xref: /openbmc/linux/kernel/fork.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44 
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 
52 /*
53  * Protected counters by write_lock_irq(&tasklist_lock)
54  */
55 unsigned long total_forks;	/* Handle normal Linux uptimes. */
56 int nr_threads; 		/* The idle threads do not count.. */
57 
58 int max_threads;		/* tunable limit on nr_threads */
59 
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61 
62  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
63 
64 EXPORT_SYMBOL(tasklist_lock);
65 
66 int nr_processes(void)
67 {
68 	int cpu;
69 	int total = 0;
70 
71 	for_each_online_cpu(cpu)
72 		total += per_cpu(process_counts, cpu);
73 
74 	return total;
75 }
76 
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82 
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85 
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88 
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91 
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94 
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97 
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100 
101 void free_task(struct task_struct *tsk)
102 {
103 	free_thread_info(tsk->thread_info);
104 	free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107 
108 void __put_task_struct(struct task_struct *tsk)
109 {
110 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 	WARN_ON(atomic_read(&tsk->usage));
112 	WARN_ON(tsk == current);
113 
114 	if (unlikely(tsk->audit_context))
115 		audit_free(tsk);
116 	security_task_free(tsk);
117 	free_uid(tsk->user);
118 	put_group_info(tsk->group_info);
119 
120 	if (!profile_handoff_task(tsk))
121 		free_task(tsk);
122 }
123 
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
129 #endif
130 	/* create a slab on which task_structs can be allocated */
131 	task_struct_cachep =
132 		kmem_cache_create("task_struct", sizeof(struct task_struct),
133 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135 
136 	/*
137 	 * The default maximum number of threads is set to a safe
138 	 * value: the thread structures can take up at most half
139 	 * of memory.
140 	 */
141 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142 
143 	/*
144 	 * we need to allow at least 20 threads to boot a system
145 	 */
146 	if(max_threads < 20)
147 		max_threads = 20;
148 
149 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 		init_task.signal->rlim[RLIMIT_NPROC];
153 }
154 
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157 	struct task_struct *tsk;
158 	struct thread_info *ti;
159 
160 	prepare_to_copy(orig);
161 
162 	tsk = alloc_task_struct();
163 	if (!tsk)
164 		return NULL;
165 
166 	ti = alloc_thread_info(tsk);
167 	if (!ti) {
168 		free_task_struct(tsk);
169 		return NULL;
170 	}
171 
172 	*ti = *orig->thread_info;
173 	*tsk = *orig;
174 	tsk->thread_info = ti;
175 	ti->task = tsk;
176 
177 	/* One for us, one for whoever does the "release_task()" (usually parent) */
178 	atomic_set(&tsk->usage,2);
179 	return tsk;
180 }
181 
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
184 {
185 	struct vm_area_struct * mpnt, *tmp, **pprev;
186 	struct rb_node **rb_link, *rb_parent;
187 	int retval;
188 	unsigned long charge;
189 	struct mempolicy *pol;
190 
191 	down_write(&oldmm->mmap_sem);
192 	flush_cache_mm(current->mm);
193 	mm->locked_vm = 0;
194 	mm->mmap = NULL;
195 	mm->mmap_cache = NULL;
196 	mm->free_area_cache = oldmm->mmap_base;
197 	mm->map_count = 0;
198 	set_mm_counter(mm, rss, 0);
199 	set_mm_counter(mm, anon_rss, 0);
200 	cpus_clear(mm->cpu_vm_mask);
201 	mm->mm_rb = RB_ROOT;
202 	rb_link = &mm->mm_rb.rb_node;
203 	rb_parent = NULL;
204 	pprev = &mm->mmap;
205 
206 	for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
207 		struct file *file;
208 
209 		if (mpnt->vm_flags & VM_DONTCOPY) {
210 			__vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
211 							-vma_pages(mpnt));
212 			continue;
213 		}
214 		charge = 0;
215 		if (mpnt->vm_flags & VM_ACCOUNT) {
216 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
217 			if (security_vm_enough_memory(len))
218 				goto fail_nomem;
219 			charge = len;
220 		}
221 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
222 		if (!tmp)
223 			goto fail_nomem;
224 		*tmp = *mpnt;
225 		pol = mpol_copy(vma_policy(mpnt));
226 		retval = PTR_ERR(pol);
227 		if (IS_ERR(pol))
228 			goto fail_nomem_policy;
229 		vma_set_policy(tmp, pol);
230 		tmp->vm_flags &= ~VM_LOCKED;
231 		tmp->vm_mm = mm;
232 		tmp->vm_next = NULL;
233 		anon_vma_link(tmp);
234 		file = tmp->vm_file;
235 		if (file) {
236 			struct inode *inode = file->f_dentry->d_inode;
237 			get_file(file);
238 			if (tmp->vm_flags & VM_DENYWRITE)
239 				atomic_dec(&inode->i_writecount);
240 
241 			/* insert tmp into the share list, just after mpnt */
242 			spin_lock(&file->f_mapping->i_mmap_lock);
243 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
244 			flush_dcache_mmap_lock(file->f_mapping);
245 			vma_prio_tree_add(tmp, mpnt);
246 			flush_dcache_mmap_unlock(file->f_mapping);
247 			spin_unlock(&file->f_mapping->i_mmap_lock);
248 		}
249 
250 		/*
251 		 * Link in the new vma and copy the page table entries:
252 		 * link in first so that swapoff can see swap entries,
253 		 * and try_to_unmap_one's find_vma find the new vma.
