1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/config.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/unistd.h> 18 #include <linux/smp_lock.h> 19 #include <linux/module.h> 20 #include <linux/vmalloc.h> 21 #include <linux/completion.h> 22 #include <linux/namespace.h> 23 #include <linux/personality.h> 24 #include <linux/mempolicy.h> 25 #include <linux/sem.h> 26 #include <linux/file.h> 27 #include <linux/key.h> 28 #include <linux/binfmts.h> 29 #include <linux/mman.h> 30 #include <linux/fs.h> 31 #include <linux/cpu.h> 32 #include <linux/cpuset.h> 33 #include <linux/security.h> 34 #include <linux/swap.h> 35 #include <linux/syscalls.h> 36 #include <linux/jiffies.h> 37 #include <linux/futex.h> 38 #include <linux/ptrace.h> 39 #include <linux/mount.h> 40 #include <linux/audit.h> 41 #include <linux/profile.h> 42 #include <linux/rmap.h> 43 #include <linux/acct.h> 44 45 #include <asm/pgtable.h> 46 #include <asm/pgalloc.h> 47 #include <asm/uaccess.h> 48 #include <asm/mmu_context.h> 49 #include <asm/cacheflush.h> 50 #include <asm/tlbflush.h> 51 52 /* 53 * Protected counters by write_lock_irq(&tasklist_lock) 54 */ 55 unsigned long total_forks; /* Handle normal Linux uptimes. */ 56 int nr_threads; /* The idle threads do not count.. */ 57 58 int max_threads; /* tunable limit on nr_threads */ 59 60 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 61 62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 63 64 EXPORT_SYMBOL(tasklist_lock); 65 66 int nr_processes(void) 67 { 68 int cpu; 69 int total = 0; 70 71 for_each_online_cpu(cpu) 72 total += per_cpu(process_counts, cpu); 73 74 return total; 75 } 76 77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) 79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) 80 static kmem_cache_t *task_struct_cachep; 81 #endif 82 83 /* SLAB cache for signal_struct structures (tsk->signal) */ 84 kmem_cache_t *signal_cachep; 85 86 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 87 kmem_cache_t *sighand_cachep; 88 89 /* SLAB cache for files_struct structures (tsk->files) */ 90 kmem_cache_t *files_cachep; 91 92 /* SLAB cache for fs_struct structures (tsk->fs) */ 93 kmem_cache_t *fs_cachep; 94 95 /* SLAB cache for vm_area_struct structures */ 96 kmem_cache_t *vm_area_cachep; 97 98 /* SLAB cache for mm_struct structures (tsk->mm) */ 99 static kmem_cache_t *mm_cachep; 100 101 void free_task(struct task_struct *tsk) 102 { 103 free_thread_info(tsk->thread_info); 104 free_task_struct(tsk); 105 } 106 EXPORT_SYMBOL(free_task); 107 108 void __put_task_struct(struct task_struct *tsk) 109 { 110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); 111 WARN_ON(atomic_read(&tsk->usage)); 112 WARN_ON(tsk == current); 113 114 if (unlikely(tsk->audit_context)) 115 audit_free(tsk); 116 security_task_free(tsk); 117 free_uid(tsk->user); 118 put_group_info(tsk->group_info); 119 120 if (!profile_handoff_task(tsk)) 121 free_task(tsk); 122 } 123 124 void __init fork_init(unsigned long mempages) 125 { 126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR 127 #ifndef ARCH_MIN_TASKALIGN 128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 129 #endif 130 /* create a slab on which task_structs can be allocated */ 131 task_struct_cachep = 132 kmem_cache_create("task_struct", sizeof(struct task_struct), 133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL); 134 #endif 135 136 /* 137 * The default maximum number of threads is set to a safe 138 * value: the thread structures can take up at most half 139 * of memory. 140 */ 141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 142 143 /* 144 * we need to allow at least 20 threads to boot a system 145 */ 146 if(max_threads < 20) 147 max_threads = 20; 148 149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 151 init_task.signal->rlim[RLIMIT_SIGPENDING] = 152 init_task.signal->rlim[RLIMIT_NPROC]; 153 } 154 155 static struct task_struct *dup_task_struct(struct task_struct *orig) 156 { 157 struct task_struct *tsk; 158 struct thread_info *ti; 159 160 prepare_to_copy(orig); 161 162 tsk = alloc_task_struct(); 163 if (!tsk) 164 return NULL; 165 166 ti = alloc_thread_info(tsk); 167 if (!ti) { 168 free_task_struct(tsk); 169 return NULL; 170 } 171 172 *ti = *orig->thread_info; 173 *tsk = *orig; 174 tsk->thread_info = ti; 175 ti->task = tsk; 176 177 /* One for us, one for whoever