xref: /openbmc/linux/kernel/fork.c (revision a77aea92010acf54ad785047234418d5d68772e2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78 
79 #include <trace/events/sched.h>
80 
81 /*
82  * Protected counters by write_lock_irq(&tasklist_lock)
83  */
84 unsigned long total_forks;	/* Handle normal Linux uptimes. */
85 int nr_threads; 		/* The idle threads do not count.. */
86 
87 int max_threads;		/* tunable limit on nr_threads */
88 
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90 
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
92 
93 #ifdef CONFIG_PROVE_RCU
94 int lockdep_tasklist_lock_is_held(void)
95 {
96 	return lockdep_is_held(&tasklist_lock);
97 }
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
100 
101 int nr_processes(void)
102 {
103 	int cpu;
104 	int total = 0;
105 
106 	for_each_possible_cpu(cpu)
107 		total += per_cpu(process_counts, cpu);
108 
109 	return total;
110 }
111 
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node)		\
114 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk)			\
116 		kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
119 
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 						  int node)
123 {
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127 	gfp_t mask = GFP_KERNEL;
128 #endif
129 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130 
131 	return page ? page_address(page) : NULL;
132 }
133 
134 static inline void free_thread_info(struct thread_info *ti)
135 {
136 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 }
138 #endif
139 
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
142 
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
145 
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
148 
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
151 
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
154 
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
157 
158 static void account_kernel_stack(struct thread_info *ti, int account)
159 {
160 	struct zone *zone = page_zone(virt_to_page(ti));
161 
162 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 }
164 
165 void free_task(struct task_struct *tsk)
166 {
167 	prop_local_destroy_single(&tsk->dirties);
168 	account_kernel_stack(tsk->stack, -1);
169 	free_thread_info(tsk->stack);
170 	rt_mutex_debug_task_free(tsk);
171 	ftrace_graph_exit_task(tsk);
172 	free_task_struct(tsk);
173 }
174 EXPORT_SYMBOL(free_task);
175 
176 static inline void free_signal_struct(struct signal_struct *sig)
177 {
178 	taskstats_tgid_free(sig);
179 	sched_autogroup_exit(sig);
180 	kmem_cache_free(signal_cachep, sig);
181 }
182 
183 static inline void put_signal_struct(struct signal_struct *sig)
184 {
185 	if (atomic_dec_and_test(&sig->sigcnt))
186 		free_signal_struct(sig);
187 }
188 
189 void __put_task_struct(struct task_struct *tsk)
190 {
191 	WARN_ON(!tsk->exit_state);
192 	WARN_ON(atomic_read(&tsk->usage));
193 	WARN_ON(tsk == current);
194 
195 	exit_creds(tsk);
196 	delayacct_tsk_free(tsk);
197 	put_signal_struct(tsk->signal);
198 
199 	if (!profile_handoff_task(tsk))
200 		free_task(tsk);
201 }
202 EXPORT_SYMBOL_GPL(__put_task_struct);
203 
204 /*
205  * macro override instead of weak attribute alias, to workaround
206  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207  */
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
211 
212 void __init fork_init(unsigned long mempages)
213 {
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
217 #endif
218 	/* create a slab on which task_structs can be allocated */
219 	task_struct_cachep =
220 		kmem_cache_create("task_struct", sizeof(struct task_struct),
221 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
223 
224 	/* do the arch specific task caches init */
225 	arch_task_cache_init();
226 
227 	/*
228 	 * The default maximum number of threads is set to a safe
229 	 * value: the thread structures can take up at most half
230 	 * of memory.
231 	 */
232 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233 
234 	/*
235 	 * we need to allow at least 20 threads to boot a system
236 	 */
237 	if(max_threads < 20)
238 		max_threads = 20;
239 
240 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 		init_task.signal->rlim[RLIMIT_NPROC];
244 }
245 
246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 					       struct task_struct *src)
248 {
249 	*dst = *src;
250 	return 0;
251 }
252 
253 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 {
255 	struct task_struct *tsk;
256 	struct thread_info *ti;
257 	unsigned long *stackend;
258 	int node = tsk_fork_get_node(orig);
259 	int err;
260 
261 	prepare_to_copy(orig);
262 
263 	tsk = alloc_task_struct_node(node);
264 	if (!tsk)
265 		return NULL;
266 
267 	ti = alloc_thread_info_node(tsk, node);
268 	if (!ti) {
269 		free_task_struct(tsk);
270 		return NULL;
271 	}
272 
273  	err = arch_dup_task_struct(tsk, orig);
274 	if (err)
275 		goto out;
276 
277 	tsk->stack = ti;
278 
279 	err = prop_local_init_single(&tsk->dirties);
280 	if (err)
281 		goto out;
282 
283 	setup_thread_stack(tsk, orig);
284 	clear_user_return_notifier(tsk);
285 	clear_tsk_need_resched(tsk);
286 	stackend = end_of_stack(tsk);
287 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
288 
289 #ifdef CONFIG_CC_STACKPROTECTOR
290 	tsk->stack_canary = get_random_int();
291 #endif
292 
293 	/* One for us, one for whoever does the "release_task()" (usually parent) */
294 	atomic_set(&tsk->usage,2);
295 	atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 	tsk->btrace_seq = 0;
298 #endif
299 	tsk->splice_pipe = NULL;
300 
301 	account_kernel_stack(ti, 1);
302 
303 	return tsk;
304 
305 out:
306 	free_thread_info(ti);
307 	free_task_struct(tsk);
308 	return NULL;
309 }
310 
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 	struct rb_node **rb_link, *rb_parent;
316 	int retval;
