xref: /openbmc/linux/kernel/exit.c (revision 8aa0a410af8011d557877e558f9ff17c082c6840)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/pgtable.h>
59 #include <asm/mmu_context.h>
60 
61 static void exit_mm(struct task_struct * tsk);
62 
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (group_dead) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		list_del_init(&p->sibling);
73 		__this_cpu_dec(process_counts);
74 	}
75 	list_del_rcu(&p->thread_group);
76 }
77 
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 	struct signal_struct *sig = tsk->signal;
84 	bool group_dead = thread_group_leader(tsk);
85 	struct sighand_struct *sighand;
86 	struct tty_struct *uninitialized_var(tty);
87 
88 	sighand = rcu_dereference_check(tsk->sighand,
89 					lockdep_tasklist_lock_is_held());
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (group_dead) {
94 		posix_cpu_timers_exit_group(tsk);
95 		tty = sig->tty;
96 		sig->tty = NULL;
97 	} else {
98 		/*
99 		 * This can only happen if the caller is de_thread().
100 		 * FIXME: this is the temporary hack, we should teach
101 		 * posix-cpu-timers to handle this case correctly.
102 		 */
103 		if (unlikely(has_group_leader_pid(tsk)))
104 			posix_cpu_timers_exit_group(tsk);
105 
106 		/*
107 		 * If there is any task waiting for the group exit
108 		 * then notify it:
109 		 */
110 		if (sig->notify_count > 0 && !--sig->notify_count)
111 			wake_up_process(sig->group_exit_task);
112 
113 		if (tsk == sig->curr_target)
114 			sig->curr_target = next_thread(tsk);
115 		/*
116 		 * Accumulate here the counters for all threads but the
117 		 * group leader as they die, so they can be added into
118 		 * the process-wide totals when those are taken.
119 		 * The group leader stays around as a zombie as long
120 		 * as there are other threads.  When it gets reaped,
121 		 * the exit.c code will add its counts into these totals.
122 		 * We won't ever get here for the group leader, since it
123 		 * will have been the last reference on the signal_struct.
124 		 */
125 		sig->utime += tsk->utime;
126 		sig->stime += tsk->stime;
127 		sig->gtime += tsk->gtime;
128 		sig->min_flt += tsk->min_flt;
129 		sig->maj_flt += tsk->maj_flt;
130 		sig->nvcsw += tsk->nvcsw;
131 		sig->nivcsw += tsk->nivcsw;
132 		sig->inblock += task_io_get_inblock(tsk);
133 		sig->oublock += task_io_get_oublock(tsk);
134 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 	}
137 
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 
141 	/*
142 	 * Do this under ->siglock, we can race with another thread
143 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 	 */
145 	flush_sigqueue(&tsk->pending);
146 	tsk->sighand = NULL;
147 	spin_unlock(&sighand->siglock);
148 
149 	__cleanup_sighand(sighand);
150 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 	if (group_dead) {
152 		flush_sigqueue(&sig->shared_pending);
153 		tty_kref_put(tty);
154 	}
155 }
156 
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 
161 	perf_event_delayed_put(tsk);
162 	trace_sched_process_free(tsk);
163 	put_task_struct(tsk);
164 }
165 
166 
167 void release_task(struct task_struct * p)
168 {
169 	struct task_struct *leader;
170 	int zap_leader;
171 repeat:
172 	/* don't need to get the RCU readlock here - the process is dead and
173 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 	rcu_read_lock();
175 	atomic_dec(&__task_cred(p)->user->processes);
176 	rcu_read_unlock();
177 
178 	proc_flush_task(p);
179 
180 	write_lock_irq(&tasklist_lock);
181 	ptrace_release_task(p);
182 	__exit_signal(p);
183 
184 	/*
185 	 * If we are the last non-leader member of the thread
186 	 * group, and the leader is zombie, then notify the
187 	 * group leader's parent process. (if it wants notification.)
188 	 */
189 	zap_leader = 0;
190 	leader = p->group_leader;
191 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 		/*
193 		 * If we were the last child thread and the leader has
194 		 * exited already, and the leader's parent ignores SIGCHLD,
195 		 * then we are the one who should release the leader.
196 		 */
197 		zap_leader = do_notify_parent(leader, leader->exit_signal);
198 		if (zap_leader)
199 			leader->exit_state = EXIT_DEAD;
200 	}
201 
202 	write_unlock_irq(&tasklist_lock);
203 	release_thread(p);
204 	call_rcu(&p->rcu, delayed_put_task_struct);
205 
206 	p = leader;
207 	if (unlikely(zap_leader))
208 		goto repeat;
209 }
210 
211 /*
212  * This checks not only the pgrp, but falls back on the pid if no
213  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
214  * without this...
215  *
216  * The caller must hold rcu lock or the tasklist lock.
217  */
218 struct pid *session_of_pgrp(struct pid *pgrp)
219 {
220 	struct task_struct *p;
221 	struct pid *sid = NULL;
222 
223 	p = pid_task(pgrp, PIDTYPE_PGID);
224 	if (p == NULL)
225 		p = pid_task(pgrp, PIDTYPE_PID);
226 	if (p != NULL)
227 		sid = task_session(p);
228 
229 	return sid;
230 }
231 
232 /*
233  * Determine if a process group is "orphaned", according to the POSIX
234  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
235  * by terminal-generated stop signals.  Newly orphaned process groups are
236  * to receive a SIGHUP and a SIGCONT.
237  *
238  * "I ask you, have you ever known what it is to be an orphan?"
239  */
240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
241 {
242 	struct task_struct *p;
243 
244 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
245 		if ((p == ignored_task) ||
246 		    (p->exit_state && thread_group_empty(p)) ||
247 		    is_global_init(p->real_parent))
248 			continue;
249 
250 		if (task_pgrp(p->real_parent) != pgrp &&
251 		    task_session(p->real_parent) == task_session(p))
252 			return 0;
253 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 
255 	return 1;
256 }
257 
258 int is_current_pgrp_orphaned(void)
259 {
260 	int retval;
261 
262 	read_lock(&tasklist_lock);
263 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
264 	read_unlock(&tasklist_lock);
265 
266 	return retval;
267 }
268 
269 static bool has_stopped_jobs(struct pid *pgrp)
270 {
271 	struct task_struct *p;
272 
273 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
275 			return true;
276 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277 
278 	return false;
279 }
280 
281 /*
282  * Check to see if any process groups have become orphaned as
283  * a result of our exiting, and if they have any stopped jobs,
284  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
285  */
286 static void
287 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
288 {
289 	struct pid *pgrp = task_pgrp(tsk);
290 	struct task_struct *ignored_task = tsk;
291 
292 	if (!parent)
293 		 /* exit: our father is in a different pgrp than
294 		  * we are and we were the only connection outside.
295 		  */
296 		parent = tsk->real_parent;
297 	else
298 		/* reparent: our child is in a different pgrp than
299 		 * we are, and it was the only connection outside.
300 		 */
301 		ignored_task = NULL;
302 
303 	if (task_pgrp(parent) != pgrp &&
304 	    task_session(parent) == task_session(tsk) &&
305 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
306 	    has_stopped_jobs(pgrp)) {
307 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
308 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
309 	}
310 }
311 
312 /**
313  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
314  *
315  * If a kernel thread is launched as a result of a system call, or if
316  * it ever exits, it should generally reparent itself to kthreadd so it
317  * isn't in the way of other processes and is correctly cleaned up on exit.