does the "release_task()" (usually parent) */ 178 atomic_set(&tsk->usage,2); 179 return tsk; 180 } 181 182 #ifdef CONFIG_MMU 183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm) 184 { 185 struct vm_area_struct * mpnt, *tmp, **pprev; 186 struct rb_node **rb_link, *rb_parent; 187 int retval; 188 unsigned long charge; 189 struct mempolicy *pol; 190 191 down_write(&oldmm->mmap_sem); 192 flush_cache_mm(current->mm); 193 mm->locked_vm = 0; 194 mm->mmap = NULL; 195 mm->mmap_cache = NULL; 196 mm->free_area_cache = oldmm->mmap_base; 197 mm->map_count = 0; 198 set_mm_counter(mm, rss, 0); 199 set_mm_counter(mm, anon_rss, 0); 200 cpus_clear(mm->cpu_vm_mask); 201 mm->mm_rb = RB_ROOT; 202 rb_link = &mm->mm_rb.rb_node; 203 rb_parent = NULL; 204 pprev = &mm->mmap; 205 206 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { 207 struct file *file; 208 209 if (mpnt->vm_flags & VM_DONTCOPY) { 210 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 211 -vma_pages(mpnt)); 212 continue; 213 } 214 charge = 0; 215 if (mpnt->vm_flags & VM_ACCOUNT) { 216 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; 217 if (security_vm_enough_memory(len)) 218 goto fail_nomem; 219 charge = len; 220 } 221 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 222 if (!tmp) 223 goto fail_nomem; 224 *tmp = *mpnt; 225 pol = mpol_copy(vma_policy(mpnt)); 226 retval = PTR_ERR(pol); 227 if (IS_ERR(pol)) 228 goto fail_nomem_policy; 229 vma_set_policy(tmp, pol); 230 tmp->vm_flags &= ~VM_LOCKED; 231 tmp->vm_mm = mm; 232 tmp->vm_next = NULL; 233 anon_vma_link(tmp); 234 file = tmp->vm_file; 235 if (file) { 236 struct inode *inode = file->f_dentry->d_inode; 237 get_file(file); 238 if (tmp->vm_flags & VM_DENYWRITE) 239 atomic_dec(&inode->i_writecount); 240 241 /* insert tmp into the share list, just after mpnt */ 242 spin_lock(&file->f_mapping->i_mmap_lock); 243 tmp->vm_truncate_count = mpnt->vm_truncate_count; 244 flush_dcache_mmap_lock(file->f_mapping); 245 vma_prio_tree_add(tmp, mpnt); 246 flush_dcache_mmap_unlock(file->f_mapping); 247 spin_unlock(&file->f_mapping->i_mmap_lock); 248 } 249 250 /* 251 * Link in the new vma and copy the page table entries: 252 * link in first so that swapoff can see swap entries, 253 * and try_to_unmap_one's find_vma find the new vma. 254 */ 255 spin_lock(&mm->page_table_lock); 256 *pprev = tmp; 257 pprev = &tmp->vm_next; 258 259 __vma_link_rb(mm, tmp, rb_link, rb_parent); 260 rb_link = &tmp->vm_rb.rb_right; 261 rb_parent = &tmp->vm_rb; 262 263 mm->map_count++; 264 retval = copy_page_range(mm, current->mm, tmp); 265 spin_unlock(&mm->page_table_lock); 266 267 if (tmp->vm_ops && tmp->vm_ops->open) 268 tmp->vm_ops->open(tmp); 269 270 if (retval) 271 goto out; 272 } 273 retval = 0; 274 275 out: 276 flush_tlb_mm(current->mm); 277 up_write(&oldmm->mmap_sem); 278 return retval; 279 fail_nomem_policy: 280 kmem_cache_free(vm_area_cachep, tmp); 281 fail_nomem: 282 retval = -ENOMEM; 283 vm_unacct_memory(charge); 284 goto out; 285 } 286 287 static inline int mm_alloc_pgd(struct mm_struct * mm) 288 { 289 mm->pgd = pgd_alloc(mm); 290 if (unlikely(!mm->pgd)) 291 return -ENOMEM; 292 return 0; 293 } 294 295 static inline void mm_free_pgd(struct mm_struct * mm) 296 { 297 pgd_free(mm->pgd); 298 } 299 #else 300 #define dup_mmap(mm, oldmm) (0) 301 #define mm_alloc_pgd(mm) (0) 302 #define mm_free_pgd(mm) 303 #endif /* CONFIG_MMU */ 304 305 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 306 307 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) 308 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 309 310 #include <linux/init_task.h> 311 312 static struct mm_struct * mm_init(struct mm_struct * mm) 313 { 314 atomic_set(&mm->mm_users, 1); 315 atomic_set(&mm->mm_count, 1); 316 init_rwsem(&mm->mmap_sem); 317 INIT_LIST_HEAD(&mm->mmlist); 318 mm->core_waiters = 0; 319 mm->nr_ptes = 0; 320 spin_lock_init(&mm->page_table_lock); 321 rwlock_init(&mm->ioctx_list_lock); 322 mm->ioctx_list = NULL; 323 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm); 324 mm->free_area_cache = TASK_UNMAPPED_BASE; 325 326 if (likely(!mm_alloc_pgd(mm))) { 327 mm->def_flags = 0; 328 return mm; 329 } 330 free_mm(mm); 331 return NULL; 332 } 333 334 /* 335 * Allocate and initialize an mm_struct. 