xref: /openbmc/linux/kernel/fork.c (revision 3864601387cf4196371e3c1897fdffa5228296f9)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 /*
81  * Protected counters by write_lock_irq(&tasklist_lock)
82  */
83 unsigned long total_forks;	/* Handle normal Linux uptimes. */
84 int nr_threads; 		/* The idle threads do not count.. */
85 
86 int max_threads;		/* tunable limit on nr_threads */
87 
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
91 
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
94 {
95 	return lockdep_is_held(&tasklist_lock);
96 }
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
99 
100 int nr_processes(void)
101 {
102 	int cpu;
103 	int total = 0;
104 
105 	for_each_possible_cpu(cpu)
106 		total += per_cpu(process_counts, cpu);
107 
108 	return total;
109 }
110 
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct_node(node)		\
113 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114 # define free_task_struct(tsk)			\
115 		kmem_cache_free(task_struct_cachep, (tsk))
116 static struct kmem_cache *task_struct_cachep;
117 #endif
118 
119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121 						  int node)
122 {
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126 	gfp_t mask = GFP_KERNEL;
127 #endif
128 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129 
130 	return page ? page_address(page) : NULL;
131 }
132 
133 static inline void free_thread_info(struct thread_info *ti)
134 {
135 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 }
137 #endif
138 
139 /* SLAB cache for signal_struct structures (tsk->signal) */
140 static struct kmem_cache *signal_cachep;
141 
142 /* SLAB cache for sighand_struct structures (tsk->sighand) */
143 struct kmem_cache *sighand_cachep;
144 
145 /* SLAB cache for files_struct structures (tsk->files) */
146 struct kmem_cache *files_cachep;
147 
148 /* SLAB cache for fs_struct structures (tsk->fs) */
149 struct kmem_cache *fs_cachep;
150 
151 /* SLAB cache for vm_area_struct structures */
152 struct kmem_cache *vm_area_cachep;
153 
154 /* SLAB cache for mm_struct structures (tsk->mm) */
155 static struct kmem_cache *mm_cachep;
156 
157 static void account_kernel_stack(struct thread_info *ti, int account)
158 {
159 	struct zone *zone = page_zone(virt_to_page(ti));
160 
161 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
162 }
163 
164 void free_task(struct task_struct *tsk)
165 {
166 	prop_local_destroy_single(&tsk->dirties);
167 	account_kernel_stack(tsk->stack, -1);
168 	free_thread_info(tsk->stack);
169 	rt_mutex_debug_task_free(tsk);
170 	ftrace_graph_exit_task(tsk);
171 	free_task_struct(tsk);
172 }
173 EXPORT_SYMBOL(free_task);
174 
175 static inline void free_signal_struct(struct signal_struct *sig)
176 {
177 	taskstats_tgid_free(sig);
178 	sched_autogroup_exit(sig);
179 	kmem_cache_free(signal_cachep, sig);
180 }
181 
182 static inline void put_signal_struct(struct signal_struct *sig)
183 {
184 	if (atomic_dec_and_test(&sig->sigcnt))
185 		free_signal_struct(sig);
186 }
187 
188 void __put_task_struct(struct task_struct *tsk)
189 {
190 	WARN_ON(!tsk->exit_state);
191 	WARN_ON(atomic_read(&tsk->usage));
192 	WARN_ON(tsk == current);
193 
194 	exit_creds(tsk);
195 	delayacct_tsk_free(tsk);
196 	put_signal_struct(tsk->signal);
197 
198 	if (!profile_handoff_task(tsk))
199 		free_task(tsk);
200 }
201 EXPORT_SYMBOL_GPL(__put_task_struct);
202 
203 /*
204  * macro override instead of weak attribute alias, to workaround
205  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206  */
207 #ifndef arch_task_cache_init
208 #define arch_task_cache_init()
209 #endif
210 
211 void __init fork_init(unsigned long mempages)
212 {
213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214 #ifndef ARCH_MIN_TASKALIGN
215 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
216 #endif
217 	/* create a slab on which task_structs can be allocated */
218 	task_struct_cachep =
219 		kmem_cache_create("task_struct", sizeof(struct task_struct),
220 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 #endif
222 
223 	/* do the arch specific task caches init */
224 	arch_task_cache_init();
225 
226 	/*
227 	 * The default maximum number of threads is set to a safe
228 	 * value: the thread structures can take up at most half
229 	 * of memory.
230 	 */
231 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232 
233 	/*
234 	 * we need to allow at least 20 threads to boot a system
235 	 */
236 	if(max_threads < 20)
237 		max_threads = 20;
238 
239 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
242 		init_task.signal->rlim[RLIMIT_NPROC];
243 }
244 
245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246 					       struct task_struct *src)
247 {
248 	*dst = *src;
249 	return 0;
250 }
251 
252 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 {
254 	struct task_struct *tsk;
255 	struct thread_info *ti;
256 	unsigned long *stackend;
257 	int node = tsk_fork_get_node(orig);
258 	int err;
259 
260 	prepare_to_copy(orig);
261 
262 	tsk = alloc_task_struct_node(node);
263 	if (!tsk)
264 		return NULL;
265 
266 	ti = alloc_thread_info_node(tsk, node);
267 	if (!ti) {
268 		free_task_struct(tsk);
269 		return NULL;
270 	}
271 
272  	err = arch_dup_task_struct(tsk, orig);
273 	if (err)
274 		goto out;
275 
276 	tsk->stack = ti;
277 
278 	err = prop_local_init_single(&tsk->dirties);
279 	if (err)
280 		goto out;
281 
282 	setup_thread_stack(tsk, orig);
283 	clear_user_return_notifier(tsk);
284 	clear_tsk_need_resched(tsk);
285 	stackend = end_of_stack(tsk);
286 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
287 
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 	tsk->stack_canary = get_random_int();
290 #endif
291 
292 	/* One for us, one for whoever does the "release_task()" (usually parent) */
293 	atomic_set(&tsk->usage,2);
294 	atomic_set(&tsk->fs_excl, 0);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 	tsk->btrace_seq = 0;
297 #endif
298 	tsk->splice_pipe = NULL;
299 
300 	account_kernel_stack(ti, 1);
301 
302 	return tsk;
