1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/swap.h> 38 #include <linux/syscalls.h> 39 #include <linux/jiffies.h> 40 #include <linux/tracehook.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/profile.h> 52 #include <linux/rmap.h> 53 #include <linux/ksm.h> 54 #include <linux/acct.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/freezer.h> 58 #include <linux/delayacct.h> 59 #include <linux/taskstats_kern.h> 60 #include <linux/random.h> 61 #include <linux/tty.h> 62 #include <linux/blkdev.h> 63 #include <linux/fs_struct.h> 64 #include <linux/magic.h> 65 #include <linux/perf_event.h> 66 #include <linux/posix-timers.h> 67 #include <linux/user-return-notifier.h> 68 #include <linux/oom.h> 69 #include <linux/khugepaged.h> 70 71 #include <asm/pgtable.h> 72 #include <asm/pgalloc.h> 73 #include <asm/uaccess.h> 74 #include <asm/mmu_context.h> 75 #include <asm/cacheflush.h> 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/sched.h> 79 80 /* 81 * Protected counters by write_lock_irq(&tasklist_lock) 82 */ 83 unsigned long total_forks; /* Handle normal Linux uptimes. */ 84 int nr_threads; /* The idle threads do not count.. */ 85 86 int max_threads; /* tunable limit on nr_threads */ 87 88 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 89 90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 91 92 #ifdef CONFIG_PROVE_RCU 93 int lockdep_tasklist_lock_is_held(void) 94 { 95 return lockdep_is_held(&tasklist_lock); 96 } 97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 98 #endif /* #ifdef CONFIG_PROVE_RCU */ 99 100 int nr_processes(void) 101 { 102 int cpu; 103 int total = 0; 104 105 for_each_possible_cpu(cpu) 106 total += per_cpu(process_counts, cpu); 107 108 return total; 109 } 110 111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 112 # define alloc_task_struct_node(node) \ 113 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node) 114 # define free_task_struct(tsk) \ 115 kmem_cache_free(task_struct_cachep, (tsk)) 116 static struct kmem_cache *task_struct_cachep; 117 #endif 118 119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR 120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 121 int node) 122 { 123 #ifdef CONFIG_DEBUG_STACK_USAGE 124 gfp_t mask = GFP_KERNEL | __GFP_ZERO; 125 #else 126 gfp_t mask = GFP_KERNEL; 127 #endif 128 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER); 129 130 return page ? page_address(page) : NULL; 131 } 132 133 static inline void free_thread_info(struct thread_info *ti) 134 { 135 free_pages((unsigned long)ti, THREAD_SIZE_ORDER); 136 } 137 #endif 138 139 /* SLAB cache for signal_struct structures (tsk->signal) */ 140 static struct kmem_cache *signal_cachep; 141 142 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 143 struct kmem_cache *sighand_cachep; 144 145 /* SLAB cache for files_struct structures (tsk->files) */ 146 struct kmem_cache *files_cachep; 147 148 /* SLAB cache for fs_struct structures (tsk->fs) */ 149 struct kmem_cache *fs_cachep; 150 151 /* SLAB cache for vm_area_struct structures */ 152 struct kmem_cache *vm_area_cachep; 153 154 /* SLAB cache for mm_struct structures (tsk->mm) */ 155 static struct kmem_cache *mm_cachep; 156 157 static void account_kernel_stack(struct thread_info *ti, int account) 158 { 159 struct zone *zone = page_zone(virt_to_page(ti)); 160 161 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 162 } 163 164 void free_task(struct task_struct *tsk) 165 { 166 prop_local_destroy_single(&tsk->dirties); 167 account_kernel_stack(tsk->stack, -1); 168 free_thread_info(tsk->stack); 169 rt_mutex_debug_task_free(tsk); 170 ftrace_graph_exit_task(tsk); 171 free_task_struct(tsk); 172 } 173 EXPORT_SYMBOL(free_task); 174 175 static inline void free_signal_struct(struct signal_struct *sig) 176 { 177 taskstats_tgid_free(sig); 178 sched_autogroup_exit(sig); 179 kmem_cache_free(signal_cachep, sig); 180 } 181 182 static inline void put_signal_struct(struct signal_struct *sig) 183 { 184 if (atomic_dec_and_test(&sig->sigcnt)) 185 free_signal_struct(sig); 186 } 187 188 void __put_task_struct(struct task_struct *tsk) 189 { 190 WARN_ON(!tsk->exit_state); 191 WARN_ON(atomic_read(&tsk->usage)); 192 WARN_ON(tsk == current); 193 194 exit_creds(tsk); 195 delayacct_tsk_free(tsk); 196 put_signal_struct(tsk->signal); 197 198 if (!profile_handoff_task(tsk)) 199 free_task(tsk); 200 } 201 EXPORT_SYMBOL_GPL(__put_task_struct); 202 203 /* 204 * macro override instead of weak attribute alias, to workaround 205 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. 206 */ 207 #ifndef arch_task_cache_init 208 #define arch_task_cache_init() 209 #endif 210 211 void __init fork_init(unsigned long mempages) 212 { 213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 214 #ifndef ARCH_MIN_TASKALIGN 215 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 216 #endif 217 /* create a slab on which task_structs can be allocated */ 218 task_struct_cachep = 219 kmem_cache_create("task_struct", sizeof(struct task_struct), 220 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 221 #endif 222 223 /* do the arch specific task caches init */ 224 arch_task_cache_init(); 225 226 /* 227 * The default maximum number of threads is set to a safe 228 * value: the thread structures can take up at most half 229 * of memory. 