254 		 */
255 		spin_lock(&mm->page_table_lock);
256 		*pprev = tmp;
257 		pprev = &tmp->vm_next;
258 
259 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
260 		rb_link = &tmp->vm_rb.rb_right;
261 		rb_parent = &tmp->vm_rb;
262 
263 		mm->map_count++;
264 		retval = copy_page_range(mm, current->mm, tmp);
265 		spin_unlock(&mm->page_table_lock);
266 
267 		if (tmp->vm_ops && tmp->vm_ops->open)
268 			tmp->vm_ops->open(tmp);
269 
270 		if (retval)
271 			goto out;
272 	}
273 	retval = 0;
274 
275 out:
276 	flush_tlb_mm(current->mm);
277 	up_write(&oldmm->mmap_sem);
278 	return retval;
279 fail_nomem_policy:
280 	kmem_cache_free(vm_area_cachep, tmp);
281 fail_nomem:
282 	retval = -ENOMEM;
283 	vm_unacct_memory(charge);
284 	goto out;
285 }
286 
287 static inline int mm_alloc_pgd(struct mm_struct * mm)
288 {
289 	mm->pgd = pgd_alloc(mm);
290 	if (unlikely(!mm->pgd))
291 		return -ENOMEM;
292 	return 0;
293 }
294 
295 static inline void mm_free_pgd(struct mm_struct * mm)
296 {
297 	pgd_free(mm->pgd);
298 }
299 #else
300 #define dup_mmap(mm, oldmm)	(0)
301 #define mm_alloc_pgd(mm)	(0)
302 #define mm_free_pgd(mm)
303 #endif /* CONFIG_MMU */
304 
305  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
306 
307 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
308 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
309 
310 #include <linux/init_task.h>
311 
312 static struct mm_struct * mm_init(struct mm_struct * mm)
313 {
314 	atomic_set(&mm->mm_users, 1);
315 	atomic_set(&mm->mm_count, 1);
316 	init_rwsem(&mm->mmap_sem);
317 	INIT_LIST_HEAD(&mm->mmlist);
318 	mm->core_waiters = 0;
319 	mm->nr_ptes = 0;
320 	spin_lock_init(&mm->page_table_lock);
321 	rwlock_init(&mm->ioctx_list_lock);
322 	mm->ioctx_list = NULL;
323 	mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
324 	mm->free_area_cache = TASK_UNMAPPED_BASE;
325 
326 	if (likely(!mm_alloc_pgd(mm))) {
327 		mm->def_flags = 0;
328 		return mm;
329 	}
330 	free_mm(mm);
331 	return NULL;
332 }
333 
334 /*
335  * Allocate and initialize an mm_struct.
336  */
337 struct mm_struct * mm_alloc(void)
338 {
339 	struct mm_struct * mm;
340 
341 	mm = allocate_mm();
342 	if (mm) {
343 		memset(mm, 0, sizeof(*mm));
344 		mm = mm_init(mm);
345 	}
346 	return mm;
347 }
348 
349 /*
350  * Called when the last reference to the mm
351  * is dropped: either by a lazy thread or by
352  * mmput. Free the page directory and the mm.
353  */
354 void fastcall __mmdrop(struct mm_struct *mm)
355 {
356 	BUG_ON(mm == &init_mm);
357 	mm_free_pgd(mm);
358 	destroy_context(mm);
359 	free_mm(mm);
360 }
361 
362 /*
363  * Decrement the use count and release all resources for an mm.
364  */
365 void mmput(struct mm_struct *mm)
366 {
367 	if (atomic_dec_and_test(&mm->mm_users)) {
368 		exit_aio(mm);
369 		exit_mmap(mm);
370 		if (!list_empty(&mm->mmlist)) {
371 			spin_lock(&mmlist_lock);
372 			list_del(&mm->mmlist);
373 			spin_unlock(&mmlist_lock);
374 		}
375 		put_swap_token(mm);
376 		mmdrop(mm);
377 	}
378 }
379 EXPORT_SYMBOL_GPL(mmput);
380 
381 /**
382  * get_task_mm - acquire a reference to the task's mm
383  *
384  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
385  * this kernel workthread has transiently adopted a user mm with use_mm,
386  * to do its AIO) is not set and if so returns a reference to it, after
387  * bumping up the use count.  User must release the mm via mmput()
388  * after use.  Typically used by /proc and ptrace.