303 
304 out:
305 	free_thread_info(ti);
306 	free_task_struct(tsk);
307 	return NULL;
308 }
309 
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 	struct rb_node **rb_link, *rb_parent;
315 	int retval;
316 	unsigned long charge;
317 	struct mempolicy *pol;
318 
319 	down_write(&oldmm->mmap_sem);
320 	flush_cache_dup_mm(oldmm);
321 	/*
322 	 * Not linked in yet - no deadlock potential:
323 	 */
324 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325 
326 	mm->locked_vm = 0;
327 	mm->mmap = NULL;
328 	mm->mmap_cache = NULL;
329 	mm->free_area_cache = oldmm->mmap_base;
330 	mm->cached_hole_size = ~0UL;
331 	mm->map_count = 0;
332 	cpumask_clear(mm_cpumask(mm));
333 	mm->mm_rb = RB_ROOT;
334 	rb_link = &mm->mm_rb.rb_node;
335 	rb_parent = NULL;
336 	pprev = &mm->mmap;
337 	retval = ksm_fork(mm, oldmm);
338 	if (retval)
339 		goto out;
340 	retval = khugepaged_fork(mm, oldmm);
341 	if (retval)
342 		goto out;
343 
344 	prev = NULL;
345 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 		struct file *file;
347 
348 		if (mpnt->vm_flags & VM_DONTCOPY) {
349 			long pages = vma_pages(mpnt);
350 			mm->total_vm -= pages;
351 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 								-pages);
353 			continue;
354 		}
355 		charge = 0;
356 		if (mpnt->vm_flags & VM_ACCOUNT) {
357 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 			if (security_vm_enough_memory(len))
359 				goto fail_nomem;
360 			charge = len;
361 		}
362 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 		if (!tmp)
364 			goto fail_nomem;
365 		*tmp = *mpnt;
366 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 		pol = mpol_dup(vma_policy(mpnt));
368 		retval = PTR_ERR(pol);
369 		if (IS_ERR(pol))
370 			goto fail_nomem_policy;
371 		vma_set_policy(tmp, pol);
372 		tmp->vm_mm = mm;
373 		if (anon_vma_fork(tmp, mpnt))
374 			goto fail_nomem_anon_vma_fork;
375 		tmp->vm_flags &= ~VM_LOCKED;
376 		tmp->vm_next = tmp->vm_prev = NULL;
377 		file = tmp->vm_file;
378 		if (file) {
379 			struct inode *inode = file->f_path.dentry->d_inode;
380 			struct address_space *mapping = file->f_mapping;
381 
382 			get_file(file);
383 			if (tmp->vm_flags & VM_DENYWRITE)
384 				atomic_dec(&inode->i_writecount);
385 			mutex_lock(&mapping->i_mmap_mutex);
386 			if (tmp->vm_flags & VM_SHARED)
387 				mapping->i_mmap_writable++;
388 			flush_dcache_mmap_lock(mapping);
389 			/* insert tmp into the share list, just after mpnt */
390 			vma_prio_tree_add(tmp, mpnt);
391 			flush_dcache_mmap_unlock(mapping);
392 			mutex_unlock(&mapping->i_mmap_mutex);
393 		}
394 
395 		/*
396 		 * Clear hugetlb-related page reserves for children. This only
397 		 * affects MAP_PRIVATE mappings. Faults generated by the child
398 		 * are not guaranteed to succeed, even if read-only
399 		 */
400 		if (is_vm_hugetlb_page(tmp))
401 			reset_vma_resv_huge_pages(tmp);
402 
403 		/*
404 		 * Link in the new vma and copy the page table entries.
405 		 */
406 		*pprev = tmp;
407 		pprev = &tmp->vm_next;
408 		tmp->vm_prev = prev;
409 		prev = tmp;
410 
411 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
412 		rb_link = &tmp->vm_rb.rb_right;
413 		rb_parent = &tmp->vm_rb;
414 
415 		mm->map_count++;
416 		retval = copy_page_range(mm, oldmm, mpnt);
417 
418 		if (tmp->vm_ops && tmp->vm_ops->open)
419 			tmp->vm_ops->open(tmp);
420 
421 		if (retval)
422 			goto out;
423 	}
424 	/* a new mm has just been created */
425 	arch_dup_mmap(oldmm, mm);
426 	retval = 0;
427 out:
428 	up_write(&mm->mmap_sem);
429 	flush_tlb_mm(oldmm);
430 	up_write(&oldmm->mmap_sem);
431 	return retval;
432 fail_nomem_anon_vma_fork:
433 	mpol_put(pol);
434 fail_nomem_policy:
435 	kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 	retval = -ENOMEM;
438 	vm_unacct_memory(charge);
439 	goto out;
440 }
441 
442 static inline int mm_alloc_pgd(struct mm_struct * mm)
443 {
444 	mm->pgd = pgd_alloc(mm);
445 	if (unlikely(!mm->pgd))
446 		return -ENOMEM;
447 	return 0;
448 }
449 
450 static inline void mm_free_pgd(struct mm_struct * mm)
451 {
452 	pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)	(0)
456 #define mm_alloc_pgd(mm)	(0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459 
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461 
462 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
464 
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466 
467 static int __init coredump_filter_setup(char *s)
468 {
469 	default_dump_filter =
470 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 		MMF_DUMP_FILTER_MASK;
472 	return 1;
473 }
474 
475 __setup("coredump_filter=", coredump_filter_setup);
476 
477 #include <linux/init_task.h>
478 
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 	spin_lock_init(&mm->ioctx_lock);
483 	INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486 
487 int mm_init_cpumask(struct mm_struct *mm, struct mm_struct *oldmm)
488 {
489 #ifdef CONFIG_CPUMASK_OFFSTACK
490 	if (!alloc_cpumask_var(&mm->cpu_vm_mask_var, GFP_KERNEL))
491 		return -ENOMEM;
492 
493 	if (oldmm)
494 		cpumask_copy(mm_cpumask(mm), mm_cpumask(oldmm));
495 	else
496 		memset(mm_cpumask(mm), 0, cpumask_size());
497 #endif
498 	return 0;
499 }
500 
501 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
502 {
503 	atomic_set(&mm->mm_users, 1);
504 	atomic_set(&mm->mm_count, 1);
505 	init_rwsem(&mm->mmap_sem);
506 	INIT_LIST_HEAD(&mm->mmlist);
507 	mm->flags = (current->mm) ?
508 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
509 	mm->core_state = NULL;
510 	mm->nr_ptes = 0;
511 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
512 	spin_lock_init(&mm->page_table_lock);
513 	mm->free_area_cache = TASK_UNMAPPED_BASE;
514 	mm->cached_hole_size = ~0UL;
515 	mm_init_aio(mm);
516 	mm_init_owner(mm, p);
517 	atomic_set(&mm->oom_disable_count, 0);
518 
519 	if (likely(!mm_alloc_pgd(mm))) {
520 		mm->def_flags = 0;
521 		mmu_notifier_mm_init(mm);
522 		return mm;
523 	}
524 
525 	free_mm(mm);
526 	return NULL;
527 }
528 
529 /*
530  * Allocate and initialize an mm_struct.