317 	unsigned long charge;
318 	struct mempolicy *pol;
319 
320 	down_write(&oldmm->mmap_sem);
321 	flush_cache_dup_mm(oldmm);
322 	/*
323 	 * Not linked in yet - no deadlock potential:
324 	 */
325 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326 
327 	mm->locked_vm = 0;
328 	mm->mmap = NULL;
329 	mm->mmap_cache = NULL;
330 	mm->free_area_cache = oldmm->mmap_base;
331 	mm->cached_hole_size = ~0UL;
332 	mm->map_count = 0;
333 	cpumask_clear(mm_cpumask(mm));
334 	mm->mm_rb = RB_ROOT;
335 	rb_link = &mm->mm_rb.rb_node;
336 	rb_parent = NULL;
337 	pprev = &mm->mmap;
338 	retval = ksm_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 	retval = khugepaged_fork(mm, oldmm);
342 	if (retval)
343 		goto out;
344 
345 	prev = NULL;
346 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 		struct file *file;
348 
349 		if (mpnt->vm_flags & VM_DONTCOPY) {
350 			long pages = vma_pages(mpnt);
351 			mm->total_vm -= pages;
352 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 								-pages);
354 			continue;
355 		}
356 		charge = 0;
357 		if (mpnt->vm_flags & VM_ACCOUNT) {
358 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 			if (security_vm_enough_memory(len))
360 				goto fail_nomem;
361 			charge = len;
362 		}
363 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 		if (!tmp)
365 			goto fail_nomem;
366 		*tmp = *mpnt;
367 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 		pol = mpol_dup(vma_policy(mpnt));
369 		retval = PTR_ERR(pol);
370 		if (IS_ERR(pol))
371 			goto fail_nomem_policy;
372 		vma_set_policy(tmp, pol);
373 		tmp->vm_mm = mm;
374 		if (anon_vma_fork(tmp, mpnt))
375 			goto fail_nomem_anon_vma_fork;
376 		tmp->vm_flags &= ~VM_LOCKED;
377 		tmp->vm_next = tmp->vm_prev = NULL;
378 		file = tmp->vm_file;
379 		if (file) {
380 			struct inode *inode = file->f_path.dentry->d_inode;
381 			struct address_space *mapping = file->f_mapping;
382 
383 			get_file(file);
384 			if (tmp->vm_flags & VM_DENYWRITE)
385 				atomic_dec(&inode->i_writecount);
386 			mutex_lock(&mapping->i_mmap_mutex);
387 			if (tmp->vm_flags & VM_SHARED)
388 				mapping->i_mmap_writable++;
389 			flush_dcache_mmap_lock(mapping);
390 			/* insert tmp into the share list, just after mpnt */
391 			vma_prio_tree_add(tmp, mpnt);
392 			flush_dcache_mmap_unlock(mapping);
393 			mutex_unlock(&mapping->i_mmap_mutex);
394 		}
395 
396 		/*
397 		 * Clear hugetlb-related page reserves for children. This only
398 		 * affects MAP_PRIVATE mappings. Faults generated by the child
399 		 * are not guaranteed to succeed, even if read-only
400 		 */
401 		if (is_vm_hugetlb_page(tmp))
402 			reset_vma_resv_huge_pages(tmp);
403 
404 		/*
405 		 * Link in the new vma and copy the page table entries.
406 		 */
407 		*pprev = tmp;
408 		pprev = &tmp->vm_next;
409 		tmp->vm_prev = prev;
410 		prev = tmp;
411 
412 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
413 		rb_link = &tmp->vm_rb.rb_right;
414 		rb_parent = &tmp->vm_rb;
415 
416 		mm->map_count++;
417 		retval = copy_page_range(mm, oldmm, mpnt);
418 
419 		if (tmp->vm_ops && tmp->vm_ops->open)
420 			tmp->vm_ops->open(tmp);
421 
422 		if (retval)
423 			goto out;
424 	}
425 	/* a new mm has just been created */
426 	arch_dup_mmap(oldmm, mm);
427 	retval = 0;
428 out:
429 	up_write(&mm->mmap_sem);
430 	flush_tlb_mm(oldmm);
431 	up_write(&oldmm->mmap_sem);
432 	return retval;
433 fail_nomem_anon_vma_fork:
434 	mpol_put(pol);
435 fail_nomem_policy:
436 	kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 	retval = -ENOMEM;
439 	vm_unacct_memory(charge);
440 	goto out;
441 }
442 
443 static inline int mm_alloc_pgd(struct mm_struct * mm)
444 {
445 	mm->pgd = pgd_alloc(mm);
446 	if (unlikely(!mm->pgd))
447 		return -ENOMEM;
448 	return 0;
449 }
450 
451 static inline void mm_free_pgd(struct mm_struct * mm)
452 {
453 	pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm)	(0)
457 #define mm_alloc_pgd(mm)	(0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460 
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462 
463 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
465 
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467 
468 static int __init coredump_filter_setup(char *s)
469 {
470 	default_dump_filter =
471 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 		MMF_DUMP_FILTER_MASK;
473 	return 1;
474 }
475 
476 __setup("coredump_filter=", coredump_filter_setup);
477 
478 #include <linux/init_task.h>
479 
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 	spin_lock_init(&mm->ioctx_lock);
484 	INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487 
488 int mm_init_cpumask(struct mm_struct *mm, struct mm_struct *oldmm)
489 {
490 #ifdef CONFIG_CPUMASK_OFFSTACK
491 	if (!alloc_cpumask_var(&mm->cpu_vm_mask_var, GFP_KERNEL))
492 		return -ENOMEM;
493 
494 	if (oldmm)
495 		cpumask_copy(mm_cpumask(mm), mm_cpumask(oldmm));
496 	else
497 		memset(mm_cpumask(mm), 0, cpumask_size());
498 #endif
499 	return 0;
500 }
501 
502 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
503 {
504 	atomic_set(&mm->mm_users, 1);
505 	atomic_set(&mm->mm_count, 1);
506 	init_rwsem(&mm->mmap_sem);
507 	INIT_LIST_HEAD(&mm->mmlist);
508 	mm->flags = (current->mm) ?
509 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
510 	mm->core_state = NULL;
511 	mm->nr_ptes = 0;
512 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
513 	spin_lock_init(&mm->page_table_lock);
514 	mm->free_area_cache = TASK_UNMAPPED_BASE;
515 	mm->cached_hole_size = ~0UL;
516 	mm_init_aio(mm);
517 	mm_init_owner(mm, p);
518 	atomic_set(&mm->oom_disable_count, 0);
519 
520 	if (likely(!mm_alloc_pgd(mm))) {
521 		mm->def_flags = 0;
522 		mmu_notifier_mm_init(mm);
523 		return mm;
524 	}
525 
526 	free_mm(mm);
527 	return NULL;
528 }
529 
530 /*
531  * Allocate and initialize an mm_struct.
