1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(tsk->state != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 #ifdef CONFIG_MMU 474 static __latent_entropy int dup_mmap(struct mm_struct *mm, 475 struct mm_struct *oldmm) 476 { 477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 478 struct rb_node **rb_link, *rb_parent; 479 int retval; 480 unsigned long charge; 481 LIST_HEAD(uf); 482 483 uprobe_start_dup_mmap(); 484 if (mmap_write_lock_killable(oldmm)) { 485 retval = -EINTR; 486 goto fail_uprobe_end; 487 } 488 flush_cache_dup_mm(oldmm); 489 uprobe_dup_mmap(oldmm, mm); 490 /* 491 * Not linked in yet - no deadlock potential: 492 */ 493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 494 495 /* No ordering required: file already has been exposed. */ 496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 497 498 mm->total_vm = oldmm->total_vm; 499 mm->data_vm = oldmm->data_vm; 500 mm->exec_vm = oldmm->exec_vm; 501 mm->stack_vm = oldmm->stack_vm; 502 503 rb_link = &mm->mm_rb.rb_node; 504 rb_parent = NULL; 505 pprev = &mm->mmap; 506 retval = ksm_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 retval = khugepaged_fork(mm, oldmm); 510 if (retval) 511 goto out; 512 513 prev = NULL; 514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 515 struct file *file; 516 517 if (mpnt->vm_flags & VM_DONTCOPY) { 518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 519 continue; 520 } 521 charge = 0; 522 /* 523 * Don't duplicate many vmas if we've been oom-killed (for 524 * example) 525 */ 526 if (fatal_signal_pending(current)) { 527 retval = -EINTR; 528 goto out; 529 } 530 if (mpnt->vm_flags & VM_ACCOUNT) { 531 unsigned long len = vma_pages(mpnt); 532 533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 534 goto fail_nomem; 535 charge = len; 536 } 537 tmp = vm_area_dup(mpnt); 538 if (!tmp) 539 goto fail_nomem; 540 retval = vma_dup_policy(mpnt, tmp); 541 if (retval) 542 goto fail_nomem_policy; 543 tmp->vm_mm = mm; 544 retval = dup_userfaultfd(tmp, &uf); 545 if (retval) 546 goto fail_nomem_anon_vma_fork; 547 if (tmp->vm_flags & VM_WIPEONFORK) { 548 /* 549 * VM_WIPEONFORK gets a clean slate in the child. 550 * Don't prepare anon_vma until fault since we don't 551 * copy page for current vma. 552 */ 553 tmp->anon_vma = NULL; 554 } else if (anon_vma_fork(tmp, mpnt)) 555 goto fail_nomem_anon_vma_fork; 556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 557 file = tmp->vm_file; 558 if (file) { 559 struct inode *inode = file_inode(file); 560 struct address_space *mapping = file->f_mapping; 561 562 get_file(file); 563 if (tmp->vm_flags & VM_DENYWRITE) 564 put_write_access(inode); 565 i_mmap_lock_write(mapping); 566 if (tmp->vm_flags & VM_SHARED) 567 mapping_allow_writable(mapping); 568 flush_dcache_mmap_lock(mapping); 569 /* insert tmp into the share list, just after mpnt */ 570 vma_interval_tree_insert_after(tmp, mpnt, 571 &mapping->i_mmap); 572 flush_dcache_mmap_unlock(mapping); 573 i_mmap_unlock_write(mapping); 574 } 575 576 /* 577 * Clear hugetlb-related page reserves for children. This only 578 * affects MAP_PRIVATE mappings. Faults generated by the child 579 * are not guaranteed to succeed, even if read-only 580 */ 581 if (is_vm_hugetlb_page(tmp)) 582 reset_vma_resv_huge_pages(tmp); 583 584 /* 585 * Link in the new vma and copy the page table entries. 586 */ 587 *pprev = tmp; 588 pprev = &tmp->vm_next; 589 tmp->vm_prev = prev; 590 prev = tmp; 591 592 __vma_link_rb(mm, tmp, rb_link, rb_parent); 593 rb_link = &tmp->vm_rb.rb_right; 594 rb_parent = &tmp->vm_rb; 595 596 mm->map_count++; 597 if (!(tmp->vm_flags & VM_WIPEONFORK)) 598 retval = copy_page_range(tmp, mpnt); 599 600 if (tmp->vm_ops && tmp->vm_ops->open) 601 tmp->vm_ops->open(tmp); 602 603 if (retval) 604 goto out; 605 } 606 /* a new mm has just been created */ 607 retval = arch_dup_mmap(oldmm, mm); 608 out: 609 mmap_write_unlock(mm); 610 flush_tlb_mm(oldmm); 611 mmap_write_unlock(oldmm); 612 dup_userfaultfd_complete(&uf); 613 fail_uprobe_end: 614 uprobe_end_dup_mmap(); 615 return retval; 616 fail_nomem_anon_vma_fork: 617 mpol_put(vma_policy(tmp)); 618 fail_nomem_policy: 619 vm_area_free(tmp); 620 fail_nomem: 621 retval = -ENOMEM; 622 vm_unacct_memory(charge); 623 goto out; 624 } 625 626 static inline int mm_alloc_pgd(struct mm_struct *mm) 627 { 628 mm->pgd = pgd_alloc(mm); 629 if (unlikely(!mm->pgd)) 630 return -ENOMEM; 631 return 0; 632 } 633 634 static inline void mm_free_pgd(struct mm_struct *mm) 635 { 636 pgd_free(mm, mm->pgd); 637 } 638 #else 639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 640 { 641 mmap_write_lock(oldmm); 642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 643 mmap_write_unlock(oldmm); 644 return 0; 645 } 646 #define mm_alloc_pgd(mm) (0) 647 #define mm_free_pgd(mm) 648 #endif /* CONFIG_MMU */ 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 655 "Please make sure 'struct resident_page_types[]' is updated as well"); 656 657 for (i = 0; i < NR_MM_COUNTERS; i++) { 658 long x = atomic_long_read(&mm->rss_stat.count[i]); 659 660 if (unlikely(x)) 661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 662 mm, resident_page_types[i], x); 663 } 664 665 if (mm_pgtables_bytes(mm)) 666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 667 mm_pgtables_bytes(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 676 677 /* 678 * Called when the last reference to the mm 679 * is dropped: either by a lazy thread or by 680 * mmput. Free the page directory and the mm. 681 */ 682 void __mmdrop(struct mm_struct *mm) 683 { 684 BUG_ON(mm == &init_mm); 685 WARN_ON_ONCE(mm == current->mm); 686 WARN_ON_ONCE(mm == current->active_mm); 687 mm_free_pgd(mm); 688 destroy_context(mm); 689 mmu_notifier_subscriptions_destroy(mm); 690 check_mm(mm); 691 put_user_ns(mm->user_ns); 692 free_mm(mm); 693 } 694 EXPORT_SYMBOL_GPL(__mmdrop); 695 696 static void mmdrop_async_fn(struct work_struct *work) 697 { 698 struct mm_struct *mm; 699 700 mm = container_of(work, struct mm_struct, async_put_work); 701 __mmdrop(mm); 702 } 703 704 static void mmdrop_async(struct mm_struct *mm) 705 { 706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 708 schedule_work(&mm->async_put_work); 709 } 710 } 711 712 static inline void free_signal_struct(struct signal_struct *sig) 713 { 714 taskstats_tgid_free(sig); 715 sched_autogroup_exit(sig); 716 /* 717 * __mmdrop is not safe to call from softirq context on x86 due to 718 * pgd_dtor so postpone it to the async context 719 */ 720 if (sig->oom_mm) 721 mmdrop_async(sig->oom_mm); 722 kmem_cache_free(signal_cachep, sig); 723 } 724 725 static inline void put_signal_struct(struct signal_struct *sig) 726 { 727 if (refcount_dec_and_test(&sig->sigcnt)) 728 free_signal_struct(sig); 729 } 730 731 void __put_task_struct(struct task_struct *tsk) 732 { 733 WARN_ON(!tsk->exit_state); 734 WARN_ON(refcount_read(&tsk->usage)); 735 WARN_ON(tsk == current); 736 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 bpf_task_storage_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 sched_core_free(tsk); 746 747 if (!profile_handoff_task(tsk)) 748 free_task(tsk); 749 } 750 EXPORT_SYMBOL_GPL(__put_task_struct); 751 752 void __init __weak arch_task_cache_init(void) { } 753 754 /* 755 * set_max_threads 756 */ 757 static void set_max_threads(unsigned int max_threads_suggested) 758 { 759 u64 threads; 760 unsigned long nr_pages = totalram_pages(); 761 762 /* 763 * The number of threads shall be limited such that the thread 764 * structures may only consume a small part of the available memory. 765 */ 766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 767 threads = MAX_THREADS; 768 else 769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 770 (u64) THREAD_SIZE * 8UL); 771 772 if (threads > max_threads_suggested) 773 threads = max_threads_suggested; 774 775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 776 } 777 778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 779 /* Initialized by the architecture: */ 780 int arch_task_struct_size __read_mostly; 781 #endif 782 783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 785 { 786 /* Fetch thread_struct whitelist for the architecture. */ 787 arch_thread_struct_whitelist(offset, size); 788 789 /* 790 * Handle zero-sized whitelist or empty thread_struct, otherwise 791 * adjust offset to position of thread_struct in task_struct. 