531  */
532 struct mm_struct * mm_alloc(void)
533 {
534 	struct mm_struct * mm;
535 
536 	mm = allocate_mm();
537 	if (!mm)
538 		return NULL;
539 
540 	memset(mm, 0, sizeof(*mm));
541 	mm = mm_init(mm, current);
542 	if (!mm)
543 		return NULL;
544 
545 	if (mm_init_cpumask(mm, NULL)) {
546 		mm_free_pgd(mm);
547 		free_mm(mm);
548 		return NULL;
549 	}
550 
551 	return mm;
552 }
553 
554 /*
555  * Called when the last reference to the mm
556  * is dropped: either by a lazy thread or by
557  * mmput. Free the page directory and the mm.
558  */
559 void __mmdrop(struct mm_struct *mm)
560 {
561 	BUG_ON(mm == &init_mm);
562 	free_cpumask_var(mm->cpu_vm_mask_var);
563 	mm_free_pgd(mm);
564 	destroy_context(mm);
565 	mmu_notifier_mm_destroy(mm);
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 	VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
569 	free_mm(mm);
570 }
571 EXPORT_SYMBOL_GPL(__mmdrop);
572 
573 /*
574  * Decrement the use count and release all resources for an mm.
575  */
576 void mmput(struct mm_struct *mm)
577 {
578 	might_sleep();
579 
580 	if (atomic_dec_and_test(&mm->mm_users)) {
581 		exit_aio(mm);
582 		ksm_exit(mm);
583 		khugepaged_exit(mm); /* must run before exit_mmap */
584 		exit_mmap(mm);
585 		set_mm_exe_file(mm, NULL);
586 		if (!list_empty(&mm->mmlist)) {
587 			spin_lock(&mmlist_lock);
588 			list_del(&mm->mmlist);
589 			spin_unlock(&mmlist_lock);
590 		}
591 		put_swap_token(mm);
592 		if (mm->binfmt)
593 			module_put(mm->binfmt->module);
594 		mmdrop(mm);
595 	}
596 }
597 EXPORT_SYMBOL_GPL(mmput);
598 
599 /*
600  * We added or removed a vma mapping the executable. The vmas are only mapped
601  * during exec and are not mapped with the mmap system call.
602  * Callers must hold down_write() on the mm's mmap_sem for these
603  */
604 void added_exe_file_vma(struct mm_struct *mm)
605 {
606 	mm->num_exe_file_vmas++;
607 }
608 
609 void removed_exe_file_vma(struct mm_struct *mm)
610 {
611 	mm->num_exe_file_vmas--;
612 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
613 		fput(mm->exe_file);
614 		mm->exe_file = NULL;
615 	}
616 
617 }
618 
619 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
620 {
621 	if (new_exe_file)
622 		get_file(new_exe_file);
623 	if (mm->exe_file)
624 		fput(mm->exe_file);
625 	mm->exe_file = new_exe_file;
626 	mm->num_exe_file_vmas = 0;
627 }
628 
629 struct file *get_mm_exe_file(struct mm_struct *mm)
630 {
631 	struct file *exe_file;
632 
633 	/* We need mmap_sem to protect against races with removal of
634 	 * VM_EXECUTABLE vmas */
635 	down_read(&mm->mmap_sem);
636 	exe_file = mm->exe_file;
637 	if (exe_file)
638 		get_file(exe_file);
639 	up_read(&mm->mmap_sem);
640 	return exe_file;
641 }
642 
643 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
644 {
645 	/* It's safe to write the exe_file pointer without exe_file_lock because
646 	 * this is called during fork when the task is not yet in /proc */
647 	newmm->exe_file = get_mm_exe_file(oldmm);
648 }
649 
650 /**
651  * get_task_mm - acquire a reference to the task's mm
652  *
653  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
654  * this kernel workthread has transiently adopted a user mm with use_mm,
655  * to do its AIO) is not set and if so returns a reference to it, after
656  * bumping up the use count.  User must release the mm via mmput()
657  * after use.  Typically used by /proc and ptrace.
658  */
659 struct mm_struct *get_task_mm(struct task_struct *task)
660 {
661 	struct mm_struct *mm;
662 
663 	task_lock(task);
664 	mm = task->mm;
665 	if (mm) {
666 		if (task->flags & PF_KTHREAD)
667 			mm = NULL;
668 		else
669 			atomic_inc(&mm->mm_users);
670 	}
671 	task_unlock(task);
672 	return mm;
673 }
674 EXPORT_SYMBOL_GPL(get_task_mm);
675 
676 /* Please note the differences between mmput and mm_release.
677  * mmput is called whenever we stop holding onto a mm_struct,
678  * error success whatever.
679  *
680  * mm_release is called after a mm_struct has been removed
681  * from the current process.
682  *
683  * This difference is important for error handling, when we
684  * only half set up a mm_struct for a new process and need to restore
685  * the old one.  Because we mmput the new mm_struct before
686  * restoring the old one. . .
687  * Eric Biederman 10 January 1998
688  */
689 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
690 {
691 	struct completion *vfork_done = tsk->vfork_done;
692 
693 	/* Get rid of any futexes when releasing the mm */
694 #ifdef CONFIG_FUTEX
695 	if (unlikely(tsk->robust_list)) {
696 		exit_robust_list(tsk);
697 		tsk->robust_list = NULL;
698 	}
699 #ifdef CONFIG_COMPAT
700 	if (unlikely(tsk->compat_robust_list)) {
701 		compat_exit_robust_list(tsk);
702 		tsk->compat_robust_list = NULL;
703 	}
704 #endif
705 	if (unlikely(!list_empty(&tsk->pi_state_list)))
706 		exit_pi_state_list(tsk);
707 #endif
708 
709 	/* Get rid of any cached register state */
710 	deactivate_mm(tsk, mm);
711 
712 	/* notify parent sleeping on vfork() */
713 	if (vfork_done) {
714 		tsk->vfork_done = NULL;
715 		complete(vfork_done);
716 	}
717 
718 	/*
719 	 * If we're exiting normally, clear a user-space tid field if
720 	 * requested.  We leave this alone when dying by signal, to leave
721 	 * the value intact in a core dump, and to save the unnecessary
722 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
723 	 */
724 	if (tsk->clear_child_tid) {
725 		if (!(tsk->flags & PF_SIGNALED) &&
726 		    atomic_read(&mm->mm_users) > 1) {
727 			/*
728 			 * We don't check the error code - if userspace has
729 			 * not set up a proper pointer then tough luck.
730 			 */
731 			put_user(0, tsk->clear_child_tid);
732 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
733 					1, NULL, NULL, 0);
734 		}
735 		tsk->clear_child_tid = NULL;
736 	}
737 }
738 
739 /*
740  * Allocate a new mm structure and copy contents from the
741  * mm structure of the passed in task structure.