336 */ 337 struct mm_struct * mm_alloc(void) 338 { 339 struct mm_struct * mm; 340 341 mm = allocate_mm(); 342 if (mm) { 343 memset(mm, 0, sizeof(*mm)); 344 mm = mm_init(mm); 345 } 346 return mm; 347 } 348 349 /* 350 * Called when the last reference to the mm 351 * is dropped: either by a lazy thread or by 352 * mmput. Free the page directory and the mm. 353 */ 354 void fastcall __mmdrop(struct mm_struct *mm) 355 { 356 BUG_ON(mm == &init_mm); 357 mm_free_pgd(mm); 358 destroy_context(mm); 359 free_mm(mm); 360 } 361 362 /* 363 * Decrement the use count and release all resources for an mm. 364 */ 365 void mmput(struct mm_struct *mm) 366 { 367 if (atomic_dec_and_test(&mm->mm_users)) { 368 exit_aio(mm); 369 exit_mmap(mm); 370 if (!list_empty(&mm->mmlist)) { 371 spin_lock(&mmlist_lock); 372 list_del(&mm->mmlist); 373 spin_unlock(&mmlist_lock); 374 } 375 put_swap_token(mm); 376 mmdrop(mm); 377 } 378 } 379 EXPORT_SYMBOL_GPL(mmput); 380 381 /** 382 * get_task_mm - acquire a reference to the task's mm 383 * 384 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning 385 * this kernel workthread has transiently adopted a user mm with use_mm, 386 * to do its AIO) is not set and if so returns a reference to it, after 387 * bumping up the use count. User must release the mm via mmput() 388 * after use. Typically used by /proc and ptrace. 389 */ 390 struct mm_struct *get_task_mm(struct task_struct *task) 391 { 392 struct mm_struct *mm; 393 394 task_lock(task); 395 mm = task->mm; 396 if (mm) { 397 if (task->flags & PF_BORROWED_MM) 398 mm = NULL; 399 else 400 atomic_inc(&mm->mm_users); 401 } 402 task_unlock(task); 403 return mm; 404 } 405 EXPORT_SYMBOL_GPL(get_task_mm); 406 407 /* Please note the differences between mmput and mm_release. 408 * mmput is called whenever we stop holding onto a mm_struct, 409 * error success whatever. 410 * 411 * mm_release is called after a mm_struct has been removed 412 * from the current process. 413 * 414 * This difference is important for error handling, when we 415 * only half set up a mm_struct for a new process and need to restore 416 * the old one. Because we mmput the new mm_struct before 417 * restoring the old one. . . 418 * Eric Biederman 10 January 1998 419 */ 420 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 421 { 422 struct completion *vfork_done = tsk->vfork_done; 423 424 /* Get rid of any cached register state */ 425 deactivate_mm(tsk, mm); 426 427 /* notify parent sleeping on vfork() */ 428 if (vfork_done) { 429 tsk->vfork_done = NULL; 430 complete(vfork_done); 431 } 432 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) { 433 u32 __user * tidptr = tsk->clear_child_tid; 434 tsk->clear_child_tid = NULL; 435 436 /* 437 * We don't check the error code - if userspace has 438 * not set up a proper pointer then tough luck. 439 */ 440 put_user(0, tidptr); 441 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); 442 } 443 } 444 445 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) 446 { 447 struct mm_struct * mm, *oldmm; 448 int retval; 449 450 tsk->min_flt = tsk->maj_flt = 0; 451 tsk->nvcsw = tsk->nivcsw = 0; 452 453 tsk->mm = NULL; 454 tsk->active_mm = NULL; 455 456 /* 457 * Are we cloning a kernel thread? 458 * 459 * We need to steal a active VM for that.. 460 */ 461 oldmm = current->mm; 462 if (!oldmm) 463 return 0; 464 465 if (clone_flags & CLONE_VM) { 466 atomic_inc(&oldmm->mm_users); 467 mm = oldmm; 468 /* 469 * There are cases where the PTL is held to ensure no 470 * new threads start up in user mode using an mm, which 471 * allows optimizing out ipis; the tlb_gather_mmu code 472 * is an example. 473 */ 474 spin_unlock_wait(&oldmm->page_table_lock); 475 goto good_mm; 476 } 477 478 retval = -ENOMEM; 479 mm = allocate_mm(); 480 if (!mm) 481 goto fail_nomem; 482 483 /* Copy the current MM stuff.. */ 484 memcpy(mm, oldmm, sizeof(*mm)); 485 if (!mm_init(mm)) 486 goto fail_nomem; 487 488 if (init_new_context(tsk,mm)) 489 goto fail_nocontext; 490 491 retval = dup_mmap(mm, oldmm); 492 if (retval) 493 goto free_pt; 494 495 mm->hiwater_rss = get_mm_counter(mm,rss); 496 mm->hiwater_vm = mm->total_vm; 497 498 good_mm: 499 tsk->mm = mm; 500 tsk->active_mm = mm; 501 return 0; 502 503 free_pt: 504 mmput(mm); 505 fail_nomem: 506 return retval; 507 508 fail_nocontext: 509 /* 510 * If init_new_context() failed, we cannot use mmput() to free the mm 511 * because it calls destroy_context() 512 */ 513 