE_VFORK) { 1349 if (current->ptrace & PT_TRACE_VFORK) 1350 return PTRACE_EVENT_VFORK; 1351 } else if ((clone_flags & CSIGNAL) != SIGCHLD) { 1352 if (current->ptrace & PT_TRACE_CLONE) 1353 return PTRACE_EVENT_CLONE; 1354 } else if (current->ptrace & PT_TRACE_FORK) 1355 return PTRACE_EVENT_FORK; 1356 1357 return 0; 1358 } 1359 1360 /* 1361 * Ok, this is the main fork-routine. 1362 * 1363 * It copies the process, and if successful kick-starts 1364 * it and waits for it to finish using the VM if required. 1365 */ 1366 long do_fork(unsigned long clone_flags, 1367 unsigned long stack_start, 1368 struct pt_regs *regs, 1369 unsigned long stack_size, 1370 int __user *parent_tidptr, 1371 int __user *child_tidptr) 1372 { 1373 struct task_struct *p; 1374 int trace = 0; 1375 struct pid *pid = alloc_pid(); 1376 long nr; 1377 1378 if (!pid) 1379 return -EAGAIN; 1380 nr = pid->nr; 1381 if (unlikely(current->ptrace)) { 1382 trace = fork_traceflag (clone_flags); 1383 if (trace) 1384 clone_flags |= CLONE_PTRACE; 1385 } 1386 1387 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); 1388 /* 1389 * Do this prior waking up the new thread - the thread pointer 1390 * might get invalid after that point, if the thread exits quickly. 1391 */ 1392 if (!IS_ERR(p)) { 1393 struct completion vfork; 1394 1395 if (clone_flags & CLONE_VFORK) { 1396 p->vfork_done = &vfork; 1397 init_completion(&vfork); 1398 } 1399 1400 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { 1401 /* 1402 * We'll start up with an immediate SIGSTOP. 1403 */ 1404 sigaddset(&p->pending.signal, SIGSTOP); 1405 set_tsk_thread_flag(p, TIF_SIGPENDING); 1406 } 1407 1408 if (!(clone_flags & CLONE_STOPPED)) 1409 wake_up_new_task(p, clone_flags); 1410 else 1411 p->state = TASK_STOPPED; 1412 1413 if (unlikely (trace)) { 1414 current->ptrace_message = nr; 1415 ptrace_notify ((trace << 8) | SIGTRAP); 1416 } 1417 1418 if (clone_flags & CLONE_VFORK) { 1419 freezer_do_not_count(); 1420 wait_for_completion(&vfork); 1421 freezer_count(); 1422 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { 1423 current->ptrace_message = nr; 1424 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); 1425 } 1426 } 1427 } else { 1428 free_pid(pid); 1429 nr = PTR_ERR(p); 1430 } 1431 return nr; 1432 } 1433 1434 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1435 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1436 #endif 1437 1438 static void sighand_ctor(void *data, struct kmem_cache *cachep, 1439 unsigned long flags) 1440 { 1441 struct sighand_struct *sighand = data; 1442 1443 spin_lock_init(&sighand->siglock); 1444 init_waitqueue_head(&sighand->signalfd_wqh); 1445 } 1446 1447 void __init proc_caches_init(void) 1448 { 1449 sighand_cachep = kmem_cache_create("sighand_cache", 1450 sizeof(struct sighand_struct), 0, 1451 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, 1452 sighand_ctor); 1453 signal_cachep = kmem_cache_create("signal_cache", 1454 sizeof(struct signal_struct), 0, 1455 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1456 files_cachep = kmem_cache_create("files_cache", 1457 sizeof(struct files_struct), 0, 1458 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1459 fs_cachep = kmem_cache_create("fs_cache", 1460 sizeof(struct fs_struct), 0, 1461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1462 vm_area_cachep = kmem_cache_create("vm_area_struct", 1463 sizeof(struct vm_area_struct), 0, 1464 SLAB_PANIC, NULL); 1465 mm_cachep = kmem_cache_create("mm_struct", 1466 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1468 } 1469 1470 /* 1471 * Check constraints on flags passed to the unshare system call and 1472 * force unsharing of additional process context as appropriate. 1473 */ 1474 static inline void check_unshare_flags(unsigned long *flags_ptr) 1475 { 1476 /* 1477 * If unsharing a thread from a thread group, must also 1478 * unshare vm. 1479 */ 1480 if (*flags_ptr & CLONE_THREAD) 1481 *flags_ptr |= CLONE_VM; 1482 1483 /* 1484 * If unsharing vm, must also unshare signal handlers. 1485 */ 1486 if (*flags_ptr & CLONE_VM) 1487 *flags_ptr |= CLONE_SIGHAND; 1488 1489 /* 1490 * If unsharing signal handlers and the task was created 1491 * using CLONE_THREAD, then must unshare the thread 1492 */ 1493 if ((*flags_ptr & CLONE_SIGHAND) && 1494 (atomic_read(¤t->signal->count) > 1)) 1495 *flags_ptr |= CLONE_THREAD; 1496 1497 /* 1498 * If unsharing namespace, must also unshare filesystem information. 