1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 56 #include <asm/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/pgtable.h> 59 #include <asm/mmu_context.h> 60 61 static void exit_mm(struct task_struct * tsk); 62 63 static void __unhash_process(struct task_struct *p, bool group_dead) 64 { 65 nr_threads--; 66 detach_pid(p, PIDTYPE_PID); 67 if (group_dead) { 68 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_SID); 70 71 list_del_rcu(&p->tasks); 72 list_del_init(&p->sibling); 73 __this_cpu_dec(process_counts); 74 } 75 list_del_rcu(&p->thread_group); 76 } 77 78 /* 79 * This function expects the tasklist_lock write-locked. 80 */ 81 static void __exit_signal(struct task_struct *tsk) 82 { 83 struct signal_struct *sig = tsk->signal; 84 bool group_dead = thread_group_leader(tsk); 85 struct sighand_struct *sighand; 86 struct tty_struct *uninitialized_var(tty); 87 88 sighand = rcu_dereference_check(tsk->sighand, 89 lockdep_tasklist_lock_is_held()); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (group_dead) { 94 posix_cpu_timers_exit_group(tsk); 95 tty = sig->tty; 96 sig->tty = NULL; 97 } else { 98 /* 99 * This can only happen if the caller is de_thread(). 100 * FIXME: this is the temporary hack, we should teach 101 * posix-cpu-timers to handle this case correctly. 102 */ 103 if (unlikely(has_group_leader_pid(tsk))) 104 posix_cpu_timers_exit_group(tsk); 105 106 /* 107 * If there is any task waiting for the group exit 108 * then notify it: 109 */ 110 if (sig->notify_count > 0 && !--sig->notify_count) 111 wake_up_process(sig->group_exit_task); 112 113 if (tsk == sig->curr_target) 114 sig->curr_target = next_thread(tsk); 115 /* 116 * Accumulate here the counters for all threads but the 117 * group leader as they die, so they can be added into 118 * the process-wide totals when those are taken. 119 * The group leader stays around as a zombie as long 120 * as there are other threads. When it gets reaped, 121 * the exit.c code will add its counts into these totals. 122 * We won't ever get here for the group leader, since it 123 * will have been the last reference on the signal_struct. 124 */ 125 sig->utime += tsk->utime; 126 sig->stime += tsk->stime; 127 sig->gtime += tsk->gtime; 128 sig->min_flt += tsk->min_flt; 129 sig->maj_flt += tsk->maj_flt; 130 sig->nvcsw += tsk->nvcsw; 131 sig->nivcsw += tsk->nivcsw; 132 sig->inblock += task_io_get_inblock(tsk); 133 sig->oublock += task_io_get_oublock(tsk); 134 task_io_accounting_add(&sig->ioac, &tsk->ioac); 135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 136 } 137 138 sig->nr_threads--; 139 __unhash_process(tsk, group_dead); 140 141 /* 142 * Do this under ->siglock, we can race with another thread 143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 144 */ 145 flush_sigqueue(&tsk->pending); 146 tsk->sighand = NULL; 147 spin_unlock(&sighand->siglock); 148 149 __cleanup_sighand(sighand); 150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 151 if (group_dead) { 152 flush_sigqueue(&sig->shared_pending); 153 tty_kref_put(tty); 154 } 155 } 156 157 static void delayed_put_task_struct(struct rcu_head *rhp) 158 { 159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 160 161 perf_event_delayed_put(tsk); 162 trace_sched_process_free(tsk); 163 put_task_struct(tsk); 164 } 165 166 167 void release_task(struct task_struct * p) 168 { 169 struct task_struct *leader; 170 int zap_leader; 171 repeat: 172 /* don't need to get the RCU readlock here - the process is dead and 173 * can't be modifying its own credentials. But shut RCU-lockdep up */ 174 rcu_read_lock(); 175 atomic_dec(&__task_cred(p)->user->processes); 176 rcu_read_unlock(); 177 178 proc_flush_task(p); 179 180 write_lock_irq(&tasklist_lock); 181 ptrace_release_task(p); 182 __exit_signal(p); 183 184 /* 185 * If we are the last non-leader member of the thread 186 * group, and the leader is zombie, then notify the 187 * group leader's parent process. (if it wants notification.) 188 */ 189 zap_leader = 0; 190 leader = p->group_leader; 191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 192 /* 193 * If we were the last child thread and the leader has 194 * exited already, and the leader's parent ignores SIGCHLD, 195 * then we are the one who should release the leader. 196 */ 197 zap_leader = do_notify_parent(leader, leader->exit_signal); 198 if (zap_leader) 199 leader->exit_state = EXIT_DEAD; 200 } 201 202 write_unlock_irq(&tasklist_lock); 203 release_thread(p); 204 call_rcu(&p->rcu, delayed_put_task_struct); 205 206 p = leader; 207 if (unlikely(zap_leader)) 208 goto repeat; 209 } 210 211 /* 212 * This checks not only the pgrp, but falls back on the pid if no 213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 214 * without this... 215 * 216 * The caller must hold rcu lock or the tasklist lock. 217 */ 218 struct pid *session_of_pgrp(struct pid *pgrp) 219 { 220 struct task_struct *p; 221 struct pid *sid = NULL; 222 223 p = pid_task(pgrp, PIDTYPE_PGID); 224 if (p == NULL) 225 p = pid_task(pgrp, PIDTYPE_PID); 226 if (p != NULL) 227 sid = task_session(p); 228 229 return sid; 230 } 231 232 /* 233 * Determine if a process group is "orphaned", according to the POSIX 234 * definition in 2.2.2.52. Orphaned process groups are not to be affected 235 * by terminal-generated stop signals. Newly orphaned process groups are 236 * to receive a SIGHUP and a SIGCONT. 237 * 238 * "I ask you, have you ever known what it is to be an orphan?" 239 */ 240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 241 { 242 struct task_struct *p; 243 244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 245 if ((p == ignored_task) || 246 (p->exit_state && thread_group_empty(p)) || 247 is_global_init(p->real_parent)) 248 continue; 249 250 if (task_pgrp(p->real_parent) != pgrp && 251 task_session(p->real_parent) == task_session(p)) 252 return 0; 253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 254 255 return 1; 256 } 257 258 int is_current_pgrp_orphaned(void) 259 { 260 int retval; 261 262 read_lock(&tasklist_lock); 263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 264 read_unlock(&tasklist_lock); 265 266 return retval; 267 } 268 269 static bool has_stopped_jobs(struct pid *pgrp) 270 { 271 struct task_struct *p; 272 273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 274 if (p->signal->flags & SIGNAL_STOP_STOPPED) 275 return true; 276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 277 278 return false; 279 } 280 281 /* 282 * Check to see if any process groups have become orphaned as 283 * a result of our exiting, and if they have any stopped jobs, 284 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 285 */ 286 static void 287 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 288 { 289 struct pid *pgrp = task_pgrp(tsk); 290 struct task_struct *ignored_task = tsk; 291 292 if (!parent) 293 /* exit: our father is in a different pgrp than 294 * we are and we were the only connection outside. 