1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cpuset.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 extern void sem_exit (void); 54 55 static void exit_mm(struct task_struct * tsk); 56 57 static void __unhash_process(struct task_struct *p) 58 { 59 nr_threads--; 60 detach_pid(p, PIDTYPE_PID); 61 if (thread_group_leader(p)) { 62 detach_pid(p, PIDTYPE_PGID); 63 detach_pid(p, PIDTYPE_SID); 64 65 list_del_rcu(&p->tasks); 66 __get_cpu_var(process_counts)--; 67 } 68 list_del_rcu(&p->thread_group); 69 remove_parent(p); 70 } 71 72 /* 73 * This function expects the tasklist_lock write-locked. 74 */ 75 static void __exit_signal(struct task_struct *tsk) 76 { 77 struct signal_struct *sig = tsk->signal; 78 struct sighand_struct *sighand; 79 80 BUG_ON(!sig); 81 BUG_ON(!atomic_read(&sig->count)); 82 83 rcu_read_lock(); 84 sighand = rcu_dereference(tsk->sighand); 85 spin_lock(&sighand->siglock); 86 87 posix_cpu_timers_exit(tsk); 88 if (atomic_dec_and_test(&sig->count)) 89 posix_cpu_timers_exit_group(tsk); 90 else { 91 /* 92 * If there is any task waiting for the group exit 93 * then notify it: 94 */ 95 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 96 wake_up_process(sig->group_exit_task); 97 98 if (tsk == sig->curr_target) 99 sig->curr_target = next_thread(tsk); 100 /* 101 * Accumulate here the counters for all threads but the 102 * group leader as they die, so they can be added into 103 * the process-wide totals when those are taken. 104 * The group leader stays around as a zombie as long 105 * as there are other threads. When it gets reaped, 106 * the exit.c code will add its counts into these totals. 107 * We won't ever get here for the group leader, since it 108 * will have been the last reference on the signal_struct. 109 */ 110 sig->utime = cputime_add(sig->utime, tsk->utime); 111 sig->stime = cputime_add(sig->stime, tsk->stime); 112 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 113 sig->min_flt += tsk->min_flt; 114 sig->maj_flt += tsk->maj_flt; 115 sig->nvcsw += tsk->nvcsw; 116 sig->nivcsw += tsk->nivcsw; 117 sig->inblock += task_io_get_inblock(tsk); 118 sig->oublock += task_io_get_oublock(tsk); 119 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 120 sig = NULL; /* Marker for below. */ 121 } 122 123 __unhash_process(tsk); 124 125 tsk->signal = NULL; 126 tsk->sighand = NULL; 127 spin_unlock(&sighand->siglock); 128 rcu_read_unlock(); 129 130 __cleanup_sighand(sighand); 131 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 132 flush_sigqueue(&tsk->pending); 133 if (sig) { 134 flush_sigqueue(&sig->shared_pending); 135 taskstats_tgid_free(sig); 136 __cleanup_signal(sig); 137 } 138 } 139 140 static void delayed_put_task_struct(struct rcu_head *rhp) 141 { 142 put_task_struct(container_of(rhp, struct task_struct, rcu)); 143 } 144 145 void release_task(struct task_struct * p) 146 { 147 struct task_struct *leader; 148 int zap_leader; 149 repeat: 150 atomic_dec(&p->user->processes); 151 write_lock_irq(&tasklist_lock); 152 ptrace_unlink(p); 153 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 154 __exit_signal(p); 155 156 /* 157 * If we are the last non-leader member of the thread 158 * group, and the leader is zombie, then notify the 159 * group leader's parent process. (if it wants notification.) 160 */ 161 zap_leader = 0; 162 leader = p->group_leader; 163 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 164 BUG_ON(leader->exit_signal == -1); 165 do_notify_parent(leader, leader->exit_signal); 166 /* 167 * If we were the last child thread and the leader has 168 * exited already, and the leader's parent ignores SIGCHLD, 169 * then we are the one who should release the leader. 170 * 171 * do_notify_parent() will have marked it self-reaping in 172 * that case. 173 */ 174 zap_leader = (leader->exit_signal == -1); 175 } 176 177 write_unlock_irq(&tasklist_lock); 178 proc_flush_task(p); 179 release_thread(p); 180 call_rcu(&p->rcu, delayed_put_task_struct); 181 182 p = leader; 183 if (unlikely(zap_leader)) 184 goto repeat; 185 } 186 187 /* 188 * This checks not only the pgrp, but falls back on the pid if no 189 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 190 * without this... 191 * 192 * The caller must hold rcu lock or the tasklist lock. 193 */ 194 struct pid *session_of_pgrp(struct pid *pgrp) 195 { 196 struct task_struct *p; 197 struct pid *sid = NULL; 198 199 p = pid_task(pgrp, PIDTYPE_PGID); 200 if (p == NULL) 201 p = pid_task(pgrp, PIDTYPE_PID); 202 if (p != NULL) 203 sid = task_session(p); 204 205 return sid; 206 } 207 208 /* 209 * Determine if a process group is "orphaned", according to the POSIX 210 * definition in 2.2.2.52. Orphaned process groups are not to be affected 211 * by terminal-generated stop signals. Newly orphaned process groups are 212 * to receive a SIGHUP and a SIGCONT. 213 * 214 * "I ask you, have you ever known what it is to be an orphan?" 215 */ 216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 217 { 218 struct task_struct *p; 219 int ret = 1; 220 221 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 222 if (p == ignored_task 223 || p->exit_state 224 || is_init(p->real_parent)) 225 continue; 226 if (task_pgrp(p->real_parent) != pgrp && 227 task_session(p->real_parent) == task_session(p)) { 228 ret = 0; 229 break; 230 } 231 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 232 return ret; /* (sighing) "Often!" */ 233 } 234 235 int is_current_pgrp_orphaned(void) 236 { 237 int retval; 238 239 read_lock(&tasklist_lock); 240 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 241 read_unlock(&tasklist_lock); 242 243 return retval; 244 } 245 246 static int has_stopped_jobs(struct pid *pgrp) 247 { 248 int retval = 0; 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if (p->state != TASK_STOPPED) 253 continue; 254 retval = 1; 255 break; 256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 return retval; 