xref: /openbmc/linux/kernel/events/core.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		event->pending_sigtrap = 0;
2288 		if (state != PERF_EVENT_STATE_OFF &&
2289 		    !event->pending_work &&
2290 		    !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2291 			event->pending_work = 1;
2292 		} else {
2293 			local_dec(&event->ctx->nr_pending);
2294 		}
2295 	}
2296 
2297 	perf_event_set_state(event, state);
2298 
2299 	if (!is_software_event(event))
2300 		cpc->active_oncpu--;
2301 	if (event->attr.freq && event->attr.sample_freq)
2302 		ctx->nr_freq--;
2303 	if (event->attr.exclusive || !cpc->active_oncpu)
2304 		cpc->exclusive = 0;
2305 
2306 	perf_pmu_enable(event->pmu);
2307 }
2308 
2309 static void
2310 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2311 {
2312 	struct perf_event *event;
2313 
2314 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2318 
2319 	event_sched_out(group_event, ctx);
2320 
2321 	/*
2322 	 * Schedule out siblings (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event)
2325 		event_sched_out(event, ctx);
2326 }
2327 
2328 #define DETACH_GROUP	0x01UL
2329 #define DETACH_CHILD	0x02UL
2330 #define DETACH_DEAD	0x04UL
2331 
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340 			   struct perf_cpu_context *cpuctx,
2341 			   struct perf_event_context *ctx,
2342 			   void *info)
2343 {
2344 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2345 	unsigned long flags = (unsigned long)info;
2346 
2347 	if (ctx->is_active & EVENT_TIME) {
2348 		update_context_time(ctx);
2349 		update_cgrp_time_from_cpuctx(cpuctx, false);
2350 	}
2351 
2352 	/*
2353 	 * Ensure event_sched_out() switches to OFF, at the very least
2354 	 * this avoids raising perf_pending_task() at this time.
2355 	 */
2356 	if (flags & DETACH_DEAD)
2357 		event->pending_disable = 1;
2358 	event_sched_out(event, ctx);
2359 	if (flags & DETACH_GROUP)
2360 		perf_group_detach(event);
2361 	if (flags & DETACH_CHILD)
2362 		perf_child_detach(event);
2363 	list_del_event(event, ctx);
2364 	if (flags & DETACH_DEAD)
2365 		event->state = PERF_EVENT_STATE_DEAD;
2366 
2367 	if (!pmu_ctx->nr_events) {
2368 		pmu_ctx->rotate_necessary = 0;
2369 
2370 		if (ctx->task && ctx->is_active) {
2371 			struct perf_cpu_pmu_context *cpc;
2372 
2373 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2374 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2375 			cpc->task_epc = NULL;
2376 		}
2377 	}
2378 
2379 	if (!ctx->nr_events && ctx->is_active) {
2380 		if (ctx == &cpuctx->ctx)
2381 			update_cgrp_time_from_cpuctx(cpuctx, true);
2382 
2383 		ctx->is_active = 0;
2384 		if (ctx->task) {
2385 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2386 			cpuctx->task_ctx = NULL;
2387 		}
2388 	}
2389 }
2390 
2391 /*
2392  * Remove the event from a task's (or a CPU's) list of events.
2393  *
2394  * If event->ctx is a cloned context, callers must make sure that
2395  * every task struct that event->ctx->task could possibly point to
2396  * remains valid.  This is OK when called from perf_release since
2397  * that only calls us on the top-level context, which can't be a clone.
2398  * When called from perf_event_exit_task, it's OK because the
2399  * context has been detached from its task.
2400  */
2401 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2402 {
2403 	struct perf_event_context *ctx = event->ctx;
2404 
2405 	lockdep_assert_held(&ctx->mutex);
2406 
2407 	/*
2408 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2409 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2410 	 * event_function_call() user.
2411 	 */
2412 	raw_spin_lock_irq(&ctx->lock);
2413 	if (!ctx->is_active) {
2414 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2415 					   ctx, (void *)flags);
2416 		raw_spin_unlock_irq(&ctx->lock);
2417 		return;
2418 	}
2419 	raw_spin_unlock_irq(&ctx->lock);
2420 
2421 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2422 }
2423 
2424 /*
2425  * Cross CPU call to disable a performance event
2426  */
2427 static void __perf_event_disable(struct perf_event *event,
2428 				 struct perf_cpu_context *cpuctx,
2429 				 struct perf_event_context *ctx,
2430 				 void *info)
2431 {
2432 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2433 		return;
2434 
2435 	if (ctx->is_active & EVENT_TIME) {
2436 		update_context_time(ctx);
2437 		update_cgrp_time_from_event(event);
2438 	}
2439 
2440 	perf_pmu_disable(event->pmu_ctx->pmu);
2441 
2442 	if (event == event->group_leader)
2443 		group_sched_out(event, ctx);
2444 	else
2445 		event_sched_out(event, ctx);
2446 
2447 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2448 	perf_cgroup_event_disable(event, ctx);
2449 
2450 	perf_pmu_enable(event->pmu_ctx->pmu);
2451 }
2452 
2453 /*
2454  * Disable an event.
2455  *
2456  * If event->ctx is a cloned context, callers must make sure that
2457  * every task struct that event->ctx->task could possibly point to
2458  * remains valid.  This condition is satisfied when called through
2459  * perf_event_for_each_child or perf_event_for_each because they
2460  * hold the top-level event's child_mutex, so any descendant that
2461  * goes to exit will block in perf_event_exit_event().
2462  *
2463  * When called from perf_pending_irq it's OK because event->ctx
2464  * is the current context on this CPU and preemption is disabled,
2465  * hence we can't get into perf_event_task_sched_out for this context.
2466  */
2467 static void _perf_event_disable(struct perf_event *event)
2468 {
2469 	struct perf_event_context *ctx = event->ctx;
2470 
2471 	raw_spin_lock_irq(&ctx->lock);
2472 	if (event->state <= PERF_EVENT_STATE_OFF) {
2473 		raw_spin_unlock_irq(&ctx->lock);
2474 		return;
2475 	}
2476 	raw_spin_unlock_irq(&ctx->lock);
2477 
2478 	event_function_call(event, __perf_event_disable, NULL);
2479 }
2480 
2481 void perf_event_disable_local(struct perf_event *event)
2482 {
2483 	event_function_local(event, __perf_event_disable, NULL);
2484 }
2485 
2486 /*
2487  * Strictly speaking kernel users cannot create groups and therefore this
2488  * interface does not need the perf_event_ctx_lock() magic.
2489  */
2490 void perf_event_disable(struct perf_event *event)
2491 {
2492 	struct perf_event_context *ctx;
2493 
2494 	ctx = perf_event_ctx_lock(event);
2495 	_perf_event_disable(event);
2496 	perf_event_ctx_unlock(event, ctx);
2497 }
2498 EXPORT_SYMBOL_GPL(perf_event_disable);
2499 
2500 void perf_event_disable_inatomic(struct perf_event *event)
2501 {
2502 	event->pending_disable = 1;
2503 	irq_work_queue(&event->pending_irq);
2504 }
2505 
2506 #define MAX_INTERRUPTS (~0ULL)
2507 
2508 static void perf_log_throttle(struct perf_event *event, int enable);
2509 static void perf_log_itrace_start(struct perf_event *event);
2510 
2511 static int
2512 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2513 {
2514 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2515 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2516 	int ret = 0;
2517 
2518 	WARN_ON_ONCE(event->ctx != ctx);
2519 
2520 	lockdep_assert_held(&ctx->lock);
2521 
2522 	if (event->state <= PERF_EVENT_STATE_OFF)
2523 		return 0;
2524 
2525 	WRITE_ONCE(event->oncpu, smp_processor_id());
2526 	/*
2527 	 * Order event::oncpu write to happen before the ACTIVE state is
2528 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2529 	 * ->oncpu if it sees ACTIVE.
2530 	 */
2531 	smp_wmb();
2532 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2533 
2534 	/*
2535 	 * Unthrottle events, since we scheduled we might have missed several
2536 	 * ticks already, also for a heavily scheduling task there is little
2537 	 * guarantee it'll get a tick in a timely manner.
2538 	 */
2539 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2540 		perf_log_throttle(event, 1);
2541 		event->hw.interrupts = 0;
2542 	}
2543 
2544 	perf_pmu_disable(event->pmu);
2545 
2546 	perf_log_itrace_start(event);
2547 
2548 	if (event->pmu->add(event, PERF_EF_START)) {
2549 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2550 		event->oncpu = -1;
2551 		ret = -EAGAIN;
2552 		goto out;
2553 	}
2554 
2555 	if (!is_software_event(event))
2556 		cpc->active_oncpu++;
2557 	if (event->attr.freq && event->attr.sample_freq)
2558 		ctx->nr_freq++;
2559 
2560 	if (event->attr.exclusive)
2561 		cpc->exclusive = 1;
2562 
2563 out:
2564 	perf_pmu_enable(event->pmu);
2565 
2566 	return ret;
2567 }
2568 
2569 static int
2570 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2571 {
2572 	struct perf_event *event, *partial_group = NULL;
2573 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2574 
2575 	if (group_event->state == PERF_EVENT_STATE_OFF)
2576 		return 0;
2577 
2578 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2579 
2580 	if (event_sched_in(group_event, ctx))
2581 		goto error;
2582 
2583 	/*
2584 	 * Schedule in siblings as one group (if any):
2585 	 */
2586 	for_each_sibling_event(event, group_event) {
2587 		if (event_sched_in(event, ctx)) {
2588 			partial_group = event;
2589 			goto group_error;
2590 		}
2591 	}
2592 
2593 	if (!pmu->commit_txn(pmu))
2594 		return 0;
2595 
2596 group_error:
2597 	/*
2598 	 * Groups can be scheduled in as one unit only, so undo any
2599 	 * partial group before returning:
2600 	 * The events up to the failed event are scheduled out normally.