532  */
533 struct mm_struct * mm_alloc(void)
534 {
535 	struct mm_struct * mm;
536 
537 	mm = allocate_mm();
538 	if (!mm)
539 		return NULL;
540 
541 	memset(mm, 0, sizeof(*mm));
542 	mm = mm_init(mm, current);
543 	if (!mm)
544 		return NULL;
545 
546 	if (mm_init_cpumask(mm, NULL)) {
547 		mm_free_pgd(mm);
548 		free_mm(mm);
549 		return NULL;
550 	}
551 
552 	return mm;
553 }
554 
555 /*
556  * Called when the last reference to the mm
557  * is dropped: either by a lazy thread or by
558  * mmput. Free the page directory and the mm.
559  */
560 void __mmdrop(struct mm_struct *mm)
561 {
562 	BUG_ON(mm == &init_mm);
563 	free_cpumask_var(mm->cpu_vm_mask_var);
564 	mm_free_pgd(mm);
565 	destroy_context(mm);
566 	mmu_notifier_mm_destroy(mm);
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 	VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 	free_mm(mm);
571 }
572 EXPORT_SYMBOL_GPL(__mmdrop);
573 
574 /*
575  * Decrement the use count and release all resources for an mm.
576  */
577 void mmput(struct mm_struct *mm)
578 {
579 	might_sleep();
580 
581 	if (atomic_dec_and_test(&mm->mm_users)) {
582 		exit_aio(mm);
583 		ksm_exit(mm);
584 		khugepaged_exit(mm); /* must run before exit_mmap */
585 		exit_mmap(mm);
586 		set_mm_exe_file(mm, NULL);
587 		if (!list_empty(&mm->mmlist)) {
588 			spin_lock(&mmlist_lock);
589 			list_del(&mm->mmlist);
590 			spin_unlock(&mmlist_lock);
591 		}
592 		put_swap_token(mm);
593 		if (mm->binfmt)
594 			module_put(mm->binfmt->module);
595 		mmdrop(mm);
596 	}
597 }
598 EXPORT_SYMBOL_GPL(mmput);
599 
600 /**
601  * get_task_mm - acquire a reference to the task's mm
602  *
603  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
604  * this kernel workthread has transiently adopted a user mm with use_mm,
605  * to do its AIO) is not set and if so returns a reference to it, after
606  * bumping up the use count.  User must release the mm via mmput()
607  * after use.  Typically used by /proc and ptrace.
608  */
609 struct mm_struct *get_task_mm(struct task_struct *task)
610 {
611 	struct mm_struct *mm;
612 
613 	task_lock(task);
614 	mm = task->mm;
615 	if (mm) {
616 		if (task->flags & PF_KTHREAD)
617 			mm = NULL;
618 		else
619 			atomic_inc(&mm->mm_users);
620 	}
621 	task_unlock(task);
622 	return mm;
623 }
624 EXPORT_SYMBOL_GPL(get_task_mm);
625 
626 /* Please note the differences between mmput and mm_release.
627  * mmput is called whenever we stop holding onto a mm_struct,
628  * error success whatever.
629  *
630  * mm_release is called after a mm_struct has been removed
631  * from the current process.
632  *
633  * This difference is important for error handling, when we
634  * only half set up a mm_struct for a new process and need to restore
635  * the old one.  Because we mmput the new mm_struct before
636  * restoring the old one. . .
637  * Eric Biederman 10 January 1998
638  */
639 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
640 {
641 	struct completion *vfork_done = tsk->vfork_done;
642 
643 	/* Get rid of any futexes when releasing the mm */
644 #ifdef CONFIG_FUTEX
645 	if (unlikely(tsk->robust_list)) {
646 		exit_robust_list(tsk);
647 		tsk->robust_list = NULL;
648 	}
649 #ifdef CONFIG_COMPAT
650 	if (unlikely(tsk->compat_robust_list)) {
651 		compat_exit_robust_list(tsk);
652 		tsk->compat_robust_list = NULL;
653 	}
654 #endif
655 	if (unlikely(!list_empty(&tsk->pi_state_list)))
656 		exit_pi_state_list(tsk);
657 #endif
658 
659 	/* Get rid of any cached register state */
660 	deactivate_mm(tsk, mm);
661 
662 	/* notify parent sleeping on vfork() */
663 	if (vfork_done) {
664 		tsk->vfork_done = NULL;
665 		complete(vfork_done);
666 	}
667 
668 	/*
669 	 * If we're exiting normally, clear a user-space tid field if
670 	 * requested.  We leave this alone when dying by signal, to leave
671 	 * the value intact in a core dump, and to save the unnecessary
672 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
673 	 */
674 	if (tsk->clear_child_tid) {
675 		if (!(tsk->flags & PF_SIGNALED) &&
676 		    atomic_read(&mm->mm_users) > 1) {
677 			/*
678 			 * We don't check the error code - if userspace has
679 			 * not set up a proper pointer then tough luck.
680 			 */
681 			put_user(0, tsk->clear_child_tid);
682 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
683 					1, NULL, NULL, 0);
684 		}
685 		tsk->clear_child_tid = NULL;
686 	}
687 }
688 
689 /*
690  * Allocate a new mm structure and copy contents from the
691  * mm structure of the passed in task structure.
692  */
693 struct mm_struct *dup_mm(struct task_struct *tsk)
694 {
695 	struct mm_struct *mm, *oldmm = current->mm;
696 	int err;
697 
698 	if (!oldmm)
699 		return NULL;
700 
701 	mm = allocate_mm();
702 	if (!mm)
703 		goto fail_nomem;
704 
705 	memcpy(mm, oldmm, sizeof(*mm));
706 
707 	/* Initializing for Swap token stuff */
708 	mm->token_priority = 0;
709 	mm->last_interval = 0;
710 
711 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
712 	mm->pmd_huge_pte = NULL;
713 #endif
714 
715 	if (!mm_init(mm, tsk))
716 		goto fail_nomem;
717 
718 	if (mm_init_cpumask(mm, oldmm))
719 		goto fail_nocpumask;
720 
721 	if (init_new_context(tsk, mm))
722 		goto fail_nocontext;
723 
724 	dup_mm_exe_file(oldmm, mm);
725 
726 	err = dup_mmap(mm, oldmm);
727 	if (err)
728 		goto free_pt;
729 
730 	mm->hiwater_rss = get_mm_rss(mm);
731 	mm->hiwater_vm = mm->total_vm;
732 
733 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
734 		goto free_pt;
735 
736 	return mm;
737 
738 free_pt:
739 	/* don't put binfmt in mmput, we haven't got module yet */
740 	mm->binfmt = NULL;
741 	mmput(mm);
742 
743 fail_nomem:
744 	return NULL;
745 
746 fail_nocontext:
747 	free_cpumask_var(mm->cpu_vm_mask_var);
748 
749 fail_nocpumask:
750 	/*
751 	 * If init_new_context() failed, we cannot use mmput() to free the mm
752 	 * because it calls destroy_context()
753 	 */
754 	mm_free_pgd(mm);
755 	free_mm(mm);
756 	return NULL;
757 }
758 
759 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
760 {
761 	struct mm_struct * mm, *oldmm;
762 	int retval;
763 
764 	tsk->min_flt = tsk->maj_flt = 0;
765 	tsk->nvcsw = tsk->nivcsw = 0;
766 #ifdef CONFIG_DETECT_HUNG_TASK
767 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
768 #endif
769 
770 	tsk->mm = NULL;
771 	tsk->active_mm = NULL;
772 
773 	/*
774 	 * Are we cloning a kernel thread?