742  */
743 struct mm_struct *dup_mm(struct task_struct *tsk)
744 {
745 	struct mm_struct *mm, *oldmm = current->mm;
746 	int err;
747 
748 	if (!oldmm)
749 		return NULL;
750 
751 	mm = allocate_mm();
752 	if (!mm)
753 		goto fail_nomem;
754 
755 	memcpy(mm, oldmm, sizeof(*mm));
756 
757 	/* Initializing for Swap token stuff */
758 	mm->token_priority = 0;
759 	mm->last_interval = 0;
760 
761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
762 	mm->pmd_huge_pte = NULL;
763 #endif
764 
765 	if (!mm_init(mm, tsk))
766 		goto fail_nomem;
767 
768 	if (mm_init_cpumask(mm, oldmm))
769 		goto fail_nocpumask;
770 
771 	if (init_new_context(tsk, mm))
772 		goto fail_nocontext;
773 
774 	dup_mm_exe_file(oldmm, mm);
775 
776 	err = dup_mmap(mm, oldmm);
777 	if (err)
778 		goto free_pt;
779 
780 	mm->hiwater_rss = get_mm_rss(mm);
781 	mm->hiwater_vm = mm->total_vm;
782 
783 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
784 		goto free_pt;
785 
786 	return mm;
787 
788 free_pt:
789 	/* don't put binfmt in mmput, we haven't got module yet */
790 	mm->binfmt = NULL;
791 	mmput(mm);
792 
793 fail_nomem:
794 	return NULL;
795 
796 fail_nocontext:
797 	free_cpumask_var(mm->cpu_vm_mask_var);
798 
799 fail_nocpumask:
800 	/*
801 	 * If init_new_context() failed, we cannot use mmput() to free the mm
802 	 * because it calls destroy_context()
803 	 */
804 	mm_free_pgd(mm);
805 	free_mm(mm);
806 	return NULL;
807 }
808 
809 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
810 {
811 	struct mm_struct * mm, *oldmm;
812 	int retval;
813 
814 	tsk->min_flt = tsk->maj_flt = 0;
815 	tsk->nvcsw = tsk->nivcsw = 0;
816 #ifdef CONFIG_DETECT_HUNG_TASK
817 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
818 #endif
819 
820 	tsk->mm = NULL;
821 	tsk->active_mm = NULL;
822 
823 	/*
824 	 * Are we cloning a kernel thread?
825 	 *
826 	 * We need to steal a active VM for that..
827 	 */
828 	oldmm = current->mm;
829 	if (!oldmm)
830 		return 0;
831 
832 	if (clone_flags & CLONE_VM) {
833 		atomic_inc(&oldmm->mm_users);
834 		mm = oldmm;
835 		goto good_mm;
836 	}
837 
838 	retval = -ENOMEM;
839 	mm = dup_mm(tsk);
840 	if (!mm)
841 		goto fail_nomem;
842 
843 good_mm:
844 	/* Initializing for Swap token stuff */
845 	mm->token_priority = 0;
846 	mm->last_interval = 0;
847 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
848 		atomic_inc(&mm->oom_disable_count);
849 
850 	tsk->mm = mm;
851 	tsk->active_mm = mm;
852 	return 0;
853 
854 fail_nomem:
855 	return retval;
856 }
857 
858 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
859 {
860 	struct fs_struct *fs = current->fs;
861 	if (clone_flags & CLONE_FS) {
862 		/* tsk->fs is already what we want */
863 		spin_lock(&fs->lock);
864 		if (fs->in_exec) {
865 			spin_unlock(&fs->lock);
866 			return -EAGAIN;
867 		}
868 		fs->users++;
869 		spin_unlock(&fs->lock);
870 		return 0;
871 	}
872 	tsk->fs = copy_fs_struct(fs);
873 	if (!tsk->fs)
874 		return -ENOMEM;
875 	return 0;
876 }
877 
878 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
879 {
880 	struct files_struct *oldf, *newf;
881 	int error = 0;
882 
883 	/*
884 	 * A background process may not have any files ...
885 	 */
886 	oldf = current->files;
887 	if (!oldf)
888 		goto out;
889 
890 	if (clone_flags & CLONE_FILES) {
891 		atomic_inc(&oldf->count);
892 		goto out;
893 	}
894 
895 	newf = dup_fd(oldf, &error);
896 	if (!newf)
897 		goto out;
898 
899 	tsk->files = newf;
900 	error = 0;
901 out:
902 	return error;
903 }
904 
905 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
906 {
907 #ifdef CONFIG_BLOCK
908 	struct io_context *ioc = current->io_context;
909 
910 	if (!ioc)
911 		return 0;
912 	/*
913 	 * Share io context with parent, if CLONE_IO is set
914 	 */
915 	if (clone_flags & CLONE_IO) {
916 		tsk->io_context = ioc_task_link(ioc);
917 		if (unlikely(!tsk->io_context))
918 			return -ENOMEM;
919 	} else if (ioprio_valid(ioc->ioprio)) {
920 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
921 		if (unlikely(!tsk->io_context))
922 			return -ENOMEM;
923 
924 		tsk->io_context->ioprio = ioc->ioprio;
925 	}
926 #endif
927 	return 0;
928 }
929 
930 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
931 {
932 	struct sighand_struct *sig;
933 
934 	if (clone_flags & CLONE_SIGHAND) {
935 		atomic_inc(&current->sighand->count);
936 		return 0;
937 	}
938 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
939 	rcu_assign_pointer(tsk->sighand, sig);
940 	if (!sig)
941 		return -ENOMEM;
942 	atomic_set(&sig->count, 1);
943 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
944 	return 0;
945 }
946 
947 void __cleanup_sighand(struct sighand_struct *sighand)
948 {
949 	if (atomic_dec_and_test(&sighand->count))
950 		kmem_cache_free(sighand_cachep, sighand);
951 }
952 
953 
954 /*
955  * Initialize POSIX timer handling for a thread group.