1499 */ 1500 if (*flags_ptr & CLONE_NEWNS) 1501 *flags_ptr |= CLONE_FS; 1502 } 1503 1504 /* 1505 * Unsharing of tasks created with CLONE_THREAD is not supported yet 1506 */ 1507 static int unshare_thread(unsigned long unshare_flags) 1508 { 1509 if (unshare_flags & CLONE_THREAD) 1510 return -EINVAL; 1511 1512 return 0; 1513 } 1514 1515 /* 1516 * Unshare the filesystem structure if it is being shared 1517 */ 1518 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1519 { 1520 struct fs_struct *fs = current->fs; 1521 1522 if ((unshare_flags & CLONE_FS) && 1523 (fs && atomic_read(&fs->count) > 1)) { 1524 *new_fsp = __copy_fs_struct(current->fs); 1525 if (!*new_fsp) 1526 return -ENOMEM; 1527 } 1528 1529 return 0; 1530 } 1531 1532 /* 1533 * Unsharing of sighand is not supported yet 1534 */ 1535 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) 1536 { 1537 struct sighand_struct *sigh = current->sighand; 1538 1539 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) 1540 return -EINVAL; 1541 else 1542 return 0; 1543 } 1544 1545 /* 1546 * Unshare vm if it is being shared 1547 */ 1548 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) 1549 { 1550 struct mm_struct *mm = current->mm; 1551 1552 if ((unshare_flags & CLONE_VM) && 1553 (mm && atomic_read(&mm->mm_users) > 1)) { 1554 return -EINVAL; 1555 } 1556 1557 return 0; 1558 } 1559 1560 /* 1561 * Unshare file descriptor table if it is being shared 1562 */ 1563 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1564 { 1565 struct files_struct *fd = current->files; 1566 int error = 0; 1567 1568 if ((unshare_flags & CLONE_FILES) && 1569 (fd && atomic_read(&fd->count) > 1)) { 1570 *new_fdp = dup_fd(fd, &error); 1571 if (!*new_fdp) 1572 return error; 1573 } 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not 1580 * supported yet 1581 */ 1582 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp) 1583 { 1584 if (unshare_flags & CLONE_SYSVSEM) 1585 return -EINVAL; 1586 1587 return 0; 1588 } 1589 1590 /* 1591 * unshare allows a process to 'unshare' part of the process 1592 * context which was originally shared using clone. copy_* 1593 * functions used by do_fork() cannot be used here directly 1594 * because they modify an inactive task_struct that is being 1595 * constructed. Here we are modifying the current, active, 1596 * task_struct. 1597 */ 1598 asmlinkage long sys_unshare(unsigned long unshare_flags) 1599 { 1600 int err = 0; 1601 struct fs_struct *fs, *new_fs = NULL; 1602 struct sighand_struct *new_sigh = NULL; 1603 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; 1604 struct files_struct *fd, *new_fd = NULL; 1605 struct sem_undo_list *new_ulist = NULL; 1606 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL; 1607 1608 check_unshare_flags(&unshare_flags); 1609 1610 /* Return -EINVAL for all unsupported flags */ 1611 err = -EINVAL; 1612 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1613 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1614 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| 1615 CLONE_NEWNET)) 1616 goto bad_unshare_out; 1617 1618 if ((err = unshare_thread(unshare_flags))) 1619 goto bad_unshare_out; 1620 if ((err = unshare_fs(unshare_flags, &new_fs))) 1621 goto bad_unshare_cleanup_thread; 1622 if ((err = unshare_sighand(unshare_flags, &new_sigh))) 1623 goto bad_unshare_cleanup_fs; 1624 if ((err = unshare_vm(unshare_flags, &new_mm))) 1625 goto bad_unshare_cleanup_sigh; 1626 if ((err = unshare_fd(unshare_flags, &new_fd))) 1627 goto bad_unshare_cleanup_vm; 1628 if ((err = unshare_semundo(unshare_flags, &new_ulist))) 1629 goto bad_unshare_cleanup_fd; 1630 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1631 new_fs))) 1632 goto bad_unshare_cleanup_semundo; 1633 1634 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) { 1635 1636 task_lock(current); 1637 1638 if (new_nsproxy) { 1639 old_nsproxy = current->nsproxy; 1640 current->nsproxy = new_nsproxy; 1641 new_nsproxy = old_nsproxy; 1642 } 1643 1644 if (new_fs) { 1645 fs = current->fs; 1646 current->fs = new_fs; 1647 new_fs = fs; 1648 } 1649 1650 if (new_mm) { 1651 mm = current->mm; 1652 active_mm = current->active_mm; 1653 current->mm = new_mm; 1654 current->active_mm = new_mm; 1655 activate_mm(active_mm, new_mm); 1656 new_mm = mm; 1657 } 1658 1659 if (new_fd) { 1660 fd = current->files; 1661 current->files = new_fd; 1662 new_fd = fd; 1663 } 1664 1665 task_unlock(current); 1666 } 1667 1668 if (new_nsproxy) 1669 put_nsproxy(new_nsproxy); 1670 1671 bad_unshare_cleanup_semundo: 1672 bad_unshare_cleanup_fd: 1673 if (new_fd) 1674 put_files_struct(new_fd); 1675 1676 bad_unshare_cleanup_vm: 1677 if (new_mm) 1678 mmput(new_mm); 1679 1680 bad_unshare_cleanup_sigh: 1681 if (new_sigh) 1682 if (atomic_dec_and_test(&new_sigh->count)) 1683 kmem_cache_free(sighand_cachep, new_sigh); 1684 1685 bad_unshare_cleanup_fs: 1686 if (new_fs) 1687 put_fs_struct(new_fs); 1688 1689 bad_unshare_cleanup_thread: 1690 bad_unshare_out: 1691 return err; 1692 } 1693