258 } 259 260 /** 261 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 262 * 263 * If a kernel thread is launched as a result of a system call, or if 264 * it ever exits, it should generally reparent itself to kthreadd so it 265 * isn't in the way of other processes and is correctly cleaned up on exit. 266 * 267 * The various task state such as scheduling policy and priority may have 268 * been inherited from a user process, so we reset them to sane values here. 269 * 270 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 271 */ 272 static void reparent_to_kthreadd(void) 273 { 274 write_lock_irq(&tasklist_lock); 275 276 ptrace_unlink(current); 277 /* Reparent to init */ 278 remove_parent(current); 279 current->real_parent = current->parent = kthreadd_task; 280 add_parent(current); 281 282 /* Set the exit signal to SIGCHLD so we signal init on exit */ 283 current->exit_signal = SIGCHLD; 284 285 if (task_nice(current) < 0) 286 set_user_nice(current, 0); 287 /* cpus_allowed? */ 288 /* rt_priority? */ 289 /* signals? */ 290 security_task_reparent_to_init(current); 291 memcpy(current->signal->rlim, init_task.signal->rlim, 292 sizeof(current->signal->rlim)); 293 atomic_inc(&(INIT_USER->__count)); 294 write_unlock_irq(&tasklist_lock); 295 switch_uid(INIT_USER); 296 } 297 298 void __set_special_pids(pid_t session, pid_t pgrp) 299 { 300 struct task_struct *curr = current->group_leader; 301 302 if (process_session(curr) != session) { 303 detach_pid(curr, PIDTYPE_SID); 304 set_signal_session(curr->signal, session); 305 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 306 } 307 if (process_group(curr) != pgrp) { 308 detach_pid(curr, PIDTYPE_PGID); 309 curr->signal->pgrp = pgrp; 310 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 311 } 312 } 313 314 static void set_special_pids(pid_t session, pid_t pgrp) 315 { 316 write_lock_irq(&tasklist_lock); 317 __set_special_pids(session, pgrp); 318 write_unlock_irq(&tasklist_lock); 319 } 320 321 /* 322 * Let kernel threads use this to say that they 323 * allow a certain signal (since daemonize() will 324 * have disabled all of them by default). 325 */ 326 int allow_signal(int sig) 327 { 328 if (!valid_signal(sig) || sig < 1) 329 return -EINVAL; 330 331 spin_lock_irq(¤t->sighand->siglock); 332 sigdelset(¤t->blocked, sig); 333 if (!current->mm) { 334 /* Kernel threads handle their own signals. 335 Let the signal code know it'll be handled, so 336 that they don't get converted to SIGKILL or 337 just silently dropped */ 338 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 339 } 340 recalc_sigpending(); 341 spin_unlock_irq(¤t->sighand->siglock); 342 return 0; 343 } 344 345 EXPORT_SYMBOL(allow_signal); 346 347 int disallow_signal(int sig) 348 { 349 if (!valid_signal(sig) || sig < 1) 350 return -EINVAL; 351 352 spin_lock_irq(¤t->sighand->siglock); 353 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 354 recalc_sigpending(); 355 spin_unlock_irq(¤t->sighand->siglock); 356 return 0; 357 } 358 359 EXPORT_SYMBOL(disallow_signal); 360 361 /* 362 * Put all the gunge required to become a kernel thread without 363 * attached user resources in one place where it belongs. 364 */ 365 366 void daemonize(const char *name, ...) 367 { 368 va_list args; 369 struct fs_struct *fs; 370 sigset_t blocked; 371 372 va_start(args, name); 373 vsnprintf(current->comm, sizeof(current->comm), name, args); 374 va_end(args); 375 376 /* 377 * If we were started as result of loading a module, close all of the 378 * user space pages. We don't need them, and if we didn't close them 379 * they would be locked into memory. 380 */ 381 exit_mm(current); 382 /* 383 * We don't want to have TIF_FREEZE set if the system-wide hibernation 384 * or suspend transition begins right now. 385 */ 386 current->flags |= PF_NOFREEZE; 387 388 set_special_pids(1, 1); 389 proc_clear_tty(current); 390 391 /* Block and flush all signals */ 392 sigfillset(&blocked); 393 sigprocmask(SIG_BLOCK, &blocked, NULL); 394 flush_signals(current); 395 396 /* Become as one with the init task */ 397 398 exit_fs(current); /* current->fs->count--; */ 399 fs = init_task.fs; 400 current->fs = fs; 401 atomic_inc(&fs->count); 402 403 exit_task_namespaces(current); 404 current->nsproxy = init_task.nsproxy; 405 get_task_namespaces(current); 406 407 exit_files(current); 408 current->files = init_task.files; 409 atomic_inc(¤t->files->count); 410 411 reparent_to_kthreadd(); 412 } 413 414 EXPORT_SYMBOL(daemonize); 415 416 static void close_files(struct files_struct * files) 417 { 418 int i, j; 419 struct fdtable *fdt; 420 421 j = 0; 422 423 /* 424 * It is safe to dereference the fd table without RCU or 425 * ->file_lock because this is the last reference to the 426 * files structure. 427 */ 428 fdt = files_fdtable(files); 429 for (;;) { 430 unsigned long set; 431 i = j * __NFDBITS; 432 if (i >= fdt->max_fds) 433 break; 434 set = fdt->open_fds->fds_bits[j++]; 435 while (set) { 436 if (set & 1) { 437 struct file * file = xchg(&fdt->fd[i], NULL); 438 if (file) { 439 filp_close(file, files); 440 cond_resched(); 441 } 442 } 443 i++; 444 set >>= 1; 445 } 446 } 447 } 448 449 struct files_struct *get_files_struct(struct task_struct *task) 450 { 451 struct files_struct *files; 452 453 task_lock(task); 454 files = task->files; 455 if (files) 456 atomic_inc(&files->count); 457 task_unlock(task); 458 459 return files; 460 } 461 462 void fastcall put_files_struct(struct files_struct *files) 463 { 464 struct fdtable *fdt; 465 466 if (atomic_dec_and_test(&files->count)) { 467 close_files(files); 468 /* 469 * Free the fd and fdset arrays if we expanded them. 470 * If the fdtable was embedded, pass files for freeing 471 * at the end of the RCU grace period. Otherwise, 472 * you can free files immediately. 