230 */ 231 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 232 233 /* 234 * we need to allow at least 20 threads to boot a system 235 */ 236 if(max_threads < 20) 237 max_threads = 20; 238 239 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 240 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 241 init_task.signal->rlim[RLIMIT_SIGPENDING] = 242 init_task.signal->rlim[RLIMIT_NPROC]; 243 } 244 245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 246 struct task_struct *src) 247 { 248 *dst = *src; 249 return 0; 250 } 251 252 static struct task_struct *dup_task_struct(struct task_struct *orig) 253 { 254 struct task_struct *tsk; 255 struct thread_info *ti; 256 unsigned long *stackend; 257 int node = tsk_fork_get_node(orig); 258 int err; 259 260 prepare_to_copy(orig); 261 262 tsk = alloc_task_struct_node(node); 263 if (!tsk) 264 return NULL; 265 266 ti = alloc_thread_info_node(tsk, node); 267 if (!ti) { 268 free_task_struct(tsk); 269 return NULL; 270 } 271 272 err = arch_dup_task_struct(tsk, orig); 273 if (err) 274 goto out; 275 276 tsk->stack = ti; 277 278 err = prop_local_init_single(&tsk->dirties); 279 if (err) 280 goto out; 281 282 setup_thread_stack(tsk, orig); 283 clear_user_return_notifier(tsk); 284 clear_tsk_need_resched(tsk); 285 stackend = end_of_stack(tsk); 286 *stackend = STACK_END_MAGIC; /* for overflow detection */ 287 288 #ifdef CONFIG_CC_STACKPROTECTOR 289 tsk->stack_canary = get_random_int(); 290 #endif 291 292 /* One for us, one for whoever does the "release_task()" (usually parent) */ 293 atomic_set(&tsk->usage,2); 294 atomic_set(&tsk->fs_excl, 0); 295 #ifdef CONFIG_BLK_DEV_IO_TRACE 296 tsk->btrace_seq = 0; 297 #endif 298 tsk->splice_pipe = NULL; 299 300 account_kernel_stack(ti, 1); 301 302 return tsk; 303 304 out: 305 free_thread_info(ti); 306 free_task_struct(tsk); 307 return NULL; 308 } 309 310 #ifdef CONFIG_MMU 311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 312 { 313 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 314 struct rb_node **rb_link, *rb_parent; 315 int retval; 316 unsigned long charge; 317 struct mempolicy *pol; 318 319 down_write(&oldmm->mmap_sem); 320 flush_cache_dup_mm(oldmm); 321 /* 322 * Not linked in yet - no deadlock potential: 323 */ 324 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 325 326 mm->locked_vm = 0; 327 mm->mmap = NULL; 328 mm->mmap_cache = NULL; 329 mm->free_area_cache = oldmm->mmap_base; 330 mm->cached_hole_size = ~0UL; 331 mm->map_count = 0; 332 cpumask_clear(mm_cpumask(mm)); 333 mm->mm_rb = RB_ROOT; 334 rb_link = &mm->mm_rb.rb_node; 335 rb_parent = NULL; 336 pprev = &mm->mmap; 337 retval = ksm_fork(mm, oldmm); 338 if (retval) 339 goto out; 340 retval = khugepaged_fork(mm, oldmm); 341 if (retval) 342 goto out; 343 344 prev = NULL; 345 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 346 struct file *file; 347 348 if (mpnt->vm_flags & VM_DONTCOPY) { 349 long pages = vma_pages(mpnt); 350 mm->total_vm -= pages; 351 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 352 -pages); 353 continue; 354 } 355 charge = 0; 356 if (mpnt->vm_flags & VM_ACCOUNT) { 357 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 358 if (security_vm_enough_memory(len)) 359 goto fail_nomem; 360 charge = len; 361 } 362 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 363 if (!tmp) 364 goto fail_nomem; 365 *tmp = *mpnt; 366 INIT_LIST_HEAD(&tmp->anon_vma_chain); 367 pol = mpol_dup(vma_policy(mpnt)); 368 retval = PTR_ERR(pol); 369 if (IS_ERR(pol)) 370 goto fail_nomem_policy; 371 vma_set_policy(tmp, pol); 372 tmp->vm_mm = mm; 373 if (anon_vma_fork(tmp, mpnt)) 374 goto fail_nomem_anon_vma_fork; 375 tmp->vm_flags &= ~VM_LOCKED; 376 tmp->vm_next = tmp->vm_prev = NULL; 377 file = tmp->vm_file; 378 if (file) { 379 struct inode *inode = file->f_path.dentry->d_inode; 380 struct address_space *mapping = file->f_mapping; 381 382 get_file(file); 383 if (tmp->vm_flags & VM_DENYWRITE) 384 atomic_dec(&inode->i_writecount); 385 mutex_lock(&mapping->i_mmap_mutex); 386 if (tmp->vm_flags & VM_SHARED) 387 mapping->i_mmap_writable++; 388 flush_dcache_mmap_lock(mapping); 389 /* insert tmp into the share list, just after mpnt */ 390 vma_prio_tree_add(tmp, mpnt); 391 flush_dcache_mmap_unlock(mapping); 392 mutex_unlock(&mapping->i_mmap_mutex); 393 } 394 395 /* 396 * Clear hugetlb-related page reserves for children. This only 397 * affects MAP_PRIVATE mappings. Faults generated by the child 398 * are not guaranteed to succeed, even if read-only 399 */ 400 if (is_vm_hugetlb_page(tmp)) 401 reset_vma_resv_huge_pages(tmp); 402 403 /* 404 * Link in the new vma and copy the page table entries. 405 */ 406 *pprev = tmp; 407 pprev = &tmp->vm_next; 408 tmp->vm_prev = prev; 409 prev = tmp; 410 411 __vma_link_rb(mm, tmp, rb_link, rb_parent); 412 rb_link = &tmp->vm_rb.rb_right; 413 rb_parent = &tmp->vm_rb; 414 415 mm->map_count++; 416 retval = copy_page_range(mm, oldmm, mpnt); 417 418 if (tmp->vm_ops && tmp->vm_ops->open) 419 tmp->vm_ops->open(tmp); 420 421 if (retval) 422 goto out; 423 } 424 /* a new mm has just been created */ 425 arch_dup_mmap(oldmm, mm); 426 retval = 0; 427 out: 428 up_write(&mm->mmap_sem); 429 flush_tlb_mm(oldmm); 430 up_write(&oldmm->mmap_sem); 431 return retval; 432 fail_nomem_anon_vma_fork: 433 mpol_put(pol); 434 fail_nomem_policy: 435 kmem_cache_free(vm_area_cachep, tmp); 436 fail_nomem: 437 retval = -ENOMEM; 438 vm_unacct_memory(charge); 439 goto out; 440 } 441 442 static inline int mm_alloc_pgd(struct mm_struct * mm) 443 { 444 mm->pgd = pgd_alloc(mm); 445 if (unlikely(!mm->pgd)) 446 return -ENOMEM; 447 return 0; 448 } 449 450 static inline void mm_free_pgd(struct mm_struct * mm) 451 { 452 pgd_free(mm, mm->pgd); 453 } 454 #else 455 #define dup_mmap(mm, oldmm) (0) 456 #define mm_alloc_pgd(mm) (0) 457 #define mm_free_pgd(mm) 458 #endif /* CONFIG_MMU */ 459 460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 461 462 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 463 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 464 465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 466 467 static int __init coredump_filter_setup(char *s) 468 { 469 default_dump_filter = 470 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 471 MMF_DUMP_FILTER_MASK; 472 return 1; 473 } 474 475 __setup("coredump_filter=", coredump_filter_setup); 476 477 #include <linux/init_task.h> 478 479 static void mm_init_aio(struct mm_struct *mm) 480 { 481 #ifdef CONFIG_AIO 482 spin_lock_init(&mm->ioctx_lock); 483 INIT_HLIST_HEAD(&mm->ioctx_list); 484 #endif 485 } 486 487 int mm_init_cpumask(struct mm_struct *mm, struct mm_struct *oldmm) 488 { 489 #ifdef CONFIG_CPUMASK_OFFSTACK 490 if (!alloc_cpumask_var(&mm->cpu_vm_mask_var, GFP_KERNEL)) 491 return -ENOMEM; 492 493 if (oldmm) 494 cpumask_copy(mm_cpumask(mm), mm_cpumask(oldmm)); 495 else 496 memset(mm_cpumask(mm), 0, cpumask_size()); 497 #endif 498 return 0; 499 } 500 501 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) 502 { 503 atomic_set(&mm->mm_users, 1); 504 atomic_set(&mm->mm_count, 1); 505 init_rwsem(&mm->mmap_sem); 506 INIT_LIST_HEAD(&mm->mmlist); 507 mm->flags = (current->mm) ? 