mm_free_pgd(mm); 514 free_mm(mm); 515 return retval; 516 } 517 518 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) 519 { 520 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); 521 /* We don't need to lock fs - think why ;-) */ 522 if (fs) { 523 atomic_set(&fs->count, 1); 524 rwlock_init(&fs->lock); 525 fs->umask = old->umask; 526 read_lock(&old->lock); 527 fs->rootmnt = mntget(old->rootmnt); 528 fs->root = dget(old->root); 529 fs->pwdmnt = mntget(old->pwdmnt); 530 fs->pwd = dget(old->pwd); 531 if (old->altroot) { 532 fs->altrootmnt = mntget(old->altrootmnt); 533 fs->altroot = dget(old->altroot); 534 } else { 535 fs->altrootmnt = NULL; 536 fs->altroot = NULL; 537 } 538 read_unlock(&old->lock); 539 } 540 return fs; 541 } 542 543 struct fs_struct *copy_fs_struct(struct fs_struct *old) 544 { 545 return __copy_fs_struct(old); 546 } 547 548 EXPORT_SYMBOL_GPL(copy_fs_struct); 549 550 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) 551 { 552 if (clone_flags & CLONE_FS) { 553 atomic_inc(¤t->fs->count); 554 return 0; 555 } 556 tsk->fs = __copy_fs_struct(current->fs); 557 if (!tsk->fs) 558 return -ENOMEM; 559 return 0; 560 } 561 562 static int count_open_files(struct files_struct *files, int size) 563 { 564 int i; 565 566 /* Find the last open fd */ 567 for (i = size/(8*sizeof(long)); i > 0; ) { 568 if (files->open_fds->fds_bits[--i]) 569 break; 570 } 571 i = (i+1) * 8 * sizeof(long); 572 return i; 573 } 574 575 static int copy_files(unsigned long clone_flags, struct task_struct * tsk) 576 { 577 struct files_struct *oldf, *newf; 578 struct file **old_fds, **new_fds; 579 int open_files, size, i, error = 0, expand; 580 581 /* 582 * A background process may not have any files ... 583 */ 584 oldf = current->files; 585 if (!oldf) 586 goto out; 587 588 if (clone_flags & CLONE_FILES) { 589 atomic_inc(&oldf->count); 590 goto out; 591 } 592 593 /* 594 * Note: we may be using current for both targets (See exec.c) 595 * This works because we cache current->files (old) as oldf. Don't 596 * break this. 597 */ 598 tsk->files = NULL; 599 error = -ENOMEM; 600 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); 601 if (!newf) 602 goto out; 603 604 atomic_set(&newf->count, 1); 605 606 spin_lock_init(&newf->file_lock); 607 newf->next_fd = 0; 608 newf->max_fds = NR_OPEN_DEFAULT; 609 newf->max_fdset = __FD_SETSIZE; 610 newf->close_on_exec = &newf->close_on_exec_init; 611 newf->open_fds = &newf->open_fds_init; 612 newf->fd = &newf->fd_array[0]; 613 614 spin_lock(&oldf->file_lock); 615 616 open_files = count_open_files(oldf, oldf->max_fdset); 617 expand = 0; 618 619 /* 620 * Check whether we need to allocate a larger fd array or fd set. 621 * Note: we're not a clone task, so the open count won't change. 622 */ 623 if (open_files > newf->max_fdset) { 624 newf->max_fdset = 0; 625 expand = 1; 626 } 627 if (open_files > newf->max_fds) { 628 newf->max_fds = 0; 629 expand = 1; 630 } 631 632 /* if the old fdset gets grown now, we'll only copy up to "size" fds */ 633 if (expand) { 634 spin_unlock(&oldf->file_lock); 635 spin_lock(&newf->file_lock); 636 error = expand_files(newf, open_files-1); 637 spin_unlock(&newf->file_lock); 638 if (error < 0) 639 goto out_release; 640 spin_lock(&oldf->file_lock); 641 } 642 643 old_fds = oldf->fd; 644 new_fds = newf->fd; 645 646 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8); 647 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8); 648 649 for (i = open_files; i != 0; i--) { 650 struct file *f = *old_fds++; 651 if (f) { 652 get_file(f); 653 } else { 654 /* 655 * The fd may be claimed in the fd bitmap but not yet 656 * instantiated in the files array if a sibling thread 657 * is partway through open(). So make sure that this 658 * fd is available to the new process. 659 */ 660 FD_CLR(open_files - i, newf->open_fds); 661 } 662 *new_fds++ = f; 663 } 664 spin_unlock(&oldf->file_lock); 665 666 /* compute the remainder to be cleared */ 667 size = (newf->max_fds - open_files) * sizeof(struct file *); 668 669 /* This is long word aligned thus could use a optimized version */ 670 memset(new_fds, 0, size); 671 672 if (newf->max_fdset > open_files) { 673 int left = (newf->max_fdset-open_files)/8; 674 int start = open_files / (8 * sizeof(unsigned long)); 675 676 memset(&newf->open_fds->fds_bits[start], 0, left); 677 memset(&newf->close_on_exec->fds_bits[start], 0, left); 678 } 679 680 tsk->files = newf; 681 error = 0; 682 out: 683 return error; 684 685 out_release: 686 free_fdset (newf->close_on_exec, newf->max_fdset); 687 free_fdset (newf->open_fds, newf->max_fdset); 688 free_fd_array(newf->fd, newf->max_fds); 689 kmem_cache_free(files_cachep, newf); 690 goto out; 691 } 692 693 /* 694 * Helper to unshare the files of the current task. 695 * We don't want to expose copy_files internals to 696 * the exec layer of the kernel. 