473 */ 474 fdt = files_fdtable(files); 475 if (fdt != &files->fdtab) 476 kmem_cache_free(files_cachep, files); 477 free_fdtable(fdt); 478 } 479 } 480 481 EXPORT_SYMBOL(put_files_struct); 482 483 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 484 { 485 struct files_struct *old; 486 487 old = tsk->files; 488 task_lock(tsk); 489 tsk->files = files; 490 task_unlock(tsk); 491 put_files_struct(old); 492 } 493 EXPORT_SYMBOL(reset_files_struct); 494 495 static inline void __exit_files(struct task_struct *tsk) 496 { 497 struct files_struct * files = tsk->files; 498 499 if (files) { 500 task_lock(tsk); 501 tsk->files = NULL; 502 task_unlock(tsk); 503 put_files_struct(files); 504 } 505 } 506 507 void exit_files(struct task_struct *tsk) 508 { 509 __exit_files(tsk); 510 } 511 512 static inline void __put_fs_struct(struct fs_struct *fs) 513 { 514 /* No need to hold fs->lock if we are killing it */ 515 if (atomic_dec_and_test(&fs->count)) { 516 dput(fs->root); 517 mntput(fs->rootmnt); 518 dput(fs->pwd); 519 mntput(fs->pwdmnt); 520 if (fs->altroot) { 521 dput(fs->altroot); 522 mntput(fs->altrootmnt); 523 } 524 kmem_cache_free(fs_cachep, fs); 525 } 526 } 527 528 void put_fs_struct(struct fs_struct *fs) 529 { 530 __put_fs_struct(fs); 531 } 532 533 static inline void __exit_fs(struct task_struct *tsk) 534 { 535 struct fs_struct * fs = tsk->fs; 536 537 if (fs) { 538 task_lock(tsk); 539 tsk->fs = NULL; 540 task_unlock(tsk); 541 __put_fs_struct(fs); 542 } 543 } 544 545 void exit_fs(struct task_struct *tsk) 546 { 547 __exit_fs(tsk); 548 } 549 550 EXPORT_SYMBOL_GPL(exit_fs); 551 552 /* 553 * Turn us into a lazy TLB process if we 554 * aren't already.. 555 */ 556 static void exit_mm(struct task_struct * tsk) 557 { 558 struct mm_struct *mm = tsk->mm; 559 560 mm_release(tsk, mm); 561 if (!mm) 562 return; 563 /* 564 * Serialize with any possible pending coredump. 565 * We must hold mmap_sem around checking core_waiters 566 * and clearing tsk->mm. The core-inducing thread 567 * will increment core_waiters for each thread in the 568 * group with ->mm != NULL. 569 */ 570 down_read(&mm->mmap_sem); 571 if (mm->core_waiters) { 572 up_read(&mm->mmap_sem); 573 down_write(&mm->mmap_sem); 574 if (!--mm->core_waiters) 575 complete(mm->core_startup_done); 576 up_write(&mm->mmap_sem); 577 578 wait_for_completion(&mm->core_done); 579 down_read(&mm->mmap_sem); 580 } 581 atomic_inc(&mm->mm_count); 582 BUG_ON(mm != tsk->active_mm); 583 /* more a memory barrier than a real lock */ 584 task_lock(tsk); 585 tsk->mm = NULL; 586 up_read(&mm->mmap_sem); 587 enter_lazy_tlb(mm, current); 588 /* We don't want this task to be frozen prematurely */ 589 clear_freeze_flag(tsk); 590 task_unlock(tsk); 591 mmput(mm); 592 } 593 594 static void 595 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 596 { 597 if (p->pdeath_signal) 598 /* We already hold the tasklist_lock here. */ 599 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 600 601 /* Move the child from its dying parent to the new one. */ 602 if (unlikely(traced)) { 603 /* Preserve ptrace links if someone else is tracing this child. */ 604 list_del_init(&p->ptrace_list); 605 if (p->parent != p->real_parent) 606 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 607 } else { 608 /* If this child is being traced, then we're the one tracing it 609 * anyway, so let go of it. 610 */ 611 p->ptrace = 0; 612 remove_parent(p); 613 p->parent = p->real_parent; 614 add_parent(p); 615 616 if (p->state == TASK_TRACED) { 617 /* 618 * If it was at a trace stop, turn it into 619 * a normal stop since it's no longer being 620 * traced. 621 */ 622 ptrace_untrace(p); 623 } 624 } 625 626 /* If this is a threaded reparent there is no need to 627 * notify anyone anything has happened. 628 */ 629 if (p->real_parent->group_leader == father->group_leader) 630 return; 631 632 /* We don't want people slaying init. */ 633 if (p->exit_signal != -1) 634 p->exit_signal = SIGCHLD; 635 636 /* If we'd notified the old parent about this child's death, 637 * also notify the new parent. 638 */ 639 if (!traced && p->exit_state == EXIT_ZOMBIE && 640 p->exit_signal != -1 && thread_group_empty(p)) 641 do_notify_parent(p, p->exit_signal); 642 643 /* 644 * process group orphan check 645 * Case ii: Our child is in a different pgrp 646 * than we are, and it was the only connection 647 * outside, so the child pgrp is now orphaned. 648 */ 649 if ((task_pgrp(p) != task_pgrp(father)) && 650 (task_session(p) == task_session(father))) { 651 struct pid *pgrp = task_pgrp(p); 652 653 if (will_become_orphaned_pgrp(pgrp, NULL) && 654 has_stopped_jobs(pgrp)) { 655 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 656 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 657 } 658 } 659 } 660 661 /* 662 * When we die, we re-parent all our children. 663 * Try to give them to another thread in our thread 664 * group, and if no such member exists, give it to 665 * the child reaper process (ie "init") in our pid 666 * space. 667 */ 668 static void 669 forget_original_parent(struct task_struct *father, struct list_head *to_release) 670 { 671 struct task_struct *p, *reaper = father; 672 struct list_head *_p, *_n; 673 674 do { 675 reaper = next_thread(reaper); 676 if (reaper == father) { 677 reaper = child_reaper(father); 678 break; 679 } 680 } while (reaper->exit_state); 681 682 /* 683 * There are only two places where our children can be: 684 * 685 * - in our child list 686 * - in our ptraced child list 687 * 688 * Search them and reparent children. 689 */ 690 list_for_each_safe(_p, _n, &father->children) { 691 int ptrace; 692 p = list_entry(_p, struct task_struct, sibling); 693 694 ptrace = p->ptrace; 695 696 /* if father isn't the real parent, then ptrace must be enabled */ 697 BUG_ON(father != p->real_parent && !ptrace); 698 699 if (father == p->real_parent) { 700 /* reparent with a reaper, real father it's us */ 701 p->real_parent = reaper; 702 reparent_thread(p, father, 0); 703 } else { 704 /* reparent ptraced task to its real parent */ 705 __ptrace_unlink (p); 706 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 707 thread_group_empty(p)) 708 do_notify_parent(p, p->exit_signal); 709 } 710 711 /* 712 * if the ptraced child is a zombie with exit_signal == -1 713 * we must collect it before we exit, or it will remain 714 * zombie forever since we prevented it from self-reap itself 715 * while it was being traced by us, to be able to see it in wait4. 