318  *
319  * The various task state such as scheduling policy and priority may have
320  * been inherited from a user process, so we reset them to sane values here.
321  *
322  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
323  */
324 static void reparent_to_kthreadd(void)
325 {
326 	write_lock_irq(&tasklist_lock);
327 
328 	ptrace_unlink(current);
329 	/* Reparent to init */
330 	current->real_parent = current->parent = kthreadd_task;
331 	list_move_tail(&current->sibling, &current->real_parent->children);
332 
333 	/* Set the exit signal to SIGCHLD so we signal init on exit */
334 	current->exit_signal = SIGCHLD;
335 
336 	if (task_nice(current) < 0)
337 		set_user_nice(current, 0);
338 	/* cpus_allowed? */
339 	/* rt_priority? */
340 	/* signals? */
341 	memcpy(current->signal->rlim, init_task.signal->rlim,
342 	       sizeof(current->signal->rlim));
343 
344 	atomic_inc(&init_cred.usage);
345 	commit_creds(&init_cred);
346 	write_unlock_irq(&tasklist_lock);
347 }
348 
349 void __set_special_pids(struct pid *pid)
350 {
351 	struct task_struct *curr = current->group_leader;
352 
353 	if (task_session(curr) != pid)
354 		change_pid(curr, PIDTYPE_SID, pid);
355 
356 	if (task_pgrp(curr) != pid)
357 		change_pid(curr, PIDTYPE_PGID, pid);
358 }
359 
360 static void set_special_pids(struct pid *pid)
361 {
362 	write_lock_irq(&tasklist_lock);
363 	__set_special_pids(pid);
364 	write_unlock_irq(&tasklist_lock);
365 }
366 
367 /*
368  * Let kernel threads use this to say that they allow a certain signal.
369  * Must not be used if kthread was cloned with CLONE_SIGHAND.
370  */
371 int allow_signal(int sig)
372 {
373 	if (!valid_signal(sig) || sig < 1)
374 		return -EINVAL;
375 
376 	spin_lock_irq(&current->sighand->siglock);
377 	/* This is only needed for daemonize()'ed kthreads */
378 	sigdelset(&current->blocked, sig);
379 	/*
380 	 * Kernel threads handle their own signals. Let the signal code
381 	 * know it'll be handled, so that they don't get converted to
382 	 * SIGKILL or just silently dropped.
383 	 */
384 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
385 	recalc_sigpending();
386 	spin_unlock_irq(&current->sighand->siglock);
387 	return 0;
388 }
389 
390 EXPORT_SYMBOL(allow_signal);
391 
392 int disallow_signal(int sig)
393 {
394 	if (!valid_signal(sig) || sig < 1)
395 		return -EINVAL;
396 
397 	spin_lock_irq(&current->sighand->siglock);
398 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
399 	recalc_sigpending();
400 	spin_unlock_irq(&current->sighand->siglock);
401 	return 0;
402 }
403 
404 EXPORT_SYMBOL(disallow_signal);
405 
406 /*
407  *	Put all the gunge required to become a kernel thread without
408  *	attached user resources in one place where it belongs.
409  */
410 
411 void daemonize(const char *name, ...)
412 {
413 	va_list args;
414 	sigset_t blocked;
415 
416 	va_start(args, name);
417 	vsnprintf(current->comm, sizeof(current->comm), name, args);
418 	va_end(args);
419 
420 	/*
421 	 * If we were started as result of loading a module, close all of the
422 	 * user space pages.  We don't need them, and if we didn't close them
423 	 * they would be locked into memory.
424 	 */
425 	exit_mm(current);
426 	/*
427 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
428 	 * or suspend transition begins right now.
429 	 */
430 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
431 
432 	if (current->nsproxy != &init_nsproxy) {
433 		get_nsproxy(&init_nsproxy);
434 		switch_task_namespaces(current, &init_nsproxy);
435 	}
436 	set_special_pids(&init_struct_pid);
437 	proc_clear_tty(current);
438 
439 	/* Block and flush all signals */
440 	sigfillset(&blocked);
441 	sigprocmask(SIG_BLOCK, &blocked, NULL);
442 	flush_signals(current);
443 
444 	/* Become as one with the init task */
445 
446 	daemonize_fs_struct();
447 	exit_files(current);
448 	current->files = init_task.files;
449 	atomic_inc(&current->files->count);
450 
451 	reparent_to_kthreadd();
452 }
453 
454 EXPORT_SYMBOL(daemonize);
455 
456 static void close_files(struct files_struct * files)
457 {
458 	int i, j;
459 	struct fdtable *fdt;
460 
461 	j = 0;
462 
463 	/*
464 	 * It is safe to dereference the fd table without RCU or
465 	 * ->file_lock because this is the last reference to the
466 	 * files structure.  But use RCU to shut RCU-lockdep up.
467 	 */
468 	rcu_read_lock();
469 	fdt = files_fdtable(files);
470 	rcu_read_unlock();
471 	for (;;) {
472 		unsigned long set;
473 		i = j * __NFDBITS;
474 		if (i >= fdt->max_fds)
475 			break;
476 		set = fdt->open_fds->fds_bits[j++];
477 		while (set) {
478 			if (set & 1) {
479 				struct file * file = xchg(&fdt->fd[i], NULL);
480 				if (file) {
481 					filp_close(file, files);
482 					cond_resched();
483 				}
484 			}
485 			i++;
486 			set >>= 1;
487 		}
488 	}
489 }
490 
491 struct files_struct *get_files_struct(struct task_struct *task)
492 {
493 	struct files_struct *files;
494 
495 	task_lock(task);
496 	files = task->files;
497 	if (files)
498 		atomic_inc(&files->count);
499 	task_unlock(task);
500 
501 	return files;
502 }
503 
504 void put_files_struct(struct files_struct *files)
505 {
506 	struct fdtable *fdt;
507 
508 	if (atomic_dec_and_test(&files->count)) {
509 		close_files(files);
510 		/*
511 		 * Free the fd and fdset arrays if we expanded them.
512 		 * If the fdtable was embedded, pass files for freeing
513 		 * at the end of the RCU grace period. Otherwise,
514 		 * you can free files immediately.
515 		 */
516 		rcu_read_lock();
517 		fdt = files_fdtable(files);
518 		if (fdt != &files->fdtab)
519 			kmem_cache_free(files_cachep, files);
520 		free_fdtable(fdt);
521 		rcu_read_unlock();
522 	}
523 }
524 
525 void reset_files_struct(struct files_struct *files)
526 {
527 	struct task_struct *tsk = current;
528 	struct files_struct *old;
529 
530 	old = tsk->files;
531 	task_lock(tsk);
532 	tsk->files = files;
533 	task_unlock(tsk);
534 	put_files_struct(old);
535 }
536 
537 void exit_files(struct task_struct *tsk)
538 {
539 	struct files_struct * files = tsk->files;
540 
541 	if (files) {
542 		task_lock(tsk);
543 		tsk->files = NULL;
544 		task_unlock(tsk);
545 		put_files_struct(files);
546 	}
547 }
548 
549 #ifdef CONFIG_MM_OWNER
550 /*
551  * A task is exiting.   If it owned this mm, find a new owner for the mm.
