xref: /openbmc/linux/kernel/fork.c (revision a8ea6fc9b089156d9230bfeef964dd9be101a4a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Mark stack accessible for KASAN. */
230 		kasan_unpoison_range(s->addr, THREAD_SIZE);
231 
232 		/* Clear stale pointers from reused stack. */
233 		memset(s->addr, 0, THREAD_SIZE);
234 
235 		tsk->stack_vm_area = s;
236 		tsk->stack = s->addr;
237 		return s->addr;
238 	}
239 
240 	/*
241 	 * Allocated stacks are cached and later reused by new threads,
242 	 * so memcg accounting is performed manually on assigning/releasing
243 	 * stacks to tasks. Drop __GFP_ACCOUNT.
244 	 */
245 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 				     VMALLOC_START, VMALLOC_END,
247 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
248 				     PAGE_KERNEL,
249 				     0, node, __builtin_return_address(0));
250 
251 	/*
252 	 * We can't call find_vm_area() in interrupt context, and
253 	 * free_thread_stack() can be called in interrupt context,
254 	 * so cache the vm_struct.
255 	 */
256 	if (stack) {
257 		tsk->stack_vm_area = find_vm_area(stack);
258 		tsk->stack = stack;
259 	}
260 	return stack;
261 #else
262 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 					     THREAD_SIZE_ORDER);
264 
265 	if (likely(page)) {
266 		tsk->stack = kasan_reset_tag(page_address(page));
267 		return tsk->stack;
268 	}
269 	return NULL;
270 #endif
271 }
272 
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 	struct vm_struct *vm = task_stack_vm_area(tsk);
277 
278 	if (vm) {
279 		int i;
280 
281 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 			memcg_kmem_uncharge_page(vm->pages[i], 0);
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	stack = kasan_reset_tag(stack);
308 	tsk->stack = stack;
309 	return stack;
310 }
311 
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 	kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316 
317 void thread_stack_cache_init(void)
318 {
319 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 					THREAD_SIZE, THREAD_SIZE, 0, 0,
321 					THREAD_SIZE, NULL);
322 	BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326 
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329 
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332 
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335 
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338 
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341 
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344 
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 	struct vm_area_struct *vma;
348 
349 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 	if (vma)
351 		vma_init(vma, mm);
352 	return vma;
353 }
354 
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 
359 	if (new) {
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 		/*
363 		 * orig->shared.rb may be modified concurrently, but the clone
364 		 * will be reinitialized.
365 		 */
366 		*new = data_race(*orig);
367 		INIT_LIST_HEAD(&new->anon_vma_chain);
368 		new->vm_next = new->vm_prev = NULL;
369 	}
370 	return new;
371 }
372 
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 	kmem_cache_free(vm_area_cachep, vma);
376 }
377 
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380 	void *stack = task_stack_page(tsk);
381 	struct vm_struct *vm = task_stack_vm_area(tsk);
382 
383 	if (vm) {
384 		int i;
385 
386 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388 					      account * (PAGE_SIZE / 1024));
389 	} else {
390 		/* All stack pages are in the same node. */
391 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392 				      account * (THREAD_SIZE / 1024));
393 	}
394 }
395 
396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
397 {
398 #ifdef CONFIG_VMAP_STACK
399 	struct vm_struct *vm = task_stack_vm_area(tsk);
400 	int ret;
401 
402 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403 
404 	if (vm) {
405 		int i;
406 
407 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
408 
409 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
410 			/*
411 			 * If memcg_kmem_charge_page() fails, page's
412 			 * memory cgroup pointer is NULL, and
413 			 * memcg_kmem_uncharge_page() in free_thread_stack()
414 			 * will ignore this page.
415 			 */
416 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
417 						     0);
418 			if (ret)
419 				return ret;
420 		}
421 	}
422 #endif
423 	return 0;
424 }
425 
426 static void release_task_stack(struct task_struct *tsk)
427 {
428 	if (WARN_ON(tsk->state != TASK_DEAD))
429 		return;  /* Better to leak the stack than to free prematurely */
430 
431 	account_kernel_stack(tsk, -1);
432 	free_thread_stack(tsk);
433 	tsk->stack = NULL;
434 #ifdef CONFIG_VMAP_STACK
435 	tsk->stack_vm_area = NULL;
436 #endif
437 }
438 
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
440 void put_task_stack(struct task_struct *tsk)
441 {
442 	if (refcount_dec_and_test(&tsk->stack_refcount))
443 		release_task_stack(tsk);
444 }
445 #endif
446 
447 void free_task(struct task_struct *tsk)
448 {
449 	scs_release(tsk);
450 
451 #ifndef CONFIG_THREAD_INFO_IN_TASK
452 	/*
453 	 * The task is finally done with both the stack and thread_info,
454 	 * so free both.
455 	 */
456 	release_task_stack(tsk);
457 #else
458 	/*
459 	 * If the task had a separate stack allocation, it should be gone
460 	 * by now.
461 	 */
462 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
463 #endif
464 	rt_mutex_debug_task_free(tsk);
465 	ftrace_graph_exit_task(tsk);
466 	arch_release_task_struct(tsk);
467 	if (tsk->flags & PF_KTHREAD)
468 		free_kthread_struct(tsk);
469 	free_task_struct(tsk);
470 }
471 EXPORT_SYMBOL(free_task);
472 
473 #ifdef CONFIG_MMU
474 static __latent_entropy int dup_mmap(struct mm_struct *mm,
475 					struct mm_struct *oldmm)
476 {
477 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
478 	struct rb_node **rb_link, *rb_parent;
479 	int retval;
480 	unsigned long charge;
481 	LIST_HEAD(uf);
482 
483 	uprobe_start_dup_mmap();
484 	if (mmap_write_lock_killable(oldmm)) {
485 		retval = -EINTR;
486 		goto fail_uprobe_end;
487 	}
488 	flush_cache_dup_mm(oldmm);
489 	uprobe_dup_mmap(oldmm, mm);
490 	/*
491 	 * Not linked in yet - no deadlock potential:
492 	 */
493 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
494 
495 	/* No ordering required: file already has been exposed. */
496 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
497 
498 	mm->total_vm = oldmm->total_vm;
499 	mm->data_vm = oldmm->data_vm;
500 	mm->exec_vm = oldmm->exec_vm;
501 	mm->stack_vm = oldmm->stack_vm;
502 
503 	rb_link = &mm->mm_rb.rb_node;
504 	rb_parent = NULL;
505 	pprev = &mm->mmap;
506 	retval = ksm_fork(mm, oldmm);
507 	if (retval)
508 		goto out;
509 	retval = khugepaged_fork(mm, oldmm);
510 	if (retval)
511 		goto out;
512 
513 	prev = NULL;
514 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
515 		struct file *file;
516 
517 		if (mpnt->vm_flags & VM_DONTCOPY) {
518 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
519 			continue;
520 		}
521 		charge = 0;
522 		/*
523 		 * Don't duplicate many vmas if we've been oom-killed (for
524 		 * example)
525 		 */
526 		if (fatal_signal_pending(current)) {
527 			retval = -EINTR;
528 			goto out;
529 		}
530 		if (mpnt->vm_flags & VM_ACCOUNT) {
531 			unsigned long len = vma_pages(mpnt);
532 
533 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
534 				goto fail_nomem;
535 			charge = len;
536 		}
537 		tmp = vm_area_dup(mpnt);
538 		if (!tmp)
539 			goto fail_nomem;
540 		retval = vma_dup_policy(mpnt, tmp);
541 		if (retval)
542 			goto fail_nomem_policy;
543 		tmp->vm_mm = mm;
544 		retval = dup_userfaultfd(tmp, &uf);
545 		if (retval)
546 			goto fail_nomem_anon_vma_fork;
547 		if (tmp->vm_flags & VM_WIPEONFORK) {
548 			/*
549 			 * VM_WIPEONFORK gets a clean slate in the child.
550 			 * Don't prepare anon_vma until fault since we don't
551 			 * copy page for current vma.
552 			 */
553 			tmp->anon_vma = NULL;
554 		} else if (anon_vma_fork(tmp, mpnt))
555 			goto fail_nomem_anon_vma_fork;
556 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
557 		file = tmp->vm_file;
558 		if (file) {
559 			struct inode *inode = file_inode(file);
560 			struct address_space *mapping = file->f_mapping;
561 
562 			get_file(file);
563 			if (tmp->vm_flags & VM_DENYWRITE)
564 				put_write_access(inode);
565 			i_mmap_lock_write(mapping);
566 			if (tmp->vm_flags & VM_SHARED)
567 				mapping_allow_writable(mapping);
568 			flush_dcache_mmap_lock(mapping);
569 			/* insert tmp into the share list, just after mpnt */
570 			vma_interval_tree_insert_after(tmp, mpnt,
571 					&mapping->i_mmap);
572 			flush_dcache_mmap_unlock(mapping);
573 			i_mmap_unlock_write(mapping);
574 		}
575 
576 		/*
577 		 * Clear hugetlb-related page reserves for children. This only
578 		 * affects MAP_PRIVATE mappings. Faults generated by the child
579 		 * are not guaranteed to succeed, even if read-only
580 		 */
581 		if (is_vm_hugetlb_page(tmp))
582 			reset_vma_resv_huge_pages(tmp);
583 
584 		/*
585 		 * Link in the new vma and copy the page table entries.
586 		 */
587 		*pprev = tmp;
588 		pprev = &tmp->vm_next;
589 		tmp->vm_prev = prev;
590 		prev = tmp;
591 
592 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
593 		rb_link = &tmp->vm_rb.rb_right;
594 		rb_parent = &tmp->vm_rb;
595 
596 		mm->map_count++;
597 		if (!(tmp->vm_flags & VM_WIPEONFORK))
598 			retval = copy_page_range(tmp, mpnt);
599 
600 		if (tmp->vm_ops && tmp->vm_ops->open)
601 			tmp->vm_ops->open(tmp);
602 
603 		if (retval)
604 			goto out;
605 	}
606 	/* a new mm has just been created */
607 	retval = arch_dup_mmap(oldmm, mm);
608 out:
609 	mmap_write_unlock(mm);
610 	flush_tlb_mm(oldmm);
611 	mmap_write_unlock(oldmm);
612 	dup_userfaultfd_complete(&uf);
613 fail_uprobe_end:
614 	uprobe_end_dup_mmap();
615 	return retval;
616 fail_nomem_anon_vma_fork:
617 	mpol_put(vma_policy(tmp));
618 fail_nomem_policy:
619 	vm_area_free(tmp);
620 fail_nomem:
621 	retval = -ENOMEM;
622 	vm_unacct_memory(charge);
623 	goto out;
624 }
625 
626 static inline int mm_alloc_pgd(struct mm_struct *mm)
627 {
628 	mm->pgd = pgd_alloc(mm);
629 	if (unlikely(!mm->pgd))
630 		return -ENOMEM;
631 	return 0;
632 }
633 
634 static inline void mm_free_pgd(struct mm_struct *mm)
635 {
636 	pgd_free(mm, mm->pgd);
637 }
638 #else
639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
640 {
641 	mmap_write_lock(oldmm);
642 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
643 	mmap_write_unlock(oldmm);
644 	return 0;
645 }
646 #define mm_alloc_pgd(mm)	(0)
647 #define mm_free_pgd(mm)
648 #endif /* CONFIG_MMU */
649 
650 static void check_mm(struct mm_struct *mm)
651 {
652 	int i;
653 
654 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
655 			 "Please make sure 'struct resident_page_types[]' is updated as well");
656 
657 	for (i = 0; i < NR_MM_COUNTERS; i++) {
658 		long x = atomic_long_read(&mm->rss_stat.count[i]);
659 
660 		if (unlikely(x))
661 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
662 				 mm, resident_page_types[i], x);
663 	}
664 
665 	if (mm_pgtables_bytes(mm))
666 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
667 				mm_pgtables_bytes(mm));
668 
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
671 #endif
672 }
673 
674 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
675 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
676 
677 /*
678  * Called when the last reference to the mm
679  * is dropped: either by a lazy thread or by
680  * mmput. Free the page directory and the mm.