2601 	 */
2602 	for_each_sibling_event(event, group_event) {
2603 		if (event == partial_group)
2604 			break;
2605 
2606 		event_sched_out(event, ctx);
2607 	}
2608 	event_sched_out(group_event, ctx);
2609 
2610 error:
2611 	pmu->cancel_txn(pmu);
2612 	return -EAGAIN;
2613 }
2614 
2615 /*
2616  * Work out whether we can put this event group on the CPU now.
2617  */
2618 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2619 {
2620 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2621 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2622 
2623 	/*
2624 	 * Groups consisting entirely of software events can always go on.
2625 	 */
2626 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2627 		return 1;
2628 	/*
2629 	 * If an exclusive group is already on, no other hardware
2630 	 * events can go on.
2631 	 */
2632 	if (cpc->exclusive)
2633 		return 0;
2634 	/*
2635 	 * If this group is exclusive and there are already
2636 	 * events on the CPU, it can't go on.
2637 	 */
2638 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2639 		return 0;
2640 	/*
2641 	 * Otherwise, try to add it if all previous groups were able
2642 	 * to go on.
2643 	 */
2644 	return can_add_hw;
2645 }
2646 
2647 static void add_event_to_ctx(struct perf_event *event,
2648 			       struct perf_event_context *ctx)
2649 {
2650 	list_add_event(event, ctx);
2651 	perf_group_attach(event);
2652 }
2653 
2654 static void task_ctx_sched_out(struct perf_event_context *ctx,
2655 				enum event_type_t event_type)
2656 {
2657 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2658 
2659 	if (!cpuctx->task_ctx)
2660 		return;
2661 
2662 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2663 		return;
2664 
2665 	ctx_sched_out(ctx, event_type);
2666 }
2667 
2668 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2669 				struct perf_event_context *ctx)
2670 {
2671 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2672 	if (ctx)
2673 		 ctx_sched_in(ctx, EVENT_PINNED);
2674 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2675 	if (ctx)
2676 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2677 }
2678 
2679 /*
2680  * We want to maintain the following priority of scheduling:
2681  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2682  *  - task pinned (EVENT_PINNED)
2683  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2684  *  - task flexible (EVENT_FLEXIBLE).
2685  *
2686  * In order to avoid unscheduling and scheduling back in everything every
2687  * time an event is added, only do it for the groups of equal priority and
2688  * below.
2689  *
2690  * This can be called after a batch operation on task events, in which case
2691  * event_type is a bit mask of the types of events involved. For CPU events,
2692  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2693  */
2694 /*
2695  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2696  * event to the context or enabling existing event in the context. We can
2697  * probably optimize it by rescheduling only affected pmu_ctx.
2698  */
2699 static void ctx_resched(struct perf_cpu_context *cpuctx,
2700 			struct perf_event_context *task_ctx,
2701 			enum event_type_t event_type)
2702 {
2703 	bool cpu_event = !!(event_type & EVENT_CPU);
2704 
2705 	/*
2706 	 * If pinned groups are involved, flexible groups also need to be
2707 	 * scheduled out.
2708 	 */
2709 	if (event_type & EVENT_PINNED)
2710 		event_type |= EVENT_FLEXIBLE;
2711 
2712 	event_type &= EVENT_ALL;
2713 
2714 	perf_ctx_disable(&cpuctx->ctx, false);
2715 	if (task_ctx) {
2716 		perf_ctx_disable(task_ctx, false);
2717 		task_ctx_sched_out(task_ctx, event_type);
2718 	}
2719 
2720 	/*
2721 	 * Decide which cpu ctx groups to schedule out based on the types
2722 	 * of events that caused rescheduling:
2723 	 *  - EVENT_CPU: schedule out corresponding groups;
2724 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2725 	 *  - otherwise, do nothing more.
2726 	 */
2727 	if (cpu_event)
2728 		ctx_sched_out(&cpuctx->ctx, event_type);
2729 	else if (event_type & EVENT_PINNED)
2730 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2731 
2732 	perf_event_sched_in(cpuctx, task_ctx);
2733 
2734 	perf_ctx_enable(&cpuctx->ctx, false);
2735 	if (task_ctx)
2736 		perf_ctx_enable(task_ctx, false);
2737 }
2738 
2739 void perf_pmu_resched(struct pmu *pmu)
2740 {
2741 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2742 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2743 
2744 	perf_ctx_lock(cpuctx, task_ctx);
2745 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2746 	perf_ctx_unlock(cpuctx, task_ctx);
2747 }
2748 
2749 /*
2750  * Cross CPU call to install and enable a performance event
2751  *
2752  * Very similar to remote_function() + event_function() but cannot assume that
2753  * things like ctx->is_active and cpuctx->task_ctx are set.
2754  */
2755 static int  __perf_install_in_context(void *info)
2756 {
2757 	struct perf_event *event = info;
2758 	struct perf_event_context *ctx = event->ctx;
2759 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2760 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761 	bool reprogram = true;
2762 	int ret = 0;
2763 
2764 	raw_spin_lock(&cpuctx->ctx.lock);
2765 	if (ctx->task) {
2766 		raw_spin_lock(&ctx->lock);
2767 		task_ctx = ctx;
2768 
2769 		reprogram = (ctx->task == current);
2770 
2771 		/*
2772 		 * If the task is running, it must be running on this CPU,
2773 		 * otherwise we cannot reprogram things.
2774 		 *
2775 		 * If its not running, we don't care, ctx->lock will
2776 		 * serialize against it becoming runnable.
2777 		 */
2778 		if (task_curr(ctx->task) && !reprogram) {
2779 			ret = -ESRCH;
2780 			goto unlock;
2781 		}
2782 
2783 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2784 	} else if (task_ctx) {
2785 		raw_spin_lock(&task_ctx->lock);
2786 	}
2787 
2788 #ifdef CONFIG_CGROUP_PERF
2789 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2790 		/*
2791 		 * If the current cgroup doesn't match the event's
2792 		 * cgroup, we should not try to schedule it.
2793 		 */
2794 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2795 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2796 					event->cgrp->css.cgroup);
2797 	}
2798 #endif
2799 
2800 	if (reprogram) {
2801 		ctx_sched_out(ctx, EVENT_TIME);
2802 		add_event_to_ctx(event, ctx);
2803 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2804 	} else {
2805 		add_event_to_ctx(event, ctx);
2806 	}
2807 
2808 unlock:
2809 	perf_ctx_unlock(cpuctx, task_ctx);
2810 
2811 	return ret;
2812 }
2813 
2814 static bool exclusive_event_installable(struct perf_event *event,
2815 					struct perf_event_context *ctx);
2816 
2817 /*
2818  * Attach a performance event to a context.
2819  *
2820  * Very similar to event_function_call, see comment there.
2821  */
2822 static void
2823 perf_install_in_context(struct perf_event_context *ctx,
2824 			struct perf_event *event,
2825 			int cpu)
2826 {
2827 	struct task_struct *task = READ_ONCE(ctx->task);
2828 
2829 	lockdep_assert_held(&ctx->mutex);
2830 
2831 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2832 
2833 	if (event->cpu != -1)
2834 		WARN_ON_ONCE(event->cpu != cpu);
2835 
2836 	/*
2837 	 * Ensures that if we can observe event->ctx, both the event and ctx
2838 	 * will be 'complete'. See perf_iterate_sb_cpu().
2839 	 */
2840 	smp_store_release(&event->ctx, ctx);
2841 
2842 	/*
2843 	 * perf_event_attr::disabled events will not run and can be initialized
2844 	 * without IPI. Except when this is the first event for the context, in
2845 	 * that case we need the magic of the IPI to set ctx->is_active.
2846 	 *
2847 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2848 	 * event will issue the IPI and reprogram the hardware.
2849 	 */
2850 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2851 	    ctx->nr_events && !is_cgroup_event(event)) {
2852 		raw_spin_lock_irq(&ctx->lock);
2853 		if (ctx->task == TASK_TOMBSTONE) {
2854 			raw_spin_unlock_irq(&ctx->lock);
2855 			return;
2856 		}
2857 		add_event_to_ctx(event, ctx);
2858 		raw_spin_unlock_irq(&ctx->lock);
2859 		return;
2860 	}
2861 
2862 	if (!task) {
2863 		cpu_function_call(cpu, __perf_install_in_context, event);
2864 		return;
2865 	}
2866 
2867 	/*
2868 	 * Should not happen, we validate the ctx is still alive before calling.
2869 	 */
2870 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2871 		return;
2872 
2873 	/*
2874 	 * Installing events is tricky because we cannot rely on ctx->is_active
2875 	 * to be set in case this is the nr_events 0 -> 1 transition.
2876 	 *
2877 	 * Instead we use task_curr(), which tells us if the task is running.