716 */ 717 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 718 list_add(&p->ptrace_list, to_release); 719 } 720 list_for_each_safe(_p, _n, &father->ptrace_children) { 721 p = list_entry(_p, struct task_struct, ptrace_list); 722 p->real_parent = reaper; 723 reparent_thread(p, father, 1); 724 } 725 } 726 727 /* 728 * Send signals to all our closest relatives so that they know 729 * to properly mourn us.. 730 */ 731 static void exit_notify(struct task_struct *tsk) 732 { 733 int state; 734 struct task_struct *t; 735 struct list_head ptrace_dead, *_p, *_n; 736 struct pid *pgrp; 737 738 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 739 && !thread_group_empty(tsk)) { 740 /* 741 * This occurs when there was a race between our exit 742 * syscall and a group signal choosing us as the one to 743 * wake up. It could be that we are the only thread 744 * alerted to check for pending signals, but another thread 745 * should be woken now to take the signal since we will not. 746 * Now we'll wake all the threads in the group just to make 747 * sure someone gets all the pending signals. 748 */ 749 spin_lock_irq(&tsk->sighand->siglock); 750 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 751 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 752 recalc_sigpending_and_wake(t); 753 spin_unlock_irq(&tsk->sighand->siglock); 754 } 755 756 write_lock_irq(&tasklist_lock); 757 758 /* 759 * This does two things: 760 * 761 * A. Make init inherit all the child processes 762 * B. Check to see if any process groups have become orphaned 763 * as a result of our exiting, and if they have any stopped 764 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 765 */ 766 767 INIT_LIST_HEAD(&ptrace_dead); 768 forget_original_parent(tsk, &ptrace_dead); 769 BUG_ON(!list_empty(&tsk->children)); 770 BUG_ON(!list_empty(&tsk->ptrace_children)); 771 772 /* 773 * Check to see if any process groups have become orphaned 774 * as a result of our exiting, and if they have any stopped 775 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 776 * 777 * Case i: Our father is in a different pgrp than we are 778 * and we were the only connection outside, so our pgrp 779 * is about to become orphaned. 780 */ 781 t = tsk->real_parent; 782 783 pgrp = task_pgrp(tsk); 784 if ((task_pgrp(t) != pgrp) && 785 (task_session(t) == task_session(tsk)) && 786 will_become_orphaned_pgrp(pgrp, tsk) && 787 has_stopped_jobs(pgrp)) { 788 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 789 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 790 } 791 792 /* Let father know we died 793 * 794 * Thread signals are configurable, but you aren't going to use 795 * that to send signals to arbitary processes. 796 * That stops right now. 797 * 798 * If the parent exec id doesn't match the exec id we saved 799 * when we started then we know the parent has changed security 800 * domain. 801 * 802 * If our self_exec id doesn't match our parent_exec_id then 803 * we have changed execution domain as these two values started 804 * the same after a fork. 805 */ 806 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 807 ( tsk->parent_exec_id != t->self_exec_id || 808 tsk->self_exec_id != tsk->parent_exec_id) 809 && !capable(CAP_KILL)) 810 tsk->exit_signal = SIGCHLD; 811 812 813 /* If something other than our normal parent is ptracing us, then 814 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 815 * only has special meaning to our real parent. 816 */ 817 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 818 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 819 do_notify_parent(tsk, signal); 820 } else if (tsk->ptrace) { 821 do_notify_parent(tsk, SIGCHLD); 822 } 823 824 state = EXIT_ZOMBIE; 825 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 826 state = EXIT_DEAD; 827 tsk->exit_state = state; 828 829 if (thread_group_leader(tsk) && 830 tsk->signal->notify_count < 0 && 831 tsk->signal->group_exit_task) 832 wake_up_process(tsk->signal->group_exit_task); 833 834 write_unlock_irq(&tasklist_lock); 835 836 list_for_each_safe(_p, _n, &ptrace_dead) { 837 list_del_init(_p); 838 t = list_entry(_p, struct task_struct, ptrace_list); 839 release_task(t); 840 } 841 842 /* If the process is dead, release it - nobody will wait for it */ 843 if (state == EXIT_DEAD) 844 release_task(tsk); 845 } 846 847 #ifdef CONFIG_DEBUG_STACK_USAGE 848 static void check_stack_usage(void) 849 { 850 static DEFINE_SPINLOCK(low_water_lock); 851 static int lowest_to_date = THREAD_SIZE; 852 unsigned long *n = end_of_stack(current); 853 unsigned long free; 854 855 while (*n == 0) 856 n++; 857 free = (unsigned long)n - (unsigned long)end_of_stack(current); 858 859 if (free >= lowest_to_date) 860 return; 861 862 spin_lock(&low_water_lock); 863 if (free < lowest_to_date) { 864 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 865 "left\n", 866 current->comm, free); 867 lowest_to_date = free; 868 } 869 spin_unlock(&low_water_lock); 870 } 871 #else 872 static inline void check_stack_usage(void) {} 873 #endif 874 875 static inline void exit_child_reaper(struct task_struct *tsk) 876 { 877 if (likely(tsk->group_leader != child_reaper(tsk))) 878 return; 879 880 panic("Attempted to kill init!"); 881 } 882 883 fastcall NORET_TYPE void do_exit(long code) 884 { 885 struct task_struct *tsk = current; 886 int group_dead; 887 888 profile_task_exit(tsk); 889 890 WARN_ON(atomic_read(&tsk->fs_excl)); 891 892 if (unlikely(in_interrupt())) 893 panic("Aiee, killing interrupt handler!"); 894 if (unlikely(!tsk->pid)) 895 panic("Attempted to kill the idle task!"); 896 897 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 898 current->ptrace_message = code; 899 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 900 } 901 902 /* 903 * We're taking recursive faults here in do_exit. Safest is to just 904 * leave this task alone and wait for reboot. 