295 */ 296 parent = tsk->real_parent; 297 else 298 /* reparent: our child is in a different pgrp than 299 * we are, and it was the only connection outside. 300 */ 301 ignored_task = NULL; 302 303 if (task_pgrp(parent) != pgrp && 304 task_session(parent) == task_session(tsk) && 305 will_become_orphaned_pgrp(pgrp, ignored_task) && 306 has_stopped_jobs(pgrp)) { 307 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 308 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 309 } 310 } 311 312 /** 313 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 314 * 315 * If a kernel thread is launched as a result of a system call, or if 316 * it ever exits, it should generally reparent itself to kthreadd so it 317 * isn't in the way of other processes and is correctly cleaned up on exit. 318 * 319 * The various task state such as scheduling policy and priority may have 320 * been inherited from a user process, so we reset them to sane values here. 321 * 322 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 323 */ 324 static void reparent_to_kthreadd(void) 325 { 326 write_lock_irq(&tasklist_lock); 327 328 ptrace_unlink(current); 329 /* Reparent to init */ 330 current->real_parent = current->parent = kthreadd_task; 331 list_move_tail(¤t->sibling, ¤t->real_parent->children); 332 333 /* Set the exit signal to SIGCHLD so we signal init on exit */ 334 current->exit_signal = SIGCHLD; 335 336 if (task_nice(current) < 0) 337 set_user_nice(current, 0); 338 /* cpus_allowed? */ 339 /* rt_priority? */ 340 /* signals? */ 341 memcpy(current->signal->rlim, init_task.signal->rlim, 342 sizeof(current->signal->rlim)); 343 344 atomic_inc(&init_cred.usage); 345 commit_creds(&init_cred); 346 write_unlock_irq(&tasklist_lock); 347 } 348 349 void __set_special_pids(struct pid *pid) 350 { 351 struct task_struct *curr = current->group_leader; 352 353 if (task_session(curr) != pid) 354 change_pid(curr, PIDTYPE_SID, pid); 355 356 if (task_pgrp(curr) != pid) 357 change_pid(curr, PIDTYPE_PGID, pid); 358 } 359 360 static void set_special_pids(struct pid *pid) 361 { 362 write_lock_irq(&tasklist_lock); 363 __set_special_pids(pid); 364 write_unlock_irq(&tasklist_lock); 365 } 366 367 /* 368 * Let kernel threads use this to say that they allow a certain signal. 369 * Must not be used if kthread was cloned with CLONE_SIGHAND. 370 */ 371 int allow_signal(int sig) 372 { 373 if (!valid_signal(sig) || sig < 1) 374 return -EINVAL; 375 376 spin_lock_irq(¤t->sighand->siglock); 377 /* This is only needed for daemonize()'ed kthreads */ 378 sigdelset(¤t->blocked, sig); 379 /* 380 * Kernel threads handle their own signals. Let the signal code 381 * know it'll be handled, so that they don't get converted to 382 * SIGKILL or just silently dropped. 383 */ 384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 385 recalc_sigpending(); 386 spin_unlock_irq(¤t->sighand->siglock); 387 return 0; 388 } 389 390 EXPORT_SYMBOL(allow_signal); 391 392 int disallow_signal(int sig) 393 { 394 if (!valid_signal(sig) || sig < 1) 395 return -EINVAL; 396 397 spin_lock_irq(¤t->sighand->siglock); 398 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 399 recalc_sigpending(); 400 spin_unlock_irq(¤t->sighand->siglock); 401 return 0; 402 } 403 404 EXPORT_SYMBOL(disallow_signal); 405 406 /* 407 * Put all the gunge required to become a kernel thread without 408 * attached user resources in one place where it belongs. 409 */ 410 411 void daemonize(const char *name, ...) 412 { 413 va_list args; 414 sigset_t blocked; 415 416 va_start(args, name); 417 vsnprintf(current->comm, sizeof(current->comm), name, args); 418 va_end(args); 419 420 /* 421 * If we were started as result of loading a module, close all of the 422 * user space pages. We don't need them, and if we didn't close them 423 * they would be locked into memory. 424 */ 425 exit_mm(current); 426 /* 427 * We don't want to have TIF_FREEZE set if the system-wide hibernation 428 * or suspend transition begins right now. 429 */ 430 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 431 432 if (current->nsproxy != &init_nsproxy) { 433 get_nsproxy(&init_nsproxy); 434 switch_task_namespaces(current, &init_nsproxy); 435 } 436 set_special_pids(&init_struct_pid); 437 proc_clear_tty(current); 438 439 /* Block and flush all signals */ 440 sigfillset(&blocked); 441 sigprocmask(SIG_BLOCK, &blocked, NULL); 442 flush_signals(current); 443 444 /* Become as one with the init task */ 445 446 daemonize_fs_struct(); 447 exit_files(current); 448 current->files = init_task.files; 449 atomic_inc(¤t->files->count); 450 451 reparent_to_kthreadd(); 452 } 453 454 EXPORT_SYMBOL(daemonize); 455 456 static void close_files(struct files_struct * files) 457 { 458 int i, j; 459 struct fdtable *fdt; 460 461 j = 0; 462 463 /* 464 * It is safe to dereference the fd table without RCU or 465 * ->file_lock because this is the last reference to the 466 * files structure. But use RCU to shut RCU-lockdep up. 467 */ 468 rcu_read_lock(); 469 fdt = files_fdtable(files); 470 rcu_read_unlock(); 471 for (;;) { 472 unsigned long set; 473 i = j * __NFDBITS; 474 if (i >= fdt->max_fds) 475 break; 476 set = fdt->open_fds->fds_bits[j++]; 477 while (set) { 478 if (set & 1) { 479 struct file * file = xchg(&fdt->fd[i], NULL); 480 if (file) { 481 filp_close(file, files); 482 cond_resched(); 483 } 484 } 485 i++; 486 set >>= 1; 487 } 488 } 489 } 490 491 struct files_struct *get_files_struct(struct task_struct *task) 492 { 493 struct files_struct *files; 494 495 task_lock(task); 496 files = task->files; 497 if (files) 498 atomic_inc(&files->count); 499 task_unlock(task); 500 501 return files; 502 } 503 504 void put_files_struct(struct files_struct *files) 505 { 506 struct fdtable *fdt; 507 508 if (atomic_dec_and_test(&files->count)) { 509 close_files(files); 510 /* 511 * Free the fd and fdset arrays if we expanded them. 512 * If the fdtable was embedded, pass files for freeing 513 * at the end of the RCU grace period. Otherwise, 514 * you can free files immediately. 