xref: /openbmc/linux/kernel/fork.c (revision 1651e14e28a2d9f446018ef522882e0709a2ce4f)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51 
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58 
59 /*
60  * Protected counters by write_lock_irq(&tasklist_lock)
61  */
62 unsigned long total_forks;	/* Handle normal Linux uptimes. */
63 int nr_threads; 		/* The idle threads do not count.. */
64 
65 int max_threads;		/* tunable limit on nr_threads */
66 
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68 
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
70 
71 int nr_processes(void)
72 {
73 	int cpu;
74 	int total = 0;
75 
76 	for_each_online_cpu(cpu)
77 		total += per_cpu(process_counts, cpu);
78 
79 	return total;
80 }
81 
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
85 static kmem_cache_t *task_struct_cachep;
86 #endif
87 
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static kmem_cache_t *signal_cachep;
90 
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 kmem_cache_t *sighand_cachep;
93 
94 /* SLAB cache for files_struct structures (tsk->files) */
95 kmem_cache_t *files_cachep;
96 
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 kmem_cache_t *fs_cachep;
99 
100 /* SLAB cache for vm_area_struct structures */
101 kmem_cache_t *vm_area_cachep;
102 
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static kmem_cache_t *mm_cachep;
105 
106 void free_task(struct task_struct *tsk)
107 {
108 	free_thread_info(tsk->thread_info);
109 	rt_mutex_debug_task_free(tsk);
110 	free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113 
114 void __put_task_struct(struct task_struct *tsk)
115 {
116 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 	WARN_ON(atomic_read(&tsk->usage));
118 	WARN_ON(tsk == current);
119 
120 	security_task_free(tsk);
121 	free_uid(tsk->user);
122 	put_group_info(tsk->group_info);
123 	delayacct_tsk_free(tsk);
124 
125 	if (!profile_handoff_task(tsk))
126 		free_task(tsk);
127 }
128 
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
134 #endif
135 	/* create a slab on which task_structs can be allocated */
136 	task_struct_cachep =
137 		kmem_cache_create("task_struct", sizeof(struct task_struct),
138 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140 
141 	/*
142 	 * The default maximum number of threads is set to a safe
143 	 * value: the thread structures can take up at most half
144 	 * of memory.
145 	 */
146 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147 
148 	/*
149 	 * we need to allow at least 20 threads to boot a system
150 	 */
151 	if(max_threads < 20)
152 		max_threads = 20;
153 
154 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 		init_task.signal->rlim[RLIMIT_NPROC];
158 }
159 
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 	struct task_struct *tsk;
163 	struct thread_info *ti;
164 
165 	prepare_to_copy(orig);
166 
167 	tsk = alloc_task_struct();
168 	if (!tsk)
169 		return NULL;
170 
171 	ti = alloc_thread_info(tsk);
172 	if (!ti) {
173 		free_task_struct(tsk);
174 		return NULL;
175 	}
176 
177 	*tsk = *orig;
178 	tsk->thread_info = ti;
179 	setup_thread_stack(tsk, orig);
180 
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 	tsk->stack_canary = get_random_int();
183 #endif
184 
185 	/* One for us, one for whoever does the "release_task()" (usually parent) */
186 	atomic_set(&tsk->usage,2);
187 	atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 	tsk->btrace_seq = 0;
190 #endif
191 	tsk->splice_pipe = NULL;
192 	return tsk;
193 }
194 
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198 	struct vm_area_struct *mpnt, *tmp, **pprev;
199 	struct rb_node **rb_link, *rb_parent;
200 	int retval;
201 	unsigned long charge;
202 	struct mempolicy *pol;
203 
204 	down_write(&oldmm->mmap_sem);
205 	flush_cache_mm(oldmm);
206 	/*
207 	 * Not linked in yet - no deadlock potential:
208 	 */
209 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210 
211 	mm->locked_vm = 0;
212 	mm->mmap = NULL;
213 	mm->mmap_cache = NULL;
214 	mm->free_area_cache = oldmm->mmap_base;
215 	mm->cached_hole_size = ~0UL;
216 	mm->map_count = 0;
217 	cpus_clear(mm->cpu_vm_mask);
218 	mm->mm_rb = RB_ROOT;
219 	rb_link = &mm->mm_rb.rb_node;
220 	rb_parent = NULL;
221 	pprev = &mm->mmap;
222 
223 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 		struct file *file;
225 
226 		if (mpnt->vm_flags & VM_DONTCOPY) {
227 			long pages = vma_pages(mpnt);
228 			mm->total_vm -= pages;
229 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 								-pages);
231 			continue;
232 		}
233 		charge = 0;
234 		if (mpnt->vm_flags & VM_ACCOUNT) {
235 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 			if (security_vm_enough_memory(len))
237 				goto fail_nomem;
238 			charge = len;
239 		}
240 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
241 		if (!tmp)
242 			goto fail_nomem;
243 		*tmp = *mpnt;
244 		pol = mpol_copy(vma_policy(mpnt));
245 		retval = PTR_ERR(pol);
246 		if (IS_ERR(pol))
247 			goto fail_nomem_policy;
248 		vma_set_policy(tmp, pol);
249 		tmp->vm_flags &= ~VM_LOCKED;
250 		tmp->vm_mm = mm;
251 		tmp->vm_next = NULL;
252 		anon_vma_link(tmp);
253 		file = tmp->vm_file;
254 		if (file) {
255 			struct inode *inode = file->f_dentry->d_inode;
256 			get_file(file);
257 			if (tmp->vm_flags & VM_DENYWRITE)
258 				atomic_dec(&inode->i_writecount);
259 
260 			/* insert tmp into the share list, just after mpnt */
261 			spin_lock(&file->f_mapping->i_mmap_lock);
262 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 			flush_dcache_mmap_lock(file->f_mapping);
264 			vma_prio_tree_add(tmp, mpnt);
265 			flush_dcache_mmap_unlock(file->f_mapping);
266 			spin_unlock(&file->f_mapping->i_mmap_lock);
267 		}
268 
269 		/*
270 		 * Link in the new vma and copy the page table entries.