792 */ 793 if (unlikely(*size == 0)) 794 *offset = 0; 795 else 796 *offset += offsetof(struct task_struct, thread); 797 } 798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 799 800 void __init fork_init(void) 801 { 802 int i; 803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 #endif 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < UCOUNT_COUNTS; i++) 829 init_user_ns.ucount_max[i] = max_threads/2; 830 831 #ifdef CONFIG_VMAP_STACK 832 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 833 NULL, free_vm_stack_cache); 834 #endif 835 836 scs_init(); 837 838 lockdep_init_task(&init_task); 839 uprobes_init(); 840 } 841 842 int __weak arch_dup_task_struct(struct task_struct *dst, 843 struct task_struct *src) 844 { 845 *dst = *src; 846 return 0; 847 } 848 849 void set_task_stack_end_magic(struct task_struct *tsk) 850 { 851 unsigned long *stackend; 852 853 stackend = end_of_stack(tsk); 854 *stackend = STACK_END_MAGIC; /* for overflow detection */ 855 } 856 857 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 858 { 859 struct task_struct *tsk; 860 unsigned long *stack; 861 struct vm_struct *stack_vm_area __maybe_unused; 862 int err; 863 864 if (node == NUMA_NO_NODE) 865 node = tsk_fork_get_node(orig); 866 tsk = alloc_task_struct_node(node); 867 if (!tsk) 868 return NULL; 869 870 stack = alloc_thread_stack_node(tsk, node); 871 if (!stack) 872 goto free_tsk; 873 874 if (memcg_charge_kernel_stack(tsk)) 875 goto free_stack; 876 877 stack_vm_area = task_stack_vm_area(tsk); 878 879 err = arch_dup_task_struct(tsk, orig); 880 881 /* 882 * arch_dup_task_struct() clobbers the stack-related fields. Make 883 * sure they're properly initialized before using any stack-related 884 * functions again. 885 */ 886 tsk->stack = stack; 887 #ifdef CONFIG_VMAP_STACK 888 tsk->stack_vm_area = stack_vm_area; 889 #endif 890 #ifdef CONFIG_THREAD_INFO_IN_TASK 891 refcount_set(&tsk->stack_refcount, 1); 892 #endif 893 894 if (err) 895 goto free_stack; 896 897 err = scs_prepare(tsk, node); 898 if (err) 899 goto free_stack; 900 901 #ifdef CONFIG_SECCOMP 902 /* 903 * We must handle setting up seccomp filters once we're under 904 * the sighand lock in case orig has changed between now and 905 * then. Until then, filter must be NULL to avoid messing up 906 * the usage counts on the error path calling free_task. 907 */ 908 tsk->seccomp.filter = NULL; 909 #endif 910 911 setup_thread_stack(tsk, orig); 912 clear_user_return_notifier(tsk); 913 clear_tsk_need_resched(tsk); 914 set_task_stack_end_magic(tsk); 915 clear_syscall_work_syscall_user_dispatch(tsk); 916 917 #ifdef CONFIG_STACKPROTECTOR 918 tsk->stack_canary = get_random_canary(); 919 #endif 920 if (orig->cpus_ptr == &orig->cpus_mask) 921 tsk->cpus_ptr = &tsk->cpus_mask; 922 923 /* 924 * One for the user space visible state that goes away when reaped. 925 * One for the scheduler. 926 */ 927 refcount_set(&tsk->rcu_users, 2); 928 /* One for the rcu users */ 929 refcount_set(&tsk->usage, 1); 930 #ifdef CONFIG_BLK_DEV_IO_TRACE 931 tsk->btrace_seq = 0; 932 #endif 933 tsk->splice_pipe = NULL; 934 tsk->task_frag.page = NULL; 935 tsk->wake_q.next = NULL; 936 tsk->pf_io_worker = NULL; 937 938 account_kernel_stack(tsk, 1); 939 940 kcov_task_init(tsk); 941 kmap_local_fork(tsk); 942 943 #ifdef CONFIG_FAULT_INJECTION 944 tsk->fail_nth = 0; 945 #endif 946 947 #ifdef CONFIG_BLK_CGROUP 948 tsk->throttle_queue = NULL; 949 tsk->use_memdelay = 0; 950 #endif 951 952 #ifdef CONFIG_MEMCG 953 tsk->active_memcg = NULL; 954 #endif 955 return tsk; 956 957 free_stack: 958 free_thread_stack(tsk); 959 free_tsk: 960 free_task_struct(tsk); 961 return NULL; 962 } 963 964 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 965 966 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 967 968 static int __init coredump_filter_setup(char *s) 969 { 970 default_dump_filter = 971 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 972 MMF_DUMP_FILTER_MASK; 973 return 1; 974 } 975 976 __setup("coredump_filter=", coredump_filter_setup); 977 978 #include <linux/init_task.h> 979 980 static void mm_init_aio(struct mm_struct *mm) 981 { 982 #ifdef CONFIG_AIO 983 spin_lock_init(&mm->ioctx_lock); 984 mm->ioctx_table = NULL; 985 #endif 986 } 987 988 static __always_inline void mm_clear_owner(struct mm_struct *mm, 989 struct task_struct *p) 990 { 991 #ifdef CONFIG_MEMCG 992 if (mm->owner == p) 993 WRITE_ONCE(mm->owner, NULL); 994 #endif 995 } 996 997 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 998 { 999 #ifdef CONFIG_MEMCG 1000 mm->owner = p; 1001 #endif 1002 } 1003 1004 static void mm_init_pasid(struct mm_struct *mm) 1005 { 1006 #ifdef CONFIG_IOMMU_SUPPORT 1007 mm->pasid = INIT_PASID; 1008 #endif 1009 } 1010 1011 static void mm_init_uprobes_state(struct mm_struct *mm) 1012 { 1013 #ifdef CONFIG_UPROBES 1014 mm->uprobes_state.xol_area = NULL; 1015 #endif 1016 } 1017 1018 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1019 struct user_namespace *user_ns) 1020 { 1021 mm->mmap = NULL; 1022 mm->mm_rb = RB_ROOT; 1023 mm->vmacache_seqnum = 0; 1024 atomic_set(&mm->mm_users, 1); 1025 atomic_set(&mm->mm_count, 1); 1026 seqcount_init(&mm->write_protect_seq); 1027 mmap_init_lock(mm); 1028 INIT_LIST_HEAD(&mm->mmlist); 1029 mm->core_state = NULL; 1030 mm_pgtables_bytes_init(mm); 1031 mm->map_count = 0; 1032 mm->locked_vm = 0; 1033 atomic_set(&mm->has_pinned, 0); 1034 atomic64_set(&mm->pinned_vm, 0); 1035 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1036 spin_lock_init(&mm->page_table_lock); 1037 spin_lock_init(&mm->arg_lock); 1038 mm_init_cpumask(mm); 1039 mm_init_aio(mm); 1040 mm_init_owner(mm, p); 1041 mm_init_pasid(mm); 1042 RCU_INIT_POINTER(mm->exe_file, NULL); 1043 mmu_notifier_subscriptions_init(mm); 1044 init_tlb_flush_pending(mm); 1045 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1046 mm->pmd_huge_pte = NULL; 1047 #endif 1048 mm_init_uprobes_state(mm); 1049 1050 if (current->mm) { 1051 mm->flags = current->mm->flags & MMF_INIT_MASK; 1052 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1053 } else { 1054 mm->flags = default_dump_filter; 1055 mm->def_flags = 0; 1056 } 1057 1058 if (mm_alloc_pgd(mm)) 1059 goto fail_nopgd; 1060 1061 if (init_new_context(p, mm)) 1062 goto fail_nocontext; 1063 1064 mm->user_ns = get_user_ns(user_ns); 1065 return mm; 1066 1067 fail_nocontext: 1068 mm_free_pgd(mm); 1069 fail_nopgd: 1070 free_mm(mm); 1071 return NULL; 1072 } 1073 1074 /* 1075 * Allocate and initialize an mm_struct. 1076 */ 1077 struct mm_struct *mm_alloc(void) 1078 { 1079 struct mm_struct *mm; 1080 1081 mm = allocate_mm(); 1082 if (!mm) 1083 return NULL; 1084 1085 memset(mm, 0, sizeof(*mm)); 1086 return mm_init(mm, current, current_user_ns()); 1087 } 1088 1089 static inline void __mmput(struct mm_struct *mm) 1090 { 1091 VM_BUG_ON(atomic_read(&mm->mm_users)); 1092 1093 uprobe_clear_state(mm); 1094 exit_aio(mm); 1095 ksm_exit(mm); 1096 khugepaged_exit(mm); /* must run before exit_mmap */ 1097 exit_mmap(mm); 1098 mm_put_huge_zero_page(mm); 1099 set_mm_exe_file(mm, NULL); 1100 if (!list_empty(&mm->mmlist)) { 1101 spin_lock(&mmlist_lock); 1102 list_del(&mm->mmlist); 1103 spin_unlock(&mmlist_lock); 1104 } 1105 if (mm->binfmt) 1106 module_put(mm->binfmt->module); 1107 mmdrop(mm); 1108 } 1109 1110 /* 1111 * Decrement the use count and release all resources for an mm. 1112 */ 1113 void mmput(struct mm_struct *mm) 1114 { 1115 might_sleep(); 1116 1117 if (atomic_dec_and_test(&mm->mm_users)) 1118 __mmput(mm); 1119 } 1120 EXPORT_SYMBOL_GPL(mmput); 1121 1122 #ifdef CONFIG_MMU 1123 static void mmput_async_fn(struct work_struct *work) 1124 { 1125 struct mm_struct *mm = container_of(work, struct mm_struct, 1126 async_put_work); 1127 1128 __mmput(mm); 1129 } 1130 1131 void mmput_async(struct mm_struct *mm) 1132 { 1133 if (atomic_dec_and_test(&mm->mm_users)) { 1134 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1135 schedule_work(&mm->async_put_work); 1136 } 1137 } 1138 #endif 1139 1140 /** 1141 * set_mm_exe_file - change a reference to the mm's executable file 1142 * 1143 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1144 * 1145 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1146 * invocations: in mmput() nobody alive left, in execve task is single 1147 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1148 * mm->exe_file, but does so without using set_mm_exe_file() in order 1149 * to avoid the need for any locks. 1150 */ 1151 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1152 { 1153 struct file *old_exe_file; 1154 1155 /* 1156 * It is safe to dereference the exe_file without RCU as 1157 * this function is only called if nobody else can access 1158 * this mm -- see comment above for justification. 1159 */ 1160 old_exe_file = rcu_dereference_raw(mm->exe_file); 1161 1162 if (new_exe_file) 1163 get_file(new_exe_file); 1164 rcu_assign_pointer(mm->exe_file, new_exe_file); 1165 if (old_exe_file) 1166 fput(old_exe_file); 1167 } 1168 1169 /** 1170 * get_mm_exe_file - acquire a reference to the mm's executable file 1171 * 1172 * Returns %NULL if mm has no associated executable file. 1173 * User must release file via fput(). 1174 */ 1175 struct file *get_mm_exe_file(struct mm_struct *mm) 1176 { 1177 struct file *exe_file; 1178 1179 rcu_read_lock(); 1180 exe_file = rcu_dereference(mm->exe_file); 1181 if (exe_file && !get_file_rcu(exe_file)) 1182 exe_file = NULL; 1183 rcu_read_unlock(); 1184 return exe_file; 1185 } 1186 EXPORT_SYMBOL(get_mm_exe_file); 1187 1188 /** 1189 * get_task_exe_file - acquire a reference to the task's executable file 1190 * 1191 * Returns %NULL if task's mm (if any) has no associated executable file or 1192 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1193 * User must release file via fput(). 1194 */ 1195 struct file *get_task_exe_file(struct task_struct *task) 1196 { 1197 struct file *exe_file = NULL; 1198 struct mm_struct *mm; 1199 1200 task_lock(task); 1201 mm = task->mm; 1202 if (mm) { 1203 if (!