515 */ 516 rcu_read_lock(); 517 fdt = files_fdtable(files); 518 if (fdt != &files->fdtab) 519 kmem_cache_free(files_cachep, files); 520 free_fdtable(fdt); 521 rcu_read_unlock(); 522 } 523 } 524 525 void reset_files_struct(struct files_struct *files) 526 { 527 struct task_struct *tsk = current; 528 struct files_struct *old; 529 530 old = tsk->files; 531 task_lock(tsk); 532 tsk->files = files; 533 task_unlock(tsk); 534 put_files_struct(old); 535 } 536 537 void exit_files(struct task_struct *tsk) 538 { 539 struct files_struct * files = tsk->files; 540 541 if (files) { 542 task_lock(tsk); 543 tsk->files = NULL; 544 task_unlock(tsk); 545 put_files_struct(files); 546 } 547 } 548 549 #ifdef CONFIG_MM_OWNER 550 /* 551 * A task is exiting. If it owned this mm, find a new owner for the mm. 552 */ 553 void mm_update_next_owner(struct mm_struct *mm) 554 { 555 struct task_struct *c, *g, *p = current; 556 557 retry: 558 /* 559 * If the exiting or execing task is not the owner, it's 560 * someone else's problem. 561 */ 562 if (mm->owner != p) 563 return; 564 /* 565 * The current owner is exiting/execing and there are no other 566 * candidates. Do not leave the mm pointing to a possibly 567 * freed task structure. 568 */ 569 if (atomic_read(&mm->mm_users) <= 1) { 570 mm->owner = NULL; 571 return; 572 } 573 574 read_lock(&tasklist_lock); 575 /* 576 * Search in the children 577 */ 578 list_for_each_entry(c, &p->children, sibling) { 579 if (c->mm == mm) 580 goto assign_new_owner; 581 } 582 583 /* 584 * Search in the siblings 585 */ 586 list_for_each_entry(c, &p->real_parent->children, sibling) { 587 if (c->mm == mm) 588 goto assign_new_owner; 589 } 590 591 /* 592 * Search through everything else. We should not get 593 * here often 594 */ 595 do_each_thread(g, c) { 596 if (c->mm == mm) 597 goto assign_new_owner; 598 } while_each_thread(g, c); 599 600 read_unlock(&tasklist_lock); 601 /* 602 * We found no owner yet mm_users > 1: this implies that we are 603 * most likely racing with swapoff (try_to_unuse()) or /proc or 604 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 605 */ 606 mm->owner = NULL; 607 return; 608 609 assign_new_owner: 610 BUG_ON(c == p); 611 get_task_struct(c); 612 /* 613 * The task_lock protects c->mm from changing. 614 * We always want mm->owner->mm == mm 615 */ 616 task_lock(c); 617 /* 618 * Delay read_unlock() till we have the task_lock() 619 * to ensure that c does not slip away underneath us 620 */ 621 read_unlock(&tasklist_lock); 622 if (c->mm != mm) { 623 task_unlock(c); 624 put_task_struct(c); 625 goto retry; 626 } 627 mm->owner = c; 628 task_unlock(c); 629 put_task_struct(c); 630 } 631 #endif /* CONFIG_MM_OWNER */ 632 633 /* 634 * Turn us into a lazy TLB process if we 635 * aren't already.. 636 */ 637 static void exit_mm(struct task_struct * tsk) 638 { 639 struct mm_struct *mm = tsk->mm; 640 struct core_state *core_state; 641 642 mm_release(tsk, mm); 643 if (!mm) 644 return; 645 /* 646 * Serialize with any possible pending coredump. 647 * We must hold mmap_sem around checking core_state 648 * and clearing tsk->mm. The core-inducing thread 649 * will increment ->nr_threads for each thread in the 650 * group with ->mm != NULL. 651 */ 652 down_read(&mm->mmap_sem); 653 core_state = mm->core_state; 654 if (core_state) { 655 struct core_thread self; 656 up_read(&mm->mmap_sem); 657 658 self.task = tsk; 659 self.next = xchg(&core_state->dumper.next, &self); 660 /* 661 * Implies mb(), the result of xchg() must be visible 662 * to core_state->dumper. 663 */ 664 if (atomic_dec_and_test(&core_state->nr_threads)) 665 complete(&core_state->startup); 666 667 for (;;) { 668 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 669 if (!self.task) /* see coredump_finish() */ 670 break; 671 schedule(); 672 } 673 __set_task_state(tsk, TASK_RUNNING); 674 down_read(&mm->mmap_sem); 675 } 676 atomic_inc(&mm->mm_count); 677 BUG_ON(mm != tsk->active_mm); 678 /* more a memory barrier than a real lock */ 679 task_lock(tsk); 680 tsk->mm = NULL; 681 up_read(&mm->mmap_sem); 682 enter_lazy_tlb(mm, current); 683 task_unlock(tsk); 684 mm_update_next_owner(mm); 685 mmput(mm); 686 } 687 688 /* 689 * When we die, we re-parent all our children. 690 * Try to give them to another thread in our thread 691 * group, and if no such member exists, give it to 692 * the child reaper process (ie "init") in our pid 693 * space. 694 */ 695 static struct task_struct *find_new_reaper(struct task_struct *father) 696 __releases(&tasklist_lock) 697 __acquires(&tasklist_lock) 698 { 699 struct pid_namespace *pid_ns = task_active_pid_ns(father); 700 struct task_struct *thread; 701 702 thread = father; 703 while_each_thread(father, thread) { 704 if (thread->flags & PF_EXITING) 705 continue; 706 if (unlikely(pid_ns->child_reaper == father)) 707 pid_ns->child_reaper = thread; 708 return thread; 709 } 710 711 if (unlikely(pid_ns->child_reaper == father)) { 712 write_unlock_irq(&tasklist_lock); 713 if (unlikely(pid_ns == &init_pid_ns)) 714 panic("Attempted to kill init!"); 715 716 zap_pid_ns_processes(pid_ns); 717 write_lock_irq(&tasklist_lock); 718 /* 719 * We can not clear ->child_reaper or leave it alone. 720 * There may by stealth EXIT_DEAD tasks on ->children, 721 * forget_original_parent() must move them somewhere. 722 */ 723 pid_ns->child_reaper = init_pid_ns.child_reaper; 724 } 725 726 return pid_ns->child_reaper; 727 } 728 729 /* 730 * Any that need to be release_task'd are put on the @dead list. 731 */ 732 static void reparent_leader(struct task_struct *father, struct task_struct *p, 733 struct list_head *dead) 734 { 735 list_move_tail(&p->sibling, &p->real_parent->children); 736 737 if (p->exit_state == EXIT_DEAD) 738 return; 739 /* 740 * If this is a threaded reparent there is no need to 741 * notify anyone anything has happened. 