681  */
682 void __mmdrop(struct mm_struct *mm)
683 {
684 	BUG_ON(mm == &init_mm);
685 	WARN_ON_ONCE(mm == current->mm);
686 	WARN_ON_ONCE(mm == current->active_mm);
687 	mm_free_pgd(mm);
688 	destroy_context(mm);
689 	mmu_notifier_subscriptions_destroy(mm);
690 	check_mm(mm);
691 	put_user_ns(mm->user_ns);
692 	free_mm(mm);
693 }
694 EXPORT_SYMBOL_GPL(__mmdrop);
695 
696 static void mmdrop_async_fn(struct work_struct *work)
697 {
698 	struct mm_struct *mm;
699 
700 	mm = container_of(work, struct mm_struct, async_put_work);
701 	__mmdrop(mm);
702 }
703 
704 static void mmdrop_async(struct mm_struct *mm)
705 {
706 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
707 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
708 		schedule_work(&mm->async_put_work);
709 	}
710 }
711 
712 static inline void free_signal_struct(struct signal_struct *sig)
713 {
714 	taskstats_tgid_free(sig);
715 	sched_autogroup_exit(sig);
716 	/*
717 	 * __mmdrop is not safe to call from softirq context on x86 due to
718 	 * pgd_dtor so postpone it to the async context
719 	 */
720 	if (sig->oom_mm)
721 		mmdrop_async(sig->oom_mm);
722 	kmem_cache_free(signal_cachep, sig);
723 }
724 
725 static inline void put_signal_struct(struct signal_struct *sig)
726 {
727 	if (refcount_dec_and_test(&sig->sigcnt))
728 		free_signal_struct(sig);
729 }
730 
731 void __put_task_struct(struct task_struct *tsk)
732 {
733 	WARN_ON(!tsk->exit_state);
734 	WARN_ON(refcount_read(&tsk->usage));
735 	WARN_ON(tsk == current);
736 
737 	io_uring_free(tsk);
738 	cgroup_free(tsk);
739 	task_numa_free(tsk, true);
740 	security_task_free(tsk);
741 	bpf_task_storage_free(tsk);
742 	exit_creds(tsk);
743 	delayacct_tsk_free(tsk);
744 	put_signal_struct(tsk->signal);
745 	sched_core_free(tsk);
746 
747 	if (!profile_handoff_task(tsk))
748 		free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751 
752 void __init __weak arch_task_cache_init(void) { }
753 
754 /*
755  * set_max_threads
756  */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 	u64 threads;
760 	unsigned long nr_pages = totalram_pages();
761 
762 	/*
763 	 * The number of threads shall be limited such that the thread
764 	 * structures may only consume a small part of the available memory.
765 	 */
766 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 		threads = MAX_THREADS;
768 	else
769 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 				    (u64) THREAD_SIZE * 8UL);
771 
772 	if (threads > max_threads_suggested)
773 		threads = max_threads_suggested;
774 
775 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777 
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782 
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 	/* Fetch thread_struct whitelist for the architecture. */
787 	arch_thread_struct_whitelist(offset, size);
788 
789 	/*
790 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 	 * adjust offset to position of thread_struct in task_struct.
792 	 */
793 	if (unlikely(*size == 0))
794 		*offset = 0;
795 	else
796 		*offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799 
800 void __init fork_init(void)
801 {
802 	int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN	0
806 #endif
807 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 	unsigned long useroffset, usersize;
809 
810 	/* create a slab on which task_structs can be allocated */
811 	task_struct_whitelist(&useroffset, &usersize);
812 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 			arch_task_struct_size, align,
814 			SLAB_PANIC|SLAB_ACCOUNT,
815 			useroffset, usersize, NULL);
816 #endif
817 
818 	/* do the arch specific task caches init */
819 	arch_task_cache_init();
820 
821 	set_max_threads(MAX_THREADS);
822 
823 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 		init_task.signal->rlim[RLIMIT_NPROC];
827 
828 	for (i = 0; i < UCOUNT_COUNTS; i++)
829 		init_user_ns.ucount_max[i] = max_threads/2;
830 
831 #ifdef CONFIG_VMAP_STACK
832 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
833 			  NULL, free_vm_stack_cache);
834 #endif
835 
836 	scs_init();
837 
838 	lockdep_init_task(&init_task);
839 	uprobes_init();
840 }
841 
842 int __weak arch_dup_task_struct(struct task_struct *dst,
843 					       struct task_struct *src)
844 {
845 	*dst = *src;
846 	return 0;
847 }
848 
849 void set_task_stack_end_magic(struct task_struct *tsk)
850 {
851 	unsigned long *stackend;
852 
853 	stackend = end_of_stack(tsk);
854 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
855 }
856 
857 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
858 {
859 	struct task_struct *tsk;
860 	unsigned long *stack;
861 	struct vm_struct *stack_vm_area __maybe_unused;
862 	int err;
863 
864 	if (node == NUMA_NO_NODE)
865 		node = tsk_fork_get_node(orig);
866 	tsk = alloc_task_struct_node(node);
867 	if (!tsk)
868 		return NULL;
869 
870 	stack = alloc_thread_stack_node(tsk, node);
871 	if (!stack)
872 		goto free_tsk;
873 
874 	if (memcg_charge_kernel_stack(tsk))
875 		goto free_stack;
876 
877 	stack_vm_area = task_stack_vm_area(tsk);
878 
879 	err = arch_dup_task_struct(tsk, orig);
880 
881 	/*
882 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
883 	 * sure they're properly initialized before using any stack-related
884 	 * functions again.
885 	 */
886 	tsk->stack = stack;
887 #ifdef CONFIG_VMAP_STACK
888 	tsk->stack_vm_area = stack_vm_area;
889 #endif
890 #ifdef CONFIG_THREAD_INFO_IN_TASK
891 	refcount_set(&tsk->stack_refcount, 1);
892 #endif
893 
894 	if (err)
895 		goto free_stack;
896 
897 	err = scs_prepare(tsk, node);
898 	if (err)
899 		goto free_stack;
900 
901 #ifdef CONFIG_SECCOMP
902 	/*
903 	 * We must handle setting up seccomp filters once we're under
904 	 * the sighand lock in case orig has changed between now and
905 	 * then. Until then, filter must be NULL to avoid messing up
906 	 * the usage counts on the error path calling free_task.
907 	 */
908 	tsk->seccomp.filter = NULL;
909 #endif
910 
911 	setup_thread_stack(tsk, orig);
912 	clear_user_return_notifier(tsk);
913 	clear_tsk_need_resched(tsk);
914 	set_task_stack_end_magic(tsk);
915 	clear_syscall_work_syscall_user_dispatch(tsk);
916 
917 #ifdef CONFIG_STACKPROTECTOR
918 	tsk->stack_canary = get_random_canary();
919 #endif
920 	if (orig->cpus_ptr == &orig->cpus_mask)
921 		tsk->cpus_ptr = &tsk->cpus_mask;
922 
923 	/*
924 	 * One for the user space visible state that goes away when reaped.
925 	 * One for the scheduler.
926 	 */
927 	refcount_set(&tsk->rcu_users, 2);
928 	/* One for the rcu users */
929 	refcount_set(&tsk->usage, 1);
930 #ifdef CONFIG_BLK_DEV_IO_TRACE
931 	tsk->btrace_seq = 0;
932 #endif
933 	tsk->splice_pipe = NULL;
934 	tsk->task_frag.page = NULL;
935 	tsk->wake_q.next = NULL;
936 	tsk->pf_io_worker = NULL;
937 
938 	account_kernel_stack(tsk, 1);
939 
940 	kcov_task_init(tsk);
941 	kmap_local_fork(tsk);
942 
943 #ifdef CONFIG_FAULT_INJECTION
944 	tsk->fail_nth = 0;
945 #endif
946 
947 #ifdef CONFIG_BLK_CGROUP
948 	tsk->throttle_queue = NULL;
949 	tsk->use_memdelay = 0;
950 #endif
951 
952 #ifdef CONFIG_MEMCG
953 	tsk->active_memcg = NULL;
954 #endif
955 	return tsk;
956 
957 free_stack:
958 	free_thread_stack(tsk);
959 free_tsk:
960 	free_task_struct(tsk);
961 	return NULL;
962 }
963 
964 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
965 
966 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
967 
968 static int __init coredump_filter_setup(char *s)
969 {
970 	default_dump_filter =
971 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
972 		MMF_DUMP_FILTER_MASK;
973 	return 1;
974 }
975 
976 __setup("coredump_filter=", coredump_filter_setup);
977 
978 #include <linux/init_task.h>
979 
980 static void mm_init_aio(struct mm_struct *mm)
981 {
982 #ifdef CONFIG_AIO
983 	spin_lock_init(&mm->ioctx_lock);
984 	mm->ioctx_table = NULL;
985 #endif
986 }
987 
988 static __always_inline void mm_clear_owner(struct mm_struct *mm,
989 					   struct task_struct *p)
990 {
991 #ifdef CONFIG_MEMCG
992 	if (mm->owner == p)
993 		WRITE_ONCE(mm->owner, NULL);
994 #endif
995 }
996 
997 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
998 {
999 #ifdef CONFIG_MEMCG
1000 	mm->owner = p;
1001 #endif
1002 }
1003 
1004 static void mm_init_pasid(struct mm_struct *mm)
1005 {
1006 #ifdef CONFIG_IOMMU_SUPPORT
1007 	mm->pasid = INIT_PASID;
1008 #endif
1009 }
1010 
1011 static void mm_init_uprobes_state(struct mm_struct *mm)
1012 {
1013 #ifdef CONFIG_UPROBES
1014 	mm->uprobes_state.xol_area = NULL;
1015 #endif
1016 }
1017 
1018 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1019 	struct user_namespace *user_ns)
1020 {
1021 	mm->mmap = NULL;
1022 	mm->mm_rb = RB_ROOT;
1023 	mm->vmacache_seqnum = 0;
1024 	atomic_set(&mm->mm_users, 1);
1025 	atomic_set(&mm->mm_count, 1);
1026 	seqcount_init(&mm->write_protect_seq);
1027 	mmap_init_lock(mm);
1028 	INIT_LIST_HEAD(&mm->mmlist);
1029 	mm->core_state = NULL;
1030 	mm_pgtables_bytes_init(mm);
1031 	mm->map_count = 0;
1032 	mm->locked_vm = 0;
1033 	atomic_set(&mm->has_pinned, 0);
1034 	atomic64_set(&mm->pinned_vm, 0);
1035 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1036 	spin_lock_init(&mm->page_table_lock);
1037 	spin_lock_init(&mm->arg_lock);
1038 	mm_init_cpumask(mm);
1039 	mm_init_aio(mm);
1040 	mm_init_owner(mm, p);
1041 	mm_init_pasid(mm);
1042 	RCU_INIT_POINTER(mm->exe_file, NULL);
1043 	mmu_notifier_subscriptions_init(mm);
1044 	init_tlb_flush_pending(mm);
1045 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1046 	mm->pmd_huge_pte = NULL;
1047 #endif
1048 	mm_init_uprobes_state(mm);
1049 
1050 	if (current->mm) {
1051 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1052 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1053 	} else {
1054 		mm->flags = default_dump_filter;
1055 		mm->def_flags = 0;
1056 	}
1057 
1058 	if (mm_alloc_pgd(mm))
1059 		goto fail_nopgd;
1060 
1061 	if (init_new_context(p, mm))
1062 		goto fail_nocontext;
1063 
1064 	mm->user_ns = get_user_ns(user_ns);
1065 	return mm;
1066 
1067 fail_nocontext:
1068 	mm_free_pgd(mm);
1069 fail_nopgd:
1070 	free_mm(mm);
1071 	return NULL;
1072 }
1073 
1074 /*
1075  * Allocate and initialize an mm_struct.