2878 	 * However, since we use task_curr() outside of rq::lock, we can race
2879 	 * against the actual state. This means the result can be wrong.
2880 	 *
2881 	 * If we get a false positive, we retry, this is harmless.
2882 	 *
2883 	 * If we get a false negative, things are complicated. If we are after
2884 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2885 	 * value must be correct. If we're before, it doesn't matter since
2886 	 * perf_event_context_sched_in() will program the counter.
2887 	 *
2888 	 * However, this hinges on the remote context switch having observed
2889 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2890 	 * ctx::lock in perf_event_context_sched_in().
2891 	 *
2892 	 * We do this by task_function_call(), if the IPI fails to hit the task
2893 	 * we know any future context switch of task must see the
2894 	 * perf_event_ctpx[] store.
2895 	 */
2896 
2897 	/*
2898 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2899 	 * task_cpu() load, such that if the IPI then does not find the task
2900 	 * running, a future context switch of that task must observe the
2901 	 * store.
2902 	 */
2903 	smp_mb();
2904 again:
2905 	if (!task_function_call(task, __perf_install_in_context, event))
2906 		return;
2907 
2908 	raw_spin_lock_irq(&ctx->lock);
2909 	task = ctx->task;
2910 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2911 		/*
2912 		 * Cannot happen because we already checked above (which also
2913 		 * cannot happen), and we hold ctx->mutex, which serializes us
2914 		 * against perf_event_exit_task_context().
2915 		 */
2916 		raw_spin_unlock_irq(&ctx->lock);
2917 		return;
2918 	}
2919 	/*
2920 	 * If the task is not running, ctx->lock will avoid it becoming so,
2921 	 * thus we can safely install the event.
2922 	 */
2923 	if (task_curr(task)) {
2924 		raw_spin_unlock_irq(&ctx->lock);
2925 		goto again;
2926 	}
2927 	add_event_to_ctx(event, ctx);
2928 	raw_spin_unlock_irq(&ctx->lock);
2929 }
2930 
2931 /*
2932  * Cross CPU call to enable a performance event
2933  */
2934 static void __perf_event_enable(struct perf_event *event,
2935 				struct perf_cpu_context *cpuctx,
2936 				struct perf_event_context *ctx,
2937 				void *info)
2938 {
2939 	struct perf_event *leader = event->group_leader;
2940 	struct perf_event_context *task_ctx;
2941 
2942 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2943 	    event->state <= PERF_EVENT_STATE_ERROR)
2944 		return;
2945 
2946 	if (ctx->is_active)
2947 		ctx_sched_out(ctx, EVENT_TIME);
2948 
2949 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2950 	perf_cgroup_event_enable(event, ctx);
2951 
2952 	if (!ctx->is_active)
2953 		return;
2954 
2955 	if (!event_filter_match(event)) {
2956 		ctx_sched_in(ctx, EVENT_TIME);
2957 		return;
2958 	}
2959 
2960 	/*
2961 	 * If the event is in a group and isn't the group leader,
2962 	 * then don't put it on unless the group is on.
2963 	 */
2964 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2965 		ctx_sched_in(ctx, EVENT_TIME);
2966 		return;
2967 	}
2968 
2969 	task_ctx = cpuctx->task_ctx;
2970 	if (ctx->task)
2971 		WARN_ON_ONCE(task_ctx != ctx);
2972 
2973 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2974 }
2975 
2976 /*
2977  * Enable an event.
2978  *
2979  * If event->ctx is a cloned context, callers must make sure that
2980  * every task struct that event->ctx->task could possibly point to
2981  * remains valid.  This condition is satisfied when called through
2982  * perf_event_for_each_child or perf_event_for_each as described
2983  * for perf_event_disable.
2984  */
2985 static void _perf_event_enable(struct perf_event *event)
2986 {
2987 	struct perf_event_context *ctx = event->ctx;
2988 
2989 	raw_spin_lock_irq(&ctx->lock);
2990 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2991 	    event->state <  PERF_EVENT_STATE_ERROR) {
2992 out:
2993 		raw_spin_unlock_irq(&ctx->lock);
2994 		return;
2995 	}
2996 
2997 	/*
2998 	 * If the event is in error state, clear that first.
2999 	 *
3000 	 * That way, if we see the event in error state below, we know that it
3001 	 * has gone back into error state, as distinct from the task having
3002 	 * been scheduled away before the cross-call arrived.
3003 	 */
3004 	if (event->state == PERF_EVENT_STATE_ERROR) {
3005 		/*
3006 		 * Detached SIBLING events cannot leave ERROR state.
3007 		 */
3008 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3009 		    event->group_leader == event)
3010 			goto out;
3011 
3012 		event->state = PERF_EVENT_STATE_OFF;
3013 	}
3014 	raw_spin_unlock_irq(&ctx->lock);
3015 
3016 	event_function_call(event, __perf_event_enable, NULL);
3017 }
3018 
3019 /*
3020  * See perf_event_disable();
3021  */
3022 void perf_event_enable(struct perf_event *event)
3023 {
3024 	struct perf_event_context *ctx;
3025 
3026 	ctx = perf_event_ctx_lock(event);
3027 	_perf_event_enable(event);
3028 	perf_event_ctx_unlock(event, ctx);
3029 }
3030 EXPORT_SYMBOL_GPL(perf_event_enable);
3031 
3032 struct stop_event_data {
3033 	struct perf_event	*event;
3034 	unsigned int		restart;
3035 };
3036 
3037 static int __perf_event_stop(void *info)
3038 {
3039 	struct stop_event_data *sd = info;
3040 	struct perf_event *event = sd->event;
3041 
3042 	/* if it's already INACTIVE, do nothing */
3043 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3044 		return 0;
3045 
3046 	/* matches smp_wmb() in event_sched_in() */
3047 	smp_rmb();
3048 
3049 	/*
3050 	 * There is a window with interrupts enabled before we get here,
3051 	 * so we need to check again lest we try to stop another CPU's event.
3052 	 */
3053 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3054 		return -EAGAIN;
3055 
3056 	event->pmu->stop(event, PERF_EF_UPDATE);
3057 
3058 	/*
3059 	 * May race with the actual stop (through perf_pmu_output_stop()),
3060 	 * but it is only used for events with AUX ring buffer, and such
3061 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3062 	 * see comments in perf_aux_output_begin().
3063 	 *
3064 	 * Since this is happening on an event-local CPU, no trace is lost
3065 	 * while restarting.
3066 	 */
3067 	if (sd->restart)
3068 		event->pmu->start(event, 0);
3069 
3070 	return 0;
3071 }
3072 
3073 static int perf_event_stop(struct perf_event *event, int restart)
3074 {
3075 	struct stop_event_data sd = {
3076 		.event		= event,
3077 		.restart	= restart,
3078 	};
3079 	int ret = 0;
3080 
3081 	do {
3082 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3083 			return 0;
3084 
3085 		/* matches smp_wmb() in event_sched_in() */
3086 		smp_rmb();
3087 
3088 		/*
3089 		 * We only want to restart ACTIVE events, so if the event goes
3090 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3091 		 * fall through with ret==-ENXIO.
3092 		 */
3093 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3094 					__perf_event_stop, &sd);
3095 	} while (ret == -EAGAIN);
3096 
3097 	return ret;
3098 }
3099 
3100 /*
3101  * In order to contain the amount of racy and tricky in the address filter
3102  * configuration management, it is a two part process:
3103  *
3104  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3105  *      we update the addresses of corresponding vmas in
3106  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3107  * (p2) when an event is scheduled in (pmu::add), it calls
3108  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3109  *      if the generation has changed since the previous call.
3110  *
3111  * If (p1) happens while the event is active, we restart it to force (p2).
3112  *
3113  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3114  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3115  *     ioctl;
3116  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3117  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3118  *     for reading;
3119  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3120  *     of exec.
3121  */
3122 void perf_event_addr_filters_sync(struct perf_event *event)
3123 {
3124 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3125 
3126 	if (!has_addr_filter(event))
3127 		return;
3128 
3129 	raw_spin_lock(&ifh->lock);
3130 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3131 		event->pmu->addr_filters_sync(event);
3132 		event->hw.addr_filters_gen = event->addr_filters_gen;
3133 	}
3134 	raw_spin_unlock(&ifh->lock);
3135 }
3136 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3137 
3138 static int _perf_event_refresh(struct perf_event *event, int refresh)
3139 {
3140 	/*
3141 	 * not supported on inherited events
3142 	 */
3143 	if (event->attr.inherit || !is_sampling_event(event))
3144 		return -EINVAL;
3145 
3146 	atomic_add(refresh, &event->event_limit);
3147 	_perf_event_enable(event);
3148 
3149 	return 0;
3150 }
3151 
3152 /*
3153  * See perf_event_disable()
3154  */
3155 int perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157 	struct perf_event_context *ctx;
3158 	int ret;
3159 
3160 	ctx = perf_event_ctx_lock(event);
3161 	ret = _perf_event_refresh(event, refresh);
3162 	perf_event_ctx_unlock(event, ctx);
3163 
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(perf_event_refresh);
3167 
3168 static int perf_event_modify_breakpoint(struct perf_event *bp,
3169 					 struct perf_event_attr *attr)
3170 {
3171 	int err;
3172 
3173 	_perf_event_disable(bp);
3174 
3175 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3176 
3177 	if (!bp->attr.disabled)
3178 		_perf_event_enable(bp);
3179 
3180 	return err;
3181 }
3182 
3183 /*
3184  * Copy event-type-independent attributes that may be modified.