552  */
553 void mm_update_next_owner(struct mm_struct *mm)
554 {
555 	struct task_struct *c, *g, *p = current;
556 
557 retry:
558 	/*
559 	 * If the exiting or execing task is not the owner, it's
560 	 * someone else's problem.
561 	 */
562 	if (mm->owner != p)
563 		return;
564 	/*
565 	 * The current owner is exiting/execing and there are no other
566 	 * candidates.  Do not leave the mm pointing to a possibly
567 	 * freed task structure.
568 	 */
569 	if (atomic_read(&mm->mm_users) <= 1) {
570 		mm->owner = NULL;
571 		return;
572 	}
573 
574 	read_lock(&tasklist_lock);
575 	/*
576 	 * Search in the children
577 	 */
578 	list_for_each_entry(c, &p->children, sibling) {
579 		if (c->mm == mm)
580 			goto assign_new_owner;
581 	}
582 
583 	/*
584 	 * Search in the siblings
585 	 */
586 	list_for_each_entry(c, &p->real_parent->children, sibling) {
587 		if (c->mm == mm)
588 			goto assign_new_owner;
589 	}
590 
591 	/*
592 	 * Search through everything else. We should not get
593 	 * here often
594 	 */
595 	do_each_thread(g, c) {
596 		if (c->mm == mm)
597 			goto assign_new_owner;
598 	} while_each_thread(g, c);
599 
600 	read_unlock(&tasklist_lock);
601 	/*
602 	 * We found no owner yet mm_users > 1: this implies that we are
603 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
604 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
605 	 */
606 	mm->owner = NULL;
607 	return;
608 
609 assign_new_owner:
610 	BUG_ON(c == p);
611 	get_task_struct(c);
612 	/*
613 	 * The task_lock protects c->mm from changing.
614 	 * We always want mm->owner->mm == mm
615 	 */
616 	task_lock(c);
617 	/*
618 	 * Delay read_unlock() till we have the task_lock()
619 	 * to ensure that c does not slip away underneath us
620 	 */
621 	read_unlock(&tasklist_lock);
622 	if (c->mm != mm) {
623 		task_unlock(c);
624 		put_task_struct(c);
625 		goto retry;
626 	}
627 	mm->owner = c;
628 	task_unlock(c);
629 	put_task_struct(c);
630 }
631 #endif /* CONFIG_MM_OWNER */
632 
633 /*
634  * Turn us into a lazy TLB process if we
635  * aren't already..
636  */
637 static void exit_mm(struct task_struct * tsk)
638 {
639 	struct mm_struct *mm = tsk->mm;
640 	struct core_state *core_state;
641 
642 	mm_release(tsk, mm);
643 	if (!mm)
644 		return;
645 	/*
646 	 * Serialize with any possible pending coredump.
647 	 * We must hold mmap_sem around checking core_state
648 	 * and clearing tsk->mm.  The core-inducing thread
649 	 * will increment ->nr_threads for each thread in the
650 	 * group with ->mm != NULL.
651 	 */
652 	down_read(&mm->mmap_sem);
653 	core_state = mm->core_state;
654 	if (core_state) {
655 		struct core_thread self;
656 		up_read(&mm->mmap_sem);
657 
658 		self.task = tsk;
659 		self.next = xchg(&core_state->dumper.next, &self);
660 		/*
661 		 * Implies mb(), the result of xchg() must be visible
662 		 * to core_state->dumper.
663 		 */
664 		if (atomic_dec_and_test(&core_state->nr_threads))
665 			complete(&core_state->startup);
666 
667 		for (;;) {
668 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
669 			if (!self.task) /* see coredump_finish() */
670 				break;
671 			schedule();
672 		}
673 		__set_task_state(tsk, TASK_RUNNING);
674 		down_read(&mm->mmap_sem);
675 	}
676 	atomic_inc(&mm->mm_count);
677 	BUG_ON(mm != tsk->active_mm);
678 	/* more a memory barrier than a real lock */
679 	task_lock(tsk);
680 	tsk->mm = NULL;
681 	up_read(&mm->mmap_sem);
682 	enter_lazy_tlb(mm, current);
683 	task_unlock(tsk);
684 	mm_update_next_owner(mm);
685 	mmput(mm);
686 }
687 
688 /*
689  * When we die, we re-parent all our children.
690  * Try to give them to another thread in our thread
691  * group, and if no such member exists, give it to
692  * the child reaper process (ie "init") in our pid
693  * space.
694  */
695 static struct task_struct *find_new_reaper(struct task_struct *father)
696 	__releases(&tasklist_lock)
697 	__acquires(&tasklist_lock)
698 {
699 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
700 	struct task_struct *thread;
701 
702 	thread = father;
703 	while_each_thread(father, thread) {
704 		if (thread->flags & PF_EXITING)
705 			continue;
706 		if (unlikely(pid_ns->child_reaper == father))
707 			pid_ns->child_reaper = thread;
708 		return thread;
709 	}
710 
711 	if (unlikely(pid_ns->child_reaper == father)) {
712 		write_unlock_irq(&tasklist_lock);
713 		if (unlikely(pid_ns == &init_pid_ns))
714 			panic("Attempted to kill init!");
715 
716 		zap_pid_ns_processes(pid_ns);
717 		write_lock_irq(&tasklist_lock);
718 		/*
719 		 * We can not clear ->child_reaper or leave it alone.
720 		 * There may by stealth EXIT_DEAD tasks on ->children,
721 		 * forget_original_parent() must move them somewhere.
722 		 */
723 		pid_ns->child_reaper = init_pid_ns.child_reaper;
724 	}
725 
726 	return pid_ns->child_reaper;
727 }
728 
729 /*
730 * Any that need to be release_task'd are put on the @dead list.
731  */
732 static void reparent_leader(struct task_struct *father, struct task_struct *p,
733 				struct list_head *dead)
734 {
735 	list_move_tail(&p->sibling, &p->real_parent->children);
736 
737 	if (p->exit_state == EXIT_DEAD)
738 		return;
739 	/*
740 	 * If this is a threaded reparent there is no need to
741 	 * notify anyone anything has happened.
742 	 */
743 	if (same_thread_group(p->real_parent, father))
744 		return;
745 
746 	/* We don't want people slaying init.  */
747 	p->exit_signal = SIGCHLD;
748 
749 	/* If it has exited notify the new parent about this child's death. */
750 	if (!p->ptrace &&
751 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
752 		if (do_notify_parent(p, p->exit_signal)) {
753 			p->exit_state = EXIT_DEAD;
754 			list_move_tail(&p->sibling, dead);
755 		}
756 	}
757 
758 	kill_orphaned_pgrp(p, father);
759 }
760 
761 static void forget_original_parent(struct task_struct *father)
762 {
763 	struct task_struct *p, *n, *reaper;
764 	LIST_HEAD(dead_children);
765 
766 	write_lock_irq(&tasklist_lock);
767 	/*
768 	 * Note that exit_ptrace() and find_new_reaper() might
769 	 * drop tasklist_lock and reacquire it.
