xref: /openbmc/linux/kernel/fork.c (revision 778d3b0ff0654ad7092bf823fd32010066b12365)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76 
77 #include <trace/events/sched.h>
78 
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;	/* Handle normal Linux uptimes. */
83 int nr_threads; 		/* The idle threads do not count.. */
84 
85 int max_threads;		/* tunable limit on nr_threads */
86 
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90 
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 	return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98 
99 int nr_processes(void)
100 {
101 	int cpu;
102 	int total = 0;
103 
104 	for_each_possible_cpu(cpu)
105 		total += per_cpu(process_counts, cpu);
106 
107 	return total;
108 }
109 
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node)		\
112 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk)			\
114 		kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117 
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 						  int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 	gfp_t mask = GFP_KERNEL;
126 #endif
127 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128 
129 	return page ? page_address(page) : NULL;
130 }
131 
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137 
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140 
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143 
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146 
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149 
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152 
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155 
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 	struct zone *zone = page_zone(virt_to_page(ti));
159 
160 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162 
163 void free_task(struct task_struct *tsk)
164 {
165 	prop_local_destroy_single(&tsk->dirties);
166 	account_kernel_stack(tsk->stack, -1);
167 	free_thread_info(tsk->stack);
168 	rt_mutex_debug_task_free(tsk);
169 	ftrace_graph_exit_task(tsk);
170 	free_task_struct(tsk);
171 }
172 EXPORT_SYMBOL(free_task);
173 
174 static inline void free_signal_struct(struct signal_struct *sig)
175 {
176 	taskstats_tgid_free(sig);
177 	sched_autogroup_exit(sig);
178 	kmem_cache_free(signal_cachep, sig);
179 }
180 
181 static inline void put_signal_struct(struct signal_struct *sig)
182 {
183 	if (atomic_dec_and_test(&sig->sigcnt))
184 		free_signal_struct(sig);
185 }
186 
187 void __put_task_struct(struct task_struct *tsk)
188 {
189 	WARN_ON(!tsk->exit_state);
190 	WARN_ON(atomic_read(&tsk->usage));
191 	WARN_ON(tsk == current);
192 
193 	exit_creds(tsk);
194 	delayacct_tsk_free(tsk);
195 	put_signal_struct(tsk->signal);
196 
197 	if (!profile_handoff_task(tsk))
198 		free_task(tsk);
199 }
200 EXPORT_SYMBOL_GPL(__put_task_struct);
201 
202 /*
203  * macro override instead of weak attribute alias, to workaround
204  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205  */
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
209 
210 void __init fork_init(unsigned long mempages)
211 {
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
215 #endif
216 	/* create a slab on which task_structs can be allocated */
217 	task_struct_cachep =
218 		kmem_cache_create("task_struct", sizeof(struct task_struct),
219 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
221 
222 	/* do the arch specific task caches init */
223 	arch_task_cache_init();
224 
225 	/*
226 	 * The default maximum number of threads is set to a safe
227 	 * value: the thread structures can take up at most half
228 	 * of memory.
229 	 */
230 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
231 
232 	/*
233 	 * we need to allow at least 20 threads to boot a system
234 	 */
235 	if(max_threads < 20)
236 		max_threads = 20;
237 
238 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 		init_task.signal->rlim[RLIMIT_NPROC];
242 }
243 
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 					       struct task_struct *src)
246 {
247 	*dst = *src;
248 	return 0;
249 }
250 
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
252 {
253 	struct task_struct *tsk;
254 	struct thread_info *ti;
255 	unsigned long *stackend;
256 	int node = tsk_fork_get_node(orig);
257 	int err;
258 
259 	prepare_to_copy(orig);
260 
261 	tsk = alloc_task_struct_node(node);
262 	if (!tsk)
263 		return NULL;
264 
265 	ti = alloc_thread_info_node(tsk, node);
266 	if (!ti) {
267 		free_task_struct(tsk);
268 		return NULL;
269 	}
270 
271  	err = arch_dup_task_struct(tsk, orig);
272 	if (err)
273 		goto out;
274 
275 	tsk->stack = ti;
276 
277 	err = prop_local_init_single(&tsk->dirties);
278 	if (err)
279 		goto out;
280 
281 	setup_thread_stack(tsk, orig);
282 	clear_user_return_notifier(tsk);
283 	clear_tsk_need_resched(tsk);
284 	stackend = end_of_stack(tsk);
285 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
286 
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 	tsk->stack_canary = get_random_int();
289 #endif
290 
291 	/* One for us, one for whoever does the "release_task()" (usually parent) */
292 	atomic_set(&tsk->usage,2);
293 #ifdef CONFIG_BLK_DEV_IO_TRACE
294 	tsk->btrace_seq = 0;
295 #endif
296 	tsk->splice_pipe = NULL;
297 
298 	account_kernel_stack(ti, 1);
299 
300 	return tsk;
301 
302 out:
303 	free_thread_info(ti);
304 	free_task_struct(tsk);
305 	return NULL;
306 }
307 
308 #ifdef CONFIG_MMU
309 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
310 {
311 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
312 	struct rb_node **rb_link, *rb_parent;
313 	int retval;
314 	unsigned long charge;
315 	struct mempolicy *pol;
316 
317 	down_write(&oldmm->mmap_sem);
318 	flush_cache_dup_mm(oldmm);
319 	/*
320 	 * Not linked in yet - no deadlock potential:
321 	 */
322 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
323 
324 	mm->locked_vm = 0;
325 	mm->mmap = NULL;
326 	mm->mmap_cache = NULL;
327 	mm->free_area_cache = oldmm->mmap_base;
328 	mm->cached_hole_size = ~0UL;
329 	mm->map_count = 0;
330 	cpumask_clear(mm_cpumask(mm));
331 	mm->mm_rb = RB_ROOT;
332 	rb_link = &mm->mm_rb.rb_node;
333 	rb_parent = NULL;
334 	pprev = &mm->mmap;
335 	retval = ksm_fork(mm, oldmm);
336 	if (retval)
337 		goto out;
338 	retval = khugepaged_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 
342 	prev = NULL;
343 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
344 		struct file *file;
345 
346 		if (mpnt->vm_flags & VM_DONTCOPY) {
347 			long pages = vma_pages(mpnt);
348 			mm->total_vm -= pages;
349 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
350 								-pages);
351 			continue;
352 		}
353 		charge = 0;
354 		if (mpnt->vm_flags & VM_ACCOUNT) {
355 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
356 			if (security_vm_enough_memory(len))
357 				goto fail_nomem;
358 			charge = len;
359 		}
360 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
361 		if (!tmp)
362 			goto fail_nomem;
363 		*tmp = *mpnt;
364 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
365 		pol = mpol_dup(vma_policy(mpnt));
366 		retval = PTR_ERR(pol);
367 		if (IS_ERR(pol))
368 			goto fail_nomem_policy;
369 		vma_set_policy(tmp, pol);
370 		tmp->vm_mm = mm;
371 		if (anon_vma_fork(tmp, mpnt))
372 			goto fail_nomem_anon_vma_fork;
373 		tmp->vm_flags &= ~VM_LOCKED;
374 		tmp->vm_next = tmp->vm_prev = NULL;
375 		file = tmp->vm_file;
376 		if (file) {
377 			struct inode *inode = file->f_path.dentry->d_inode;
378 			struct address_space *mapping = file->f_mapping;
379 
380 			get_file(file);
381 			if (tmp->vm_flags & VM_DENYWRITE)
382 				atomic_dec(&inode->i_writecount);
383 			mutex_lock(&mapping->i_mmap_mutex);
384 			if (tmp->vm_flags & VM_SHARED)
385 				mapping->i_mmap_writable++;
386 			flush_dcache_mmap_lock(mapping);
387 			/* insert tmp into the share list, just after mpnt */
388 			vma_prio_tree_add(tmp, mpnt);
389 			flush_dcache_mmap_unlock(mapping);
390 			mutex_unlock(&mapping->i_mmap_mutex);
391 		}
392 
393 		/*
394 		 * Clear hugetlb-related page reserves for children. This only
395 		 * affects MAP_PRIVATE mappings. Faults generated by the child
396 		 * are not guaranteed to succeed, even if read-only
397 		 */
398 		if (is_vm_hugetlb_page(tmp))
399 			reset_vma_resv_huge_pages(tmp);
400 
401 		/*
402 		 * Link in the new vma and copy the page table entries.