3185  */
3186 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3187 					const struct perf_event_attr *from)
3188 {
3189 	to->sig_data = from->sig_data;
3190 }
3191 
3192 static int perf_event_modify_attr(struct perf_event *event,
3193 				  struct perf_event_attr *attr)
3194 {
3195 	int (*func)(struct perf_event *, struct perf_event_attr *);
3196 	struct perf_event *child;
3197 	int err;
3198 
3199 	if (event->attr.type != attr->type)
3200 		return -EINVAL;
3201 
3202 	switch (event->attr.type) {
3203 	case PERF_TYPE_BREAKPOINT:
3204 		func = perf_event_modify_breakpoint;
3205 		break;
3206 	default:
3207 		/* Place holder for future additions. */
3208 		return -EOPNOTSUPP;
3209 	}
3210 
3211 	WARN_ON_ONCE(event->ctx->parent_ctx);
3212 
3213 	mutex_lock(&event->child_mutex);
3214 	/*
3215 	 * Event-type-independent attributes must be copied before event-type
3216 	 * modification, which will validate that final attributes match the
3217 	 * source attributes after all relevant attributes have been copied.
3218 	 */
3219 	perf_event_modify_copy_attr(&event->attr, attr);
3220 	err = func(event, attr);
3221 	if (err)
3222 		goto out;
3223 	list_for_each_entry(child, &event->child_list, child_list) {
3224 		perf_event_modify_copy_attr(&child->attr, attr);
3225 		err = func(child, attr);
3226 		if (err)
3227 			goto out;
3228 	}
3229 out:
3230 	mutex_unlock(&event->child_mutex);
3231 	return err;
3232 }
3233 
3234 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3235 				enum event_type_t event_type)
3236 {
3237 	struct perf_event_context *ctx = pmu_ctx->ctx;
3238 	struct perf_event *event, *tmp;
3239 	struct pmu *pmu = pmu_ctx->pmu;
3240 
3241 	if (ctx->task && !ctx->is_active) {
3242 		struct perf_cpu_pmu_context *cpc;
3243 
3244 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3245 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3246 		cpc->task_epc = NULL;
3247 	}
3248 
3249 	if (!event_type)
3250 		return;
3251 
3252 	perf_pmu_disable(pmu);
3253 	if (event_type & EVENT_PINNED) {
3254 		list_for_each_entry_safe(event, tmp,
3255 					 &pmu_ctx->pinned_active,
3256 					 active_list)
3257 			group_sched_out(event, ctx);
3258 	}
3259 
3260 	if (event_type & EVENT_FLEXIBLE) {
3261 		list_for_each_entry_safe(event, tmp,
3262 					 &pmu_ctx->flexible_active,
3263 					 active_list)
3264 			group_sched_out(event, ctx);
3265 		/*
3266 		 * Since we cleared EVENT_FLEXIBLE, also clear
3267 		 * rotate_necessary, is will be reset by
3268 		 * ctx_flexible_sched_in() when needed.
3269 		 */
3270 		pmu_ctx->rotate_necessary = 0;
3271 	}
3272 	perf_pmu_enable(pmu);
3273 }
3274 
3275 static void
3276 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3277 {
3278 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3279 	struct perf_event_pmu_context *pmu_ctx;
3280 	int is_active = ctx->is_active;
3281 	bool cgroup = event_type & EVENT_CGROUP;
3282 
3283 	event_type &= ~EVENT_CGROUP;
3284 
3285 	lockdep_assert_held(&ctx->lock);
3286 
3287 	if (likely(!ctx->nr_events)) {
3288 		/*
3289 		 * See __perf_remove_from_context().
3290 		 */
3291 		WARN_ON_ONCE(ctx->is_active);
3292 		if (ctx->task)
3293 			WARN_ON_ONCE(cpuctx->task_ctx);
3294 		return;
3295 	}
3296 
3297 	/*
3298 	 * Always update time if it was set; not only when it changes.
3299 	 * Otherwise we can 'forget' to update time for any but the last
3300 	 * context we sched out. For example:
3301 	 *
3302 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3303 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3304 	 *
3305 	 * would only update time for the pinned events.
3306 	 */
3307 	if (is_active & EVENT_TIME) {
3308 		/* update (and stop) ctx time */
3309 		update_context_time(ctx);
3310 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3311 		/*
3312 		 * CPU-release for the below ->is_active store,
3313 		 * see __load_acquire() in perf_event_time_now()
3314 		 */
3315 		barrier();
3316 	}
3317 
3318 	ctx->is_active &= ~event_type;
3319 	if (!(ctx->is_active & EVENT_ALL))
3320 		ctx->is_active = 0;
3321 
3322 	if (ctx->task) {
3323 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3324 		if (!ctx->is_active)
3325 			cpuctx->task_ctx = NULL;
3326 	}
3327 
3328 	is_active ^= ctx->is_active; /* changed bits */
3329 
3330 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3331 		if (cgroup && !pmu_ctx->nr_cgroups)
3332 			continue;
3333 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3334 	}
3335 }
3336 
3337 /*
3338  * Test whether two contexts are equivalent, i.e. whether they have both been
3339  * cloned from the same version of the same context.
3340  *
3341  * Equivalence is measured using a generation number in the context that is
3342  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3343  * and list_del_event().
3344  */
3345 static int context_equiv(struct perf_event_context *ctx1,
3346 			 struct perf_event_context *ctx2)
3347 {
3348 	lockdep_assert_held(&ctx1->lock);
3349 	lockdep_assert_held(&ctx2->lock);
3350 
3351 	/* Pinning disables the swap optimization */
3352 	if (ctx1->pin_count || ctx2->pin_count)
3353 		return 0;
3354 
3355 	/* If ctx1 is the parent of ctx2 */
3356 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3357 		return 1;
3358 
3359 	/* If ctx2 is the parent of ctx1 */
3360 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3361 		return 1;
3362 
3363 	/*
3364 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3365 	 * hierarchy, see perf_event_init_context().
3366 	 */
3367 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3368 			ctx1->parent_gen == ctx2->parent_gen)
3369 		return 1;
3370 
3371 	/* Unmatched */
3372 	return 0;
3373 }
3374 
3375 static void __perf_event_sync_stat(struct perf_event *event,
3376 				     struct perf_event *next_event)
3377 {
3378 	u64 value;
3379 
3380 	if (!event->attr.inherit_stat)
3381 		return;
3382 
3383 	/*
3384 	 * Update the event value, we cannot use perf_event_read()
3385 	 * because we're in the middle of a context switch and have IRQs
3386 	 * disabled, which upsets smp_call_function_single(), however
3387 	 * we know the event must be on the current CPU, therefore we
3388 	 * don't need to use it.
3389 	 */
3390 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3391 		event->pmu->read(event);
3392 
3393 	perf_event_update_time(event);
3394 
3395 	/*
3396 	 * In order to keep per-task stats reliable we need to flip the event
3397 	 * values when we flip the contexts.
3398 	 */
3399 	value = local64_read(&next_event->count);
3400 	value = local64_xchg(&event->count, value);
3401 	local64_set(&next_event->count, value);
3402 
3403 	swap(event->total_time_enabled, next_event->total_time_enabled);
3404 	swap(event->total_time_running, next_event->total_time_running);
3405 
3406 	/*
3407 	 * Since we swizzled the values, update the user visible data too.