905 */ 906 if (unlikely(tsk->flags & PF_EXITING)) { 907 printk(KERN_ALERT 908 "Fixing recursive fault but reboot is needed!\n"); 909 /* 910 * We can do this unlocked here. The futex code uses 911 * this flag just to verify whether the pi state 912 * cleanup has been done or not. In the worst case it 913 * loops once more. We pretend that the cleanup was 914 * done as there is no way to return. Either the 915 * OWNER_DIED bit is set by now or we push the blocked 916 * task into the wait for ever nirwana as well. 917 */ 918 tsk->flags |= PF_EXITPIDONE; 919 if (tsk->io_context) 920 exit_io_context(); 921 set_current_state(TASK_UNINTERRUPTIBLE); 922 schedule(); 923 } 924 925 tsk->flags |= PF_EXITING; 926 /* 927 * tsk->flags are checked in the futex code to protect against 928 * an exiting task cleaning up the robust pi futexes. 929 */ 930 smp_mb(); 931 spin_unlock_wait(&tsk->pi_lock); 932 933 if (unlikely(in_atomic())) 934 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 935 current->comm, current->pid, 936 preempt_count()); 937 938 acct_update_integrals(tsk); 939 if (tsk->mm) { 940 update_hiwater_rss(tsk->mm); 941 update_hiwater_vm(tsk->mm); 942 } 943 group_dead = atomic_dec_and_test(&tsk->signal->live); 944 if (group_dead) { 945 exit_child_reaper(tsk); 946 hrtimer_cancel(&tsk->signal->real_timer); 947 exit_itimers(tsk->signal); 948 } 949 acct_collect(code, group_dead); 950 if (unlikely(tsk->robust_list)) 951 exit_robust_list(tsk); 952 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 953 if (unlikely(tsk->compat_robust_list)) 954 compat_exit_robust_list(tsk); 955 #endif 956 if (group_dead) 957 tty_audit_exit(); 958 if (unlikely(tsk->audit_context)) 959 audit_free(tsk); 960 961 tsk->exit_code = code; 962 taskstats_exit(tsk, group_dead); 963 964 exit_mm(tsk); 965 966 if (group_dead) 967 acct_process(); 968 exit_sem(tsk); 969 __exit_files(tsk); 970 __exit_fs(tsk); 971 check_stack_usage(); 972 exit_thread(); 973 cpuset_exit(tsk); 974 exit_keys(tsk); 975 976 if (group_dead && tsk->signal->leader) 977 disassociate_ctty(1); 978 979 module_put(task_thread_info(tsk)->exec_domain->module); 980 if (tsk->binfmt) 981 module_put(tsk->binfmt->module); 982 983 proc_exit_connector(tsk); 984 exit_task_namespaces(tsk); 985 exit_notify(tsk); 986 #ifdef CONFIG_NUMA 987 mpol_free(tsk->mempolicy); 988 tsk->mempolicy = NULL; 989 #endif 990 /* 991 * This must happen late, after the PID is not 992 * hashed anymore: 993 */ 994 if (unlikely(!list_empty(&tsk->pi_state_list))) 995 exit_pi_state_list(tsk); 996 if (unlikely(current->pi_state_cache)) 997 kfree(current->pi_state_cache); 998 /* 999 * Make sure we are holding no locks: 1000 */ 1001 debug_check_no_locks_held(tsk); 1002 /* 1003 * We can do this unlocked here. The futex code uses this flag 1004 * just to verify whether the pi state cleanup has been done 1005 * or not. In the worst case it loops once more. 1006 */ 1007 tsk->flags |= PF_EXITPIDONE; 1008 1009 if (tsk->io_context) 1010 exit_io_context(); 1011 1012 if (tsk->splice_pipe) 1013 __free_pipe_info(tsk->splice_pipe); 1014 1015 preempt_disable(); 1016 /* causes final put_task_struct in finish_task_switch(). */ 1017 tsk->state = TASK_DEAD; 1018 1019 schedule(); 1020 BUG(); 1021 /* Avoid "noreturn function does return". */ 1022 for (;;) 1023 cpu_relax(); /* For when BUG is null */ 1024 } 1025 1026 EXPORT_SYMBOL_GPL(do_exit); 1027 1028 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1029 { 1030 if (comp) 1031 complete(comp); 1032 1033 do_exit(code); 1034 } 1035 1036 EXPORT_SYMBOL(complete_and_exit); 1037 1038 asmlinkage long sys_exit(int error_code) 1039 { 1040 do_exit((error_code&0xff)<<8); 1041 } 1042 1043 /* 1044 * Take down every thread in the group. This is called by fatal signals 1045 * as well as by sys_exit_group (below). 1046 */ 1047 NORET_TYPE void 1048 do_group_exit(int exit_code) 1049 { 1050 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1051 1052 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1053 exit_code = current->signal->group_exit_code; 1054 else if (!thread_group_empty(current)) { 1055 struct signal_struct *const sig = current->signal; 1056 struct sighand_struct *const sighand = current->sighand; 1057 spin_lock_irq(&sighand->siglock); 1058 if (sig->flags & SIGNAL_GROUP_EXIT) 1059 /* Another thread got here before we took the lock. */ 1060 exit_code = sig->group_exit_code; 1061 else { 1062 sig->group_exit_code = exit_code; 1063 zap_other_threads(current); 1064 } 1065 spin_unlock_irq(&sighand->siglock); 1066 } 1067 1068 do_exit(exit_code); 1069 /* NOTREACHED */ 1070 } 1071 1072 /* 1073 * this kills every thread in the thread group. Note that any externally 1074 * wait4()-ing process will get the correct exit code - even if this 1075 * thread is not the thread group leader. 1076 */ 1077 asmlinkage void sys_exit_group(int error_code) 1078 { 1079 do_group_exit((error_code & 0xff) << 8); 1080 } 1081 1082 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1083 { 1084 int err; 1085 1086 if (pid > 0) { 1087 if (p->pid != pid) 1088 return 0; 1089 } else if (!pid) { 1090 if (process_group(p) != process_group(current)) 1091 return 0; 1092 } else if (pid != -1) { 1093 if (process_group(p) != -pid) 1094 return 0; 1095 } 1096 1097 /* 1098 * Do not consider detached threads that are 1099 * not ptraced: 1100 */ 1101 if (p->exit_signal == -1 && !p->ptrace) 1102 return 0; 1103 1104 /* Wait for all children (clone and not) if __WALL is set; 1105 * otherwise, wait for clone children *only* if __WCLONE is 1106 * set; otherwise, wait for non-clone children *only*. (Note: 1107 * A "clone" child here is one that reports to its parent 1108 * using a signal other than SIGCHLD.) */ 1109 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1110 && !