1076  */
1077 struct mm_struct *mm_alloc(void)
1078 {
1079 	struct mm_struct *mm;
1080 
1081 	mm = allocate_mm();
1082 	if (!mm)
1083 		return NULL;
1084 
1085 	memset(mm, 0, sizeof(*mm));
1086 	return mm_init(mm, current, current_user_ns());
1087 }
1088 
1089 static inline void __mmput(struct mm_struct *mm)
1090 {
1091 	VM_BUG_ON(atomic_read(&mm->mm_users));
1092 
1093 	uprobe_clear_state(mm);
1094 	exit_aio(mm);
1095 	ksm_exit(mm);
1096 	khugepaged_exit(mm); /* must run before exit_mmap */
1097 	exit_mmap(mm);
1098 	mm_put_huge_zero_page(mm);
1099 	set_mm_exe_file(mm, NULL);
1100 	if (!list_empty(&mm->mmlist)) {
1101 		spin_lock(&mmlist_lock);
1102 		list_del(&mm->mmlist);
1103 		spin_unlock(&mmlist_lock);
1104 	}
1105 	if (mm->binfmt)
1106 		module_put(mm->binfmt->module);
1107 	mmdrop(mm);
1108 }
1109 
1110 /*
1111  * Decrement the use count and release all resources for an mm.
1112  */
1113 void mmput(struct mm_struct *mm)
1114 {
1115 	might_sleep();
1116 
1117 	if (atomic_dec_and_test(&mm->mm_users))
1118 		__mmput(mm);
1119 }
1120 EXPORT_SYMBOL_GPL(mmput);
1121 
1122 #ifdef CONFIG_MMU
1123 static void mmput_async_fn(struct work_struct *work)
1124 {
1125 	struct mm_struct *mm = container_of(work, struct mm_struct,
1126 					    async_put_work);
1127 
1128 	__mmput(mm);
1129 }
1130 
1131 void mmput_async(struct mm_struct *mm)
1132 {
1133 	if (atomic_dec_and_test(&mm->mm_users)) {
1134 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1135 		schedule_work(&mm->async_put_work);
1136 	}
1137 }
1138 #endif
1139 
1140 /**
1141  * set_mm_exe_file - change a reference to the mm's executable file
1142  *
1143  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1144  *
1145  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1146  * invocations: in mmput() nobody alive left, in execve task is single
1147  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1148  * mm->exe_file, but does so without using set_mm_exe_file() in order
1149  * to avoid the need for any locks.
1150  */
1151 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1152 {
1153 	struct file *old_exe_file;
1154 
1155 	/*
1156 	 * It is safe to dereference the exe_file without RCU as
1157 	 * this function is only called if nobody else can access
1158 	 * this mm -- see comment above for justification.
1159 	 */
1160 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1161 
1162 	if (new_exe_file)
1163 		get_file(new_exe_file);
1164 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1165 	if (old_exe_file)
1166 		fput(old_exe_file);
1167 }
1168 
1169 /**
1170  * get_mm_exe_file - acquire a reference to the mm's executable file
1171  *
1172  * Returns %NULL if mm has no associated executable file.
1173  * User must release file via fput().
1174  */
1175 struct file *get_mm_exe_file(struct mm_struct *mm)
1176 {
1177 	struct file *exe_file;
1178 
1179 	rcu_read_lock();
1180 	exe_file = rcu_dereference(mm->exe_file);
1181 	if (exe_file && !get_file_rcu(exe_file))
1182 		exe_file = NULL;
1183 	rcu_read_unlock();
1184 	return exe_file;
1185 }
1186 EXPORT_SYMBOL(get_mm_exe_file);
1187 
1188 /**
1189  * get_task_exe_file - acquire a reference to the task's executable file
1190  *
1191  * Returns %NULL if task's mm (if any) has no associated executable file or
1192  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1193  * User must release file via fput().
1194  */
1195 struct file *get_task_exe_file(struct task_struct *task)
1196 {
1197 	struct file *exe_file = NULL;
1198 	struct mm_struct *mm;
1199 
1200 	task_lock(task);
1201 	mm = task->mm;
1202 	if (mm) {
1203 		if (!(task->flags & PF_KTHREAD))
1204 			exe_file = get_mm_exe_file(mm);
1205 	}
1206 	task_unlock(task);
1207 	return exe_file;
1208 }
1209 EXPORT_SYMBOL(get_task_exe_file);
1210 
1211 /**
1212  * get_task_mm - acquire a reference to the task's mm
1213  *
1214  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1215  * this kernel workthread has transiently adopted a user mm with use_mm,
1216  * to do its AIO) is not set and if so returns a reference to it, after
1217  * bumping up the use count.  User must release the mm via mmput()
1218  * after use.  Typically used by /proc and ptrace.
1219  */
1220 struct mm_struct *get_task_mm(struct task_struct *task)
1221 {
1222 	struct mm_struct *mm;
1223 
1224 	task_lock(task);
1225 	mm = task->mm;
1226 	if (mm) {
1227 		if (task->flags & PF_KTHREAD)
1228 			mm = NULL;
1229 		else
1230 			mmget(mm);
1231 	}
1232 	task_unlock(task);
1233 	return mm;
1234 }
1235 EXPORT_SYMBOL_GPL(get_task_mm);
1236 
1237 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1238 {
1239 	struct mm_struct *mm;
1240 	int err;
1241 
1242 	err =  down_read_killable(&task->signal->exec_update_lock);
1243 	if (err)
1244 		return ERR_PTR(err);
1245 
1246 	mm = get_task_mm(task);
1247 	if (mm && mm != current->mm &&
1248 			!ptrace_may_access(task, mode)) {
1249 		mmput(mm);
1250 		mm = ERR_PTR(-EACCES);
1251 	}
1252 	up_read(&task->signal->exec_update_lock);
1253 
1254 	return mm;
1255 }
1256 
1257 static void complete_vfork_done(struct task_struct *tsk)
1258 {
1259 	struct completion *vfork;
1260 
1261 	task_lock(tsk);
1262 	vfork = tsk->vfork_done;
1263 	if (likely(vfork)) {
1264 		tsk->vfork_done = NULL;
1265 		complete(vfork);
1266 	}
1267 	task_unlock(tsk);
1268 }
1269 
1270 static int wait_for_vfork_done(struct task_struct *child,
1271 				struct completion *vfork)
1272 {
1273 	int killed;
1274 
1275 	freezer_do_not_count();
1276 	cgroup_enter_frozen();
1277 	killed = wait_for_completion_killable(vfork);
1278 	cgroup_leave_frozen(false);
1279 	freezer_count();
1280 
1281 	if (killed) {
1282 		task_lock(child);
1283 		child->vfork_done = NULL;
1284 		task_unlock(child);
1285 	}
1286 
1287 	put_task_struct(child);
1288 	return killed;
1289 }
1290 
1291 /* Please note the differences between mmput and mm_release.
1292  * mmput is called whenever we stop holding onto a mm_struct,
1293  * error success whatever.
1294  *
1295  * mm_release is called after a mm_struct has been removed
1296  * from the current process.
1297  *
1298  * This difference is important for error handling, when we
1299  * only half set up a mm_struct for a new process and need to restore
1300  * the old one.  Because we mmput the new mm_struct before
1301  * restoring the old one. . .
1302  * Eric Biederman 10 January 1998
1303  */
1304 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1305 {
1306 	uprobe_free_utask(tsk);
1307 
1308 	/* Get rid of any cached register state */
1309 	deactivate_mm(tsk, mm);
1310 
1311 	/*
1312 	 * Signal userspace if we're not exiting with a core dump
1313 	 * because we want to leave the value intact for debugging
1314 	 * purposes.
1315 	 */
1316 	if (tsk->clear_child_tid) {
1317 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1318 		    atomic_read(&mm->mm_users) > 1) {
1319 			/*
1320 			 * We don't check the error code - if userspace has
1321 			 * not set up a proper pointer then tough luck.
1322 			 */
1323 			put_user(0, tsk->clear_child_tid);
1324 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1325 					1, NULL, NULL, 0, 0);
1326 		}
1327 		tsk->clear_child_tid = NULL;
1328 	}
1329 
1330 	/*
1331 	 * All done, finally we can wake up parent and return this mm to him.
1332 	 * Also kthread_stop() uses this completion for synchronization.
1333 	 */
1334 	if (tsk->vfork_done)
1335 		complete_vfork_done(tsk);
1336 }
1337 
1338 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1339 {
1340 	futex_exit_release(tsk);
1341 	mm_release(tsk, mm);
1342 }
1343 
1344 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1345 {
1346 	futex_exec_release(tsk);
1347 	mm_release(tsk, mm);
1348 }
1349 
1350 /**
1351  * dup_mm() - duplicates an existing mm structure
1352  * @tsk: the task_struct with which the new mm will be associated.
1353  * @oldmm: the mm to duplicate.
1354  *
1355  * Allocates a new mm structure and duplicates the provided @oldmm structure
1356  * content into it.
1357  *
1358  * Return: the duplicated mm or NULL on failure.
1359  */
1360 static struct mm_struct *dup_mm(struct task_struct *tsk,
1361 				struct mm_struct *oldmm)
1362 {
1363 	struct mm_struct *mm;
1364 	int err;
1365 
1366 	mm = allocate_mm();
1367 	if (!mm)
1368 		goto fail_nomem;
1369 
1370 	memcpy(mm, oldmm, sizeof(*mm));
1371 
1372 	if (!mm_init(mm, tsk, mm->user_ns))
1373 		goto fail_nomem;
1374 
1375 	err = dup_mmap(mm, oldmm);
1376 	if (err)
1377 		goto free_pt;
1378 
1379 	mm->hiwater_rss = get_mm_rss(mm);
1380 	mm->hiwater_vm = mm->total_vm;
1381 
1382 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1383 		goto free_pt;
1384 
1385 	return mm;
1386 
1387 free_pt:
1388 	/* don't put binfmt in mmput, we haven't got module yet */
1389 	mm->binfmt = NULL;
1390 	mm_init_owner(mm, NULL);
1391 	mmput(mm);
1392 
1393 fail_nomem:
1394 	return NULL;
1395 }
1396 
1397 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1398 {
1399 	struct mm_struct *mm, *oldmm;
1400 
1401 	tsk->min_flt = tsk->maj_flt = 0;
1402 	tsk->nvcsw = tsk->nivcsw = 0;
1403 #ifdef CONFIG_DETECT_HUNG_TASK
1404 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1405 	tsk->last_switch_time = 0;
1406 #endif
1407 
1408 	tsk->mm = NULL;
1409 	tsk->active_mm = NULL;
1410 
1411 	/*
1412 	 * Are we cloning a kernel thread?