271 		 */
272 		*pprev = tmp;
273 		pprev = &tmp->vm_next;
274 
275 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
276 		rb_link = &tmp->vm_rb.rb_right;
277 		rb_parent = &tmp->vm_rb;
278 
279 		mm->map_count++;
280 		retval = copy_page_range(mm, oldmm, mpnt);
281 
282 		if (tmp->vm_ops && tmp->vm_ops->open)
283 			tmp->vm_ops->open(tmp);
284 
285 		if (retval)
286 			goto out;
287 	}
288 	retval = 0;
289 out:
290 	up_write(&mm->mmap_sem);
291 	flush_tlb_mm(oldmm);
292 	up_write(&oldmm->mmap_sem);
293 	return retval;
294 fail_nomem_policy:
295 	kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297 	retval = -ENOMEM;
298 	vm_unacct_memory(charge);
299 	goto out;
300 }
301 
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
303 {
304 	mm->pgd = pgd_alloc(mm);
305 	if (unlikely(!mm->pgd))
306 		return -ENOMEM;
307 	return 0;
308 }
309 
310 static inline void mm_free_pgd(struct mm_struct * mm)
311 {
312 	pgd_free(mm->pgd);
313 }
314 #else
315 #define dup_mmap(mm, oldmm)	(0)
316 #define mm_alloc_pgd(mm)	(0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
319 
320  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
321 
322 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
323 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
324 
325 #include <linux/init_task.h>
326 
327 static struct mm_struct * mm_init(struct mm_struct * mm)
328 {
329 	atomic_set(&mm->mm_users, 1);
330 	atomic_set(&mm->mm_count, 1);
331 	init_rwsem(&mm->mmap_sem);
332 	INIT_LIST_HEAD(&mm->mmlist);
333 	mm->core_waiters = 0;
334 	mm->nr_ptes = 0;
335 	set_mm_counter(mm, file_rss, 0);
336 	set_mm_counter(mm, anon_rss, 0);
337 	spin_lock_init(&mm->page_table_lock);
338 	rwlock_init(&mm->ioctx_list_lock);
339 	mm->ioctx_list = NULL;
340 	mm->free_area_cache = TASK_UNMAPPED_BASE;
341 	mm->cached_hole_size = ~0UL;
342 
343 	if (likely(!mm_alloc_pgd(mm))) {
344 		mm->def_flags = 0;
345 		return mm;
346 	}
347 	free_mm(mm);
348 	return NULL;
349 }
350 
351 /*
352  * Allocate and initialize an mm_struct.
353  */
354 struct mm_struct * mm_alloc(void)
355 {
356 	struct mm_struct * mm;
357 
358 	mm = allocate_mm();
359 	if (mm) {
360 		memset(mm, 0, sizeof(*mm));
361 		mm = mm_init(mm);
362 	}
363 	return mm;
364 }
365 
366 /*
367  * Called when the last reference to the mm
368  * is dropped: either by a lazy thread or by
369  * mmput. Free the page directory and the mm.
370  */
371 void fastcall __mmdrop(struct mm_struct *mm)
372 {
373 	BUG_ON(mm == &init_mm);
374 	mm_free_pgd(mm);
375 	destroy_context(mm);
376 	free_mm(mm);
377 }
378 
379 /*
380  * Decrement the use count and release all resources for an mm.
381  */
382 void mmput(struct mm_struct *mm)
383 {
384 	might_sleep();
385 
386 	if (atomic_dec_and_test(&mm->mm_users)) {
387 		exit_aio(mm);
388 		exit_mmap(mm);
389 		if (!list_empty(&mm->mmlist)) {
390 			spin_lock(&mmlist_lock);
391 			list_del(&mm->mmlist);
392 			spin_unlock(&mmlist_lock);
393 		}
394 		put_swap_token(mm);
395 		mmdrop(mm);
396 	}
397 }
398 EXPORT_SYMBOL_GPL(mmput);
399 
400 /**
401  * get_task_mm - acquire a reference to the task's mm
402  *
403  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
404  * this kernel workthread has transiently adopted a user mm with use_mm,
405  * to do its AIO) is not set and if so returns a reference to it, after
406  * bumping up the use count.  User must release the mm via mmput()
407  * after use.  Typically used by /proc and ptrace.
408  */
409 struct mm_struct *get_task_mm(struct task_struct *task)
410 {
411 	struct mm_struct *mm;
412 
413 	task_lock(task);
414 	mm = task->mm;
415 	if (mm) {
416 		if (task->flags & PF_BORROWED_MM)
417 			mm = NULL;
418 		else
419 			atomic_inc(&mm->mm_users);
420 	}
421 	task_unlock(task);
422 	return mm;
423 }
424 EXPORT_SYMBOL_GPL(get_task_mm);
425 
426 /* Please note the differences between mmput and mm_release.
427  * mmput is called whenever we stop holding onto a mm_struct,
428  * error success whatever.
429  *
430  * mm_release is called after a mm_struct has been removed
431  * from the current process.
432  *
433  * This difference is important for error handling, when we
434  * only half set up a mm_struct for a new process and need to restore
435  * the old one.  Because we mmput the new mm_struct before
436  * restoring the old one. . .
437  * Eric Biederman 10 January 1998
438  */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441 	struct completion *vfork_done = tsk->vfork_done;
442 
443 	/* Get rid of any cached register state */
444 	deactivate_mm(tsk, mm);
445 
446 	/* notify parent sleeping on vfork() */
447 	if (vfork_done) {
448 		tsk->vfork_done = NULL;
449 		complete(vfork_done);
450 	}
451 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
452 		u32 __user * tidptr = tsk->clear_child_tid;
453 		tsk->clear_child_tid = NULL;
454 
455 		/*
456 		 * We don't check the error code - if userspace has
457 		 * not set up a proper pointer then tough luck.
458 		 */
459 		put_user(0, tidptr);
460 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
461 	}
462 }
463 
464 /*
465  * Allocate a new mm structure and copy contents from the
466  * mm structure of the passed in task structure.
467  */
468 static struct mm_struct *dup_mm(struct task_struct *tsk)
469 {
470 	struct mm_struct *mm, *oldmm = current->mm;
471 	int err;
472 
473 	if (!oldmm)
474 		return NULL;
475 
476 	mm = allocate_mm();
477 	if (!mm)
478 		goto fail_nomem;
479 
480 	memcpy(mm, oldmm, sizeof(*mm));
481 
482 	if (!mm_init(mm))
483 		goto fail_nomem;
484 
485 	if (init_new_context(tsk, mm))
486 		goto fail_nocontext;
487 
488 	err = dup_mmap(mm, oldmm);
489 	if (err)
490 		goto free_pt;
491 
492 	mm->hiwater_rss = get_mm_rss(mm);
493 	mm->hiwater_vm = mm->total_vm;
494 
495 	return mm;
496 
497 free_pt:
498 	mmput(mm);
499 
500 fail_nomem:
501 	return NULL;
502 
503 fail_nocontext:
504 	/*
505 	 * If init_new_context() failed, we cannot use mmput() to free the mm
506 	 * because it calls destroy_context()
507 	 */
508 	mm_free_pgd(mm);
509 	free_mm(mm);
510 	return NULL;
511 }
512 
513 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
514 {
515 	struct mm_struct * mm, *oldmm;
516 	int retval;
517 
518 	tsk->min_flt = tsk->maj_flt = 0;
519 	tsk->nvcsw = tsk->nivcsw = 0;
520 
521 	tsk->mm = NULL;
522 	tsk->active_mm = NULL;
523 
524 	/*
525 	 * Are we cloning a kernel thread?