403 		 */
404 		*pprev = tmp;
405 		pprev = &tmp->vm_next;
406 		tmp->vm_prev = prev;
407 		prev = tmp;
408 
409 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
410 		rb_link = &tmp->vm_rb.rb_right;
411 		rb_parent = &tmp->vm_rb;
412 
413 		mm->map_count++;
414 		retval = copy_page_range(mm, oldmm, mpnt);
415 
416 		if (tmp->vm_ops && tmp->vm_ops->open)
417 			tmp->vm_ops->open(tmp);
418 
419 		if (retval)
420 			goto out;
421 	}
422 	/* a new mm has just been created */
423 	arch_dup_mmap(oldmm, mm);
424 	retval = 0;
425 out:
426 	up_write(&mm->mmap_sem);
427 	flush_tlb_mm(oldmm);
428 	up_write(&oldmm->mmap_sem);
429 	return retval;
430 fail_nomem_anon_vma_fork:
431 	mpol_put(pol);
432 fail_nomem_policy:
433 	kmem_cache_free(vm_area_cachep, tmp);
434 fail_nomem:
435 	retval = -ENOMEM;
436 	vm_unacct_memory(charge);
437 	goto out;
438 }
439 
440 static inline int mm_alloc_pgd(struct mm_struct * mm)
441 {
442 	mm->pgd = pgd_alloc(mm);
443 	if (unlikely(!mm->pgd))
444 		return -ENOMEM;
445 	return 0;
446 }
447 
448 static inline void mm_free_pgd(struct mm_struct * mm)
449 {
450 	pgd_free(mm, mm->pgd);
451 }
452 #else
453 #define dup_mmap(mm, oldmm)	(0)
454 #define mm_alloc_pgd(mm)	(0)
455 #define mm_free_pgd(mm)
456 #endif /* CONFIG_MMU */
457 
458 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
459 
460 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
461 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
462 
463 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
464 
465 static int __init coredump_filter_setup(char *s)
466 {
467 	default_dump_filter =
468 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
469 		MMF_DUMP_FILTER_MASK;
470 	return 1;
471 }
472 
473 __setup("coredump_filter=", coredump_filter_setup);
474 
475 #include <linux/init_task.h>
476 
477 static void mm_init_aio(struct mm_struct *mm)
478 {
479 #ifdef CONFIG_AIO
480 	spin_lock_init(&mm->ioctx_lock);
481 	INIT_HLIST_HEAD(&mm->ioctx_list);
482 #endif
483 }
484 
485 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
486 {
487 	atomic_set(&mm->mm_users, 1);
488 	atomic_set(&mm->mm_count, 1);
489 	init_rwsem(&mm->mmap_sem);
490 	INIT_LIST_HEAD(&mm->mmlist);
491 	mm->flags = (current->mm) ?
492 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
493 	mm->core_state = NULL;
494 	mm->nr_ptes = 0;
495 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
496 	spin_lock_init(&mm->page_table_lock);
497 	mm->free_area_cache = TASK_UNMAPPED_BASE;
498 	mm->cached_hole_size = ~0UL;
499 	mm_init_aio(mm);
500 	mm_init_owner(mm, p);
501 	atomic_set(&mm->oom_disable_count, 0);
502 
503 	if (likely(!mm_alloc_pgd(mm))) {
504 		mm->def_flags = 0;
505 		mmu_notifier_mm_init(mm);
506 		return mm;
507 	}
508 
509 	free_mm(mm);
510 	return NULL;
511 }
512 
513 /*
514  * Allocate and initialize an mm_struct.
515  */
516 struct mm_struct * mm_alloc(void)
517 {
518 	struct mm_struct * mm;
519 
520 	mm = allocate_mm();
521 	if (!mm)
522 		return NULL;
523 
524 	memset(mm, 0, sizeof(*mm));
525 	mm_init_cpumask(mm);
526 	return mm_init(mm, current);
527 }
528 
529 /*
530  * Called when the last reference to the mm
531  * is dropped: either by a lazy thread or by
532  * mmput. Free the page directory and the mm.
533  */
534 void __mmdrop(struct mm_struct *mm)
535 {
536 	BUG_ON(mm == &init_mm);
537 	mm_free_pgd(mm);
538 	destroy_context(mm);
539 	mmu_notifier_mm_destroy(mm);
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 	VM_BUG_ON(mm->pmd_huge_pte);
542 #endif
543 	free_mm(mm);
544 }
545 EXPORT_SYMBOL_GPL(__mmdrop);
546 
547 /*
548  * Decrement the use count and release all resources for an mm.