697 */ 698 699 int unshare_files(void) 700 { 701 struct files_struct *files = current->files; 702 int rc; 703 704 if(!files) 705 BUG(); 706 707 /* This can race but the race causes us to copy when we don't 708 need to and drop the copy */ 709 if(atomic_read(&files->count) == 1) 710 { 711 atomic_inc(&files->count); 712 return 0; 713 } 714 rc = copy_files(0, current); 715 if(rc) 716 current->files = files; 717 return rc; 718 } 719 720 EXPORT_SYMBOL(unshare_files); 721 722 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) 723 { 724 struct sighand_struct *sig; 725 726 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { 727 atomic_inc(¤t->sighand->count); 728 return 0; 729 } 730 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 731 tsk->sighand = sig; 732 if (!sig) 733 return -ENOMEM; 734 spin_lock_init(&sig->siglock); 735 atomic_set(&sig->count, 1); 736 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 737 return 0; 738 } 739 740 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) 741 { 742 struct signal_struct *sig; 743 int ret; 744 745 if (clone_flags & CLONE_THREAD) { 746 atomic_inc(¤t->signal->count); 747 atomic_inc(¤t->signal->live); 748 return 0; 749 } 750 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); 751 tsk->signal = sig; 752 if (!sig) 753 return -ENOMEM; 754 755 ret = copy_thread_group_keys(tsk); 756 if (ret < 0) { 757 kmem_cache_free(signal_cachep, sig); 758 return ret; 759 } 760 761 atomic_set(&sig->count, 1); 762 atomic_set(&sig->live, 1); 763 init_waitqueue_head(&sig->wait_chldexit); 764 sig->flags = 0; 765 sig->group_exit_code = 0; 766 sig->group_exit_task = NULL; 767 sig->group_stop_count = 0; 768 sig->curr_target = NULL; 769 init_sigpending(&sig->shared_pending); 770 INIT_LIST_HEAD(&sig->posix_timers); 771 772 sig->it_real_value = sig->it_real_incr = 0; 773 sig->real_timer.function = it_real_fn; 774 sig->real_timer.data = (unsigned long) tsk; 775 init_timer(&sig->real_timer); 776 777 sig->it_virt_expires = cputime_zero; 778 sig->it_virt_incr = cputime_zero; 779 sig->it_prof_expires = cputime_zero; 780 sig->it_prof_incr = cputime_zero; 781 782 sig->tty = current->signal->tty; 783 sig->pgrp = process_group(current); 784 sig->session = current->signal->session; 785 sig->leader = 0; /* session leadership doesn't inherit */ 786 sig->tty_old_pgrp = 0; 787 788 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; 789 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; 790 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; 791 sig->sched_time = 0; 792 INIT_LIST_HEAD(&sig->cpu_timers[0]); 793 INIT_LIST_HEAD(&sig->cpu_timers[1]); 794 INIT_LIST_HEAD(&sig->cpu_timers[2]); 795 796 task_lock(current->group_leader); 797 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 798 task_unlock(current->group_leader); 799 800 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 801 /* 802 * New sole thread in the process gets an expiry time 803 * of the whole CPU time limit. 804 */ 805 tsk->it_prof_expires = 806 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); 807 } 808 809 return 0; 810 } 811 812 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) 813 { 814 unsigned long new_flags = p->flags; 815 816 new_flags &= ~PF_SUPERPRIV; 817 new_flags |= PF_FORKNOEXEC; 818 if (!(clone_flags & CLONE_PTRACE)) 819 p->ptrace = 0; 820 p->flags = new_flags; 821 } 822 823 asmlinkage long sys_set_tid_address(int __user *tidptr) 824 { 825 current->clear_child_tid = tidptr; 826 827 return current->pid; 828 } 829 830 /* 831 * This creates a new process as a copy of the old one, 832 * but does not actually start it yet. 833 * 834 * It copies the registers, and all the appropriate 835 * parts of the process environment (as per the clone 836 * flags). The actual kick-off is left to the caller. 