770 	 */
771 	exit_ptrace(father);
772 	reaper = find_new_reaper(father);
773 
774 	list_for_each_entry_safe(p, n, &father->children, sibling) {
775 		struct task_struct *t = p;
776 		do {
777 			t->real_parent = reaper;
778 			if (t->parent == father) {
779 				BUG_ON(t->ptrace);
780 				t->parent = t->real_parent;
781 			}
782 			if (t->pdeath_signal)
783 				group_send_sig_info(t->pdeath_signal,
784 						    SEND_SIG_NOINFO, t);
785 		} while_each_thread(p, t);
786 		reparent_leader(father, p, &dead_children);
787 	}
788 	write_unlock_irq(&tasklist_lock);
789 
790 	BUG_ON(!list_empty(&father->children));
791 
792 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
793 		list_del_init(&p->sibling);
794 		release_task(p);
795 	}
796 }
797 
798 /*
799  * Send signals to all our closest relatives so that they know
800  * to properly mourn us..
801  */
802 static void exit_notify(struct task_struct *tsk, int group_dead)
803 {
804 	bool autoreap;
805 
806 	/*
807 	 * This does two things:
808 	 *
809   	 * A.  Make init inherit all the child processes
810 	 * B.  Check to see if any process groups have become orphaned
811 	 *	as a result of our exiting, and if they have any stopped
812 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
813 	 */
814 	forget_original_parent(tsk);
815 	exit_task_namespaces(tsk);
816 
817 	write_lock_irq(&tasklist_lock);
818 	if (group_dead)
819 		kill_orphaned_pgrp(tsk->group_leader, NULL);
820 
821 	/* Let father know we died
822 	 *
823 	 * Thread signals are configurable, but you aren't going to use
824 	 * that to send signals to arbitrary processes.
825 	 * That stops right now.
826 	 *
827 	 * If the parent exec id doesn't match the exec id we saved
828 	 * when we started then we know the parent has changed security
829 	 * domain.
830 	 *
831 	 * If our self_exec id doesn't match our parent_exec_id then
832 	 * we have changed execution domain as these two values started
833 	 * the same after a fork.
834 	 */
835 	if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
836 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
837 	     tsk->self_exec_id != tsk->parent_exec_id))
838 		tsk->exit_signal = SIGCHLD;
839 
840 	if (unlikely(tsk->ptrace)) {
841 		int sig = thread_group_leader(tsk) &&
842 				thread_group_empty(tsk) &&
843 				!ptrace_reparented(tsk) ?
844 			tsk->exit_signal : SIGCHLD;
845 		autoreap = do_notify_parent(tsk, sig);
846 	} else if (thread_group_leader(tsk)) {
847 		autoreap = thread_group_empty(tsk) &&
848 			do_notify_parent(tsk, tsk->exit_signal);
849 	} else {
850 		autoreap = true;
851 	}
852 
853 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
854 
855 	/* mt-exec, de_thread() is waiting for group leader */
856 	if (unlikely(tsk->signal->notify_count < 0))
857 		wake_up_process(tsk->signal->group_exit_task);
858 	write_unlock_irq(&tasklist_lock);
859 
860 	/* If the process is dead, release it - nobody will wait for it */
861 	if (autoreap)
862 		release_task(tsk);
863 }
864 
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
867 {
868 	static DEFINE_SPINLOCK(low_water_lock);
869 	static int lowest_to_date = THREAD_SIZE;
870 	unsigned long free;
871 
872 	free = stack_not_used(current);
873 
874 	if (free >= lowest_to_date)
875 		return;
876 
877 	spin_lock(&low_water_lock);
878 	if (free < lowest_to_date) {
879 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
880 				"left\n",
881 				current->comm, free);
882 		lowest_to_date = free;
883 	}
884 	spin_unlock(&low_water_lock);
885 }
886 #else
887 static inline void check_stack_usage(void) {}
888 #endif
889 
890 void do_exit(long code)
891 {
892 	struct task_struct *tsk = current;
893 	int group_dead;
894 
895 	profile_task_exit(tsk);
896 
897 	WARN_ON(blk_needs_flush_plug(tsk));
898 
899 	if (unlikely(in_interrupt()))
900 		panic("Aiee, killing interrupt handler!");
901 	if (unlikely(!tsk->pid))
902 		panic("Attempted to kill the idle task!");
903 
904 	/*
905 	 * If do_exit is called because this processes oopsed, it's possible
906 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
907 	 * continuing. Amongst other possible reasons, this is to prevent
908 	 * mm_release()->clear_child_tid() from writing to a user-controlled
909 	 * kernel address.
910 	 */
911 	set_fs(USER_DS);
912 
913 	ptrace_event(PTRACE_EVENT_EXIT, code);
914 
915 	validate_creds_for_do_exit(tsk);
916 
917 	/*
918 	 * We're taking recursive faults here in do_exit. Safest is to just
919 	 * leave this task alone and wait for reboot.
920 	 */
921 	if (unlikely(tsk->flags & PF_EXITING)) {
922 		printk(KERN_ALERT
923 			"Fixing recursive fault but reboot is needed!\n");
924 		/*
925 		 * We can do this unlocked here. The futex code uses
926 		 * this flag just to verify whether the pi state
927 		 * cleanup has been done or not. In the worst case it
928 		 * loops once more. We pretend that the cleanup was
929 		 * done as there is no way to return. Either the
930 		 * OWNER_DIED bit is set by now or we push the blocked
931 		 * task into the wait for ever nirwana as well.
932 		 */
933 		tsk->flags |= PF_EXITPIDONE;
934 		set_current_state(TASK_UNINTERRUPTIBLE);
935 		schedule();
936 	}
937 
938 	exit_irq_thread();
939 
940 	exit_signals(tsk);  /* sets PF_EXITING */
941 	/*
942 	 * tsk->flags are checked in the futex code to protect against
943 	 * an exiting task cleaning up the robust pi futexes.
944 	 */
945 	smp_mb();
946 	raw_spin_unlock_wait(&tsk->pi_lock);
947 
948 	if (unlikely(in_atomic()))
949 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
950 				current->comm, task_pid_nr(current),
951 				preempt_count());
952 
953 	acct_update_integrals(tsk);
954 	/* sync mm's RSS info before statistics gathering */
955 	if (tsk->mm)
956 		sync_mm_rss(tsk, tsk->mm);
957 	group_dead = atomic_dec_and_test(&tsk->signal->live);
958 	if (group_dead) {
959 		hrtimer_cancel(&tsk->signal->real_timer);
960 		exit_itimers(tsk->signal);
961 		if (tsk->mm)
962 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
963 	}
964 	acct_collect(code, group_dead);
965 	if (group_dead)
966 		tty_audit_exit();
967 	audit_free(tsk);
968 
969 	tsk->exit_code = code;
970 	taskstats_exit(tsk, group_dead);
971 
972 	exit_mm(tsk);
973 
974 	if (group_dead)
975 		acct_process();
976 	trace_sched_process_exit(tsk);
977 
978 	exit_sem(tsk);
979 	exit_shm(tsk);
980 	exit_files(tsk);
981 	exit_fs(tsk);
982 	check_stack_usage();
983 	exit_thread();
984 
985 	/*
986 	 * Flush inherited counters to the parent - before the parent
987 	 * gets woken up by child-exit notifications.