508 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 509 mm->core_state = NULL; 510 mm->nr_ptes = 0; 511 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 512 spin_lock_init(&mm->page_table_lock); 513 mm->free_area_cache = TASK_UNMAPPED_BASE; 514 mm->cached_hole_size = ~0UL; 515 mm_init_aio(mm); 516 mm_init_owner(mm, p); 517 atomic_set(&mm->oom_disable_count, 0); 518 519 if (likely(!mm_alloc_pgd(mm))) { 520 mm->def_flags = 0; 521 mmu_notifier_mm_init(mm); 522 return mm; 523 } 524 525 free_mm(mm); 526 return NULL; 527 } 528 529 /* 530 * Allocate and initialize an mm_struct. 531 */ 532 struct mm_struct * mm_alloc(void) 533 { 534 struct mm_struct * mm; 535 536 mm = allocate_mm(); 537 if (!mm) 538 return NULL; 539 540 memset(mm, 0, sizeof(*mm)); 541 mm = mm_init(mm, current); 542 if (!mm) 543 return NULL; 544 545 if (mm_init_cpumask(mm, NULL)) { 546 mm_free_pgd(mm); 547 free_mm(mm); 548 return NULL; 549 } 550 551 return mm; 552 } 553 554 /* 555 * Called when the last reference to the mm 556 * is dropped: either by a lazy thread or by 557 * mmput. Free the page directory and the mm. 558 */ 559 void __mmdrop(struct mm_struct *mm) 560 { 561 BUG_ON(mm == &init_mm); 562 free_cpumask_var(mm->cpu_vm_mask_var); 563 mm_free_pgd(mm); 564 destroy_context(mm); 565 mmu_notifier_mm_destroy(mm); 566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 567 VM_BUG_ON(mm->pmd_huge_pte); 568 #endif 569 free_mm(mm); 570 } 571 EXPORT_SYMBOL_GPL(__mmdrop); 572 573 /* 574 * Decrement the use count and release all resources for an mm. 575 */ 576 void mmput(struct mm_struct *mm) 577 { 578 might_sleep(); 579 580 if (atomic_dec_and_test(&mm->mm_users)) { 581 exit_aio(mm); 582 ksm_exit(mm); 583 khugepaged_exit(mm); /* must run before exit_mmap */ 584 exit_mmap(mm); 585 set_mm_exe_file(mm, NULL); 586 if (!list_empty(&mm->mmlist)) { 587 spin_lock(&mmlist_lock); 588 list_del(&mm->mmlist); 589 spin_unlock(&mmlist_lock); 590 } 591 put_swap_token(mm); 592 if (mm->binfmt) 593 module_put(mm->binfmt->module); 594 mmdrop(mm); 595 } 596 } 597 EXPORT_SYMBOL_GPL(mmput); 598 599 /* 600 * We added or removed a vma mapping the executable. The vmas are only mapped 601 * during exec and are not mapped with the mmap system call. 602 * Callers must hold down_write() on the mm's mmap_sem for these 603 */ 604 void added_exe_file_vma(struct mm_struct *mm) 605 { 606 mm->num_exe_file_vmas++; 607 } 608 609 void removed_exe_file_vma(struct mm_struct *mm) 610 { 611 mm->num_exe_file_vmas--; 612 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 613 fput(mm->exe_file); 614 mm->exe_file = NULL; 615 } 616 617 } 618 619 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 620 { 621 if (new_exe_file) 622 get_file(new_exe_file); 623 if (mm->exe_file) 624 fput(mm->exe_file); 625 mm->exe_file = new_exe_file; 626 mm->num_exe_file_vmas = 0; 627 } 628 629 struct file *get_mm_exe_file(struct mm_struct *mm) 630 { 631 struct file *exe_file; 632 633 /* We need mmap_sem to protect against races with removal of 634 * VM_EXECUTABLE vmas */ 635 down_read(&mm->mmap_sem); 636 exe_file = mm->exe_file; 637 if (exe_file) 638 get_file(exe_file); 639 up_read(&mm->mmap_sem); 640 return exe_file; 641 } 642 643 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 644 { 645 /* It's safe to write the exe_file pointer without exe_file_lock because 646 * this is called during fork when the task is not yet in /proc */ 647 newmm->exe_file = get_mm_exe_file(oldmm); 648 } 649 650 /** 651 * get_task_mm - acquire a reference to the task's mm 652 * 653 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 654 * this kernel workthread has transiently adopted a user mm with use_mm, 655 * to do its AIO) is not set and if so returns a reference to it, after 656 * bumping up the use count. User must release the mm via mmput() 657 * after use. Typically used by /proc and ptrace. 658 */ 659 struct mm_struct *get_task_mm(struct task_struct *task) 660 { 661 struct mm_struct *mm; 662 663 task_lock(task); 664 mm = task->mm; 665 if (mm) { 666 if (task->flags & PF_KTHREAD) 667 mm = NULL; 668 else 669 atomic_inc(&mm->mm_users); 670 } 671 task_unlock(task); 672 return mm; 673 } 674 EXPORT_SYMBOL_GPL(get_task_mm); 675 676 /* Please note the differences between mmput and mm_release. 677 * mmput is called whenever we stop holding onto a mm_struct, 678 * error success whatever. 679 * 680 * mm_release is called after a mm_struct has been removed 681 * from the current process. 682 * 683 * This difference is important for error handling, when we 684 * only half set up a mm_struct for a new process and need to restore 685 * the old one. Because we mmput the new mm_struct before 686 * restoring the old one. . . 687 * Eric Biederman 10 January 1998 688 */ 689 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 690 { 691 struct completion *vfork_done = tsk->vfork_done; 692 693 /* Get rid of any futexes when releasing the mm */ 694 #ifdef CONFIG_FUTEX 695 if (unlikely(tsk->robust_list)) { 696 exit_robust_list(tsk); 697 tsk->robust_list = NULL; 698 } 699 #ifdef CONFIG_COMPAT 700 if (unlikely(tsk->compat_robust_list)) { 701 compat_exit_robust_list(tsk); 702 tsk->compat_robust_list = NULL; 703 } 704 #endif 705 if (unlikely(!list_empty(&tsk->pi_state_list))) 706 exit_pi_state_list(tsk); 707 #endif 708 709 /* Get rid of any cached register state */ 710 deactivate_mm(tsk, mm); 711 712 /* notify parent sleeping on vfork() */ 713 if (vfork_done) { 714 tsk->vfork_done = NULL; 715 complete(vfork_done); 716 } 717 718 /* 719 * If we're exiting normally, clear a user-space tid field if 720 * requested. We leave this alone when dying by signal, to leave 721 * the value intact in a core dump, and to save the unnecessary 722 * trouble otherwise. Userland only wants this done for a sys_exit. 723 */ 724 if (tsk->clear_child_tid) { 725 if (!