(task->flags & PF_KTHREAD)) 1204 exe_file = get_mm_exe_file(mm); 1205 } 1206 task_unlock(task); 1207 return exe_file; 1208 } 1209 EXPORT_SYMBOL(get_task_exe_file); 1210 1211 /** 1212 * get_task_mm - acquire a reference to the task's mm 1213 * 1214 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1215 * this kernel workthread has transiently adopted a user mm with use_mm, 1216 * to do its AIO) is not set and if so returns a reference to it, after 1217 * bumping up the use count. User must release the mm via mmput() 1218 * after use. Typically used by /proc and ptrace. 1219 */ 1220 struct mm_struct *get_task_mm(struct task_struct *task) 1221 { 1222 struct mm_struct *mm; 1223 1224 task_lock(task); 1225 mm = task->mm; 1226 if (mm) { 1227 if (task->flags & PF_KTHREAD) 1228 mm = NULL; 1229 else 1230 mmget(mm); 1231 } 1232 task_unlock(task); 1233 return mm; 1234 } 1235 EXPORT_SYMBOL_GPL(get_task_mm); 1236 1237 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1238 { 1239 struct mm_struct *mm; 1240 int err; 1241 1242 err = down_read_killable(&task->signal->exec_update_lock); 1243 if (err) 1244 return ERR_PTR(err); 1245 1246 mm = get_task_mm(task); 1247 if (mm && mm != current->mm && 1248 !ptrace_may_access(task, mode)) { 1249 mmput(mm); 1250 mm = ERR_PTR(-EACCES); 1251 } 1252 up_read(&task->signal->exec_update_lock); 1253 1254 return mm; 1255 } 1256 1257 static void complete_vfork_done(struct task_struct *tsk) 1258 { 1259 struct completion *vfork; 1260 1261 task_lock(tsk); 1262 vfork = tsk->vfork_done; 1263 if (likely(vfork)) { 1264 tsk->vfork_done = NULL; 1265 complete(vfork); 1266 } 1267 task_unlock(tsk); 1268 } 1269 1270 static int wait_for_vfork_done(struct task_struct *child, 1271 struct completion *vfork) 1272 { 1273 int killed; 1274 1275 freezer_do_not_count(); 1276 cgroup_enter_frozen(); 1277 killed = wait_for_completion_killable(vfork); 1278 cgroup_leave_frozen(false); 1279 freezer_count(); 1280 1281 if (killed) { 1282 task_lock(child); 1283 child->vfork_done = NULL; 1284 task_unlock(child); 1285 } 1286 1287 put_task_struct(child); 1288 return killed; 1289 } 1290 1291 /* Please note the differences between mmput and mm_release. 1292 * mmput is called whenever we stop holding onto a mm_struct, 1293 * error success whatever. 1294 * 1295 * mm_release is called after a mm_struct has been removed 1296 * from the current process. 1297 * 1298 * This difference is important for error handling, when we 1299 * only half set up a mm_struct for a new process and need to restore 1300 * the old one. Because we mmput the new mm_struct before 1301 * restoring the old one. . . 1302 * Eric Biederman 10 January 1998 1303 */ 1304 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1305 { 1306 uprobe_free_utask(tsk); 1307 1308 /* Get rid of any cached register state */ 1309 deactivate_mm(tsk, mm); 1310 1311 /* 1312 * Signal userspace if we're not exiting with a core dump 1313 * because we want to leave the value intact for debugging 1314 * purposes. 1315 */ 1316 if (tsk->clear_child_tid) { 1317 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1318 atomic_read(&mm->mm_users) > 1) { 1319 /* 1320 * We don't check the error code - if userspace has 1321 * not set up a proper pointer then tough luck. 1322 */ 1323 put_user(0, tsk->clear_child_tid); 1324 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1325 1, NULL, NULL, 0, 0); 1326 } 1327 tsk->clear_child_tid = NULL; 1328 } 1329 1330 /* 1331 * All done, finally we can wake up parent and return this mm to him. 1332 * Also kthread_stop() uses this completion for synchronization. 1333 */ 1334 if (tsk->vfork_done) 1335 complete_vfork_done(tsk); 1336 } 1337 1338 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1339 { 1340 futex_exit_release(tsk); 1341 mm_release(tsk, mm); 1342 } 1343 1344 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1345 { 1346 futex_exec_release(tsk); 1347 mm_release(tsk, mm); 1348 } 1349 1350 /** 1351 * dup_mm() - duplicates an existing mm structure 1352 * @tsk: the task_struct with which the new mm will be associated. 1353 * @oldmm: the mm to duplicate. 1354 * 1355 * Allocates a new mm structure and duplicates the provided @oldmm structure 1356 * content into it. 1357 * 1358 * Return: the duplicated mm or NULL on failure. 1359 */ 1360 static struct mm_struct *dup_mm(struct task_struct *tsk, 1361 struct mm_struct *oldmm) 1362 { 1363 struct mm_struct *mm; 1364 int err; 1365 1366 mm = allocate_mm(); 1367 if (!mm) 1368 goto fail_nomem; 1369 1370 memcpy(mm, oldmm, sizeof(*mm)); 1371 1372 if (!mm_init(mm, tsk, mm->user_ns)) 1373 goto fail_nomem; 1374 1375 err = dup_mmap(mm, oldmm); 1376 if (err) 1377 goto free_pt; 1378 1379 mm->hiwater_rss = get_mm_rss(mm); 1380 mm->hiwater_vm = mm->total_vm; 1381 1382 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1383 goto free_pt; 1384 1385 return mm; 1386 1387 free_pt: 1388 /* don't put binfmt in mmput, we haven't got module yet */ 1389 mm->binfmt = NULL; 1390 mm_init_owner(mm, NULL); 1391 mmput(mm); 1392 1393 fail_nomem: 1394 return NULL; 1395 } 1396 1397 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1398 { 1399 struct mm_struct *mm, *oldmm; 1400 1401 tsk->min_flt = tsk->maj_flt = 0; 1402 tsk->nvcsw = tsk->nivcsw = 0; 1403 #ifdef CONFIG_DETECT_HUNG_TASK 1404 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1405 tsk->last_switch_time = 0; 1406 #endif 1407 1408 tsk->mm = NULL; 1409 tsk->active_mm = NULL; 1410 1411 /* 1412 * Are we cloning a kernel thread? 1413 * 1414 * We need to steal a active VM for that.. 1415 */ 1416 oldmm = current->mm; 1417 if (!oldmm) 1418 return 0; 1419 1420 /* initialize the new vmacache entries */ 1421 vmacache_flush(tsk); 1422 1423 if (clone_flags & CLONE_VM) { 1424 mmget(oldmm); 1425 mm = oldmm; 1426 } else { 1427 mm = dup_mm(tsk, current->mm); 1428 if (!mm) 1429 return -ENOMEM; 1430 } 1431 1432 tsk->mm = mm; 1433 tsk->active_mm = mm; 1434 return 0; 1435 } 1436 1437 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1438 { 1439 struct fs_struct *fs = current->fs; 1440 if (clone_flags & CLONE_FS) { 1441 /* tsk->fs is already what we want */ 1442 spin_lock(&fs->lock); 1443 if (fs->in_exec) { 1444 spin_unlock(&fs->lock); 1445 return -EAGAIN; 1446 } 1447 fs->users++; 1448 spin_unlock(&fs->lock); 1449 return 0; 1450 } 1451 tsk->fs = copy_fs_struct(fs); 1452 if (!tsk->fs) 1453 return -ENOMEM; 1454 return 0; 1455 } 1456 1457 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1458 { 1459 struct files_struct *oldf, *newf; 1460 int error = 0; 1461 1462 /* 1463 * A background process may not have any files ... 1464 */ 1465 oldf = current->files; 1466 if (!oldf) 1467 goto out; 1468 1469 if (clone_flags & CLONE_FILES) { 1470 atomic_inc(&oldf->count); 1471 goto out; 1472 } 1473 1474 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1475 if (!newf) 1476 goto out; 1477 1478 tsk->files = newf; 1479 error = 0; 1480 out: 1481 return error; 1482 } 1483 1484 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1485 { 1486 #ifdef CONFIG_BLOCK 1487 struct io_context *ioc = current->io_context; 1488 struct io_context *new_ioc; 1489 1490 if (!ioc) 1491 return 0; 1492 /* 1493 * Share io context with parent, if CLONE_IO is set 1494 */ 1495 if (clone_flags & CLONE_IO) { 1496 ioc_task_link(ioc); 1497 tsk->io_context = ioc; 1498 } else if (ioprio_valid(ioc->ioprio)) { 1499 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1500 if (unlikely(!new_ioc)) 1501 return -ENOMEM; 1502 1503 new_ioc->ioprio = ioc->ioprio; 1504 put_io_context(new_ioc); 1505 } 1506 #endif 1507 return 0; 1508 } 1509 1510 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1511 { 1512 struct sighand_struct *sig; 1513 1514 if (clone_flags & CLONE_SIGHAND) { 1515 refcount_inc(¤t->sighand->count); 1516 return 0; 1517 } 1518 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1519 RCU_INIT_POINTER(tsk->sighand, sig); 1520 if (!sig) 1521 return -ENOMEM; 1522 1523 refcount_set(&sig->count, 1); 1524 spin_lock_irq(¤t->sighand->siglock); 1525 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1526 spin_unlock_irq(¤t->sighand->siglock); 1527 1528 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1529 if (clone_flags & CLONE_CLEAR_SIGHAND) 1530 flush_signal_handlers(tsk, 0); 1531 1532 return 0; 1533 } 1534 1535 void __cleanup_sighand(struct sighand_struct *sighand) 1536 { 1537 if (refcount_dec_and_test(&sighand->count)) { 1538 signalfd_cleanup(sighand); 1539 /* 1540 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1541 * without an RCU grace period, see __lock_task_sighand(). 1542 */ 1543 kmem_cache_free(sighand_cachep, sighand); 1544 } 1545 } 1546 1547 /* 1548 * Initialize POSIX timer handling for a thread group. 