988 	 *
989 	 * because of cgroup mode, must be called before cgroup_exit()
990 	 */
991 	perf_event_exit_task(tsk);
992 
993 	cgroup_exit(tsk, 1);
994 
995 	if (group_dead)
996 		disassociate_ctty(1);
997 
998 	module_put(task_thread_info(tsk)->exec_domain->module);
999 
1000 	proc_exit_connector(tsk);
1001 
1002 	/*
1003 	 * FIXME: do that only when needed, using sched_exit tracepoint
1004 	 */
1005 	ptrace_put_breakpoints(tsk);
1006 
1007 	exit_notify(tsk, group_dead);
1008 #ifdef CONFIG_NUMA
1009 	task_lock(tsk);
1010 	mpol_put(tsk->mempolicy);
1011 	tsk->mempolicy = NULL;
1012 	task_unlock(tsk);
1013 #endif
1014 #ifdef CONFIG_FUTEX
1015 	if (unlikely(current->pi_state_cache))
1016 		kfree(current->pi_state_cache);
1017 #endif
1018 	/*
1019 	 * Make sure we are holding no locks:
1020 	 */
1021 	debug_check_no_locks_held(tsk);
1022 	/*
1023 	 * We can do this unlocked here. The futex code uses this flag
1024 	 * just to verify whether the pi state cleanup has been done
1025 	 * or not. In the worst case it loops once more.
1026 	 */
1027 	tsk->flags |= PF_EXITPIDONE;
1028 
1029 	if (tsk->io_context)
1030 		exit_io_context(tsk);
1031 
1032 	if (tsk->splice_pipe)
1033 		__free_pipe_info(tsk->splice_pipe);
1034 
1035 	validate_creds_for_do_exit(tsk);
1036 
1037 	preempt_disable();
1038 	if (tsk->nr_dirtied)
1039 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1040 	exit_rcu();
1041 
1042 	/*
1043 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1044 	 * when the following two conditions become true.
1045 	 *   - There is race condition of mmap_sem (It is acquired by
1046 	 *     exit_mm()), and
1047 	 *   - SMI occurs before setting TASK_RUNINNG.
1048 	 *     (or hypervisor of virtual machine switches to other guest)
1049 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1050 	 *
1051 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
1052 	 * is held by try_to_wake_up()
1053 	 */
1054 	smp_mb();
1055 	raw_spin_unlock_wait(&tsk->pi_lock);
1056 
1057 	/* causes final put_task_struct in finish_task_switch(). */
1058 	tsk->state = TASK_DEAD;
1059 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1060 	schedule();
1061 	BUG();
1062 	/* Avoid "noreturn function does return".  */
1063 	for (;;)
1064 		cpu_relax();	/* For when BUG is null */
1065 }
1066 
1067 EXPORT_SYMBOL_GPL(do_exit);
1068 
1069 void complete_and_exit(struct completion *comp, long code)
1070 {
1071 	if (comp)
1072 		complete(comp);
1073 
1074 	do_exit(code);
1075 }
1076 
1077 EXPORT_SYMBOL(complete_and_exit);
1078 
1079 SYSCALL_DEFINE1(exit, int, error_code)
1080 {
1081 	do_exit((error_code&0xff)<<8);
1082 }
1083 
1084 /*
1085  * Take down every thread in the group.  This is called by fatal signals
1086  * as well as by sys_exit_group (below).
1087  */
1088 void
1089 do_group_exit(int exit_code)
1090 {
1091 	struct signal_struct *sig = current->signal;
1092 
1093 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1094 
1095 	if (signal_group_exit(sig))
1096 		exit_code = sig->group_exit_code;
1097 	else if (!thread_group_empty(current)) {
1098 		struct sighand_struct *const sighand = current->sighand;
1099 		spin_lock_irq(&sighand->siglock);
1100 		if (signal_group_exit(sig))
1101 			/* Another thread got here before we took the lock.  */
1102 			exit_code = sig->group_exit_code;
1103 		else {
1104 			sig->group_exit_code = exit_code;
1105 			sig->flags = SIGNAL_GROUP_EXIT;
1106 			zap_other_threads(current);
1107 		}
1108 		spin_unlock_irq(&sighand->siglock);
1109 	}
1110 
1111 	do_exit(exit_code);
1112 	/* NOTREACHED */
1113 }
1114 
1115 /*
1116  * this kills every thread in the thread group. Note that any externally
1117  * wait4()-ing process will get the correct exit code - even if this
1118  * thread is not the thread group leader.
1119  */
1120 SYSCALL_DEFINE1(exit_group, int, error_code)
1121 {
1122 	do_group_exit((error_code & 0xff) << 8);
1123 	/* NOTREACHED */
1124 	return 0;
1125 }
1126 
1127 struct wait_opts {
1128 	enum pid_type		wo_type;
1129 	int			wo_flags;
1130 	struct pid		*wo_pid;
1131 
1132 	struct siginfo __user	*wo_info;
1133 	int __user		*wo_stat;
1134 	struct rusage __user	*wo_rusage;
1135 
1136 	wait_queue_t		child_wait;
1137 	int			notask_error;
1138 };
1139 
1140 static inline
1141 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1142 {
1143 	if (type != PIDTYPE_PID)
1144 		task = task->group_leader;
1145 	return task->pids[type].pid;
1146 }
1147 
1148 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1149 {
1150 	return	wo->wo_type == PIDTYPE_MAX ||
1151 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1152 }
1153 
1154 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1155 {
1156 	if (!eligible_pid(wo, p))
1157 		return 0;
1158 	/* Wait for all children (clone and not) if __WALL is set;
1159 	 * otherwise, wait for clone children *only* if __WCLONE is
1160 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1161 	 * A "clone" child here is one that reports to its parent
1162 	 * using a signal other than SIGCHLD.) */
1163 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1164 	    && !(wo->wo_flags & __WALL))
1165 		return 0;
1166 
1167 	return 1;
1168 }
1169 
1170 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1171 				pid_t pid, uid_t uid, int why, int status)
1172 {
1173 	struct siginfo __user *infop;
1174 	int retval = wo->wo_rusage
1175 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1176 
1177 	put_task_struct(p);
1178 	infop = wo->wo_info;
1179 	if (infop) {
1180 		if (!retval)
1181 			retval = put_user(SIGCHLD, &infop->si_signo);
1182 		if (!retval)
1183 			retval = put_user(0, &infop->si_errno);
1184 		if (!retval)
1185 			retval = put_user((short)why, &infop->si_code);
1186 		if (!retval)
1187 			retval = put_user(pid, &infop->si_pid);
1188 		if (!retval)
1189 			retval = put_user(uid, &infop->si_uid);
1190 		if (!retval)
1191 			retval = put_user(status, &infop->si_status);
1192 	}
1193 	if (!retval)
1194 		retval = pid;
1195 	return retval;
1196 }
1197 
1198 /*
1199  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1200  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1201  * the lock and this task is uninteresting.  If we return nonzero, we have
1202  * released the lock and the system call should return.