389  */
390 struct mm_struct *get_task_mm(struct task_struct *task)
391 {
392 	struct mm_struct *mm;
393 
394 	task_lock(task);
395 	mm = task->mm;
396 	if (mm) {
397 		if (task->flags & PF_BORROWED_MM)
398 			mm = NULL;
399 		else
400 			atomic_inc(&mm->mm_users);
401 	}
402 	task_unlock(task);
403 	return mm;
404 }
405 EXPORT_SYMBOL_GPL(get_task_mm);
406 
407 /* Please note the differences between mmput and mm_release.
408  * mmput is called whenever we stop holding onto a mm_struct,
409  * error success whatever.
410  *
411  * mm_release is called after a mm_struct has been removed
412  * from the current process.
413  *
414  * This difference is important for error handling, when we
415  * only half set up a mm_struct for a new process and need to restore
416  * the old one.  Because we mmput the new mm_struct before
417  * restoring the old one. . .
418  * Eric Biederman 10 January 1998
419  */
420 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
421 {
422 	struct completion *vfork_done = tsk->vfork_done;
423 
424 	/* Get rid of any cached register state */
425 	deactivate_mm(tsk, mm);
426 
427 	/* notify parent sleeping on vfork() */
428 	if (vfork_done) {
429 		tsk->vfork_done = NULL;
430 		complete(vfork_done);
431 	}
432 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
433 		u32 __user * tidptr = tsk->clear_child_tid;
434 		tsk->clear_child_tid = NULL;
435 
436 		/*
437 		 * We don't check the error code - if userspace has
438 		 * not set up a proper pointer then tough luck.
439 		 */
440 		put_user(0, tidptr);
441 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
442 	}
443 }
444 
445 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
446 {
447 	struct mm_struct * mm, *oldmm;
448 	int retval;
449 
450 	tsk->min_flt = tsk->maj_flt = 0;
451 	tsk->nvcsw = tsk->nivcsw = 0;
452 
453 	tsk->mm = NULL;
454 	tsk->active_mm = NULL;
455 
456 	/*
457 	 * Are we cloning a kernel thread?
458 	 *
459 	 * We need to steal a active VM for that..
460 	 */
461 	oldmm = current->mm;
462 	if (!oldmm)
463 		return 0;
464 
465 	if (clone_flags & CLONE_VM) {
466 		atomic_inc(&oldmm->mm_users);
467 		mm = oldmm;
468 		/*
469 		 * There are cases where the PTL is held to ensure no
470 		 * new threads start up in user mode using an mm, which
471 		 * allows optimizing out ipis; the tlb_gather_mmu code
472 		 * is an example.
473 		 */
474 		spin_unlock_wait(&oldmm->page_table_lock);
475 		goto good_mm;
476 	}
477 
478 	retval = -ENOMEM;
479 	mm = allocate_mm();
480 	if (!mm)
481 		goto fail_nomem;
482 
483 	/* Copy the current MM stuff.. */
484 	memcpy(mm, oldmm, sizeof(*mm));
485 	if (!mm_init(mm))
486 		goto fail_nomem;
487 
488 	if (init_new_context(tsk,mm))
489 		goto fail_nocontext;
490 
491 	retval = dup_mmap(mm, oldmm);
492 	if (retval)
493 		goto free_pt;
494 
495 	mm->hiwater_rss = get_mm_counter(mm,rss);
496 	mm->hiwater_vm = mm->total_vm;
497 
498 good_mm:
499 	tsk->mm = mm;
500 	tsk->active_mm = mm;
501 	return 0;
502 
503 free_pt:
504 	mmput(mm);
505 fail_nomem:
506 	return retval;
507 
508 fail_nocontext:
509 	/*
510 	 * If init_new_context() failed, we cannot use mmput() to free the mm
511 	 * because it calls destroy_context()
512 	 */
513 	mm_free_pgd(mm);
514 	free_mm(mm);
515 	return retval;
516 }
517 
518 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
519 {
520 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
521 	/* We don't need to lock fs - think why ;-) */
522 	if (fs) {
523 		atomic_set(&fs->count, 1);
524 		rwlock_init(&fs->lock);
525 		fs->umask = old->umask;
526 		read_lock(&old->lock);
527 		fs->rootmnt = mntget(old->rootmnt);
528 		fs->root = dget(old->root);
529 		fs->pwdmnt = mntget(old->pwdmnt);
530 		fs->pwd = dget(old->pwd);
531 		if (old->altroot) {
532 			fs->altrootmnt = mntget(old->altrootmnt);
533 			fs->altroot = dget(old->altroot);
534 		} else {
535 			fs->altrootmnt = NULL;
536 			fs->altroot = NULL;
537 		}
538 		read_unlock(&old->lock);
539 	}
540 	return fs;
541 }
542 
543 struct fs_struct *copy_fs_struct(struct fs_struct *old)
544 {
545 	return __copy_fs_struct(old);
546 }
547 
548 EXPORT_SYMBOL_GPL(copy_fs_struct);
549 
550 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
551 {
552 	if (clone_flags & CLONE_FS) {
553 		atomic_inc(&current->fs->count);
554 		return 0;
555 	}
556 	tsk->fs = __copy_fs_struct(current->fs);
557 	if (!tsk->fs)
558 		return -ENOMEM;
559 	return 0;
560 }
561 
562 static int count_open_files(struct files_struct *files, int size)
563 {
564 	int i;
565 
566 	/* Find the last open fd */
567 	for (i = size/(8*sizeof(long)); i > 0; ) {
568 		if (files->open_fds->fds_bits[--i])
569 			break;
570 	}
571 	i = (i+1) * 8 * sizeof(long);
572 	return i;
573 }
574 
575 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
576 {
577 	struct files_struct *oldf, *newf;
578 	struct file **old_fds, **new_fds;
579 	int open_files, size, i, error = 0, expand;
580 
581 	/*
582 	 * A background process may not have any files ...