956  */
957 static void posix_cpu_timers_init_group(struct signal_struct *sig)
958 {
959 	unsigned long cpu_limit;
960 
961 	/* Thread group counters. */
962 	thread_group_cputime_init(sig);
963 
964 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
965 	if (cpu_limit != RLIM_INFINITY) {
966 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
967 		sig->cputimer.running = 1;
968 	}
969 
970 	/* The timer lists. */
971 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
972 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
973 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
974 }
975 
976 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
977 {
978 	struct signal_struct *sig;
979 
980 	if (clone_flags & CLONE_THREAD)
981 		return 0;
982 
983 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
984 	tsk->signal = sig;
985 	if (!sig)
986 		return -ENOMEM;
987 
988 	sig->nr_threads = 1;
989 	atomic_set(&sig->live, 1);
990 	atomic_set(&sig->sigcnt, 1);
991 	init_waitqueue_head(&sig->wait_chldexit);
992 	if (clone_flags & CLONE_NEWPID)
993 		sig->flags |= SIGNAL_UNKILLABLE;
994 	sig->curr_target = tsk;
995 	init_sigpending(&sig->shared_pending);
996 	INIT_LIST_HEAD(&sig->posix_timers);
997 
998 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
999 	sig->real_timer.function = it_real_fn;
1000 
1001 	task_lock(current->group_leader);
1002 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1003 	task_unlock(current->group_leader);
1004 
1005 	posix_cpu_timers_init_group(sig);
1006 
1007 	tty_audit_fork(sig);
1008 	sched_autogroup_fork(sig);
1009 
1010 #ifdef CONFIG_CGROUPS
1011 	init_rwsem(&sig->threadgroup_fork_lock);
1012 #endif
1013 
1014 	sig->oom_adj = current->signal->oom_adj;
1015 	sig->oom_score_adj = current->signal->oom_score_adj;
1016 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1017 
1018 	mutex_init(&sig->cred_guard_mutex);
1019 
1020 	return 0;
1021 }
1022 
1023 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1024 {
1025 	unsigned long new_flags = p->flags;
1026 
1027 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1028 	new_flags |= PF_FORKNOEXEC;
1029 	new_flags |= PF_STARTING;
1030 	p->flags = new_flags;
1031 	clear_freeze_flag(p);
1032 }
1033 
1034 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1035 {
1036 	current->clear_child_tid = tidptr;
1037 
1038 	return task_pid_vnr(current);
1039 }
1040 
1041 static void rt_mutex_init_task(struct task_struct *p)
1042 {
1043 	raw_spin_lock_init(&p->pi_lock);
1044 #ifdef CONFIG_RT_MUTEXES
1045 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1046 	p->pi_blocked_on = NULL;
1047 #endif
1048 }
1049 
1050 #ifdef CONFIG_MM_OWNER
1051 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1052 {
1053 	mm->owner = p;
1054 }
1055 #endif /* CONFIG_MM_OWNER */
1056 
1057 /*
1058  * Initialize POSIX timer handling for a single task.
1059  */
1060 static void posix_cpu_timers_init(struct task_struct *tsk)
1061 {
1062 	tsk->cputime_expires.prof_exp = cputime_zero;
1063 	tsk->cputime_expires.virt_exp = cputime_zero;
1064 	tsk->cputime_expires.sched_exp = 0;
1065 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1066 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1067 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1068 }
1069 
1070 /*
1071  * This creates a new process as a copy of the old one,
1072  * but does not actually start it yet.
1073  *
1074  * It copies the registers, and all the appropriate
1075  * parts of the process environment (as per the clone
1076  * flags). The actual kick-off is left to the caller.
1077  */
1078 static struct task_struct *copy_process(unsigned long clone_flags,
1079 					unsigned long stack_start,
1080 					struct pt_regs *regs,
1081 					unsigned long stack_size,
1082 					int __user *child_tidptr,
1083 					struct pid *pid,
1084 					int trace)
1085 {
1086 	int retval;
1087 	struct task_struct *p;
1088 	int cgroup_callbacks_done = 0;
1089 
1090 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1091 		return ERR_PTR(-EINVAL);
1092 
1093 	/*
1094 	 * Thread groups must share signals as well, and detached threads
1095 	 * can only be started up within the thread group.
1096 	 */
1097 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1098 		return ERR_PTR(-EINVAL);
1099 
1100 	/*
1101 	 * Shared signal handlers imply shared VM. By way of the above,
1102 	 * thread groups also imply shared VM. Blocking this case allows
1103 	 * for various simplifications in other code.
1104 	 */
1105 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1106 		return ERR_PTR(-EINVAL);
1107 
1108 	/*
1109 	 * Siblings of global init remain as zombies on exit since they are
1110 	 * not reaped by their parent (swapper). To solve this and to avoid
1111 	 * multi-rooted process trees, prevent global and container-inits
1112 	 * from creating siblings.
1113 	 */
1114 	if ((clone_flags & CLONE_PARENT) &&
1115 				current->signal->flags & SIGNAL_UNKILLABLE)
1116 		return ERR_PTR(-EINVAL);
1117 
1118 	retval = security_task_create(clone_flags);
1119 	if (retval)
1120 		goto fork_out;
1121 
1122 	retval = -ENOMEM;
1123 	p = dup_task_struct(current);
1124 	if (!p)
1125 		goto fork_out;
1126 
1127 	ftrace_graph_init_task(p);
1128 
1129 	rt_mutex_init_task(p);
1130 
1131 #ifdef CONFIG_PROVE_LOCKING
1132 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1133 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1134 #endif
1135 	retval = -EAGAIN;
1136 	if (atomic_read(&p->real_cred->user->processes) >=
1137 			task_rlimit(p, RLIMIT_NPROC)) {
1138 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1139 		    p->real_cred->user != INIT_USER)
1140 			goto bad_fork_free;
1141 	}
1142 
1143 	retval = copy_creds(p, clone_flags);
1144 	if (retval < 0)
1145 		goto bad_fork_free;
1146 
1147 	/*
1148 	 * If multiple threads are within copy_process(), then this check
1149 	 * triggers too late. This doesn't hurt, the check is only there
1150 	 * to stop root fork bombs.