742 */ 743 if (same_thread_group(p->real_parent, father)) 744 return; 745 746 /* We don't want people slaying init. */ 747 p->exit_signal = SIGCHLD; 748 749 /* If it has exited notify the new parent about this child's death. */ 750 if (!p->ptrace && 751 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 752 if (do_notify_parent(p, p->exit_signal)) { 753 p->exit_state = EXIT_DEAD; 754 list_move_tail(&p->sibling, dead); 755 } 756 } 757 758 kill_orphaned_pgrp(p, father); 759 } 760 761 static void forget_original_parent(struct task_struct *father) 762 { 763 struct task_struct *p, *n, *reaper; 764 LIST_HEAD(dead_children); 765 766 write_lock_irq(&tasklist_lock); 767 /* 768 * Note that exit_ptrace() and find_new_reaper() might 769 * drop tasklist_lock and reacquire it. 770 */ 771 exit_ptrace(father); 772 reaper = find_new_reaper(father); 773 774 list_for_each_entry_safe(p, n, &father->children, sibling) { 775 struct task_struct *t = p; 776 do { 777 t->real_parent = reaper; 778 if (t->parent == father) { 779 BUG_ON(t->ptrace); 780 t->parent = t->real_parent; 781 } 782 if (t->pdeath_signal) 783 group_send_sig_info(t->pdeath_signal, 784 SEND_SIG_NOINFO, t); 785 } while_each_thread(p, t); 786 reparent_leader(father, p, &dead_children); 787 } 788 write_unlock_irq(&tasklist_lock); 789 790 BUG_ON(!list_empty(&father->children)); 791 792 list_for_each_entry_safe(p, n, &dead_children, sibling) { 793 list_del_init(&p->sibling); 794 release_task(p); 795 } 796 } 797 798 /* 799 * Send signals to all our closest relatives so that they know 800 * to properly mourn us.. 801 */ 802 static void exit_notify(struct task_struct *tsk, int group_dead) 803 { 804 bool autoreap; 805 806 /* 807 * This does two things: 808 * 809 * A. Make init inherit all the child processes 810 * B. Check to see if any process groups have become orphaned 811 * as a result of our exiting, and if they have any stopped 812 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 813 */ 814 forget_original_parent(tsk); 815 exit_task_namespaces(tsk); 816 817 write_lock_irq(&tasklist_lock); 818 if (group_dead) 819 kill_orphaned_pgrp(tsk->group_leader, NULL); 820 821 /* Let father know we died 822 * 823 * Thread signals are configurable, but you aren't going to use 824 * that to send signals to arbitrary processes. 825 * That stops right now. 826 * 827 * If the parent exec id doesn't match the exec id we saved 828 * when we started then we know the parent has changed security 829 * domain. 830 * 831 * If our self_exec id doesn't match our parent_exec_id then 832 * we have changed execution domain as these two values started 833 * the same after a fork. 834 */ 835 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD && 836 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 837 tsk->self_exec_id != tsk->parent_exec_id)) 838 tsk->exit_signal = SIGCHLD; 839 840 if (unlikely(tsk->ptrace)) { 841 int sig = thread_group_leader(tsk) && 842 thread_group_empty(tsk) && 843 !ptrace_reparented(tsk) ? 844 tsk->exit_signal : SIGCHLD; 845 autoreap = do_notify_parent(tsk, sig); 846 } else if (thread_group_leader(tsk)) { 847 autoreap = thread_group_empty(tsk) && 848 do_notify_parent(tsk, tsk->exit_signal); 849 } else { 850 autoreap = true; 851 } 852 853 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 854 855 /* mt-exec, de_thread() is waiting for group leader */ 856 if (unlikely(tsk->signal->notify_count < 0)) 857 wake_up_process(tsk->signal->group_exit_task); 858 write_unlock_irq(&tasklist_lock); 859 860 /* If the process is dead, release it - nobody will wait for it */ 861 if (autoreap) 862 release_task(tsk); 863 } 864 865 #ifdef CONFIG_DEBUG_STACK_USAGE 866 static void check_stack_usage(void) 867 { 868 static DEFINE_SPINLOCK(low_water_lock); 869 static int lowest_to_date = THREAD_SIZE; 870 unsigned long free; 871 872 free = stack_not_used(current); 873 874 if (free >= lowest_to_date) 875 return; 876 877 spin_lock(&low_water_lock); 878 if (free < lowest_to_date) { 879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 880 "left\n", 881 current->comm, free); 882 lowest_to_date = free; 883 } 884 spin_unlock(&low_water_lock); 885 } 886 #else 887 static inline void check_stack_usage(void) {} 888 #endif 889 890 void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(blk_needs_flush_plug(tsk)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 /* 905 * If do_exit is called because this processes oopsed, it's possible 906 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 907 * continuing. Amongst other possible reasons, this is to prevent 908 * mm_release()->clear_child_tid() from writing to a user-controlled 909 * kernel address. 910 */ 911 set_fs(USER_DS); 912 913 ptrace_event(PTRACE_EVENT_EXIT, code); 914 915 validate_creds_for_do_exit(tsk); 916 917 /* 918 * We're taking recursive faults here in do_exit. Safest is to just 919 * leave this task alone and wait for reboot. 920 */ 921 if (unlikely(tsk->flags & PF_EXITING)) { 922 printk(KERN_ALERT 923 "Fixing recursive fault but reboot is needed!\n"); 924 /* 925 * We can do this unlocked here. The futex code uses 926 * this flag just to verify whether the pi state 927 * cleanup has been done or not. In the worst case it 928 * loops once more. We pretend that the cleanup was 929 * done as there is no way to return. Either the 930 * OWNER_DIED bit is set by now or we push the blocked 931 * task into the wait for ever nirwana as well. 932 */ 933 tsk->flags |= PF_EXITPIDONE; 934 set_current_state(TASK_UNINTERRUPTIBLE); 935 schedule(); 936 } 937 938 exit_irq_thread(); 939 940 exit_signals(tsk); /* sets PF_EXITING */ 941 /* 942 * tsk->flags are checked in the futex code to protect against 943 * an exiting task cleaning up the robust pi futexes. 944 */ 945 smp_mb(); 946 raw_spin_unlock_wait(&tsk->pi_lock); 947 948 if (unlikely(in_atomic())) 949 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 950 current->comm, task_pid_nr(current), 951 preempt_count()); 952 953 acct_update_integrals(tsk); 954 /* sync mm's RSS info before statistics gathering */ 955 if (tsk->mm) 956 sync_mm_rss(tsk, tsk->mm); 957 group_dead = atomic_dec_and_test(&tsk->signal->live); 958 if (group_dead) { 959 hrtimer_cancel(&tsk->signal->real_timer); 960 exit_itimers(tsk->signal); 961 if (tsk->mm) 962 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 963 } 964 acct_collect(code, group_dead); 965 if (group_dead) 966 tty_audit_exit(); 967 audit_free(tsk); 968 969 tsk->exit_code = code; 970 taskstats_exit(tsk, group_dead); 971 972 exit_mm(tsk); 973 974 if (group_dead) 975 acct_process(); 976 trace_sched_process_exit(tsk); 977 978 exit_sem(tsk); 979 exit_shm(tsk); 980 exit_files(tsk); 981 exit_fs(tsk); 982 check_stack_usage(); 983 exit_thread(); 984 985 /* 986 * Flush inherited counters to the parent - before the parent 987 * gets woken up by child-exit notifications. 