1203  */
1204 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1205 {
1206 	unsigned long state;
1207 	int retval, status, traced;
1208 	pid_t pid = task_pid_vnr(p);
1209 	uid_t uid = __task_cred(p)->uid;
1210 	struct siginfo __user *infop;
1211 
1212 	if (!likely(wo->wo_flags & WEXITED))
1213 		return 0;
1214 
1215 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1216 		int exit_code = p->exit_code;
1217 		int why;
1218 
1219 		get_task_struct(p);
1220 		read_unlock(&tasklist_lock);
1221 		if ((exit_code & 0x7f) == 0) {
1222 			why = CLD_EXITED;
1223 			status = exit_code >> 8;
1224 		} else {
1225 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1226 			status = exit_code & 0x7f;
1227 		}
1228 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1229 	}
1230 
1231 	/*
1232 	 * Try to move the task's state to DEAD
1233 	 * only one thread is allowed to do this:
1234 	 */
1235 	state = xchg(&p->exit_state, EXIT_DEAD);
1236 	if (state != EXIT_ZOMBIE) {
1237 		BUG_ON(state != EXIT_DEAD);
1238 		return 0;
1239 	}
1240 
1241 	traced = ptrace_reparented(p);
1242 	/*
1243 	 * It can be ptraced but not reparented, check
1244 	 * thread_group_leader() to filter out sub-threads.
1245 	 */
1246 	if (likely(!traced) && thread_group_leader(p)) {
1247 		struct signal_struct *psig;
1248 		struct signal_struct *sig;
1249 		unsigned long maxrss;
1250 		cputime_t tgutime, tgstime;
1251 
1252 		/*
1253 		 * The resource counters for the group leader are in its
1254 		 * own task_struct.  Those for dead threads in the group
1255 		 * are in its signal_struct, as are those for the child
1256 		 * processes it has previously reaped.  All these
1257 		 * accumulate in the parent's signal_struct c* fields.
1258 		 *
1259 		 * We don't bother to take a lock here to protect these
1260 		 * p->signal fields, because they are only touched by
1261 		 * __exit_signal, which runs with tasklist_lock
1262 		 * write-locked anyway, and so is excluded here.  We do
1263 		 * need to protect the access to parent->signal fields,
1264 		 * as other threads in the parent group can be right
1265 		 * here reaping other children at the same time.
1266 		 *
1267 		 * We use thread_group_times() to get times for the thread
1268 		 * group, which consolidates times for all threads in the
1269 		 * group including the group leader.
1270 		 */
1271 		thread_group_times(p, &tgutime, &tgstime);
1272 		spin_lock_irq(&p->real_parent->sighand->siglock);
1273 		psig = p->real_parent->signal;
1274 		sig = p->signal;
1275 		psig->cutime += tgutime + sig->cutime;
1276 		psig->cstime += tgstime + sig->cstime;
1277 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1278 		psig->cmin_flt +=
1279 			p->min_flt + sig->min_flt + sig->cmin_flt;
1280 		psig->cmaj_flt +=
1281 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1282 		psig->cnvcsw +=
1283 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1284 		psig->cnivcsw +=
1285 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1286 		psig->cinblock +=
1287 			task_io_get_inblock(p) +
1288 			sig->inblock + sig->cinblock;
1289 		psig->coublock +=
1290 			task_io_get_oublock(p) +
1291 			sig->oublock + sig->coublock;
1292 		maxrss = max(sig->maxrss, sig->cmaxrss);
1293 		if (psig->cmaxrss < maxrss)
1294 			psig->cmaxrss = maxrss;
1295 		task_io_accounting_add(&psig->ioac, &p->ioac);
1296 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1297 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1298 	}
1299 
1300 	/*
1301 	 * Now we are sure this task is interesting, and no other
1302 	 * thread can reap it because we set its state to EXIT_DEAD.
1303 	 */
1304 	read_unlock(&tasklist_lock);
1305 
1306 	retval = wo->wo_rusage
1307 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1308 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1309 		? p->signal->group_exit_code : p->exit_code;
1310 	if (!retval && wo->wo_stat)
1311 		retval = put_user(status, wo->wo_stat);
1312 
1313 	infop = wo->wo_info;
1314 	if (!retval && infop)
1315 		retval = put_user(SIGCHLD, &infop->si_signo);
1316 	if (!retval && infop)
1317 		retval = put_user(0, &infop->si_errno);
1318 	if (!retval && infop) {
1319 		int why;
1320 
1321 		if ((status & 0x7f) == 0) {
1322 			why = CLD_EXITED;
1323 			status >>= 8;
1324 		} else {
1325 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1326 			status &= 0x7f;
1327 		}
1328 		retval = put_user((short)why, &infop->si_code);
1329 		if (!retval)
1330 			retval = put_user(status, &infop->si_status);
1331 	}
1332 	if (!retval && infop)
1333 		retval = put_user(pid, &infop->si_pid);
1334 	if (!retval && infop)
1335 		retval = put_user(uid, &infop->si_uid);
1336 	if (!retval)
1337 		retval = pid;
1338 
1339 	if (traced) {
1340 		write_lock_irq(&tasklist_lock);
1341 		/* We dropped tasklist, ptracer could die and untrace */
1342 		ptrace_unlink(p);
1343 		/*
1344 		 * If this is not a sub-thread, notify the parent.
1345 		 * If parent wants a zombie, don't release it now.
1346 		 */
1347 		if (thread_group_leader(p) &&
1348 		    !do_notify_parent(p, p->exit_signal)) {
1349 			p->exit_state = EXIT_ZOMBIE;
1350 			p = NULL;
1351 		}
1352 		write_unlock_irq(&tasklist_lock);
1353 	}
1354 	if (p != NULL)
1355 		release_task(p);
1356 
1357 	return retval;
1358 }
1359 
1360 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1361 {
1362 	if (ptrace) {
1363 		if (task_is_stopped_or_traced(p) &&
1364 		    !(p->jobctl & JOBCTL_LISTENING))
1365 			return &p->exit_code;
1366 	} else {
1367 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1368 			return &p->signal->group_exit_code;
1369 	}
1370 	return NULL;
1371 }
1372 
1373 /**
1374  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1375  * @wo: wait options
1376  * @ptrace: is the wait for ptrace
1377  * @p: task to wait for
1378  *
1379  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1380  *
1381  * CONTEXT:
1382  * read_lock(&tasklist_lock), which is released if return value is
1383  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1384  *
1385  * RETURNS:
1386  * 0 if wait condition didn't exist and search for other wait conditions
1387  * should continue.  Non-zero return, -errno on failure and @p's pid on
1388  * success, implies that tasklist_lock is released and wait condition
1389  * search should terminate.
1390  */
1391 static int wait_task_stopped(struct wait_opts *wo,
1392 				int ptrace, struct task_struct *p)
1393 {
1394 	struct siginfo __user *infop;
1395 	int retval, exit_code, *p_code, why;
1396 	uid_t uid = 0; /* unneeded, required by compiler */
1397 	pid_t pid;
1398 
1399 	/*
1400 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1401 	 */
1402 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1403 		return 0;
1404 
1405 	if (!task_stopped_code(p, ptrace))
1406 		return 0;
1407 
1408 	exit_code = 0;
1409 	spin_lock_irq(&p->sighand->siglock);
1410 
1411 	p_code = task_stopped_code(p, ptrace);
1412 	if (unlikely(!p_code))
1413 		goto unlock_sig;
1414 
1415 	exit_code = *p_code;
1416 	if (!exit_code)
1417 		goto unlock_sig;
1418 
1419 	if (!unlikely(wo->wo_flags & WNOWAIT))
1420 		*p_code = 0;
1421 
1422 	uid = task_uid(p);
1423 unlock_sig:
1424 	spin_unlock_irq(&p->sighand->siglock);
1425 	if (!exit_code)
1426 		return 0;
1427 
1428 	/*
1429 	 * Now we are pretty sure this task is interesting.