1549 */ 1550 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1551 { 1552 struct posix_cputimers *pct = &sig->posix_cputimers; 1553 unsigned long cpu_limit; 1554 1555 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1556 posix_cputimers_group_init(pct, cpu_limit); 1557 } 1558 1559 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1560 { 1561 struct signal_struct *sig; 1562 1563 if (clone_flags & CLONE_THREAD) 1564 return 0; 1565 1566 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1567 tsk->signal = sig; 1568 if (!sig) 1569 return -ENOMEM; 1570 1571 sig->nr_threads = 1; 1572 atomic_set(&sig->live, 1); 1573 refcount_set(&sig->sigcnt, 1); 1574 1575 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1576 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1577 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1578 1579 init_waitqueue_head(&sig->wait_chldexit); 1580 sig->curr_target = tsk; 1581 init_sigpending(&sig->shared_pending); 1582 INIT_HLIST_HEAD(&sig->multiprocess); 1583 seqlock_init(&sig->stats_lock); 1584 prev_cputime_init(&sig->prev_cputime); 1585 1586 #ifdef CONFIG_POSIX_TIMERS 1587 INIT_LIST_HEAD(&sig->posix_timers); 1588 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1589 sig->real_timer.function = it_real_fn; 1590 #endif 1591 1592 task_lock(current->group_leader); 1593 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1594 task_unlock(current->group_leader); 1595 1596 posix_cpu_timers_init_group(sig); 1597 1598 tty_audit_fork(sig); 1599 sched_autogroup_fork(sig); 1600 1601 sig->oom_score_adj = current->signal->oom_score_adj; 1602 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1603 1604 mutex_init(&sig->cred_guard_mutex); 1605 init_rwsem(&sig->exec_update_lock); 1606 1607 return 0; 1608 } 1609 1610 static void copy_seccomp(struct task_struct *p) 1611 { 1612 #ifdef CONFIG_SECCOMP 1613 /* 1614 * Must be called with sighand->lock held, which is common to 1615 * all threads in the group. Holding cred_guard_mutex is not 1616 * needed because this new task is not yet running and cannot 1617 * be racing exec. 1618 */ 1619 assert_spin_locked(¤t->sighand->siglock); 1620 1621 /* Ref-count the new filter user, and assign it. */ 1622 get_seccomp_filter(current); 1623 p->seccomp = current->seccomp; 1624 1625 /* 1626 * Explicitly enable no_new_privs here in case it got set 1627 * between the task_struct being duplicated and holding the 1628 * sighand lock. The seccomp state and nnp must be in sync. 1629 */ 1630 if (task_no_new_privs(current)) 1631 task_set_no_new_privs(p); 1632 1633 /* 1634 * If the parent gained a seccomp mode after copying thread 1635 * flags and between before we held the sighand lock, we have 1636 * to manually enable the seccomp thread flag here. 1637 */ 1638 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1639 set_task_syscall_work(p, SECCOMP); 1640 #endif 1641 } 1642 1643 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1644 { 1645 current->clear_child_tid = tidptr; 1646 1647 return task_pid_vnr(current); 1648 } 1649 1650 static void rt_mutex_init_task(struct task_struct *p) 1651 { 1652 raw_spin_lock_init(&p->pi_lock); 1653 #ifdef CONFIG_RT_MUTEXES 1654 p->pi_waiters = RB_ROOT_CACHED; 1655 p->pi_top_task = NULL; 1656 p->pi_blocked_on = NULL; 1657 #endif 1658 } 1659 1660 static inline void init_task_pid_links(struct task_struct *task) 1661 { 1662 enum pid_type type; 1663 1664 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1665 INIT_HLIST_NODE(&task->pid_links[type]); 1666 } 1667 1668 static inline void 1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1670 { 1671 if (type == PIDTYPE_PID) 1672 task->thread_pid = pid; 1673 else 1674 task->signal->pids[type] = pid; 1675 } 1676 1677 static inline void rcu_copy_process(struct task_struct *p) 1678 { 1679 #ifdef CONFIG_PREEMPT_RCU 1680 p->rcu_read_lock_nesting = 0; 1681 p->rcu_read_unlock_special.s = 0; 1682 p->rcu_blocked_node = NULL; 1683 INIT_LIST_HEAD(&p->rcu_node_entry); 1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1685 #ifdef CONFIG_TASKS_RCU 1686 p->rcu_tasks_holdout = false; 1687 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1688 p->rcu_tasks_idle_cpu = -1; 1689 #endif /* #ifdef CONFIG_TASKS_RCU */ 1690 #ifdef CONFIG_TASKS_TRACE_RCU 1691 p->trc_reader_nesting = 0; 1692 p->trc_reader_special.s = 0; 1693 INIT_LIST_HEAD(&p->trc_holdout_list); 1694 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1695 } 1696 1697 struct pid *pidfd_pid(const struct file *file) 1698 { 1699 if (file->f_op == &pidfd_fops) 1700 return file->private_data; 1701 1702 return ERR_PTR(-EBADF); 1703 } 1704 1705 static int pidfd_release(struct inode *inode, struct file *file) 1706 { 1707 struct pid *pid = file->private_data; 1708 1709 file->private_data = NULL; 1710 put_pid(pid); 1711 return 0; 1712 } 1713 1714 #ifdef CONFIG_PROC_FS 1715 /** 1716 * pidfd_show_fdinfo - print information about a pidfd 1717 * @m: proc fdinfo file 1718 * @f: file referencing a pidfd 1719 * 1720 * Pid: 1721 * This function will print the pid that a given pidfd refers to in the 1722 * pid namespace of the procfs instance. 1723 * If the pid namespace of the process is not a descendant of the pid 1724 * namespace of the procfs instance 0 will be shown as its pid. This is 1725 * similar to calling getppid() on a process whose parent is outside of 1726 * its pid namespace. 1727 * 1728 * NSpid: 1729 * If pid namespaces are supported then this function will also print 1730 * the pid of a given pidfd refers to for all descendant pid namespaces 1731 * starting from the current pid namespace of the instance, i.e. the 1732 * Pid field and the first entry in the NSpid field will be identical. 1733 * If the pid namespace of the process is not a descendant of the pid 1734 * namespace of the procfs instance 0 will be shown as its first NSpid 1735 * entry and no others will be shown. 1736 * Note that this differs from the Pid and NSpid fields in 1737 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1738 * the pid namespace of the procfs instance. The difference becomes 1739 * obvious when sending around a pidfd between pid namespaces from a 1740 * different branch of the tree, i.e. where no ancestral relation is 1741 * present between the pid namespaces: 1742 * - create two new pid namespaces ns1 and ns2 in the initial pid 1743 * namespace (also take care to create new mount namespaces in the 1744 * new pid namespace and mount procfs) 1745 * - create a process with a pidfd in ns1 1746 * - send pidfd from ns1 to ns2 1747 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1748 * have exactly one entry, which is 0 1749 */ 1750 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1751 { 1752 struct pid *pid = f->private_data; 1753 struct pid_namespace *ns; 1754 pid_t nr = -1; 1755 1756 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1757 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1758 nr = pid_nr_ns(pid, ns); 1759 } 1760 1761 seq_put_decimal_ll(m, "Pid:\t", nr); 1762 1763 #ifdef CONFIG_PID_NS 1764 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1765 if (nr > 0) { 1766 int i; 1767 1768 /* If nr is non-zero it means that 'pid' is valid and that 1769 * ns, i.e. the pid namespace associated with the procfs 1770 * instance, is in the pid namespace hierarchy of pid. 1771 * Start at one below the already printed level. 1772 */ 1773 for (i = ns->level + 1; i <= pid->level; i++) 1774 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1775 } 1776 #endif 1777 seq_putc(m, '\n'); 1778 } 1779 #endif 1780 1781 /* 1782 * Poll support for process exit notification. 1783 */ 1784 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1785 { 1786 struct pid *pid = file->private_data; 1787 __poll_t poll_flags = 0; 1788 1789 poll_wait(file, &pid->wait_pidfd, pts); 1790 1791 /* 1792 * Inform pollers only when the whole thread group exits. 1793 * If the thread group leader exits before all other threads in the 1794 * group, then poll(2) should block, similar to the wait(2) family. 1795 */ 1796 if (thread_group_exited(pid)) 1797 poll_flags = EPOLLIN | EPOLLRDNORM; 1798 1799 return poll_flags; 1800 } 1801 1802 const struct file_operations pidfd_fops = { 1803 .release = pidfd_release, 1804 .poll = pidfd_poll, 1805 #ifdef CONFIG_PROC_FS 1806 .show_fdinfo = pidfd_show_fdinfo, 1807 #endif 1808 }; 1809 1810 static void __delayed_free_task(struct rcu_head *rhp) 1811 { 1812 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1813 1814 free_task(tsk); 1815 } 1816 1817 static __always_inline void delayed_free_task(struct task_struct *tsk) 1818 { 1819 if (IS_ENABLED(CONFIG_MEMCG)) 1820 call_rcu(&tsk->rcu, __delayed_free_task); 1821 else 1822 free_task(tsk); 1823 } 1824 1825 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1826 { 1827 /* Skip if kernel thread */ 1828 if (!tsk->mm) 1829 return; 1830 1831 /* Skip if spawning a thread or using vfork */ 1832 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1833 return; 1834 1835 /* We need to synchronize with __set_oom_adj */ 1836 mutex_lock(&oom_adj_mutex); 1837 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1838 /* Update the values in case they were changed after copy_signal */ 1839 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1840 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1841 mutex_unlock(&oom_adj_mutex); 1842 } 1843 1844 /* 1845 * This creates a new process as a copy of the old one, 1846 * but does not actually start it yet. 1847 * 1848 * It copies the registers, and all the appropriate 1849 * parts of the process environment (as per the clone 1850 * flags). The actual kick-off is left to the caller. 