988 * 989 * because of cgroup mode, must be called before cgroup_exit() 990 */ 991 perf_event_exit_task(tsk); 992 993 cgroup_exit(tsk, 1); 994 995 if (group_dead) 996 disassociate_ctty(1); 997 998 module_put(task_thread_info(tsk)->exec_domain->module); 999 1000 proc_exit_connector(tsk); 1001 1002 /* 1003 * FIXME: do that only when needed, using sched_exit tracepoint 1004 */ 1005 ptrace_put_breakpoints(tsk); 1006 1007 exit_notify(tsk, group_dead); 1008 #ifdef CONFIG_NUMA 1009 task_lock(tsk); 1010 mpol_put(tsk->mempolicy); 1011 tsk->mempolicy = NULL; 1012 task_unlock(tsk); 1013 #endif 1014 #ifdef CONFIG_FUTEX 1015 if (unlikely(current->pi_state_cache)) 1016 kfree(current->pi_state_cache); 1017 #endif 1018 /* 1019 * Make sure we are holding no locks: 1020 */ 1021 debug_check_no_locks_held(tsk); 1022 /* 1023 * We can do this unlocked here. The futex code uses this flag 1024 * just to verify whether the pi state cleanup has been done 1025 * or not. In the worst case it loops once more. 1026 */ 1027 tsk->flags |= PF_EXITPIDONE; 1028 1029 if (tsk->io_context) 1030 exit_io_context(tsk); 1031 1032 if (tsk->splice_pipe) 1033 __free_pipe_info(tsk->splice_pipe); 1034 1035 validate_creds_for_do_exit(tsk); 1036 1037 preempt_disable(); 1038 if (tsk->nr_dirtied) 1039 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1040 exit_rcu(); 1041 1042 /* 1043 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 1044 * when the following two conditions become true. 1045 * - There is race condition of mmap_sem (It is acquired by 1046 * exit_mm()), and 1047 * - SMI occurs before setting TASK_RUNINNG. 1048 * (or hypervisor of virtual machine switches to other guest) 1049 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 1050 * 1051 * To avoid it, we have to wait for releasing tsk->pi_lock which 1052 * is held by try_to_wake_up() 1053 */ 1054 smp_mb(); 1055 raw_spin_unlock_wait(&tsk->pi_lock); 1056 1057 /* causes final put_task_struct in finish_task_switch(). */ 1058 tsk->state = TASK_DEAD; 1059 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 1060 schedule(); 1061 BUG(); 1062 /* Avoid "noreturn function does return". */ 1063 for (;;) 1064 cpu_relax(); /* For when BUG is null */ 1065 } 1066 1067 EXPORT_SYMBOL_GPL(do_exit); 1068 1069 void complete_and_exit(struct completion *comp, long code) 1070 { 1071 if (comp) 1072 complete(comp); 1073 1074 do_exit(code); 1075 } 1076 1077 EXPORT_SYMBOL(complete_and_exit); 1078 1079 SYSCALL_DEFINE1(exit, int, error_code) 1080 { 1081 do_exit((error_code&0xff)<<8); 1082 } 1083 1084 /* 1085 * Take down every thread in the group. This is called by fatal signals 1086 * as well as by sys_exit_group (below). 1087 */ 1088 void 1089 do_group_exit(int exit_code) 1090 { 1091 struct signal_struct *sig = current->signal; 1092 1093 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1094 1095 if (signal_group_exit(sig)) 1096 exit_code = sig->group_exit_code; 1097 else if (!thread_group_empty(current)) { 1098 struct sighand_struct *const sighand = current->sighand; 1099 spin_lock_irq(&sighand->siglock); 1100 if (signal_group_exit(sig)) 1101 /* Another thread got here before we took the lock. */ 1102 exit_code = sig->group_exit_code; 1103 else { 1104 sig->group_exit_code = exit_code; 1105 sig->flags = SIGNAL_GROUP_EXIT; 1106 zap_other_threads(current); 1107 } 1108 spin_unlock_irq(&sighand->siglock); 1109 } 1110 1111 do_exit(exit_code); 1112 /* NOTREACHED */ 1113 } 1114 1115 /* 1116 * this kills every thread in the thread group. Note that any externally 1117 * wait4()-ing process will get the correct exit code - even if this 1118 * thread is not the thread group leader. 1119 */ 1120 SYSCALL_DEFINE1(exit_group, int, error_code) 1121 { 1122 do_group_exit((error_code & 0xff) << 8); 1123 /* NOTREACHED */ 1124 return 0; 1125 } 1126 1127 struct wait_opts { 1128 enum pid_type wo_type; 1129 int wo_flags; 1130 struct pid *wo_pid; 1131 1132 struct siginfo __user *wo_info; 1133 int __user *wo_stat; 1134 struct rusage __user *wo_rusage; 1135 1136 wait_queue_t child_wait; 1137 int notask_error; 1138 }; 1139 1140 static inline 1141 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1142 { 1143 if (type != PIDTYPE_PID) 1144 task = task->group_leader; 1145 return task->pids[type].pid; 1146 } 1147 1148 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1149 { 1150 return wo->wo_type == PIDTYPE_MAX || 1151 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1152 } 1153 1154 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1155 { 1156 if (!eligible_pid(wo, p)) 1157 return 0; 1158 /* Wait for all children (clone and not) if __WALL is set; 1159 * otherwise, wait for clone children *only* if __WCLONE is 1160 * set; otherwise, wait for non-clone children *only*. (Note: 1161 * A "clone" child here is one that reports to its parent 1162 * using a signal other than SIGCHLD.) */ 1163 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1164 && !(wo->wo_flags & __WALL)) 1165 return 0; 1166 1167 return 1; 1168 } 1169 1170 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1171 pid_t pid, uid_t uid, int why, int status) 1172 { 1173 struct siginfo __user *infop; 1174 int retval = wo->wo_rusage 1175 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1176 1177 put_task_struct(p); 1178 infop = wo->wo_info; 1179 if (infop) { 1180 if (!retval) 1181 retval = put_user(SIGCHLD, &infop->si_signo); 1182 if (!retval) 1183 retval = put_user(0, &infop->si_errno); 1184 if (!retval) 1185 retval = put_user((short)why, &infop->si_code); 1186 if (!retval) 1187 retval = put_user(pid, &infop->si_pid); 1188 if (!retval) 1189 retval = put_user(uid, &infop->si_uid); 1190 if (!retval) 1191 retval = put_user(status, &infop->si_status); 1192 } 1193 if (!retval) 1194 retval = pid; 1195 return retval; 1196 } 1197 1198 /* 1199 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1200 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1201 * the lock and this task is uninteresting. If we return nonzero, we have 1202 * released the lock and the system call should return. 