837 */ 838 static task_t *copy_process(unsigned long clone_flags, 839 unsigned long stack_start, 840 struct pt_regs *regs, 841 unsigned long stack_size, 842 int __user *parent_tidptr, 843 int __user *child_tidptr, 844 int pid) 845 { 846 int retval; 847 struct task_struct *p = NULL; 848 849 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 850 return ERR_PTR(-EINVAL); 851 852 /* 853 * Thread groups must share signals as well, and detached threads 854 * can only be started up within the thread group. 855 */ 856 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 857 return ERR_PTR(-EINVAL); 858 859 /* 860 * Shared signal handlers imply shared VM. By way of the above, 861 * thread groups also imply shared VM. Blocking this case allows 862 * for various simplifications in other code. 863 */ 864 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 865 return ERR_PTR(-EINVAL); 866 867 retval = security_task_create(clone_flags); 868 if (retval) 869 goto fork_out; 870 871 retval = -ENOMEM; 872 p = dup_task_struct(current); 873 if (!p) 874 goto fork_out; 875 876 retval = -EAGAIN; 877 if (atomic_read(&p->user->processes) >= 878 p->signal->rlim[RLIMIT_NPROC].rlim_cur) { 879 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && 880 p->user != &root_user) 881 goto bad_fork_free; 882 } 883 884 atomic_inc(&p->user->__count); 885 atomic_inc(&p->user->processes); 886 get_group_info(p->group_info); 887 888 /* 889 * If multiple threads are within copy_process(), then this check 890 * triggers too late. This doesn't hurt, the check is only there 891 * to stop root fork bombs. 892 */ 893 if (nr_threads >= max_threads) 894 goto bad_fork_cleanup_count; 895 896 if (!try_module_get(p->thread_info->exec_domain->module)) 897 goto bad_fork_cleanup_count; 898 899 if (p->binfmt && !try_module_get(p->binfmt->module)) 900 goto bad_fork_cleanup_put_domain; 901 902 p->did_exec = 0; 903 copy_flags(clone_flags, p); 904 p->pid = pid; 905 retval = -EFAULT; 906 if (clone_flags & CLONE_PARENT_SETTID) 907 if (put_user(p->pid, parent_tidptr)) 908 goto bad_fork_cleanup; 909 910 p->proc_dentry = NULL; 911 912 INIT_LIST_HEAD(&p->children); 913 INIT_LIST_HEAD(&p->sibling); 914 p->vfork_done = NULL; 915 spin_lock_init(&p->alloc_lock); 916 spin_lock_init(&p->proc_lock); 917 918 clear_tsk_thread_flag(p, TIF_SIGPENDING); 919 init_sigpending(&p->pending); 920 921 p->utime = cputime_zero; 922 p->stime = cputime_zero; 923 p->sched_time = 0; 924 p->rchar = 0; /* I/O counter: bytes read */ 925 p->wchar = 0; /* I/O counter: bytes written */ 926 p->syscr = 0; /* I/O counter: read syscalls */ 927 p->syscw = 0; /* I/O counter: write syscalls */ 928 acct_clear_integrals(p); 929 930 p->it_virt_expires = cputime_zero; 931 p->it_prof_expires = cputime_zero; 932 p->it_sched_expires = 0; 933 INIT_LIST_HEAD(&p->cpu_timers[0]); 934 INIT_LIST_HEAD(&p->cpu_timers[1]); 935 INIT_LIST_HEAD(&p->cpu_timers[2]); 936 937 p->lock_depth = -1; /* -1 = no lock */ 938 do_posix_clock_monotonic_gettime(&p->start_time); 939 p->security = NULL; 940 p->io_context = NULL; 941 p->io_wait = NULL; 942 p->audit_context = NULL; 943 #ifdef CONFIG_NUMA 944 p->mempolicy = mpol_copy(p->mempolicy); 945 if (IS_ERR(p->mempolicy)) { 946 retval = PTR_ERR(p->mempolicy); 947 p->mempolicy = NULL; 948 goto bad_fork_cleanup; 949 } 950 #endif 951 952 p->tgid = p->pid; 953 if (clone_flags & CLONE_THREAD) 954 p->tgid = current->tgid; 955 956 if ((retval = security_task_alloc(p))) 957 goto bad_fork_cleanup_policy; 958 if ((retval = audit_alloc(p))) 959 goto bad_fork_cleanup_security; 960 /* copy all the process information */ 961 if ((retval = copy_semundo(clone_flags, p))) 962 goto bad_fork_cleanup_audit; 963 if ((retval = copy_files(clone_flags, p))) 964 goto bad_fork_cleanup_semundo; 965 if ((retval = copy_fs(clone_flags, p))) 966 goto bad_fork_cleanup_files; 967 if ((retval = copy_sighand(clone_flags, p))) 968 goto bad_fork_cleanup_fs; 969 if ((retval = copy_signal(clone_flags, p))) 970 goto bad_fork_cleanup_sighand; 971 if ((retval = copy_mm(clone_flags, p))) 972 goto bad_fork_cleanup_signal; 973 if ((retval = copy_keys(clone_flags, p))) 974 goto bad_fork_cleanup_mm; 975 if ((retval = copy_namespace(clone_flags, p))) 976 goto bad_fork_cleanup_keys; 977 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); 978 if (retval) 979 goto bad_fork_cleanup_namespace; 980 981 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 982 /* 983 * Clear TID on mm_release()? 