549  */
550 void mmput(struct mm_struct *mm)
551 {
552 	might_sleep();
553 
554 	if (atomic_dec_and_test(&mm->mm_users)) {
555 		exit_aio(mm);
556 		ksm_exit(mm);
557 		khugepaged_exit(mm); /* must run before exit_mmap */
558 		exit_mmap(mm);
559 		set_mm_exe_file(mm, NULL);
560 		if (!list_empty(&mm->mmlist)) {
561 			spin_lock(&mmlist_lock);
562 			list_del(&mm->mmlist);
563 			spin_unlock(&mmlist_lock);
564 		}
565 		put_swap_token(mm);
566 		if (mm->binfmt)
567 			module_put(mm->binfmt->module);
568 		mmdrop(mm);
569 	}
570 }
571 EXPORT_SYMBOL_GPL(mmput);
572 
573 /*
574  * We added or removed a vma mapping the executable. The vmas are only mapped
575  * during exec and are not mapped with the mmap system call.
576  * Callers must hold down_write() on the mm's mmap_sem for these
577  */
578 void added_exe_file_vma(struct mm_struct *mm)
579 {
580 	mm->num_exe_file_vmas++;
581 }
582 
583 void removed_exe_file_vma(struct mm_struct *mm)
584 {
585 	mm->num_exe_file_vmas--;
586 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
587 		fput(mm->exe_file);
588 		mm->exe_file = NULL;
589 	}
590 
591 }
592 
593 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
594 {
595 	if (new_exe_file)
596 		get_file(new_exe_file);
597 	if (mm->exe_file)
598 		fput(mm->exe_file);
599 	mm->exe_file = new_exe_file;
600 	mm->num_exe_file_vmas = 0;
601 }
602 
603 struct file *get_mm_exe_file(struct mm_struct *mm)
604 {
605 	struct file *exe_file;
606 
607 	/* We need mmap_sem to protect against races with removal of
608 	 * VM_EXECUTABLE vmas */
609 	down_read(&mm->mmap_sem);
610 	exe_file = mm->exe_file;
611 	if (exe_file)
612 		get_file(exe_file);
613 	up_read(&mm->mmap_sem);
614 	return exe_file;
615 }
616 
617 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
618 {
619 	/* It's safe to write the exe_file pointer without exe_file_lock because
620 	 * this is called during fork when the task is not yet in /proc */
621 	newmm->exe_file = get_mm_exe_file(oldmm);
622 }
623 
624 /**
625  * get_task_mm - acquire a reference to the task's mm
626  *
627  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
628  * this kernel workthread has transiently adopted a user mm with use_mm,
629  * to do its AIO) is not set and if so returns a reference to it, after
630  * bumping up the use count.  User must release the mm via mmput()
631  * after use.  Typically used by /proc and ptrace.
632  */
633 struct mm_struct *get_task_mm(struct task_struct *task)
634 {
635 	struct mm_struct *mm;
636 
637 	task_lock(task);
638 	mm = task->mm;
639 	if (mm) {
640 		if (task->flags & PF_KTHREAD)
641 			mm = NULL;
642 		else
643 			atomic_inc(&mm->mm_users);
644 	}
645 	task_unlock(task);
646 	return mm;
647 }
648 EXPORT_SYMBOL_GPL(get_task_mm);
649 
650 /* Please note the differences between mmput and mm_release.
651  * mmput is called whenever we stop holding onto a mm_struct,
652  * error success whatever.
653  *
654  * mm_release is called after a mm_struct has been removed
655  * from the current process.
656  *
657  * This difference is important for error handling, when we
658  * only half set up a mm_struct for a new process and need to restore
659  * the old one.  Because we mmput the new mm_struct before
660  * restoring the old one. . .
661  * Eric Biederman 10 January 1998
662  */
663 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
664 {
665 	struct completion *vfork_done = tsk->vfork_done;
666 
667 	/* Get rid of any futexes when releasing the mm */
668 #ifdef CONFIG_FUTEX
669 	if (unlikely(tsk->robust_list)) {
670 		exit_robust_list(tsk);
671 		tsk->robust_list = NULL;
672 	}
673 #ifdef CONFIG_COMPAT
674 	if (unlikely(tsk->compat_robust_list)) {
675 		compat_exit_robust_list(tsk);
676 		tsk->compat_robust_list = NULL;
677 	}
678 #endif
679 	if (unlikely(!list_empty(&tsk->pi_state_list)))
680 		exit_pi_state_list(tsk);
681 #endif
682 
683 	/* Get rid of any cached register state */
684 	deactivate_mm(tsk, mm);
685 
686 	/* notify parent sleeping on vfork() */
687 	if (vfork_done) {
688 		tsk->vfork_done = NULL;
689 		complete(vfork_done);
690 	}
691 
692 	/*
693 	 * If we're exiting normally, clear a user-space tid field if
694 	 * requested.  We leave this alone when dying by signal, to leave
695 	 * the value intact in a core dump, and to save the unnecessary
696 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
697 	 */
698 	if (tsk->clear_child_tid) {
699 		if (!(tsk->flags & PF_SIGNALED) &&
700 		    atomic_read(&mm->mm_users) > 1) {
701 			/*
702 			 * We don't check the error code - if userspace has
703 			 * not set up a proper pointer then tough luck.
704 			 */
705 			put_user(0, tsk->clear_child_tid);
706 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
707 					1, NULL, NULL, 0);
708 		}
709 		tsk->clear_child_tid = NULL;
710 	}
711 }
712 
713 /*
714  * Allocate a new mm structure and copy contents from the
715  * mm structure of the passed in task structure.
716  */
717 struct mm_struct *dup_mm(struct task_struct *tsk)
718 {
719 	struct mm_struct *mm, *oldmm = current->mm;
720 	int err;
721 
722 	if (!oldmm)
723 		return NULL;
724 
725 	mm = allocate_mm();
726 	if (!mm)
727 		goto fail_nomem;
728 
729 	memcpy(mm, oldmm, sizeof(*mm));
730 	mm_init_cpumask(mm);
731 
732 	/* Initializing for Swap token stuff */
733 	mm->token_priority = 0;
734 	mm->last_interval = 0;
735 
736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
737 	mm->pmd_huge_pte = NULL;
738 #endif
739 
740 	if (!mm_init(mm, tsk))
741 		goto fail_nomem;
742 
743 	if (init_new_context(tsk, mm))
744 		goto fail_nocontext;
745 
746 	dup_mm_exe_file(oldmm, mm);
747 
748 	err = dup_mmap(mm, oldmm);
749 	if (err)
750 		goto free_pt;
751 
752 	mm->hiwater_rss = get_mm_rss(mm);
753 	mm->hiwater_vm = mm->total_vm;
754 
755 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
756 		goto free_pt;
757 
758 	return mm;
759 
760 free_pt:
761 	/* don't put binfmt in mmput, we haven't got module yet */
762 	mm->binfmt = NULL;
763 	mmput(mm);
764 
765 fail_nomem:
766 	return NULL;
767 
768 fail_nocontext:
769 	/*
770 	 * If init_new_context() failed, we cannot use mmput() to free the mm
771 	 * because it calls destroy_context()
772 	 */
773 	mm_free_pgd(mm);
774 	free_mm(mm);
775 	return NULL;
776 }
777 
778 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
779 {
780 	struct mm_struct * mm, *oldmm;
781 	int retval;
782 
783 	tsk->min_flt = tsk->maj_flt = 0;
784 	tsk->nvcsw = tsk->nivcsw = 0;
785 #ifdef CONFIG_DETECT_HUNG_TASK
786 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
787 #endif
788 
789 	tsk->mm = NULL;
790 	tsk->active_mm = NULL;
791 
792 	/*
793 	 * Are we cloning a kernel thread?