1203 */ 1204 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1205 { 1206 unsigned long state; 1207 int retval, status, traced; 1208 pid_t pid = task_pid_vnr(p); 1209 uid_t uid = __task_cred(p)->uid; 1210 struct siginfo __user *infop; 1211 1212 if (!likely(wo->wo_flags & WEXITED)) 1213 return 0; 1214 1215 if (unlikely(wo->wo_flags & WNOWAIT)) { 1216 int exit_code = p->exit_code; 1217 int why; 1218 1219 get_task_struct(p); 1220 read_unlock(&tasklist_lock); 1221 if ((exit_code & 0x7f) == 0) { 1222 why = CLD_EXITED; 1223 status = exit_code >> 8; 1224 } else { 1225 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1226 status = exit_code & 0x7f; 1227 } 1228 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1229 } 1230 1231 /* 1232 * Try to move the task's state to DEAD 1233 * only one thread is allowed to do this: 1234 */ 1235 state = xchg(&p->exit_state, EXIT_DEAD); 1236 if (state != EXIT_ZOMBIE) { 1237 BUG_ON(state != EXIT_DEAD); 1238 return 0; 1239 } 1240 1241 traced = ptrace_reparented(p); 1242 /* 1243 * It can be ptraced but not reparented, check 1244 * thread_group_leader() to filter out sub-threads. 1245 */ 1246 if (likely(!traced) && thread_group_leader(p)) { 1247 struct signal_struct *psig; 1248 struct signal_struct *sig; 1249 unsigned long maxrss; 1250 cputime_t tgutime, tgstime; 1251 1252 /* 1253 * The resource counters for the group leader are in its 1254 * own task_struct. Those for dead threads in the group 1255 * are in its signal_struct, as are those for the child 1256 * processes it has previously reaped. All these 1257 * accumulate in the parent's signal_struct c* fields. 1258 * 1259 * We don't bother to take a lock here to protect these 1260 * p->signal fields, because they are only touched by 1261 * __exit_signal, which runs with tasklist_lock 1262 * write-locked anyway, and so is excluded here. We do 1263 * need to protect the access to parent->signal fields, 1264 * as other threads in the parent group can be right 1265 * here reaping other children at the same time. 1266 * 1267 * We use thread_group_times() to get times for the thread 1268 * group, which consolidates times for all threads in the 1269 * group including the group leader. 1270 */ 1271 thread_group_times(p, &tgutime, &tgstime); 1272 spin_lock_irq(&p->real_parent->sighand->siglock); 1273 psig = p->real_parent->signal; 1274 sig = p->signal; 1275 psig->cutime += tgutime + sig->cutime; 1276 psig->cstime += tgstime + sig->cstime; 1277 psig->cgtime += p->gtime + sig->gtime + sig->cgtime; 1278 psig->cmin_flt += 1279 p->min_flt + sig->min_flt + sig->cmin_flt; 1280 psig->cmaj_flt += 1281 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1282 psig->cnvcsw += 1283 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1284 psig->cnivcsw += 1285 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1286 psig->cinblock += 1287 task_io_get_inblock(p) + 1288 sig->inblock + sig->cinblock; 1289 psig->coublock += 1290 task_io_get_oublock(p) + 1291 sig->oublock + sig->coublock; 1292 maxrss = max(sig->maxrss, sig->cmaxrss); 1293 if (psig->cmaxrss < maxrss) 1294 psig->cmaxrss = maxrss; 1295 task_io_accounting_add(&psig->ioac, &p->ioac); 1296 task_io_accounting_add(&psig->ioac, &sig->ioac); 1297 spin_unlock_irq(&p->real_parent->sighand->siglock); 1298 } 1299 1300 /* 1301 * Now we are sure this task is interesting, and no other 1302 * thread can reap it because we set its state to EXIT_DEAD. 1303 */ 1304 read_unlock(&tasklist_lock); 1305 1306 retval = wo->wo_rusage 1307 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1308 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1309 ? p->signal->group_exit_code : p->exit_code; 1310 if (!retval && wo->wo_stat) 1311 retval = put_user(status, wo->wo_stat); 1312 1313 infop = wo->wo_info; 1314 if (!retval && infop) 1315 retval = put_user(SIGCHLD, &infop->si_signo); 1316 if (!retval && infop) 1317 retval = put_user(0, &infop->si_errno); 1318 if (!retval && infop) { 1319 int why; 1320 1321 if ((status & 0x7f) == 0) { 1322 why = CLD_EXITED; 1323 status >>= 8; 1324 } else { 1325 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1326 status &= 0x7f; 1327 } 1328 retval = put_user((short)why, &infop->si_code); 1329 if (!retval) 1330 retval = put_user(status, &infop->si_status); 1331 } 1332 if (!retval && infop) 1333 retval = put_user(pid, &infop->si_pid); 1334 if (!retval && infop) 1335 retval = put_user(uid, &infop->si_uid); 1336 if (!retval) 1337 retval = pid; 1338 1339 if (traced) { 1340 write_lock_irq(&tasklist_lock); 1341 /* We dropped tasklist, ptracer could die and untrace */ 1342 ptrace_unlink(p); 1343 /* 1344 * If this is not a sub-thread, notify the parent. 1345 * If parent wants a zombie, don't release it now. 1346 */ 1347 if (thread_group_leader(p) && 1348 !do_notify_parent(p, p->exit_signal)) { 1349 p->exit_state = EXIT_ZOMBIE; 1350 p = NULL; 1351 } 1352 write_unlock_irq(&tasklist_lock); 1353 } 1354 if (p != NULL) 1355 release_task(p); 1356 1357 return retval; 1358 } 1359 1360 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1361 { 1362 if (ptrace) { 1363 if (task_is_stopped_or_traced(p) && 1364 !(p->jobctl & JOBCTL_LISTENING)) 1365 return &p->exit_code; 1366 } else { 1367 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1368 return &p->signal->group_exit_code; 1369 } 1370 return NULL; 1371 } 1372 1373 /** 1374 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1375 * @wo: wait options 1376 * @ptrace: is the wait for ptrace 1377 * @p: task to wait for 1378 * 1379 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1380 * 1381 * CONTEXT: 1382 * read_lock(&tasklist_lock), which is released if return value is 1383 * non-zero. Also, grabs and releases @p->sighand->siglock. 1384 * 1385 * RETURNS: 1386 * 0 if wait condition didn't exist and search for other wait conditions 1387 * should continue. Non-zero return, -errno on failure and @p's pid on 1388 * success, implies that tasklist_lock is released and wait condition 1389 * search should terminate. 1390 */ 1391 static int wait_task_stopped(struct wait_opts *wo, 1392 int ptrace, struct task_struct *p) 1393 { 1394 struct siginfo __user *infop; 1395 int retval, exit_code, *p_code, why; 1396 uid_t uid = 0; /* unneeded, required by compiler */ 1397 pid_t pid; 1398 1399 /* 1400 * Traditionally we see ptrace'd stopped tasks regardless of options. 1401 */ 1402 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1403 return 0; 1404 1405 if (!task_stopped_code(p, ptrace)) 1406 return 0; 1407 1408 exit_code = 0; 1409 spin_lock_irq(&p->sighand->siglock); 1410 1411 p_code = task_stopped_code(p, ptrace); 1412 if (unlikely(!p_code)) 1413 goto unlock_sig; 1414 1415 exit_code = *p_code; 1416 if (!exit_code) 1417 goto unlock_sig; 1418 1419 if (!unlikely(wo->wo_flags & WNOWAIT)) 1420 *p_code = 0; 1421 1422 uid = task_uid(p); 1423 unlock_sig: 1424 spin_unlock_irq(&p->sighand->siglock); 1425 if (!exit_code) 1426 return 0; 1427 1428 /* 1429 * Now we are pretty sure this task is interesting. 