(options & __WALL)) 1111 return 0; 1112 /* 1113 * Do not consider thread group leaders that are 1114 * in a non-empty thread group: 1115 */ 1116 if (delay_group_leader(p)) 1117 return 2; 1118 1119 err = security_task_wait(p); 1120 if (err) 1121 return err; 1122 1123 return 1; 1124 } 1125 1126 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1127 int why, int status, 1128 struct siginfo __user *infop, 1129 struct rusage __user *rusagep) 1130 { 1131 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1132 1133 put_task_struct(p); 1134 if (!retval) 1135 retval = put_user(SIGCHLD, &infop->si_signo); 1136 if (!retval) 1137 retval = put_user(0, &infop->si_errno); 1138 if (!retval) 1139 retval = put_user((short)why, &infop->si_code); 1140 if (!retval) 1141 retval = put_user(pid, &infop->si_pid); 1142 if (!retval) 1143 retval = put_user(uid, &infop->si_uid); 1144 if (!retval) 1145 retval = put_user(status, &infop->si_status); 1146 if (!retval) 1147 retval = pid; 1148 return retval; 1149 } 1150 1151 /* 1152 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1153 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1154 * the lock and this task is uninteresting. If we return nonzero, we have 1155 * released the lock and the system call should return. 1156 */ 1157 static int wait_task_zombie(struct task_struct *p, int noreap, 1158 struct siginfo __user *infop, 1159 int __user *stat_addr, struct rusage __user *ru) 1160 { 1161 unsigned long state; 1162 int retval, status, traced; 1163 1164 if (unlikely(noreap)) { 1165 pid_t pid = p->pid; 1166 uid_t uid = p->uid; 1167 int exit_code = p->exit_code; 1168 int why, status; 1169 1170 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1171 return 0; 1172 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1173 return 0; 1174 get_task_struct(p); 1175 read_unlock(&tasklist_lock); 1176 if ((exit_code & 0x7f) == 0) { 1177 why = CLD_EXITED; 1178 status = exit_code >> 8; 1179 } else { 1180 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1181 status = exit_code & 0x7f; 1182 } 1183 return wait_noreap_copyout(p, pid, uid, why, 1184 status, infop, ru); 1185 } 1186 1187 /* 1188 * Try to move the task's state to DEAD 1189 * only one thread is allowed to do this: 1190 */ 1191 state = xchg(&p->exit_state, EXIT_DEAD); 1192 if (state != EXIT_ZOMBIE) { 1193 BUG_ON(state != EXIT_DEAD); 1194 return 0; 1195 } 1196 1197 /* traced means p->ptrace, but not vice versa */ 1198 traced = (p->real_parent != p->parent); 1199 1200 if (likely(!traced)) { 1201 struct signal_struct *psig; 1202 struct signal_struct *sig; 1203 1204 /* 1205 * The resource counters for the group leader are in its 1206 * own task_struct. Those for dead threads in the group 1207 * are in its signal_struct, as are those for the child 1208 * processes it has previously reaped. All these 1209 * accumulate in the parent's signal_struct c* fields. 1210 * 1211 * We don't bother to take a lock here to protect these 1212 * p->signal fields, because they are only touched by 1213 * __exit_signal, which runs with tasklist_lock 1214 * write-locked anyway, and so is excluded here. We do 1215 * need to protect the access to p->parent->signal fields, 1216 * as other threads in the parent group can be right 1217 * here reaping other children at the same time. 1218 */ 1219 spin_lock_irq(&p->parent->sighand->siglock); 1220 psig = p->parent->signal; 1221 sig = p->signal; 1222 psig->cutime = 1223 cputime_add(psig->cutime, 1224 cputime_add(p->utime, 1225 cputime_add(sig->utime, 1226 sig->cutime))); 1227 psig->cstime = 1228 cputime_add(psig->cstime, 1229 cputime_add(p->stime, 1230 cputime_add(sig->stime, 1231 sig->cstime))); 1232 psig->cgtime = 1233 cputime_add(psig->cgtime, 1234 cputime_add(p->gtime, 1235 cputime_add(sig->gtime, 1236 sig->cgtime))); 1237 psig->cmin_flt += 1238 p->min_flt + sig->min_flt + sig->cmin_flt; 1239 psig->cmaj_flt += 1240 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1241 psig->cnvcsw += 1242 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1243 psig->cnivcsw += 1244 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1245 psig->cinblock += 1246 task_io_get_inblock(p) + 1247 sig->inblock + sig->cinblock; 1248 psig->coublock += 1249 task_io_get_oublock(p) + 1250 sig->oublock + sig->coublock; 1251 spin_unlock_irq(&p->parent->sighand->siglock); 1252 } 1253 1254 /* 1255 * Now we are sure this task is interesting, and no other 1256 * thread can reap it because we set its state to EXIT_DEAD. 1257 */ 1258 read_unlock(&tasklist_lock); 1259 1260 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1261 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1262 ? p->signal->group_exit_code : p->exit_code; 1263 if (!retval && stat_addr) 1264 retval = put_user(status, stat_addr); 1265 if (!retval && infop) 1266 retval = put_user(SIGCHLD, &infop->si_signo); 1267 if (!retval && infop) 1268 retval = put_user(0, &infop->si_errno); 1269 if (!retval && infop) { 1270 int why; 1271 1272 if ((status & 0x7f) == 0) { 1273 why = CLD_EXITED; 1274 status >>= 8; 1275 } else { 1276 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1277 status &= 0x7f; 1278 } 1279 retval = put_user((short)why, &infop->si_code); 1280 if (!retval) 1281 retval = put_user(status, &infop->si_status); 1282 } 1283 if (!retval && infop) 1284 retval = put_user(p->pid, &infop->si_pid); 1285 if (!retval && infop) 1286 retval = put_user(p->uid, &infop->si_uid); 1287 if (!retval) 1288 retval = p->pid; 1289 1290 if (traced) { 1291 write_lock_irq(&tasklist_lock); 1292 /* We dropped tasklist, ptracer could die and untrace */ 1293 ptrace_unlink(p); 1294 /* 1295 * If this is not a detached task, notify the parent. 