794 	 *
795 	 * We need to steal a active VM for that..
796 	 */
797 	oldmm = current->mm;
798 	if (!oldmm)
799 		return 0;
800 
801 	if (clone_flags & CLONE_VM) {
802 		atomic_inc(&oldmm->mm_users);
803 		mm = oldmm;
804 		goto good_mm;
805 	}
806 
807 	retval = -ENOMEM;
808 	mm = dup_mm(tsk);
809 	if (!mm)
810 		goto fail_nomem;
811 
812 good_mm:
813 	/* Initializing for Swap token stuff */
814 	mm->token_priority = 0;
815 	mm->last_interval = 0;
816 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
817 		atomic_inc(&mm->oom_disable_count);
818 
819 	tsk->mm = mm;
820 	tsk->active_mm = mm;
821 	return 0;
822 
823 fail_nomem:
824 	return retval;
825 }
826 
827 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
828 {
829 	struct fs_struct *fs = current->fs;
830 	if (clone_flags & CLONE_FS) {
831 		/* tsk->fs is already what we want */
832 		spin_lock(&fs->lock);
833 		if (fs->in_exec) {
834 			spin_unlock(&fs->lock);
835 			return -EAGAIN;
836 		}
837 		fs->users++;
838 		spin_unlock(&fs->lock);
839 		return 0;
840 	}
841 	tsk->fs = copy_fs_struct(fs);
842 	if (!tsk->fs)
843 		return -ENOMEM;
844 	return 0;
845 }
846 
847 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
848 {
849 	struct files_struct *oldf, *newf;
850 	int error = 0;
851 
852 	/*
853 	 * A background process may not have any files ...
854 	 */
855 	oldf = current->files;
856 	if (!oldf)
857 		goto out;
858 
859 	if (clone_flags & CLONE_FILES) {
860 		atomic_inc(&oldf->count);
861 		goto out;
862 	}
863 
864 	newf = dup_fd(oldf, &error);
865 	if (!newf)
866 		goto out;
867 
868 	tsk->files = newf;
869 	error = 0;
870 out:
871 	return error;
872 }
873 
874 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
875 {
876 #ifdef CONFIG_BLOCK
877 	struct io_context *ioc = current->io_context;
878 
879 	if (!ioc)
880 		return 0;
881 	/*
882 	 * Share io context with parent, if CLONE_IO is set
883 	 */
884 	if (clone_flags & CLONE_IO) {
885 		tsk->io_context = ioc_task_link(ioc);
886 		if (unlikely(!tsk->io_context))
887 			return -ENOMEM;
888 	} else if (ioprio_valid(ioc->ioprio)) {
889 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
890 		if (unlikely(!tsk->io_context))
891 			return -ENOMEM;
892 
893 		tsk->io_context->ioprio = ioc->ioprio;
894 	}
895 #endif
896 	return 0;
897 }
898 
899 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
900 {
901 	struct sighand_struct *sig;
902 
903 	if (clone_flags & CLONE_SIGHAND) {
904 		atomic_inc(&current->sighand->count);
905 		return 0;
906 	}
907 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
908 	rcu_assign_pointer(tsk->sighand, sig);
909 	if (!sig)
910 		return -ENOMEM;
911 	atomic_set(&sig->count, 1);
912 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
913 	return 0;
914 }
915 
916 void __cleanup_sighand(struct sighand_struct *sighand)
917 {
918 	if (atomic_dec_and_test(&sighand->count))
919 		kmem_cache_free(sighand_cachep, sighand);
920 }
921 
922 
923 /*
924  * Initialize POSIX timer handling for a thread group.
925  */
926 static void posix_cpu_timers_init_group(struct signal_struct *sig)
927 {
928 	unsigned long cpu_limit;
929 
930 	/* Thread group counters. */
931 	thread_group_cputime_init(sig);
932 
933 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
934 	if (cpu_limit != RLIM_INFINITY) {
935 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
936 		sig->cputimer.running = 1;
937 	}
938 
939 	/* The timer lists. */
940 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
941 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
942 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
943 }
944 
945 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 	struct signal_struct *sig;
948 
949 	if (clone_flags & CLONE_THREAD)
950 		return 0;
951 
952 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
953 	tsk->signal = sig;
954 	if (!sig)
955 		return -ENOMEM;
956 
957 	sig->nr_threads = 1;
958 	atomic_set(&sig->live, 1);
959 	atomic_set(&sig->sigcnt, 1);
960 	init_waitqueue_head(&sig->wait_chldexit);
961 	if (clone_flags & CLONE_NEWPID)
962 		sig->flags |= SIGNAL_UNKILLABLE;
963 	sig->curr_target = tsk;
964 	init_sigpending(&sig->shared_pending);
965 	INIT_LIST_HEAD(&sig->posix_timers);
966 
967 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
968 	sig->real_timer.function = it_real_fn;
969 
970 	task_lock(current->group_leader);
971 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
972 	task_unlock(current->group_leader);
973 
974 	posix_cpu_timers_init_group(sig);
975 
976 	tty_audit_fork(sig);
977 	sched_autogroup_fork(sig);
978 
979 #ifdef CONFIG_CGROUPS
980 	init_rwsem(&sig->threadgroup_fork_lock);
981 #endif
982 
983 	sig->oom_adj = current->signal->oom_adj;
984 	sig->oom_score_adj = current->signal->oom_score_adj;
985 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
986 
987 	mutex_init(&sig->cred_guard_mutex);
988 
989 	return 0;
990 }
991 
992 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
993 {
994 	unsigned long new_flags = p->flags;
995 
996 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
997 	new_flags |= PF_FORKNOEXEC;
998 	new_flags |= PF_STARTING;
999 	p->flags = new_flags;
1000 	clear_freeze_flag(p);
1001 }
1002 
1003 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1004 {
1005 	current->clear_child_tid = tidptr;
1006 
1007 	return task_pid_vnr(current);
1008 }
1009 
1010 static void rt_mutex_init_task(struct task_struct *p)
1011 {
1012 	raw_spin_lock_init(&p->pi_lock);
1013 #ifdef CONFIG_RT_MUTEXES
1014 	plist_head_init(&p->pi_waiters);
1015 	p->pi_blocked_on = NULL;
1016 #endif
1017 }
1018 
1019 #ifdef CONFIG_MM_OWNER
1020 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1021 {
1022 	mm->owner = p;
1023 }
1024 #endif /* CONFIG_MM_OWNER */
1025 
1026 /*
1027  * Initialize POSIX timer handling for a single task.