1430 * Make sure it doesn't get reaped out from under us while we 1431 * give up the lock and then examine it below. We don't want to 1432 * keep holding onto the tasklist_lock while we call getrusage and 1433 * possibly take page faults for user memory. 1434 */ 1435 get_task_struct(p); 1436 pid = task_pid_vnr(p); 1437 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1438 read_unlock(&tasklist_lock); 1439 1440 if (unlikely(wo->wo_flags & WNOWAIT)) 1441 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1442 1443 retval = wo->wo_rusage 1444 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1445 if (!retval && wo->wo_stat) 1446 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1447 1448 infop = wo->wo_info; 1449 if (!retval && infop) 1450 retval = put_user(SIGCHLD, &infop->si_signo); 1451 if (!retval && infop) 1452 retval = put_user(0, &infop->si_errno); 1453 if (!retval && infop) 1454 retval = put_user((short)why, &infop->si_code); 1455 if (!retval && infop) 1456 retval = put_user(exit_code, &infop->si_status); 1457 if (!retval && infop) 1458 retval = put_user(pid, &infop->si_pid); 1459 if (!retval && infop) 1460 retval = put_user(uid, &infop->si_uid); 1461 if (!retval) 1462 retval = pid; 1463 put_task_struct(p); 1464 1465 BUG_ON(!retval); 1466 return retval; 1467 } 1468 1469 /* 1470 * Handle do_wait work for one task in a live, non-stopped state. 1471 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1472 * the lock and this task is uninteresting. If we return nonzero, we have 1473 * released the lock and the system call should return. 1474 */ 1475 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1476 { 1477 int retval; 1478 pid_t pid; 1479 uid_t uid; 1480 1481 if (!unlikely(wo->wo_flags & WCONTINUED)) 1482 return 0; 1483 1484 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1485 return 0; 1486 1487 spin_lock_irq(&p->sighand->siglock); 1488 /* Re-check with the lock held. */ 1489 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1490 spin_unlock_irq(&p->sighand->siglock); 1491 return 0; 1492 } 1493 if (!unlikely(wo->wo_flags & WNOWAIT)) 1494 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1495 uid = task_uid(p); 1496 spin_unlock_irq(&p->sighand->siglock); 1497 1498 pid = task_pid_vnr(p); 1499 get_task_struct(p); 1500 read_unlock(&tasklist_lock); 1501 1502 if (!wo->wo_info) { 1503 retval = wo->wo_rusage 1504 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1505 put_task_struct(p); 1506 if (!retval && wo->wo_stat) 1507 retval = put_user(0xffff, wo->wo_stat); 1508 if (!retval) 1509 retval = pid; 1510 } else { 1511 retval = wait_noreap_copyout(wo, p, pid, uid, 1512 CLD_CONTINUED, SIGCONT); 1513 BUG_ON(retval == 0); 1514 } 1515 1516 return retval; 1517 } 1518 1519 /* 1520 * Consider @p for a wait by @parent. 1521 * 1522 * -ECHILD should be in ->notask_error before the first call. 1523 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1524 * Returns zero if the search for a child should continue; 1525 * then ->notask_error is 0 if @p is an eligible child, 1526 * or another error from security_task_wait(), or still -ECHILD. 1527 */ 1528 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1529 struct task_struct *p) 1530 { 1531 int ret = eligible_child(wo, p); 1532 if (!ret) 1533 return ret; 1534 1535 ret = security_task_wait(p); 1536 if (unlikely(ret < 0)) { 1537 /* 1538 * If we have not yet seen any eligible child, 1539 * then let this error code replace -ECHILD. 1540 * A permission error will give the user a clue 1541 * to look for security policy problems, rather 1542 * than for mysterious wait bugs. 1543 */ 1544 if (wo->notask_error) 1545 wo->notask_error = ret; 1546 return 0; 1547 } 1548 1549 /* dead body doesn't have much to contribute */ 1550 if (unlikely(p->exit_state == EXIT_DEAD)) { 1551 /* 1552 * But do not ignore this task until the tracer does 1553 * wait_task_zombie()->do_notify_parent(). 1554 */ 1555 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1556 wo->notask_error = 0; 1557 return 0; 1558 } 1559 1560 /* slay zombie? */ 1561 if (p->exit_state == EXIT_ZOMBIE) { 1562 /* 1563 * A zombie ptracee is only visible to its ptracer. 1564 * Notification and reaping will be cascaded to the real 1565 * parent when the ptracer detaches. 1566 */ 1567 if (likely(!ptrace) && unlikely(p->ptrace)) { 1568 /* it will become visible, clear notask_error */ 1569 wo->notask_error = 0; 1570 return 0; 1571 } 1572 1573 /* we don't reap group leaders with subthreads */ 1574 if (!delay_group_leader(p)) 1575 return wait_task_zombie(wo, p); 1576 1577 /* 1578 * Allow access to stopped/continued state via zombie by 1579 * falling through. Clearing of notask_error is complex. 1580 * 1581 * When !@ptrace: 1582 * 1583 * If WEXITED is set, notask_error should naturally be 1584 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1585 * so, if there are live subthreads, there are events to 1586 * wait for. If all subthreads are dead, it's still safe 1587 * to clear - this function will be called again in finite 1588 * amount time once all the subthreads are released and 1589 * will then return without clearing. 1590 * 1591 * When @ptrace: 1592 * 1593 * Stopped state is per-task and thus can't change once the 1594 * target task dies. Only continued and exited can happen. 1595 * Clear notask_error if WCONTINUED | WEXITED. 1596 */ 1597 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1598 wo->notask_error = 0; 1599 } else { 1600 /* 1601 * If @p is ptraced by a task in its real parent's group, 1602 * hide group stop/continued state when looking at @p as 1603 * the real parent; otherwise, a single stop can be 1604 * reported twice as group and ptrace stops. 1605 * 1606 * If a ptracer wants to distinguish the two events for its 1607 * own children, it should create a separate process which 1608 * takes the role of real parent. 1609 */ 1610 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1611 return 0; 1612 1613 /* 1614 * @p is alive and it's gonna stop, continue or exit, so 1615 * there always is something to wait for. 1616 */ 1617 wo->notask_error = 0; 1618 } 1619 1620 /* 1621 * Wait for stopped. Depending on @ptrace, different stopped state 1622 * is used and the two don't interact with each other. 