1413 	 *
1414 	 * We need to steal a active VM for that..
1415 	 */
1416 	oldmm = current->mm;
1417 	if (!oldmm)
1418 		return 0;
1419 
1420 	/* initialize the new vmacache entries */
1421 	vmacache_flush(tsk);
1422 
1423 	if (clone_flags & CLONE_VM) {
1424 		mmget(oldmm);
1425 		mm = oldmm;
1426 	} else {
1427 		mm = dup_mm(tsk, current->mm);
1428 		if (!mm)
1429 			return -ENOMEM;
1430 	}
1431 
1432 	tsk->mm = mm;
1433 	tsk->active_mm = mm;
1434 	return 0;
1435 }
1436 
1437 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 	struct fs_struct *fs = current->fs;
1440 	if (clone_flags & CLONE_FS) {
1441 		/* tsk->fs is already what we want */
1442 		spin_lock(&fs->lock);
1443 		if (fs->in_exec) {
1444 			spin_unlock(&fs->lock);
1445 			return -EAGAIN;
1446 		}
1447 		fs->users++;
1448 		spin_unlock(&fs->lock);
1449 		return 0;
1450 	}
1451 	tsk->fs = copy_fs_struct(fs);
1452 	if (!tsk->fs)
1453 		return -ENOMEM;
1454 	return 0;
1455 }
1456 
1457 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1458 {
1459 	struct files_struct *oldf, *newf;
1460 	int error = 0;
1461 
1462 	/*
1463 	 * A background process may not have any files ...
1464 	 */
1465 	oldf = current->files;
1466 	if (!oldf)
1467 		goto out;
1468 
1469 	if (clone_flags & CLONE_FILES) {
1470 		atomic_inc(&oldf->count);
1471 		goto out;
1472 	}
1473 
1474 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1475 	if (!newf)
1476 		goto out;
1477 
1478 	tsk->files = newf;
1479 	error = 0;
1480 out:
1481 	return error;
1482 }
1483 
1484 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1485 {
1486 #ifdef CONFIG_BLOCK
1487 	struct io_context *ioc = current->io_context;
1488 	struct io_context *new_ioc;
1489 
1490 	if (!ioc)
1491 		return 0;
1492 	/*
1493 	 * Share io context with parent, if CLONE_IO is set
1494 	 */
1495 	if (clone_flags & CLONE_IO) {
1496 		ioc_task_link(ioc);
1497 		tsk->io_context = ioc;
1498 	} else if (ioprio_valid(ioc->ioprio)) {
1499 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1500 		if (unlikely(!new_ioc))
1501 			return -ENOMEM;
1502 
1503 		new_ioc->ioprio = ioc->ioprio;
1504 		put_io_context(new_ioc);
1505 	}
1506 #endif
1507 	return 0;
1508 }
1509 
1510 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1511 {
1512 	struct sighand_struct *sig;
1513 
1514 	if (clone_flags & CLONE_SIGHAND) {
1515 		refcount_inc(&current->sighand->count);
1516 		return 0;
1517 	}
1518 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1519 	RCU_INIT_POINTER(tsk->sighand, sig);
1520 	if (!sig)
1521 		return -ENOMEM;
1522 
1523 	refcount_set(&sig->count, 1);
1524 	spin_lock_irq(&current->sighand->siglock);
1525 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1526 	spin_unlock_irq(&current->sighand->siglock);
1527 
1528 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1529 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1530 		flush_signal_handlers(tsk, 0);
1531 
1532 	return 0;
1533 }
1534 
1535 void __cleanup_sighand(struct sighand_struct *sighand)
1536 {
1537 	if (refcount_dec_and_test(&sighand->count)) {
1538 		signalfd_cleanup(sighand);
1539 		/*
1540 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1541 		 * without an RCU grace period, see __lock_task_sighand().
1542 		 */
1543 		kmem_cache_free(sighand_cachep, sighand);
1544 	}
1545 }
1546 
1547 /*
1548  * Initialize POSIX timer handling for a thread group.
1549  */
1550 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1551 {
1552 	struct posix_cputimers *pct = &sig->posix_cputimers;
1553 	unsigned long cpu_limit;
1554 
1555 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1556 	posix_cputimers_group_init(pct, cpu_limit);
1557 }
1558 
1559 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1560 {
1561 	struct signal_struct *sig;
1562 
1563 	if (clone_flags & CLONE_THREAD)
1564 		return 0;
1565 
1566 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1567 	tsk->signal = sig;
1568 	if (!sig)
1569 		return -ENOMEM;
1570 
1571 	sig->nr_threads = 1;
1572 	atomic_set(&sig->live, 1);
1573 	refcount_set(&sig->sigcnt, 1);
1574 
1575 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1576 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1577 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1578 
1579 	init_waitqueue_head(&sig->wait_chldexit);
1580 	sig->curr_target = tsk;
1581 	init_sigpending(&sig->shared_pending);
1582 	INIT_HLIST_HEAD(&sig->multiprocess);
1583 	seqlock_init(&sig->stats_lock);
1584 	prev_cputime_init(&sig->prev_cputime);
1585 
1586 #ifdef CONFIG_POSIX_TIMERS
1587 	INIT_LIST_HEAD(&sig->posix_timers);
1588 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589 	sig->real_timer.function = it_real_fn;
1590 #endif
1591 
1592 	task_lock(current->group_leader);
1593 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1594 	task_unlock(current->group_leader);
1595 
1596 	posix_cpu_timers_init_group(sig);
1597 
1598 	tty_audit_fork(sig);
1599 	sched_autogroup_fork(sig);
1600 
1601 	sig->oom_score_adj = current->signal->oom_score_adj;
1602 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1603 
1604 	mutex_init(&sig->cred_guard_mutex);
1605 	init_rwsem(&sig->exec_update_lock);
1606 
1607 	return 0;
1608 }
1609 
1610 static void copy_seccomp(struct task_struct *p)
1611 {
1612 #ifdef CONFIG_SECCOMP
1613 	/*
1614 	 * Must be called with sighand->lock held, which is common to
1615 	 * all threads in the group. Holding cred_guard_mutex is not
1616 	 * needed because this new task is not yet running and cannot
1617 	 * be racing exec.
1618 	 */
1619 	assert_spin_locked(&current->sighand->siglock);
1620 
1621 	/* Ref-count the new filter user, and assign it. */
1622 	get_seccomp_filter(current);
1623 	p->seccomp = current->seccomp;
1624 
1625 	/*
1626 	 * Explicitly enable no_new_privs here in case it got set
1627 	 * between the task_struct being duplicated and holding the
1628 	 * sighand lock. The seccomp state and nnp must be in sync.
1629 	 */
1630 	if (task_no_new_privs(current))
1631 		task_set_no_new_privs(p);
1632 
1633 	/*
1634 	 * If the parent gained a seccomp mode after copying thread
1635 	 * flags and between before we held the sighand lock, we have
1636 	 * to manually enable the seccomp thread flag here.
1637 	 */
1638 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1639 		set_task_syscall_work(p, SECCOMP);
1640 #endif
1641 }
1642 
1643 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1644 {
1645 	current->clear_child_tid = tidptr;
1646 
1647 	return task_pid_vnr(current);
1648 }
1649 
1650 static void rt_mutex_init_task(struct task_struct *p)
1651 {
1652 	raw_spin_lock_init(&p->pi_lock);
1653 #ifdef CONFIG_RT_MUTEXES
1654 	p->pi_waiters = RB_ROOT_CACHED;
1655 	p->pi_top_task = NULL;
1656 	p->pi_blocked_on = NULL;
1657 #endif
1658 }
1659 
1660 static inline void init_task_pid_links(struct task_struct *task)
1661 {
1662 	enum pid_type type;
1663 
1664 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1665 		INIT_HLIST_NODE(&task->pid_links[type]);
1666 }
1667 
1668 static inline void
1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1670 {
1671 	if (type == PIDTYPE_PID)
1672 		task->thread_pid = pid;
1673 	else
1674 		task->signal->pids[type] = pid;
1675 }
1676 
1677 static inline void rcu_copy_process(struct task_struct *p)
1678 {
1679 #ifdef CONFIG_PREEMPT_RCU
1680 	p->rcu_read_lock_nesting = 0;
1681 	p->rcu_read_unlock_special.s = 0;
1682 	p->rcu_blocked_node = NULL;
1683 	INIT_LIST_HEAD(&p->rcu_node_entry);
1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1685 #ifdef CONFIG_TASKS_RCU
1686 	p->rcu_tasks_holdout = false;
1687 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1688 	p->rcu_tasks_idle_cpu = -1;
1689 #endif /* #ifdef CONFIG_TASKS_RCU */
1690 #ifdef CONFIG_TASKS_TRACE_RCU
1691 	p->trc_reader_nesting = 0;
1692 	p->trc_reader_special.s = 0;
1693 	INIT_LIST_HEAD(&p->trc_holdout_list);
1694 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1695 }
1696 
1697 struct pid *pidfd_pid(const struct file *file)
1698 {
1699 	if (file->f_op == &pidfd_fops)
1700 		return file->private_data;
1701 
1702 	return ERR_PTR(-EBADF);
1703 }
1704 
1705 static int pidfd_release(struct inode *inode, struct file *file)
1706 {
1707 	struct pid *pid = file->private_data;
1708 
1709 	file->private_data = NULL;
1710 	put_pid(pid);
1711 	return 0;
1712 }
1713 
1714 #ifdef CONFIG_PROC_FS
1715 /**
1716  * pidfd_show_fdinfo - print information about a pidfd
1717  * @m: proc fdinfo file
1718  * @f: file referencing a pidfd
1719  *
1720  * Pid:
1721  * This function will print the pid that a given pidfd refers to in the
1722  * pid namespace of the procfs instance.
1723  * If the pid namespace of the process is not a descendant of the pid
1724  * namespace of the procfs instance 0 will be shown as its pid. This is
1725  * similar to calling getppid() on a process whose parent is outside of
1726  * its pid namespace.
1727  *
1728  * NSpid:
1729  * If pid namespaces are supported then this function will also print
1730  * the pid of a given pidfd refers to for all descendant pid namespaces
1731  * starting from the current pid namespace of the instance, i.e. the
1732  * Pid field and the first entry in the NSpid field will be identical.
1733  * If the pid namespace of the process is not a descendant of the pid
1734  * namespace of the procfs instance 0 will be shown as its first NSpid
1735  * entry and no others will be shown.