3408 	 */
3409 	perf_event_update_userpage(event);
3410 	perf_event_update_userpage(next_event);
3411 }
3412 
3413 static void perf_event_sync_stat(struct perf_event_context *ctx,
3414 				   struct perf_event_context *next_ctx)
3415 {
3416 	struct perf_event *event, *next_event;
3417 
3418 	if (!ctx->nr_stat)
3419 		return;
3420 
3421 	update_context_time(ctx);
3422 
3423 	event = list_first_entry(&ctx->event_list,
3424 				   struct perf_event, event_entry);
3425 
3426 	next_event = list_first_entry(&next_ctx->event_list,
3427 					struct perf_event, event_entry);
3428 
3429 	while (&event->event_entry != &ctx->event_list &&
3430 	       &next_event->event_entry != &next_ctx->event_list) {
3431 
3432 		__perf_event_sync_stat(event, next_event);
3433 
3434 		event = list_next_entry(event, event_entry);
3435 		next_event = list_next_entry(next_event, event_entry);
3436 	}
3437 }
3438 
3439 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3440 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3441 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3442 	     !list_entry_is_head(pos1, head1, member) &&		\
3443 	     !list_entry_is_head(pos2, head2, member);			\
3444 	     pos1 = list_next_entry(pos1, member),			\
3445 	     pos2 = list_next_entry(pos2, member))
3446 
3447 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3448 					  struct perf_event_context *next_ctx)
3449 {
3450 	struct perf_event_pmu_context *prev_epc, *next_epc;
3451 
3452 	if (!prev_ctx->nr_task_data)
3453 		return;
3454 
3455 	double_list_for_each_entry(prev_epc, next_epc,
3456 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3457 				   pmu_ctx_entry) {
3458 
3459 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3460 			continue;
3461 
3462 		/*
3463 		 * PMU specific parts of task perf context can require
3464 		 * additional synchronization. As an example of such
3465 		 * synchronization see implementation details of Intel
3466 		 * LBR call stack data profiling;
3467 		 */
3468 		if (prev_epc->pmu->swap_task_ctx)
3469 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3470 		else
3471 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3472 	}
3473 }
3474 
3475 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3476 {
3477 	struct perf_event_pmu_context *pmu_ctx;
3478 	struct perf_cpu_pmu_context *cpc;
3479 
3480 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3481 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3482 
3483 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3484 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3485 	}
3486 }
3487 
3488 static void
3489 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3490 {
3491 	struct perf_event_context *ctx = task->perf_event_ctxp;
3492 	struct perf_event_context *next_ctx;
3493 	struct perf_event_context *parent, *next_parent;
3494 	int do_switch = 1;
3495 
3496 	if (likely(!ctx))
3497 		return;
3498 
3499 	rcu_read_lock();
3500 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3501 	if (!next_ctx)
3502 		goto unlock;
3503 
3504 	parent = rcu_dereference(ctx->parent_ctx);
3505 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3506 
3507 	/* If neither context have a parent context; they cannot be clones. */
3508 	if (!parent && !next_parent)
3509 		goto unlock;
3510 
3511 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3512 		/*
3513 		 * Looks like the two contexts are clones, so we might be
3514 		 * able to optimize the context switch.  We lock both
3515 		 * contexts and check that they are clones under the
3516 		 * lock (including re-checking that neither has been
3517 		 * uncloned in the meantime).  It doesn't matter which
3518 		 * order we take the locks because no other cpu could
3519 		 * be trying to lock both of these tasks.
3520 		 */
3521 		raw_spin_lock(&ctx->lock);
3522 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3523 		if (context_equiv(ctx, next_ctx)) {
3524 
3525 			perf_ctx_disable(ctx, false);
3526 
3527 			/* PMIs are disabled; ctx->nr_pending is stable. */
3528 			if (local_read(&ctx->nr_pending) ||
3529 			    local_read(&next_ctx->nr_pending)) {
3530 				/*
3531 				 * Must not swap out ctx when there's pending
3532 				 * events that rely on the ctx->task relation.
3533 				 */
3534 				raw_spin_unlock(&next_ctx->lock);
3535 				rcu_read_unlock();
3536 				goto inside_switch;
3537 			}
3538 
3539 			WRITE_ONCE(ctx->task, next);
3540 			WRITE_ONCE(next_ctx->task, task);
3541 
3542 			perf_ctx_sched_task_cb(ctx, false);
3543 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3544 
3545 			perf_ctx_enable(ctx, false);
3546 
3547 			/*
3548 			 * RCU_INIT_POINTER here is safe because we've not
3549 			 * modified the ctx and the above modification of
3550 			 * ctx->task and ctx->task_ctx_data are immaterial
3551 			 * since those values are always verified under
3552 			 * ctx->lock which we're now holding.
3553 			 */
3554 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3555 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3556 
3557 			do_switch = 0;
3558 
3559 			perf_event_sync_stat(ctx, next_ctx);
3560 		}
3561 		raw_spin_unlock(&next_ctx->lock);
3562 		raw_spin_unlock(&ctx->lock);
3563 	}
3564 unlock:
3565 	rcu_read_unlock();
3566 
3567 	if (do_switch) {
3568 		raw_spin_lock(&ctx->lock);
3569 		perf_ctx_disable(ctx, false);
3570 
3571 inside_switch:
3572 		perf_ctx_sched_task_cb(ctx, false);
3573 		task_ctx_sched_out(ctx, EVENT_ALL);
3574 
3575 		perf_ctx_enable(ctx, false);
3576 		raw_spin_unlock(&ctx->lock);
3577 	}
3578 }
3579 
3580 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3581 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3582 
3583 void perf_sched_cb_dec(struct pmu *pmu)
3584 {
3585 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3586 
3587 	this_cpu_dec(perf_sched_cb_usages);
3588 	barrier();
3589 
3590 	if (!--cpc->sched_cb_usage)
3591 		list_del(&cpc->sched_cb_entry);
3592 }
3593 
3594 
3595 void perf_sched_cb_inc(struct pmu *pmu)
3596 {
3597 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3598 
3599 	if (!cpc->sched_cb_usage++)
3600 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3601 
3602 	barrier();
3603 	this_cpu_inc(perf_sched_cb_usages);
3604 }
3605 
3606 /*
3607  * This function provides the context switch callback to the lower code
3608  * layer. It is invoked ONLY when the context switch callback is enabled.
3609  *
3610  * This callback is relevant even to per-cpu events; for example multi event
3611  * PEBS requires this to provide PID/TID information. This requires we flush
3612  * all queued PEBS records before we context switch to a new task.
3613  */
3614 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3615 {
3616 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3617 	struct pmu *pmu;
3618 
3619 	pmu = cpc->epc.pmu;
3620 
3621 	/* software PMUs will not have sched_task */
3622 	if (WARN_ON_ONCE(!pmu->sched_task))
3623 		return;
3624 
3625 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3626 	perf_pmu_disable(pmu);
3627 
3628 	pmu->sched_task(cpc->task_epc, sched_in);
3629 
3630 	perf_pmu_enable(pmu);
3631 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3632 }
3633 
3634 static void perf_pmu_sched_task(struct task_struct *prev,
3635 				struct task_struct *next,
3636 				bool sched_in)
3637 {
3638 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3639 	struct perf_cpu_pmu_context *cpc;
3640 
3641 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3642 	if (prev == next || cpuctx->task_ctx)
3643 		return;
3644 
3645 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3646 		__perf_pmu_sched_task(cpc, sched_in);
3647 }
3648 
3649 static void perf_event_switch(struct task_struct *task,
3650 			      struct task_struct *next_prev, bool sched_in);
3651 
3652 /*
3653  * Called from scheduler to remove the events of the current task,
3654  * with interrupts disabled.
3655  *
3656  * We stop each event and update the event value in event->count.
3657  *
3658  * This does not protect us against NMI, but disable()
3659  * sets the disabled bit in the control field of event _before_
3660  * accessing the event control register. If a NMI hits, then it will
3661  * not restart the event.
3662  */
3663 void __perf_event_task_sched_out(struct task_struct *task,
3664 				 struct task_struct *next)
3665 {
3666 	if (__this_cpu_read(perf_sched_cb_usages))
3667 		perf_pmu_sched_task(task, next, false);
3668 
3669 	if (atomic_read(&nr_switch_events))
3670 		perf_event_switch(task, next, false);
3671 
3672 	perf_event_context_sched_out(task, next);
3673 
3674 	/*
3675 	 * if cgroup events exist on this CPU, then we need
3676 	 * to check if we have to switch out PMU state.
3677 	 * cgroup event are system-wide mode only
3678 	 */
3679 	perf_cgroup_switch(next);
3680 }
3681 
3682 static bool perf_less_group_idx(const void *l, const void *r)
3683 {
3684 	const struct perf_event *le = *(const struct perf_event **)l;
3685 	const struct perf_event *re = *(const struct perf_event **)r;
3686 
3687 	return le->group_index < re->group_index;
3688 }
3689 
3690 static void swap_ptr(void *l, void *r)
3691 {
3692 	void **lp = l, **rp = r;
3693 
3694 	swap(*lp, *rp);
3695 }
3696 
3697 static const struct min_heap_callbacks perf_min_heap = {
3698 	.elem_size = sizeof(struct perf_event *),
3699 	.less = perf_less_group_idx,
3700 	.swp = swap_ptr,
3701 };
3702 
3703 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3704 {
3705 	struct perf_event **itrs = heap->data;
3706 
3707 	if (event) {
3708 		itrs[heap->nr] = event;
3709 		heap->nr++;
3710 	}
3711 }
3712 
3713 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3714 {
3715 	struct perf_cpu_pmu_context *cpc;
3716 
3717 	if (!pmu_ctx->ctx->task)
3718 		return;
3719 
3720 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3721 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3722 	cpc->task_epc = pmu_ctx;
3723 }
3724 
3725 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3726 				struct perf_event_groups *groups, int cpu,
3727 				struct pmu *pmu,
3728 				int (*func)(struct perf_event *, void *),
3729 				void *data)
3730 {
3731 #ifdef CONFIG_CGROUP_PERF
3732 	struct cgroup_subsys_state *css = NULL;
3733 #endif
3734 	struct perf_cpu_context *cpuctx = NULL;
3735 	/* Space for per CPU and/or any CPU event iterators. */
3736 	struct perf_event *itrs[2];
3737 	struct min_heap event_heap;
3738 	struct perf_event **evt;
3739 	int ret;
3740 
3741 	if (pmu->filter && pmu->filter(pmu, cpu))
3742 		return 0;
3743 
3744 	if (!ctx->task) {
3745 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3746 		event_heap = (struct min_heap){
3747 			.data = cpuctx->heap,
3748 			.nr = 0,
3749 			.size = cpuctx->heap_size,
3750 		};
3751 
3752 		lockdep_assert_held(&cpuctx->ctx.lock);
3753 
3754 #ifdef CONFIG_CGROUP_PERF
3755 		if (cpuctx->cgrp)
3756 			css = &cpuctx->cgrp->css;
3757 #endif
3758 	} else {
3759 		event_heap = (struct min_heap){
3760 			.data = itrs,
3761 			.nr = 0,
3762 			.size = ARRAY_SIZE(itrs),
3763 		};
3764 		/* Events not within a CPU context may be on any CPU. */
3765 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3766 	}
3767 	evt = event_heap.data;
3768 
3769 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3770 
3771 #ifdef CONFIG_CGROUP_PERF
3772 	for (; css; css = css->parent)
3773 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3774 #endif
3775 
3776 	if (event_heap.nr) {
3777 		__link_epc((*evt)->pmu_ctx);
3778 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3779 	}
3780 
3781 	min_heapify_all(&event_heap, &perf_min_heap);
3782 
3783 	while (event_heap.nr) {
3784 		ret = func(*evt, data);
3785 		if (ret)
3786 			return ret;
3787 
3788 		*evt = perf_event_groups_next(*evt, pmu);
3789 		if (*evt)
3790 			min_heapify(&event_heap, 0, &perf_min_heap);
3791 		else
3792 			min_heap_pop(&event_heap, &perf_min_heap);
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 /*
3799  * Because the userpage is strictly per-event (there is no concept of context,
3800  * so there cannot be a context indirection), every userpage must be updated
3801  * when context time starts :-(
3802  *
3803  * IOW, we must not miss EVENT_TIME edges.
