xref: /openbmc/linux/kernel/fork.c (revision 9b6f7e163cd0f468d1b9696b785659d3c27c8667)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack)
243 		tsk->stack_vm_area = find_vm_area(stack);
244 	return stack;
245 #else
246 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247 					     THREAD_SIZE_ORDER);
248 
249 	return page ? page_address(page) : NULL;
250 #endif
251 }
252 
253 static inline void free_thread_stack(struct task_struct *tsk)
254 {
255 #ifdef CONFIG_VMAP_STACK
256 	struct vm_struct *vm = task_stack_vm_area(tsk);
257 
258 	if (vm) {
259 		int i;
260 
261 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
262 			mod_memcg_page_state(vm->pages[i],
263 					     MEMCG_KERNEL_STACK_KB,
264 					     -(int)(PAGE_SIZE / 1024));
265 
266 			memcg_kmem_uncharge(vm->pages[i], 0);
267 		}
268 
269 		for (i = 0; i < NR_CACHED_STACKS; i++) {
270 			if (this_cpu_cmpxchg(cached_stacks[i],
271 					NULL, tsk->stack_vm_area) != NULL)
272 				continue;
273 
274 			return;
275 		}
276 
277 		vfree_atomic(tsk->stack);
278 		return;
279 	}
280 #endif
281 
282 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
283 }
284 # else
285 static struct kmem_cache *thread_stack_cache;
286 
287 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
288 						  int node)
289 {
290 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
291 }
292 
293 static void free_thread_stack(struct task_struct *tsk)
294 {
295 	kmem_cache_free(thread_stack_cache, tsk->stack);
296 }
297 
298 void thread_stack_cache_init(void)
299 {
300 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
301 					THREAD_SIZE, THREAD_SIZE, 0, 0,
302 					THREAD_SIZE, NULL);
303 	BUG_ON(thread_stack_cache == NULL);
304 }
305 # endif
306 #endif
307 
308 /* SLAB cache for signal_struct structures (tsk->signal) */
309 static struct kmem_cache *signal_cachep;
310 
311 /* SLAB cache for sighand_struct structures (tsk->sighand) */
312 struct kmem_cache *sighand_cachep;
313 
314 /* SLAB cache for files_struct structures (tsk->files) */
315 struct kmem_cache *files_cachep;
316 
317 /* SLAB cache for fs_struct structures (tsk->fs) */
318 struct kmem_cache *fs_cachep;
319 
320 /* SLAB cache for vm_area_struct structures */
321 static struct kmem_cache *vm_area_cachep;
322 
323 /* SLAB cache for mm_struct structures (tsk->mm) */
324 static struct kmem_cache *mm_cachep;
325 
326 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
327 {
328 	struct vm_area_struct *vma;
329 
330 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
331 	if (vma)
332 		vma_init(vma, mm);
333 	return vma;
334 }
335 
336 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
337 {
338 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
339 
340 	if (new) {
341 		*new = *orig;
342 		INIT_LIST_HEAD(&new->anon_vma_chain);
343 	}
344 	return new;
345 }
346 
347 void vm_area_free(struct vm_area_struct *vma)
348 {
349 	kmem_cache_free(vm_area_cachep, vma);
350 }
351 
352 static void account_kernel_stack(struct task_struct *tsk, int account)
353 {
354 	void *stack = task_stack_page(tsk);
355 	struct vm_struct *vm = task_stack_vm_area(tsk);
356 
357 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
358 
359 	if (vm) {
360 		int i;
361 
362 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
363 
364 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
365 			mod_zone_page_state(page_zone(vm->pages[i]),
366 					    NR_KERNEL_STACK_KB,
367 					    PAGE_SIZE / 1024 * account);
368 		}
369 	} else {
370 		/*
371 		 * All stack pages are in the same zone and belong to the
372 		 * same memcg.
373 		 */
374 		struct page *first_page = virt_to_page(stack);
375 
376 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
377 				    THREAD_SIZE / 1024 * account);
378 
379 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
380 				     account * (THREAD_SIZE / 1024));
381 	}
382 }
383 
384 static int memcg_charge_kernel_stack(struct task_struct *tsk)
385 {
386 #ifdef CONFIG_VMAP_STACK
387 	struct vm_struct *vm = task_stack_vm_area(tsk);
388 	int ret;
389 
390 	if (vm) {
391 		int i;
392 
393 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
394 			/*
395 			 * If memcg_kmem_charge() fails, page->mem_cgroup
396 			 * pointer is NULL, and both memcg_kmem_uncharge()
397 			 * and mod_memcg_page_state() in free_thread_stack()
398 			 * will ignore this page. So it's safe.
399 			 */
400 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
401 			if (ret)
402 				return ret;
403 
404 			mod_memcg_page_state(vm->pages[i],
405 					     MEMCG_KERNEL_STACK_KB,
406 					     PAGE_SIZE / 1024);
407 		}
408 	}
409 #endif
410 	return 0;
411 }
412 
413 static void release_task_stack(struct task_struct *tsk)
414 {
415 	if (WARN_ON(tsk->state != TASK_DEAD))
416 		return;  /* Better to leak the stack than to free prematurely */
417 
418 	account_kernel_stack(tsk, -1);
419 	arch_release_thread_stack(tsk->stack);
420 	free_thread_stack(tsk);
421 	tsk->stack = NULL;
422 #ifdef CONFIG_VMAP_STACK
423 	tsk->stack_vm_area = NULL;
424 #endif
425 }
426 
427 #ifdef CONFIG_THREAD_INFO_IN_TASK
428 void put_task_stack(struct task_struct *tsk)
429 {
430 	if (atomic_dec_and_test(&tsk->stack_refcount))
431 		release_task_stack(tsk);
432 }
433 #endif
434 
435 void free_task(struct task_struct *tsk)
436 {
437 #ifndef CONFIG_THREAD_INFO_IN_TASK
438 	/*
439 	 * The task is finally done with both the stack and thread_info,
440 	 * so free both.
441 	 */
442 	release_task_stack(tsk);
443 #else
444 	/*
445 	 * If the task had a separate stack allocation, it should be gone
446 	 * by now.
447 	 */
448 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
449 #endif
450 	rt_mutex_debug_task_free(tsk);
451 	ftrace_graph_exit_task(tsk);
452 	put_seccomp_filter(tsk);
453 	arch_release_task_struct(tsk);
454 	if (tsk->flags & PF_KTHREAD)
455 		free_kthread_struct(tsk);
456 	free_task_struct(tsk);
457 }
458 EXPORT_SYMBOL(free_task);
459 
460 #ifdef CONFIG_MMU
461 static __latent_entropy int dup_mmap(struct mm_struct *mm,
462 					struct mm_struct *oldmm)
463 {
464 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
465 	struct rb_node **rb_link, *rb_parent;
466 	int retval;
467 	unsigned long charge;
468 	LIST_HEAD(uf);
469 
470 	uprobe_start_dup_mmap();
471 	if (down_write_killable(&oldmm->mmap_sem)) {
472 		retval = -EINTR;
473 		goto fail_uprobe_end;
474 	}
475 	flush_cache_dup_mm(oldmm);
476 	uprobe_dup_mmap(oldmm, mm);
477 	/*
478 	 * Not linked in yet - no deadlock potential:
479 	 */
480 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
481 
482 	/* No ordering required: file already has been exposed. */
483 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
484 
485 	mm->total_vm = oldmm->total_vm;
486 	mm->data_vm = oldmm->data_vm;
487 	mm->exec_vm = oldmm->exec_vm;
488 	mm->stack_vm = oldmm->stack_vm;
489 
490 	rb_link = &mm->mm_rb.rb_node;
491 	rb_parent = NULL;
492 	pprev = &mm->mmap;
493 	retval = ksm_fork(mm, oldmm);
494 	if (retval)
495 		goto out;
496 	retval = khugepaged_fork(mm, oldmm);
497 	if (retval)
498 		goto out;
499 
500 	prev = NULL;
501 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
502 		struct file *file;
503 
504 		if (mpnt->vm_flags & VM_DONTCOPY) {
505 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
506 			continue;
507 		}
508 		charge = 0;
509 		/*
510 		 * Don't duplicate many vmas if we've been oom-killed (for
511 		 * example)
512 		 */
513 		if (fatal_signal_pending(current)) {
514 			retval = -EINTR;
515 			goto out;
516 		}
517 		if (mpnt->vm_flags & VM_ACCOUNT) {
518 			unsigned long len = vma_pages(mpnt);
519 
520 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
521 				goto fail_nomem;
522 			charge = len;
523 		}
524 		tmp = vm_area_dup(mpnt);
525 		if (!tmp)
526 			goto fail_nomem;
527 		retval = vma_dup_policy(mpnt, tmp);
528 		if (retval)
529 			goto fail_nomem_policy;
530 		tmp->vm_mm = mm;
531 		retval = dup_userfaultfd(tmp, &uf);
532 		if (retval)
533 			goto fail_nomem_anon_vma_fork;
534 		if (tmp->vm_flags & VM_WIPEONFORK) {
535 			/* VM_WIPEONFORK gets a clean slate in the child. */
536 			tmp->anon_vma = NULL;
537 			if (anon_vma_prepare(tmp))
538 				goto fail_nomem_anon_vma_fork;
539 		} else if (anon_vma_fork(tmp, mpnt))
540 			goto fail_nomem_anon_vma_fork;
541 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
542 		tmp->vm_next = tmp->vm_prev = NULL;
543 		file = tmp->vm_file;
544 		if (file) {
545 			struct inode *inode = file_inode(file);
546 			struct address_space *mapping = file->f_mapping;
547 
548 			get_file(file);
549 			if (tmp->vm_flags & VM_DENYWRITE)
550 				atomic_dec(&inode->i_writecount);
551 			i_mmap_lock_write(mapping);
552 			if (tmp->vm_flags & VM_SHARED)
553 				atomic_inc(&mapping->i_mmap_writable);
554 			flush_dcache_mmap_lock(mapping);
555 			/* insert tmp into the share list, just after mpnt */
556 			vma_interval_tree_insert_after(tmp, mpnt,
557 					&mapping->i_mmap);
558 			flush_dcache_mmap_unlock(mapping);
559 			i_mmap_unlock_write(mapping);
560 		}
561 
562 		/*
563 		 * Clear hugetlb-related page reserves for children. This only
564 		 * affects MAP_PRIVATE mappings. Faults generated by the child
565 		 * are not guaranteed to succeed, even if read-only
566 		 */
567 		if (is_vm_hugetlb_page(tmp))
568 			reset_vma_resv_huge_pages(tmp);
569 
570 		/*
571 		 * Link in the new vma and copy the page table entries.