526 	 *
527 	 * We need to steal a active VM for that..
528 	 */
529 	oldmm = current->mm;
530 	if (!oldmm)
531 		return 0;
532 
533 	if (clone_flags & CLONE_VM) {
534 		atomic_inc(&oldmm->mm_users);
535 		mm = oldmm;
536 		goto good_mm;
537 	}
538 
539 	retval = -ENOMEM;
540 	mm = dup_mm(tsk);
541 	if (!mm)
542 		goto fail_nomem;
543 
544 good_mm:
545 	tsk->mm = mm;
546 	tsk->active_mm = mm;
547 	return 0;
548 
549 fail_nomem:
550 	return retval;
551 }
552 
553 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
554 {
555 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
556 	/* We don't need to lock fs - think why ;-) */
557 	if (fs) {
558 		atomic_set(&fs->count, 1);
559 		rwlock_init(&fs->lock);
560 		fs->umask = old->umask;
561 		read_lock(&old->lock);
562 		fs->rootmnt = mntget(old->rootmnt);
563 		fs->root = dget(old->root);
564 		fs->pwdmnt = mntget(old->pwdmnt);
565 		fs->pwd = dget(old->pwd);
566 		if (old->altroot) {
567 			fs->altrootmnt = mntget(old->altrootmnt);
568 			fs->altroot = dget(old->altroot);
569 		} else {
570 			fs->altrootmnt = NULL;
571 			fs->altroot = NULL;
572 		}
573 		read_unlock(&old->lock);
574 	}
575 	return fs;
576 }
577 
578 struct fs_struct *copy_fs_struct(struct fs_struct *old)
579 {
580 	return __copy_fs_struct(old);
581 }
582 
583 EXPORT_SYMBOL_GPL(copy_fs_struct);
584 
585 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
586 {
587 	if (clone_flags & CLONE_FS) {
588 		atomic_inc(&current->fs->count);
589 		return 0;
590 	}
591 	tsk->fs = __copy_fs_struct(current->fs);
592 	if (!tsk->fs)
593 		return -ENOMEM;
594 	return 0;
595 }
596 
597 static int count_open_files(struct fdtable *fdt)
598 {
599 	int size = fdt->max_fdset;
600 	int i;
601 
602 	/* Find the last open fd */
603 	for (i = size/(8*sizeof(long)); i > 0; ) {
604 		if (fdt->open_fds->fds_bits[--i])
605 			break;
606 	}
607 	i = (i+1) * 8 * sizeof(long);
608 	return i;
609 }
610 
611 static struct files_struct *alloc_files(void)
612 {
613 	struct files_struct *newf;
614 	struct fdtable *fdt;
615 
616 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
617 	if (!newf)
618 		goto out;
619 
620 	atomic_set(&newf->count, 1);
621 
622 	spin_lock_init(&newf->file_lock);
623 	newf->next_fd = 0;
624 	fdt = &newf->fdtab;
625 	fdt->max_fds = NR_OPEN_DEFAULT;
626 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
627 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
628 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
629 	fdt->fd = &newf->fd_array[0];
630 	INIT_RCU_HEAD(&fdt->rcu);
631 	fdt->free_files = NULL;
632 	fdt->next = NULL;
633 	rcu_assign_pointer(newf->fdt, fdt);
634 out:
635 	return newf;
636 }
637 
638 /*
639  * Allocate a new files structure and copy contents from the
640  * passed in files structure.
641  * errorp will be valid only when the returned files_struct is NULL.
642  */
643 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
644 {
645 	struct files_struct *newf;
646 	struct file **old_fds, **new_fds;
647 	int open_files, size, i, expand;
648 	struct fdtable *old_fdt, *new_fdt;
649 
650 	*errorp = -ENOMEM;
651 	newf = alloc_files();
652 	if (!newf)
653 		goto out;
654 
655 	spin_lock(&oldf->file_lock);
656 	old_fdt = files_fdtable(oldf);
657 	new_fdt = files_fdtable(newf);
658 	size = old_fdt->max_fdset;
659 	open_files = count_open_files(old_fdt);
660 	expand = 0;
661 
662 	/*
663 	 * Check whether we need to allocate a larger fd array or fd set.
664 	 * Note: we're not a clone task, so the open count won't  change.
665 	 */
666 	if (open_files > new_fdt->max_fdset) {
667 		new_fdt->max_fdset = 0;
668 		expand = 1;
669 	}
670 	if (open_files > new_fdt->max_fds) {
671 		new_fdt->max_fds = 0;
672 		expand = 1;
673 	}
674 
675 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
676 	if (expand) {
677 		spin_unlock(&oldf->file_lock);
678 		spin_lock(&newf->file_lock);
679 		*errorp = expand_files(newf, open_files-1);
680 		spin_unlock(&newf->file_lock);
681 		if (*errorp < 0)
682 			goto out_release;
683 		new_fdt = files_fdtable(newf);
684 		/*
685 		 * Reacquire the oldf lock and a pointer to its fd table
686 		 * who knows it may have a new bigger fd table. We need
687 		 * the latest pointer.
688 		 */
689 		spin_lock(&oldf->file_lock);
690 		old_fdt = files_fdtable(oldf);
691 	}
692 
693 	old_fds = old_fdt->fd;
694 	new_fds = new_fdt->fd;
695 
696 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
697 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
698 
699 	for (i = open_files; i != 0; i--) {
700 		struct file *f = *old_fds++;
701 		if (f) {
702 			get_file(f);
703 		} else {
704 			/*
705 			 * The fd may be claimed in the fd bitmap but not yet
706 			 * instantiated in the files array if a sibling thread
707 			 * is partway through open().  So make sure that this
708 			 * fd is available to the new process.