(tsk->flags & PF_SIGNALED) && 726 atomic_read(&mm->mm_users) > 1) { 727 /* 728 * We don't check the error code - if userspace has 729 * not set up a proper pointer then tough luck. 730 */ 731 put_user(0, tsk->clear_child_tid); 732 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 733 1, NULL, NULL, 0); 734 } 735 tsk->clear_child_tid = NULL; 736 } 737 } 738 739 /* 740 * Allocate a new mm structure and copy contents from the 741 * mm structure of the passed in task structure. 742 */ 743 struct mm_struct *dup_mm(struct task_struct *tsk) 744 { 745 struct mm_struct *mm, *oldmm = current->mm; 746 int err; 747 748 if (!oldmm) 749 return NULL; 750 751 mm = allocate_mm(); 752 if (!mm) 753 goto fail_nomem; 754 755 memcpy(mm, oldmm, sizeof(*mm)); 756 757 /* Initializing for Swap token stuff */ 758 mm->token_priority = 0; 759 mm->last_interval = 0; 760 761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 762 mm->pmd_huge_pte = NULL; 763 #endif 764 765 if (!mm_init(mm, tsk)) 766 goto fail_nomem; 767 768 if (mm_init_cpumask(mm, oldmm)) 769 goto fail_nocpumask; 770 771 if (init_new_context(tsk, mm)) 772 goto fail_nocontext; 773 774 dup_mm_exe_file(oldmm, mm); 775 776 err = dup_mmap(mm, oldmm); 777 if (err) 778 goto free_pt; 779 780 mm->hiwater_rss = get_mm_rss(mm); 781 mm->hiwater_vm = mm->total_vm; 782 783 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 784 goto free_pt; 785 786 return mm; 787 788 free_pt: 789 /* don't put binfmt in mmput, we haven't got module yet */ 790 mm->binfmt = NULL; 791 mmput(mm); 792 793 fail_nomem: 794 return NULL; 795 796 fail_nocontext: 797 free_cpumask_var(mm->cpu_vm_mask_var); 798 799 fail_nocpumask: 800 /* 801 * If init_new_context() failed, we cannot use mmput() to free the mm 802 * because it calls destroy_context() 803 */ 804 mm_free_pgd(mm); 805 free_mm(mm); 806 return NULL; 807 } 808 809 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 810 { 811 struct mm_struct * mm, *oldmm; 812 int retval; 813 814 tsk->min_flt = tsk->maj_flt = 0; 815 tsk->nvcsw = tsk->nivcsw = 0; 816 #ifdef CONFIG_DETECT_HUNG_TASK 817 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 818 #endif 819 820 tsk->mm = NULL; 821 tsk->active_mm = NULL; 822 823 /* 824 * Are we cloning a kernel thread? 825 * 826 * We need to steal a active VM for that.. 827 */ 828 oldmm = current->mm; 829 if (!oldmm) 830 return 0; 831 832 if (clone_flags & CLONE_VM) { 833 atomic_inc(&oldmm->mm_users); 834 mm = oldmm; 835 goto good_mm; 836 } 837 838 retval = -ENOMEM; 839 mm = dup_mm(tsk); 840 if (!mm) 841 goto fail_nomem; 842 843 good_mm: 844 /* Initializing for Swap token stuff */ 845 mm->token_priority = 0; 846 mm->last_interval = 0; 847 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 848 atomic_inc(&mm->oom_disable_count); 849 850 tsk->mm = mm; 851 tsk->active_mm = mm; 852 return 0; 853 854 fail_nomem: 855 return retval; 856 } 857 858 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 859 { 860 struct fs_struct *fs = current->fs; 861 if (clone_flags & CLONE_FS) { 862 /* tsk->fs is already what we want */ 863 spin_lock(&fs->lock); 864 if (fs->in_exec) { 865 spin_unlock(&fs->lock); 866 return -EAGAIN; 867 } 868 fs->users++; 869 spin_unlock(&fs->lock); 870 return 0; 871 } 872 tsk->fs = copy_fs_struct(fs); 873 if (!tsk->fs) 874 return -ENOMEM; 875 return 0; 876 } 877 878 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 879 { 880 struct files_struct *oldf, *newf; 881 int error = 0; 882 883 /* 884 * A background process may not have any files ... 885 */ 886 oldf = current->files; 887 if (!oldf) 888 goto out; 889 890 if (clone_flags & CLONE_FILES) { 891 atomic_inc(&oldf->count); 892 goto out; 893 } 894 895 newf = dup_fd(oldf, &error); 896 if (!newf) 897 goto out; 898 899 tsk->files = newf; 900 error = 0; 901 out: 902 return error; 903 } 904 905 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 906 { 907 #ifdef CONFIG_BLOCK 908 struct io_context *ioc = current->io_context; 909 910 if (!ioc) 911 return 0; 912 /* 913 * Share io context with parent, if CLONE_IO is set 914 */ 915 if (clone_flags & CLONE_IO) { 916 tsk->io_context = ioc_task_link(ioc); 917 if (unlikely(!tsk->io_context)) 918 return -ENOMEM; 919 } else if (ioprio_valid(ioc->ioprio)) { 920 tsk->io_context = alloc_io_context(GFP_KERNEL, -1); 921 if (unlikely(!tsk->io_context)) 922 return -ENOMEM; 923 924 tsk->io_context->ioprio = ioc->ioprio; 925 } 926 #endif 927 return 0; 928 } 929 930 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 931 { 932 struct sighand_struct *sig; 933 934 if (clone_flags & CLONE_SIGHAND) { 935 atomic_inc(¤t->sighand->count); 936 return 0; 937 } 938 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 939 rcu_assign_pointer(tsk->sighand, sig); 940 if (!sig) 941 return -ENOMEM; 942 atomic_set(&sig->count, 1); 943 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 944 return 0; 945 } 946 947 void __cleanup_sighand(struct sighand_struct *sighand) 948 { 949 if (atomic_dec_and_test(&sighand->count)) 950 kmem_cache_free(sighand_cachep, sighand); 951 } 952 953 954 /* 955 * Initialize POSIX timer handling for a thread group. 