1851 */ 1852 static __latent_entropy struct task_struct *copy_process( 1853 struct pid *pid, 1854 int trace, 1855 int node, 1856 struct kernel_clone_args *args) 1857 { 1858 int pidfd = -1, retval; 1859 struct task_struct *p; 1860 struct multiprocess_signals delayed; 1861 struct file *pidfile = NULL; 1862 u64 clone_flags = args->flags; 1863 struct nsproxy *nsp = current->nsproxy; 1864 1865 /* 1866 * Don't allow sharing the root directory with processes in a different 1867 * namespace 1868 */ 1869 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1870 return ERR_PTR(-EINVAL); 1871 1872 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1873 return ERR_PTR(-EINVAL); 1874 1875 /* 1876 * Thread groups must share signals as well, and detached threads 1877 * can only be started up within the thread group. 1878 */ 1879 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1880 return ERR_PTR(-EINVAL); 1881 1882 /* 1883 * Shared signal handlers imply shared VM. By way of the above, 1884 * thread groups also imply shared VM. Blocking this case allows 1885 * for various simplifications in other code. 1886 */ 1887 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1888 return ERR_PTR(-EINVAL); 1889 1890 /* 1891 * Siblings of global init remain as zombies on exit since they are 1892 * not reaped by their parent (swapper). To solve this and to avoid 1893 * multi-rooted process trees, prevent global and container-inits 1894 * from creating siblings. 1895 */ 1896 if ((clone_flags & CLONE_PARENT) && 1897 current->signal->flags & SIGNAL_UNKILLABLE) 1898 return ERR_PTR(-EINVAL); 1899 1900 /* 1901 * If the new process will be in a different pid or user namespace 1902 * do not allow it to share a thread group with the forking task. 1903 */ 1904 if (clone_flags & CLONE_THREAD) { 1905 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1906 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1907 return ERR_PTR(-EINVAL); 1908 } 1909 1910 /* 1911 * If the new process will be in a different time namespace 1912 * do not allow it to share VM or a thread group with the forking task. 1913 */ 1914 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1915 if (nsp->time_ns != nsp->time_ns_for_children) 1916 return ERR_PTR(-EINVAL); 1917 } 1918 1919 if (clone_flags & CLONE_PIDFD) { 1920 /* 1921 * - CLONE_DETACHED is blocked so that we can potentially 1922 * reuse it later for CLONE_PIDFD. 1923 * - CLONE_THREAD is blocked until someone really needs it. 1924 */ 1925 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1926 return ERR_PTR(-EINVAL); 1927 } 1928 1929 /* 1930 * Force any signals received before this point to be delivered 1931 * before the fork happens. Collect up signals sent to multiple 1932 * processes that happen during the fork and delay them so that 1933 * they appear to happen after the fork. 1934 */ 1935 sigemptyset(&delayed.signal); 1936 INIT_HLIST_NODE(&delayed.node); 1937 1938 spin_lock_irq(¤t->sighand->siglock); 1939 if (!(clone_flags & CLONE_THREAD)) 1940 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1941 recalc_sigpending(); 1942 spin_unlock_irq(¤t->sighand->siglock); 1943 retval = -ERESTARTNOINTR; 1944 if (task_sigpending(current)) 1945 goto fork_out; 1946 1947 retval = -ENOMEM; 1948 p = dup_task_struct(current, node); 1949 if (!p) 1950 goto fork_out; 1951 if (args->io_thread) { 1952 /* 1953 * Mark us an IO worker, and block any signal that isn't 1954 * fatal or STOP 1955 */ 1956 p->flags |= PF_IO_WORKER; 1957 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1958 } 1959 1960 /* 1961 * This _must_ happen before we call free_task(), i.e. before we jump 1962 * to any of the bad_fork_* labels. This is to avoid freeing 1963 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1964 * kernel threads (PF_KTHREAD). 1965 */ 1966 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1967 /* 1968 * Clear TID on mm_release()? 1969 */ 1970 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1971 1972 ftrace_graph_init_task(p); 1973 1974 rt_mutex_init_task(p); 1975 1976 lockdep_assert_irqs_enabled(); 1977 #ifdef CONFIG_PROVE_LOCKING 1978 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1979 #endif 1980 retval = -EAGAIN; 1981 if (atomic_read(&p->real_cred->user->processes) >= 1982 task_rlimit(p, RLIMIT_NPROC)) { 1983 if (p->real_cred->user != INIT_USER && 1984 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1985 goto bad_fork_free; 1986 } 1987 current->flags &= ~PF_NPROC_EXCEEDED; 1988 1989 retval = copy_creds(p, clone_flags); 1990 if (retval < 0) 1991 goto bad_fork_free; 1992 1993 /* 1994 * If multiple threads are within copy_process(), then this check 1995 * triggers too late. This doesn't hurt, the check is only there 1996 * to stop root fork bombs. 1997 */ 1998 retval = -EAGAIN; 1999 if (data_race(nr_threads >= max_threads)) 2000 goto bad_fork_cleanup_count; 2001 2002 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2003 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2004 p->flags |= PF_FORKNOEXEC; 2005 INIT_LIST_HEAD(&p->children); 2006 INIT_LIST_HEAD(&p->sibling); 2007 rcu_copy_process(p); 2008 p->vfork_done = NULL; 2009 spin_lock_init(&p->alloc_lock); 2010 2011 init_sigpending(&p->pending); 2012 p->sigqueue_cache = NULL; 2013 2014 p->utime = p->stime = p->gtime = 0; 2015 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2016 p->utimescaled = p->stimescaled = 0; 2017 #endif 2018 prev_cputime_init(&p->prev_cputime); 2019 2020 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2021 seqcount_init(&p->vtime.seqcount); 2022 p->vtime.starttime = 0; 2023 p->vtime.state = VTIME_INACTIVE; 2024 #endif 2025 2026 #ifdef CONFIG_IO_URING 2027 p->io_uring = NULL; 2028 #endif 2029 2030 #if defined(SPLIT_RSS_COUNTING) 2031 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2032 #endif 2033 2034 p->default_timer_slack_ns = current->timer_slack_ns; 2035 2036 #ifdef CONFIG_PSI 2037 p->psi_flags = 0; 2038 #endif 2039 2040 task_io_accounting_init(&p->ioac); 2041 acct_clear_integrals(p); 2042 2043 posix_cputimers_init(&p->posix_cputimers); 2044 2045 p->io_context = NULL; 2046 audit_set_context(p, NULL); 2047 cgroup_fork(p); 2048 #ifdef CONFIG_NUMA 2049 p->mempolicy = mpol_dup(p->mempolicy); 2050 if (IS_ERR(p->mempolicy)) { 2051 retval = PTR_ERR(p->mempolicy); 2052 p->mempolicy = NULL; 2053 goto bad_fork_cleanup_threadgroup_lock; 2054 } 2055 #endif 2056 #ifdef CONFIG_CPUSETS 2057 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2058 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2059 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2060 #endif 2061 #ifdef CONFIG_TRACE_IRQFLAGS 2062 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2063 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2064 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2065 p->softirqs_enabled = 1; 2066 p->softirq_context = 0; 2067 #endif 2068 2069 p->pagefault_disabled = 0; 2070 2071 #ifdef CONFIG_LOCKDEP 2072 lockdep_init_task(p); 2073 #endif 2074 2075 #ifdef CONFIG_DEBUG_MUTEXES 2076 p->blocked_on = NULL; /* not blocked yet */ 2077 #endif 2078 #ifdef CONFIG_BCACHE 2079 p->sequential_io = 0; 2080 p->sequential_io_avg = 0; 2081 #endif 2082 #ifdef CONFIG_BPF_SYSCALL 2083 RCU_INIT_POINTER(p->bpf_storage, NULL); 2084 #endif 2085 2086 /* Perform scheduler related setup. Assign this task to a CPU. */ 2087 retval = sched_fork(clone_flags, p); 2088 if (retval) 2089 goto bad_fork_cleanup_policy; 2090 2091 retval = perf_event_init_task(p, clone_flags); 2092 if (retval) 2093 goto bad_fork_cleanup_policy; 2094 retval = audit_alloc(p); 2095 if (retval) 2096 goto bad_fork_cleanup_perf; 2097 /* copy all the process information */ 2098 shm_init_task(p); 2099 retval = security_task_alloc(p, clone_flags); 2100 if (retval) 2101 goto bad_fork_cleanup_audit; 2102 retval = copy_semundo(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_security; 2105 retval = copy_files(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_semundo; 2108 retval = copy_fs(clone_flags, p); 2109 if (retval) 2110 goto bad_fork_cleanup_files; 2111 retval = copy_sighand(clone_flags, p); 2112 if (retval) 2113 goto bad_fork_cleanup_fs; 2114 retval = copy_signal(clone_flags, p); 2115 if (retval) 2116 goto bad_fork_cleanup_sighand; 2117 retval = copy_mm(clone_flags, p); 2118 if (retval) 2119 goto bad_fork_cleanup_signal; 2120 retval = copy_namespaces(clone_flags, p); 2121 if (retval) 2122 goto bad_fork_cleanup_mm; 2123 retval = copy_io(clone_flags, p); 2124 if (retval) 2125 goto bad_fork_cleanup_namespaces; 2126 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2127 if (retval) 2128 goto bad_fork_cleanup_io; 2129 2130 stackleak_task_init(p); 2131 2132 if (pid != &init_struct_pid) { 2133 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2134 args->set_tid_size); 2135 if (IS_ERR(pid)) { 2136 retval = PTR_ERR(pid); 2137 goto bad_fork_cleanup_thread; 2138 } 2139 } 2140 2141 /* 2142 * This has to happen after we've potentially unshared the file 2143 * descriptor table (so that the pidfd doesn't leak into the child 2144 * if the fd table isn't shared). 