572 		 */
573 		*pprev = tmp;
574 		pprev = &tmp->vm_next;
575 		tmp->vm_prev = prev;
576 		prev = tmp;
577 
578 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
579 		rb_link = &tmp->vm_rb.rb_right;
580 		rb_parent = &tmp->vm_rb;
581 
582 		mm->map_count++;
583 		if (!(tmp->vm_flags & VM_WIPEONFORK))
584 			retval = copy_page_range(mm, oldmm, mpnt);
585 
586 		if (tmp->vm_ops && tmp->vm_ops->open)
587 			tmp->vm_ops->open(tmp);
588 
589 		if (retval)
590 			goto out;
591 	}
592 	/* a new mm has just been created */
593 	retval = arch_dup_mmap(oldmm, mm);
594 out:
595 	up_write(&mm->mmap_sem);
596 	flush_tlb_mm(oldmm);
597 	up_write(&oldmm->mmap_sem);
598 	dup_userfaultfd_complete(&uf);
599 fail_uprobe_end:
600 	uprobe_end_dup_mmap();
601 	return retval;
602 fail_nomem_anon_vma_fork:
603 	mpol_put(vma_policy(tmp));
604 fail_nomem_policy:
605 	vm_area_free(tmp);
606 fail_nomem:
607 	retval = -ENOMEM;
608 	vm_unacct_memory(charge);
609 	goto out;
610 }
611 
612 static inline int mm_alloc_pgd(struct mm_struct *mm)
613 {
614 	mm->pgd = pgd_alloc(mm);
615 	if (unlikely(!mm->pgd))
616 		return -ENOMEM;
617 	return 0;
618 }
619 
620 static inline void mm_free_pgd(struct mm_struct *mm)
621 {
622 	pgd_free(mm, mm->pgd);
623 }
624 #else
625 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
626 {
627 	down_write(&oldmm->mmap_sem);
628 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
629 	up_write(&oldmm->mmap_sem);
630 	return 0;
631 }
632 #define mm_alloc_pgd(mm)	(0)
633 #define mm_free_pgd(mm)
634 #endif /* CONFIG_MMU */
635 
636 static void check_mm(struct mm_struct *mm)
637 {
638 	int i;
639 
640 	for (i = 0; i < NR_MM_COUNTERS; i++) {
641 		long x = atomic_long_read(&mm->rss_stat.count[i]);
642 
643 		if (unlikely(x))
644 			printk(KERN_ALERT "BUG: Bad rss-counter state "
645 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
646 	}
647 
648 	if (mm_pgtables_bytes(mm))
649 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
650 				mm_pgtables_bytes(mm));
651 
652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
653 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
654 #endif
655 }
656 
657 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
658 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
659 
660 /*
661  * Called when the last reference to the mm
662  * is dropped: either by a lazy thread or by
663  * mmput. Free the page directory and the mm.
664  */
665 void __mmdrop(struct mm_struct *mm)
666 {
667 	BUG_ON(mm == &init_mm);
668 	WARN_ON_ONCE(mm == current->mm);
669 	WARN_ON_ONCE(mm == current->active_mm);
670 	mm_free_pgd(mm);
671 	destroy_context(mm);
672 	hmm_mm_destroy(mm);
673 	mmu_notifier_mm_destroy(mm);
674 	check_mm(mm);
675 	put_user_ns(mm->user_ns);
676 	free_mm(mm);
677 }
678 EXPORT_SYMBOL_GPL(__mmdrop);
679 
680 static void mmdrop_async_fn(struct work_struct *work)
681 {
682 	struct mm_struct *mm;
683 
684 	mm = container_of(work, struct mm_struct, async_put_work);
685 	__mmdrop(mm);
686 }
687 
688 static void mmdrop_async(struct mm_struct *mm)
689 {
690 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
691 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
692 		schedule_work(&mm->async_put_work);
693 	}
694 }
695 
696 static inline void free_signal_struct(struct signal_struct *sig)
697 {
698 	taskstats_tgid_free(sig);
699 	sched_autogroup_exit(sig);
700 	/*
701 	 * __mmdrop is not safe to call from softirq context on x86 due to
702 	 * pgd_dtor so postpone it to the async context
703 	 */
704 	if (sig->oom_mm)
705 		mmdrop_async(sig->oom_mm);
706 	kmem_cache_free(signal_cachep, sig);
707 }
708 
709 static inline void put_signal_struct(struct signal_struct *sig)
710 {
711 	if (atomic_dec_and_test(&sig->sigcnt))
712 		free_signal_struct(sig);
713 }
714 
715 void __put_task_struct(struct task_struct *tsk)
716 {
717 	WARN_ON(!tsk->exit_state);
718 	WARN_ON(atomic_read(&tsk->usage));
719 	WARN_ON(tsk == current);
720 
721 	cgroup_free(tsk);
722 	task_numa_free(tsk);
723 	security_task_free(tsk);
724 	exit_creds(tsk);
725 	delayacct_tsk_free(tsk);
726 	put_signal_struct(tsk->signal);
727 
728 	if (!profile_handoff_task(tsk))
729 		free_task(tsk);
730 }
731 EXPORT_SYMBOL_GPL(__put_task_struct);
732 
733 void __init __weak arch_task_cache_init(void) { }
734 
735 /*
736  * set_max_threads
737  */
738 static void set_max_threads(unsigned int max_threads_suggested)
739 {
740 	u64 threads;
741 
742 	/*
743 	 * The number of threads shall be limited such that the thread
744 	 * structures may only consume a small part of the available memory.
745 	 */
746 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
747 		threads = MAX_THREADS;
748 	else
749 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
750 				    (u64) THREAD_SIZE * 8UL);
751 
752 	if (threads > max_threads_suggested)
753 		threads = max_threads_suggested;
754 
755 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
756 }
757 
758 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
759 /* Initialized by the architecture: */
760 int arch_task_struct_size __read_mostly;
761 #endif
762 
763 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
764 {
765 	/* Fetch thread_struct whitelist for the architecture. */
766 	arch_thread_struct_whitelist(offset, size);
767 
768 	/*
769 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
770 	 * adjust offset to position of thread_struct in task_struct.
771 	 */
772 	if (unlikely(*size == 0))
773 		*offset = 0;
774 	else
775 		*offset += offsetof(struct task_struct, thread);
776 }
777 
778 void __init fork_init(void)
779 {
780 	int i;
781 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
782 #ifndef ARCH_MIN_TASKALIGN
783 #define ARCH_MIN_TASKALIGN	0
784 #endif
785 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
786 	unsigned long useroffset, usersize;
787 
788 	/* create a slab on which task_structs can be allocated */
789 	task_struct_whitelist(&useroffset, &usersize);
790 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
791 			arch_task_struct_size, align,
792 			SLAB_PANIC|SLAB_ACCOUNT,
793 			useroffset, usersize, NULL);
794 #endif
795 
796 	/* do the arch specific task caches init */
797 	arch_task_cache_init();
798 
799 	set_max_threads(MAX_THREADS);
800 
801 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
802 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
803 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
804 		init_task.signal->rlim[RLIMIT_NPROC];
805 
806 	for (i = 0; i < UCOUNT_COUNTS; i++) {
807 		init_user_ns.ucount_max[i] = max_threads/2;
808 	}
809 
810 #ifdef CONFIG_VMAP_STACK
811 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
812 			  NULL, free_vm_stack_cache);
813 #endif
814 
815 	lockdep_init_task(&init_task);
816 }
817 
818 int __weak arch_dup_task_struct(struct task_struct *dst,
819 					       struct task_struct *src)
820 {
821 	*dst = *src;
822 	return 0;
823 }
824 
825 void set_task_stack_end_magic(struct task_struct *tsk)
826 {
827 	unsigned long *stackend;
828 
829 	stackend = end_of_stack(tsk);
830 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
831 }
832 
833 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
834 {
835 	struct task_struct *tsk;
836 	unsigned long *stack;
837 	struct vm_struct *stack_vm_area;
838 	int err;
839 
840 	if (node == NUMA_NO_NODE)
841 		node = tsk_fork_get_node(orig);
842 	tsk = alloc_task_struct_node(node);
843 	if (!tsk)
844 		return NULL;
845 
846 	stack = alloc_thread_stack_node(tsk, node);
847 	if (!stack)
848 		goto free_tsk;
849 
850 	if (memcg_charge_kernel_stack(tsk))
851 		goto free_stack;
852 
853 	stack_vm_area = task_stack_vm_area(tsk);
854 
855 	err = arch_dup_task_struct(tsk, orig);
856 
857 	/*
858 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
859 	 * sure they're properly initialized before using any stack-related
860 	 * functions again.