1151 	 */
1152 	retval = -EAGAIN;
1153 	if (nr_threads >= max_threads)
1154 		goto bad_fork_cleanup_count;
1155 
1156 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1157 		goto bad_fork_cleanup_count;
1158 
1159 	p->did_exec = 0;
1160 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1161 	copy_flags(clone_flags, p);
1162 	INIT_LIST_HEAD(&p->children);
1163 	INIT_LIST_HEAD(&p->sibling);
1164 	rcu_copy_process(p);
1165 	p->vfork_done = NULL;
1166 	spin_lock_init(&p->alloc_lock);
1167 
1168 	init_sigpending(&p->pending);
1169 
1170 	p->utime = cputime_zero;
1171 	p->stime = cputime_zero;
1172 	p->gtime = cputime_zero;
1173 	p->utimescaled = cputime_zero;
1174 	p->stimescaled = cputime_zero;
1175 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1176 	p->prev_utime = cputime_zero;
1177 	p->prev_stime = cputime_zero;
1178 #endif
1179 #if defined(SPLIT_RSS_COUNTING)
1180 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1181 #endif
1182 
1183 	p->default_timer_slack_ns = current->timer_slack_ns;
1184 
1185 	task_io_accounting_init(&p->ioac);
1186 	acct_clear_integrals(p);
1187 
1188 	posix_cpu_timers_init(p);
1189 
1190 	do_posix_clock_monotonic_gettime(&p->start_time);
1191 	p->real_start_time = p->start_time;
1192 	monotonic_to_bootbased(&p->real_start_time);
1193 	p->io_context = NULL;
1194 	p->audit_context = NULL;
1195 	if (clone_flags & CLONE_THREAD)
1196 		threadgroup_fork_read_lock(current);
1197 	cgroup_fork(p);
1198 #ifdef CONFIG_NUMA
1199 	p->mempolicy = mpol_dup(p->mempolicy);
1200  	if (IS_ERR(p->mempolicy)) {
1201  		retval = PTR_ERR(p->mempolicy);
1202  		p->mempolicy = NULL;
1203  		goto bad_fork_cleanup_cgroup;
1204  	}
1205 	mpol_fix_fork_child_flag(p);
1206 #endif
1207 #ifdef CONFIG_TRACE_IRQFLAGS
1208 	p->irq_events = 0;
1209 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1210 	p->hardirqs_enabled = 1;
1211 #else
1212 	p->hardirqs_enabled = 0;
1213 #endif
1214 	p->hardirq_enable_ip = 0;
1215 	p->hardirq_enable_event = 0;
1216 	p->hardirq_disable_ip = _THIS_IP_;
1217 	p->hardirq_disable_event = 0;
1218 	p->softirqs_enabled = 1;
1219 	p->softirq_enable_ip = _THIS_IP_;
1220 	p->softirq_enable_event = 0;
1221 	p->softirq_disable_ip = 0;
1222 	p->softirq_disable_event = 0;
1223 	p->hardirq_context = 0;
1224 	p->softirq_context = 0;
1225 #endif
1226 #ifdef CONFIG_LOCKDEP
1227 	p->lockdep_depth = 0; /* no locks held yet */
1228 	p->curr_chain_key = 0;
1229 	p->lockdep_recursion = 0;
1230 #endif
1231 
1232 #ifdef CONFIG_DEBUG_MUTEXES
1233 	p->blocked_on = NULL; /* not blocked yet */
1234 #endif
1235 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1236 	p->memcg_batch.do_batch = 0;
1237 	p->memcg_batch.memcg = NULL;
1238 #endif
1239 
1240 	/* Perform scheduler related setup. Assign this task to a CPU. */
1241 	sched_fork(p);
1242 
1243 	retval = perf_event_init_task(p);
1244 	if (retval)
1245 		goto bad_fork_cleanup_policy;
1246 
1247 	if ((retval = audit_alloc(p)))
1248 		goto bad_fork_cleanup_policy;
1249 	/* copy all the process information */
1250 	if ((retval = copy_semundo(clone_flags, p)))
1251 		goto bad_fork_cleanup_audit;
1252 	if ((retval = copy_files(clone_flags, p)))
1253 		goto bad_fork_cleanup_semundo;
1254 	if ((retval = copy_fs(clone_flags, p)))
1255 		goto bad_fork_cleanup_files;
1256 	if ((retval = copy_sighand(clone_flags, p)))
1257 		goto bad_fork_cleanup_fs;
1258 	if ((retval = copy_signal(clone_flags, p)))
1259 		goto bad_fork_cleanup_sighand;
1260 	if ((retval = copy_mm(clone_flags, p)))
1261 		goto bad_fork_cleanup_signal;
1262 	if ((retval = copy_namespaces(clone_flags, p)))
1263 		goto bad_fork_cleanup_mm;
1264 	if ((retval = copy_io(clone_flags, p)))
1265 		goto bad_fork_cleanup_namespaces;
1266 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1267 	if (retval)
1268 		goto bad_fork_cleanup_io;
1269 
1270 	if (pid != &init_struct_pid) {
1271 		retval = -ENOMEM;
1272 		pid = alloc_pid(p->nsproxy->pid_ns);
1273 		if (!pid)
1274 			goto bad_fork_cleanup_io;
1275 	}
1276 
1277 	p->pid = pid_nr(pid);
1278 	p->tgid = p->pid;
1279 	if (clone_flags & CLONE_THREAD)
1280 		p->tgid = current->tgid;
1281 
1282 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1283 	/*
1284 	 * Clear TID on mm_release()?
1285 	 */
1286 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1287 #ifdef CONFIG_BLOCK
1288 	p->plug = NULL;
1289 #endif
1290 #ifdef CONFIG_FUTEX
1291 	p->robust_list = NULL;
1292 #ifdef CONFIG_COMPAT
1293 	p->compat_robust_list = NULL;
1294 #endif
1295 	INIT_LIST_HEAD(&p->pi_state_list);
1296 	p->pi_state_cache = NULL;
1297 #endif
1298 	/*
1299 	 * sigaltstack should be cleared when sharing the same VM
1300 	 */
1301 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1302 		p->sas_ss_sp = p->sas_ss_size = 0;
1303 
1304 	/*
1305 	 * Syscall tracing and stepping should be turned off in the
1306 	 * child regardless of CLONE_PTRACE.
1307 	 */
1308 	user_disable_single_step(p);
1309 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1310 #ifdef TIF_SYSCALL_EMU
1311 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1312 #endif
1313 	clear_all_latency_tracing(p);
1314 
1315 	/* ok, now we should be set up.. */
1316 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1317 	p->pdeath_signal = 0;
1318 	p->exit_state = 0;
1319 
1320 	/*
1321 	 * Ok, make it visible to the rest of the system.
1322 	 * We dont wake it up yet.
1323 	 */
1324 	p->group_leader = p;
1325 	INIT_LIST_HEAD(&p->thread_group);
1326 
1327 	/* Now that the task is set up, run cgroup callbacks if
1328 	 * necessary. We need to run them before the task is visible
1329 	 * on the tasklist. */
1330 	cgroup_fork_callbacks(p);
1331 	cgroup_callbacks_done = 1;
1332 
1333 	/* Need tasklist lock for parent etc handling! */
1334 	write_lock_irq(&tasklist_lock);
1335 
1336 	/* CLONE_PARENT re-uses the old parent */
1337 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1338 		p->real_parent = current->real_parent;
1339 		p->parent_exec_id = current->parent_exec_id;
1340 	} else {
1341 		p->real_parent = current;
1342 		p->parent_exec_id = current->self_exec_id;
1343 	}
1344 
1345 	spin_lock(&current->sighand->siglock);
1346 
1347 	/*
1348 	 * Process group and session signals need to be delivered to just the
1349 	 * parent before the fork or both the parent and the child after the
1350 	 * fork. Restart if a signal comes in before we add the new process to
1351 	 * it's process group.