709 			 */
710 			FD_CLR(open_files - i, new_fdt->open_fds);
711 		}
712 		rcu_assign_pointer(*new_fds++, f);
713 	}
714 	spin_unlock(&oldf->file_lock);
715 
716 	/* compute the remainder to be cleared */
717 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
718 
719 	/* This is long word aligned thus could use a optimized version */
720 	memset(new_fds, 0, size);
721 
722 	if (new_fdt->max_fdset > open_files) {
723 		int left = (new_fdt->max_fdset-open_files)/8;
724 		int start = open_files / (8 * sizeof(unsigned long));
725 
726 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
727 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
728 	}
729 
730 out:
731 	return newf;
732 
733 out_release:
734 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
735 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
736 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
737 	kmem_cache_free(files_cachep, newf);
738 	return NULL;
739 }
740 
741 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
742 {
743 	struct files_struct *oldf, *newf;
744 	int error = 0;
745 
746 	/*
747 	 * A background process may not have any files ...
748 	 */
749 	oldf = current->files;
750 	if (!oldf)
751 		goto out;
752 
753 	if (clone_flags & CLONE_FILES) {
754 		atomic_inc(&oldf->count);
755 		goto out;
756 	}
757 
758 	/*
759 	 * Note: we may be using current for both targets (See exec.c)
760 	 * This works because we cache current->files (old) as oldf. Don't
761 	 * break this.
762 	 */
763 	tsk->files = NULL;
764 	newf = dup_fd(oldf, &error);
765 	if (!newf)
766 		goto out;
767 
768 	tsk->files = newf;
769 	error = 0;
770 out:
771 	return error;
772 }
773 
774 /*
775  *	Helper to unshare the files of the current task.
776  *	We don't want to expose copy_files internals to
777  *	the exec layer of the kernel.
778  */
779 
780 int unshare_files(void)
781 {
782 	struct files_struct *files  = current->files;
783 	int rc;
784 
785 	BUG_ON(!files);
786 
787 	/* This can race but the race causes us to copy when we don't
788 	   need to and drop the copy */
789 	if(atomic_read(&files->count) == 1)
790 	{
791 		atomic_inc(&files->count);
792 		return 0;
793 	}
794 	rc = copy_files(0, current);
795 	if(rc)
796 		current->files = files;
797 	return rc;
798 }
799 
800 EXPORT_SYMBOL(unshare_files);
801 
802 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
803 {
804 	struct sighand_struct *sig;
805 
806 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
807 		atomic_inc(&current->sighand->count);
808 		return 0;
809 	}
810 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 	rcu_assign_pointer(tsk->sighand, sig);
812 	if (!sig)
813 		return -ENOMEM;
814 	atomic_set(&sig->count, 1);
815 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 	return 0;
817 }
818 
819 void __cleanup_sighand(struct sighand_struct *sighand)
820 {
821 	if (atomic_dec_and_test(&sighand->count))
822 		kmem_cache_free(sighand_cachep, sighand);
823 }
824 
825 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
826 {
827 	struct signal_struct *sig;
828 	int ret;
829 
830 	if (clone_flags & CLONE_THREAD) {
831 		atomic_inc(&current->signal->count);
832 		atomic_inc(&current->signal->live);
833 		taskstats_tgid_alloc(current->signal);
834 		return 0;
835 	}
836 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
837 	tsk->signal = sig;
838 	if (!sig)
839 		return -ENOMEM;
840 
841 	ret = copy_thread_group_keys(tsk);
842 	if (ret < 0) {
843 		kmem_cache_free(signal_cachep, sig);
844 		return ret;
845 	}
846 
847 	atomic_set(&sig->count, 1);
848 	atomic_set(&sig->live, 1);
849 	init_waitqueue_head(&sig->wait_chldexit);
850 	sig->flags = 0;
851 	sig->group_exit_code = 0;
852 	sig->group_exit_task = NULL;
853 	sig->group_stop_count = 0;
854 	sig->curr_target = NULL;
855 	init_sigpending(&sig->shared_pending);
856 	INIT_LIST_HEAD(&sig->posix_timers);
857 
858 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
859 	sig->it_real_incr.tv64 = 0;
860 	sig->real_timer.function = it_real_fn;
861 	sig->tsk = tsk;
862 
863 	sig->it_virt_expires = cputime_zero;
864 	sig->it_virt_incr = cputime_zero;
865 	sig->it_prof_expires = cputime_zero;
866 	sig->it_prof_incr = cputime_zero;
867 
868 	sig->leader = 0;	/* session leadership doesn't inherit */
869 	sig->tty_old_pgrp = 0;
870 
871 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
872 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
873 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
874 	sig->sched_time = 0;
875 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
876 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
877 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
878 	taskstats_tgid_init(sig);
879 
880 	task_lock(current->group_leader);
881 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
882 	task_unlock(current->group_leader);
883 
884 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
885 		/*
886 		 * New sole thread in the process gets an expiry time
887 		 * of the whole CPU time limit.
888 		 */
889 		tsk->it_prof_expires =
890 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
891 	}
892 	acct_init_pacct(&sig->pacct);
893 
894 	return 0;
895 }
896 
897 void __cleanup_signal(struct signal_struct *sig)
898 {
899 	exit_thread_group_keys(sig);
900 	taskstats_tgid_free(sig);
901 	kmem_cache_free(signal_cachep, sig);
902 }
903 
904 static inline void cleanup_signal(struct task_struct *tsk)
905 {
906 	struct signal_struct *sig = tsk->signal;
907 
908 	atomic_dec(&sig->live);
909 
910 	if (atomic_dec_and_test(&sig->count))
911 		__cleanup_signal(sig);
912 }
913 
914 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
915 {
916 	unsigned long new_flags = p->flags;
917 
918 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
919 	new_flags |= PF_FORKNOEXEC;
920 	if (!(clone_flags & CLONE_PTRACE))
921 		p->ptrace = 0;
922 	p->flags = new_flags;
923 }
924 
925 asmlinkage long sys_set_tid_address(int __user *tidptr)
926 {
927 	current->clear_child_tid = tidptr;
928 
929 	return current->pid;
930 }
931 
932 static inline void rt_mutex_init_task(struct task_struct *p)
933 {
934 #ifdef CONFIG_RT_MUTEXES
935 	spin_lock_init(&p->pi_lock);
936 	plist_head_init(&p->pi_waiters, &p->pi_lock);
937 	p->pi_blocked_on = NULL;
938 #endif
939 }
940 
941 /*
942  * This creates a new process as a copy of the old one,
943  * but does not actually start it yet.