861 	 */
862 	tsk->stack = stack;
863 #ifdef CONFIG_VMAP_STACK
864 	tsk->stack_vm_area = stack_vm_area;
865 #endif
866 #ifdef CONFIG_THREAD_INFO_IN_TASK
867 	atomic_set(&tsk->stack_refcount, 1);
868 #endif
869 
870 	if (err)
871 		goto free_stack;
872 
873 #ifdef CONFIG_SECCOMP
874 	/*
875 	 * We must handle setting up seccomp filters once we're under
876 	 * the sighand lock in case orig has changed between now and
877 	 * then. Until then, filter must be NULL to avoid messing up
878 	 * the usage counts on the error path calling free_task.
879 	 */
880 	tsk->seccomp.filter = NULL;
881 #endif
882 
883 	setup_thread_stack(tsk, orig);
884 	clear_user_return_notifier(tsk);
885 	clear_tsk_need_resched(tsk);
886 	set_task_stack_end_magic(tsk);
887 
888 #ifdef CONFIG_STACKPROTECTOR
889 	tsk->stack_canary = get_random_canary();
890 #endif
891 
892 	/*
893 	 * One for us, one for whoever does the "release_task()" (usually
894 	 * parent)
895 	 */
896 	atomic_set(&tsk->usage, 2);
897 #ifdef CONFIG_BLK_DEV_IO_TRACE
898 	tsk->btrace_seq = 0;
899 #endif
900 	tsk->splice_pipe = NULL;
901 	tsk->task_frag.page = NULL;
902 	tsk->wake_q.next = NULL;
903 
904 	account_kernel_stack(tsk, 1);
905 
906 	kcov_task_init(tsk);
907 
908 #ifdef CONFIG_FAULT_INJECTION
909 	tsk->fail_nth = 0;
910 #endif
911 
912 #ifdef CONFIG_BLK_CGROUP
913 	tsk->throttle_queue = NULL;
914 	tsk->use_memdelay = 0;
915 #endif
916 
917 #ifdef CONFIG_MEMCG
918 	tsk->active_memcg = NULL;
919 #endif
920 	return tsk;
921 
922 free_stack:
923 	free_thread_stack(tsk);
924 free_tsk:
925 	free_task_struct(tsk);
926 	return NULL;
927 }
928 
929 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
930 
931 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
932 
933 static int __init coredump_filter_setup(char *s)
934 {
935 	default_dump_filter =
936 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
937 		MMF_DUMP_FILTER_MASK;
938 	return 1;
939 }
940 
941 __setup("coredump_filter=", coredump_filter_setup);
942 
943 #include <linux/init_task.h>
944 
945 static void mm_init_aio(struct mm_struct *mm)
946 {
947 #ifdef CONFIG_AIO
948 	spin_lock_init(&mm->ioctx_lock);
949 	mm->ioctx_table = NULL;
950 #endif
951 }
952 
953 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
954 {
955 #ifdef CONFIG_MEMCG
956 	mm->owner = p;
957 #endif
958 }
959 
960 static void mm_init_uprobes_state(struct mm_struct *mm)
961 {
962 #ifdef CONFIG_UPROBES
963 	mm->uprobes_state.xol_area = NULL;
964 #endif
965 }
966 
967 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
968 	struct user_namespace *user_ns)
969 {
970 	mm->mmap = NULL;
971 	mm->mm_rb = RB_ROOT;
972 	mm->vmacache_seqnum = 0;
973 	atomic_set(&mm->mm_users, 1);
974 	atomic_set(&mm->mm_count, 1);
975 	init_rwsem(&mm->mmap_sem);
976 	INIT_LIST_HEAD(&mm->mmlist);
977 	mm->core_state = NULL;
978 	mm_pgtables_bytes_init(mm);
979 	mm->map_count = 0;
980 	mm->locked_vm = 0;
981 	mm->pinned_vm = 0;
982 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
983 	spin_lock_init(&mm->page_table_lock);
984 	spin_lock_init(&mm->arg_lock);
985 	mm_init_cpumask(mm);
986 	mm_init_aio(mm);
987 	mm_init_owner(mm, p);
988 	RCU_INIT_POINTER(mm->exe_file, NULL);
989 	mmu_notifier_mm_init(mm);
990 	hmm_mm_init(mm);
991 	init_tlb_flush_pending(mm);
992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
993 	mm->pmd_huge_pte = NULL;
994 #endif
995 	mm_init_uprobes_state(mm);
996 
997 	if (current->mm) {
998 		mm->flags = current->mm->flags & MMF_INIT_MASK;
999 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1000 	} else {
1001 		mm->flags = default_dump_filter;
1002 		mm->def_flags = 0;
1003 	}
1004 
1005 	if (mm_alloc_pgd(mm))
1006 		goto fail_nopgd;
1007 
1008 	if (init_new_context(p, mm))
1009 		goto fail_nocontext;
1010 
1011 	mm->user_ns = get_user_ns(user_ns);
1012 	return mm;
1013 
1014 fail_nocontext:
1015 	mm_free_pgd(mm);
1016 fail_nopgd:
1017 	free_mm(mm);
1018 	return NULL;
1019 }
1020 
1021 /*
1022  * Allocate and initialize an mm_struct.
1023  */
1024 struct mm_struct *mm_alloc(void)
1025 {
1026 	struct mm_struct *mm;
1027 
1028 	mm = allocate_mm();
1029 	if (!mm)
1030 		return NULL;
1031 
1032 	memset(mm, 0, sizeof(*mm));
1033 	return mm_init(mm, current, current_user_ns());
1034 }
1035 
1036 static inline void __mmput(struct mm_struct *mm)
1037 {
1038 	VM_BUG_ON(atomic_read(&mm->mm_users));
1039 
1040 	uprobe_clear_state(mm);
1041 	exit_aio(mm);
1042 	ksm_exit(mm);
1043 	khugepaged_exit(mm); /* must run before exit_mmap */
1044 	exit_mmap(mm);
1045 	mm_put_huge_zero_page(mm);
1046 	set_mm_exe_file(mm, NULL);
1047 	if (!list_empty(&mm->mmlist)) {
1048 		spin_lock(&mmlist_lock);
1049 		list_del(&mm->mmlist);
1050 		spin_unlock(&mmlist_lock);
1051 	}
1052 	if (mm->binfmt)
1053 		module_put(mm->binfmt->module);
1054 	mmdrop(mm);
1055 }
1056 
1057 /*
1058  * Decrement the use count and release all resources for an mm.
1059  */
1060 void mmput(struct mm_struct *mm)
1061 {
1062 	might_sleep();
1063 
1064 	if (atomic_dec_and_test(&mm->mm_users))
1065 		__mmput(mm);
1066 }
1067 EXPORT_SYMBOL_GPL(mmput);
1068 
1069 #ifdef CONFIG_MMU
1070 static void mmput_async_fn(struct work_struct *work)
1071 {
1072 	struct mm_struct *mm = container_of(work, struct mm_struct,
1073 					    async_put_work);
1074 
1075 	__mmput(mm);
1076 }
1077 
1078 void mmput_async(struct mm_struct *mm)
1079 {
1080 	if (atomic_dec_and_test(&mm->mm_users)) {
1081 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1082 		schedule_work(&mm->async_put_work);
1083 	}
1084 }
1085 #endif
1086 
1087 /**
1088  * set_mm_exe_file - change a reference to the mm's executable file
1089  *
1090  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1091  *
1092  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1093  * invocations: in mmput() nobody alive left, in execve task is single
1094  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1095  * mm->exe_file, but does so without using set_mm_exe_file() in order
1096  * to do avoid the need for any locks.
1097  */
1098 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1099 {
1100 	struct file *old_exe_file;
1101 
1102 	/*
1103 	 * It is safe to dereference the exe_file without RCU as
1104 	 * this function is only called if nobody else can access
1105 	 * this mm -- see comment above for justification.
1106 	 */
1107 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1108 
1109 	if (new_exe_file)
1110 		get_file(new_exe_file);
1111 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1112 	if (old_exe_file)
1113 		fput(old_exe_file);
1114 }
1115 
1116 /**
1117  * get_mm_exe_file - acquire a reference to the mm's executable file
1118  *
1119  * Returns %NULL if mm has no associated executable file.
1120  * User must release file via fput().
1121  */
1122 struct file *get_mm_exe_file(struct mm_struct *mm)
1123 {
1124 	struct file *exe_file;
1125 
1126 	rcu_read_lock();
1127 	exe_file = rcu_dereference(mm->exe_file);
1128 	if (exe_file && !get_file_rcu(exe_file))
1129 		exe_file = NULL;
1130 	rcu_read_unlock();
1131 	return exe_file;
1132 }
1133 EXPORT_SYMBOL(get_mm_exe_file);
1134 
1135 /**
1136  * get_task_exe_file - acquire a reference to the task's executable file
1137  *
1138  * Returns %NULL if task's mm (if any) has no associated executable file or
1139  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1140  * User must release file via fput().
1141  */
1142 struct file *get_task_exe_file(struct task_struct *task)
1143 {
1144 	struct file *exe_file = NULL;
1145 	struct mm_struct *mm;
1146 
1147 	task_lock(task);
1148 	mm = task->mm;
1149 	if (mm) {
1150 		if (!(task->flags & PF_KTHREAD))
1151 			exe_file = get_mm_exe_file(mm);
1152 	}
1153 	task_unlock(task);
1154 	return exe_file;
1155 }
1156 EXPORT_SYMBOL(get_task_exe_file);
1157 
1158 /**
1159  * get_task_mm - acquire a reference to the task's mm
1160  *
1161  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1162  * this kernel workthread has transiently adopted a user mm with use_mm,
1163  * to do its AIO) is not set and if so returns a reference to it, after
1164  * bumping up the use count.  User must release the mm via mmput()
1165  * after use.  Typically used by /proc and ptrace.