2145 */ 2146 if (clone_flags & CLONE_PIDFD) { 2147 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2148 if (retval < 0) 2149 goto bad_fork_free_pid; 2150 2151 pidfd = retval; 2152 2153 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2154 O_RDWR | O_CLOEXEC); 2155 if (IS_ERR(pidfile)) { 2156 put_unused_fd(pidfd); 2157 retval = PTR_ERR(pidfile); 2158 goto bad_fork_free_pid; 2159 } 2160 get_pid(pid); /* held by pidfile now */ 2161 2162 retval = put_user(pidfd, args->pidfd); 2163 if (retval) 2164 goto bad_fork_put_pidfd; 2165 } 2166 2167 #ifdef CONFIG_BLOCK 2168 p->plug = NULL; 2169 #endif 2170 futex_init_task(p); 2171 2172 /* 2173 * sigaltstack should be cleared when sharing the same VM 2174 */ 2175 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2176 sas_ss_reset(p); 2177 2178 /* 2179 * Syscall tracing and stepping should be turned off in the 2180 * child regardless of CLONE_PTRACE. 2181 */ 2182 user_disable_single_step(p); 2183 clear_task_syscall_work(p, SYSCALL_TRACE); 2184 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2185 clear_task_syscall_work(p, SYSCALL_EMU); 2186 #endif 2187 clear_tsk_latency_tracing(p); 2188 2189 /* ok, now we should be set up.. */ 2190 p->pid = pid_nr(pid); 2191 if (clone_flags & CLONE_THREAD) { 2192 p->group_leader = current->group_leader; 2193 p->tgid = current->tgid; 2194 } else { 2195 p->group_leader = p; 2196 p->tgid = p->pid; 2197 } 2198 2199 p->nr_dirtied = 0; 2200 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2201 p->dirty_paused_when = 0; 2202 2203 p->pdeath_signal = 0; 2204 INIT_LIST_HEAD(&p->thread_group); 2205 p->task_works = NULL; 2206 2207 #ifdef CONFIG_KRETPROBES 2208 p->kretprobe_instances.first = NULL; 2209 #endif 2210 2211 /* 2212 * Ensure that the cgroup subsystem policies allow the new process to be 2213 * forked. It should be noted that the new process's css_set can be changed 2214 * between here and cgroup_post_fork() if an organisation operation is in 2215 * progress. 2216 */ 2217 retval = cgroup_can_fork(p, args); 2218 if (retval) 2219 goto bad_fork_put_pidfd; 2220 2221 /* 2222 * From this point on we must avoid any synchronous user-space 2223 * communication until we take the tasklist-lock. In particular, we do 2224 * not want user-space to be able to predict the process start-time by 2225 * stalling fork(2) after we recorded the start_time but before it is 2226 * visible to the system. 2227 */ 2228 2229 p->start_time = ktime_get_ns(); 2230 p->start_boottime = ktime_get_boottime_ns(); 2231 2232 /* 2233 * Make it visible to the rest of the system, but dont wake it up yet. 2234 * Need tasklist lock for parent etc handling! 2235 */ 2236 write_lock_irq(&tasklist_lock); 2237 2238 /* CLONE_PARENT re-uses the old parent */ 2239 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2240 p->real_parent = current->real_parent; 2241 p->parent_exec_id = current->parent_exec_id; 2242 if (clone_flags & CLONE_THREAD) 2243 p->exit_signal = -1; 2244 else 2245 p->exit_signal = current->group_leader->exit_signal; 2246 } else { 2247 p->real_parent = current; 2248 p->parent_exec_id = current->self_exec_id; 2249 p->exit_signal = args->exit_signal; 2250 } 2251 2252 klp_copy_process(p); 2253 2254 sched_core_fork(p); 2255 2256 spin_lock(¤t->sighand->siglock); 2257 2258 /* 2259 * Copy seccomp details explicitly here, in case they were changed 2260 * before holding sighand lock. 2261 */ 2262 copy_seccomp(p); 2263 2264 rseq_fork(p, clone_flags); 2265 2266 /* Don't start children in a dying pid namespace */ 2267 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2268 retval = -ENOMEM; 2269 goto bad_fork_cancel_cgroup; 2270 } 2271 2272 /* Let kill terminate clone/fork in the middle */ 2273 if (fatal_signal_pending(current)) { 2274 retval = -EINTR; 2275 goto bad_fork_cancel_cgroup; 2276 } 2277 2278 /* past the last point of failure */ 2279 if (pidfile) 2280 fd_install(pidfd, pidfile); 2281 2282 init_task_pid_links(p); 2283 if (likely(p->pid)) { 2284 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2285 2286 init_task_pid(p, PIDTYPE_PID, pid); 2287 if (thread_group_leader(p)) { 2288 init_task_pid(p, PIDTYPE_TGID, pid); 2289 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2290 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2291 2292 if (is_child_reaper(pid)) { 2293 ns_of_pid(pid)->child_reaper = p; 2294 p->signal->flags |= SIGNAL_UNKILLABLE; 2295 } 2296 p->signal->shared_pending.signal = delayed.signal; 2297 p->signal->tty = tty_kref_get(current->signal->tty); 2298 /* 2299 * Inherit has_child_subreaper flag under the same 2300 * tasklist_lock with adding child to the process tree 2301 * for propagate_has_child_subreaper optimization. 2302 */ 2303 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2304 p->real_parent->signal->is_child_subreaper; 2305 list_add_tail(&p->sibling, &p->real_parent->children); 2306 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2307 attach_pid(p, PIDTYPE_TGID); 2308 attach_pid(p, PIDTYPE_PGID); 2309 attach_pid(p, PIDTYPE_SID); 2310 __this_cpu_inc(process_counts); 2311 } else { 2312 current->signal->nr_threads++; 2313 atomic_inc(¤t->signal->live); 2314 refcount_inc(¤t->signal->sigcnt); 2315 task_join_group_stop(p); 2316 list_add_tail_rcu(&p->thread_group, 2317 &p->group_leader->thread_group); 2318 list_add_tail_rcu(&p->thread_node, 2319 &p->signal->thread_head); 2320 } 2321 attach_pid(p, PIDTYPE_PID); 2322 nr_threads++; 2323 } 2324 total_forks++; 2325 hlist_del_init(&delayed.node); 2326 spin_unlock(¤t->sighand->siglock); 2327 syscall_tracepoint_update(p); 2328 write_unlock_irq(&tasklist_lock); 2329 2330 proc_fork_connector(p); 2331 sched_post_fork(p); 2332 cgroup_post_fork(p, args); 2333 perf_event_fork(p); 2334 2335 trace_task_newtask(p, clone_flags); 2336 uprobe_copy_process(p, clone_flags); 2337 2338 copy_oom_score_adj(clone_flags, p); 2339 2340 return p; 2341 2342 bad_fork_cancel_cgroup: 2343 sched_core_free(p); 2344 spin_unlock(¤t->sighand->siglock); 2345 write_unlock_irq(&tasklist_lock); 2346 cgroup_cancel_fork(p, args); 2347 bad_fork_put_pidfd: 2348 if (clone_flags & CLONE_PIDFD) { 2349 fput(pidfile); 2350 put_unused_fd(pidfd); 2351 } 2352 bad_fork_free_pid: 2353 if (pid != &init_struct_pid) 2354 free_pid(pid); 2355 bad_fork_cleanup_thread: 2356 exit_thread(p); 2357 bad_fork_cleanup_io: 2358 if (p->io_context) 2359 exit_io_context(p); 2360 bad_fork_cleanup_namespaces: 2361 exit_task_namespaces(p); 2362 bad_fork_cleanup_mm: 2363 if (p->mm) { 2364 mm_clear_owner(p->mm, p); 2365 mmput(p->mm); 2366 } 2367 bad_fork_cleanup_signal: 2368 if (!(clone_flags & CLONE_THREAD)) 2369 free_signal_struct(p->signal); 2370 bad_fork_cleanup_sighand: 2371 __cleanup_sighand(p->sighand); 2372 bad_fork_cleanup_fs: 2373 exit_fs(p); /* blocking */ 2374 bad_fork_cleanup_files: 2375 exit_files(p); /* blocking */ 2376 bad_fork_cleanup_semundo: 2377 exit_sem(p); 2378 bad_fork_cleanup_security: 2379 security_task_free(p); 2380 bad_fork_cleanup_audit: 2381 audit_free(p); 2382 bad_fork_cleanup_perf: 2383 perf_event_free_task(p); 2384 bad_fork_cleanup_policy: 2385 lockdep_free_task(p); 2386 #ifdef CONFIG_NUMA 2387 mpol_put(p->mempolicy); 2388 bad_fork_cleanup_threadgroup_lock: 2389 #endif 2390 delayacct_tsk_free(p); 2391 bad_fork_cleanup_count: 2392 atomic_dec(&p->cred->user->processes); 2393 exit_creds(p); 2394 bad_fork_free: 2395 p->state = TASK_DEAD; 2396 put_task_stack(p); 2397 delayed_free_task(p); 2398 fork_out: 2399 spin_lock_irq(¤t->sighand->siglock); 2400 hlist_del_init(&delayed.node); 2401 spin_unlock_irq(¤t->sighand->siglock); 2402 return ERR_PTR(retval); 2403 } 2404 2405 static inline void init_idle_pids(struct task_struct *idle) 2406 { 2407 enum pid_type type; 2408 2409 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2410 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2411 init_task_pid(idle, type, &init_struct_pid); 2412 } 2413 } 2414 2415 struct task_struct * __init fork_idle(int cpu) 2416 { 2417 struct task_struct *task; 2418 struct kernel_clone_args args = { 2419 .flags = CLONE_VM, 2420 }; 2421 2422 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2423 if (!IS_ERR(task)) { 2424 init_idle_pids(task); 2425 init_idle(task, cpu); 2426 } 2427 2428 return task; 2429 } 2430 2431 struct mm_struct *copy_init_mm(void) 2432 { 2433 return dup_mm(NULL, &init_mm); 2434 } 2435 2436 /* 2437 * This is like kernel_clone(), but shaved down and tailored to just 2438 * creating io_uring workers. It returns a created task, or an error pointer. 2439 * The returned task is inactive, and the caller must fire it up through 2440 * wake_up_new_task(p). All signals are blocked in the created task. 2441 */ 2442 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2443 { 2444 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2445 CLONE_IO; 2446 struct kernel_clone_args args = { 2447 .flags = ((lower_32_bits(flags) | CLONE_VM | 2448 CLONE_UNTRACED) & ~CSIGNAL), 2449 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2450 .stack = (unsigned long)fn, 2451 .stack_size = (unsigned long)arg, 2452 .io_thread = 1, 2453 }; 2454 2455 return copy_process(NULL, 0, node, &args); 2456 } 2457 2458 /* 2459 * Ok, this is the main fork-routine. 