775 	 *
776 	 * We need to steal a active VM for that..
777 	 */
778 	oldmm = current->mm;
779 	if (!oldmm)
780 		return 0;
781 
782 	if (clone_flags & CLONE_VM) {
783 		atomic_inc(&oldmm->mm_users);
784 		mm = oldmm;
785 		goto good_mm;
786 	}
787 
788 	retval = -ENOMEM;
789 	mm = dup_mm(tsk);
790 	if (!mm)
791 		goto fail_nomem;
792 
793 good_mm:
794 	/* Initializing for Swap token stuff */
795 	mm->token_priority = 0;
796 	mm->last_interval = 0;
797 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
798 		atomic_inc(&mm->oom_disable_count);
799 
800 	tsk->mm = mm;
801 	tsk->active_mm = mm;
802 	return 0;
803 
804 fail_nomem:
805 	return retval;
806 }
807 
808 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
809 {
810 	struct fs_struct *fs = current->fs;
811 	if (clone_flags & CLONE_FS) {
812 		/* tsk->fs is already what we want */
813 		spin_lock(&fs->lock);
814 		if (fs->in_exec) {
815 			spin_unlock(&fs->lock);
816 			return -EAGAIN;
817 		}
818 		fs->users++;
819 		spin_unlock(&fs->lock);
820 		return 0;
821 	}
822 	tsk->fs = copy_fs_struct(fs);
823 	if (!tsk->fs)
824 		return -ENOMEM;
825 	return 0;
826 }
827 
828 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
829 {
830 	struct files_struct *oldf, *newf;
831 	int error = 0;
832 
833 	/*
834 	 * A background process may not have any files ...
835 	 */
836 	oldf = current->files;
837 	if (!oldf)
838 		goto out;
839 
840 	if (clone_flags & CLONE_FILES) {
841 		atomic_inc(&oldf->count);
842 		goto out;
843 	}
844 
845 	newf = dup_fd(oldf, &error);
846 	if (!newf)
847 		goto out;
848 
849 	tsk->files = newf;
850 	error = 0;
851 out:
852 	return error;
853 }
854 
855 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
856 {
857 #ifdef CONFIG_BLOCK
858 	struct io_context *ioc = current->io_context;
859 
860 	if (!ioc)
861 		return 0;
862 	/*
863 	 * Share io context with parent, if CLONE_IO is set
864 	 */
865 	if (clone_flags & CLONE_IO) {
866 		tsk->io_context = ioc_task_link(ioc);
867 		if (unlikely(!tsk->io_context))
868 			return -ENOMEM;
869 	} else if (ioprio_valid(ioc->ioprio)) {
870 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
871 		if (unlikely(!tsk->io_context))
872 			return -ENOMEM;
873 
874 		tsk->io_context->ioprio = ioc->ioprio;
875 	}
876 #endif
877 	return 0;
878 }
879 
880 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
881 {
882 	struct sighand_struct *sig;
883 
884 	if (clone_flags & CLONE_SIGHAND) {
885 		atomic_inc(&current->sighand->count);
886 		return 0;
887 	}
888 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
889 	rcu_assign_pointer(tsk->sighand, sig);
890 	if (!sig)
891 		return -ENOMEM;
892 	atomic_set(&sig->count, 1);
893 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
894 	return 0;
895 }
896 
897 void __cleanup_sighand(struct sighand_struct *sighand)
898 {
899 	if (atomic_dec_and_test(&sighand->count))
900 		kmem_cache_free(sighand_cachep, sighand);
901 }
902 
903 
904 /*
905  * Initialize POSIX timer handling for a thread group.
906  */
907 static void posix_cpu_timers_init_group(struct signal_struct *sig)
908 {
909 	unsigned long cpu_limit;
910 
911 	/* Thread group counters. */
912 	thread_group_cputime_init(sig);
913 
914 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
915 	if (cpu_limit != RLIM_INFINITY) {
916 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
917 		sig->cputimer.running = 1;
918 	}
919 
920 	/* The timer lists. */
921 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
922 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
923 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
924 }
925 
926 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
927 {
928 	struct signal_struct *sig;
929 
930 	if (clone_flags & CLONE_THREAD)
931 		return 0;
932 
933 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
934 	tsk->signal = sig;
935 	if (!sig)
936 		return -ENOMEM;
937 
938 	sig->nr_threads = 1;
939 	atomic_set(&sig->live, 1);
940 	atomic_set(&sig->sigcnt, 1);
941 	init_waitqueue_head(&sig->wait_chldexit);
942 	if (clone_flags & CLONE_NEWPID)
943 		sig->flags |= SIGNAL_UNKILLABLE;
944 	sig->curr_target = tsk;
945 	init_sigpending(&sig->shared_pending);
946 	INIT_LIST_HEAD(&sig->posix_timers);
947 
948 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
949 	sig->real_timer.function = it_real_fn;
950 
951 	task_lock(current->group_leader);
952 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
953 	task_unlock(current->group_leader);
954 
955 	posix_cpu_timers_init_group(sig);
956 
957 	tty_audit_fork(sig);
958 	sched_autogroup_fork(sig);
959 
960 #ifdef CONFIG_CGROUPS
961 	init_rwsem(&sig->threadgroup_fork_lock);
962 #endif
963 
964 	sig->oom_adj = current->signal->oom_adj;
965 	sig->oom_score_adj = current->signal->oom_score_adj;
966 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
967 
968 	mutex_init(&sig->cred_guard_mutex);
969 
970 	return 0;
971 }
972 
973 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
974 {
975 	unsigned long new_flags = p->flags;
976 
977 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
978 	new_flags |= PF_FORKNOEXEC;
979 	new_flags |= PF_STARTING;
980 	p->flags = new_flags;
981 	clear_freeze_flag(p);
982 }
983 
984 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
985 {
986 	current->clear_child_tid = tidptr;
987 
988 	return task_pid_vnr(current);
989 }
990 
991 static void rt_mutex_init_task(struct task_struct *p)
992 {
993 	raw_spin_lock_init(&p->pi_lock);
994 #ifdef CONFIG_RT_MUTEXES
995 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
996 	p->pi_blocked_on = NULL;
997 #endif
998 }
999 
1000 #ifdef CONFIG_MM_OWNER
1001 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1002 {
1003 	mm->owner = p;
1004 }
1005 #endif /* CONFIG_MM_OWNER */
1006 
1007 /*
1008  * Initialize POSIX timer handling for a single task.