944  *
945  * It copies the registers, and all the appropriate
946  * parts of the process environment (as per the clone
947  * flags). The actual kick-off is left to the caller.
948  */
949 static struct task_struct *copy_process(unsigned long clone_flags,
950 					unsigned long stack_start,
951 					struct pt_regs *regs,
952 					unsigned long stack_size,
953 					int __user *parent_tidptr,
954 					int __user *child_tidptr,
955 					int pid)
956 {
957 	int retval;
958 	struct task_struct *p = NULL;
959 
960 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
961 		return ERR_PTR(-EINVAL);
962 
963 	/*
964 	 * Thread groups must share signals as well, and detached threads
965 	 * can only be started up within the thread group.
966 	 */
967 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
968 		return ERR_PTR(-EINVAL);
969 
970 	/*
971 	 * Shared signal handlers imply shared VM. By way of the above,
972 	 * thread groups also imply shared VM. Blocking this case allows
973 	 * for various simplifications in other code.
974 	 */
975 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
976 		return ERR_PTR(-EINVAL);
977 
978 	retval = security_task_create(clone_flags);
979 	if (retval)
980 		goto fork_out;
981 
982 	retval = -ENOMEM;
983 	p = dup_task_struct(current);
984 	if (!p)
985 		goto fork_out;
986 
987 #ifdef CONFIG_TRACE_IRQFLAGS
988 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
989 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
990 #endif
991 	retval = -EAGAIN;
992 	if (atomic_read(&p->user->processes) >=
993 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
994 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
995 				p->user != &root_user)
996 			goto bad_fork_free;
997 	}
998 
999 	atomic_inc(&p->user->__count);
1000 	atomic_inc(&p->user->processes);
1001 	get_group_info(p->group_info);
1002 
1003 	/*
1004 	 * If multiple threads are within copy_process(), then this check
1005 	 * triggers too late. This doesn't hurt, the check is only there
1006 	 * to stop root fork bombs.
1007 	 */
1008 	if (nr_threads >= max_threads)
1009 		goto bad_fork_cleanup_count;
1010 
1011 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1012 		goto bad_fork_cleanup_count;
1013 
1014 	if (p->binfmt && !try_module_get(p->binfmt->module))
1015 		goto bad_fork_cleanup_put_domain;
1016 
1017 	p->did_exec = 0;
1018 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1019 	copy_flags(clone_flags, p);
1020 	p->pid = pid;
1021 	retval = -EFAULT;
1022 	if (clone_flags & CLONE_PARENT_SETTID)
1023 		if (put_user(p->pid, parent_tidptr))
1024 			goto bad_fork_cleanup_delays_binfmt;
1025 
1026 	INIT_LIST_HEAD(&p->children);
1027 	INIT_LIST_HEAD(&p->sibling);
1028 	p->vfork_done = NULL;
1029 	spin_lock_init(&p->alloc_lock);
1030 
1031 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1032 	init_sigpending(&p->pending);
1033 
1034 	p->utime = cputime_zero;
1035 	p->stime = cputime_zero;
1036  	p->sched_time = 0;
1037 	p->rchar = 0;		/* I/O counter: bytes read */
1038 	p->wchar = 0;		/* I/O counter: bytes written */
1039 	p->syscr = 0;		/* I/O counter: read syscalls */
1040 	p->syscw = 0;		/* I/O counter: write syscalls */
1041 	acct_clear_integrals(p);
1042 
1043  	p->it_virt_expires = cputime_zero;
1044 	p->it_prof_expires = cputime_zero;
1045  	p->it_sched_expires = 0;
1046  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1047  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1048  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1049 
1050 	p->lock_depth = -1;		/* -1 = no lock */
1051 	do_posix_clock_monotonic_gettime(&p->start_time);
1052 	p->security = NULL;
1053 	p->io_context = NULL;
1054 	p->io_wait = NULL;
1055 	p->audit_context = NULL;
1056 	cpuset_fork(p);
1057 #ifdef CONFIG_NUMA
1058  	p->mempolicy = mpol_copy(p->mempolicy);
1059  	if (IS_ERR(p->mempolicy)) {
1060  		retval = PTR_ERR(p->mempolicy);
1061  		p->mempolicy = NULL;
1062  		goto bad_fork_cleanup_cpuset;
1063  	}
1064 	mpol_fix_fork_child_flag(p);
1065 #endif
1066 #ifdef CONFIG_TRACE_IRQFLAGS
1067 	p->irq_events = 0;
1068 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 	p->hardirqs_enabled = 1;
1070 #else
1071 	p->hardirqs_enabled = 0;
1072 #endif
1073 	p->hardirq_enable_ip = 0;
1074 	p->hardirq_enable_event = 0;
1075 	p->hardirq_disable_ip = _THIS_IP_;
1076 	p->hardirq_disable_event = 0;
1077 	p->softirqs_enabled = 1;
1078 	p->softirq_enable_ip = _THIS_IP_;
1079 	p->softirq_enable_event = 0;
1080 	p->softirq_disable_ip = 0;
1081 	p->softirq_disable_event = 0;
1082 	p->hardirq_context = 0;
1083 	p->softirq_context = 0;
1084 #endif
1085 #ifdef CONFIG_LOCKDEP
1086 	p->lockdep_depth = 0; /* no locks held yet */
1087 	p->curr_chain_key = 0;
1088 	p->lockdep_recursion = 0;
1089 #endif
1090 
1091 	rt_mutex_init_task(p);
1092 
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 	p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1096 
1097 	p->tgid = p->pid;
1098 	if (clone_flags & CLONE_THREAD)
1099 		p->tgid = current->tgid;
1100 
1101 	if ((retval = security_task_alloc(p)))
1102 		goto bad_fork_cleanup_policy;
1103 	if ((retval = audit_alloc(p)))
1104 		goto bad_fork_cleanup_security;
1105 	/* copy all the process information */
1106 	if ((retval = copy_semundo(clone_flags, p)))
1107 		goto bad_fork_cleanup_audit;
1108 	if ((retval = copy_files(clone_flags, p)))
1109 		goto bad_fork_cleanup_semundo;
1110 	if ((retval = copy_fs(clone_flags, p)))
1111 		goto bad_fork_cleanup_files;
1112 	if ((retval = copy_sighand(clone_flags, p)))
1113 		goto bad_fork_cleanup_fs;
1114 	if ((retval = copy_signal(clone_flags, p)))
1115 		goto bad_fork_cleanup_sighand;
1116 	if ((retval = copy_mm(clone_flags, p)))
1117 		goto bad_fork_cleanup_signal;
1118 	if ((retval = copy_keys(clone_flags, p)))
1119 		goto bad_fork_cleanup_mm;
1120 	if ((retval = copy_namespaces(clone_flags, p)))
1121 		goto bad_fork_cleanup_keys;
1122 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1123 	if (retval)
1124 		goto bad_fork_cleanup_namespaces;
1125 
1126 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1127 	/*
1128 	 * Clear TID on mm_release()?