2460 * 2461 * It copies the process, and if successful kick-starts 2462 * it and waits for it to finish using the VM if required. 2463 * 2464 * args->exit_signal is expected to be checked for sanity by the caller. 2465 */ 2466 pid_t kernel_clone(struct kernel_clone_args *args) 2467 { 2468 u64 clone_flags = args->flags; 2469 struct completion vfork; 2470 struct pid *pid; 2471 struct task_struct *p; 2472 int trace = 0; 2473 pid_t nr; 2474 2475 /* 2476 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2477 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2478 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2479 * field in struct clone_args and it still doesn't make sense to have 2480 * them both point at the same memory location. Performing this check 2481 * here has the advantage that we don't need to have a separate helper 2482 * to check for legacy clone(). 2483 */ 2484 if ((args->flags & CLONE_PIDFD) && 2485 (args->flags & CLONE_PARENT_SETTID) && 2486 (args->pidfd == args->parent_tid)) 2487 return -EINVAL; 2488 2489 /* 2490 * Determine whether and which event to report to ptracer. When 2491 * called from kernel_thread or CLONE_UNTRACED is explicitly 2492 * requested, no event is reported; otherwise, report if the event 2493 * for the type of forking is enabled. 2494 */ 2495 if (!(clone_flags & CLONE_UNTRACED)) { 2496 if (clone_flags & CLONE_VFORK) 2497 trace = PTRACE_EVENT_VFORK; 2498 else if (args->exit_signal != SIGCHLD) 2499 trace = PTRACE_EVENT_CLONE; 2500 else 2501 trace = PTRACE_EVENT_FORK; 2502 2503 if (likely(!ptrace_event_enabled(current, trace))) 2504 trace = 0; 2505 } 2506 2507 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2508 add_latent_entropy(); 2509 2510 if (IS_ERR(p)) 2511 return PTR_ERR(p); 2512 2513 /* 2514 * Do this prior waking up the new thread - the thread pointer 2515 * might get invalid after that point, if the thread exits quickly. 2516 */ 2517 trace_sched_process_fork(current, p); 2518 2519 pid = get_task_pid(p, PIDTYPE_PID); 2520 nr = pid_vnr(pid); 2521 2522 if (clone_flags & CLONE_PARENT_SETTID) 2523 put_user(nr, args->parent_tid); 2524 2525 if (clone_flags & CLONE_VFORK) { 2526 p->vfork_done = &vfork; 2527 init_completion(&vfork); 2528 get_task_struct(p); 2529 } 2530 2531 wake_up_new_task(p); 2532 2533 /* forking complete and child started to run, tell ptracer */ 2534 if (unlikely(trace)) 2535 ptrace_event_pid(trace, pid); 2536 2537 if (clone_flags & CLONE_VFORK) { 2538 if (!wait_for_vfork_done(p, &vfork)) 2539 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2540 } 2541 2542 put_pid(pid); 2543 return nr; 2544 } 2545 2546 /* 2547 * Create a kernel thread. 2548 */ 2549 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2550 { 2551 struct kernel_clone_args args = { 2552 .flags = ((lower_32_bits(flags) | CLONE_VM | 2553 CLONE_UNTRACED) & ~CSIGNAL), 2554 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2555 .stack = (unsigned long)fn, 2556 .stack_size = (unsigned long)arg, 2557 }; 2558 2559 return kernel_clone(&args); 2560 } 2561 2562 #ifdef __ARCH_WANT_SYS_FORK 2563 SYSCALL_DEFINE0(fork) 2564 { 2565 #ifdef CONFIG_MMU 2566 struct kernel_clone_args args = { 2567 .exit_signal = SIGCHLD, 2568 }; 2569 2570 return kernel_clone(&args); 2571 #else 2572 /* can not support in nommu mode */ 2573 return -EINVAL; 2574 #endif 2575 } 2576 #endif 2577 2578 #ifdef __ARCH_WANT_SYS_VFORK 2579 SYSCALL_DEFINE0(vfork) 2580 { 2581 struct kernel_clone_args args = { 2582 .flags = CLONE_VFORK | CLONE_VM, 2583 .exit_signal = SIGCHLD, 2584 }; 2585 2586 return kernel_clone(&args); 2587 } 2588 #endif 2589 2590 #ifdef __ARCH_WANT_SYS_CLONE 2591 #ifdef CONFIG_CLONE_BACKWARDS 2592 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2593 int __user *, parent_tidptr, 2594 unsigned long, tls, 2595 int __user *, child_tidptr) 2596 #elif defined(CONFIG_CLONE_BACKWARDS2) 2597 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2598 int __user *, parent_tidptr, 2599 int __user *, child_tidptr, 2600 unsigned long, tls) 2601 #elif defined(CONFIG_CLONE_BACKWARDS3) 2602 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2603 int, stack_size, 2604 int __user *, parent_tidptr, 2605 int __user *, child_tidptr, 2606 unsigned long, tls) 2607 #else 2608 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2609 int __user *, parent_tidptr, 2610 int __user *, child_tidptr, 2611 unsigned long, tls) 2612 #endif 2613 { 2614 struct kernel_clone_args args = { 2615 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2616 .pidfd = parent_tidptr, 2617 .child_tid = child_tidptr, 2618 .parent_tid = parent_tidptr, 2619 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2620 .stack = newsp, 2621 .tls = tls, 2622 }; 2623 2624 return kernel_clone(&args); 2625 } 2626 #endif 2627 2628 #ifdef __ARCH_WANT_SYS_CLONE3 2629 2630 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2631 struct clone_args __user *uargs, 2632 size_t usize) 2633 { 2634 int err; 2635 struct clone_args args; 2636 pid_t *kset_tid = kargs->set_tid; 2637 2638 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2639 CLONE_ARGS_SIZE_VER0); 2640 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2641 CLONE_ARGS_SIZE_VER1); 2642 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2643 CLONE_ARGS_SIZE_VER2); 2644 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2645 2646 if (unlikely(usize > PAGE_SIZE)) 2647 return -E2BIG; 2648 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2649 return -EINVAL; 2650 2651 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2652 if (err) 2653 return err; 2654 2655 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2656 return -EINVAL; 2657 2658 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2659 return -EINVAL; 2660 2661 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2662 return -EINVAL; 2663 2664 /* 2665 * Verify that higher 32bits of exit_signal are unset and that 2666 * it is a valid signal 2667 */ 2668 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2669 !valid_signal(args.exit_signal))) 2670 return -EINVAL; 2671 2672 if ((args.flags & CLONE_INTO_CGROUP) && 2673 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2674 return -EINVAL; 2675 2676 *kargs = (struct kernel_clone_args){ 2677 .flags = args.flags, 2678 .pidfd = u64_to_user_ptr(args.pidfd), 2679 .child_tid = u64_to_user_ptr(args.child_tid), 2680 .parent_tid = u64_to_user_ptr(args.parent_tid), 2681 .exit_signal = args.exit_signal, 2682 .stack = args.stack, 2683 .stack_size = args.stack_size, 2684 .tls = args.tls, 2685 .set_tid_size = args.set_tid_size, 2686 .cgroup = args.cgroup, 2687 }; 2688 2689 if (args.set_tid && 2690 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2691 (kargs->set_tid_size * sizeof(pid_t)))) 2692 return -EFAULT; 2693 2694 kargs->set_tid = kset_tid; 2695 2696 return 0; 2697 } 2698 2699 /** 2700 * clone3_stack_valid - check and prepare stack 2701 * @kargs: kernel clone args 2702 * 2703 * Verify that the stack arguments userspace gave us are sane. 2704 * In addition, set the stack direction for userspace since it's easy for us to 2705 * determine. 2706 */ 2707 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2708 { 2709 if (kargs->stack == 0) { 2710 if (kargs->stack_size > 0) 2711 return false; 2712 } else { 2713 if (kargs->stack_size == 0) 2714 return false; 2715 2716 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2717 return false; 2718 2719 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2720 kargs->stack += kargs->stack_size; 2721 #endif 2722 } 2723 2724 return true; 2725 } 2726 2727 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2728 { 2729 /* Verify that no unknown flags are passed along. */ 2730 if (kargs->flags & 2731 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2732 return false; 2733 2734 /* 2735 * - make the CLONE_DETACHED bit reusable for clone3 2736 * - make the CSIGNAL bits reusable for clone3 2737 */ 2738 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2739 return false; 2740 2741 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2742 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2743 return false; 2744 2745 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2746 kargs->exit_signal) 2747 return false; 2748 2749 if (!clone3_stack_valid(kargs)) 2750 return false; 2751 2752 return true; 2753 } 2754 2755 /** 2756 * clone3 - create a new process with specific properties 2757 * @uargs: argument structure 2758 * @size: size of @uargs 2759 * 2760 * clone3() is the extensible successor to clone()/clone2(). 2761 * It takes a struct as argument that is versioned by its size. 2762 * 2763 * Return: On success, a positive PID for the child process. 2764 * On error, a negative errno number. 