1736  * Note that this differs from the Pid and NSpid fields in
1737  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1738  * the  pid namespace of the procfs instance. The difference becomes
1739  * obvious when sending around a pidfd between pid namespaces from a
1740  * different branch of the tree, i.e. where no ancestral relation is
1741  * present between the pid namespaces:
1742  * - create two new pid namespaces ns1 and ns2 in the initial pid
1743  *   namespace (also take care to create new mount namespaces in the
1744  *   new pid namespace and mount procfs)
1745  * - create a process with a pidfd in ns1
1746  * - send pidfd from ns1 to ns2
1747  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1748  *   have exactly one entry, which is 0
1749  */
1750 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1751 {
1752 	struct pid *pid = f->private_data;
1753 	struct pid_namespace *ns;
1754 	pid_t nr = -1;
1755 
1756 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1757 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1758 		nr = pid_nr_ns(pid, ns);
1759 	}
1760 
1761 	seq_put_decimal_ll(m, "Pid:\t", nr);
1762 
1763 #ifdef CONFIG_PID_NS
1764 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1765 	if (nr > 0) {
1766 		int i;
1767 
1768 		/* If nr is non-zero it means that 'pid' is valid and that
1769 		 * ns, i.e. the pid namespace associated with the procfs
1770 		 * instance, is in the pid namespace hierarchy of pid.
1771 		 * Start at one below the already printed level.
1772 		 */
1773 		for (i = ns->level + 1; i <= pid->level; i++)
1774 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1775 	}
1776 #endif
1777 	seq_putc(m, '\n');
1778 }
1779 #endif
1780 
1781 /*
1782  * Poll support for process exit notification.
1783  */
1784 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1785 {
1786 	struct pid *pid = file->private_data;
1787 	__poll_t poll_flags = 0;
1788 
1789 	poll_wait(file, &pid->wait_pidfd, pts);
1790 
1791 	/*
1792 	 * Inform pollers only when the whole thread group exits.
1793 	 * If the thread group leader exits before all other threads in the
1794 	 * group, then poll(2) should block, similar to the wait(2) family.
1795 	 */
1796 	if (thread_group_exited(pid))
1797 		poll_flags = EPOLLIN | EPOLLRDNORM;
1798 
1799 	return poll_flags;
1800 }
1801 
1802 const struct file_operations pidfd_fops = {
1803 	.release = pidfd_release,
1804 	.poll = pidfd_poll,
1805 #ifdef CONFIG_PROC_FS
1806 	.show_fdinfo = pidfd_show_fdinfo,
1807 #endif
1808 };
1809 
1810 static void __delayed_free_task(struct rcu_head *rhp)
1811 {
1812 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1813 
1814 	free_task(tsk);
1815 }
1816 
1817 static __always_inline void delayed_free_task(struct task_struct *tsk)
1818 {
1819 	if (IS_ENABLED(CONFIG_MEMCG))
1820 		call_rcu(&tsk->rcu, __delayed_free_task);
1821 	else
1822 		free_task(tsk);
1823 }
1824 
1825 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1826 {
1827 	/* Skip if kernel thread */
1828 	if (!tsk->mm)
1829 		return;
1830 
1831 	/* Skip if spawning a thread or using vfork */
1832 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1833 		return;
1834 
1835 	/* We need to synchronize with __set_oom_adj */
1836 	mutex_lock(&oom_adj_mutex);
1837 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1838 	/* Update the values in case they were changed after copy_signal */
1839 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1840 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1841 	mutex_unlock(&oom_adj_mutex);
1842 }
1843 
1844 /*
1845  * This creates a new process as a copy of the old one,
1846  * but does not actually start it yet.
1847  *
1848  * It copies the registers, and all the appropriate
1849  * parts of the process environment (as per the clone
1850  * flags). The actual kick-off is left to the caller.
1851  */
1852 static __latent_entropy struct task_struct *copy_process(
1853 					struct pid *pid,
1854 					int trace,
1855 					int node,
1856 					struct kernel_clone_args *args)
1857 {
1858 	int pidfd = -1, retval;
1859 	struct task_struct *p;
1860 	struct multiprocess_signals delayed;
1861 	struct file *pidfile = NULL;
1862 	u64 clone_flags = args->flags;
1863 	struct nsproxy *nsp = current->nsproxy;
1864 
1865 	/*
1866 	 * Don't allow sharing the root directory with processes in a different
1867 	 * namespace
1868 	 */
1869 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1870 		return ERR_PTR(-EINVAL);
1871 
1872 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1873 		return ERR_PTR(-EINVAL);
1874 
1875 	/*
1876 	 * Thread groups must share signals as well, and detached threads
1877 	 * can only be started up within the thread group.
1878 	 */
1879 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1880 		return ERR_PTR(-EINVAL);
1881 
1882 	/*
1883 	 * Shared signal handlers imply shared VM. By way of the above,
1884 	 * thread groups also imply shared VM. Blocking this case allows
1885 	 * for various simplifications in other code.
1886 	 */
1887 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1888 		return ERR_PTR(-EINVAL);
1889 
1890 	/*
1891 	 * Siblings of global init remain as zombies on exit since they are
1892 	 * not reaped by their parent (swapper). To solve this and to avoid
1893 	 * multi-rooted process trees, prevent global and container-inits
1894 	 * from creating siblings.
1895 	 */
1896 	if ((clone_flags & CLONE_PARENT) &&
1897 				current->signal->flags & SIGNAL_UNKILLABLE)
1898 		return ERR_PTR(-EINVAL);
1899 
1900 	/*
1901 	 * If the new process will be in a different pid or user namespace
1902 	 * do not allow it to share a thread group with the forking task.
1903 	 */
1904 	if (clone_flags & CLONE_THREAD) {
1905 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1906 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1907 			return ERR_PTR(-EINVAL);
1908 	}
1909 
1910 	/*
1911 	 * If the new process will be in a different time namespace
1912 	 * do not allow it to share VM or a thread group with the forking task.
1913 	 */
1914 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1915 		if (nsp->time_ns != nsp->time_ns_for_children)
1916 			return ERR_PTR(-EINVAL);
1917 	}
1918 
1919 	if (clone_flags & CLONE_PIDFD) {
1920 		/*
1921 		 * - CLONE_DETACHED is blocked so that we can potentially
1922 		 *   reuse it later for CLONE_PIDFD.
1923 		 * - CLONE_THREAD is blocked until someone really needs it.
1924 		 */
1925 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1926 			return ERR_PTR(-EINVAL);
1927 	}
1928 
1929 	/*
1930 	 * Force any signals received before this point to be delivered
1931 	 * before the fork happens.  Collect up signals sent to multiple
1932 	 * processes that happen during the fork and delay them so that
1933 	 * they appear to happen after the fork.
1934 	 */
1935 	sigemptyset(&delayed.signal);
1936 	INIT_HLIST_NODE(&delayed.node);
1937 
1938 	spin_lock_irq(&current->sighand->siglock);
1939 	if (!(clone_flags & CLONE_THREAD))
1940 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1941 	recalc_sigpending();
1942 	spin_unlock_irq(&current->sighand->siglock);
1943 	retval = -ERESTARTNOINTR;
1944 	if (task_sigpending(current))
1945 		goto fork_out;
1946 
1947 	retval = -ENOMEM;
1948 	p = dup_task_struct(current, node);
1949 	if (!p)
1950 		goto fork_out;
1951 	if (args->io_thread) {
1952 		/*
1953 		 * Mark us an IO worker, and block any signal that isn't
1954 		 * fatal or STOP
1955 		 */
1956 		p->flags |= PF_IO_WORKER;
1957 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1958 	}
1959 
1960 	/*
1961 	 * This _must_ happen before we call free_task(), i.e. before we jump
1962 	 * to any of the bad_fork_* labels. This is to avoid freeing
1963 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1964 	 * kernel threads (PF_KTHREAD).
1965 	 */
1966 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1967 	/*
1968 	 * Clear TID on mm_release()?
1969 	 */
1970 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1971 
1972 	ftrace_graph_init_task(p);
1973 
1974 	rt_mutex_init_task(p);
1975 
1976 	lockdep_assert_irqs_enabled();
1977 #ifdef CONFIG_PROVE_LOCKING
1978 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1979 #endif
1980 	retval = -EAGAIN;
1981 	if (atomic_read(&p->real_cred->user->processes) >=
1982 			task_rlimit(p, RLIMIT_NPROC)) {
1983 		if (p->real_cred->user != INIT_USER &&
1984 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1985 			goto bad_fork_free;
1986 	}
1987 	current->flags &= ~PF_NPROC_EXCEEDED;
1988 
1989 	retval = copy_creds(p, clone_flags);
1990 	if (retval < 0)
1991 		goto bad_fork_free;
1992 
1993 	/*
1994 	 * If multiple threads are within copy_process(), then this check
1995 	 * triggers too late. This doesn't hurt, the check is only there
1996 	 * to stop root fork bombs.