583 	 */
584 	oldf = current->files;
585 	if (!oldf)
586 		goto out;
587 
588 	if (clone_flags & CLONE_FILES) {
589 		atomic_inc(&oldf->count);
590 		goto out;
591 	}
592 
593 	/*
594 	 * Note: we may be using current for both targets (See exec.c)
595 	 * This works because we cache current->files (old) as oldf. Don't
596 	 * break this.
597 	 */
598 	tsk->files = NULL;
599 	error = -ENOMEM;
600 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
601 	if (!newf)
602 		goto out;
603 
604 	atomic_set(&newf->count, 1);
605 
606 	spin_lock_init(&newf->file_lock);
607 	newf->next_fd	    = 0;
608 	newf->max_fds	    = NR_OPEN_DEFAULT;
609 	newf->max_fdset	    = __FD_SETSIZE;
610 	newf->close_on_exec = &newf->close_on_exec_init;
611 	newf->open_fds	    = &newf->open_fds_init;
612 	newf->fd	    = &newf->fd_array[0];
613 
614 	spin_lock(&oldf->file_lock);
615 
616 	open_files = count_open_files(oldf, oldf->max_fdset);
617 	expand = 0;
618 
619 	/*
620 	 * Check whether we need to allocate a larger fd array or fd set.
621 	 * Note: we're not a clone task, so the open count won't  change.
622 	 */
623 	if (open_files > newf->max_fdset) {
624 		newf->max_fdset = 0;
625 		expand = 1;
626 	}
627 	if (open_files > newf->max_fds) {
628 		newf->max_fds = 0;
629 		expand = 1;
630 	}
631 
632 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
633 	if (expand) {
634 		spin_unlock(&oldf->file_lock);
635 		spin_lock(&newf->file_lock);
636 		error = expand_files(newf, open_files-1);
637 		spin_unlock(&newf->file_lock);
638 		if (error < 0)
639 			goto out_release;
640 		spin_lock(&oldf->file_lock);
641 	}
642 
643 	old_fds = oldf->fd;
644 	new_fds = newf->fd;
645 
646 	memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
647 	memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
648 
649 	for (i = open_files; i != 0; i--) {
650 		struct file *f = *old_fds++;
651 		if (f) {
652 			get_file(f);
653 		} else {
654 			/*
655 			 * The fd may be claimed in the fd bitmap but not yet
656 			 * instantiated in the files array if a sibling thread
657 			 * is partway through open().  So make sure that this
658 			 * fd is available to the new process.
659 			 */
660 			FD_CLR(open_files - i, newf->open_fds);
661 		}
662 		*new_fds++ = f;
663 	}
664 	spin_unlock(&oldf->file_lock);
665 
666 	/* compute the remainder to be cleared */
667 	size = (newf->max_fds - open_files) * sizeof(struct file *);
668 
669 	/* This is long word aligned thus could use a optimized version */
670 	memset(new_fds, 0, size);
671 
672 	if (newf->max_fdset > open_files) {
673 		int left = (newf->max_fdset-open_files)/8;
674 		int start = open_files / (8 * sizeof(unsigned long));
675 
676 		memset(&newf->open_fds->fds_bits[start], 0, left);
677 		memset(&newf->close_on_exec->fds_bits[start], 0, left);
678 	}
679 
680 	tsk->files = newf;
681 	error = 0;
682 out:
683 	return error;
684 
685 out_release:
686 	free_fdset (newf->close_on_exec, newf->max_fdset);
687 	free_fdset (newf->open_fds, newf->max_fdset);
688 	free_fd_array(newf->fd, newf->max_fds);
689 	kmem_cache_free(files_cachep, newf);
690 	goto out;
691 }
692 
693 /*
694  *	Helper to unshare the files of the current task.
695  *	We don't want to expose copy_files internals to
696  *	the exec layer of the kernel.