2765 */ 2766 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2767 { 2768 int err; 2769 2770 struct kernel_clone_args kargs; 2771 pid_t set_tid[MAX_PID_NS_LEVEL]; 2772 2773 kargs.set_tid = set_tid; 2774 2775 err = copy_clone_args_from_user(&kargs, uargs, size); 2776 if (err) 2777 return err; 2778 2779 if (!clone3_args_valid(&kargs)) 2780 return -EINVAL; 2781 2782 return kernel_clone(&kargs); 2783 } 2784 #endif 2785 2786 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2787 { 2788 struct task_struct *leader, *parent, *child; 2789 int res; 2790 2791 read_lock(&tasklist_lock); 2792 leader = top = top->group_leader; 2793 down: 2794 for_each_thread(leader, parent) { 2795 list_for_each_entry(child, &parent->children, sibling) { 2796 res = visitor(child, data); 2797 if (res) { 2798 if (res < 0) 2799 goto out; 2800 leader = child; 2801 goto down; 2802 } 2803 up: 2804 ; 2805 } 2806 } 2807 2808 if (leader != top) { 2809 child = leader; 2810 parent = child->real_parent; 2811 leader = parent->group_leader; 2812 goto up; 2813 } 2814 out: 2815 read_unlock(&tasklist_lock); 2816 } 2817 2818 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2819 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2820 #endif 2821 2822 static void sighand_ctor(void *data) 2823 { 2824 struct sighand_struct *sighand = data; 2825 2826 spin_lock_init(&sighand->siglock); 2827 init_waitqueue_head(&sighand->signalfd_wqh); 2828 } 2829 2830 void __init proc_caches_init(void) 2831 { 2832 unsigned int mm_size; 2833 2834 sighand_cachep = kmem_cache_create("sighand_cache", 2835 sizeof(struct sighand_struct), 0, 2836 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2837 SLAB_ACCOUNT, sighand_ctor); 2838 signal_cachep = kmem_cache_create("signal_cache", 2839 sizeof(struct signal_struct), 0, 2840 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2841 NULL); 2842 files_cachep = kmem_cache_create("files_cache", 2843 sizeof(struct files_struct), 0, 2844 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2845 NULL); 2846 fs_cachep = kmem_cache_create("fs_cache", 2847 sizeof(struct fs_struct), 0, 2848 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2849 NULL); 2850 2851 /* 2852 * The mm_cpumask is located at the end of mm_struct, and is 2853 * dynamically sized based on the maximum CPU number this system 2854 * can have, taking hotplug into account (nr_cpu_ids). 2855 */ 2856 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2857 2858 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2859 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2861 offsetof(struct mm_struct, saved_auxv), 2862 sizeof_field(struct mm_struct, saved_auxv), 2863 NULL); 2864 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2865 mmap_init(); 2866 nsproxy_cache_init(); 2867 } 2868 2869 /* 2870 * Check constraints on flags passed to the unshare system call. 2871 */ 2872 static int check_unshare_flags(unsigned long unshare_flags) 2873 { 2874 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2875 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2876 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2877 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2878 CLONE_NEWTIME)) 2879 return -EINVAL; 2880 /* 2881 * Not implemented, but pretend it works if there is nothing 2882 * to unshare. Note that unsharing the address space or the 2883 * signal handlers also need to unshare the signal queues (aka 2884 * CLONE_THREAD). 2885 */ 2886 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2887 if (!thread_group_empty(current)) 2888 return -EINVAL; 2889 } 2890 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2891 if (refcount_read(¤t->sighand->count) > 1) 2892 return -EINVAL; 2893 } 2894 if (unshare_flags & CLONE_VM) { 2895 if (!current_is_single_threaded()) 2896 return -EINVAL; 2897 } 2898 2899 return 0; 2900 } 2901 2902 /* 2903 * Unshare the filesystem structure if it is being shared 2904 */ 2905 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2906 { 2907 struct fs_struct *fs = current->fs; 2908 2909 if (!(unshare_flags & CLONE_FS) || !fs) 2910 return 0; 2911 2912 /* don't need lock here; in the worst case we'll do useless copy */ 2913 if (fs->users == 1) 2914 return 0; 2915 2916 *new_fsp = copy_fs_struct(fs); 2917 if (!*new_fsp) 2918 return -ENOMEM; 2919 2920 return 0; 2921 } 2922 2923 /* 2924 * Unshare file descriptor table if it is being shared 2925 */ 2926 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2927 struct files_struct **new_fdp) 2928 { 2929 struct files_struct *fd = current->files; 2930 int error = 0; 2931 2932 if ((unshare_flags & CLONE_FILES) && 2933 (fd && atomic_read(&fd->count) > 1)) { 2934 *new_fdp = dup_fd(fd, max_fds, &error); 2935 if (!*new_fdp) 2936 return error; 2937 } 2938 2939 return 0; 2940 } 2941 2942 /* 2943 * unshare allows a process to 'unshare' part of the process 2944 * context which was originally shared using clone. copy_* 2945 * functions used by kernel_clone() cannot be used here directly 2946 * because they modify an inactive task_struct that is being 2947 * constructed. Here we are modifying the current, active, 2948 * task_struct. 2949 */ 2950 int ksys_unshare(unsigned long unshare_flags) 2951 { 2952 struct fs_struct *fs, *new_fs = NULL; 2953 struct files_struct *fd, *new_fd = NULL; 2954 struct cred *new_cred = NULL; 2955 struct nsproxy *new_nsproxy = NULL; 2956 int do_sysvsem = 0; 2957 int err; 2958 2959 /* 2960 * If unsharing a user namespace must also unshare the thread group 2961 * and unshare the filesystem root and working directories. 2962 */ 2963 if (unshare_flags & CLONE_NEWUSER) 2964 unshare_flags |= CLONE_THREAD | CLONE_FS; 2965 /* 2966 * If unsharing vm, must also unshare signal handlers. 2967 */ 2968 if (unshare_flags & CLONE_VM) 2969 unshare_flags |= CLONE_SIGHAND; 2970 /* 2971 * If unsharing a signal handlers, must also unshare the signal queues. 2972 */ 2973 if (unshare_flags & CLONE_SIGHAND) 2974 unshare_flags |= CLONE_THREAD; 2975 /* 2976 * If unsharing namespace, must also unshare filesystem information. 2977 */ 2978 if (unshare_flags & CLONE_NEWNS) 2979 unshare_flags |= CLONE_FS; 2980 2981 err = check_unshare_flags(unshare_flags); 2982 if (err) 2983 goto bad_unshare_out; 2984 /* 2985 * CLONE_NEWIPC must also detach from the undolist: after switching 2986 * to a new ipc namespace, the semaphore arrays from the old 2987 * namespace are unreachable. 2988 */ 2989 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2990 do_sysvsem = 1; 2991 err = unshare_fs(unshare_flags, &new_fs); 2992 if (err) 2993 goto bad_unshare_out; 2994 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2995 if (err) 2996 goto bad_unshare_cleanup_fs; 2997 err = unshare_userns(unshare_flags, &new_cred); 2998 if (err) 2999 goto bad_unshare_cleanup_fd; 3000 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3001 new_cred, new_fs); 3002 if (err) 3003 goto bad_unshare_cleanup_cred; 3004 3005 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3006 if (do_sysvsem) { 3007 /* 3008 * CLONE_SYSVSEM is equivalent to sys_exit(). 3009 */ 3010 exit_sem(current); 3011 } 3012 if (unshare_flags & CLONE_NEWIPC) { 3013 /* Orphan segments in old ns (see sem above). */ 3014 exit_shm(current); 3015 shm_init_task(current); 3016 } 3017 3018 if (new_nsproxy) 3019 switch_task_namespaces(current, new_nsproxy); 3020 3021 task_lock(current); 3022 3023 if (new_fs) { 3024 fs = current->fs; 3025 spin_lock(&fs->lock); 3026 current->fs = new_fs; 3027 if (--fs->users) 3028 new_fs = NULL; 3029 else 3030 new_fs = fs; 3031 spin_unlock(&fs->lock); 3032 } 3033 3034 if (new_fd) { 3035 fd = current->files; 3036 current->files = new_fd; 3037 new_fd = fd; 3038 } 3039 3040 task_unlock(current); 3041 3042 if (new_cred) { 3043 /* Install the new user namespace */ 3044 commit_creds(new_cred); 3045 new_cred = NULL; 3046 } 3047 } 3048 3049 perf_event_namespaces(current); 3050 3051 bad_unshare_cleanup_cred: 3052 if (new_cred) 3053 put_cred(new_cred); 3054 bad_unshare_cleanup_fd: 3055 if (new_fd) 3056 put_files_struct(new_fd); 3057 3058 bad_unshare_cleanup_fs: 3059 if (new_fs) 3060 free_fs_struct(new_fs); 3061 3062 bad_unshare_out: 3063 return err; 3064 } 3065 3066 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3067 { 3068 return ksys_unshare(unshare_flags); 3069 } 3070 3071 /* 3072 * Helper to unshare the files of the current task. 3073 * We don't want to expose copy_files internals to 3074 * the exec layer of the kernel. 3075 */ 3076 3077 int unshare_files(void) 3078 { 3079 struct task_struct *task = current; 3080 struct files_struct *old, *copy = NULL; 3081 int error; 3082 3083 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3084 if (error || !copy) 3085 return error; 3086 3087 old = task->files; 3088 task_lock(task); 3089 task->files = copy; 3090 task_unlock(task); 3091 put_files_struct(old); 3092 return 0; 3093 } 3094 3095 int sysctl_max_threads(struct ctl_table *table, int write, 3096 void *buffer, size_t *lenp, loff_t *ppos) 3097 { 3098 struct ctl_table t; 3099 int ret; 3100 int threads = max_threads; 3101 int min = 1; 3102 int max = MAX_THREADS; 3103 3104 t = *table; 3105 t.data = &threads; 3106 t.extra1 = &min; 3107 t.extra2 = &max; 3108 3109 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3110 if (ret || !write) 3111 return ret; 3112 3113 max_threads = threads; 3114 3115 return 0; 3116 } 3117