1997 	 */
1998 	retval = -EAGAIN;
1999 	if (data_race(nr_threads >= max_threads))
2000 		goto bad_fork_cleanup_count;
2001 
2002 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2003 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2004 	p->flags |= PF_FORKNOEXEC;
2005 	INIT_LIST_HEAD(&p->children);
2006 	INIT_LIST_HEAD(&p->sibling);
2007 	rcu_copy_process(p);
2008 	p->vfork_done = NULL;
2009 	spin_lock_init(&p->alloc_lock);
2010 
2011 	init_sigpending(&p->pending);
2012 	p->sigqueue_cache = NULL;
2013 
2014 	p->utime = p->stime = p->gtime = 0;
2015 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2016 	p->utimescaled = p->stimescaled = 0;
2017 #endif
2018 	prev_cputime_init(&p->prev_cputime);
2019 
2020 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2021 	seqcount_init(&p->vtime.seqcount);
2022 	p->vtime.starttime = 0;
2023 	p->vtime.state = VTIME_INACTIVE;
2024 #endif
2025 
2026 #ifdef CONFIG_IO_URING
2027 	p->io_uring = NULL;
2028 #endif
2029 
2030 #if defined(SPLIT_RSS_COUNTING)
2031 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2032 #endif
2033 
2034 	p->default_timer_slack_ns = current->timer_slack_ns;
2035 
2036 #ifdef CONFIG_PSI
2037 	p->psi_flags = 0;
2038 #endif
2039 
2040 	task_io_accounting_init(&p->ioac);
2041 	acct_clear_integrals(p);
2042 
2043 	posix_cputimers_init(&p->posix_cputimers);
2044 
2045 	p->io_context = NULL;
2046 	audit_set_context(p, NULL);
2047 	cgroup_fork(p);
2048 #ifdef CONFIG_NUMA
2049 	p->mempolicy = mpol_dup(p->mempolicy);
2050 	if (IS_ERR(p->mempolicy)) {
2051 		retval = PTR_ERR(p->mempolicy);
2052 		p->mempolicy = NULL;
2053 		goto bad_fork_cleanup_threadgroup_lock;
2054 	}
2055 #endif
2056 #ifdef CONFIG_CPUSETS
2057 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2058 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2059 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2060 #endif
2061 #ifdef CONFIG_TRACE_IRQFLAGS
2062 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2063 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2064 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2065 	p->softirqs_enabled		= 1;
2066 	p->softirq_context		= 0;
2067 #endif
2068 
2069 	p->pagefault_disabled = 0;
2070 
2071 #ifdef CONFIG_LOCKDEP
2072 	lockdep_init_task(p);
2073 #endif
2074 
2075 #ifdef CONFIG_DEBUG_MUTEXES
2076 	p->blocked_on = NULL; /* not blocked yet */
2077 #endif
2078 #ifdef CONFIG_BCACHE
2079 	p->sequential_io	= 0;
2080 	p->sequential_io_avg	= 0;
2081 #endif
2082 #ifdef CONFIG_BPF_SYSCALL
2083 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2084 #endif
2085 
2086 	/* Perform scheduler related setup. Assign this task to a CPU. */
2087 	retval = sched_fork(clone_flags, p);
2088 	if (retval)
2089 		goto bad_fork_cleanup_policy;
2090 
2091 	retval = perf_event_init_task(p, clone_flags);
2092 	if (retval)
2093 		goto bad_fork_cleanup_policy;
2094 	retval = audit_alloc(p);
2095 	if (retval)
2096 		goto bad_fork_cleanup_perf;
2097 	/* copy all the process information */
2098 	shm_init_task(p);
2099 	retval = security_task_alloc(p, clone_flags);
2100 	if (retval)
2101 		goto bad_fork_cleanup_audit;
2102 	retval = copy_semundo(clone_flags, p);
2103 	if (retval)
2104 		goto bad_fork_cleanup_security;
2105 	retval = copy_files(clone_flags, p);
2106 	if (retval)
2107 		goto bad_fork_cleanup_semundo;
2108 	retval = copy_fs(clone_flags, p);
2109 	if (retval)
2110 		goto bad_fork_cleanup_files;
2111 	retval = copy_sighand(clone_flags, p);
2112 	if (retval)
2113 		goto bad_fork_cleanup_fs;
2114 	retval = copy_signal(clone_flags, p);
2115 	if (retval)
2116 		goto bad_fork_cleanup_sighand;
2117 	retval = copy_mm(clone_flags, p);
2118 	if (retval)
2119 		goto bad_fork_cleanup_signal;
2120 	retval = copy_namespaces(clone_flags, p);
2121 	if (retval)
2122 		goto bad_fork_cleanup_mm;
2123 	retval = copy_io(clone_flags, p);
2124 	if (retval)
2125 		goto bad_fork_cleanup_namespaces;
2126 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2127 	if (retval)
2128 		goto bad_fork_cleanup_io;
2129 
2130 	stackleak_task_init(p);
2131 
2132 	if (pid != &init_struct_pid) {
2133 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2134 				args->set_tid_size);
2135 		if (IS_ERR(pid)) {
2136 			retval = PTR_ERR(pid);
2137 			goto bad_fork_cleanup_thread;
2138 		}
2139 	}
2140 
2141 	/*
2142 	 * This has to happen after we've potentially unshared the file
2143 	 * descriptor table (so that the pidfd doesn't leak into the child
2144 	 * if the fd table isn't shared).
2145 	 */
2146 	if (clone_flags & CLONE_PIDFD) {
2147 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2148 		if (retval < 0)
2149 			goto bad_fork_free_pid;
2150 
2151 		pidfd = retval;
2152 
2153 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2154 					      O_RDWR | O_CLOEXEC);
2155 		if (IS_ERR(pidfile)) {
2156 			put_unused_fd(pidfd);
2157 			retval = PTR_ERR(pidfile);
2158 			goto bad_fork_free_pid;
2159 		}
2160 		get_pid(pid);	/* held by pidfile now */
2161 
2162 		retval = put_user(pidfd, args->pidfd);
2163 		if (retval)
2164 			goto bad_fork_put_pidfd;
2165 	}
2166 
2167 #ifdef CONFIG_BLOCK
2168 	p->plug = NULL;
2169 #endif
2170 	futex_init_task(p);
2171 
2172 	/*
2173 	 * sigaltstack should be cleared when sharing the same VM
2174 	 */
2175 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2176 		sas_ss_reset(p);
2177 
2178 	/*
2179 	 * Syscall tracing and stepping should be turned off in the
2180 	 * child regardless of CLONE_PTRACE.
2181 	 */
2182 	user_disable_single_step(p);
2183 	clear_task_syscall_work(p, SYSCALL_TRACE);
2184 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2185 	clear_task_syscall_work(p, SYSCALL_EMU);
2186 #endif
2187 	clear_tsk_latency_tracing(p);
2188 
2189 	/* ok, now we should be set up.. */
2190 	p->pid = pid_nr(pid);
2191 	if (clone_flags & CLONE_THREAD) {
2192 		p->group_leader = current->group_leader;
2193 		p->tgid = current->tgid;
2194 	} else {
2195 		p->group_leader = p;
2196 		p->tgid = p->pid;
2197 	}
2198 
2199 	p->nr_dirtied = 0;
2200 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2201 	p->dirty_paused_when = 0;
2202 
2203 	p->pdeath_signal = 0;
2204 	INIT_LIST_HEAD(&p->thread_group);
2205 	p->task_works = NULL;
2206 
2207 #ifdef CONFIG_KRETPROBES
2208 	p->kretprobe_instances.first = NULL;
2209 #endif
2210 
2211 	/*
2212 	 * Ensure that the cgroup subsystem policies allow the new process to be
2213 	 * forked. It should be noted that the new process's css_set can be changed
2214 	 * between here and cgroup_post_fork() if an organisation operation is in
2215 	 * progress.
2216 	 */
2217 	retval = cgroup_can_fork(p, args);
2218 	if (retval)
2219 		goto bad_fork_put_pidfd;
2220 
2221 	/*
2222 	 * From this point on we must avoid any synchronous user-space
2223 	 * communication until we take the tasklist-lock. In particular, we do
2224 	 * not want user-space to be able to predict the process start-time by
2225 	 * stalling fork(2) after we recorded the start_time but before it is
2226 	 * visible to the system.
2227 	 */
2228 
2229 	p->start_time = ktime_get_ns();
2230 	p->start_boottime = ktime_get_boottime_ns();
2231 
2232 	/*
2233 	 * Make it visible to the rest of the system, but dont wake it up yet.
2234 	 * Need tasklist lock for parent etc handling!
2235 	 */
2236 	write_lock_irq(&tasklist_lock);
2237 
2238 	/* CLONE_PARENT re-uses the old parent */
2239 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2240 		p->real_parent = current->real_parent;
2241 		p->parent_exec_id = current->parent_exec_id;
2242 		if (clone_flags & CLONE_THREAD)
2243 			p->exit_signal = -1;
2244 		else
2245 			p->exit_signal = current->group_leader->exit_signal;
2246 	} else {
2247 		p->real_parent = current;
2248 		p->parent_exec_id = current->self_exec_id;
2249 		p->exit_signal = args->exit_signal;
2250 	}
2251 
2252 	klp_copy_process(p);
2253 
2254 	sched_core_fork(p);
2255 
2256 	spin_lock(&current->sighand->siglock);
2257 
2258 	/*
2259 	 * Copy seccomp details explicitly here, in case they were changed
2260 	 * before holding sighand lock.
2261 	 */
2262 	copy_seccomp(p);
2263 
2264 	rseq_fork(p, clone_flags);
2265 
2266 	/* Don't start children in a dying pid namespace */
2267 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2268 		retval = -ENOMEM;
2269 		goto bad_fork_cancel_cgroup;
2270 	}
2271 
2272 	/* Let kill terminate clone/fork in the middle */
2273 	if (fatal_signal_pending(current)) {
2274 		retval = -EINTR;
2275 		goto bad_fork_cancel_cgroup;
2276 	}
2277 
2278 	/* past the last point of failure */
2279 	if (pidfile)
2280 		fd_install(pidfd, pidfile);
2281 
2282 	init_task_pid_links(p);
2283 	if (likely(p->pid)) {
2284 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2285 
2286 		init_task_pid(p, PIDTYPE_PID, pid);
2287 		if (thread_group_leader(p)) {
2288 			init_task_pid(p, PIDTYPE_TGID, pid);
2289 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2290 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2291 
2292 			if (is_child_reaper(pid)) {
2293 				ns_of_pid(pid)->child_reaper = p;
2294 				p->signal->flags |= SIGNAL_UNKILLABLE;
2295 			}
2296 			p->signal->shared_pending.signal = delayed.signal;
2297 			p->signal->tty = tty_kref_get(current->signal->tty);
2298 			/*
2299 			 * Inherit has_child_subreaper flag under the same
2300 			 * tasklist_lock with adding child to the process tree
2301 			 * for propagate_has_child_subreaper optimization.
2302 			 */
2303 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2304 							 p->real_parent->signal->is_child_subreaper;
2305 			list_add_tail(&p->sibling, &p->real_parent->children);
2306 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2307 			attach_pid(p, PIDTYPE_TGID);
2308 			attach_pid(p, PIDTYPE_PGID);
2309 			attach_pid(p, PIDTYPE_SID);
2310 			__this_cpu_inc(process_counts);
2311 		} else {
2312 			current->signal->nr_threads++;
2313 			atomic_inc(&current->signal->live);
2314 			refcount_inc(&current->signal->sigcnt);
2315 			task_join_group_stop(p);
2316 			list_add_tail_rcu(&p->thread_group,
2317 					  &p->group_leader->thread_group);
2318 			list_add_tail_rcu(&p->thread_node,
2319 					  &p->signal->thread_head);
2320 		}
2321 		attach_pid(p, PIDTYPE_PID);
2322 		nr_threads++;
2323 	}
2324 	total_forks++;
2325 	hlist_del_init(&delayed.node);
2326 	spin_unlock(&current->sighand->siglock);
2327 	syscall_tracepoint_update(p);
2328 	write_unlock_irq(&tasklist_lock);
2329 
2330 	proc_fork_connector(p);
2331 	sched_post_fork(p);
2332 	cgroup_post_fork(p, args);
2333 	perf_event_fork(p);
2334 
2335 	trace_task_newtask(p, clone_flags);
2336 	uprobe_copy_process(p, clone_flags);
2337 
2338 	copy_oom_score_adj(clone_flags, p);
2339 
2340 	return p;
2341 
2342 bad_fork_cancel_cgroup:
2343 	sched_core_free(p);
2344 	spin_unlock(&current->sighand->siglock);
2345 	write_unlock_irq(&tasklist_lock);
2346 	cgroup_cancel_fork(p, args);
2347 bad_fork_put_pidfd:
2348 	if (clone_flags & CLONE_PIDFD) {
2349 		fput(pidfile);
2350 		put_unused_fd(pidfd);
2351 	}
2352 bad_fork_free_pid:
2353 	if (pid != &init_struct_pid)
2354 		free_pid(pid);
2355 bad_fork_cleanup_thread:
2356 	exit_thread(p);
2357 bad_fork_cleanup_io:
2358 	if (p->io_context)
2359 		exit_io_context(p);
2360 bad_fork_cleanup_namespaces:
2361 	exit_task_namespaces(p);
2362 bad_fork_cleanup_mm:
2363 	if (p->mm) {
2364 		mm_clear_owner(p->mm, p);
2365 		mmput(p->mm);
2366 	}
2367 bad_fork_cleanup_signal:
2368 	if (!(clone_flags & CLONE_THREAD))
2369 		free_signal_struct(p->signal);
2370 bad_fork_cleanup_sighand:
2371 	__cleanup_sighand(p->sighand);
2372 bad_fork_cleanup_fs:
2373 	exit_fs(p); /* blocking */
2374 bad_fork_cleanup_files:
2375 	exit_files(p); /* blocking */
2376 bad_fork_cleanup_semundo:
2377 	exit_sem(p);
2378 bad_fork_cleanup_security:
2379 	security_task_free(p);
2380 bad_fork_cleanup_audit:
2381 	audit_free(p);
2382 bad_fork_cleanup_perf:
2383 	perf_event_free_task(p);
2384 bad_fork_cleanup_policy:
2385 	lockdep_free_task(p);
2386 #ifdef CONFIG_NUMA
2387 	mpol_put(p->mempolicy);
2388 bad_fork_cleanup_threadgroup_lock:
2389 #endif
2390 	delayacct_tsk_free(p);
2391 bad_fork_cleanup_count:
2392 	atomic_dec(&p->cred->user->processes);
2393 	exit_creds(p);
2394 bad_fork_free:
2395 	p->state = TASK_DEAD;
2396 	put_task_stack(p);
2397 	delayed_free_task(p);
2398 fork_out:
2399 	spin_lock_irq(&current->sighand->siglock);
2400 	hlist_del_init(&delayed.node);
2401 	spin_unlock_irq(&current->sighand->siglock);
2402 	return ERR_PTR(retval);
2403 }
2404 
2405 static inline void init_idle_pids(struct task_struct *idle)
2406 {
2407 	enum pid_type type;
2408 
2409 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2410 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2411 		init_task_pid(idle, type, &init_struct_pid);
2412 	}
2413 }
2414 
2415 struct task_struct * __init fork_idle(int cpu)
2416 {
2417 	struct task_struct *task;
2418 	struct kernel_clone_args args = {
2419 		.flags = CLONE_VM,
2420 	};
2421 
2422 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2423 	if (!IS_ERR(task)) {
2424 		init_idle_pids(task);
2425 		init_idle(task, cpu);
2426 	}
2427 
2428 	return task;
2429 }
2430 
2431 struct mm_struct *copy_init_mm(void)
2432 {
2433 	return dup_mm(NULL, &init_mm);
2434 }
2435 
2436 /*
2437  * This is like kernel_clone(), but shaved down and tailored to just
2438  * creating io_uring workers. It returns a created task, or an error pointer.