697  */
698 
699 int unshare_files(void)
700 {
701 	struct files_struct *files  = current->files;
702 	int rc;
703 
704 	if(!files)
705 		BUG();
706 
707 	/* This can race but the race causes us to copy when we don't
708 	   need to and drop the copy */
709 	if(atomic_read(&files->count) == 1)
710 	{
711 		atomic_inc(&files->count);
712 		return 0;
713 	}
714 	rc = copy_files(0, current);
715 	if(rc)
716 		current->files = files;
717 	return rc;
718 }
719 
720 EXPORT_SYMBOL(unshare_files);
721 
722 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
723 {
724 	struct sighand_struct *sig;
725 
726 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
727 		atomic_inc(&current->sighand->count);
728 		return 0;
729 	}
730 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
731 	tsk->sighand = sig;
732 	if (!sig)
733 		return -ENOMEM;
734 	spin_lock_init(&sig->siglock);
735 	atomic_set(&sig->count, 1);
736 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
737 	return 0;
738 }
739 
740 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
741 {
742 	struct signal_struct *sig;
743 	int ret;
744 
745 	if (clone_flags & CLONE_THREAD) {
746 		atomic_inc(&current->signal->count);
747 		atomic_inc(&current->signal->live);
748 		return 0;
749 	}
750 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
751 	tsk->signal = sig;
752 	if (!sig)
753 		return -ENOMEM;
754 
755 	ret = copy_thread_group_keys(tsk);
756 	if (ret < 0) {
757 		kmem_cache_free(signal_cachep, sig);
758 		return ret;
759 	}
760 
761 	atomic_set(&sig->count, 1);
762 	atomic_set(&sig->live, 1);
763 	init_waitqueue_head(&sig->wait_chldexit);
764 	sig->flags = 0;
765 	sig->group_exit_code = 0;
766 	sig->group_exit_task = NULL;
767 	sig->group_stop_count = 0;
768 	sig->curr_target = NULL;
769 	init_sigpending(&sig->shared_pending);
770 	INIT_LIST_HEAD(&sig->posix_timers);
771 
772 	sig->it_real_value = sig->it_real_incr = 0;
773 	sig->real_timer.function = it_real_fn;
774 	sig->real_timer.data = (unsigned long) tsk;
775 	init_timer(&sig->real_timer);
776 
777 	sig->it_virt_expires = cputime_zero;
778 	sig->it_virt_incr = cputime_zero;
779 	sig->it_prof_expires = cputime_zero;
780 	sig->it_prof_incr = cputime_zero;
781 
782 	sig->tty = current->signal->tty;
783 	sig->pgrp = process_group(current);
784 	sig->session = current->signal->session;
785 	sig->leader = 0;	/* session leadership doesn't inherit */
786 	sig->tty_old_pgrp = 0;
787 
788 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
789 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
790 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
791 	sig->sched_time = 0;
792 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
793 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
794 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
795 
796 	task_lock(current->group_leader);
797 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
798 	task_unlock(current->group_leader);
799 
800 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
801 		/*
802 		 * New sole thread in the process gets an expiry time
803 		 * of the whole CPU time limit.
804 		 */
805 		tsk->it_prof_expires =
806 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
807 	}
808 
809 	return 0;
810 }
811 
812 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
813 {
814 	unsigned long new_flags = p->flags;
815 
816 	new_flags &= ~PF_SUPERPRIV;
817 	new_flags |= PF_FORKNOEXEC;
818 	if (!(clone_flags & CLONE_PTRACE))
819 		p->ptrace = 0;
820 	p->flags = new_flags;
821 }
822 
823 asmlinkage long sys_set_tid_address(int __user *tidptr)
824 {
825 	current->clear_child_tid = tidptr;
826 
827 	return current->pid;
828 }
829 
830 /*
831  * This creates a new process as a copy of the old one,
832  * but does not actually start it yet.
833  *
834  * It copies the registers, and all the appropriate
835  * parts of the process environment (as per the clone
836  * flags). The actual kick-off is left to the caller.
837  */
838 static task_t *copy_process(unsigned long clone_flags,
839 				 unsigned long stack_start,
840 				 struct pt_regs *regs,
841 				 unsigned long stack_size,
842 				 int __user *parent_tidptr,
843 				 int __user *child_tidptr,
844 				 int pid)
845 {
846 	int retval;
847 	struct task_struct *p = NULL;
848 
849 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
850 		return ERR_PTR(-EINVAL);
851 
852 	/*
853 	 * Thread groups must share signals as well, and detached threads
854 	 * can only be started up within the thread group.
855 	 */
856 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
857 		return ERR_PTR(-EINVAL);
858 
859 	/*
860 	 * Shared signal handlers imply shared VM. By way of the above,
861 	 * thread groups also imply shared VM. Blocking this case allows
862 	 * for various simplifications in other code.