956 */ 957 static void posix_cpu_timers_init_group(struct signal_struct *sig) 958 { 959 unsigned long cpu_limit; 960 961 /* Thread group counters. */ 962 thread_group_cputime_init(sig); 963 964 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 965 if (cpu_limit != RLIM_INFINITY) { 966 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 967 sig->cputimer.running = 1; 968 } 969 970 /* The timer lists. */ 971 INIT_LIST_HEAD(&sig->cpu_timers[0]); 972 INIT_LIST_HEAD(&sig->cpu_timers[1]); 973 INIT_LIST_HEAD(&sig->cpu_timers[2]); 974 } 975 976 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 977 { 978 struct signal_struct *sig; 979 980 if (clone_flags & CLONE_THREAD) 981 return 0; 982 983 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 984 tsk->signal = sig; 985 if (!sig) 986 return -ENOMEM; 987 988 sig->nr_threads = 1; 989 atomic_set(&sig->live, 1); 990 atomic_set(&sig->sigcnt, 1); 991 init_waitqueue_head(&sig->wait_chldexit); 992 if (clone_flags & CLONE_NEWPID) 993 sig->flags |= SIGNAL_UNKILLABLE; 994 sig->curr_target = tsk; 995 init_sigpending(&sig->shared_pending); 996 INIT_LIST_HEAD(&sig->posix_timers); 997 998 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 999 sig->real_timer.function = it_real_fn; 1000 1001 task_lock(current->group_leader); 1002 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1003 task_unlock(current->group_leader); 1004 1005 posix_cpu_timers_init_group(sig); 1006 1007 tty_audit_fork(sig); 1008 sched_autogroup_fork(sig); 1009 1010 #ifdef CONFIG_CGROUPS 1011 init_rwsem(&sig->threadgroup_fork_lock); 1012 #endif 1013 1014 sig->oom_adj = current->signal->oom_adj; 1015 sig->oom_score_adj = current->signal->oom_score_adj; 1016 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1017 1018 mutex_init(&sig->cred_guard_mutex); 1019 1020 return 0; 1021 } 1022 1023 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1024 { 1025 unsigned long new_flags = p->flags; 1026 1027 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1028 new_flags |= PF_FORKNOEXEC; 1029 new_flags |= PF_STARTING; 1030 p->flags = new_flags; 1031 clear_freeze_flag(p); 1032 } 1033 1034 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1035 { 1036 current->clear_child_tid = tidptr; 1037 1038 return task_pid_vnr(current); 1039 } 1040 1041 static void rt_mutex_init_task(struct task_struct *p) 1042 { 1043 raw_spin_lock_init(&p->pi_lock); 1044 #ifdef CONFIG_RT_MUTEXES 1045 plist_head_init_raw(&p->pi_waiters, &p->pi_lock); 1046 p->pi_blocked_on = NULL; 1047 #endif 1048 } 1049 1050 #ifdef CONFIG_MM_OWNER 1051 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1052 { 1053 mm->owner = p; 1054 } 1055 #endif /* CONFIG_MM_OWNER */ 1056 1057 /* 1058 * Initialize POSIX timer handling for a single task. 1059 */ 1060 static void posix_cpu_timers_init(struct task_struct *tsk) 1061 { 1062 tsk->cputime_expires.prof_exp = cputime_zero; 1063 tsk->cputime_expires.virt_exp = cputime_zero; 1064 tsk->cputime_expires.sched_exp = 0; 1065 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1066 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1067 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1068 } 1069 1070 /* 1071 * This creates a new process as a copy of the old one, 1072 * but does not actually start it yet. 1073 * 1074 * It copies the registers, and all the appropriate 1075 * parts of the process environment (as per the clone 1076 * flags). The actual kick-off is left to the caller. 1077 */ 1078 static struct task_struct *copy_process(unsigned long clone_flags, 1079 unsigned long stack_start, 1080 struct pt_regs *regs, 1081 unsigned long stack_size, 1082 int __user *child_tidptr, 1083 struct pid *pid, 1084 int trace) 1085 { 1086 int retval; 1087 struct task_struct *p; 1088 int cgroup_callbacks_done = 0; 1089 1090 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1091 return ERR_PTR(-EINVAL); 1092 1093 /* 1094 * Thread groups must share signals as well, and detached threads 1095 * can only be started up within the thread group. 1096 */ 1097 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1098 return ERR_PTR(-EINVAL); 1099 1100 /* 1101 * Shared signal handlers imply shared VM. By way of the above, 1102 * thread groups also imply shared VM. Blocking this case allows 1103 * for various simplifications in other code. 1104 */ 1105 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1106 return ERR_PTR(-EINVAL); 1107 1108 /* 1109 * Siblings of global init remain as zombies on exit since they are 1110 * not reaped by their parent (swapper). To solve this and to avoid 1111 * multi-rooted process trees, prevent global and container-inits 1112 * from creating siblings. 1113 */ 1114 if ((clone_flags & CLONE_PARENT) && 1115 current->signal->flags & SIGNAL_UNKILLABLE) 1116 return ERR_PTR(-EINVAL); 1117 1118 retval = security_task_create(clone_flags); 1119 if (retval) 1120 goto fork_out; 1121 1122 retval = -ENOMEM; 1123 p = dup_task_struct(current); 1124 if (!p) 1125 goto fork_out; 1126 1127 ftrace_graph_init_task(p); 1128 1129 rt_mutex_init_task(p); 1130 1131 #ifdef CONFIG_PROVE_LOCKING 1132 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1133 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1134 #endif 1135 retval = -EAGAIN; 1136 if (atomic_read(&p->real_cred->user->processes) >= 1137 task_rlimit(p, RLIMIT_NPROC)) { 1138 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 1139 p->real_cred->user != INIT_USER) 1140 goto bad_fork_free; 1141 } 1142 1143 retval = copy_creds(p, clone_flags); 1144 if (retval < 0) 1145 goto bad_fork_free; 1146 1147 /* 1148 * If multiple threads are within copy_process(), then this check 1149 * triggers too late. This doesn't hurt, the check is only there 1150 * to stop root fork bombs. 