1352 	 * A fatal signal pending means that current will exit, so the new
1353 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1354  	 */
1355 	recalc_sigpending();
1356 	if (signal_pending(current)) {
1357 		spin_unlock(&current->sighand->siglock);
1358 		write_unlock_irq(&tasklist_lock);
1359 		retval = -ERESTARTNOINTR;
1360 		goto bad_fork_free_pid;
1361 	}
1362 
1363 	if (clone_flags & CLONE_THREAD) {
1364 		current->signal->nr_threads++;
1365 		atomic_inc(&current->signal->live);
1366 		atomic_inc(&current->signal->sigcnt);
1367 		p->group_leader = current->group_leader;
1368 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1369 	}
1370 
1371 	if (likely(p->pid)) {
1372 		tracehook_finish_clone(p, clone_flags, trace);
1373 
1374 		if (thread_group_leader(p)) {
1375 			if (is_child_reaper(pid))
1376 				p->nsproxy->pid_ns->child_reaper = p;
1377 
1378 			p->signal->leader_pid = pid;
1379 			p->signal->tty = tty_kref_get(current->signal->tty);
1380 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1381 			attach_pid(p, PIDTYPE_SID, task_session(current));
1382 			list_add_tail(&p->sibling, &p->real_parent->children);
1383 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1384 			__this_cpu_inc(process_counts);
1385 		}
1386 		attach_pid(p, PIDTYPE_PID, pid);
1387 		nr_threads++;
1388 	}
1389 
1390 	total_forks++;
1391 	spin_unlock(&current->sighand->siglock);
1392 	write_unlock_irq(&tasklist_lock);
1393 	proc_fork_connector(p);
1394 	cgroup_post_fork(p);
1395 	if (clone_flags & CLONE_THREAD)
1396 		threadgroup_fork_read_unlock(current);
1397 	perf_event_fork(p);
1398 	return p;
1399 
1400 bad_fork_free_pid:
1401 	if (pid != &init_struct_pid)
1402 		free_pid(pid);
1403 bad_fork_cleanup_io:
1404 	if (p->io_context)
1405 		exit_io_context(p);
1406 bad_fork_cleanup_namespaces:
1407 	exit_task_namespaces(p);
1408 bad_fork_cleanup_mm:
1409 	if (p->mm) {
1410 		task_lock(p);
1411 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1412 			atomic_dec(&p->mm->oom_disable_count);
1413 		task_unlock(p);
1414 		mmput(p->mm);
1415 	}
1416 bad_fork_cleanup_signal:
1417 	if (!(clone_flags & CLONE_THREAD))
1418 		free_signal_struct(p->signal);
1419 bad_fork_cleanup_sighand:
1420 	__cleanup_sighand(p->sighand);
1421 bad_fork_cleanup_fs:
1422 	exit_fs(p); /* blocking */
1423 bad_fork_cleanup_files:
1424 	exit_files(p); /* blocking */
1425 bad_fork_cleanup_semundo:
1426 	exit_sem(p);
1427 bad_fork_cleanup_audit:
1428 	audit_free(p);
1429 bad_fork_cleanup_policy:
1430 	perf_event_free_task(p);
1431 #ifdef CONFIG_NUMA
1432 	mpol_put(p->mempolicy);
1433 bad_fork_cleanup_cgroup:
1434 #endif
1435 	if (clone_flags & CLONE_THREAD)
1436 		threadgroup_fork_read_unlock(current);
1437 	cgroup_exit(p, cgroup_callbacks_done);
1438 	delayacct_tsk_free(p);
1439 	module_put(task_thread_info(p)->exec_domain->module);
1440 bad_fork_cleanup_count:
1441 	atomic_dec(&p->cred->user->processes);
1442 	exit_creds(p);
1443 bad_fork_free:
1444 	free_task(p);
1445 fork_out:
1446 	return ERR_PTR(retval);
1447 }
1448 
1449 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1450 {
1451 	memset(regs, 0, sizeof(struct pt_regs));
1452 	return regs;
1453 }
1454 
1455 static inline void init_idle_pids(struct pid_link *links)
1456 {
1457 	enum pid_type type;
1458 
1459 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1460 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1461 		links[type].pid = &init_struct_pid;
1462 	}
1463 }
1464 
1465 struct task_struct * __cpuinit fork_idle(int cpu)
1466 {
1467 	struct task_struct *task;
1468 	struct pt_regs regs;
1469 
1470 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1471 			    &init_struct_pid, 0);
1472 	if (!IS_ERR(task)) {
1473 		init_idle_pids(task->pids);
1474 		init_idle(task, cpu);
1475 	}
1476 
1477 	return task;
1478 }
1479 
1480 /*
1481  *  Ok, this is the main fork-routine.
1482  *
1483  * It copies the process, and if successful kick-starts
1484  * it and waits for it to finish using the VM if required.
1485  */
1486 long do_fork(unsigned long clone_flags,
1487 	      unsigned long stack_start,
1488 	      struct pt_regs *regs,
1489 	      unsigned long stack_size,
1490 	      int __user *parent_tidptr,
1491 	      int __user *child_tidptr)
1492 {
1493 	struct task_struct *p;
1494 	int trace = 0;
1495 	long nr;
1496 
1497 	/*
1498 	 * Do some preliminary argument and permissions checking before we
1499 	 * actually start allocating stuff
1500 	 */
1501 	if (clone_flags & CLONE_NEWUSER) {
1502 		if (clone_flags & CLONE_THREAD)
1503 			return -EINVAL;
1504 		/* hopefully this check will go away when userns support is
1505 		 * complete
1506 		 */
1507 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1508 				!capable(CAP_SETGID))
1509 			return -EPERM;
1510 	}
1511 
1512 	/*
1513 	 * When called from kernel_thread, don't do user tracing stuff.
1514 	 */
1515 	if (likely(user_mode(regs)))
1516 		trace = tracehook_prepare_clone(clone_flags);
1517 
1518 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1519 			 child_tidptr, NULL, trace);
1520 	/*
1521 	 * Do this prior waking up the new thread - the thread pointer
1522 	 * might get invalid after that point, if the thread exits quickly.
1523 	 */
1524 	if (!IS_ERR(p)) {
1525 		struct completion vfork;
1526 
1527 		trace_sched_process_fork(current, p);
1528 
1529 		nr = task_pid_vnr(p);
1530 
1531 		if (clone_flags & CLONE_PARENT_SETTID)
1532 			put_user(nr, parent_tidptr);
1533 
1534 		if (clone_flags & CLONE_VFORK) {
1535 			p->vfork_done = &vfork;
1536 			init_completion(&vfork);
1537 		}
1538 
1539 		audit_finish_fork(p);
1540 		tracehook_report_clone(regs, clone_flags, nr, p);
1541 
1542 		/*
1543 		 * We set PF_STARTING at creation in case tracing wants to
1544 		 * use this to distinguish a fully live task from one that
1545 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1546 		 * clear it and set the child going.