984 */ 985 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; 986 987 /* 988 * Syscall tracing should be turned off in the child regardless 989 * of CLONE_PTRACE. 990 */ 991 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 992 993 /* Our parent execution domain becomes current domain 994 These must match for thread signalling to apply */ 995 996 p->parent_exec_id = p->self_exec_id; 997 998 /* ok, now we should be set up.. */ 999 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); 1000 p->pdeath_signal = 0; 1001 p->exit_state = 0; 1002 1003 /* Perform scheduler related setup */ 1004 sched_fork(p); 1005 1006 /* 1007 * Ok, make it visible to the rest of the system. 1008 * We dont wake it up yet. 1009 */ 1010 p->group_leader = p; 1011 INIT_LIST_HEAD(&p->ptrace_children); 1012 INIT_LIST_HEAD(&p->ptrace_list); 1013 1014 /* Need tasklist lock for parent etc handling! */ 1015 write_lock_irq(&tasklist_lock); 1016 1017 /* 1018 * The task hasn't been attached yet, so cpus_allowed mask cannot 1019 * have changed. The cpus_allowed mask of the parent may have 1020 * changed after it was copied first time, and it may then move to 1021 * another CPU - so we re-copy it here and set the child's CPU to 1022 * the parent's CPU. This avoids alot of nasty races. 1023 */ 1024 p->cpus_allowed = current->cpus_allowed; 1025 set_task_cpu(p, smp_processor_id()); 1026 1027 /* 1028 * Check for pending SIGKILL! The new thread should not be allowed 1029 * to slip out of an OOM kill. (or normal SIGKILL.) 1030 */ 1031 if (sigismember(¤t->pending.signal, SIGKILL)) { 1032 write_unlock_irq(&tasklist_lock); 1033 retval = -EINTR; 1034 goto bad_fork_cleanup_namespace; 1035 } 1036 1037 /* CLONE_PARENT re-uses the old parent */ 1038 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) 1039 p->real_parent = current->real_parent; 1040 else 1041 p->real_parent = current; 1042 p->parent = p->real_parent; 1043 1044 if (clone_flags & CLONE_THREAD) { 1045 spin_lock(¤t->sighand->siglock); 1046 /* 1047 * Important: if an exit-all has been started then 1048 * do not create this new thread - the whole thread 1049 * group is supposed to exit anyway. 1050 */ 1051 if (current->signal->flags & SIGNAL_GROUP_EXIT) { 1052 spin_unlock(¤t->sighand->siglock); 1053 write_unlock_irq(&tasklist_lock); 1054 retval = -EAGAIN; 1055 goto bad_fork_cleanup_namespace; 1056 } 1057 p->group_leader = current->group_leader; 1058 1059 if (current->signal->group_stop_count > 0) { 1060 /* 1061 * There is an all-stop in progress for the group. 1062 * We ourselves will stop as soon as we check signals. 1063 * Make the new thread part of that group stop too. 1064 */ 1065 current->signal->group_stop_count++; 1066 set_tsk_thread_flag(p, TIF_SIGPENDING); 1067 } 1068 1069 if (!cputime_eq(current->signal->it_virt_expires, 1070 cputime_zero) || 1071 !cputime_eq(current->signal->it_prof_expires, 1072 cputime_zero) || 1073 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || 1074 !list_empty(¤t->signal->cpu_timers[0]) || 1075 !list_empty(¤t->signal->cpu_timers[1]) || 1076 !list_empty(¤t->signal->cpu_timers[2])) { 1077 /* 1078 * Have child wake up on its first tick to check 1079 * for process CPU timers. 1080 */ 1081 p->it_prof_expires = jiffies_to_cputime(1); 1082 } 1083 1084 spin_unlock(¤t->sighand->siglock); 1085 } 1086 1087 SET_LINKS(p); 1088 if (unlikely(p->ptrace & PT_PTRACED)) 1089 __ptrace_link(p, current->parent); 1090 1091 cpuset_fork(p); 1092 1093 attach_pid(p, PIDTYPE_PID, p->pid); 1094 attach_pid(p, PIDTYPE_TGID, p->tgid); 1095 if (thread_group_leader(p)) { 1096 attach_pid(p, PIDTYPE_PGID, process_group(p)); 1097 attach_pid(p, PIDTYPE_SID, p->signal->session); 1098 if (p->pid) 1099 __get_cpu_var(process_counts)++; 1100 } 1101 1102 nr_threads++; 1103 total_forks++; 1104 write_unlock_irq(&tasklist_lock); 1105 retval = 0; 1106 1107 fork_out: 1108 if (retval) 1109 return ERR_PTR(retval); 1110 return p; 1111 1112 bad_fork_cleanup_namespace: 1113 exit_namespace(p); 1114 bad_fork_cleanup_keys: 1115 exit_keys(p); 1116 bad_fork_cleanup_mm: 1117 if (p->mm) 1118 mmput(p->mm); 1119 bad_fork_cleanup_signal: 1120 exit_signal(p); 1121 bad_fork_cleanup_sighand: 1122 exit_sighand(p); 1123 bad_fork_cleanup_fs: 1124 exit_fs(p); /* blocking */ 1125 