1028  */
1029 static void posix_cpu_timers_init(struct task_struct *tsk)
1030 {
1031 	tsk->cputime_expires.prof_exp = cputime_zero;
1032 	tsk->cputime_expires.virt_exp = cputime_zero;
1033 	tsk->cputime_expires.sched_exp = 0;
1034 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1035 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1036 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1037 }
1038 
1039 /*
1040  * This creates a new process as a copy of the old one,
1041  * but does not actually start it yet.
1042  *
1043  * It copies the registers, and all the appropriate
1044  * parts of the process environment (as per the clone
1045  * flags). The actual kick-off is left to the caller.
1046  */
1047 static struct task_struct *copy_process(unsigned long clone_flags,
1048 					unsigned long stack_start,
1049 					struct pt_regs *regs,
1050 					unsigned long stack_size,
1051 					int __user *child_tidptr,
1052 					struct pid *pid,
1053 					int trace)
1054 {
1055 	int retval;
1056 	struct task_struct *p;
1057 	int cgroup_callbacks_done = 0;
1058 
1059 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1060 		return ERR_PTR(-EINVAL);
1061 
1062 	/*
1063 	 * Thread groups must share signals as well, and detached threads
1064 	 * can only be started up within the thread group.
1065 	 */
1066 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1067 		return ERR_PTR(-EINVAL);
1068 
1069 	/*
1070 	 * Shared signal handlers imply shared VM. By way of the above,
1071 	 * thread groups also imply shared VM. Blocking this case allows
1072 	 * for various simplifications in other code.
1073 	 */
1074 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1075 		return ERR_PTR(-EINVAL);
1076 
1077 	/*
1078 	 * Siblings of global init remain as zombies on exit since they are
1079 	 * not reaped by their parent (swapper). To solve this and to avoid
1080 	 * multi-rooted process trees, prevent global and container-inits
1081 	 * from creating siblings.
1082 	 */
1083 	if ((clone_flags & CLONE_PARENT) &&
1084 				current->signal->flags & SIGNAL_UNKILLABLE)
1085 		return ERR_PTR(-EINVAL);
1086 
1087 	retval = security_task_create(clone_flags);
1088 	if (retval)
1089 		goto fork_out;
1090 
1091 	retval = -ENOMEM;
1092 	p = dup_task_struct(current);
1093 	if (!p)
1094 		goto fork_out;
1095 
1096 	ftrace_graph_init_task(p);
1097 
1098 	rt_mutex_init_task(p);
1099 
1100 #ifdef CONFIG_PROVE_LOCKING
1101 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1102 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1103 #endif
1104 	retval = -EAGAIN;
1105 	if (atomic_read(&p->real_cred->user->processes) >=
1106 			task_rlimit(p, RLIMIT_NPROC)) {
1107 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1108 		    p->real_cred->user != INIT_USER)
1109 			goto bad_fork_free;
1110 	}
1111 
1112 	retval = copy_creds(p, clone_flags);
1113 	if (retval < 0)
1114 		goto bad_fork_free;
1115 
1116 	/*
1117 	 * If multiple threads are within copy_process(), then this check
1118 	 * triggers too late. This doesn't hurt, the check is only there
1119 	 * to stop root fork bombs.
1120 	 */
1121 	retval = -EAGAIN;
1122 	if (nr_threads >= max_threads)
1123 		goto bad_fork_cleanup_count;
1124 
1125 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1126 		goto bad_fork_cleanup_count;
1127 
1128 	p->did_exec = 0;
1129 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1130 	copy_flags(clone_flags, p);
1131 	INIT_LIST_HEAD(&p->children);
1132 	INIT_LIST_HEAD(&p->sibling);
1133 	rcu_copy_process(p);
1134 	p->vfork_done = NULL;
1135 	spin_lock_init(&p->alloc_lock);
1136 
1137 	init_sigpending(&p->pending);
1138 
1139 	p->utime = cputime_zero;
1140 	p->stime = cputime_zero;
1141 	p->gtime = cputime_zero;
1142 	p->utimescaled = cputime_zero;
1143 	p->stimescaled = cputime_zero;
1144 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1145 	p->prev_utime = cputime_zero;
1146 	p->prev_stime = cputime_zero;
1147 #endif
1148 #if defined(SPLIT_RSS_COUNTING)
1149 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1150 #endif
1151 
1152 	p->default_timer_slack_ns = current->timer_slack_ns;
1153 
1154 	task_io_accounting_init(&p->ioac);
1155 	acct_clear_integrals(p);
1156 
1157 	posix_cpu_timers_init(p);
1158 
1159 	do_posix_clock_monotonic_gettime(&p->start_time);
1160 	p->real_start_time = p->start_time;
1161 	monotonic_to_bootbased(&p->real_start_time);
1162 	p->io_context = NULL;
1163 	p->audit_context = NULL;
1164 	if (clone_flags & CLONE_THREAD)
1165 		threadgroup_fork_read_lock(current);
1166 	cgroup_fork(p);
1167 #ifdef CONFIG_NUMA
1168 	p->mempolicy = mpol_dup(p->mempolicy);
1169  	if (IS_ERR(p->mempolicy)) {
1170  		retval = PTR_ERR(p->mempolicy);
1171  		p->mempolicy = NULL;
1172  		goto bad_fork_cleanup_cgroup;
1173  	}
1174 	mpol_fix_fork_child_flag(p);
1175 #endif