3804  */
3805 static inline bool event_update_userpage(struct perf_event *event)
3806 {
3807 	if (likely(!atomic_read(&event->mmap_count)))
3808 		return false;
3809 
3810 	perf_event_update_time(event);
3811 	perf_event_update_userpage(event);
3812 
3813 	return true;
3814 }
3815 
3816 static inline void group_update_userpage(struct perf_event *group_event)
3817 {
3818 	struct perf_event *event;
3819 
3820 	if (!event_update_userpage(group_event))
3821 		return;
3822 
3823 	for_each_sibling_event(event, group_event)
3824 		event_update_userpage(event);
3825 }
3826 
3827 static int merge_sched_in(struct perf_event *event, void *data)
3828 {
3829 	struct perf_event_context *ctx = event->ctx;
3830 	int *can_add_hw = data;
3831 
3832 	if (event->state <= PERF_EVENT_STATE_OFF)
3833 		return 0;
3834 
3835 	if (!event_filter_match(event))
3836 		return 0;
3837 
3838 	if (group_can_go_on(event, *can_add_hw)) {
3839 		if (!group_sched_in(event, ctx))
3840 			list_add_tail(&event->active_list, get_event_list(event));
3841 	}
3842 
3843 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3844 		*can_add_hw = 0;
3845 		if (event->attr.pinned) {
3846 			perf_cgroup_event_disable(event, ctx);
3847 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3848 		} else {
3849 			struct perf_cpu_pmu_context *cpc;
3850 
3851 			event->pmu_ctx->rotate_necessary = 1;
3852 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3853 			perf_mux_hrtimer_restart(cpc);
3854 			group_update_userpage(event);
3855 		}
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3862 				struct perf_event_groups *groups,
3863 				struct pmu *pmu)
3864 {
3865 	int can_add_hw = 1;
3866 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3867 			   merge_sched_in, &can_add_hw);
3868 }
3869 
3870 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3871 				struct perf_event_groups *groups,
3872 				bool cgroup)
3873 {
3874 	struct perf_event_pmu_context *pmu_ctx;
3875 
3876 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3877 		if (cgroup && !pmu_ctx->nr_cgroups)
3878 			continue;
3879 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3880 	}
3881 }
3882 
3883 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3884 			       struct pmu *pmu)
3885 {
3886 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3887 }
3888 
3889 static void
3890 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3891 {
3892 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3893 	int is_active = ctx->is_active;
3894 	bool cgroup = event_type & EVENT_CGROUP;
3895 
3896 	event_type &= ~EVENT_CGROUP;
3897 
3898 	lockdep_assert_held(&ctx->lock);
3899 
3900 	if (likely(!ctx->nr_events))
3901 		return;
3902 
3903 	if (!(is_active & EVENT_TIME)) {
3904 		/* start ctx time */
3905 		__update_context_time(ctx, false);
3906 		perf_cgroup_set_timestamp(cpuctx);
3907 		/*
3908 		 * CPU-release for the below ->is_active store,
3909 		 * see __load_acquire() in perf_event_time_now()
3910 		 */
3911 		barrier();
3912 	}
3913 
3914 	ctx->is_active |= (event_type | EVENT_TIME);
3915 	if (ctx->task) {
3916 		if (!is_active)
3917 			cpuctx->task_ctx = ctx;
3918 		else
3919 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3920 	}
3921 
3922 	is_active ^= ctx->is_active; /* changed bits */
3923 
3924 	/*
3925 	 * First go through the list and put on any pinned groups
3926 	 * in order to give them the best chance of going on.
3927 	 */
3928 	if (is_active & EVENT_PINNED)
3929 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3930 
3931 	/* Then walk through the lower prio flexible groups */
3932 	if (is_active & EVENT_FLEXIBLE)
3933 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3934 }
3935 
3936 static void perf_event_context_sched_in(struct task_struct *task)
3937 {
3938 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3939 	struct perf_event_context *ctx;
3940 
3941 	rcu_read_lock();
3942 	ctx = rcu_dereference(task->perf_event_ctxp);
3943 	if (!ctx)
3944 		goto rcu_unlock;
3945 
3946 	if (cpuctx->task_ctx == ctx) {
3947 		perf_ctx_lock(cpuctx, ctx);
3948 		perf_ctx_disable(ctx, false);
3949 
3950 		perf_ctx_sched_task_cb(ctx, true);
3951 
3952 		perf_ctx_enable(ctx, false);
3953 		perf_ctx_unlock(cpuctx, ctx);
3954 		goto rcu_unlock;
3955 	}
3956 
3957 	perf_ctx_lock(cpuctx, ctx);
3958 	/*
3959 	 * We must check ctx->nr_events while holding ctx->lock, such
3960 	 * that we serialize against perf_install_in_context().
3961 	 */
3962 	if (!ctx->nr_events)
3963 		goto unlock;
3964 
3965 	perf_ctx_disable(ctx, false);
3966 	/*
3967 	 * We want to keep the following priority order:
3968 	 * cpu pinned (that don't need to move), task pinned,
3969 	 * cpu flexible, task flexible.
3970 	 *
3971 	 * However, if task's ctx is not carrying any pinned
3972 	 * events, no need to flip the cpuctx's events around.
3973 	 */
3974 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3975 		perf_ctx_disable(&cpuctx->ctx, false);
3976 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3977 	}
3978 
3979 	perf_event_sched_in(cpuctx, ctx);
3980 
3981 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3982 
3983 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3984 		perf_ctx_enable(&cpuctx->ctx, false);
3985 
3986 	perf_ctx_enable(ctx, false);
3987 
3988 unlock:
3989 	perf_ctx_unlock(cpuctx, ctx);
3990 rcu_unlock:
3991 	rcu_read_unlock();
3992 }
3993 
3994 /*
3995  * Called from scheduler to add the events of the current task
3996  * with interrupts disabled.
3997  *
3998  * We restore the event value and then enable it.
3999  *
4000  * This does not protect us against NMI, but enable()
4001  * sets the enabled bit in the control field of event _before_
4002  * accessing the event control register. If a NMI hits, then it will
4003  * keep the event running.
4004  */
4005 void __perf_event_task_sched_in(struct task_struct *prev,
4006 				struct task_struct *task)
4007 {
4008 	perf_event_context_sched_in(task);
4009 
4010 	if (atomic_read(&nr_switch_events))
4011 		perf_event_switch(task, prev, true);
4012 
4013 	if (__this_cpu_read(perf_sched_cb_usages))
4014 		perf_pmu_sched_task(prev, task, true);
4015 }
4016 
4017 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4018 {
4019 	u64 frequency = event->attr.sample_freq;
4020 	u64 sec = NSEC_PER_SEC;
4021 	u64 divisor, dividend;
4022 
4023 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4024 
4025 	count_fls = fls64(count);
4026 	nsec_fls = fls64(nsec);
4027 	frequency_fls = fls64(frequency);
4028 	sec_fls = 30;
4029 
4030 	/*
4031 	 * We got @count in @nsec, with a target of sample_freq HZ
4032 	 * the target period becomes:
4033 	 *
4034 	 *             @count * 10^9
4035 	 * period = -------------------
4036 	 *          @nsec * sample_freq
4037 	 *
4038 	 */
4039 
4040 	/*
4041 	 * Reduce accuracy by one bit such that @a and @b converge
4042 	 * to a similar magnitude.
4043 	 */
4044 #define REDUCE_FLS(a, b)		\
4045 do {					\
4046 	if (a##_fls > b##_fls) {	\
4047 		a >>= 1;		\
4048 		a##_fls--;		\
4049 	} else {			\
4050 		b >>= 1;		\
4051 		b##_fls--;		\
4052 	}				\
4053 } while (0)
4054 
4055 	/*
4056 	 * Reduce accuracy until either term fits in a u64, then proceed with
4057 	 * the other, so that finally we can do a u64/u64 division.