2439  * The returned task is inactive, and the caller must fire it up through
2440  * wake_up_new_task(p). All signals are blocked in the created task.
2441  */
2442 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2443 {
2444 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2445 				CLONE_IO;
2446 	struct kernel_clone_args args = {
2447 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2448 				    CLONE_UNTRACED) & ~CSIGNAL),
2449 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2450 		.stack		= (unsigned long)fn,
2451 		.stack_size	= (unsigned long)arg,
2452 		.io_thread	= 1,
2453 	};
2454 
2455 	return copy_process(NULL, 0, node, &args);
2456 }
2457 
2458 /*
2459  *  Ok, this is the main fork-routine.
2460  *
2461  * It copies the process, and if successful kick-starts
2462  * it and waits for it to finish using the VM if required.
2463  *
2464  * args->exit_signal is expected to be checked for sanity by the caller.
2465  */
2466 pid_t kernel_clone(struct kernel_clone_args *args)
2467 {
2468 	u64 clone_flags = args->flags;
2469 	struct completion vfork;
2470 	struct pid *pid;
2471 	struct task_struct *p;
2472 	int trace = 0;
2473 	pid_t nr;
2474 
2475 	/*
2476 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2477 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2478 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2479 	 * field in struct clone_args and it still doesn't make sense to have
2480 	 * them both point at the same memory location. Performing this check
2481 	 * here has the advantage that we don't need to have a separate helper
2482 	 * to check for legacy clone().
2483 	 */
2484 	if ((args->flags & CLONE_PIDFD) &&
2485 	    (args->flags & CLONE_PARENT_SETTID) &&
2486 	    (args->pidfd == args->parent_tid))
2487 		return -EINVAL;
2488 
2489 	/*
2490 	 * Determine whether and which event to report to ptracer.  When
2491 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2492 	 * requested, no event is reported; otherwise, report if the event
2493 	 * for the type of forking is enabled.
2494 	 */
2495 	if (!(clone_flags & CLONE_UNTRACED)) {
2496 		if (clone_flags & CLONE_VFORK)
2497 			trace = PTRACE_EVENT_VFORK;
2498 		else if (args->exit_signal != SIGCHLD)
2499 			trace = PTRACE_EVENT_CLONE;
2500 		else
2501 			trace = PTRACE_EVENT_FORK;
2502 
2503 		if (likely(!ptrace_event_enabled(current, trace)))
2504 			trace = 0;
2505 	}
2506 
2507 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2508 	add_latent_entropy();
2509 
2510 	if (IS_ERR(p))
2511 		return PTR_ERR(p);
2512 
2513 	/*
2514 	 * Do this prior waking up the new thread - the thread pointer
2515 	 * might get invalid after that point, if the thread exits quickly.
2516 	 */
2517 	trace_sched_process_fork(current, p);
2518 
2519 	pid = get_task_pid(p, PIDTYPE_PID);
2520 	nr = pid_vnr(pid);
2521 
2522 	if (clone_flags & CLONE_PARENT_SETTID)
2523 		put_user(nr, args->parent_tid);
2524 
2525 	if (clone_flags & CLONE_VFORK) {
2526 		p->vfork_done = &vfork;
2527 		init_completion(&vfork);
2528 		get_task_struct(p);
2529 	}
2530 
2531 	wake_up_new_task(p);
2532 
2533 	/* forking complete and child started to run, tell ptracer */
2534 	if (unlikely(trace))
2535 		ptrace_event_pid(trace, pid);
2536 
2537 	if (clone_flags & CLONE_VFORK) {
2538 		if (!wait_for_vfork_done(p, &vfork))
2539 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2540 	}
2541 
2542 	put_pid(pid);
2543 	return nr;
2544 }
2545 
2546 /*
2547  * Create a kernel thread.
2548  */
2549 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2550 {
2551 	struct kernel_clone_args args = {
2552 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2553 				    CLONE_UNTRACED) & ~CSIGNAL),
2554 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2555 		.stack		= (unsigned long)fn,
2556 		.stack_size	= (unsigned long)arg,
2557 	};
2558 
2559 	return kernel_clone(&args);
2560 }
2561 
2562 #ifdef __ARCH_WANT_SYS_FORK
2563 SYSCALL_DEFINE0(fork)
2564 {
2565 #ifdef CONFIG_MMU
2566 	struct kernel_clone_args args = {
2567 		.exit_signal = SIGCHLD,
2568 	};
2569 
2570 	return kernel_clone(&args);
2571 #else
2572 	/* can not support in nommu mode */
2573 	return -EINVAL;
2574 #endif
2575 }
2576 #endif
2577 
2578 #ifdef __ARCH_WANT_SYS_VFORK
2579 SYSCALL_DEFINE0(vfork)
2580 {
2581 	struct kernel_clone_args args = {
2582 		.flags		= CLONE_VFORK | CLONE_VM,
2583 		.exit_signal	= SIGCHLD,
2584 	};
2585 
2586 	return kernel_clone(&args);
2587 }
2588 #endif
2589 
2590 #ifdef __ARCH_WANT_SYS_CLONE
2591 #ifdef CONFIG_CLONE_BACKWARDS
2592 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2593 		 int __user *, parent_tidptr,
2594 		 unsigned long, tls,
2595 		 int __user *, child_tidptr)
2596 #elif defined(CONFIG_CLONE_BACKWARDS2)
2597 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2598 		 int __user *, parent_tidptr,
2599 		 int __user *, child_tidptr,
2600 		 unsigned long, tls)
2601 #elif defined(CONFIG_CLONE_BACKWARDS3)
2602 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2603 		int, stack_size,
2604 		int __user *, parent_tidptr,
2605 		int __user *, child_tidptr,
2606 		unsigned long, tls)
2607 #else
2608 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2609 		 int __user *, parent_tidptr,
2610 		 int __user *, child_tidptr,
2611 		 unsigned long, tls)
2612 #endif
2613 {
2614 	struct kernel_clone_args args = {
2615 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2616 		.pidfd		= parent_tidptr,
2617 		.child_tid	= child_tidptr,
2618 		.parent_tid	= parent_tidptr,
2619 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2620 		.stack		= newsp,
2621 		.tls		= tls,
2622 	};
2623 
2624 	return kernel_clone(&args);
2625 }
2626 #endif
2627 
2628 #ifdef __ARCH_WANT_SYS_CLONE3
2629 
2630 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2631 					      struct clone_args __user *uargs,
2632 					      size_t usize)
2633 {
2634 	int err;
2635 	struct clone_args args;
2636 	pid_t *kset_tid = kargs->set_tid;
2637 
2638 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2639 		     CLONE_ARGS_SIZE_VER0);
2640 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2641 		     CLONE_ARGS_SIZE_VER1);
2642 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2643 		     CLONE_ARGS_SIZE_VER2);
2644 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2645 
2646 	if (unlikely(usize > PAGE_SIZE))
2647 		return -E2BIG;
2648 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2649 		return -EINVAL;
2650 
2651 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2652 	if (err)
2653 		return err;
2654 
2655 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2656 		return -EINVAL;
2657 
2658 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2659 		return -EINVAL;
2660 
2661 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2662 		return -EINVAL;
2663 
2664 	/*
2665 	 * Verify that higher 32bits of exit_signal are unset and that
2666 	 * it is a valid signal
2667 	 */
2668 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2669 		     !valid_signal(args.exit_signal)))
2670 		return -EINVAL;
2671 
2672 	if ((args.flags & CLONE_INTO_CGROUP) &&
2673 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2674 		return -EINVAL;
2675 
2676 	*kargs = (struct kernel_clone_args){
2677 		.flags		= args.flags,
2678 		.pidfd		= u64_to_user_ptr(args.pidfd),
2679 		.child_tid	= u64_to_user_ptr(args.child_tid),
2680 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2681 		.exit_signal	= args.exit_signal,
2682 		.stack		= args.stack,
2683 		.stack_size	= args.stack_size,
2684 		.tls		= args.tls,
2685 		.set_tid_size	= args.set_tid_size,
2686 		.cgroup		= args.cgroup,
2687 	};
2688 
2689 	if (args.set_tid &&
2690 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2691 			(kargs->set_tid_size * sizeof(pid_t))))
2692 		return -EFAULT;
2693 
2694 	kargs->set_tid = kset_tid;
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  * clone3_stack_valid - check and prepare stack
2701  * @kargs: kernel clone args
2702  *
2703  * Verify that the stack arguments userspace gave us are sane.
2704  * In addition, set the stack direction for userspace since it's easy for us to
2705  * determine.