863 	 */
864 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
865 		return ERR_PTR(-EINVAL);
866 
867 	retval = security_task_create(clone_flags);
868 	if (retval)
869 		goto fork_out;
870 
871 	retval = -ENOMEM;
872 	p = dup_task_struct(current);
873 	if (!p)
874 		goto fork_out;
875 
876 	retval = -EAGAIN;
877 	if (atomic_read(&p->user->processes) >=
878 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
879 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
880 				p->user != &root_user)
881 			goto bad_fork_free;
882 	}
883 
884 	atomic_inc(&p->user->__count);
885 	atomic_inc(&p->user->processes);
886 	get_group_info(p->group_info);
887 
888 	/*
889 	 * If multiple threads are within copy_process(), then this check
890 	 * triggers too late. This doesn't hurt, the check is only there
891 	 * to stop root fork bombs.
892 	 */
893 	if (nr_threads >= max_threads)
894 		goto bad_fork_cleanup_count;
895 
896 	if (!try_module_get(p->thread_info->exec_domain->module))
897 		goto bad_fork_cleanup_count;
898 
899 	if (p->binfmt && !try_module_get(p->binfmt->module))
900 		goto bad_fork_cleanup_put_domain;
901 
902 	p->did_exec = 0;
903 	copy_flags(clone_flags, p);
904 	p->pid = pid;
905 	retval = -EFAULT;
906 	if (clone_flags & CLONE_PARENT_SETTID)
907 		if (put_user(p->pid, parent_tidptr))
908 			goto bad_fork_cleanup;
909 
910 	p->proc_dentry = NULL;
911 
912 	INIT_LIST_HEAD(&p->children);
913 	INIT_LIST_HEAD(&p->sibling);
914 	p->vfork_done = NULL;
915 	spin_lock_init(&p->alloc_lock);
916 	spin_lock_init(&p->proc_lock);
917 
918 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
919 	init_sigpending(&p->pending);
920 
921 	p->utime = cputime_zero;
922 	p->stime = cputime_zero;
923  	p->sched_time = 0;
924 	p->rchar = 0;		/* I/O counter: bytes read */
925 	p->wchar = 0;		/* I/O counter: bytes written */
926 	p->syscr = 0;		/* I/O counter: read syscalls */
927 	p->syscw = 0;		/* I/O counter: write syscalls */
928 	acct_clear_integrals(p);
929 
930  	p->it_virt_expires = cputime_zero;
931 	p->it_prof_expires = cputime_zero;
932  	p->it_sched_expires = 0;
933  	INIT_LIST_HEAD(&p->cpu_timers[0]);
934  	INIT_LIST_HEAD(&p->cpu_timers[1]);
935  	INIT_LIST_HEAD(&p->cpu_timers[2]);
936 
937 	p->lock_depth = -1;		/* -1 = no lock */
938 	do_posix_clock_monotonic_gettime(&p->start_time);
939 	p->security = NULL;
940 	p->io_context = NULL;
941 	p->io_wait = NULL;
942 	p->audit_context = NULL;
943 #ifdef CONFIG_NUMA
944  	p->mempolicy = mpol_copy(p->mempolicy);
945  	if (IS_ERR(p->mempolicy)) {
946  		retval = PTR_ERR(p->mempolicy);
947  		p->mempolicy = NULL;
948  		goto bad_fork_cleanup;
949  	}
950 #endif
951 
952 	p->tgid = p->pid;
953 	if (clone_flags & CLONE_THREAD)
954 		p->tgid = current->tgid;
955 
956 	if ((retval = security_task_alloc(p)))
957 		goto bad_fork_cleanup_policy;
958 	if ((retval = audit_alloc(p)))
959 		goto bad_fork_cleanup_security;
960 	/* copy all the process information */
961 	if ((retval = copy_semundo(clone_flags, p)))
962 		goto bad_fork_cleanup_audit;
963 	if ((retval = copy_files(clone_flags, p)))
964 		goto bad_fork_cleanup_semundo;
965 	if ((retval = copy_fs(clone_flags, p)))
966 		goto bad_fork_cleanup_files;
967 	if ((retval = copy_sighand(clone_flags, p)))
968 		goto bad_fork_cleanup_fs;
969 	if ((retval = copy_signal(clone_flags, p)))
970 		goto bad_fork_cleanup_sighand;
971 	if ((retval = copy_mm(clone_flags, p)))
972 		goto bad_fork_cleanup_signal;
973 	if ((retval = copy_keys(clone_flags, p)))
974 		goto bad_fork_cleanup_mm;
975 	if ((retval = copy_namespace(clone_flags, p)))
976 		goto bad_fork_cleanup_keys;
977 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
978 	if (retval)
979 		goto bad_fork_cleanup_namespace;
980 
981 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
982 	/*
983 	 * Clear TID on mm_release()?
984 	 */
985 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
986 
987 	/*
988 	 * Syscall tracing should be turned off in the child regardless
989 	 * of CLONE_PTRACE.
990 	 */
991 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
992 
993 	/* Our parent execution domain becomes current domain
994 	   These must match for thread signalling to apply */
995 
996 	p->parent_exec_id = p->self_exec_id;
997 
998 	/* ok, now we should be set up.. */
999 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1000 	p->pdeath_signal = 0;
1001 	p->exit_state = 0;
1002 
1003 	/* Perform scheduler related setup */
1004 	sched_fork(p);
1005 
1006 	/*
1007 	 * Ok, make it visible to the rest of the system.