4058 	 */
4059 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4060 		REDUCE_FLS(nsec, frequency);
4061 		REDUCE_FLS(sec, count);
4062 	}
4063 
4064 	if (count_fls + sec_fls > 64) {
4065 		divisor = nsec * frequency;
4066 
4067 		while (count_fls + sec_fls > 64) {
4068 			REDUCE_FLS(count, sec);
4069 			divisor >>= 1;
4070 		}
4071 
4072 		dividend = count * sec;
4073 	} else {
4074 		dividend = count * sec;
4075 
4076 		while (nsec_fls + frequency_fls > 64) {
4077 			REDUCE_FLS(nsec, frequency);
4078 			dividend >>= 1;
4079 		}
4080 
4081 		divisor = nsec * frequency;
4082 	}
4083 
4084 	if (!divisor)
4085 		return dividend;
4086 
4087 	return div64_u64(dividend, divisor);
4088 }
4089 
4090 static DEFINE_PER_CPU(int, perf_throttled_count);
4091 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4092 
4093 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4094 {
4095 	struct hw_perf_event *hwc = &event->hw;
4096 	s64 period, sample_period;
4097 	s64 delta;
4098 
4099 	period = perf_calculate_period(event, nsec, count);
4100 
4101 	delta = (s64)(period - hwc->sample_period);
4102 	delta = (delta + 7) / 8; /* low pass filter */
4103 
4104 	sample_period = hwc->sample_period + delta;
4105 
4106 	if (!sample_period)
4107 		sample_period = 1;
4108 
4109 	hwc->sample_period = sample_period;
4110 
4111 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4112 		if (disable)
4113 			event->pmu->stop(event, PERF_EF_UPDATE);
4114 
4115 		local64_set(&hwc->period_left, 0);
4116 
4117 		if (disable)
4118 			event->pmu->start(event, PERF_EF_RELOAD);
4119 	}
4120 }
4121 
4122 /*
4123  * combine freq adjustment with unthrottling to avoid two passes over the
4124  * events. At the same time, make sure, having freq events does not change
4125  * the rate of unthrottling as that would introduce bias.
4126  */
4127 static void
4128 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4129 {
4130 	struct perf_event *event;
4131 	struct hw_perf_event *hwc;
4132 	u64 now, period = TICK_NSEC;
4133 	s64 delta;
4134 
4135 	/*
4136 	 * only need to iterate over all events iff:
4137 	 * - context have events in frequency mode (needs freq adjust)
4138 	 * - there are events to unthrottle on this cpu
4139 	 */
4140 	if (!(ctx->nr_freq || unthrottle))
4141 		return;
4142 
4143 	raw_spin_lock(&ctx->lock);
4144 
4145 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4146 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4147 			continue;
4148 
4149 		// XXX use visit thingy to avoid the -1,cpu match
4150 		if (!event_filter_match(event))
4151 			continue;
4152 
4153 		perf_pmu_disable(event->pmu);
4154 
4155 		hwc = &event->hw;
4156 
4157 		if (hwc->interrupts == MAX_INTERRUPTS) {
4158 			hwc->interrupts = 0;
4159 			perf_log_throttle(event, 1);
4160 			event->pmu->start(event, 0);
4161 		}
4162 
4163 		if (!event->attr.freq || !event->attr.sample_freq)
4164 			goto next;
4165 
4166 		/*
4167 		 * stop the event and update event->count
4168 		 */
4169 		event->pmu->stop(event, PERF_EF_UPDATE);
4170 
4171 		now = local64_read(&event->count);
4172 		delta = now - hwc->freq_count_stamp;
4173 		hwc->freq_count_stamp = now;
4174 
4175 		/*
4176 		 * restart the event
4177 		 * reload only if value has changed
4178 		 * we have stopped the event so tell that
4179 		 * to perf_adjust_period() to avoid stopping it
4180 		 * twice.
4181 		 */
4182 		if (delta > 0)
4183 			perf_adjust_period(event, period, delta, false);
4184 
4185 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4186 	next:
4187 		perf_pmu_enable(event->pmu);
4188 	}
4189 
4190 	raw_spin_unlock(&ctx->lock);
4191 }
4192 
4193 /*
4194  * Move @event to the tail of the @ctx's elegible events.
4195  */
4196 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4197 {
4198 	/*
4199 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4200 	 * disabled by the inheritance code.
4201 	 */
4202 	if (ctx->rotate_disable)
4203 		return;
4204 
4205 	perf_event_groups_delete(&ctx->flexible_groups, event);
4206 	perf_event_groups_insert(&ctx->flexible_groups, event);
4207 }
4208 
4209 /* pick an event from the flexible_groups to rotate */
4210 static inline struct perf_event *
4211 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4212 {
4213 	struct perf_event *event;
4214 	struct rb_node *node;
4215 	struct rb_root *tree;
4216 	struct __group_key key = {
4217 		.pmu = pmu_ctx->pmu,
4218 	};
4219 
4220 	/* pick the first active flexible event */
4221 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4222 					 struct perf_event, active_list);
4223 	if (event)
4224 		goto out;
4225 
4226 	/* if no active flexible event, pick the first event */
4227 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4228 
4229 	if (!pmu_ctx->ctx->task) {
4230 		key.cpu = smp_processor_id();
4231 
4232 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4233 		if (node)
4234 			event = __node_2_pe(node);
4235 		goto out;
4236 	}
4237 
4238 	key.cpu = -1;
4239 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4240 	if (node) {
4241 		event = __node_2_pe(node);
4242 		goto out;
4243 	}
4244 
4245 	key.cpu = smp_processor_id();
4246 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4247 	if (node)
4248 		event = __node_2_pe(node);
4249 
4250 out:
4251 	/*
4252 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4253 	 * finds there are unschedulable events, it will set it again.
4254 	 */
4255 	pmu_ctx->rotate_necessary = 0;
4256 
4257 	return event;
4258 }
4259 
4260 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4261 {
4262 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4263 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4264 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4265 	int cpu_rotate, task_rotate;
4266 	struct pmu *pmu;
4267 
4268 	/*
4269 	 * Since we run this from IRQ context, nobody can install new
4270 	 * events, thus the event count values are stable.
4271 	 */
4272 
4273 	cpu_epc = &cpc->epc;
4274 	pmu = cpu_epc->pmu;
4275 	task_epc = cpc->task_epc;
4276 
4277 	cpu_rotate = cpu_epc->rotate_necessary;
4278 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4279 
4280 	if (!(cpu_rotate || task_rotate))
4281 		return false;
4282 
4283 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4284 	perf_pmu_disable(pmu);
4285 
4286 	if (task_rotate)
4287 		task_event = ctx_event_to_rotate(task_epc);
4288 	if (cpu_rotate)
4289 		cpu_event = ctx_event_to_rotate(cpu_epc);
4290 
4291 	/*
4292 	 * As per the order given at ctx_resched() first 'pop' task flexible
4293 	 * and then, if needed CPU flexible.
4294 	 */
4295 	if (task_event || (task_epc && cpu_event)) {
4296 		update_context_time(task_epc->ctx);
4297 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4298 	}
4299 
4300 	if (cpu_event) {
4301 		update_context_time(&cpuctx->ctx);
4302 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4303 		rotate_ctx(&cpuctx->ctx, cpu_event);
4304 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4305 	}
4306 
4307 	if (task_event)
4308 		rotate_ctx(task_epc->ctx, task_event);
4309 
4310 	if (task_event || (task_epc && cpu_event))
4311 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4312 
4313 	perf_pmu_enable(pmu);
4314 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4315 
4316 	return true;
4317 }
4318 
4319 void perf_event_task_tick(void)
4320 {
4321 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4322 	struct perf_event_context *ctx;
4323 	int throttled;
4324 
4325 	lockdep_assert_irqs_disabled();
4326 
4327 	__this_cpu_inc(perf_throttled_seq);
4328 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4329 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4330 
4331 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4332 
4333 	rcu_read_lock();
4334 	ctx = rcu_dereference(current->perf_event_ctxp);
4335 	if (ctx)
4336 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4337 	rcu_read_unlock();
4338 }
4339 
4340 static int event_enable_on_exec(struct perf_event *event,
4341 				struct perf_event_context *ctx)
4342 {
4343 	if (!event->attr.enable_on_exec)
4344 		return 0;
4345 
4346 	event->attr.enable_on_exec = 0;
4347 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4348 		return 0;
4349 
4350 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4351 
4352 	return 1;
4353 }
4354 
4355 /*
4356  * Enable all of a task's events that have been marked enable-on-exec.
4357  * This expects task == current.
4358  */
4359 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4360 {
4361 	struct perf_event_context *clone_ctx = NULL;
4362 	enum event_type_t event_type = 0;
4363 	struct perf_cpu_context *cpuctx;
4364 	struct perf_event *event;
4365 	unsigned long flags;
4366 	int enabled = 0;
4367 
4368 	local_irq_save(flags);
4369 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4370 		goto out;
4371 
4372 	if (!ctx->nr_events)
4373 		goto out;
4374 
4375 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4376 	perf_ctx_lock(cpuctx, ctx);
4377 	ctx_sched_out(ctx, EVENT_TIME);
4378 
4379 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4380 		enabled |= event_enable_on_exec(event, ctx);
4381 		event_type |= get_event_type(event);
4382 	}
4383 
4384 	/*
4385 	 * Unclone and reschedule this context if we enabled any event.