1166  */
1167 struct mm_struct *get_task_mm(struct task_struct *task)
1168 {
1169 	struct mm_struct *mm;
1170 
1171 	task_lock(task);
1172 	mm = task->mm;
1173 	if (mm) {
1174 		if (task->flags & PF_KTHREAD)
1175 			mm = NULL;
1176 		else
1177 			mmget(mm);
1178 	}
1179 	task_unlock(task);
1180 	return mm;
1181 }
1182 EXPORT_SYMBOL_GPL(get_task_mm);
1183 
1184 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1185 {
1186 	struct mm_struct *mm;
1187 	int err;
1188 
1189 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1190 	if (err)
1191 		return ERR_PTR(err);
1192 
1193 	mm = get_task_mm(task);
1194 	if (mm && mm != current->mm &&
1195 			!ptrace_may_access(task, mode)) {
1196 		mmput(mm);
1197 		mm = ERR_PTR(-EACCES);
1198 	}
1199 	mutex_unlock(&task->signal->cred_guard_mutex);
1200 
1201 	return mm;
1202 }
1203 
1204 static void complete_vfork_done(struct task_struct *tsk)
1205 {
1206 	struct completion *vfork;
1207 
1208 	task_lock(tsk);
1209 	vfork = tsk->vfork_done;
1210 	if (likely(vfork)) {
1211 		tsk->vfork_done = NULL;
1212 		complete(vfork);
1213 	}
1214 	task_unlock(tsk);
1215 }
1216 
1217 static int wait_for_vfork_done(struct task_struct *child,
1218 				struct completion *vfork)
1219 {
1220 	int killed;
1221 
1222 	freezer_do_not_count();
1223 	killed = wait_for_completion_killable(vfork);
1224 	freezer_count();
1225 
1226 	if (killed) {
1227 		task_lock(child);
1228 		child->vfork_done = NULL;
1229 		task_unlock(child);
1230 	}
1231 
1232 	put_task_struct(child);
1233 	return killed;
1234 }
1235 
1236 /* Please note the differences between mmput and mm_release.
1237  * mmput is called whenever we stop holding onto a mm_struct,
1238  * error success whatever.
1239  *
1240  * mm_release is called after a mm_struct has been removed
1241  * from the current process.
1242  *
1243  * This difference is important for error handling, when we
1244  * only half set up a mm_struct for a new process and need to restore
1245  * the old one.  Because we mmput the new mm_struct before
1246  * restoring the old one. . .
1247  * Eric Biederman 10 January 1998
1248  */
1249 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1250 {
1251 	/* Get rid of any futexes when releasing the mm */
1252 #ifdef CONFIG_FUTEX
1253 	if (unlikely(tsk->robust_list)) {
1254 		exit_robust_list(tsk);
1255 		tsk->robust_list = NULL;
1256 	}
1257 #ifdef CONFIG_COMPAT
1258 	if (unlikely(tsk->compat_robust_list)) {
1259 		compat_exit_robust_list(tsk);
1260 		tsk->compat_robust_list = NULL;
1261 	}
1262 #endif
1263 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1264 		exit_pi_state_list(tsk);
1265 #endif
1266 
1267 	uprobe_free_utask(tsk);
1268 
1269 	/* Get rid of any cached register state */
1270 	deactivate_mm(tsk, mm);
1271 
1272 	/*
1273 	 * Signal userspace if we're not exiting with a core dump
1274 	 * because we want to leave the value intact for debugging
1275 	 * purposes.
1276 	 */
1277 	if (tsk->clear_child_tid) {
1278 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1279 		    atomic_read(&mm->mm_users) > 1) {
1280 			/*
1281 			 * We don't check the error code - if userspace has
1282 			 * not set up a proper pointer then tough luck.
1283 			 */
1284 			put_user(0, tsk->clear_child_tid);
1285 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1286 					1, NULL, NULL, 0, 0);
1287 		}
1288 		tsk->clear_child_tid = NULL;
1289 	}
1290 
1291 	/*
1292 	 * All done, finally we can wake up parent and return this mm to him.
1293 	 * Also kthread_stop() uses this completion for synchronization.
1294 	 */
1295 	if (tsk->vfork_done)
1296 		complete_vfork_done(tsk);
1297 }
1298 
1299 /*
1300  * Allocate a new mm structure and copy contents from the
1301  * mm structure of the passed in task structure.
1302  */
1303 static struct mm_struct *dup_mm(struct task_struct *tsk)
1304 {
1305 	struct mm_struct *mm, *oldmm = current->mm;
1306 	int err;
1307 
1308 	mm = allocate_mm();
1309 	if (!mm)
1310 		goto fail_nomem;
1311 
1312 	memcpy(mm, oldmm, sizeof(*mm));
1313 
1314 	if (!mm_init(mm, tsk, mm->user_ns))
1315 		goto fail_nomem;
1316 
1317 	err = dup_mmap(mm, oldmm);
1318 	if (err)
1319 		goto free_pt;
1320 
1321 	mm->hiwater_rss = get_mm_rss(mm);
1322 	mm->hiwater_vm = mm->total_vm;
1323 
1324 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1325 		goto free_pt;
1326 
1327 	return mm;
1328 
1329 free_pt:
1330 	/* don't put binfmt in mmput, we haven't got module yet */
1331 	mm->binfmt = NULL;
1332 	mmput(mm);
1333 
1334 fail_nomem:
1335 	return NULL;
1336 }
1337 
1338 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1339 {
1340 	struct mm_struct *mm, *oldmm;
1341 	int retval;
1342 
1343 	tsk->min_flt = tsk->maj_flt = 0;
1344 	tsk->nvcsw = tsk->nivcsw = 0;
1345 #ifdef CONFIG_DETECT_HUNG_TASK
1346 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1347 	tsk->last_switch_time = 0;
1348 #endif
1349 
1350 	tsk->mm = NULL;
1351 	tsk->active_mm = NULL;
1352 
1353 	/*
1354 	 * Are we cloning a kernel thread?
1355 	 *
1356 	 * We need to steal a active VM for that..
1357 	 */
1358 	oldmm = current->mm;
1359 	if (!oldmm)
1360 		return 0;
1361 
1362 	/* initialize the new vmacache entries */
1363 	vmacache_flush(tsk);
1364 
1365 	if (clone_flags & CLONE_VM) {
1366 		mmget(oldmm);
1367 		mm = oldmm;
1368 		goto good_mm;
1369 	}
1370 
1371 	retval = -ENOMEM;
1372 	mm = dup_mm(tsk);
1373 	if (!mm)
1374 		goto fail_nomem;
1375 
1376 good_mm:
1377 	tsk->mm = mm;
1378 	tsk->active_mm = mm;
1379 	return 0;
1380 
1381 fail_nomem:
1382 	return retval;
1383 }
1384 
1385 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1386 {
1387 	struct fs_struct *fs = current->fs;
1388 	if (clone_flags & CLONE_FS) {
1389 		/* tsk->fs is already what we want */
1390 		spin_lock(&fs->lock);
1391 		if (fs->in_exec) {
1392 			spin_unlock(&fs->lock);
1393 			return -EAGAIN;
1394 		}
1395 		fs->users++;
1396 		spin_unlock(&fs->lock);
1397 		return 0;
1398 	}
1399 	tsk->fs = copy_fs_struct(fs);
1400 	if (!tsk->fs)
1401 		return -ENOMEM;
1402 	return 0;
1403 }
1404 
1405 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1406 {
1407 	struct files_struct *oldf, *newf;
1408 	int error = 0;
1409 
1410 	/*
1411 	 * A background process may not have any files ...
1412 	 */
1413 	oldf = current->files;
1414 	if (!oldf)
1415 		goto out;
1416 
1417 	if (clone_flags & CLONE_FILES) {
1418 		atomic_inc(&oldf->count);
1419 		goto out;
1420 	}
1421 
1422 	newf = dup_fd(oldf, &error);
1423 	if (!newf)
1424 		goto out;
1425 
1426 	tsk->files = newf;
1427 	error = 0;
1428 out:
1429 	return error;
1430 }
1431 
1432 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 #ifdef CONFIG_BLOCK
1435 	struct io_context *ioc = current->io_context;
1436 	struct io_context *new_ioc;
1437 
1438 	if (!ioc)
1439 		return 0;
1440 	/*
1441 	 * Share io context with parent, if CLONE_IO is set
1442 	 */
1443 	if (clone_flags & CLONE_IO) {
1444 		ioc_task_link(ioc);
1445 		tsk->io_context = ioc;
1446 	} else if (ioprio_valid(ioc->ioprio)) {
1447 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1448 		if (unlikely(!new_ioc))
1449 			return -ENOMEM;
1450 
1451 		new_ioc->ioprio = ioc->ioprio;
1452 		put_io_context(new_ioc);
1453 	}
1454 #endif
1455 	return 0;
1456 }
1457 
1458 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1459 {
1460 	struct sighand_struct *sig;
1461 
1462 	if (clone_flags & CLONE_SIGHAND) {
1463 		atomic_inc(&current->sighand->count);
1464 		return 0;
1465 	}
1466 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1467 	rcu_assign_pointer(tsk->sighand, sig);
1468 	if (!sig)
1469 		return -ENOMEM;
1470 
1471 	atomic_set(&sig->count, 1);
1472 	spin_lock_irq(&current->sighand->siglock);
1473 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1474 	spin_unlock_irq(&current->sighand->siglock);
1475 	return 0;
1476 }
1477 
1478 void __cleanup_sighand(struct sighand_struct *sighand)
1479 {
1480 	if (atomic_dec_and_test(&sighand->count)) {
1481 		signalfd_cleanup(sighand);
1482 		/*
1483 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1484 		 * without an RCU grace period, see __lock_task_sighand().