1008 	 * We dont wake it up yet.
1009 	 */
1010 	p->group_leader = p;
1011 	INIT_LIST_HEAD(&p->ptrace_children);
1012 	INIT_LIST_HEAD(&p->ptrace_list);
1013 
1014 	/* Need tasklist lock for parent etc handling! */
1015 	write_lock_irq(&tasklist_lock);
1016 
1017 	/*
1018 	 * The task hasn't been attached yet, so cpus_allowed mask cannot
1019 	 * have changed. The cpus_allowed mask of the parent may have
1020 	 * changed after it was copied first time, and it may then move to
1021 	 * another CPU - so we re-copy it here and set the child's CPU to
1022 	 * the parent's CPU. This avoids alot of nasty races.
1023 	 */
1024 	p->cpus_allowed = current->cpus_allowed;
1025 	set_task_cpu(p, smp_processor_id());
1026 
1027 	/*
1028 	 * Check for pending SIGKILL! The new thread should not be allowed
1029 	 * to slip out of an OOM kill. (or normal SIGKILL.)
1030 	 */
1031 	if (sigismember(&current->pending.signal, SIGKILL)) {
1032 		write_unlock_irq(&tasklist_lock);
1033 		retval = -EINTR;
1034 		goto bad_fork_cleanup_namespace;
1035 	}
1036 
1037 	/* CLONE_PARENT re-uses the old parent */
1038 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1039 		p->real_parent = current->real_parent;
1040 	else
1041 		p->real_parent = current;
1042 	p->parent = p->real_parent;
1043 
1044 	if (clone_flags & CLONE_THREAD) {
1045 		spin_lock(&current->sighand->siglock);
1046 		/*
1047 		 * Important: if an exit-all has been started then
1048 		 * do not create this new thread - the whole thread
1049 		 * group is supposed to exit anyway.
1050 		 */
1051 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1052 			spin_unlock(&current->sighand->siglock);
1053 			write_unlock_irq(&tasklist_lock);
1054 			retval = -EAGAIN;
1055 			goto bad_fork_cleanup_namespace;
1056 		}
1057 		p->group_leader = current->group_leader;
1058 
1059 		if (current->signal->group_stop_count > 0) {
1060 			/*
1061 			 * There is an all-stop in progress for the group.
1062 			 * We ourselves will stop as soon as we check signals.
1063 			 * Make the new thread part of that group stop too.
1064 			 */
1065 			current->signal->group_stop_count++;
1066 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1067 		}
1068 
1069 		if (!cputime_eq(current->signal->it_virt_expires,
1070 				cputime_zero) ||
1071 		    !cputime_eq(current->signal->it_prof_expires,
1072 				cputime_zero) ||
1073 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1074 		    !list_empty(&current->signal->cpu_timers[0]) ||
1075 		    !list_empty(&current->signal->cpu_timers[1]) ||
1076 		    !list_empty(&current->signal->cpu_timers[2])) {
1077 			/*
1078 			 * Have child wake up on its first tick to check
1079 			 * for process CPU timers.
1080 			 */
1081 			p->it_prof_expires = jiffies_to_cputime(1);
1082 		}
1083 
1084 		spin_unlock(&current->sighand->siglock);
1085 	}
1086 
1087 	SET_LINKS(p);
1088 	if (unlikely(p->ptrace & PT_PTRACED))
1089 		__ptrace_link(p, current->parent);
1090 
1091 	cpuset_fork(p);
1092 
1093 	attach_pid(p, PIDTYPE_PID, p->pid);
1094 	attach_pid(p, PIDTYPE_TGID, p->tgid);
1095 	if (thread_group_leader(p)) {
1096 		attach_pid(p, PIDTYPE_PGID, process_group(p));
1097 		attach_pid(p, PIDTYPE_SID, p->signal->session);
1098 		if (p->pid)
1099 			__get_cpu_var(process_counts)++;
1100 	}
1101 
1102 	nr_threads++;
1103 	total_forks++;
1104 	write_unlock_irq(&tasklist_lock);
1105 	retval = 0;
1106 
1107 fork_out:
1108 	if (retval)
1109 		return ERR_PTR(retval);
1110 	return p;
1111 
1112 bad_fork_cleanup_namespace:
1113 	exit_namespace(p);
1114 bad_fork_cleanup_keys:
1115 	exit_keys(p);
1116 bad_fork_cleanup_mm:
1117 	if (p->mm)
1118 		mmput(p->mm);
1119 bad_fork_cleanup_signal:
1120 	exit_signal(p);
1121 bad_fork_cleanup_sighand:
1122 	exit_sighand(p);
1123 bad_fork_cleanup_fs:
1124 	exit_fs(p); /* blocking */
1125 bad_fork_cleanup_files:
1126 	exit_files(p); /* blocking */
1127 bad_fork_cleanup_semundo:
1128 	exit_sem(p);
1129 bad_fork_cleanup_audit:
1130 	audit_free(p);
1131 bad_fork_cleanup_security:
1132 	security_task_free(p);
1133 bad_fork_cleanup_policy:
1134 #ifdef CONFIG_NUMA
1135 	mpol_free(p->mempolicy);
1136 #endif
1137 bad_fork_cleanup:
1138 	if (p->binfmt)