1430 	 * Make sure it doesn't get reaped out from under us while we
1431 	 * give up the lock and then examine it below.  We don't want to
1432 	 * keep holding onto the tasklist_lock while we call getrusage and
1433 	 * possibly take page faults for user memory.
1434 	 */
1435 	get_task_struct(p);
1436 	pid = task_pid_vnr(p);
1437 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1438 	read_unlock(&tasklist_lock);
1439 
1440 	if (unlikely(wo->wo_flags & WNOWAIT))
1441 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1442 
1443 	retval = wo->wo_rusage
1444 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1445 	if (!retval && wo->wo_stat)
1446 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1447 
1448 	infop = wo->wo_info;
1449 	if (!retval && infop)
1450 		retval = put_user(SIGCHLD, &infop->si_signo);
1451 	if (!retval && infop)
1452 		retval = put_user(0, &infop->si_errno);
1453 	if (!retval && infop)
1454 		retval = put_user((short)why, &infop->si_code);
1455 	if (!retval && infop)
1456 		retval = put_user(exit_code, &infop->si_status);
1457 	if (!retval && infop)
1458 		retval = put_user(pid, &infop->si_pid);
1459 	if (!retval && infop)
1460 		retval = put_user(uid, &infop->si_uid);
1461 	if (!retval)
1462 		retval = pid;
1463 	put_task_struct(p);
1464 
1465 	BUG_ON(!retval);
1466 	return retval;
1467 }
1468 
1469 /*
1470  * Handle do_wait work for one task in a live, non-stopped state.
1471  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1472  * the lock and this task is uninteresting.  If we return nonzero, we have
1473  * released the lock and the system call should return.
1474  */
1475 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1476 {
1477 	int retval;
1478 	pid_t pid;
1479 	uid_t uid;
1480 
1481 	if (!unlikely(wo->wo_flags & WCONTINUED))
1482 		return 0;
1483 
1484 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1485 		return 0;
1486 
1487 	spin_lock_irq(&p->sighand->siglock);
1488 	/* Re-check with the lock held.  */
1489 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1490 		spin_unlock_irq(&p->sighand->siglock);
1491 		return 0;
1492 	}
1493 	if (!unlikely(wo->wo_flags & WNOWAIT))
1494 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1495 	uid = task_uid(p);
1496 	spin_unlock_irq(&p->sighand->siglock);
1497 
1498 	pid = task_pid_vnr(p);
1499 	get_task_struct(p);
1500 	read_unlock(&tasklist_lock);
1501 
1502 	if (!wo->wo_info) {
1503 		retval = wo->wo_rusage
1504 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1505 		put_task_struct(p);
1506 		if (!retval && wo->wo_stat)
1507 			retval = put_user(0xffff, wo->wo_stat);
1508 		if (!retval)
1509 			retval = pid;
1510 	} else {
1511 		retval = wait_noreap_copyout(wo, p, pid, uid,
1512 					     CLD_CONTINUED, SIGCONT);
1513 		BUG_ON(retval == 0);
1514 	}
1515 
1516 	return retval;
1517 }
1518 
1519 /*
1520  * Consider @p for a wait by @parent.
1521  *
1522  * -ECHILD should be in ->notask_error before the first call.
1523  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1524  * Returns zero if the search for a child should continue;
1525  * then ->notask_error is 0 if @p is an eligible child,
1526  * or another error from security_task_wait(), or still -ECHILD.
1527  */
1528 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1529 				struct task_struct *p)
1530 {
1531 	int ret = eligible_child(wo, p);
1532 	if (!ret)
1533 		return ret;
1534 
1535 	ret = security_task_wait(p);
1536 	if (unlikely(ret < 0)) {
1537 		/*
1538 		 * If we have not yet seen any eligible child,
1539 		 * then let this error code replace -ECHILD.
1540 		 * A permission error will give the user a clue
1541 		 * to look for security policy problems, rather
1542 		 * than for mysterious wait bugs.
1543 		 */
1544 		if (wo->notask_error)
1545 			wo->notask_error = ret;
1546 		return 0;
1547 	}
1548 
1549 	/* dead body doesn't have much to contribute */
1550 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1551 		/*
1552 		 * But do not ignore this task until the tracer does
1553 		 * wait_task_zombie()->do_notify_parent().
1554 		 */
1555 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1556 			wo->notask_error = 0;
1557 		return 0;
1558 	}
1559 
1560 	/* slay zombie? */
1561 	if (p->exit_state == EXIT_ZOMBIE) {
1562 		/*
1563 		 * A zombie ptracee is only visible to its ptracer.
1564 		 * Notification and reaping will be cascaded to the real
1565 		 * parent when the ptracer detaches.
1566 		 */
1567 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1568 			/* it will become visible, clear notask_error */
1569 			wo->notask_error = 0;
1570 			return 0;
1571 		}
1572 
1573 		/* we don't reap group leaders with subthreads */
1574 		if (!delay_group_leader(p))
1575 			return wait_task_zombie(wo, p);
1576 
1577 		/*
1578 		 * Allow access to stopped/continued state via zombie by
1579 		 * falling through.  Clearing of notask_error is complex.
1580 		 *
1581 		 * When !@ptrace:
1582 		 *
1583 		 * If WEXITED is set, notask_error should naturally be
1584 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1585 		 * so, if there are live subthreads, there are events to
1586 		 * wait for.  If all subthreads are dead, it's still safe
1587 		 * to clear - this function will be called again in finite
1588 		 * amount time once all the subthreads are released and
1589 		 * will then return without clearing.
1590 		 *
1591 		 * When @ptrace:
1592 		 *
1593 		 * Stopped state is per-task and thus can't change once the
1594 		 * target task dies.  Only continued and exited can happen.
1595 		 * Clear notask_error if WCONTINUED | WEXITED.
1596 		 */
1597 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1598 			wo->notask_error = 0;
1599 	} else {
1600 		/*
1601 		 * If @p is ptraced by a task in its real parent's group,
1602 		 * hide group stop/continued state when looking at @p as
1603 		 * the real parent; otherwise, a single stop can be
1604 		 * reported twice as group and ptrace stops.
1605 		 *
1606 		 * If a ptracer wants to distinguish the two events for its
1607 		 * own children, it should create a separate process which
1608 		 * takes the role of real parent.
1609 		 */
1610 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1611 			return 0;
1612 
1613 		/*
1614 		 * @p is alive and it's gonna stop, continue or exit, so
1615 		 * there always is something to wait for.
1616 		 */
1617 		wo->notask_error = 0;
1618 	}
1619 
1620 	/*
1621 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1622 	 * is used and the two don't interact with each other.