2706  */
2707 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2708 {
2709 	if (kargs->stack == 0) {
2710 		if (kargs->stack_size > 0)
2711 			return false;
2712 	} else {
2713 		if (kargs->stack_size == 0)
2714 			return false;
2715 
2716 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2717 			return false;
2718 
2719 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2720 		kargs->stack += kargs->stack_size;
2721 #endif
2722 	}
2723 
2724 	return true;
2725 }
2726 
2727 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2728 {
2729 	/* Verify that no unknown flags are passed along. */
2730 	if (kargs->flags &
2731 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2732 		return false;
2733 
2734 	/*
2735 	 * - make the CLONE_DETACHED bit reusable for clone3
2736 	 * - make the CSIGNAL bits reusable for clone3
2737 	 */
2738 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2739 		return false;
2740 
2741 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2742 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2743 		return false;
2744 
2745 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2746 	    kargs->exit_signal)
2747 		return false;
2748 
2749 	if (!clone3_stack_valid(kargs))
2750 		return false;
2751 
2752 	return true;
2753 }
2754 
2755 /**
2756  * clone3 - create a new process with specific properties
2757  * @uargs: argument structure
2758  * @size:  size of @uargs
2759  *
2760  * clone3() is the extensible successor to clone()/clone2().
2761  * It takes a struct as argument that is versioned by its size.
2762  *
2763  * Return: On success, a positive PID for the child process.
2764  *         On error, a negative errno number.
2765  */
2766 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2767 {
2768 	int err;
2769 
2770 	struct kernel_clone_args kargs;
2771 	pid_t set_tid[MAX_PID_NS_LEVEL];
2772 
2773 	kargs.set_tid = set_tid;
2774 
2775 	err = copy_clone_args_from_user(&kargs, uargs, size);
2776 	if (err)
2777 		return err;
2778 
2779 	if (!clone3_args_valid(&kargs))
2780 		return -EINVAL;
2781 
2782 	return kernel_clone(&kargs);
2783 }
2784 #endif
2785 
2786 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2787 {
2788 	struct task_struct *leader, *parent, *child;
2789 	int res;
2790 
2791 	read_lock(&tasklist_lock);
2792 	leader = top = top->group_leader;
2793 down:
2794 	for_each_thread(leader, parent) {
2795 		list_for_each_entry(child, &parent->children, sibling) {
2796 			res = visitor(child, data);
2797 			if (res) {
2798 				if (res < 0)
2799 					goto out;
2800 				leader = child;
2801 				goto down;
2802 			}
2803 up:
2804 			;
2805 		}
2806 	}
2807 
2808 	if (leader != top) {
2809 		child = leader;
2810 		parent = child->real_parent;
2811 		leader = parent->group_leader;
2812 		goto up;
2813 	}
2814 out:
2815 	read_unlock(&tasklist_lock);
2816 }
2817 
2818 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2819 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2820 #endif
2821 
2822 static void sighand_ctor(void *data)
2823 {
2824 	struct sighand_struct *sighand = data;
2825 
2826 	spin_lock_init(&sighand->siglock);
2827 	init_waitqueue_head(&sighand->signalfd_wqh);
2828 }
2829 
2830 void __init proc_caches_init(void)
2831 {
2832 	unsigned int mm_size;
2833 
2834 	sighand_cachep = kmem_cache_create("sighand_cache",
2835 			sizeof(struct sighand_struct), 0,
2836 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2837 			SLAB_ACCOUNT, sighand_ctor);
2838 	signal_cachep = kmem_cache_create("signal_cache",
2839 			sizeof(struct signal_struct), 0,
2840 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2841 			NULL);
2842 	files_cachep = kmem_cache_create("files_cache",
2843 			sizeof(struct files_struct), 0,
2844 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2845 			NULL);
2846 	fs_cachep = kmem_cache_create("fs_cache",
2847 			sizeof(struct fs_struct), 0,
2848 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2849 			NULL);
2850 
2851 	/*
2852 	 * The mm_cpumask is located at the end of mm_struct, and is
2853 	 * dynamically sized based on the maximum CPU number this system
2854 	 * can have, taking hotplug into account (nr_cpu_ids).
2855 	 */
2856 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2857 
2858 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2859 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2860 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2861 			offsetof(struct mm_struct, saved_auxv),
2862 			sizeof_field(struct mm_struct, saved_auxv),
2863 			NULL);
2864 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2865 	mmap_init();
2866 	nsproxy_cache_init();
2867 }
2868 
2869 /*
2870  * Check constraints on flags passed to the unshare system call.
2871  */
2872 static int check_unshare_flags(unsigned long unshare_flags)
2873 {
2874 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2875 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2876 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2877 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2878 				CLONE_NEWTIME))
2879 		return -EINVAL;
2880 	/*
2881 	 * Not implemented, but pretend it works if there is nothing
2882 	 * to unshare.  Note that unsharing the address space or the
2883 	 * signal handlers also need to unshare the signal queues (aka
2884 	 * CLONE_THREAD).
2885 	 */
2886 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2887 		if (!thread_group_empty(current))
2888 			return -EINVAL;
2889 	}
2890 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2891 		if (refcount_read(&current->sighand->count) > 1)
2892 			return -EINVAL;
2893 	}
2894 	if (unshare_flags & CLONE_VM) {
2895 		if (!current_is_single_threaded())
2896 			return -EINVAL;
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 /*
2903  * Unshare the filesystem structure if it is being shared
2904  */
2905 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2906 {
2907 	struct fs_struct *fs = current->fs;
2908 
2909 	if (!(unshare_flags & CLONE_FS) || !fs)
2910 		return 0;
2911 
2912 	/* don't need lock here; in the worst case we'll do useless copy */
2913 	if (fs->users == 1)
2914 		return 0;
2915 
2916 	*new_fsp = copy_fs_struct(fs);
2917 	if (!*new_fsp)
2918 		return -ENOMEM;
2919 
2920 	return 0;
2921 }
2922 
2923 /*
2924  * Unshare file descriptor table if it is being shared
2925  */
2926 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2927 	       struct files_struct **new_fdp)
2928 {
2929 	struct files_struct *fd = current->files;
2930 	int error = 0;
2931 
2932 	if ((unshare_flags & CLONE_FILES) &&
2933 	    (fd && atomic_read(&fd->count) > 1)) {
2934 		*new_fdp = dup_fd(fd, max_fds, &error);
2935 		if (!*new_fdp)
2936 			return error;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 /*
2943  * unshare allows a process to 'unshare' part of the process
2944  * context which was originally shared using clone.  copy_*
2945  * functions used by kernel_clone() cannot be used here directly
2946  * because they modify an inactive task_struct that is being
2947  * constructed. Here we are modifying the current, active,
2948  * task_struct.
2949  */
2950 int ksys_unshare(unsigned long unshare_flags)
2951 {
2952 	struct fs_struct *fs, *new_fs = NULL;
2953 	struct files_struct *fd, *new_fd = NULL;
2954 	struct cred *new_cred = NULL;
2955 	struct nsproxy *new_nsproxy = NULL;
2956 	int do_sysvsem = 0;
2957 	int err;
2958 
2959 	/*
2960 	 * If unsharing a user namespace must also unshare the thread group
2961 	 * and unshare the filesystem root and working directories.
2962 	 */
2963 	if (unshare_flags & CLONE_NEWUSER)
2964 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2965 	/*
2966 	 * If unsharing vm, must also unshare signal handlers.
2967 	 */
2968 	if (unshare_flags & CLONE_VM)
2969 		unshare_flags |= CLONE_SIGHAND;
2970 	/*
2971 	 * If unsharing a signal handlers, must also unshare the signal queues.
2972 	 */
2973 	if (unshare_flags & CLONE_SIGHAND)
2974 		unshare_flags |= CLONE_THREAD;
2975 	/*
2976 	 * If unsharing namespace, must also unshare filesystem information.
2977 	 */
2978 	if (unshare_flags & CLONE_NEWNS)
2979 		unshare_flags |= CLONE_FS;
2980 
2981 	err = check_unshare_flags(unshare_flags);
2982 	if (err)
2983 		goto bad_unshare_out;
2984 	/*
2985 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2986 	 * to a new ipc namespace, the semaphore arrays from the old
2987 	 * namespace are unreachable.
2988 	 */
2989 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2990 		do_sysvsem = 1;
2991 	err = unshare_fs(unshare_flags, &new_fs);
2992 	if (err)
2993 		goto bad_unshare_out;
2994 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2995 	if (err)
2996 		goto bad_unshare_cleanup_fs;
2997 	err = unshare_userns(unshare_flags, &new_cred);
2998 	if (err)
2999 		goto bad_unshare_cleanup_fd;
3000 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3001 					 new_cred, new_fs);
3002 	if (err)
3003 		goto bad_unshare_cleanup_cred;
3004 
3005 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3006 		if (do_sysvsem) {
3007 			/*
3008 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3009 			 */
3010 			exit_sem(current);
3011 		}
3012 		if (unshare_flags & CLONE_NEWIPC) {
3013 			/* Orphan segments in old ns (see sem above). */
3014 			exit_shm(current);
3015 			shm_init_task(current);
3016 		}
3017 
3018 		if (new_nsproxy)
3019 			switch_task_namespaces(current, new_nsproxy);
3020 
3021 		task_lock(current);
3022 
3023 		if (new_fs) {
3024 			fs = current->fs;
3025 			spin_lock(&fs->lock);
3026 			current->fs = new_fs;
3027 			if (--fs->users)
3028 				new_fs = NULL;
3029 			else
3030 				new_fs = fs;
3031 			spin_unlock(&fs->lock);
3032 		}
3033 
3034 		if (new_fd) {
3035 			fd = current->files;
3036 			current->files = new_fd;
3037 			new_fd = fd;
3038 		}
3039 
3040 		task_unlock(current);
3041 
3042 		if (new_cred) {
3043 			/* Install the new user namespace */
3044 			commit_creds(new_cred);
3045 			new_cred = NULL;
3046 		}
3047 	}
3048 
3049 	perf_event_namespaces(current);
3050 
3051 bad_unshare_cleanup_cred:
3052 	if (new_cred)
3053 		put_cred(new_cred);
3054 bad_unshare_cleanup_fd:
3055 	if (new_fd)
3056 		put_files_struct(new_fd);
3057 
3058 bad_unshare_cleanup_fs:
3059 	if (new_fs)
3060 		free_fs_struct(new_fs);
3061 
3062 bad_unshare_out:
3063 	return err;
3064 }
3065 
3066 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3067 {
3068 	return ksys_unshare(unshare_flags);
3069 }
3070 
3071 /*
3072  *	Helper to unshare the files of the current task.
3073  *	We don't want to expose copy_files internals to
3074  *	the exec layer of the kernel.
3075  */
3076 
3077 int unshare_files(void)
3078 {
3079 	struct task_struct *task = current;
3080 	struct files_struct *old, *copy = NULL;
3081 	int error;
3082 
3083 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3084 	if (error || !copy)
3085 		return error;
3086 
3087 	old = task->files;
3088 	task_lock(task);
3089 	task->files = copy;
3090 	task_unlock(task);
3091 	put_files_struct(old);
3092 	return 0;
3093 }
3094 
3095 int sysctl_max_threads(struct ctl_table *table, int write,
3096 		       void *buffer, size_t *lenp, loff_t *ppos)
3097 {
3098 	struct ctl_table t;
3099 	int ret;
3100 	int threads = max_threads;
3101 	int min = 1;
3102 	int max = MAX_THREADS;
3103 
3104 	t = *table;
3105 	t.data = &threads;
3106 	t.extra1 = &min;
3107 	t.extra2 = &max;
3108 
3109 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3110 	if (ret || !write)
3111 		return ret;
3112 
3113 	max_threads = threads;
3114 
3115 	return 0;
3116 }
3117