1485 		 */
1486 		kmem_cache_free(sighand_cachep, sighand);
1487 	}
1488 }
1489 
1490 #ifdef CONFIG_POSIX_TIMERS
1491 /*
1492  * Initialize POSIX timer handling for a thread group.
1493  */
1494 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1495 {
1496 	unsigned long cpu_limit;
1497 
1498 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1499 	if (cpu_limit != RLIM_INFINITY) {
1500 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1501 		sig->cputimer.running = true;
1502 	}
1503 
1504 	/* The timer lists. */
1505 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1506 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1507 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1508 }
1509 #else
1510 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1511 #endif
1512 
1513 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1514 {
1515 	struct signal_struct *sig;
1516 
1517 	if (clone_flags & CLONE_THREAD)
1518 		return 0;
1519 
1520 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1521 	tsk->signal = sig;
1522 	if (!sig)
1523 		return -ENOMEM;
1524 
1525 	sig->nr_threads = 1;
1526 	atomic_set(&sig->live, 1);
1527 	atomic_set(&sig->sigcnt, 1);
1528 
1529 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1530 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1531 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1532 
1533 	init_waitqueue_head(&sig->wait_chldexit);
1534 	sig->curr_target = tsk;
1535 	init_sigpending(&sig->shared_pending);
1536 	INIT_HLIST_HEAD(&sig->multiprocess);
1537 	seqlock_init(&sig->stats_lock);
1538 	prev_cputime_init(&sig->prev_cputime);
1539 
1540 #ifdef CONFIG_POSIX_TIMERS
1541 	INIT_LIST_HEAD(&sig->posix_timers);
1542 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1543 	sig->real_timer.function = it_real_fn;
1544 #endif
1545 
1546 	task_lock(current->group_leader);
1547 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1548 	task_unlock(current->group_leader);
1549 
1550 	posix_cpu_timers_init_group(sig);
1551 
1552 	tty_audit_fork(sig);
1553 	sched_autogroup_fork(sig);
1554 
1555 	sig->oom_score_adj = current->signal->oom_score_adj;
1556 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1557 
1558 	mutex_init(&sig->cred_guard_mutex);
1559 
1560 	return 0;
1561 }
1562 
1563 static void copy_seccomp(struct task_struct *p)
1564 {
1565 #ifdef CONFIG_SECCOMP
1566 	/*
1567 	 * Must be called with sighand->lock held, which is common to
1568 	 * all threads in the group. Holding cred_guard_mutex is not
1569 	 * needed because this new task is not yet running and cannot
1570 	 * be racing exec.
1571 	 */
1572 	assert_spin_locked(&current->sighand->siglock);
1573 
1574 	/* Ref-count the new filter user, and assign it. */
1575 	get_seccomp_filter(current);
1576 	p->seccomp = current->seccomp;
1577 
1578 	/*
1579 	 * Explicitly enable no_new_privs here in case it got set
1580 	 * between the task_struct being duplicated and holding the
1581 	 * sighand lock. The seccomp state and nnp must be in sync.
1582 	 */
1583 	if (task_no_new_privs(current))
1584 		task_set_no_new_privs(p);
1585 
1586 	/*
1587 	 * If the parent gained a seccomp mode after copying thread
1588 	 * flags and between before we held the sighand lock, we have
1589 	 * to manually enable the seccomp thread flag here.
1590 	 */
1591 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1592 		set_tsk_thread_flag(p, TIF_SECCOMP);
1593 #endif
1594 }
1595 
1596 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1597 {
1598 	current->clear_child_tid = tidptr;
1599 
1600 	return task_pid_vnr(current);
1601 }
1602 
1603 static void rt_mutex_init_task(struct task_struct *p)
1604 {
1605 	raw_spin_lock_init(&p->pi_lock);
1606 #ifdef CONFIG_RT_MUTEXES
1607 	p->pi_waiters = RB_ROOT_CACHED;
1608 	p->pi_top_task = NULL;
1609 	p->pi_blocked_on = NULL;
1610 #endif
1611 }
1612 
1613 #ifdef CONFIG_POSIX_TIMERS
1614 /*
1615  * Initialize POSIX timer handling for a single task.
1616  */
1617 static void posix_cpu_timers_init(struct task_struct *tsk)
1618 {
1619 	tsk->cputime_expires.prof_exp = 0;
1620 	tsk->cputime_expires.virt_exp = 0;
1621 	tsk->cputime_expires.sched_exp = 0;
1622 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1623 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1624 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1625 }
1626 #else
1627 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1628 #endif
1629 
1630 static inline void init_task_pid_links(struct task_struct *task)
1631 {
1632 	enum pid_type type;
1633 
1634 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1635 		INIT_HLIST_NODE(&task->pid_links[type]);
1636 	}
1637 }
1638 
1639 static inline void
1640 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1641 {
1642 	if (type == PIDTYPE_PID)
1643 		task->thread_pid = pid;
1644 	else
1645 		task->signal->pids[type] = pid;
1646 }
1647 
1648 static inline void rcu_copy_process(struct task_struct *p)
1649 {
1650 #ifdef CONFIG_PREEMPT_RCU
1651 	p->rcu_read_lock_nesting = 0;
1652 	p->rcu_read_unlock_special.s = 0;
1653 	p->rcu_blocked_node = NULL;
1654 	INIT_LIST_HEAD(&p->rcu_node_entry);
1655 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1656 #ifdef CONFIG_TASKS_RCU
1657 	p->rcu_tasks_holdout = false;
1658 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1659 	p->rcu_tasks_idle_cpu = -1;
1660 #endif /* #ifdef CONFIG_TASKS_RCU */
1661 }
1662 
1663 /*
1664  * This creates a new process as a copy of the old one,
1665  * but does not actually start it yet.
1666  *
1667  * It copies the registers, and all the appropriate
1668  * parts of the process environment (as per the clone
1669  * flags). The actual kick-off is left to the caller.
1670  */
1671 static __latent_entropy struct task_struct *copy_process(
1672 					unsigned long clone_flags,
1673 					unsigned long stack_start,
1674 					unsigned long stack_size,
1675 					int __user *child_tidptr,
1676 					struct pid *pid,
1677 					int trace,
1678 					unsigned long tls,
1679 					int node)
1680 {
1681 	int retval;
1682 	struct task_struct *p;
1683 	struct multiprocess_signals delayed;
1684 
1685 	/*
1686 	 * Don't allow sharing the root directory with processes in a different
1687 	 * namespace
1688 	 */
1689 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1690 		return ERR_PTR(-EINVAL);
1691 
1692 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1693 		return ERR_PTR(-EINVAL);
1694 
1695 	/*
1696 	 * Thread groups must share signals as well, and detached threads
1697 	 * can only be started up within the thread group.
1698 	 */
1699 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1700 		return ERR_PTR(-EINVAL);
1701 
1702 	/*
1703 	 * Shared signal handlers imply shared VM. By way of the above,
1704 	 * thread groups also imply shared VM. Blocking this case allows
1705 	 * for various simplifications in other code.
1706 	 */
1707 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	/*
1711 	 * Siblings of global init remain as zombies on exit since they are
1712 	 * not reaped by their parent (swapper). To solve this and to avoid
1713 	 * multi-rooted process trees, prevent global and container-inits
1714 	 * from creating siblings.
1715 	 */
1716 	if ((clone_flags & CLONE_PARENT) &&
1717 				current->signal->flags & SIGNAL_UNKILLABLE)
1718 		return ERR_PTR(-EINVAL);
1719 
1720 	/*
1721 	 * If the new process will be in a different pid or user namespace
1722 	 * do not allow it to share a thread group with the forking task.
1723 	 */
1724 	if (clone_flags & CLONE_THREAD) {
1725 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1726 		    (task_active_pid_ns(current) !=
1727 				current->nsproxy->pid_ns_for_children))
1728 			return ERR_PTR(-EINVAL);
1729 	}
1730 
1731 	/*
1732 	 * Force any signals received before this point to be delivered
1733 	 * before the fork happens.  Collect up signals sent to multiple
1734 	 * processes that happen during the fork and delay them so that
1735 	 * they appear to happen after the fork.
1736 	 */
1737 	sigemptyset(&delayed.signal);
1738 	INIT_HLIST_NODE(&delayed.node);
1739 
1740 	spin_lock_irq(&current->sighand->siglock);
1741 	if (!(clone_flags & CLONE_THREAD))
1742 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1743 	recalc_sigpending();
1744 	spin_unlock_irq(&current->sighand->siglock);
1745 	retval = -ERESTARTNOINTR;
1746 	if (signal_pending(current))
1747 		goto fork_out;
1748 
1749 	retval = -ENOMEM;
1750 	p = dup_task_struct(current, node);
1751 	if (!p)
1752 		goto fork_out;
1753 
1754 	/*
1755 	 * This _must_ happen before we call free_task(), i.e. before we jump
1756 	 * to any of the bad_fork_* labels. This is to avoid freeing
1757 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1758 	 * kernel threads (PF_KTHREAD).
1759 	 */
1760 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1761 	/*
1762 	 * Clear TID on mm_release()?
1763 	 */
1764 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1765 
1766 	ftrace_graph_init_task(p);
1767 
1768 	rt_mutex_init_task(p);
1769 
1770 #ifdef CONFIG_PROVE_LOCKING
1771 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1772 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1773 #endif
1774 	retval = -EAGAIN;
1775 	if (atomic_read(&p->real_cred->user->processes) >=
1776 			task_rlimit(p, RLIMIT_NPROC)) {
1777 		if (p->real_cred->user != INIT_USER &&
1778 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1779 			goto bad_fork_free;
1780 	}
1781 	current->flags &= ~PF_NPROC_EXCEEDED;
1782 
1783 	retval = copy_creds(p, clone_flags);
1784 	if (retval < 0)
1785 		goto bad_fork_free;
1786 
1787 	/*
1788 	 * If multiple threads are within copy_process(), then this check
1789 	 * triggers too late. This doesn't hurt, the check is only there
1790 	 * to stop root fork bombs.