1009  */
1010 static void posix_cpu_timers_init(struct task_struct *tsk)
1011 {
1012 	tsk->cputime_expires.prof_exp = cputime_zero;
1013 	tsk->cputime_expires.virt_exp = cputime_zero;
1014 	tsk->cputime_expires.sched_exp = 0;
1015 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1016 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1017 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1018 }
1019 
1020 /*
1021  * This creates a new process as a copy of the old one,
1022  * but does not actually start it yet.
1023  *
1024  * It copies the registers, and all the appropriate
1025  * parts of the process environment (as per the clone
1026  * flags). The actual kick-off is left to the caller.
1027  */
1028 static struct task_struct *copy_process(unsigned long clone_flags,
1029 					unsigned long stack_start,
1030 					struct pt_regs *regs,
1031 					unsigned long stack_size,
1032 					int __user *child_tidptr,
1033 					struct pid *pid,
1034 					int trace)
1035 {
1036 	int retval;
1037 	struct task_struct *p;
1038 	int cgroup_callbacks_done = 0;
1039 
1040 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1041 		return ERR_PTR(-EINVAL);
1042 
1043 	/*
1044 	 * Thread groups must share signals as well, and detached threads
1045 	 * can only be started up within the thread group.
1046 	 */
1047 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1048 		return ERR_PTR(-EINVAL);
1049 
1050 	/*
1051 	 * Shared signal handlers imply shared VM. By way of the above,
1052 	 * thread groups also imply shared VM. Blocking this case allows
1053 	 * for various simplifications in other code.
1054 	 */
1055 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1056 		return ERR_PTR(-EINVAL);
1057 
1058 	/*
1059 	 * Siblings of global init remain as zombies on exit since they are
1060 	 * not reaped by their parent (swapper). To solve this and to avoid
1061 	 * multi-rooted process trees, prevent global and container-inits
1062 	 * from creating siblings.
1063 	 */
1064 	if ((clone_flags & CLONE_PARENT) &&
1065 				current->signal->flags & SIGNAL_UNKILLABLE)
1066 		return ERR_PTR(-EINVAL);
1067 
1068 	retval = security_task_create(clone_flags);
1069 	if (retval)
1070 		goto fork_out;
1071 
1072 	retval = -ENOMEM;
1073 	p = dup_task_struct(current);
1074 	if (!p)
1075 		goto fork_out;
1076 
1077 	ftrace_graph_init_task(p);
1078 
1079 	rt_mutex_init_task(p);
1080 
1081 #ifdef CONFIG_PROVE_LOCKING
1082 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1083 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1084 #endif
1085 	retval = -EAGAIN;
1086 	if (atomic_read(&p->real_cred->user->processes) >=
1087 			task_rlimit(p, RLIMIT_NPROC)) {
1088 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1089 		    p->real_cred->user != INIT_USER)
1090 			goto bad_fork_free;
1091 	}
1092 
1093 	retval = copy_creds(p, clone_flags);
1094 	if (retval < 0)
1095 		goto bad_fork_free;
1096 
1097 	/*
1098 	 * If multiple threads are within copy_process(), then this check
1099 	 * triggers too late. This doesn't hurt, the check is only there
1100 	 * to stop root fork bombs.
1101 	 */
1102 	retval = -EAGAIN;
1103 	if (nr_threads >= max_threads)
1104 		goto bad_fork_cleanup_count;
1105 
1106 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1107 		goto bad_fork_cleanup_count;
1108 
1109 	p->did_exec = 0;
1110 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1111 	copy_flags(clone_flags, p);
1112 	INIT_LIST_HEAD(&p->children);
1113 	INIT_LIST_HEAD(&p->sibling);
1114 	rcu_copy_process(p);
1115 	p->vfork_done = NULL;
1116 	spin_lock_init(&p->alloc_lock);
1117 
1118 	init_sigpending(&p->pending);
1119 
1120 	p->utime = cputime_zero;
1121 	p->stime = cputime_zero;
1122 	p->gtime = cputime_zero;
1123 	p->utimescaled = cputime_zero;
1124 	p->stimescaled = cputime_zero;
1125 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1126 	p->prev_utime = cputime_zero;
1127 	p->prev_stime = cputime_zero;
1128 #endif
1129 #if defined(SPLIT_RSS_COUNTING)
1130 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1131 #endif
1132 
1133 	p->default_timer_slack_ns = current->timer_slack_ns;
1134 
1135 	task_io_accounting_init(&p->ioac);
1136 	acct_clear_integrals(p);
1137 
1138 	posix_cpu_timers_init(p);
1139 
1140 	do_posix_clock_monotonic_gettime(&p->start_time);
1141 	p->real_start_time = p->start_time;
1142 	monotonic_to_bootbased(&p->real_start_time);
1143 	p->io_context = NULL;
1144 	p->audit_context = NULL;
1145 	if (clone_flags & CLONE_THREAD)
1146 		threadgroup_fork_read_lock(current);
1147 	cgroup_fork(p);
1148 #ifdef CONFIG_NUMA
1149 	p->mempolicy = mpol_dup(p->mempolicy);
1150  	if (IS_ERR(p->mempolicy)) {
1151  		retval = PTR_ERR(p->mempolicy);
1152  		p->mempolicy = NULL;
1153  		goto bad_fork_cleanup_cgroup;