1129 	 */
1130 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1131 	p->robust_list = NULL;
1132 #ifdef CONFIG_COMPAT
1133 	p->compat_robust_list = NULL;
1134 #endif
1135 	INIT_LIST_HEAD(&p->pi_state_list);
1136 	p->pi_state_cache = NULL;
1137 
1138 	/*
1139 	 * sigaltstack should be cleared when sharing the same VM
1140 	 */
1141 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1142 		p->sas_ss_sp = p->sas_ss_size = 0;
1143 
1144 	/*
1145 	 * Syscall tracing should be turned off in the child regardless
1146 	 * of CLONE_PTRACE.
1147 	 */
1148 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1149 #ifdef TIF_SYSCALL_EMU
1150 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1151 #endif
1152 
1153 	/* Our parent execution domain becomes current domain
1154 	   These must match for thread signalling to apply */
1155 	p->parent_exec_id = p->self_exec_id;
1156 
1157 	/* ok, now we should be set up.. */
1158 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1159 	p->pdeath_signal = 0;
1160 	p->exit_state = 0;
1161 
1162 	/*
1163 	 * Ok, make it visible to the rest of the system.
1164 	 * We dont wake it up yet.
1165 	 */
1166 	p->group_leader = p;
1167 	INIT_LIST_HEAD(&p->thread_group);
1168 	INIT_LIST_HEAD(&p->ptrace_children);
1169 	INIT_LIST_HEAD(&p->ptrace_list);
1170 
1171 	/* Perform scheduler related setup. Assign this task to a CPU. */
1172 	sched_fork(p, clone_flags);
1173 
1174 	/* Need tasklist lock for parent etc handling! */
1175 	write_lock_irq(&tasklist_lock);
1176 
1177 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1178 	p->ioprio = current->ioprio;
1179 
1180 	/*
1181 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1182 	 * not be changed, nor will its assigned CPU.
1183 	 *
1184 	 * The cpus_allowed mask of the parent may have changed after it was
1185 	 * copied first time - so re-copy it here, then check the child's CPU
1186 	 * to ensure it is on a valid CPU (and if not, just force it back to
1187 	 * parent's CPU). This avoids alot of nasty races.
1188 	 */
1189 	p->cpus_allowed = current->cpus_allowed;
1190 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1191 			!cpu_online(task_cpu(p))))
1192 		set_task_cpu(p, smp_processor_id());
1193 
1194 	/* CLONE_PARENT re-uses the old parent */
1195 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1196 		p->real_parent = current->real_parent;
1197 	else
1198 		p->real_parent = current;
1199 	p->parent = p->real_parent;
1200 
1201 	spin_lock(&current->sighand->siglock);
1202 
1203 	/*
1204 	 * Process group and session signals need to be delivered to just the
1205 	 * parent before the fork or both the parent and the child after the
1206 	 * fork. Restart if a signal comes in before we add the new process to
1207 	 * it's process group.
1208 	 * A fatal signal pending means that current will exit, so the new
1209 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1210  	 */
1211  	recalc_sigpending();
1212 	if (signal_pending(current)) {
1213 		spin_unlock(&current->sighand->siglock);
1214 		write_unlock_irq(&tasklist_lock);
1215 		retval = -ERESTARTNOINTR;
1216 		goto bad_fork_cleanup_namespaces;
1217 	}
1218 
1219 	if (clone_flags & CLONE_THREAD) {
1220 		p->group_leader = current->group_leader;
1221 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1222 
1223 		if (!cputime_eq(current->signal->it_virt_expires,
1224 				cputime_zero) ||
1225 		    !cputime_eq(current->signal->it_prof_expires,
1226 				cputime_zero) ||
1227 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1228 		    !list_empty(&current->signal->cpu_timers[0]) ||
1229 		    !list_empty(&current->signal->cpu_timers[1]) ||
1230 		    !list_empty(&current->signal->cpu_timers[2])) {
1231 			/*
1232 			 * Have child wake up on its first tick to check
1233 			 * for process CPU timers.