1139 		module_put(p->binfmt->module);
1140 bad_fork_cleanup_put_domain:
1141 	module_put(p->thread_info->exec_domain->module);
1142 bad_fork_cleanup_count:
1143 	put_group_info(p->group_info);
1144 	atomic_dec(&p->user->processes);
1145 	free_uid(p->user);
1146 bad_fork_free:
1147 	free_task(p);
1148 	goto fork_out;
1149 }
1150 
1151 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1152 {
1153 	memset(regs, 0, sizeof(struct pt_regs));
1154 	return regs;
1155 }
1156 
1157 task_t * __devinit fork_idle(int cpu)
1158 {
1159 	task_t *task;
1160 	struct pt_regs regs;
1161 
1162 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1163 	if (!task)
1164 		return ERR_PTR(-ENOMEM);
1165 	init_idle(task, cpu);
1166 	unhash_process(task);
1167 	return task;
1168 }
1169 
1170 static inline int fork_traceflag (unsigned clone_flags)
1171 {
1172 	if (clone_flags & CLONE_UNTRACED)
1173 		return 0;
1174 	else if (clone_flags & CLONE_VFORK) {
1175 		if (current->ptrace & PT_TRACE_VFORK)
1176 			return PTRACE_EVENT_VFORK;
1177 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1178 		if (current->ptrace & PT_TRACE_CLONE)
1179 			return PTRACE_EVENT_CLONE;
1180 	} else if (current->ptrace & PT_TRACE_FORK)
1181 		return PTRACE_EVENT_FORK;
1182 
1183 	return 0;
1184 }
1185 
1186 /*
1187  *  Ok, this is the main fork-routine.
1188  *
1189  * It copies the process, and if successful kick-starts
1190  * it and waits for it to finish using the VM if required.
1191  */
1192 long do_fork(unsigned long clone_flags,
1193 	      unsigned long stack_start,
1194 	      struct pt_regs *regs,
1195 	      unsigned long stack_size,
1196 	      int __user *parent_tidptr,
1197 	      int __user *child_tidptr)
1198 {
1199 	struct task_struct *p;
1200 	int trace = 0;
1201 	long pid = alloc_pidmap();
1202 
1203 	if (pid < 0)
1204 		return -EAGAIN;
1205 	if (unlikely(current->ptrace)) {
1206 		trace = fork_traceflag (clone_flags);
1207 		if (trace)
1208 			clone_flags |= CLONE_PTRACE;
1209 	}
1210 
1211 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1212 	/*
1213 	 * Do this prior waking up the new thread - the thread pointer
1214 	 * might get invalid after that point, if the thread exits quickly.
1215 	 */
1216 	if (!IS_ERR(p)) {
1217 		struct completion vfork;
1218 
1219 		if (clone_flags & CLONE_VFORK) {
1220 			p->vfork_done = &vfork;
1221 			init_completion(&vfork);
1222 		}
1223 
1224 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1225 			/*
1226 			 * We'll start up with an immediate SIGSTOP.
1227 			 */
1228 			sigaddset(&p->pending.signal, SIGSTOP);
1229 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1230 		}
1231 
1232 		if (!(clone_flags & CLONE_STOPPED))
1233 			wake_up_new_task(p, clone_flags);
1234 		else
1235 			p->state = TASK_STOPPED;
1236 
1237 		if (unlikely (trace)) {
1238 			current->ptrace_message = pid;
1239 			ptrace_notify ((trace << 8) | SIGTRAP);
1240 		}
1241 
1242 		if (clone_flags & CLONE_VFORK) {
1243 			wait_for_completion(&vfork);
1244 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1245 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1246 		}
1247 	} else {
1248 		free_pidmap(pid);
1249 		pid = PTR_ERR(p);
1250 	}
1251 	return pid;
1252 }
1253 
1254 void __init proc_caches_init(void)
1255 {
1256 	sighand_cachep = kmem_cache_create("sighand_cache",
1257 			sizeof(struct sighand_struct), 0,
1258 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1259 	signal_cachep = kmem_cache_create("signal_cache",
1260 			sizeof(struct signal_struct), 0,
1261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1262 	files_cachep = kmem_cache_create("files_cache",
1263 			sizeof(struct files_struct), 0,
1264 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1265 	fs_cachep = kmem_cache_create("fs_cache",
1266 			sizeof(struct fs_struct), 0,
1267 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1268 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1269 			sizeof(struct vm_area_struct), 0,
1270 			SLAB_PANIC, NULL, NULL);
1271 	mm_cachep = kmem_cache_create("mm_struct",
1272 			sizeof(struct mm_struct), 0,
1273 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1274 }
1275