1151 */ 1152 retval = -EAGAIN; 1153 if (nr_threads >= max_threads) 1154 goto bad_fork_cleanup_count; 1155 1156 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1157 goto bad_fork_cleanup_count; 1158 1159 p->did_exec = 0; 1160 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1161 copy_flags(clone_flags, p); 1162 INIT_LIST_HEAD(&p->children); 1163 INIT_LIST_HEAD(&p->sibling); 1164 rcu_copy_process(p); 1165 p->vfork_done = NULL; 1166 spin_lock_init(&p->alloc_lock); 1167 1168 init_sigpending(&p->pending); 1169 1170 p->utime = cputime_zero; 1171 p->stime = cputime_zero; 1172 p->gtime = cputime_zero; 1173 p->utimescaled = cputime_zero; 1174 p->stimescaled = cputime_zero; 1175 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1176 p->prev_utime = cputime_zero; 1177 p->prev_stime = cputime_zero; 1178 #endif 1179 #if defined(SPLIT_RSS_COUNTING) 1180 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1181 #endif 1182 1183 p->default_timer_slack_ns = current->timer_slack_ns; 1184 1185 task_io_accounting_init(&p->ioac); 1186 acct_clear_integrals(p); 1187 1188 posix_cpu_timers_init(p); 1189 1190 do_posix_clock_monotonic_gettime(&p->start_time); 1191 p->real_start_time = p->start_time; 1192 monotonic_to_bootbased(&p->real_start_time); 1193 p->io_context = NULL; 1194 p->audit_context = NULL; 1195 if (clone_flags & CLONE_THREAD) 1196 threadgroup_fork_read_lock(current); 1197 cgroup_fork(p); 1198 #ifdef CONFIG_NUMA 1199 p->mempolicy = mpol_dup(p->mempolicy); 1200 if (IS_ERR(p->mempolicy)) { 1201 retval = PTR_ERR(p->mempolicy); 1202 p->mempolicy = NULL; 1203 goto bad_fork_cleanup_cgroup; 1204 } 1205 mpol_fix_fork_child_flag(p); 1206 #endif 1207 #ifdef CONFIG_TRACE_IRQFLAGS 1208 p->irq_events = 0; 1209 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1210 p->hardirqs_enabled = 1; 1211 #else 1212 p->hardirqs_enabled = 0; 1213 #endif 1214 p->hardirq_enable_ip = 0; 1215 p->hardirq_enable_event = 0; 1216 p->hardirq_disable_ip = _THIS_IP_; 1217 p->hardirq_disable_event = 0; 1218 p->softirqs_enabled = 1; 1219 p->softirq_enable_ip = _THIS_IP_; 1220 p->softirq_enable_event = 0; 1221 p->softirq_disable_ip = 0; 1222 p->softirq_disable_event = 0; 1223 p->hardirq_context = 0; 1224 p->softirq_context = 0; 1225 #endif 1226 #ifdef CONFIG_LOCKDEP 1227 p->lockdep_depth = 0; /* no locks held yet */ 1228 p->curr_chain_key = 0; 1229 p->lockdep_recursion = 0; 1230 #endif 1231 1232 #ifdef CONFIG_DEBUG_MUTEXES 1233 p->blocked_on = NULL; /* not blocked yet */ 1234 #endif 1235 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1236 p->memcg_batch.do_batch = 0; 1237 p->memcg_batch.memcg = NULL; 1238 #endif 1239 1240 /* Perform scheduler related setup. Assign this task to a CPU. */ 1241 sched_fork(p); 1242 1243 retval = perf_event_init_task(p); 1244 if (retval) 1245 goto bad_fork_cleanup_policy; 1246 1247 if ((retval = audit_alloc(p))) 1248 goto bad_fork_cleanup_policy; 1249 /* copy all the process information */ 1250 if ((retval = copy_semundo(clone_flags, p))) 1251 goto bad_fork_cleanup_audit; 1252 if ((retval = copy_files(clone_flags, p))) 1253 goto bad_fork_cleanup_semundo; 1254 if ((retval = copy_fs(clone_flags, p))) 1255 goto bad_fork_cleanup_files; 1256 if ((retval = copy_sighand(clone_flags, p))) 1257 goto bad_fork_cleanup_fs; 1258 if ((retval = copy_signal(clone_flags, p))) 1259 goto bad_fork_cleanup_sighand; 1260 if ((retval = copy_mm(clone_flags, p))) 1261 goto bad_fork_cleanup_signal; 1262 if ((retval = copy_namespaces(clone_flags, p))) 1263 goto bad_fork_cleanup_mm; 1264 if ((retval = copy_io(clone_flags, p))) 1265 goto bad_fork_cleanup_namespaces; 1266 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); 1267 if (retval) 1268 goto bad_fork_cleanup_io; 1269 1270 if (pid != &init_struct_pid) { 1271 retval = -ENOMEM; 1272 pid = alloc_pid(p->nsproxy->pid_ns); 1273 if (!pid) 1274 goto bad_fork_cleanup_io; 1275 } 1276 1277 p->pid = pid_nr(pid); 1278 p->tgid = p->pid; 1279 if (clone_flags & CLONE_THREAD) 1280 p->tgid = current->tgid; 1281 1282 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1283 /* 1284 * Clear TID on mm_release()? 1285 */ 1286 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 1287 #ifdef CONFIG_BLOCK 1288 p->plug = NULL; 1289 #endif 1290 #ifdef CONFIG_FUTEX 1291 p->robust_list = NULL; 1292 #ifdef CONFIG_COMPAT 1293 p->compat_robust_list = NULL; 1294 #endif 1295 INIT_LIST_HEAD(&p->pi_state_list); 1296 p->pi_state_cache = NULL; 1297 #endif 1298 /* 1299 * sigaltstack should be cleared when sharing the same VM 1300 */ 1301 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1302 p->sas_ss_sp = p->sas_ss_size = 0; 1303 1304 /* 1305 * Syscall tracing and stepping should be turned off in the 1306 * child regardless of CLONE_PTRACE. 1307 */ 1308 user_disable_single_step(p); 1309 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1310 #ifdef TIF_SYSCALL_EMU 1311 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1312 #endif 1313 clear_all_latency_tracing(p); 1314 1315 /* ok, now we should be set up.. */ 1316 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1317 p->pdeath_signal = 0; 1318 p->exit_state = 0; 1319 1320 /* 1321 * Ok, make it visible to the rest of the system. 1322 * We dont wake it up yet. 1323 */ 1324 p->group_leader = p; 1325 INIT_LIST_HEAD(&p->thread_group); 1326 1327 /* Now that the task is set up, run cgroup callbacks if 1328 * necessary. We need to run them before the task is visible 1329 * on the tasklist. */ 1330 cgroup_fork_callbacks(p); 1331 cgroup_callbacks_done = 1; 1332 1333 /* Need tasklist lock for parent etc handling! */ 1334 write_lock_irq(&tasklist_lock); 1335 1336 /* CLONE_PARENT re-uses the old parent */ 1337 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1338 p->real_parent = current->real_parent; 1339 p->parent_exec_id = current->parent_exec_id; 1340 } else { 1341 p->real_parent = current; 1342 p->parent_exec_id = current->self_exec_id; 1343 } 1344 1345 spin_lock(¤t->sighand->siglock); 1346 1347 /* 1348 * Process group and session signals need to be delivered to just the 1349 * parent before the fork or both the parent and the child after the 1350 * fork. Restart if a signal comes in before we add the new process to 1351 * it's process group. 1352 * A fatal signal pending means that current will exit, so the new 1353 * thread can't slip out of an OOM kill (or normal SIGKILL). 