1176 #ifdef CONFIG_CPUSETS
1177 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1178 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1179 #endif
1180 #ifdef CONFIG_TRACE_IRQFLAGS
1181 	p->irq_events = 0;
1182 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1183 	p->hardirqs_enabled = 1;
1184 #else
1185 	p->hardirqs_enabled = 0;
1186 #endif
1187 	p->hardirq_enable_ip = 0;
1188 	p->hardirq_enable_event = 0;
1189 	p->hardirq_disable_ip = _THIS_IP_;
1190 	p->hardirq_disable_event = 0;
1191 	p->softirqs_enabled = 1;
1192 	p->softirq_enable_ip = _THIS_IP_;
1193 	p->softirq_enable_event = 0;
1194 	p->softirq_disable_ip = 0;
1195 	p->softirq_disable_event = 0;
1196 	p->hardirq_context = 0;
1197 	p->softirq_context = 0;
1198 #endif
1199 #ifdef CONFIG_LOCKDEP
1200 	p->lockdep_depth = 0; /* no locks held yet */
1201 	p->curr_chain_key = 0;
1202 	p->lockdep_recursion = 0;
1203 #endif
1204 
1205 #ifdef CONFIG_DEBUG_MUTEXES
1206 	p->blocked_on = NULL; /* not blocked yet */
1207 #endif
1208 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1209 	p->memcg_batch.do_batch = 0;
1210 	p->memcg_batch.memcg = NULL;
1211 #endif
1212 
1213 	/* Perform scheduler related setup. Assign this task to a CPU. */
1214 	sched_fork(p);
1215 
1216 	retval = perf_event_init_task(p);
1217 	if (retval)
1218 		goto bad_fork_cleanup_policy;
1219 
1220 	if ((retval = audit_alloc(p)))
1221 		goto bad_fork_cleanup_policy;
1222 	/* copy all the process information */
1223 	if ((retval = copy_semundo(clone_flags, p)))
1224 		goto bad_fork_cleanup_audit;
1225 	if ((retval = copy_files(clone_flags, p)))
1226 		goto bad_fork_cleanup_semundo;
1227 	if ((retval = copy_fs(clone_flags, p)))
1228 		goto bad_fork_cleanup_files;
1229 	if ((retval = copy_sighand(clone_flags, p)))
1230 		goto bad_fork_cleanup_fs;
1231 	if ((retval = copy_signal(clone_flags, p)))
1232 		goto bad_fork_cleanup_sighand;
1233 	if ((retval = copy_mm(clone_flags, p)))
1234 		goto bad_fork_cleanup_signal;
1235 	if ((retval = copy_namespaces(clone_flags, p)))
1236 		goto bad_fork_cleanup_mm;
1237 	if ((retval = copy_io(clone_flags, p)))
1238 		goto bad_fork_cleanup_namespaces;
1239 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1240 	if (retval)
1241 		goto bad_fork_cleanup_io;
1242 
1243 	if (pid != &init_struct_pid) {
1244 		retval = -ENOMEM;
1245 		pid = alloc_pid(p->nsproxy->pid_ns);
1246 		if (!pid)
1247 			goto bad_fork_cleanup_io;
1248 	}
1249 
1250 	p->pid = pid_nr(pid);
1251 	p->tgid = p->pid;
1252 	if (clone_flags & CLONE_THREAD)
1253 		p->tgid = current->tgid;
1254 
1255 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1256 	/*
1257 	 * Clear TID on mm_release()?
1258 	 */
1259 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1260 #ifdef CONFIG_BLOCK
1261 	p->plug = NULL;
1262 #endif
1263 #ifdef CONFIG_FUTEX
1264 	p->robust_list = NULL;
1265 #ifdef CONFIG_COMPAT
1266 	p->compat_robust_list = NULL;
1267 #endif
1268 	INIT_LIST_HEAD(&p->pi_state_list);
1269 	p->pi_state_cache = NULL;
1270 #endif
1271 	/*
1272 	 * sigaltstack should be cleared when sharing the same VM
1273 	 */
1274 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1275 		p->sas_ss_sp = p->sas_ss_size = 0;
1276 
1277 	/*
1278 	 * Syscall tracing and stepping should be turned off in the
1279 	 * child regardless of CLONE_PTRACE.
1280 	 */
1281 	user_disable_single_step(p);
1282 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1283 #ifdef TIF_SYSCALL_EMU
1284 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1285 #endif
1286 	clear_all_latency_tracing(p);
1287 
1288 	/* ok, now we should be set up.. */
1289 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1290 	p->pdeath_signal = 0;
1291 	p->exit_state = 0;
1292 
1293 	/*
1294 	 * Ok, make it visible to the rest of the system.
1295 	 * We dont wake it up yet.
1296 	 */
1297 	p->group_leader = p;
1298 	INIT_LIST_HEAD(&p->thread_group);
1299 
1300 	/* Now that the task is set up, run cgroup callbacks if
1301 	 * necessary. We need to run them before the task is visible
1302 	 * on the tasklist. */
1303 	cgroup_fork_callbacks(p);
1304 	cgroup_callbacks_done = 1;
1305 
1306 	/* Need tasklist lock for parent etc handling! */
1307 	write_lock_irq(&tasklist_lock);
1308 
1309 	/* CLONE_PARENT re-uses the old parent */
1310 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1311 		p->real_parent = current->real_parent;
1312 		p->parent_exec_id = current->parent_exec_id;
1313 	} else {
1314 		p->real_parent = current;
1315 		p->parent_exec_id = current->self_exec_id;
1316 	}
1317 
1318 	spin_lock(&current->sighand->siglock);
1319 
1320 	/*
1321 	 * Process group and session signals need to be delivered to just the
1322 	 * parent before the fork or both the parent and the child after the
1323 	 * fork. Restart if a signal comes in before we add the new process to
1324 	 * it's process group.