1154  	}
1155 	mpol_fix_fork_child_flag(p);
1156 #endif
1157 #ifdef CONFIG_TRACE_IRQFLAGS
1158 	p->irq_events = 0;
1159 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1160 	p->hardirqs_enabled = 1;
1161 #else
1162 	p->hardirqs_enabled = 0;
1163 #endif
1164 	p->hardirq_enable_ip = 0;
1165 	p->hardirq_enable_event = 0;
1166 	p->hardirq_disable_ip = _THIS_IP_;
1167 	p->hardirq_disable_event = 0;
1168 	p->softirqs_enabled = 1;
1169 	p->softirq_enable_ip = _THIS_IP_;
1170 	p->softirq_enable_event = 0;
1171 	p->softirq_disable_ip = 0;
1172 	p->softirq_disable_event = 0;
1173 	p->hardirq_context = 0;
1174 	p->softirq_context = 0;
1175 #endif
1176 #ifdef CONFIG_LOCKDEP
1177 	p->lockdep_depth = 0; /* no locks held yet */
1178 	p->curr_chain_key = 0;
1179 	p->lockdep_recursion = 0;
1180 #endif
1181 
1182 #ifdef CONFIG_DEBUG_MUTEXES
1183 	p->blocked_on = NULL; /* not blocked yet */
1184 #endif
1185 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1186 	p->memcg_batch.do_batch = 0;
1187 	p->memcg_batch.memcg = NULL;
1188 #endif
1189 
1190 	/* Perform scheduler related setup. Assign this task to a CPU. */
1191 	sched_fork(p);
1192 
1193 	retval = perf_event_init_task(p);
1194 	if (retval)
1195 		goto bad_fork_cleanup_policy;
1196 
1197 	if ((retval = audit_alloc(p)))
1198 		goto bad_fork_cleanup_policy;
1199 	/* copy all the process information */
1200 	if ((retval = copy_semundo(clone_flags, p)))
1201 		goto bad_fork_cleanup_audit;
1202 	if ((retval = copy_files(clone_flags, p)))
1203 		goto bad_fork_cleanup_semundo;
1204 	if ((retval = copy_fs(clone_flags, p)))
1205 		goto bad_fork_cleanup_files;
1206 	if ((retval = copy_sighand(clone_flags, p)))
1207 		goto bad_fork_cleanup_fs;
1208 	if ((retval = copy_signal(clone_flags, p)))
1209 		goto bad_fork_cleanup_sighand;
1210 	if ((retval = copy_mm(clone_flags, p)))
1211 		goto bad_fork_cleanup_signal;
1212 	if ((retval = copy_namespaces(clone_flags, p)))
1213 		goto bad_fork_cleanup_mm;
1214 	if ((retval = copy_io(clone_flags, p)))
1215 		goto bad_fork_cleanup_namespaces;
1216 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1217 	if (retval)
1218 		goto bad_fork_cleanup_io;
1219 
1220 	if (pid != &init_struct_pid) {
1221 		retval = -ENOMEM;
1222 		pid = alloc_pid(p->nsproxy->pid_ns);
1223 		if (!pid)
1224 			goto bad_fork_cleanup_io;
1225 	}
1226 
1227 	p->pid = pid_nr(pid);
1228 	p->tgid = p->pid;
1229 	if (clone_flags & CLONE_THREAD)
1230 		p->tgid = current->tgid;
1231 
1232 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1233 	/*
1234 	 * Clear TID on mm_release()?
1235 	 */
1236 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1237 #ifdef CONFIG_BLOCK
1238 	p->plug = NULL;
1239 #endif
1240 #ifdef CONFIG_FUTEX
1241 	p->robust_list = NULL;
1242 #ifdef CONFIG_COMPAT
1243 	p->compat_robust_list = NULL;
1244 #endif
1245 	INIT_LIST_HEAD(&p->pi_state_list);
1246 	p->pi_state_cache = NULL;
1247 #endif
1248 	/*
1249 	 * sigaltstack should be cleared when sharing the same VM
1250 	 */
1251 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1252 		p->sas_ss_sp = p->sas_ss_size = 0;
1253 
1254 	/*
1255 	 * Syscall tracing and stepping should be turned off in the
1256 	 * child regardless of CLONE_PTRACE.
1257 	 */
1258 	user_disable_single_step(p);
1259 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1260 #ifdef TIF_SYSCALL_EMU
1261 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1262 #endif
1263 	clear_all_latency_tracing(p);
1264 
1265 	/* ok, now we should be set up.. */
1266 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1267 	p->pdeath_signal = 0;
1268 	p->exit_state = 0;
1269 
1270 	/*
1271 	 * Ok, make it visible to the rest of the system.
1272 	 * We dont wake it up yet.
1273 	 */
1274 	p->group_leader = p;
1275 	INIT_LIST_HEAD(&p->thread_group);
1276 
1277 	/* Now that the task is set up, run cgroup callbacks if
1278 	 * necessary. We need to run them before the task is visible
1279 	 * on the tasklist. */
1280 	cgroup_fork_callbacks(p);
1281 	cgroup_callbacks_done = 1;
1282 
1283 	/* Need tasklist lock for parent etc handling! */
1284 	write_lock_irq(&tasklist_lock);
1285 
1286 	/* CLONE_PARENT re-uses the old parent */
1287 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1288 		p->real_parent = current->real_parent;
1289 		p->parent_exec_id = current->parent_exec_id;
1290 	} else {
1291 		p->real_parent = current;
1292 		p->parent_exec_id = current->self_exec_id;
1293 	}
1294 
1295 	spin_lock(&current->sighand->siglock);
1296 
1297 	/*
1298 	 * Process group and session signals need to be delivered to just the
1299 	 * parent before the fork or both the parent and the child after the
1300 	 * fork. Restart if a signal comes in before we add the new process to
1301 	 * it's process group.