1354 */ 1355 recalc_sigpending(); 1356 if (signal_pending(current)) { 1357 spin_unlock(¤t->sighand->siglock); 1358 write_unlock_irq(&tasklist_lock); 1359 retval = -ERESTARTNOINTR; 1360 goto bad_fork_free_pid; 1361 } 1362 1363 if (clone_flags & CLONE_THREAD) { 1364 current->signal->nr_threads++; 1365 atomic_inc(¤t->signal->live); 1366 atomic_inc(¤t->signal->sigcnt); 1367 p->group_leader = current->group_leader; 1368 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); 1369 } 1370 1371 if (likely(p->pid)) { 1372 tracehook_finish_clone(p, clone_flags, trace); 1373 1374 if (thread_group_leader(p)) { 1375 if (is_child_reaper(pid)) 1376 p->nsproxy->pid_ns->child_reaper = p; 1377 1378 p->signal->leader_pid = pid; 1379 p->signal->tty = tty_kref_get(current->signal->tty); 1380 attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1381 attach_pid(p, PIDTYPE_SID, task_session(current)); 1382 list_add_tail(&p->sibling, &p->real_parent->children); 1383 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1384 __this_cpu_inc(process_counts); 1385 } 1386 attach_pid(p, PIDTYPE_PID, pid); 1387 nr_threads++; 1388 } 1389 1390 total_forks++; 1391 spin_unlock(¤t->sighand->siglock); 1392 write_unlock_irq(&tasklist_lock); 1393 proc_fork_connector(p); 1394 cgroup_post_fork(p); 1395 if (clone_flags & CLONE_THREAD) 1396 threadgroup_fork_read_unlock(current); 1397 perf_event_fork(p); 1398 return p; 1399 1400 bad_fork_free_pid: 1401 if (pid != &init_struct_pid) 1402 free_pid(pid); 1403 bad_fork_cleanup_io: 1404 if (p->io_context) 1405 exit_io_context(p); 1406 bad_fork_cleanup_namespaces: 1407 exit_task_namespaces(p); 1408 bad_fork_cleanup_mm: 1409 if (p->mm) { 1410 task_lock(p); 1411 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 1412 atomic_dec(&p->mm->oom_disable_count); 1413 task_unlock(p); 1414 mmput(p->mm); 1415 } 1416 bad_fork_cleanup_signal: 1417 if (!(clone_flags & CLONE_THREAD)) 1418 free_signal_struct(p->signal); 1419 bad_fork_cleanup_sighand: 1420 __cleanup_sighand(p->sighand); 1421 bad_fork_cleanup_fs: 1422 exit_fs(p); /* blocking */ 1423 bad_fork_cleanup_files: 1424 exit_files(p); /* blocking */ 1425 bad_fork_cleanup_semundo: 1426 exit_sem(p); 1427 bad_fork_cleanup_audit: 1428 audit_free(p); 1429 bad_fork_cleanup_policy: 1430 perf_event_free_task(p); 1431 #ifdef CONFIG_NUMA 1432 mpol_put(p->mempolicy); 1433 bad_fork_cleanup_cgroup: 1434 #endif 1435 if (clone_flags & CLONE_THREAD) 1436 threadgroup_fork_read_unlock(current); 1437 cgroup_exit(p, cgroup_callbacks_done); 1438 delayacct_tsk_free(p); 1439 module_put(task_thread_info(p)->exec_domain->module); 1440 bad_fork_cleanup_count: 1441 atomic_dec(&p->cred->user->processes); 1442 exit_creds(p); 1443 bad_fork_free: 1444 free_task(p); 1445 fork_out: 1446 return ERR_PTR(retval); 1447 } 1448 1449 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1450 { 1451 memset(regs, 0, sizeof(struct pt_regs)); 1452 return regs; 1453 } 1454 1455 static inline void init_idle_pids(struct pid_link *links) 1456 { 1457 enum pid_type type; 1458 1459 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1460 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1461 links[type].pid = &init_struct_pid; 1462 } 1463 } 1464 1465 struct task_struct * __cpuinit fork_idle(int cpu) 1466 { 1467 struct task_struct *task; 1468 struct pt_regs regs; 1469 1470 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, 1471 &init_struct_pid, 0); 1472 if (!IS_ERR(task)) { 1473 init_idle_pids(task->pids); 1474 init_idle(task, cpu); 1475 } 1476 1477 return task; 1478 } 1479 1480 /* 1481 * Ok, this is the main fork-routine. 1482 * 1483 * It copies the process, and if successful kick-starts 1484 * it and waits for it to finish using the VM if required. 1485 */ 1486 long do_fork(unsigned long clone_flags, 1487 unsigned long stack_start, 1488 struct pt_regs *regs, 1489 unsigned long stack_size, 1490 int __user *parent_tidptr, 1491 int __user *child_tidptr) 1492 { 1493 struct task_struct *p; 1494 int trace = 0; 1495 long nr; 1496 1497 /* 1498 * Do some preliminary argument and permissions checking before we 1499 * actually start allocating stuff 1500 */ 1501 if (clone_flags & CLONE_NEWUSER) { 1502 if (clone_flags & CLONE_THREAD) 1503 return -EINVAL; 1504 /* hopefully this check will go away when userns support is 1505 * complete 1506 */ 1507 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || 1508 !capable(CAP_SETGID)) 1509 return -EPERM; 1510 } 1511 1512 /* 1513 * When called from kernel_thread, don't do user tracing stuff. 1514 */ 1515 if (likely(user_mode(regs))) 1516 trace = tracehook_prepare_clone(clone_flags); 1517 1518 p = copy_process(clone_flags, stack_start, regs, stack_size, 1519 child_tidptr, NULL, trace); 1520 /* 1521 * Do this prior waking up the new thread - the thread pointer 1522 * might get invalid after that point, if the thread exits quickly. 1523 */ 1524 if (!IS_ERR(p)) { 1525 struct completion vfork; 1526 1527 trace_sched_process_fork(current, p); 1528 1529 nr = task_pid_vnr(p); 1530 1531 if (clone_flags & CLONE_PARENT_SETTID) 1532 put_user(nr, parent_tidptr); 1533 1534 if (clone_flags & CLONE_VFORK) { 1535 p->vfork_done = &vfork; 1536 init_completion(&vfork); 1537 } 1538 1539 audit_finish_fork(p); 1540 tracehook_report_clone(regs, clone_flags, nr, p); 1541 1542 /* 1543 * We set PF_STARTING at creation in case tracing wants to 1544 * use this to distinguish a fully live task from one that 1545 * hasn't gotten to tracehook_report_clone() yet. Now we 1546 * clear it and set the child going. 