1234 			 */
1235 			p->it_prof_expires = jiffies_to_cputime(1);
1236 		}
1237 	}
1238 
1239 	if (likely(p->pid)) {
1240 		add_parent(p);
1241 		if (unlikely(p->ptrace & PT_PTRACED))
1242 			__ptrace_link(p, current->parent);
1243 
1244 		if (thread_group_leader(p)) {
1245 			p->signal->tty = current->signal->tty;
1246 			p->signal->pgrp = process_group(current);
1247 			p->signal->session = current->signal->session;
1248 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1249 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1250 
1251 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1252 			__get_cpu_var(process_counts)++;
1253 		}
1254 		attach_pid(p, PIDTYPE_PID, p->pid);
1255 		nr_threads++;
1256 	}
1257 
1258 	total_forks++;
1259 	spin_unlock(&current->sighand->siglock);
1260 	write_unlock_irq(&tasklist_lock);
1261 	proc_fork_connector(p);
1262 	return p;
1263 
1264 bad_fork_cleanup_namespaces:
1265 	exit_task_namespaces(p);
1266 bad_fork_cleanup_keys:
1267 	exit_keys(p);
1268 bad_fork_cleanup_mm:
1269 	if (p->mm)
1270 		mmput(p->mm);
1271 bad_fork_cleanup_signal:
1272 	cleanup_signal(p);
1273 bad_fork_cleanup_sighand:
1274 	__cleanup_sighand(p->sighand);
1275 bad_fork_cleanup_fs:
1276 	exit_fs(p); /* blocking */
1277 bad_fork_cleanup_files:
1278 	exit_files(p); /* blocking */
1279 bad_fork_cleanup_semundo:
1280 	exit_sem(p);
1281 bad_fork_cleanup_audit:
1282 	audit_free(p);
1283 bad_fork_cleanup_security:
1284 	security_task_free(p);
1285 bad_fork_cleanup_policy:
1286 #ifdef CONFIG_NUMA
1287 	mpol_free(p->mempolicy);
1288 bad_fork_cleanup_cpuset:
1289 #endif
1290 	cpuset_exit(p);
1291 bad_fork_cleanup_delays_binfmt:
1292 	delayacct_tsk_free(p);
1293 	if (p->binfmt)
1294 		module_put(p->binfmt->module);
1295 bad_fork_cleanup_put_domain:
1296 	module_put(task_thread_info(p)->exec_domain->module);
1297 bad_fork_cleanup_count:
1298 	put_group_info(p->group_info);
1299 	atomic_dec(&p->user->processes);
1300 	free_uid(p->user);
1301 bad_fork_free:
1302 	free_task(p);
1303 fork_out:
1304 	return ERR_PTR(retval);
1305 }
1306 
1307 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1308 {
1309 	memset(regs, 0, sizeof(struct pt_regs));
1310 	return regs;
1311 }
1312 
1313 struct task_struct * __devinit fork_idle(int cpu)
1314 {
1315 	struct task_struct *task;
1316 	struct pt_regs regs;
1317 
1318 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1319 	if (!task)
1320 		return ERR_PTR(-ENOMEM);
1321 	init_idle(task, cpu);
1322 
1323 	return task;
1324 }
1325 
1326 static inline int fork_traceflag (unsigned clone_flags)
1327 {
1328 	if (clone_flags & CLONE_UNTRACED)
1329 		return 0;
1330 	else if (clone_flags & CLONE_VFORK) {
1331 		if (current->ptrace & PT_TRACE_VFORK)
1332 			return PTRACE_EVENT_VFORK;
1333 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1334 		if (current->ptrace & PT_TRACE_CLONE)
1335 			return PTRACE_EVENT_CLONE;
1336 	} else if (current->ptrace & PT_TRACE_FORK)
1337 		return PTRACE_EVENT_FORK;
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  *  Ok, this is the main fork-routine.
1344  *
1345  * It copies the process, and if successful kick-starts
1346  * it and waits for it to finish using the VM if required.
1347  */
1348 long do_fork(unsigned long clone_flags,
1349 	      unsigned long stack_start,
1350 	      struct pt_regs *regs,
1351 	      unsigned long stack_size,
1352 	      int __user *parent_tidptr,
1353 	      int __user *child_tidptr)
1354 {
1355 	struct task_struct *p;
1356 	int trace = 0;
1357 	struct pid *pid = alloc_pid();
1358 	long nr;
1359 
1360 	if (!pid)
1361 		return -EAGAIN;
1362 	nr = pid->nr;
1363 	if (unlikely(current->ptrace)) {
1364 		trace = fork_traceflag (clone_flags);
1365 		if (trace)
1366 			clone_flags |= CLONE_PTRACE;
1367 	}
1368 
1369 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1370 	/*
1371 	 * Do this prior waking up the new thread - the thread pointer
1372 	 * might get invalid after that point, if the thread exits quickly.
1373 	 */
1374 	if (!IS_ERR(p)) {
1375 		struct completion vfork;
1376 
1377 		if (clone_flags & CLONE_VFORK) {
1378 			p->vfork_done = &vfork;
1379 			init_completion(&vfork);
1380 		}
1381 
1382 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1383 			/*
1384 			 * We'll start up with an immediate SIGSTOP.
1385 			 */
1386 			sigaddset(&p->pending.signal, SIGSTOP);
1387 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1388 		}
1389 
1390 		if (!(clone_flags & CLONE_STOPPED))
1391 			wake_up_new_task(p, clone_flags);
1392 		else
1393 			p->state = TASK_STOPPED;
1394 
1395 		if (unlikely (trace)) {
1396 			current->ptrace_message = nr;
1397 			ptrace_notify ((trace << 8) | SIGTRAP);
1398 		}
1399 
1400 		if (clone_flags & CLONE_VFORK) {
1401 			wait_for_completion(&vfork);
1402 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1403 				current->ptrace_message = nr;
1404 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1405 			}
1406 		}
1407 	} else {
1408 		free_pid(pid);
1409 		nr = PTR_ERR(p);
1410 	}
1411 	return nr;
1412 }
1413 
1414 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1415 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1416 #endif
1417 
1418 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1419 {
1420 	struct sighand_struct *sighand = data;
1421 
1422 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1423 					SLAB_CTOR_CONSTRUCTOR)
1424 		spin_lock_init(&sighand->siglock);
1425 }
1426 
1427 void __init proc_caches_init(void)
1428 {
1429 	sighand_cachep = kmem_cache_create("sighand_cache",
1430 			sizeof(struct sighand_struct), 0,
1431 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1432 			sighand_ctor, NULL);
1433 	signal_cachep = kmem_cache_create("signal_cache",
1434 			sizeof(struct signal_struct), 0,
1435 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1436 	files_cachep = kmem_cache_create("files_cache",
1437 			sizeof(struct files_struct), 0,
1438 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1439 	fs_cachep = kmem_cache_create("fs_cache",
1440 			sizeof(struct fs_struct), 0,
1441 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1442 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1443 			sizeof(struct vm_area_struct), 0,
1444 			SLAB_PANIC, NULL, NULL);
1445 	mm_cachep = kmem_cache_create("mm_struct",
1446 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1447 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1448 }
1449 
1450 
1451 /*
1452  * Check constraints on flags passed to the unshare system call and
1453  * force unsharing of additional process context as appropriate.
1454  */
1455 static inline void check_unshare_flags(unsigned long *flags_ptr)
1456 {
1457 	/*
1458 	 * If unsharing a thread from a thread group, must also
1459 	 * unshare vm.
1460 	 */
1461 	if (*flags_ptr & CLONE_THREAD)
1462 		*flags_ptr |= CLONE_VM;
1463 
1464 	/*
1465 	 * If unsharing vm, must also unshare signal handlers.
1466 	 */
1467 	if (*flags_ptr & CLONE_VM)
1468 		*flags_ptr |= CLONE_SIGHAND;
1469 
1470 	/*
1471 	 * If unsharing signal handlers and the task was created
1472 	 * using CLONE_THREAD, then must unshare the thread
1473 	 */
1474 	if ((*flags_ptr & CLONE_SIGHAND) &&
1475 	    (atomic_read(&current->signal->count) > 1))
1476 		*flags_ptr |= CLONE_THREAD;
1477 
1478 	/*
1479 	 * If unsharing namespace, must also unshare filesystem information.