1791 	 */
1792 	retval = -EAGAIN;
1793 	if (nr_threads >= max_threads)
1794 		goto bad_fork_cleanup_count;
1795 
1796 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1797 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1798 	p->flags |= PF_FORKNOEXEC;
1799 	INIT_LIST_HEAD(&p->children);
1800 	INIT_LIST_HEAD(&p->sibling);
1801 	rcu_copy_process(p);
1802 	p->vfork_done = NULL;
1803 	spin_lock_init(&p->alloc_lock);
1804 
1805 	init_sigpending(&p->pending);
1806 
1807 	p->utime = p->stime = p->gtime = 0;
1808 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1809 	p->utimescaled = p->stimescaled = 0;
1810 #endif
1811 	prev_cputime_init(&p->prev_cputime);
1812 
1813 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1814 	seqcount_init(&p->vtime.seqcount);
1815 	p->vtime.starttime = 0;
1816 	p->vtime.state = VTIME_INACTIVE;
1817 #endif
1818 
1819 #if defined(SPLIT_RSS_COUNTING)
1820 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1821 #endif
1822 
1823 	p->default_timer_slack_ns = current->timer_slack_ns;
1824 
1825 	task_io_accounting_init(&p->ioac);
1826 	acct_clear_integrals(p);
1827 
1828 	posix_cpu_timers_init(p);
1829 
1830 	p->start_time = ktime_get_ns();
1831 	p->real_start_time = ktime_get_boot_ns();
1832 	p->io_context = NULL;
1833 	audit_set_context(p, NULL);
1834 	cgroup_fork(p);
1835 #ifdef CONFIG_NUMA
1836 	p->mempolicy = mpol_dup(p->mempolicy);
1837 	if (IS_ERR(p->mempolicy)) {
1838 		retval = PTR_ERR(p->mempolicy);
1839 		p->mempolicy = NULL;
1840 		goto bad_fork_cleanup_threadgroup_lock;
1841 	}
1842 #endif
1843 #ifdef CONFIG_CPUSETS
1844 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1845 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1846 	seqcount_init(&p->mems_allowed_seq);
1847 #endif
1848 #ifdef CONFIG_TRACE_IRQFLAGS
1849 	p->irq_events = 0;
1850 	p->hardirqs_enabled = 0;
1851 	p->hardirq_enable_ip = 0;
1852 	p->hardirq_enable_event = 0;
1853 	p->hardirq_disable_ip = _THIS_IP_;
1854 	p->hardirq_disable_event = 0;
1855 	p->softirqs_enabled = 1;
1856 	p->softirq_enable_ip = _THIS_IP_;
1857 	p->softirq_enable_event = 0;
1858 	p->softirq_disable_ip = 0;
1859 	p->softirq_disable_event = 0;
1860 	p->hardirq_context = 0;
1861 	p->softirq_context = 0;
1862 #endif
1863 
1864 	p->pagefault_disabled = 0;
1865 
1866 #ifdef CONFIG_LOCKDEP
1867 	p->lockdep_depth = 0; /* no locks held yet */
1868 	p->curr_chain_key = 0;
1869 	p->lockdep_recursion = 0;
1870 	lockdep_init_task(p);
1871 #endif
1872 
1873 #ifdef CONFIG_DEBUG_MUTEXES
1874 	p->blocked_on = NULL; /* not blocked yet */
1875 #endif
1876 #ifdef CONFIG_BCACHE
1877 	p->sequential_io	= 0;
1878 	p->sequential_io_avg	= 0;
1879 #endif
1880 
1881 	/* Perform scheduler related setup. Assign this task to a CPU. */
1882 	retval = sched_fork(clone_flags, p);
1883 	if (retval)
1884 		goto bad_fork_cleanup_policy;
1885 
1886 	retval = perf_event_init_task(p);
1887 	if (retval)
1888 		goto bad_fork_cleanup_policy;
1889 	retval = audit_alloc(p);
1890 	if (retval)
1891 		goto bad_fork_cleanup_perf;
1892 	/* copy all the process information */
1893 	shm_init_task(p);
1894 	retval = security_task_alloc(p, clone_flags);
1895 	if (retval)
1896 		goto bad_fork_cleanup_audit;
1897 	retval = copy_semundo(clone_flags, p);
1898 	if (retval)
1899 		goto bad_fork_cleanup_security;
1900 	retval = copy_files(clone_flags, p);
1901 	if (retval)
1902 		goto bad_fork_cleanup_semundo;
1903 	retval = copy_fs(clone_flags, p);
1904 	if (retval)
1905 		goto bad_fork_cleanup_files;
1906 	retval = copy_sighand(clone_flags, p);
1907 	if (retval)
1908 		goto bad_fork_cleanup_fs;
1909 	retval = copy_signal(clone_flags, p);
1910 	if (retval)
1911 		goto bad_fork_cleanup_sighand;
1912 	retval = copy_mm(clone_flags, p);
1913 	if (retval)
1914 		goto bad_fork_cleanup_signal;
1915 	retval = copy_namespaces(clone_flags, p);
1916 	if (retval)
1917 		goto bad_fork_cleanup_mm;
1918 	retval = copy_io(clone_flags, p);
1919 	if (retval)
1920 		goto bad_fork_cleanup_namespaces;
1921 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1922 	if (retval)
1923 		goto bad_fork_cleanup_io;
1924 
1925 	if (pid != &init_struct_pid) {
1926 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1927 		if (IS_ERR(pid)) {
1928 			retval = PTR_ERR(pid);
1929 			goto bad_fork_cleanup_thread;
1930 		}
1931 	}
1932 
1933 #ifdef CONFIG_BLOCK
1934 	p->plug = NULL;
1935 #endif
1936 #ifdef CONFIG_FUTEX
1937 	p->robust_list = NULL;
1938 #ifdef CONFIG_COMPAT
1939 	p->compat_robust_list = NULL;
1940 #endif
1941 	INIT_LIST_HEAD(&p->pi_state_list);
1942 	p->pi_state_cache = NULL;
1943 #endif
1944 	/*
1945 	 * sigaltstack should be cleared when sharing the same VM
1946 	 */
1947 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1948 		sas_ss_reset(p);
1949 
1950 	/*
1951 	 * Syscall tracing and stepping should be turned off in the
1952 	 * child regardless of CLONE_PTRACE.
1953 	 */
1954 	user_disable_single_step(p);
1955 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1956 #ifdef TIF_SYSCALL_EMU
1957 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1958 #endif
1959 	clear_all_latency_tracing(p);
1960 
1961 	/* ok, now we should be set up.. */
1962 	p->pid = pid_nr(pid);
1963 	if (clone_flags & CLONE_THREAD) {
1964 		p->exit_signal = -1;
1965 		p->group_leader = current->group_leader;
1966 		p->tgid = current->tgid;
1967 	} else {
1968 		if (clone_flags & CLONE_PARENT)
1969 			p->exit_signal = current->group_leader->exit_signal;
1970 		else
1971 			p->exit_signal = (clone_flags & CSIGNAL);
1972 		p->group_leader = p;
1973 		p->tgid = p->pid;
1974 	}
1975 
1976 	p->nr_dirtied = 0;
1977 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1978 	p->dirty_paused_when = 0;
1979 
1980 	p->pdeath_signal = 0;
1981 	INIT_LIST_HEAD(&p->thread_group);
1982 	p->task_works = NULL;
1983 
1984 	cgroup_threadgroup_change_begin(current);
1985 	/*
1986 	 * Ensure that the cgroup subsystem policies allow the new process to be
1987 	 * forked. It should be noted the the new process's css_set can be changed
1988 	 * between here and cgroup_post_fork() if an organisation operation is in
1989 	 * progress.
1990 	 */
1991 	retval = cgroup_can_fork(p);
1992 	if (retval)
1993 		goto bad_fork_free_pid;
1994 
1995 	/*
1996 	 * Make it visible to the rest of the system, but dont wake it up yet.
1997 	 * Need tasklist lock for parent etc handling!
1998 	 */
1999 	write_lock_irq(&tasklist_lock);
2000 
2001 	/* CLONE_PARENT re-uses the old parent */
2002 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2003 		p->real_parent = current->real_parent;
2004 		p->parent_exec_id = current->parent_exec_id;
2005 	} else {
2006 		p->real_parent = current;
2007 		p->parent_exec_id = current->self_exec_id;
2008 	}
2009 
2010 	klp_copy_process(p);
2011 
2012 	spin_lock(&current->sighand->siglock);
2013 
2014 	/*
2015 	 * Copy seccomp details explicitly here, in case they were changed
2016 	 * before holding sighand lock.
2017 	 */
2018 	copy_seccomp(p);
2019 
2020 	rseq_fork(p, clone_flags);
2021 
2022 	/* Don't start children in a dying pid namespace */
2023 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2024 		retval = -ENOMEM;
2025 		goto bad_fork_cancel_cgroup;
2026 	}
2027 
2028 	/* Let kill terminate clone/fork in the middle */
2029 	if (fatal_signal_pending(current)) {
2030 		retval = -EINTR;
2031 		goto bad_fork_cancel_cgroup;
2032 	}
2033 
2034 
2035 	init_task_pid_links(p);
2036 	if (likely(p->pid)) {
2037 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2038 
2039 		init_task_pid(p, PIDTYPE_PID, pid);
2040 		if (thread_group_leader(p)) {
2041 			init_task_pid(p, PIDTYPE_TGID, pid);
2042 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2043 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2044 
2045 			if (is_child_reaper(pid)) {
2046 				ns_of_pid(pid)->child_reaper = p;
2047 				p->signal->flags |= SIGNAL_UNKILLABLE;
2048 			}
2049 			p->signal->shared_pending.signal = delayed.signal;
2050 			p->signal->tty = tty_kref_get(current->signal->tty);
2051 			/*
2052 			 * Inherit has_child_subreaper flag under the same
2053 			 * tasklist_lock with adding child to the process tree
2054 			 * for propagate_has_child_subreaper optimization.