1547 */ 1548 p->flags &= ~PF_STARTING; 1549 1550 wake_up_new_task(p); 1551 1552 tracehook_report_clone_complete(trace, regs, 1553 clone_flags, nr, p); 1554 1555 if (clone_flags & CLONE_VFORK) { 1556 freezer_do_not_count(); 1557 wait_for_completion(&vfork); 1558 freezer_count(); 1559 tracehook_report_vfork_done(p, nr); 1560 } 1561 } else { 1562 nr = PTR_ERR(p); 1563 } 1564 return nr; 1565 } 1566 1567 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1568 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1569 #endif 1570 1571 static void sighand_ctor(void *data) 1572 { 1573 struct sighand_struct *sighand = data; 1574 1575 spin_lock_init(&sighand->siglock); 1576 init_waitqueue_head(&sighand->signalfd_wqh); 1577 } 1578 1579 void __init proc_caches_init(void) 1580 { 1581 sighand_cachep = kmem_cache_create("sighand_cache", 1582 sizeof(struct sighand_struct), 0, 1583 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1584 SLAB_NOTRACK, sighand_ctor); 1585 signal_cachep = kmem_cache_create("signal_cache", 1586 sizeof(struct signal_struct), 0, 1587 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1588 files_cachep = kmem_cache_create("files_cache", 1589 sizeof(struct files_struct), 0, 1590 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1591 fs_cachep = kmem_cache_create("fs_cache", 1592 sizeof(struct fs_struct), 0, 1593 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1594 mm_cachep = kmem_cache_create("mm_struct", 1595 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1596 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1597 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1598 mmap_init(); 1599 } 1600 1601 /* 1602 * Check constraints on flags passed to the unshare system call. 1603 */ 1604 static int check_unshare_flags(unsigned long unshare_flags) 1605 { 1606 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1607 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1608 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) 1609 return -EINVAL; 1610 /* 1611 * Not implemented, but pretend it works if there is nothing to 1612 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1613 * needs to unshare vm. 1614 */ 1615 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1616 /* FIXME: get_task_mm() increments ->mm_users */ 1617 if (atomic_read(¤t->mm->mm_users) > 1) 1618 return -EINVAL; 1619 } 1620 1621 return 0; 1622 } 1623 1624 /* 1625 * Unshare the filesystem structure if it is being shared 1626 */ 1627 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1628 { 1629 struct fs_struct *fs = current->fs; 1630 1631 if (!(unshare_flags & CLONE_FS) || !fs) 1632 return 0; 1633 1634 /* don't need lock here; in the worst case we'll do useless copy */ 1635 if (fs->users == 1) 1636 return 0; 1637 1638 *new_fsp = copy_fs_struct(fs); 1639 if (!*new_fsp) 1640 return -ENOMEM; 1641 1642 return 0; 1643 } 1644 1645 /* 1646 * Unshare file descriptor table if it is being shared 1647 */ 1648 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1649 { 1650 struct files_struct *fd = current->files; 1651 int error = 0; 1652 1653 if ((unshare_flags & CLONE_FILES) && 1654 (fd && atomic_read(&fd->count) > 1)) { 1655 *new_fdp = dup_fd(fd, &error); 1656 if (!*new_fdp) 1657 return error; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /* 1664 * unshare allows a process to 'unshare' part of the process 1665 * context which was originally shared using clone. copy_* 1666 * functions used by do_fork() cannot be used here directly 1667 * because they modify an inactive task_struct that is being 1668 * constructed. Here we are modifying the current, active, 1669 * task_struct. 1670 */ 1671 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1672 { 1673 struct fs_struct *fs, *new_fs = NULL; 1674 struct files_struct *fd, *new_fd = NULL; 1675 struct nsproxy *new_nsproxy = NULL; 1676 int do_sysvsem = 0; 1677 int err; 1678 1679 err = check_unshare_flags(unshare_flags); 1680 if (err) 1681 goto bad_unshare_out; 1682 1683 /* 1684 * If unsharing namespace, must also unshare filesystem information. 1685 */ 1686 if (unshare_flags & CLONE_NEWNS) 1687 unshare_flags |= CLONE_FS; 1688 /* 1689 * CLONE_NEWIPC must also detach from the undolist: after switching 1690 * to a new ipc namespace, the semaphore arrays from the old 1691 * namespace are unreachable. 1692 */ 1693 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1694 do_sysvsem = 1; 1695 if ((err = unshare_fs(unshare_flags, &new_fs))) 1696 goto bad_unshare_out; 1697 if ((err = unshare_fd(unshare_flags, &new_fd))) 1698 goto bad_unshare_cleanup_fs; 1699 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1700 new_fs))) 1701 goto bad_unshare_cleanup_fd; 1702 1703 if (new_fs || new_fd || do_sysvsem || new_nsproxy) { 1704 if (do_sysvsem) { 1705 /* 1706 * CLONE_SYSVSEM is equivalent to sys_exit(). 1707 */ 1708 exit_sem(current); 1709 } 1710 1711 if (new_nsproxy) { 1712 switch_task_namespaces(current, new_nsproxy); 1713 new_nsproxy = NULL; 1714 } 1715 1716 task_lock(current); 1717 1718 if (new_fs) { 1719 fs = current->fs; 1720 spin_lock(&fs->lock); 1721 current->fs = new_fs; 1722 if (--fs->users) 1723 new_fs = NULL; 1724 else 1725 new_fs = fs; 1726 spin_unlock(&fs->lock); 1727 } 1728 1729 if (new_fd) { 1730 fd = current->files; 1731 current->files = new_fd; 1732 new_fd = fd; 1733 } 1734 1735 task_unlock(current); 1736 } 1737 1738 if (new_nsproxy) 1739 put_nsproxy(new_nsproxy); 1740 1741 bad_unshare_cleanup_fd: 1742 if (new_fd) 1743 put_files_struct(new_fd); 1744 1745 bad_unshare_cleanup_fs: 1746 if (new_fs) 1747 free_fs_struct(new_fs); 1748 1749 bad_unshare_out: 1750 return err; 1751 } 1752 1753 /* 1754 * Helper to unshare the files of the current task. 1755 * We don't want to expose copy_files internals to 1756 * the exec layer of the kernel. 1757 */ 1758 1759 int unshare_files(struct files_struct **displaced) 1760 { 1761 struct task_struct *task = current; 1762 struct files_struct *copy = NULL; 1763 int error; 1764 1765 error = unshare_fd(CLONE_FILES, ©); 1766 if (error || !copy) { 1767 *displaced = NULL; 1768 return error; 1769 } 1770 *displaced = task->files; 1771 task_lock(task); 1772 task->files = copy; 1773 task_unlock(task); 1774 return 0; 1775 } 1776