1302 	 * A fatal signal pending means that current will exit, so the new
1303 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1304  	 */
1305 	recalc_sigpending();
1306 	if (signal_pending(current)) {
1307 		spin_unlock(&current->sighand->siglock);
1308 		write_unlock_irq(&tasklist_lock);
1309 		retval = -ERESTARTNOINTR;
1310 		goto bad_fork_free_pid;
1311 	}
1312 
1313 	if (clone_flags & CLONE_THREAD) {
1314 		current->signal->nr_threads++;
1315 		atomic_inc(&current->signal->live);
1316 		atomic_inc(&current->signal->sigcnt);
1317 		p->group_leader = current->group_leader;
1318 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1319 	}
1320 
1321 	if (likely(p->pid)) {
1322 		tracehook_finish_clone(p, clone_flags, trace);
1323 
1324 		if (thread_group_leader(p)) {
1325 			if (is_child_reaper(pid))
1326 				p->nsproxy->pid_ns->child_reaper = p;
1327 
1328 			p->signal->leader_pid = pid;
1329 			p->signal->tty = tty_kref_get(current->signal->tty);
1330 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1331 			attach_pid(p, PIDTYPE_SID, task_session(current));
1332 			list_add_tail(&p->sibling, &p->real_parent->children);
1333 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1334 			__this_cpu_inc(process_counts);
1335 		}
1336 		attach_pid(p, PIDTYPE_PID, pid);
1337 		nr_threads++;
1338 	}
1339 
1340 	total_forks++;
1341 	spin_unlock(&current->sighand->siglock);
1342 	write_unlock_irq(&tasklist_lock);
1343 	proc_fork_connector(p);
1344 	cgroup_post_fork(p);
1345 	if (clone_flags & CLONE_THREAD)
1346 		threadgroup_fork_read_unlock(current);
1347 	perf_event_fork(p);
1348 	return p;
1349 
1350 bad_fork_free_pid:
1351 	if (pid != &init_struct_pid)
1352 		free_pid(pid);
1353 bad_fork_cleanup_io:
1354 	if (p->io_context)
1355 		exit_io_context(p);
1356 bad_fork_cleanup_namespaces:
1357 	exit_task_namespaces(p);
1358 bad_fork_cleanup_mm:
1359 	if (p->mm) {
1360 		task_lock(p);
1361 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1362 			atomic_dec(&p->mm->oom_disable_count);
1363 		task_unlock(p);
1364 		mmput(p->mm);
1365 	}
1366 bad_fork_cleanup_signal:
1367 	if (!(clone_flags & CLONE_THREAD))
1368 		free_signal_struct(p->signal);
1369 bad_fork_cleanup_sighand:
1370 	__cleanup_sighand(p->sighand);
1371 bad_fork_cleanup_fs:
1372 	exit_fs(p); /* blocking */
1373 bad_fork_cleanup_files:
1374 	exit_files(p); /* blocking */
1375 bad_fork_cleanup_semundo:
1376 	exit_sem(p);
1377 bad_fork_cleanup_audit:
1378 	audit_free(p);
1379 bad_fork_cleanup_policy:
1380 	perf_event_free_task(p);
1381 #ifdef CONFIG_NUMA
1382 	mpol_put(p->mempolicy);
1383 bad_fork_cleanup_cgroup:
1384 #endif
1385 	if (clone_flags & CLONE_THREAD)
1386 		threadgroup_fork_read_unlock(current);
1387 	cgroup_exit(p, cgroup_callbacks_done);
1388 	delayacct_tsk_free(p);
1389 	module_put(task_thread_info(p)->exec_domain->module);
1390 bad_fork_cleanup_count:
1391 	atomic_dec(&p->cred->user->processes);
1392 	exit_creds(p);
1393 bad_fork_free:
1394 	free_task(p);
1395 fork_out:
1396 	return ERR_PTR(retval);
1397 }
1398 
1399 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1400 {
1401 	memset(regs, 0, sizeof(struct pt_regs));
1402 	return regs;
1403 }
1404 
1405 static inline void init_idle_pids(struct pid_link *links)
1406 {
1407 	enum pid_type type;
1408 
1409 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1410 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1411 		links[type].pid = &init_struct_pid;
1412 	}
1413 }
1414 
1415 struct task_struct * __cpuinit fork_idle(int cpu)
1416 {
1417 	struct task_struct *task;
1418 	struct pt_regs regs;
1419 
1420 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1421 			    &init_struct_pid, 0);
1422 	if (!IS_ERR(task)) {
1423 		init_idle_pids(task->pids);
1424 		init_idle(task, cpu);
1425 	}
1426 
1427 	return task;
1428 }
1429 
1430 /*
1431  *  Ok, this is the main fork-routine.
1432  *
1433  * It copies the process, and if successful kick-starts
1434  * it and waits for it to finish using the VM if required.
1435  */
1436 long do_fork(unsigned long clone_flags,
1437 	      unsigned long stack_start,
1438 	      struct pt_regs *regs,
1439 	      unsigned long stack_size,
1440 	      int __user *parent_tidptr,
1441 	      int __user *child_tidptr)
1442 {
1443 	struct task_struct *p;
1444 	int trace = 0;
1445 	long nr;
1446 
1447 	/*
1448 	 * Do some preliminary argument and permissions checking before we
1449 	 * actually start allocating stuff
1450 	 */
1451 	if (clone_flags & CLONE_NEWUSER) {
1452 		if (clone_flags & CLONE_THREAD)
1453 			return -EINVAL;
1454 		/* hopefully this check will go away when userns support is
1455 		 * complete
1456 		 */
1457 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1458 				!capable(CAP_SETGID))
1459 			return -EPERM;
1460 	}
1461 
1462 	/*
1463 	 * When called from kernel_thread, don't do user tracing stuff.
1464 	 */
1465 	if (likely(user_mode(regs)))
1466 		trace = tracehook_prepare_clone(clone_flags);
1467 
1468 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1469 			 child_tidptr, NULL, trace);
1470 	/*
1471 	 * Do this prior waking up the new thread - the thread pointer
1472 	 * might get invalid after that point, if the thread exits quickly.
1473 	 */
1474 	if (!IS_ERR(p)) {
1475 		struct completion vfork;
1476 
1477 		trace_sched_process_fork(current, p);
1478 
1479 		nr = task_pid_vnr(p);
1480 
1481 		if (clone_flags & CLONE_PARENT_SETTID)
1482 			put_user(nr, parent_tidptr);
1483 
1484 		if (clone_flags & CLONE_VFORK) {
1485 			p->vfork_done = &vfork;
1486 			init_completion(&vfork);
1487 		}
1488 
1489 		audit_finish_fork(p);
1490 		tracehook_report_clone(regs, clone_flags, nr, p);
1491 
1492 		/*
1493 		 * We set PF_STARTING at creation in case tracing wants to
1494 		 * use this to distinguish a fully live task from one that
1495 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1496 		 * clear it and set the child going.