2055 			 */
2056 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2057 							 p->real_parent->signal->is_child_subreaper;
2058 			list_add_tail(&p->sibling, &p->real_parent->children);
2059 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2060 			attach_pid(p, PIDTYPE_TGID);
2061 			attach_pid(p, PIDTYPE_PGID);
2062 			attach_pid(p, PIDTYPE_SID);
2063 			__this_cpu_inc(process_counts);
2064 		} else {
2065 			current->signal->nr_threads++;
2066 			atomic_inc(&current->signal->live);
2067 			atomic_inc(&current->signal->sigcnt);
2068 			task_join_group_stop(p);
2069 			list_add_tail_rcu(&p->thread_group,
2070 					  &p->group_leader->thread_group);
2071 			list_add_tail_rcu(&p->thread_node,
2072 					  &p->signal->thread_head);
2073 		}
2074 		attach_pid(p, PIDTYPE_PID);
2075 		nr_threads++;
2076 	}
2077 	total_forks++;
2078 	hlist_del_init(&delayed.node);
2079 	spin_unlock(&current->sighand->siglock);
2080 	syscall_tracepoint_update(p);
2081 	write_unlock_irq(&tasklist_lock);
2082 
2083 	proc_fork_connector(p);
2084 	cgroup_post_fork(p);
2085 	cgroup_threadgroup_change_end(current);
2086 	perf_event_fork(p);
2087 
2088 	trace_task_newtask(p, clone_flags);
2089 	uprobe_copy_process(p, clone_flags);
2090 
2091 	return p;
2092 
2093 bad_fork_cancel_cgroup:
2094 	spin_unlock(&current->sighand->siglock);
2095 	write_unlock_irq(&tasklist_lock);
2096 	cgroup_cancel_fork(p);
2097 bad_fork_free_pid:
2098 	cgroup_threadgroup_change_end(current);
2099 	if (pid != &init_struct_pid)
2100 		free_pid(pid);
2101 bad_fork_cleanup_thread:
2102 	exit_thread(p);
2103 bad_fork_cleanup_io:
2104 	if (p->io_context)
2105 		exit_io_context(p);
2106 bad_fork_cleanup_namespaces:
2107 	exit_task_namespaces(p);
2108 bad_fork_cleanup_mm:
2109 	if (p->mm)
2110 		mmput(p->mm);
2111 bad_fork_cleanup_signal:
2112 	if (!(clone_flags & CLONE_THREAD))
2113 		free_signal_struct(p->signal);
2114 bad_fork_cleanup_sighand:
2115 	__cleanup_sighand(p->sighand);
2116 bad_fork_cleanup_fs:
2117 	exit_fs(p); /* blocking */
2118 bad_fork_cleanup_files:
2119 	exit_files(p); /* blocking */
2120 bad_fork_cleanup_semundo:
2121 	exit_sem(p);
2122 bad_fork_cleanup_security:
2123 	security_task_free(p);
2124 bad_fork_cleanup_audit:
2125 	audit_free(p);
2126 bad_fork_cleanup_perf:
2127 	perf_event_free_task(p);
2128 bad_fork_cleanup_policy:
2129 	lockdep_free_task(p);
2130 #ifdef CONFIG_NUMA
2131 	mpol_put(p->mempolicy);
2132 bad_fork_cleanup_threadgroup_lock:
2133 #endif
2134 	delayacct_tsk_free(p);
2135 bad_fork_cleanup_count:
2136 	atomic_dec(&p->cred->user->processes);
2137 	exit_creds(p);
2138 bad_fork_free:
2139 	p->state = TASK_DEAD;
2140 	put_task_stack(p);
2141 	free_task(p);
2142 fork_out:
2143 	spin_lock_irq(&current->sighand->siglock);
2144 	hlist_del_init(&delayed.node);
2145 	spin_unlock_irq(&current->sighand->siglock);
2146 	return ERR_PTR(retval);
2147 }
2148 
2149 static inline void init_idle_pids(struct task_struct *idle)
2150 {
2151 	enum pid_type type;
2152 
2153 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2154 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2155 		init_task_pid(idle, type, &init_struct_pid);
2156 	}
2157 }
2158 
2159 struct task_struct *fork_idle(int cpu)
2160 {
2161 	struct task_struct *task;
2162 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2163 			    cpu_to_node(cpu));
2164 	if (!IS_ERR(task)) {
2165 		init_idle_pids(task);
2166 		init_idle(task, cpu);
2167 	}
2168 
2169 	return task;
2170 }
2171 
2172 /*
2173  *  Ok, this is the main fork-routine.
2174  *
2175  * It copies the process, and if successful kick-starts
2176  * it and waits for it to finish using the VM if required.
2177  */
2178 long _do_fork(unsigned long clone_flags,
2179 	      unsigned long stack_start,
2180 	      unsigned long stack_size,
2181 	      int __user *parent_tidptr,
2182 	      int __user *child_tidptr,
2183 	      unsigned long tls)
2184 {
2185 	struct completion vfork;
2186 	struct pid *pid;
2187 	struct task_struct *p;
2188 	int trace = 0;
2189 	long nr;
2190 
2191 	/*
2192 	 * Determine whether and which event to report to ptracer.  When
2193 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2194 	 * requested, no event is reported; otherwise, report if the event
2195 	 * for the type of forking is enabled.
2196 	 */
2197 	if (!(clone_flags & CLONE_UNTRACED)) {
2198 		if (clone_flags & CLONE_VFORK)
2199 			trace = PTRACE_EVENT_VFORK;
2200 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2201 			trace = PTRACE_EVENT_CLONE;
2202 		else
2203 			trace = PTRACE_EVENT_FORK;
2204 
2205 		if (likely(!ptrace_event_enabled(current, trace)))
2206 			trace = 0;
2207 	}
2208 
2209 	p = copy_process(clone_flags, stack_start, stack_size,
2210 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2211 	add_latent_entropy();
2212 
2213 	if (IS_ERR(p))
2214 		return PTR_ERR(p);
2215 
2216 	/*
2217 	 * Do this prior waking up the new thread - the thread pointer
2218 	 * might get invalid after that point, if the thread exits quickly.
2219 	 */
2220 	trace_sched_process_fork(current, p);
2221 
2222 	pid = get_task_pid(p, PIDTYPE_PID);
2223 	nr = pid_vnr(pid);
2224 
2225 	if (clone_flags & CLONE_PARENT_SETTID)
2226 		put_user(nr, parent_tidptr);
2227 
2228 	if (clone_flags & CLONE_VFORK) {
2229 		p->vfork_done = &vfork;
2230 		init_completion(&vfork);
2231 		get_task_struct(p);
2232 	}
2233 
2234 	wake_up_new_task(p);
2235 
2236 	/* forking complete and child started to run, tell ptracer */
2237 	if (unlikely(trace))
2238 		ptrace_event_pid(trace, pid);
2239 
2240 	if (clone_flags & CLONE_VFORK) {
2241 		if (!wait_for_vfork_done(p, &vfork))
2242 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2243 	}
2244 
2245 	put_pid(pid);
2246 	return nr;
2247 }
2248 
2249 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2250 /* For compatibility with architectures that call do_fork directly rather than
2251  * using the syscall entry points below. */
2252 long do_fork(unsigned long clone_flags,
2253 	      unsigned long stack_start,
2254 	      unsigned long stack_size,
2255 	      int __user *parent_tidptr,
2256 	      int __user *child_tidptr)
2257 {
2258 	return _do_fork(clone_flags, stack_start, stack_size,
2259 			parent_tidptr, child_tidptr, 0);
2260 }
2261 #endif
2262 
2263 /*
2264  * Create a kernel thread.