1623 	 */
1624 	ret = wait_task_stopped(wo, ptrace, p);
1625 	if (ret)
1626 		return ret;
1627 
1628 	/*
1629 	 * Wait for continued.  There's only one continued state and the
1630 	 * ptracer can consume it which can confuse the real parent.  Don't
1631 	 * use WCONTINUED from ptracer.  You don't need or want it.
1632 	 */
1633 	return wait_task_continued(wo, p);
1634 }
1635 
1636 /*
1637  * Do the work of do_wait() for one thread in the group, @tsk.
1638  *
1639  * -ECHILD should be in ->notask_error before the first call.
1640  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1641  * Returns zero if the search for a child should continue; then
1642  * ->notask_error is 0 if there were any eligible children,
1643  * or another error from security_task_wait(), or still -ECHILD.
1644  */
1645 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1646 {
1647 	struct task_struct *p;
1648 
1649 	list_for_each_entry(p, &tsk->children, sibling) {
1650 		int ret = wait_consider_task(wo, 0, p);
1651 		if (ret)
1652 			return ret;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1659 {
1660 	struct task_struct *p;
1661 
1662 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1663 		int ret = wait_consider_task(wo, 1, p);
1664 		if (ret)
1665 			return ret;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1672 				int sync, void *key)
1673 {
1674 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1675 						child_wait);
1676 	struct task_struct *p = key;
1677 
1678 	if (!eligible_pid(wo, p))
1679 		return 0;
1680 
1681 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1682 		return 0;
1683 
1684 	return default_wake_function(wait, mode, sync, key);
1685 }
1686 
1687 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1688 {
1689 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1690 				TASK_INTERRUPTIBLE, 1, p);
1691 }
1692 
1693 static long do_wait(struct wait_opts *wo)
1694 {
1695 	struct task_struct *tsk;
1696 	int retval;
1697 
1698 	trace_sched_process_wait(wo->wo_pid);
1699 
1700 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1701 	wo->child_wait.private = current;
1702 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1703 repeat:
1704 	/*
1705 	 * If there is nothing that can match our critiera just get out.
1706 	 * We will clear ->notask_error to zero if we see any child that
1707 	 * might later match our criteria, even if we are not able to reap
1708 	 * it yet.
1709 	 */
1710 	wo->notask_error = -ECHILD;
1711 	if ((wo->wo_type < PIDTYPE_MAX) &&
1712 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1713 		goto notask;
1714 
1715 	set_current_state(TASK_INTERRUPTIBLE);
1716 	read_lock(&tasklist_lock);
1717 	tsk = current;
1718 	do {
1719 		retval = do_wait_thread(wo, tsk);
1720 		if (retval)
1721 			goto end;
1722 
1723 		retval = ptrace_do_wait(wo, tsk);
1724 		if (retval)
1725 			goto end;
1726 
1727 		if (wo->wo_flags & __WNOTHREAD)
1728 			break;
1729 	} while_each_thread(current, tsk);
1730 	read_unlock(&tasklist_lock);
1731 
1732 notask:
1733 	retval = wo->notask_error;
1734 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1735 		retval = -ERESTARTSYS;
1736 		if (!signal_pending(current)) {
1737 			schedule();
1738 			goto repeat;
1739 		}
1740 	}
1741 end:
1742 	__set_current_state(TASK_RUNNING);
1743 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1744 	return retval;
1745 }
1746 
1747 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1748 		infop, int, options, struct rusage __user *, ru)
1749 {
1750 	struct wait_opts wo;
1751 	struct pid *pid = NULL;
1752 	enum pid_type type;
1753 	long ret;
1754 
1755 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1756 		return -EINVAL;
1757 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1758 		return -EINVAL;
1759 
1760 	switch (which) {
1761 	case P_ALL:
1762 		type = PIDTYPE_MAX;
1763 		break;
1764 	case P_PID:
1765 		type = PIDTYPE_PID;
1766 		if (upid <= 0)
1767 			return -EINVAL;
1768 		break;
1769 	case P_PGID:
1770 		type = PIDTYPE_PGID;
1771 		if (upid <= 0)
1772 			return -EINVAL;
1773 		break;
1774 	default:
1775 		return -EINVAL;
1776 	}
1777 
1778 	if (type < PIDTYPE_MAX)
1779 		pid = find_get_pid(upid);
1780 
1781 	wo.wo_type	= type;
1782 	wo.wo_pid	= pid;
1783 	wo.wo_flags	= options;
1784 	wo.wo_info	= infop;
1785 	wo.wo_stat	= NULL;
1786 	wo.wo_rusage	= ru;
1787 	ret = do_wait(&wo);
1788 
1789 	if (ret > 0) {
1790 		ret = 0;
1791 	} else if (infop) {
1792 		/*
1793 		 * For a WNOHANG return, clear out all the fields
1794 		 * we would set so the user can easily tell the
1795 		 * difference.
1796 		 */
1797 		if (!ret)
1798 			ret = put_user(0, &infop->si_signo);
1799 		if (!ret)
1800 			ret = put_user(0, &infop->si_errno);
1801 		if (!ret)
1802 			ret = put_user(0, &infop->si_code);
1803 		if (!ret)
1804 			ret = put_user(0, &infop->si_pid);
1805 		if (!ret)
1806 			ret = put_user(0, &infop->si_uid);
1807 		if (!ret)
1808 			ret = put_user(0, &infop->si_status);
1809 	}
1810 
1811 	put_pid(pid);
1812 
1813 	/* avoid REGPARM breakage on x86: */
1814 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1815 	return ret;
1816 }
1817 
1818 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1819 		int, options, struct rusage __user *, ru)
1820 {
1821 	struct wait_opts wo;
1822 	struct pid *pid = NULL;
1823 	enum pid_type type;
1824 	long ret;
1825 
1826 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1827 			__WNOTHREAD|__WCLONE|__WALL))
1828 		return -EINVAL;
1829 
1830 	if (upid == -1)
1831 		type = PIDTYPE_MAX;
1832 	else if (upid < 0) {
1833 		type = PIDTYPE_PGID;
1834 		pid = find_get_pid(-upid);
1835 	} else if (upid == 0) {
1836 		type = PIDTYPE_PGID;
1837 		pid = get_task_pid(current, PIDTYPE_PGID);
1838 	} else /* upid > 0 */ {
1839 		type = PIDTYPE_PID;
1840 		pid = find_get_pid(upid);
1841 	}
1842 
1843 	wo.wo_type	= type;
1844 	wo.wo_pid	= pid;
1845 	wo.wo_flags	= options | WEXITED;
1846 	wo.wo_info	= NULL;
1847 	wo.wo_stat	= stat_addr;
1848 	wo.wo_rusage	= ru;
1849 	ret = do_wait(&wo);
1850 	put_pid(pid);
1851 
1852 	/* avoid REGPARM breakage on x86: */
1853 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1854 	return ret;
1855 }
1856 
1857 #ifdef __ARCH_WANT_SYS_WAITPID
1858 
1859 /*
1860  * sys_waitpid() remains for compatibility. waitpid() should be
1861  * implemented by calling sys_wait4() from libc.a.
1862  */
1863 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1864 {
1865 	return sys_wait4(pid, stat_addr, options, NULL);
1866 }
1867 
1868 #endif
1869