1296 * If it's still not detached after that, don't release 1297 * it now. 1298 */ 1299 if (p->exit_signal != -1) { 1300 do_notify_parent(p, p->exit_signal); 1301 if (p->exit_signal != -1) { 1302 p->exit_state = EXIT_ZOMBIE; 1303 p = NULL; 1304 } 1305 } 1306 write_unlock_irq(&tasklist_lock); 1307 } 1308 if (p != NULL) 1309 release_task(p); 1310 1311 return retval; 1312 } 1313 1314 /* 1315 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1316 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1317 * the lock and this task is uninteresting. If we return nonzero, we have 1318 * released the lock and the system call should return. 1319 */ 1320 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1321 int noreap, struct siginfo __user *infop, 1322 int __user *stat_addr, struct rusage __user *ru) 1323 { 1324 int retval, exit_code; 1325 1326 if (!p->exit_code) 1327 return 0; 1328 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1329 p->signal->group_stop_count > 0) 1330 /* 1331 * A group stop is in progress and this is the group leader. 1332 * We won't report until all threads have stopped. 1333 */ 1334 return 0; 1335 1336 /* 1337 * Now we are pretty sure this task is interesting. 1338 * Make sure it doesn't get reaped out from under us while we 1339 * give up the lock and then examine it below. We don't want to 1340 * keep holding onto the tasklist_lock while we call getrusage and 1341 * possibly take page faults for user memory. 1342 */ 1343 get_task_struct(p); 1344 read_unlock(&tasklist_lock); 1345 1346 if (unlikely(noreap)) { 1347 pid_t pid = p->pid; 1348 uid_t uid = p->uid; 1349 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1350 1351 exit_code = p->exit_code; 1352 if (unlikely(!exit_code) || 1353 unlikely(p->state & TASK_TRACED)) 1354 goto bail_ref; 1355 return wait_noreap_copyout(p, pid, uid, 1356 why, (exit_code << 8) | 0x7f, 1357 infop, ru); 1358 } 1359 1360 write_lock_irq(&tasklist_lock); 1361 1362 /* 1363 * This uses xchg to be atomic with the thread resuming and setting 1364 * it. It must also be done with the write lock held to prevent a 1365 * race with the EXIT_ZOMBIE case. 1366 */ 1367 exit_code = xchg(&p->exit_code, 0); 1368 if (unlikely(p->exit_state)) { 1369 /* 1370 * The task resumed and then died. Let the next iteration 1371 * catch it in EXIT_ZOMBIE. Note that exit_code might 1372 * already be zero here if it resumed and did _exit(0). 1373 * The task itself is dead and won't touch exit_code again; 1374 * other processors in this function are locked out. 1375 */ 1376 p->exit_code = exit_code; 1377 exit_code = 0; 1378 } 1379 if (unlikely(exit_code == 0)) { 1380 /* 1381 * Another thread in this function got to it first, or it 1382 * resumed, or it resumed and then died. 1383 */ 1384 write_unlock_irq(&tasklist_lock); 1385 bail_ref: 1386 put_task_struct(p); 1387 /* 1388 * We are returning to the wait loop without having successfully 1389 * removed the process and having released the lock. We cannot 1390 * continue, since the "p" task pointer is potentially stale. 1391 * 1392 * Return -EAGAIN, and do_wait() will restart the loop from the 1393 * beginning. Do _not_ re-acquire the lock. 1394 */ 1395 return -EAGAIN; 1396 } 1397 1398 /* move to end of parent's list to avoid starvation */ 1399 remove_parent(p); 1400 add_parent(p); 1401 1402 write_unlock_irq(&tasklist_lock); 1403 1404 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1405 if (!retval && stat_addr) 1406 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1407 if (!retval && infop) 1408 retval = put_user(SIGCHLD, &infop->si_signo); 1409 if (!retval && infop) 1410 retval = put_user(0, &infop->si_errno); 1411 if (!retval && infop) 1412 retval = put_user((short)((p->ptrace & PT_PTRACED) 1413 ? CLD_TRAPPED : CLD_STOPPED), 1414 &infop->si_code); 1415 if (!retval && infop) 1416 retval = put_user(exit_code, &infop->si_status); 1417 if (!retval && infop) 1418 retval = put_user(p->pid, &infop->si_pid); 1419 if (!retval && infop) 1420 retval = put_user(p->uid, &infop->si_uid); 1421 if (!retval) 1422 retval = p->pid; 1423 put_task_struct(p); 1424 1425 BUG_ON(!retval); 1426 return retval; 1427 } 1428 1429 /* 1430 * Handle do_wait work for one task in a live, non-stopped state. 1431 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1432 * the lock and this task is uninteresting. If we return nonzero, we have 1433 * released the lock and the system call should return. 1434 */ 1435 static int wait_task_continued(struct task_struct *p, int noreap, 1436 struct siginfo __user *infop, 1437 int __user *stat_addr, struct rusage __user *ru) 1438 { 1439 int retval; 1440 pid_t pid; 1441 uid_t uid; 1442 1443 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1444 return 0; 1445 1446 spin_lock_irq(&p->sighand->siglock); 1447 /* Re-check with the lock held. */ 1448 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1449 spin_unlock_irq(&p->sighand->siglock); 1450 return 0; 1451 } 1452 if (!noreap) 1453 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1454 spin_unlock_irq(&p->sighand->siglock); 1455 1456 pid = p->pid; 1457 uid = p->uid; 1458 get_task_struct(p); 1459 read_unlock(&tasklist_lock); 1460 1461 if (!infop) { 1462 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1463 put_task_struct(p); 1464 if (!retval && stat_addr) 1465 retval = put_user(0xffff, stat_addr); 1466 if (!retval) 1467 retval = p->pid; 1468 } else { 1469 retval = wait_noreap_copyout(p, pid, uid, 1470 CLD_CONTINUED, SIGCONT, 1471 infop, ru); 1472 BUG_ON(retval == 0); 1473 } 1474 1475 return retval; 1476 } 1477 1478 1479 static inline int my_ptrace_child(struct task_struct *p) 1480 { 1481 if (!(p->ptrace & PT_PTRACED)) 1482 return 0; 1483 if (!