1547 		 */
1548 		p->flags &= ~PF_STARTING;
1549 
1550 		wake_up_new_task(p);
1551 
1552 		tracehook_report_clone_complete(trace, regs,
1553 						clone_flags, nr, p);
1554 
1555 		if (clone_flags & CLONE_VFORK) {
1556 			freezer_do_not_count();
1557 			wait_for_completion(&vfork);
1558 			freezer_count();
1559 			tracehook_report_vfork_done(p, nr);
1560 		}
1561 	} else {
1562 		nr = PTR_ERR(p);
1563 	}
1564 	return nr;
1565 }
1566 
1567 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1568 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1569 #endif
1570 
1571 static void sighand_ctor(void *data)
1572 {
1573 	struct sighand_struct *sighand = data;
1574 
1575 	spin_lock_init(&sighand->siglock);
1576 	init_waitqueue_head(&sighand->signalfd_wqh);
1577 }
1578 
1579 void __init proc_caches_init(void)
1580 {
1581 	sighand_cachep = kmem_cache_create("sighand_cache",
1582 			sizeof(struct sighand_struct), 0,
1583 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1584 			SLAB_NOTRACK, sighand_ctor);
1585 	signal_cachep = kmem_cache_create("signal_cache",
1586 			sizeof(struct signal_struct), 0,
1587 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1588 	files_cachep = kmem_cache_create("files_cache",
1589 			sizeof(struct files_struct), 0,
1590 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1591 	fs_cachep = kmem_cache_create("fs_cache",
1592 			sizeof(struct fs_struct), 0,
1593 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1594 	mm_cachep = kmem_cache_create("mm_struct",
1595 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1596 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1597 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1598 	mmap_init();
1599 }
1600 
1601 /*
1602  * Check constraints on flags passed to the unshare system call.
1603  */
1604 static int check_unshare_flags(unsigned long unshare_flags)
1605 {
1606 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1607 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1608 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1609 		return -EINVAL;
1610 	/*
1611 	 * Not implemented, but pretend it works if there is nothing to
1612 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1613 	 * needs to unshare vm.
1614 	 */
1615 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1616 		/* FIXME: get_task_mm() increments ->mm_users */
1617 		if (atomic_read(&current->mm->mm_users) > 1)
1618 			return -EINVAL;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Unshare the filesystem structure if it is being shared
1626  */
1627 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1628 {
1629 	struct fs_struct *fs = current->fs;
1630 
1631 	if (!(unshare_flags & CLONE_FS) || !fs)
1632 		return 0;
1633 
1634 	/* don't need lock here; in the worst case we'll do useless copy */
1635 	if (fs->users == 1)
1636 		return 0;
1637 
1638 	*new_fsp = copy_fs_struct(fs);
1639 	if (!*new_fsp)
1640 		return -ENOMEM;
1641 
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Unshare file descriptor table if it is being shared
1647  */
1648 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1649 {
1650 	struct files_struct *fd = current->files;
1651 	int error = 0;
1652 
1653 	if ((unshare_flags & CLONE_FILES) &&
1654 	    (fd && atomic_read(&fd->count) > 1)) {
1655 		*new_fdp = dup_fd(fd, &error);
1656 		if (!*new_fdp)
1657 			return error;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  * unshare allows a process to 'unshare' part of the process
1665  * context which was originally shared using clone.  copy_*
1666  * functions used by do_fork() cannot be used here directly
1667  * because they modify an inactive task_struct that is being
1668  * constructed. Here we are modifying the current, active,
1669  * task_struct.
1670  */
1671 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1672 {
1673 	struct fs_struct *fs, *new_fs = NULL;
1674 	struct files_struct *fd, *new_fd = NULL;
1675 	struct nsproxy *new_nsproxy = NULL;
1676 	int do_sysvsem = 0;
1677 	int err;
1678 
1679 	err = check_unshare_flags(unshare_flags);
1680 	if (err)
1681 		goto bad_unshare_out;
1682 
1683 	/*
1684 	 * If unsharing namespace, must also unshare filesystem information.
1685 	 */
1686 	if (unshare_flags & CLONE_NEWNS)
1687 		unshare_flags |= CLONE_FS;
1688 	/*
1689 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1690 	 * to a new ipc namespace, the semaphore arrays from the old
1691 	 * namespace are unreachable.
1692 	 */
1693 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1694 		do_sysvsem = 1;
1695 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1696 		goto bad_unshare_out;
1697 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1698 		goto bad_unshare_cleanup_fs;
1699 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1700 			new_fs)))
1701 		goto bad_unshare_cleanup_fd;
1702 
1703 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1704 		if (do_sysvsem) {
1705 			/*
1706 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1707 			 */
1708 			exit_sem(current);
1709 		}
1710 
1711 		if (new_nsproxy) {
1712 			switch_task_namespaces(current, new_nsproxy);
1713 			new_nsproxy = NULL;
1714 		}
1715 
1716 		task_lock(current);
1717 
1718 		if (new_fs) {
1719 			fs = current->fs;
1720 			spin_lock(&fs->lock);
1721 			current->fs = new_fs;
1722 			if (--fs->users)
1723 				new_fs = NULL;
1724 			else
1725 				new_fs = fs;
1726 			spin_unlock(&fs->lock);
1727 		}
1728 
1729 		if (new_fd) {
1730 			fd = current->files;
1731 			current->files = new_fd;
1732 			new_fd = fd;
1733 		}
1734 
1735 		task_unlock(current);
1736 	}
1737 
1738 	if (new_nsproxy)
1739 		put_nsproxy(new_nsproxy);
1740 
1741 bad_unshare_cleanup_fd:
1742 	if (new_fd)
1743 		put_files_struct(new_fd);
1744 
1745 bad_unshare_cleanup_fs:
1746 	if (new_fs)
1747 		free_fs_struct(new_fs);
1748 
1749 bad_unshare_out:
1750 	return err;
1751 }
1752 
1753 /*
1754  *	Helper to unshare the files of the current task.
1755  *	We don't want to expose copy_files internals to
1756  *	the exec layer of the kernel.
1757  */
1758 
1759 int unshare_files(struct files_struct **displaced)
1760 {
1761 	struct task_struct *task = current;
1762 	struct files_struct *copy = NULL;
1763 	int error;
1764 
1765 	error = unshare_fd(CLONE_FILES, &copy);
1766 	if (error || !copy) {
1767 		*displaced = NULL;
1768 		return error;
1769 	}
1770 	*displaced = task->files;
1771 	task_lock(task);
1772 	task->files = copy;
1773 	task_unlock(task);
1774 	return 0;
1775 }
1776