1325 	 * A fatal signal pending means that current will exit, so the new
1326 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1327  	 */
1328 	recalc_sigpending();
1329 	if (signal_pending(current)) {
1330 		spin_unlock(&current->sighand->siglock);
1331 		write_unlock_irq(&tasklist_lock);
1332 		retval = -ERESTARTNOINTR;
1333 		goto bad_fork_free_pid;
1334 	}
1335 
1336 	if (clone_flags & CLONE_THREAD) {
1337 		current->signal->nr_threads++;
1338 		atomic_inc(&current->signal->live);
1339 		atomic_inc(&current->signal->sigcnt);
1340 		p->group_leader = current->group_leader;
1341 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1342 	}
1343 
1344 	if (likely(p->pid)) {
1345 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1346 
1347 		if (thread_group_leader(p)) {
1348 			if (is_child_reaper(pid))
1349 				p->nsproxy->pid_ns->child_reaper = p;
1350 
1351 			p->signal->leader_pid = pid;
1352 			p->signal->tty = tty_kref_get(current->signal->tty);
1353 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1354 			attach_pid(p, PIDTYPE_SID, task_session(current));
1355 			list_add_tail(&p->sibling, &p->real_parent->children);
1356 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1357 			__this_cpu_inc(process_counts);
1358 		}
1359 		attach_pid(p, PIDTYPE_PID, pid);
1360 		nr_threads++;
1361 	}
1362 
1363 	total_forks++;
1364 	spin_unlock(&current->sighand->siglock);
1365 	write_unlock_irq(&tasklist_lock);
1366 	proc_fork_connector(p);
1367 	cgroup_post_fork(p);
1368 	if (clone_flags & CLONE_THREAD)
1369 		threadgroup_fork_read_unlock(current);
1370 	perf_event_fork(p);
1371 	return p;
1372 
1373 bad_fork_free_pid:
1374 	if (pid != &init_struct_pid)
1375 		free_pid(pid);
1376 bad_fork_cleanup_io:
1377 	if (p->io_context)
1378 		exit_io_context(p);
1379 bad_fork_cleanup_namespaces:
1380 	exit_task_namespaces(p);
1381 bad_fork_cleanup_mm:
1382 	if (p->mm) {
1383 		task_lock(p);
1384 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1385 			atomic_dec(&p->mm->oom_disable_count);
1386 		task_unlock(p);
1387 		mmput(p->mm);
1388 	}
1389 bad_fork_cleanup_signal:
1390 	if (!(clone_flags & CLONE_THREAD))
1391 		free_signal_struct(p->signal);
1392 bad_fork_cleanup_sighand:
1393 	__cleanup_sighand(p->sighand);
1394 bad_fork_cleanup_fs:
1395 	exit_fs(p); /* blocking */
1396 bad_fork_cleanup_files:
1397 	exit_files(p); /* blocking */
1398 bad_fork_cleanup_semundo:
1399 	exit_sem(p);
1400 bad_fork_cleanup_audit:
1401 	audit_free(p);
1402 bad_fork_cleanup_policy:
1403 	perf_event_free_task(p);
1404 #ifdef CONFIG_NUMA
1405 	mpol_put(p->mempolicy);
1406 bad_fork_cleanup_cgroup:
1407 #endif
1408 	if (clone_flags & CLONE_THREAD)
1409 		threadgroup_fork_read_unlock(current);
1410 	cgroup_exit(p, cgroup_callbacks_done);
1411 	delayacct_tsk_free(p);
1412 	module_put(task_thread_info(p)->exec_domain->module);
1413 bad_fork_cleanup_count:
1414 	atomic_dec(&p->cred->user->processes);
1415 	exit_creds(p);
1416 bad_fork_free:
1417 	free_task(p);
1418 fork_out:
1419 	return ERR_PTR(retval);
1420 }
1421 
1422 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1423 {
1424 	memset(regs, 0, sizeof(struct pt_regs));
1425 	return regs;
1426 }
1427 
1428 static inline void init_idle_pids(struct pid_link *links)
1429 {
1430 	enum pid_type type;
1431 
1432 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1433 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1434 		links[type].pid = &init_struct_pid;
1435 	}
1436 }
1437 
1438 struct task_struct * __cpuinit fork_idle(int cpu)
1439 {
1440 	struct task_struct *task;
1441 	struct pt_regs regs;
1442 
1443 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1444 			    &init_struct_pid, 0);
1445 	if (!IS_ERR(task)) {
1446 		init_idle_pids(task->pids);
1447 		init_idle(task, cpu);
1448 	}
1449 
1450 	return task;
1451 }
1452 
1453 /*
1454  *  Ok, this is the main fork-routine.
1455  *
1456  * It copies the process, and if successful kick-starts
1457  * it and waits for it to finish using the VM if required.
1458  */
1459 long do_fork(unsigned long clone_flags,
1460 	      unsigned long stack_start,
1461 	      struct pt_regs *regs,
1462 	      unsigned long stack_size,
1463 	      int __user *parent_tidptr,
1464 	      int __user *child_tidptr)
1465 {
1466 	struct task_struct *p;
1467 	int trace = 0;
1468 	long nr;
1469 
1470 	/*
1471 	 * Do some preliminary argument and permissions checking before we
1472 	 * actually start allocating stuff
1473 	 */
1474 	if (clone_flags & CLONE_NEWUSER) {
1475 		if (clone_flags & CLONE_THREAD)
1476 			return -EINVAL;
1477 		/* hopefully this check will go away when userns support is
1478 		 * complete
1479 		 */
1480 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1481 				!capable(CAP_SETGID))
1482 			return -EPERM;
1483 	}
1484 
1485 	/*
1486 	 * Determine whether and which event to report to ptracer.  When
1487 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1488 	 * requested, no event is reported; otherwise, report if the event
1489 	 * for the type of forking is enabled.
1490 	 */
1491 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1492 		if (clone_flags & CLONE_VFORK)
1493 			trace = PTRACE_EVENT_VFORK;
1494 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1495 			trace = PTRACE_EVENT_CLONE;
1496 		else
1497 			trace = PTRACE_EVENT_FORK;
1498 
1499 		if (likely(!ptrace_event_enabled(current, trace)))
1500 			trace = 0;
1501 	}
1502 
1503 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1504 			 child_tidptr, NULL, trace);
1505 	/*
1506 	 * Do this prior waking up the new thread - the thread pointer
1507 	 * might get invalid after that point, if the thread exits quickly.
1508 	 */
1509 	if (!IS_ERR(p)) {
1510 		struct completion vfork;
1511 
1512 		trace_sched_process_fork(current, p);
1513 
1514 		nr = task_pid_vnr(p);
1515 
1516 		if (clone_flags & CLONE_PARENT_SETTID)
1517 			put_user(nr, parent_tidptr);
1518 
1519 		if (clone_flags & CLONE_VFORK) {
1520 			p->vfork_done = &vfork;
1521 			init_completion(&vfork);
1522 		}
1523 
1524 		audit_finish_fork(p);
1525 
1526 		/*
1527 		 * We set PF_STARTING at creation in case tracing wants to
1528 		 * use this to distinguish a fully live task from one that
1529 		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1530 		 * and set the child going.