1480 	 */
1481 	if (*flags_ptr & CLONE_NEWNS)
1482 		*flags_ptr |= CLONE_FS;
1483 }
1484 
1485 /*
1486  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1487  */
1488 static int unshare_thread(unsigned long unshare_flags)
1489 {
1490 	if (unshare_flags & CLONE_THREAD)
1491 		return -EINVAL;
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Unshare the filesystem structure if it is being shared
1498  */
1499 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1500 {
1501 	struct fs_struct *fs = current->fs;
1502 
1503 	if ((unshare_flags & CLONE_FS) &&
1504 	    (fs && atomic_read(&fs->count) > 1)) {
1505 		*new_fsp = __copy_fs_struct(current->fs);
1506 		if (!*new_fsp)
1507 			return -ENOMEM;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Unshare the namespace structure if it is being shared
1515  */
1516 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1517 {
1518 	struct namespace *ns = current->nsproxy->namespace;
1519 
1520 	if ((unshare_flags & CLONE_NEWNS) && ns) {
1521 		if (!capable(CAP_SYS_ADMIN))
1522 			return -EPERM;
1523 
1524 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1525 		if (!*new_nsp)
1526 			return -ENOMEM;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1534  * supported yet
1535  */
1536 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1537 {
1538 	struct sighand_struct *sigh = current->sighand;
1539 
1540 	if ((unshare_flags & CLONE_SIGHAND) &&
1541 	    (sigh && atomic_read(&sigh->count) > 1))
1542 		return -EINVAL;
1543 	else
1544 		return 0;
1545 }
1546 
1547 /*
1548  * Unshare vm if it is being shared
1549  */
1550 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1551 {
1552 	struct mm_struct *mm = current->mm;
1553 
1554 	if ((unshare_flags & CLONE_VM) &&
1555 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1556 		return -EINVAL;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Unshare file descriptor table if it is being shared
1564  */
1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1566 {
1567 	struct files_struct *fd = current->files;
1568 	int error = 0;
1569 
1570 	if ((unshare_flags & CLONE_FILES) &&
1571 	    (fd && atomic_read(&fd->count) > 1)) {
1572 		*new_fdp = dup_fd(fd, &error);
1573 		if (!*new_fdp)
1574 			return error;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1582  * supported yet
1583  */
1584 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1585 {
1586 	if (unshare_flags & CLONE_SYSVSEM)
1587 		return -EINVAL;
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * unshare allows a process to 'unshare' part of the process
1594  * context which was originally shared using clone.  copy_*
1595  * functions used by do_fork() cannot be used here directly
1596  * because they modify an inactive task_struct that is being
1597  * constructed. Here we are modifying the current, active,
1598  * task_struct.
1599  */
1600 asmlinkage long sys_unshare(unsigned long unshare_flags)
1601 {
1602 	int err = 0;
1603 	struct fs_struct *fs, *new_fs = NULL;
1604 	struct namespace *ns, *new_ns = NULL;
1605 	struct sighand_struct *sigh, *new_sigh = NULL;
1606 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1607 	struct files_struct *fd, *new_fd = NULL;
1608 	struct sem_undo_list *new_ulist = NULL;
1609 	struct nsproxy *new_nsproxy, *old_nsproxy;
1610 
1611 	check_unshare_flags(&unshare_flags);
1612 
1613 	/* Return -EINVAL for all unsupported flags */
1614 	err = -EINVAL;
1615 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1616 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1617 		goto bad_unshare_out;
1618 
1619 	if ((err = unshare_thread(unshare_flags)))
1620 		goto bad_unshare_out;
1621 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1622 		goto bad_unshare_cleanup_thread;
1623 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1624 		goto bad_unshare_cleanup_fs;
1625 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1626 		goto bad_unshare_cleanup_ns;
1627 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1628 		goto bad_unshare_cleanup_sigh;
1629 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1630 		goto bad_unshare_cleanup_vm;
1631 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1632 		goto bad_unshare_cleanup_fd;
1633 
1634 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1635 
1636 		old_nsproxy = current->nsproxy;
1637 		new_nsproxy = dup_namespaces(old_nsproxy);
1638 		if (!new_nsproxy) {
1639 			err = -ENOMEM;
1640 			goto bad_unshare_cleanup_semundo;
1641 		}
1642 
1643 		task_lock(current);
1644 		current->nsproxy = new_nsproxy;
1645 
1646 		if (new_fs) {
1647 			fs = current->fs;
1648 			current->fs = new_fs;
1649 			new_fs = fs;
1650 		}
1651 
1652 		if (new_ns) {
1653 			ns = current->nsproxy->namespace;
1654 			current->nsproxy->namespace = new_ns;
1655 			new_ns = ns;
1656 		}
1657 
1658 		if (new_sigh) {
1659 			sigh = current->sighand;
1660 			rcu_assign_pointer(current->sighand, new_sigh);
1661 			new_sigh = sigh;
1662 		}
1663 
1664 		if (new_mm) {
1665 			mm = current->mm;
1666 			active_mm = current->active_mm;
1667 			current->mm = new_mm;
1668 			current->active_mm = new_mm;
1669 			activate_mm(active_mm, new_mm);
1670 			new_mm = mm;
1671 		}
1672 
1673 		if (new_fd) {
1674 			fd = current->files;
1675 			current->files = new_fd;
1676 			new_fd = fd;
1677 		}
1678 
1679 		task_unlock(current);
1680 		put_nsproxy(old_nsproxy);
1681 	}
1682 
1683 bad_unshare_cleanup_semundo:
1684 bad_unshare_cleanup_fd:
1685 	if (new_fd)
1686 		put_files_struct(new_fd);
1687 
1688 bad_unshare_cleanup_vm:
1689 	if (new_mm)
1690 		mmput(new_mm);
1691 
1692 bad_unshare_cleanup_sigh:
1693 	if (new_sigh)
1694 		if (atomic_dec_and_test(&new_sigh->count))
1695 			kmem_cache_free(sighand_cachep, new_sigh);
1696 
1697 bad_unshare_cleanup_ns:
1698 	if (new_ns)
1699 		put_namespace(new_ns);
1700 
1701 bad_unshare_cleanup_fs:
1702 	if (new_fs)
1703 		put_fs_struct(new_fs);
1704 
1705 bad_unshare_cleanup_thread:
1706 bad_unshare_out:
1707 	return err;
1708 }
1709