2265  */
2266 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2267 {
2268 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2269 		(unsigned long)arg, NULL, NULL, 0);
2270 }
2271 
2272 #ifdef __ARCH_WANT_SYS_FORK
2273 SYSCALL_DEFINE0(fork)
2274 {
2275 #ifdef CONFIG_MMU
2276 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2277 #else
2278 	/* can not support in nommu mode */
2279 	return -EINVAL;
2280 #endif
2281 }
2282 #endif
2283 
2284 #ifdef __ARCH_WANT_SYS_VFORK
2285 SYSCALL_DEFINE0(vfork)
2286 {
2287 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2288 			0, NULL, NULL, 0);
2289 }
2290 #endif
2291 
2292 #ifdef __ARCH_WANT_SYS_CLONE
2293 #ifdef CONFIG_CLONE_BACKWARDS
2294 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2295 		 int __user *, parent_tidptr,
2296 		 unsigned long, tls,
2297 		 int __user *, child_tidptr)
2298 #elif defined(CONFIG_CLONE_BACKWARDS2)
2299 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2300 		 int __user *, parent_tidptr,
2301 		 int __user *, child_tidptr,
2302 		 unsigned long, tls)
2303 #elif defined(CONFIG_CLONE_BACKWARDS3)
2304 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2305 		int, stack_size,
2306 		int __user *, parent_tidptr,
2307 		int __user *, child_tidptr,
2308 		unsigned long, tls)
2309 #else
2310 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2311 		 int __user *, parent_tidptr,
2312 		 int __user *, child_tidptr,
2313 		 unsigned long, tls)
2314 #endif
2315 {
2316 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2317 }
2318 #endif
2319 
2320 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2321 {
2322 	struct task_struct *leader, *parent, *child;
2323 	int res;
2324 
2325 	read_lock(&tasklist_lock);
2326 	leader = top = top->group_leader;
2327 down:
2328 	for_each_thread(leader, parent) {
2329 		list_for_each_entry(child, &parent->children, sibling) {
2330 			res = visitor(child, data);
2331 			if (res) {
2332 				if (res < 0)
2333 					goto out;
2334 				leader = child;
2335 				goto down;
2336 			}
2337 up:
2338 			;
2339 		}
2340 	}
2341 
2342 	if (leader != top) {
2343 		child = leader;
2344 		parent = child->real_parent;
2345 		leader = parent->group_leader;
2346 		goto up;
2347 	}
2348 out:
2349 	read_unlock(&tasklist_lock);
2350 }
2351 
2352 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2353 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2354 #endif
2355 
2356 static void sighand_ctor(void *data)
2357 {
2358 	struct sighand_struct *sighand = data;
2359 
2360 	spin_lock_init(&sighand->siglock);
2361 	init_waitqueue_head(&sighand->signalfd_wqh);
2362 }
2363 
2364 void __init proc_caches_init(void)
2365 {
2366 	unsigned int mm_size;
2367 
2368 	sighand_cachep = kmem_cache_create("sighand_cache",
2369 			sizeof(struct sighand_struct), 0,
2370 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2371 			SLAB_ACCOUNT, sighand_ctor);
2372 	signal_cachep = kmem_cache_create("signal_cache",
2373 			sizeof(struct signal_struct), 0,
2374 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2375 			NULL);
2376 	files_cachep = kmem_cache_create("files_cache",
2377 			sizeof(struct files_struct), 0,
2378 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2379 			NULL);
2380 	fs_cachep = kmem_cache_create("fs_cache",
2381 			sizeof(struct fs_struct), 0,
2382 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2383 			NULL);
2384 
2385 	/*
2386 	 * The mm_cpumask is located at the end of mm_struct, and is
2387 	 * dynamically sized based on the maximum CPU number this system
2388 	 * can have, taking hotplug into account (nr_cpu_ids).
2389 	 */
2390 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2391 
2392 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2393 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2394 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2395 			offsetof(struct mm_struct, saved_auxv),
2396 			sizeof_field(struct mm_struct, saved_auxv),
2397 			NULL);
2398 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2399 	mmap_init();
2400 	nsproxy_cache_init();
2401 }
2402 
2403 /*
2404  * Check constraints on flags passed to the unshare system call.
2405  */
2406 static int check_unshare_flags(unsigned long unshare_flags)
2407 {
2408 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2409 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2410 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2411 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2412 		return -EINVAL;
2413 	/*
2414 	 * Not implemented, but pretend it works if there is nothing
2415 	 * to unshare.  Note that unsharing the address space or the
2416 	 * signal handlers also need to unshare the signal queues (aka
2417 	 * CLONE_THREAD).
2418 	 */
2419 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2420 		if (!thread_group_empty(current))
2421 			return -EINVAL;
2422 	}
2423 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2424 		if (atomic_read(&current->sighand->count) > 1)
2425 			return -EINVAL;
2426 	}
2427 	if (unshare_flags & CLONE_VM) {
2428 		if (!current_is_single_threaded())
2429 			return -EINVAL;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 /*
2436  * Unshare the filesystem structure if it is being shared
2437  */
2438 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2439 {
2440 	struct fs_struct *fs = current->fs;
2441 
2442 	if (!(unshare_flags & CLONE_FS) || !fs)
2443 		return 0;
2444 
2445 	/* don't need lock here; in the worst case we'll do useless copy */
2446 	if (fs->users == 1)
2447 		return 0;
2448 
2449 	*new_fsp = copy_fs_struct(fs);
2450 	if (!*new_fsp)
2451 		return -ENOMEM;
2452 
2453 	return 0;
2454 }
2455 
2456 /*
2457  * Unshare file descriptor table if it is being shared
2458  */
2459 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2460 {
2461 	struct files_struct *fd = current->files;
2462 	int error = 0;
2463 
2464 	if ((unshare_flags & CLONE_FILES) &&
2465 	    (fd && atomic_read(&fd->count) > 1)) {
2466 		*new_fdp = dup_fd(fd, &error);
2467 		if (!*new_fdp)
2468 			return error;
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 /*
2475  * unshare allows a process to 'unshare' part of the process
2476  * context which was originally shared using clone.  copy_*
2477  * functions used by do_fork() cannot be used here directly
2478  * because they modify an inactive task_struct that is being
2479  * constructed. Here we are modifying the current, active,
2480  * task_struct.
2481  */
2482 int ksys_unshare(unsigned long unshare_flags)
2483 {
2484 	struct fs_struct *fs, *new_fs = NULL;
2485 	struct files_struct *fd, *new_fd = NULL;
2486 	struct cred *new_cred = NULL;
2487 	struct nsproxy *new_nsproxy = NULL;
2488 	int do_sysvsem = 0;
2489 	int err;
2490 
2491 	/*
2492 	 * If unsharing a user namespace must also unshare the thread group
2493 	 * and unshare the filesystem root and working directories.
2494 	 */
2495 	if (unshare_flags & CLONE_NEWUSER)
2496 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2497 	/*
2498 	 * If unsharing vm, must also unshare signal handlers.
2499 	 */
2500 	if (unshare_flags & CLONE_VM)
2501 		unshare_flags |= CLONE_SIGHAND;
2502 	/*
2503 	 * If unsharing a signal handlers, must also unshare the signal queues.
2504 	 */
2505 	if (unshare_flags & CLONE_SIGHAND)
2506 		unshare_flags |= CLONE_THREAD;
2507 	/*
2508 	 * If unsharing namespace, must also unshare filesystem information.
2509 	 */
2510 	if (unshare_flags & CLONE_NEWNS)
2511 		unshare_flags |= CLONE_FS;
2512 
2513 	err = check_unshare_flags(unshare_flags);
2514 	if (err)
2515 		goto bad_unshare_out;
2516 	/*
2517 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2518 	 * to a new ipc namespace, the semaphore arrays from the old
2519 	 * namespace are unreachable.
2520 	 */
2521 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2522 		do_sysvsem = 1;
2523 	err = unshare_fs(unshare_flags, &new_fs);
2524 	if (err)
2525 		goto bad_unshare_out;
2526 	err = unshare_fd(unshare_flags, &new_fd);
2527 	if (err)
2528 		goto bad_unshare_cleanup_fs;
2529 	err = unshare_userns(unshare_flags, &new_cred);
2530 	if (err)
2531 		goto bad_unshare_cleanup_fd;
2532 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2533 					 new_cred, new_fs);
2534 	if (err)
2535 		goto bad_unshare_cleanup_cred;
2536 
2537 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2538 		if (do_sysvsem) {
2539 			/*
2540 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2541 			 */
2542 			exit_sem(current);
2543 		}
2544 		if (unshare_flags & CLONE_NEWIPC) {
2545 			/* Orphan segments in old ns (see sem above). */
2546 			exit_shm(current);
2547 			shm_init_task(current);
2548 		}
2549 
2550 		if (new_nsproxy)
2551 			switch_task_namespaces(current, new_nsproxy);
2552 
2553 		task_lock(current);
2554 
2555 		if (new_fs) {
2556 			fs = current->fs;
2557 			spin_lock(&fs->lock);
2558 			current->fs = new_fs;
2559 			if (--fs->users)
2560 				new_fs = NULL;
2561 			else
2562 				new_fs = fs;
2563 			spin_unlock(&fs->lock);
2564 		}
2565 
2566 		if (new_fd) {
2567 			fd = current->files;
2568 			current->files = new_fd;
2569 			new_fd = fd;
2570 		}
2571 
2572 		task_unlock(current);
2573 
2574 		if (new_cred) {
2575 			/* Install the new user namespace */
2576 			commit_creds(new_cred);
2577 			new_cred = NULL;
2578 		}
2579 	}
2580 
2581 	perf_event_namespaces(current);
2582 
2583 bad_unshare_cleanup_cred:
2584 	if (new_cred)
2585 		put_cred(new_cred);
2586 bad_unshare_cleanup_fd:
2587 	if (new_fd)
2588 		put_files_struct(new_fd);
2589 
2590 bad_unshare_cleanup_fs:
2591 	if (new_fs)
2592 		free_fs_struct(new_fs);
2593 
2594 bad_unshare_out:
2595 	return err;
2596 }
2597 
2598 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2599 {
2600 	return ksys_unshare(unshare_flags);
2601 }
2602 
2603 /*
2604  *	Helper to unshare the files of the current task.
2605  *	We don't want to expose copy_files internals to
2606  *	the exec layer of the kernel.
2607  */
2608 
2609 int unshare_files(struct files_struct **displaced)
2610 {
2611 	struct task_struct *task = current;
2612 	struct files_struct *copy = NULL;
2613 	int error;
2614 
2615 	error = unshare_fd(CLONE_FILES, &copy);
2616 	if (error || !copy) {
2617 		*displaced = NULL;
2618 		return error;
2619 	}
2620 	*displaced = task->files;
2621 	task_lock(task);
2622 	task->files = copy;
2623 	task_unlock(task);
2624 	return 0;
2625 }
2626 
2627 int sysctl_max_threads(struct ctl_table *table, int write,
2628 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2629 {
2630 	struct ctl_table t;
2631 	int ret;
2632 	int threads = max_threads;
2633 	int min = MIN_THREADS;
2634 	int max = MAX_THREADS;
2635 
2636 	t = *table;
2637 	t.data = &threads;
2638 	t.extra1 = &min;
2639 	t.extra2 = &max;
2640 
2641 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2642 	if (ret || !write)
2643 		return ret;
2644 
2645 	set_max_threads(threads);
2646 
2647 	return 0;
2648 }
2649