(p->ptrace & PT_ATTACHED)) 1484 return 1; 1485 /* 1486 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1487 * we are the attacher. If we are the real parent, this is a race 1488 * inside ptrace_attach. It is waiting for the tasklist_lock, 1489 * which we have to switch the parent links, but has already set 1490 * the flags in p->ptrace. 1491 */ 1492 return (p->parent != p->real_parent); 1493 } 1494 1495 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1496 int __user *stat_addr, struct rusage __user *ru) 1497 { 1498 DECLARE_WAITQUEUE(wait, current); 1499 struct task_struct *tsk; 1500 int flag, retval; 1501 int allowed, denied; 1502 1503 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1504 repeat: 1505 /* 1506 * We will set this flag if we see any child that might later 1507 * match our criteria, even if we are not able to reap it yet. 1508 */ 1509 flag = 0; 1510 allowed = denied = 0; 1511 current->state = TASK_INTERRUPTIBLE; 1512 read_lock(&tasklist_lock); 1513 tsk = current; 1514 do { 1515 struct task_struct *p; 1516 struct list_head *_p; 1517 int ret; 1518 1519 list_for_each(_p,&tsk->children) { 1520 p = list_entry(_p, struct task_struct, sibling); 1521 1522 ret = eligible_child(pid, options, p); 1523 if (!ret) 1524 continue; 1525 1526 if (unlikely(ret < 0)) { 1527 denied = ret; 1528 continue; 1529 } 1530 allowed = 1; 1531 1532 switch (p->state) { 1533 case TASK_TRACED: 1534 /* 1535 * When we hit the race with PTRACE_ATTACH, 1536 * we will not report this child. But the 1537 * race means it has not yet been moved to 1538 * our ptrace_children list, so we need to 1539 * set the flag here to avoid a spurious ECHILD 1540 * when the race happens with the only child. 1541 */ 1542 flag = 1; 1543 if (!my_ptrace_child(p)) 1544 continue; 1545 /*FALLTHROUGH*/ 1546 case TASK_STOPPED: 1547 /* 1548 * It's stopped now, so it might later 1549 * continue, exit, or stop again. 1550 */ 1551 flag = 1; 1552 if (!(options & WUNTRACED) && 1553 !my_ptrace_child(p)) 1554 continue; 1555 retval = wait_task_stopped(p, ret == 2, 1556 (options & WNOWAIT), 1557 infop, 1558 stat_addr, ru); 1559 if (retval == -EAGAIN) 1560 goto repeat; 1561 if (retval != 0) /* He released the lock. */ 1562 goto end; 1563 break; 1564 default: 1565 // case EXIT_DEAD: 1566 if (p->exit_state == EXIT_DEAD) 1567 continue; 1568 // case EXIT_ZOMBIE: 1569 if (p->exit_state == EXIT_ZOMBIE) { 1570 /* 1571 * Eligible but we cannot release 1572 * it yet: 1573 */ 1574 if (ret == 2) 1575 goto check_continued; 1576 if (!likely(options & WEXITED)) 1577 continue; 1578 retval = wait_task_zombie( 1579 p, (options & WNOWAIT), 1580 infop, stat_addr, ru); 1581 /* He released the lock. */ 1582 if (retval != 0) 1583 goto end; 1584 break; 1585 } 1586 check_continued: 1587 /* 1588 * It's running now, so it might later 1589 * exit, stop, or stop and then continue. 1590 */ 1591 flag = 1; 1592 if (!unlikely(options & WCONTINUED)) 1593 continue; 1594 retval = wait_task_continued( 1595 p, (options & WNOWAIT), 1596 infop, stat_addr, ru); 1597 if (retval != 0) /* He released the lock. */ 1598 goto end; 1599 break; 1600 } 1601 } 1602 if (!flag) { 1603 list_for_each(_p, &tsk->ptrace_children) { 1604 p = list_entry(_p, struct task_struct, 1605 ptrace_list); 1606 if (!eligible_child(pid, options, p)) 1607 continue; 1608 flag = 1; 1609 break; 1610 } 1611 } 1612 if (options & __WNOTHREAD) 1613 break; 1614 tsk = next_thread(tsk); 1615 BUG_ON(tsk->signal != current->signal); 1616 } while (tsk != current); 1617 1618 read_unlock(&tasklist_lock); 1619 if (flag) { 1620 retval = 0; 1621 if (options & WNOHANG) 1622 goto end; 1623 retval = -ERESTARTSYS; 1624 if (signal_pending(current)) 1625 goto end; 1626 schedule(); 1627 goto repeat; 1628 } 1629 retval = -ECHILD; 1630 if (unlikely(denied) && !allowed) 1631 retval = denied; 1632 end: 1633 current->state = TASK_RUNNING; 1634 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1635 if (infop) { 1636 if (retval > 0) 1637 retval = 0; 1638 else { 1639 /* 1640 * For a WNOHANG return, clear out all the fields 1641 * we would set so the user can easily tell the 1642 * difference. 1643 */ 1644 if (!retval) 1645 retval = put_user(0, &infop->si_signo); 1646 if (!retval) 1647 retval = put_user(0, &infop->si_errno); 1648 if (!retval) 1649 retval = put_user(0, &infop->si_code); 1650 if (!retval) 1651 retval = put_user(0, &infop->si_pid); 1652 if (!retval) 1653 retval = put_user(0, &infop->si_uid); 1654 if (!retval) 1655 retval = put_user(0, &infop->si_status); 1656 } 1657 } 1658 return retval; 1659 } 1660 1661 asmlinkage long sys_waitid(int which, pid_t pid, 1662 struct siginfo __user *infop, int options, 1663 struct rusage __user *ru) 1664 { 1665 long ret; 1666 1667 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1668 return -EINVAL; 1669 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1670 return -EINVAL; 1671 1672 switch (which) { 1673 case P_ALL: 1674 pid = -1; 1675 break; 1676 case P_PID: 1677 if (pid <= 0) 1678 return -EINVAL; 1679 break; 1680 case P_PGID: 1681 if (pid <= 0) 1682 return -EINVAL; 1683 pid = -pid; 1684 break; 1685 default: 1686 return -EINVAL; 1687 } 1688 1689 ret = do_wait(pid, options, infop, NULL, ru); 1690 1691 /* avoid REGPARM breakage on x86: */ 1692 prevent_tail_call(ret); 1693 return ret; 1694 } 1695 1696 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1697 int options, struct rusage __user *ru) 1698 { 1699 long ret; 1700 1701 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1702 __WNOTHREAD|__WCLONE|__WALL)) 1703 return -EINVAL; 1704 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1705 1706 /* avoid REGPARM breakage on x86: */ 1707 prevent_tail_call(ret); 1708 return ret; 1709 } 1710 1711 #ifdef __ARCH_WANT_SYS_WAITPID 1712 1713 /* 1714 * sys_waitpid() remains for compatibility. waitpid() should be 1715 * implemented by calling sys_wait4() from libc.a. 1716 */ 1717 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1718 { 1719 return sys_wait4(pid, stat_addr, options, NULL); 1720 } 1721 1722 #endif 1723