bad_fork_cleanup_files: 1126 exit_files(p); /* blocking */ 1127 bad_fork_cleanup_semundo: 1128 exit_sem(p); 1129 bad_fork_cleanup_audit: 1130 audit_free(p); 1131 bad_fork_cleanup_security: 1132 security_task_free(p); 1133 bad_fork_cleanup_policy: 1134 #ifdef CONFIG_NUMA 1135 mpol_free(p->mempolicy); 1136 #endif 1137 bad_fork_cleanup: 1138 if (p->binfmt) 1139 module_put(p->binfmt->module); 1140 bad_fork_cleanup_put_domain: 1141 module_put(p->thread_info->exec_domain->module); 1142 bad_fork_cleanup_count: 1143 put_group_info(p->group_info); 1144 atomic_dec(&p->user->processes); 1145 free_uid(p->user); 1146 bad_fork_free: 1147 free_task(p); 1148 goto fork_out; 1149 } 1150 1151 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) 1152 { 1153 memset(regs, 0, sizeof(struct pt_regs)); 1154 return regs; 1155 } 1156 1157 task_t * __devinit fork_idle(int cpu) 1158 { 1159 task_t *task; 1160 struct pt_regs regs; 1161 1162 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0); 1163 if (!task) 1164 return ERR_PTR(-ENOMEM); 1165 init_idle(task, cpu); 1166 unhash_process(task); 1167 return task; 1168 } 1169 1170 static inline int fork_traceflag (unsigned clone_flags) 1171 { 1172 if (clone_flags & CLONE_UNTRACED) 1173 return 0; 1174 else if (clone_flags & CLONE_VFORK) { 1175 if (current->ptrace & PT_TRACE_VFORK) 1176 return PTRACE_EVENT_VFORK; 1177 } else if ((clone_flags & CSIGNAL) != SIGCHLD) { 1178 if (current->ptrace & PT_TRACE_CLONE) 1179 return PTRACE_EVENT_CLONE; 1180 } else if (current->ptrace & PT_TRACE_FORK) 1181 return PTRACE_EVENT_FORK; 1182 1183 return 0; 1184 } 1185 1186 /* 1187 * Ok, this is the main fork-routine. 1188 * 1189 * It copies the process, and if successful kick-starts 1190 * it and waits for it to finish using the VM if required. 1191 */ 1192 long do_fork(unsigned long clone_flags, 1193 unsigned long stack_start, 1194 struct pt_regs *regs, 1195 unsigned long stack_size, 1196 int __user *parent_tidptr, 1197 int __user *child_tidptr) 1198 { 1199 struct task_struct *p; 1200 int trace = 0; 1201 long pid = alloc_pidmap(); 1202 1203 if (pid < 0) 1204 return -EAGAIN; 1205 if (unlikely(current->ptrace)) { 1206 trace = fork_traceflag (clone_flags); 1207 if (trace) 1208 clone_flags |= CLONE_PTRACE; 1209 } 1210 1211 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); 1212 /* 1213 * Do this prior waking up the new thread - the thread pointer 1214 * might get invalid after that point, if the thread exits quickly. 1215 */ 1216 if (!IS_ERR(p)) { 1217 struct completion vfork; 1218 1219 if (clone_flags & CLONE_VFORK) { 1220 p->vfork_done = &vfork; 1221 init_completion(&vfork); 1222 } 1223 1224 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { 1225 /* 1226 * We'll start up with an immediate SIGSTOP. 1227 */ 1228 sigaddset(&p->pending.signal, SIGSTOP); 1229 set_tsk_thread_flag(p, TIF_SIGPENDING); 1230 } 1231 1232 if (!(clone_flags & CLONE_STOPPED)) 1233 wake_up_new_task(p, clone_flags); 1234 else 1235 p->state = TASK_STOPPED; 1236 1237 if (unlikely (trace)) { 1238 current->ptrace_message = pid; 1239 ptrace_notify ((trace << 8) | SIGTRAP); 1240 } 1241 1242 if (clone_flags & CLONE_VFORK) { 1243 wait_for_completion(&vfork); 1244 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) 1245 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); 1246 } 1247 } else { 1248 free_pidmap(pid); 1249 pid = PTR_ERR(p); 1250 } 1251 return pid; 1252 } 1253 1254 void __init proc_caches_init(void) 1255 { 1256 sighand_cachep = kmem_cache_create("sighand_cache", 1257 sizeof(struct sighand_struct), 0, 1258 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1259 signal_cachep = kmem_cache_create("signal_cache", 1260 sizeof(struct signal_struct), 0, 1261 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1262 files_cachep = kmem_cache_create("files_cache", 1263 sizeof(struct files_struct), 0, 1264 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1265 fs_cachep = kmem_cache_create("fs_cache", 1266 sizeof(struct fs_struct), 0, 1267 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1268 vm_area_cachep = kmem_cache_create("vm_area_struct", 1269 sizeof(struct vm_area_struct), 0, 1270 SLAB_PANIC, NULL, NULL); 1271 mm_cachep = kmem_cache_create("mm_struct", 1272 sizeof(struct mm_struct), 0, 1273 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1274 } 1275