1497 		 */
1498 		p->flags &= ~PF_STARTING;
1499 
1500 		wake_up_new_task(p);
1501 
1502 		tracehook_report_clone_complete(trace, regs,
1503 						clone_flags, nr, p);
1504 
1505 		if (clone_flags & CLONE_VFORK) {
1506 			freezer_do_not_count();
1507 			wait_for_completion(&vfork);
1508 			freezer_count();
1509 			tracehook_report_vfork_done(p, nr);
1510 		}
1511 	} else {
1512 		nr = PTR_ERR(p);
1513 	}
1514 	return nr;
1515 }
1516 
1517 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1518 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1519 #endif
1520 
1521 static void sighand_ctor(void *data)
1522 {
1523 	struct sighand_struct *sighand = data;
1524 
1525 	spin_lock_init(&sighand->siglock);
1526 	init_waitqueue_head(&sighand->signalfd_wqh);
1527 }
1528 
1529 void __init proc_caches_init(void)
1530 {
1531 	sighand_cachep = kmem_cache_create("sighand_cache",
1532 			sizeof(struct sighand_struct), 0,
1533 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1534 			SLAB_NOTRACK, sighand_ctor);
1535 	signal_cachep = kmem_cache_create("signal_cache",
1536 			sizeof(struct signal_struct), 0,
1537 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1538 	files_cachep = kmem_cache_create("files_cache",
1539 			sizeof(struct files_struct), 0,
1540 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1541 	fs_cachep = kmem_cache_create("fs_cache",
1542 			sizeof(struct fs_struct), 0,
1543 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1544 	mm_cachep = kmem_cache_create("mm_struct",
1545 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1546 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1547 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1548 	mmap_init();
1549 }
1550 
1551 /*
1552  * Check constraints on flags passed to the unshare system call.
1553  */
1554 static int check_unshare_flags(unsigned long unshare_flags)
1555 {
1556 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1557 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1558 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1559 		return -EINVAL;
1560 	/*
1561 	 * Not implemented, but pretend it works if there is nothing to
1562 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1563 	 * needs to unshare vm.
1564 	 */
1565 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1566 		/* FIXME: get_task_mm() increments ->mm_users */
1567 		if (atomic_read(&current->mm->mm_users) > 1)
1568 			return -EINVAL;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 /*
1575  * Unshare the filesystem structure if it is being shared
1576  */
1577 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1578 {
1579 	struct fs_struct *fs = current->fs;
1580 
1581 	if (!(unshare_flags & CLONE_FS) || !fs)
1582 		return 0;
1583 
1584 	/* don't need lock here; in the worst case we'll do useless copy */
1585 	if (fs->users == 1)
1586 		return 0;
1587 
1588 	*new_fsp = copy_fs_struct(fs);
1589 	if (!*new_fsp)
1590 		return -ENOMEM;
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * Unshare file descriptor table if it is being shared
1597  */
1598 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1599 {
1600 	struct files_struct *fd = current->files;
1601 	int error = 0;
1602 
1603 	if ((unshare_flags & CLONE_FILES) &&
1604 	    (fd && atomic_read(&fd->count) > 1)) {
1605 		*new_fdp = dup_fd(fd, &error);
1606 		if (!*new_fdp)
1607 			return error;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * unshare allows a process to 'unshare' part of the process
1615  * context which was originally shared using clone.  copy_*
1616  * functions used by do_fork() cannot be used here directly
1617  * because they modify an inactive task_struct that is being
1618  * constructed. Here we are modifying the current, active,
1619  * task_struct.
1620  */
1621 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1622 {
1623 	struct fs_struct *fs, *new_fs = NULL;
1624 	struct files_struct *fd, *new_fd = NULL;
1625 	struct nsproxy *new_nsproxy = NULL;
1626 	int do_sysvsem = 0;
1627 	int err;
1628 
1629 	err = check_unshare_flags(unshare_flags);
1630 	if (err)
1631 		goto bad_unshare_out;
1632 
1633 	/*
1634 	 * If unsharing namespace, must also unshare filesystem information.
1635 	 */
1636 	if (unshare_flags & CLONE_NEWNS)
1637 		unshare_flags |= CLONE_FS;
1638 	/*
1639 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1640 	 * to a new ipc namespace, the semaphore arrays from the old
1641 	 * namespace are unreachable.
1642 	 */
1643 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1644 		do_sysvsem = 1;
1645 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1646 		goto bad_unshare_out;
1647 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1648 		goto bad_unshare_cleanup_fs;
1649 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1650 			new_fs)))
1651 		goto bad_unshare_cleanup_fd;
1652 
1653 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1654 		if (do_sysvsem) {
1655 			/*
1656 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1657 			 */
1658 			exit_sem(current);
1659 		}
1660 
1661 		if (new_nsproxy) {
1662 			switch_task_namespaces(current, new_nsproxy);
1663 			new_nsproxy = NULL;
1664 		}
1665 
1666 		task_lock(current);
1667 
1668 		if (new_fs) {
1669 			fs = current->fs;
1670 			spin_lock(&fs->lock);
1671 			current->fs = new_fs;
1672 			if (--fs->users)
1673 				new_fs = NULL;
1674 			else
1675 				new_fs = fs;
1676 			spin_unlock(&fs->lock);
1677 		}
1678 
1679 		if (new_fd) {
1680 			fd = current->files;
1681 			current->files = new_fd;
1682 			new_fd = fd;
1683 		}
1684 
1685 		task_unlock(current);
1686 	}
1687 
1688 	if (new_nsproxy)
1689 		put_nsproxy(new_nsproxy);
1690 
1691 bad_unshare_cleanup_fd:
1692 	if (new_fd)
1693 		put_files_struct(new_fd);
1694 
1695 bad_unshare_cleanup_fs:
1696 	if (new_fs)
1697 		free_fs_struct(new_fs);
1698 
1699 bad_unshare_out:
1700 	return err;
1701 }
1702 
1703 /*
1704  *	Helper to unshare the files of the current task.
1705  *	We don't want to expose copy_files internals to
1706  *	the exec layer of the kernel.
1707  */
1708 
1709 int unshare_files(struct files_struct **displaced)
1710 {
1711 	struct task_struct *task = current;
1712 	struct files_struct *copy = NULL;
1713 	int error;
1714 
1715 	error = unshare_fd(CLONE_FILES, &copy);
1716 	if (error || !copy) {
1717 		*displaced = NULL;
1718 		return error;
1719 	}
1720 	*displaced = task->files;
1721 	task_lock(task);
1722 	task->files = copy;
1723 	task_unlock(task);
1724 	return 0;
1725 }
1726