1531 		 */
1532 		p->flags &= ~PF_STARTING;
1533 
1534 		wake_up_new_task(p);
1535 
1536 		/* forking complete and child started to run, tell ptracer */
1537 		if (unlikely(trace))
1538 			ptrace_event(trace, nr);
1539 
1540 		if (clone_flags & CLONE_VFORK) {
1541 			freezer_do_not_count();
1542 			wait_for_completion(&vfork);
1543 			freezer_count();
1544 			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1545 		}
1546 	} else {
1547 		nr = PTR_ERR(p);
1548 	}
1549 	return nr;
1550 }
1551 
1552 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1553 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1554 #endif
1555 
1556 static void sighand_ctor(void *data)
1557 {
1558 	struct sighand_struct *sighand = data;
1559 
1560 	spin_lock_init(&sighand->siglock);
1561 	init_waitqueue_head(&sighand->signalfd_wqh);
1562 }
1563 
1564 void __init proc_caches_init(void)
1565 {
1566 	sighand_cachep = kmem_cache_create("sighand_cache",
1567 			sizeof(struct sighand_struct), 0,
1568 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1569 			SLAB_NOTRACK, sighand_ctor);
1570 	signal_cachep = kmem_cache_create("signal_cache",
1571 			sizeof(struct signal_struct), 0,
1572 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1573 	files_cachep = kmem_cache_create("files_cache",
1574 			sizeof(struct files_struct), 0,
1575 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1576 	fs_cachep = kmem_cache_create("fs_cache",
1577 			sizeof(struct fs_struct), 0,
1578 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1579 	/*
1580 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1581 	 * whole struct cpumask for the OFFSTACK case. We could change
1582 	 * this to *only* allocate as much of it as required by the
1583 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1584 	 * is at the end of the structure, exactly for that reason.
1585 	 */
1586 	mm_cachep = kmem_cache_create("mm_struct",
1587 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1588 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1589 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1590 	mmap_init();
1591 	nsproxy_cache_init();
1592 }
1593 
1594 /*
1595  * Check constraints on flags passed to the unshare system call.
1596  */
1597 static int check_unshare_flags(unsigned long unshare_flags)
1598 {
1599 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1600 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1601 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1602 		return -EINVAL;
1603 	/*
1604 	 * Not implemented, but pretend it works if there is nothing to
1605 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1606 	 * needs to unshare vm.
1607 	 */
1608 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1609 		/* FIXME: get_task_mm() increments ->mm_users */
1610 		if (atomic_read(&current->mm->mm_users) > 1)
1611 			return -EINVAL;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 /*
1618  * Unshare the filesystem structure if it is being shared
1619  */
1620 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1621 {
1622 	struct fs_struct *fs = current->fs;
1623 
1624 	if (!(unshare_flags & CLONE_FS) || !fs)
1625 		return 0;
1626 
1627 	/* don't need lock here; in the worst case we'll do useless copy */
1628 	if (fs->users == 1)
1629 		return 0;
1630 
1631 	*new_fsp = copy_fs_struct(fs);
1632 	if (!*new_fsp)
1633 		return -ENOMEM;
1634 
1635 	return 0;
1636 }
1637 
1638 /*
1639  * Unshare file descriptor table if it is being shared
1640  */
1641 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1642 {
1643 	struct files_struct *fd = current->files;
1644 	int error = 0;
1645 
1646 	if ((unshare_flags & CLONE_FILES) &&
1647 	    (fd && atomic_read(&fd->count) > 1)) {
1648 		*new_fdp = dup_fd(fd, &error);
1649 		if (!*new_fdp)
1650 			return error;
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 /*
1657  * unshare allows a process to 'unshare' part of the process
1658  * context which was originally shared using clone.  copy_*
1659  * functions used by do_fork() cannot be used here directly
1660  * because they modify an inactive task_struct that is being
1661  * constructed. Here we are modifying the current, active,
1662  * task_struct.
1663  */
1664 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1665 {
1666 	struct fs_struct *fs, *new_fs = NULL;
1667 	struct files_struct *fd, *new_fd = NULL;
1668 	struct nsproxy *new_nsproxy = NULL;
1669 	int do_sysvsem = 0;
1670 	int err;
1671 
1672 	err = check_unshare_flags(unshare_flags);
1673 	if (err)
1674 		goto bad_unshare_out;
1675 
1676 	/*
1677 	 * If unsharing namespace, must also unshare filesystem information.
1678 	 */
1679 	if (unshare_flags & CLONE_NEWNS)
1680 		unshare_flags |= CLONE_FS;
1681 	/*
1682 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1683 	 * to a new ipc namespace, the semaphore arrays from the old
1684 	 * namespace are unreachable.
1685 	 */
1686 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1687 		do_sysvsem = 1;
1688 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1689 		goto bad_unshare_out;
1690 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1691 		goto bad_unshare_cleanup_fs;
1692 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1693 			new_fs)))
1694 		goto bad_unshare_cleanup_fd;
1695 
1696 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1697 		if (do_sysvsem) {
1698 			/*
1699 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1700 			 */
1701 			exit_sem(current);
1702 		}
1703 
1704 		if (new_nsproxy) {
1705 			switch_task_namespaces(current, new_nsproxy);
1706 			new_nsproxy = NULL;
1707 		}
1708 
1709 		task_lock(current);
1710 
1711 		if (new_fs) {
1712 			fs = current->fs;
1713 			spin_lock(&fs->lock);
1714 			current->fs = new_fs;
1715 			if (--fs->users)
1716 				new_fs = NULL;
1717 			else
1718 				new_fs = fs;
1719 			spin_unlock(&fs->lock);
1720 		}
1721 
1722 		if (new_fd) {
1723 			fd = current->files;
1724 			current->files = new_fd;
1725 			new_fd = fd;
1726 		}
1727 
1728 		task_unlock(current);
1729 	}
1730 
1731 	if (new_nsproxy)
1732 		put_nsproxy(new_nsproxy);
1733 
1734 bad_unshare_cleanup_fd:
1735 	if (new_fd)
1736 		put_files_struct(new_fd);
1737 
1738 bad_unshare_cleanup_fs:
1739 	if (new_fs)
1740 		free_fs_struct(new_fs);
1741 
1742 bad_unshare_out:
1743 	return err;
1744 }
1745 
1746 /*
1747  *	Helper to unshare the files of the current task.
1748  *	We don't want to expose copy_files internals to
1749  *	the exec layer of the kernel.
1750  */
1751 
1752 int unshare_files(struct files_struct **displaced)
1753 {
1754 	struct task_struct *task = current;
1755 	struct files_struct *copy = NULL;
1756 	int error;
1757 
1758 	error = unshare_fd(CLONE_FILES, &copy);
1759 	if (error || !copy) {
1760 		*displaced = NULL;
1761 		return error;
1762 	}
1763 	*displaced = task->files;
1764 	task_lock(task);
1765 	task->files = copy;
1766 	task_unlock(task);
1767 	return 0;
1768 }
1769