1623 */ 1624 ret = wait_task_stopped(wo, ptrace, p); 1625 if (ret) 1626 return ret; 1627 1628 /* 1629 * Wait for continued. There's only one continued state and the 1630 * ptracer can consume it which can confuse the real parent. Don't 1631 * use WCONTINUED from ptracer. You don't need or want it. 1632 */ 1633 return wait_task_continued(wo, p); 1634 } 1635 1636 /* 1637 * Do the work of do_wait() for one thread in the group, @tsk. 1638 * 1639 * -ECHILD should be in ->notask_error before the first call. 1640 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1641 * Returns zero if the search for a child should continue; then 1642 * ->notask_error is 0 if there were any eligible children, 1643 * or another error from security_task_wait(), or still -ECHILD. 1644 */ 1645 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1646 { 1647 struct task_struct *p; 1648 1649 list_for_each_entry(p, &tsk->children, sibling) { 1650 int ret = wait_consider_task(wo, 0, p); 1651 if (ret) 1652 return ret; 1653 } 1654 1655 return 0; 1656 } 1657 1658 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1659 { 1660 struct task_struct *p; 1661 1662 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1663 int ret = wait_consider_task(wo, 1, p); 1664 if (ret) 1665 return ret; 1666 } 1667 1668 return 0; 1669 } 1670 1671 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1672 int sync, void *key) 1673 { 1674 struct wait_opts *wo = container_of(wait, struct wait_opts, 1675 child_wait); 1676 struct task_struct *p = key; 1677 1678 if (!eligible_pid(wo, p)) 1679 return 0; 1680 1681 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1682 return 0; 1683 1684 return default_wake_function(wait, mode, sync, key); 1685 } 1686 1687 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1688 { 1689 __wake_up_sync_key(&parent->signal->wait_chldexit, 1690 TASK_INTERRUPTIBLE, 1, p); 1691 } 1692 1693 static long do_wait(struct wait_opts *wo) 1694 { 1695 struct task_struct *tsk; 1696 int retval; 1697 1698 trace_sched_process_wait(wo->wo_pid); 1699 1700 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1701 wo->child_wait.private = current; 1702 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1703 repeat: 1704 /* 1705 * If there is nothing that can match our critiera just get out. 1706 * We will clear ->notask_error to zero if we see any child that 1707 * might later match our criteria, even if we are not able to reap 1708 * it yet. 1709 */ 1710 wo->notask_error = -ECHILD; 1711 if ((wo->wo_type < PIDTYPE_MAX) && 1712 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1713 goto notask; 1714 1715 set_current_state(TASK_INTERRUPTIBLE); 1716 read_lock(&tasklist_lock); 1717 tsk = current; 1718 do { 1719 retval = do_wait_thread(wo, tsk); 1720 if (retval) 1721 goto end; 1722 1723 retval = ptrace_do_wait(wo, tsk); 1724 if (retval) 1725 goto end; 1726 1727 if (wo->wo_flags & __WNOTHREAD) 1728 break; 1729 } while_each_thread(current, tsk); 1730 read_unlock(&tasklist_lock); 1731 1732 notask: 1733 retval = wo->notask_error; 1734 if (!retval && !(wo->wo_flags & WNOHANG)) { 1735 retval = -ERESTARTSYS; 1736 if (!signal_pending(current)) { 1737 schedule(); 1738 goto repeat; 1739 } 1740 } 1741 end: 1742 __set_current_state(TASK_RUNNING); 1743 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1744 return retval; 1745 } 1746 1747 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1748 infop, int, options, struct rusage __user *, ru) 1749 { 1750 struct wait_opts wo; 1751 struct pid *pid = NULL; 1752 enum pid_type type; 1753 long ret; 1754 1755 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1756 return -EINVAL; 1757 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1758 return -EINVAL; 1759 1760 switch (which) { 1761 case P_ALL: 1762 type = PIDTYPE_MAX; 1763 break; 1764 case P_PID: 1765 type = PIDTYPE_PID; 1766 if (upid <= 0) 1767 return -EINVAL; 1768 break; 1769 case P_PGID: 1770 type = PIDTYPE_PGID; 1771 if (upid <= 0) 1772 return -EINVAL; 1773 break; 1774 default: 1775 return -EINVAL; 1776 } 1777 1778 if (type < PIDTYPE_MAX) 1779 pid = find_get_pid(upid); 1780 1781 wo.wo_type = type; 1782 wo.wo_pid = pid; 1783 wo.wo_flags = options; 1784 wo.wo_info = infop; 1785 wo.wo_stat = NULL; 1786 wo.wo_rusage = ru; 1787 ret = do_wait(&wo); 1788 1789 if (ret > 0) { 1790 ret = 0; 1791 } else if (infop) { 1792 /* 1793 * For a WNOHANG return, clear out all the fields 1794 * we would set so the user can easily tell the 1795 * difference. 1796 */ 1797 if (!ret) 1798 ret = put_user(0, &infop->si_signo); 1799 if (!ret) 1800 ret = put_user(0, &infop->si_errno); 1801 if (!ret) 1802 ret = put_user(0, &infop->si_code); 1803 if (!ret) 1804 ret = put_user(0, &infop->si_pid); 1805 if (!ret) 1806 ret = put_user(0, &infop->si_uid); 1807 if (!ret) 1808 ret = put_user(0, &infop->si_status); 1809 } 1810 1811 put_pid(pid); 1812 1813 /* avoid REGPARM breakage on x86: */ 1814 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1815 return ret; 1816 } 1817 1818 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1819 int, options, struct rusage __user *, ru) 1820 { 1821 struct wait_opts wo; 1822 struct pid *pid = NULL; 1823 enum pid_type type; 1824 long ret; 1825 1826 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1827 __WNOTHREAD|__WCLONE|__WALL)) 1828 return -EINVAL; 1829 1830 if (upid == -1) 1831 type = PIDTYPE_MAX; 1832 else if (upid < 0) { 1833 type = PIDTYPE_PGID; 1834 pid = find_get_pid(-upid); 1835 } else if (upid == 0) { 1836 type = PIDTYPE_PGID; 1837 pid = get_task_pid(current, PIDTYPE_PGID); 1838 } else /* upid > 0 */ { 1839 type = PIDTYPE_PID; 1840 pid = find_get_pid(upid); 1841 } 1842 1843 wo.wo_type = type; 1844 wo.wo_pid = pid; 1845 wo.wo_flags = options | WEXITED; 1846 wo.wo_info = NULL; 1847 wo.wo_stat = stat_addr; 1848 wo.wo_rusage = ru; 1849 ret = do_wait(&wo); 1850 put_pid(pid); 1851 1852 /* avoid REGPARM breakage on x86: */ 1853 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1854 return ret; 1855 } 1856 1857 #ifdef __ARCH_WANT_SYS_WAITPID 1858 1859 /* 1860 * sys_waitpid() remains for compatibility. waitpid() should be 1861 * implemented by calling sys_wait4() from libc.a. 1862 */ 1863 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1864 { 1865 return sys_wait4(pid, stat_addr, options, NULL); 1866 } 1867 1868 #endif 1869