4386 	 */
4387 	if (enabled) {
4388 		clone_ctx = unclone_ctx(ctx);
4389 		ctx_resched(cpuctx, ctx, event_type);
4390 	} else {
4391 		ctx_sched_in(ctx, EVENT_TIME);
4392 	}
4393 	perf_ctx_unlock(cpuctx, ctx);
4394 
4395 out:
4396 	local_irq_restore(flags);
4397 
4398 	if (clone_ctx)
4399 		put_ctx(clone_ctx);
4400 }
4401 
4402 static void perf_remove_from_owner(struct perf_event *event);
4403 static void perf_event_exit_event(struct perf_event *event,
4404 				  struct perf_event_context *ctx);
4405 
4406 /*
4407  * Removes all events from the current task that have been marked
4408  * remove-on-exec, and feeds their values back to parent events.
4409  */
4410 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4411 {
4412 	struct perf_event_context *clone_ctx = NULL;
4413 	struct perf_event *event, *next;
4414 	unsigned long flags;
4415 	bool modified = false;
4416 
4417 	mutex_lock(&ctx->mutex);
4418 
4419 	if (WARN_ON_ONCE(ctx->task != current))
4420 		goto unlock;
4421 
4422 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4423 		if (!event->attr.remove_on_exec)
4424 			continue;
4425 
4426 		if (!is_kernel_event(event))
4427 			perf_remove_from_owner(event);
4428 
4429 		modified = true;
4430 
4431 		perf_event_exit_event(event, ctx);
4432 	}
4433 
4434 	raw_spin_lock_irqsave(&ctx->lock, flags);
4435 	if (modified)
4436 		clone_ctx = unclone_ctx(ctx);
4437 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4438 
4439 unlock:
4440 	mutex_unlock(&ctx->mutex);
4441 
4442 	if (clone_ctx)
4443 		put_ctx(clone_ctx);
4444 }
4445 
4446 struct perf_read_data {
4447 	struct perf_event *event;
4448 	bool group;
4449 	int ret;
4450 };
4451 
4452 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4453 {
4454 	u16 local_pkg, event_pkg;
4455 
4456 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4457 		int local_cpu = smp_processor_id();
4458 
4459 		event_pkg = topology_physical_package_id(event_cpu);
4460 		local_pkg = topology_physical_package_id(local_cpu);
4461 
4462 		if (event_pkg == local_pkg)
4463 			return local_cpu;
4464 	}
4465 
4466 	return event_cpu;
4467 }
4468 
4469 /*
4470  * Cross CPU call to read the hardware event
4471  */
4472 static void __perf_event_read(void *info)
4473 {
4474 	struct perf_read_data *data = info;
4475 	struct perf_event *sub, *event = data->event;
4476 	struct perf_event_context *ctx = event->ctx;
4477 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4478 	struct pmu *pmu = event->pmu;
4479 
4480 	/*
4481 	 * If this is a task context, we need to check whether it is
4482 	 * the current task context of this cpu.  If not it has been
4483 	 * scheduled out before the smp call arrived.  In that case
4484 	 * event->count would have been updated to a recent sample
4485 	 * when the event was scheduled out.
4486 	 */
4487 	if (ctx->task && cpuctx->task_ctx != ctx)
4488 		return;
4489 
4490 	raw_spin_lock(&ctx->lock);
4491 	if (ctx->is_active & EVENT_TIME) {
4492 		update_context_time(ctx);
4493 		update_cgrp_time_from_event(event);
4494 	}
4495 
4496 	perf_event_update_time(event);
4497 	if (data->group)
4498 		perf_event_update_sibling_time(event);
4499 
4500 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4501 		goto unlock;
4502 
4503 	if (!data->group) {
4504 		pmu->read(event);
4505 		data->ret = 0;
4506 		goto unlock;
4507 	}
4508 
4509 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4510 
4511 	pmu->read(event);
4512 
4513 	for_each_sibling_event(sub, event) {
4514 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4515 			/*
4516 			 * Use sibling's PMU rather than @event's since
4517 			 * sibling could be on different (eg: software) PMU.
4518 			 */
4519 			sub->pmu->read(sub);
4520 		}
4521 	}
4522 
4523 	data->ret = pmu->commit_txn(pmu);
4524 
4525 unlock:
4526 	raw_spin_unlock(&ctx->lock);
4527 }
4528 
4529 static inline u64 perf_event_count(struct perf_event *event)
4530 {
4531 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4532 }
4533 
4534 static void calc_timer_values(struct perf_event *event,
4535 				u64 *now,
4536 				u64 *enabled,
4537 				u64 *running)
4538 {
4539 	u64 ctx_time;
4540 
4541 	*now = perf_clock();
4542 	ctx_time = perf_event_time_now(event, *now);
4543 	__perf_update_times(event, ctx_time, enabled, running);
4544 }
4545 
4546 /*
4547  * NMI-safe method to read a local event, that is an event that
4548  * is:
4549  *   - either for the current task, or for this CPU
4550  *   - does not have inherit set, for inherited task events
4551  *     will not be local and we cannot read them atomically
4552  *   - must not have a pmu::count method
4553  */
4554 int perf_event_read_local(struct perf_event *event, u64 *value,
4555 			  u64 *enabled, u64 *running)
4556 {
4557 	unsigned long flags;
4558 	int ret = 0;
4559 
4560 	/*
4561 	 * Disabling interrupts avoids all counter scheduling (context
4562 	 * switches, timer based rotation and IPIs).
4563 	 */
4564 	local_irq_save(flags);
4565 
4566 	/*
4567 	 * It must not be an event with inherit set, we cannot read
4568 	 * all child counters from atomic context.
4569 	 */
4570 	if (event->attr.inherit) {
4571 		ret = -EOPNOTSUPP;
4572 		goto out;
4573 	}
4574 
4575 	/* If this is a per-task event, it must be for current */
4576 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4577 	    event->hw.target != current) {
4578 		ret = -EINVAL;
4579 		goto out;
4580 	}
4581 
4582 	/* If this is a per-CPU event, it must be for this CPU */
4583 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4584 	    event->cpu != smp_processor_id()) {
4585 		ret = -EINVAL;
4586 		goto out;
4587 	}
4588 
4589 	/* If this is a pinned event it must be running on this CPU */
4590 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4591 		ret = -EBUSY;
4592 		goto out;
4593 	}
4594 
4595 	/*
4596 	 * If the event is currently on this CPU, its either a per-task event,
4597 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4598 	 * oncpu == -1).
4599 	 */
4600 	if (event->oncpu == smp_processor_id())
4601 		event->pmu->read(event);
4602 
4603 	*value = local64_read(&event->count);
4604 	if (enabled || running) {
4605 		u64 __enabled, __running, __now;
4606 
4607 		calc_timer_values(event, &__now, &__enabled, &__running);
4608 		if (enabled)
4609 			*enabled = __enabled;
4610 		if (running)
4611 			*running = __running;
4612 	}
4613 out:
4614 	local_irq_restore(flags);
4615 
4616 	return ret;
4617 }
4618 
4619 static int perf_event_read(struct perf_event *event, bool group)
4620 {
4621 	enum perf_event_state state = READ_ONCE(event->state);
4622 	int event_cpu, ret = 0;
4623 
4624 	/*
4625 	 * If event is enabled and currently active on a CPU, update the
4626 	 * value in the event structure:
4627 	 */
4628 again:
4629 	if (state == PERF_EVENT_STATE_ACTIVE) {
4630 		struct perf_read_data data;
4631 
4632 		/*
4633 		 * Orders the ->state and ->oncpu loads such that if we see
4634 		 * ACTIVE we must also see the right ->oncpu.
4635 		 *
4636 		 * Matches the smp_wmb() from event_sched_in().
4637 		 */
4638 		smp_rmb();
4639 
4640 		event_cpu = READ_ONCE(event->oncpu);
4641 		if ((unsigned)event_cpu >= nr_cpu_ids)
4642 			return 0;
4643 
4644 		data = (struct perf_read_data){
4645 			.event = event,
4646 			.group = group,
4647 			.ret = 0,
4648 		};
4649 
4650 		preempt_disable();
4651 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4652 
4653 		/*
4654 		 * Purposely ignore the smp_call_function_single() return
4655 		 * value.
4656 		 *
4657 		 * If event_cpu isn't a valid CPU it means the event got
4658 		 * scheduled out and that will have updated the event count.
4659 		 *
4660 		 * Therefore, either way, we'll have an up-to-date event count
4661 		 * after this.
4662 		 */
4663 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4664 		preempt_enable();
4665 		ret = data.ret;
4666 
4667 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4668 		struct perf_event_context *ctx = event->ctx;
4669 		unsigned long flags;
4670 
4671 		raw_spin_lock_irqsave(&ctx->lock, flags);
4672 		state = event->state;
4673 		if (state != PERF_EVENT_STATE_INACTIVE) {
4674 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675 			goto again;
4676 		}
4677 
4678 		/*
4679 		 * May read while context is not active (e.g., thread is
4680 		 * blocked), in that case we cannot update context time
4681 		 */
4682 		if (ctx->is_active & EVENT_TIME) {
4683 			update_context_time(ctx);
4684 			update_cgrp_time_from_event(event);
4685 		}
4686 
4687 		perf_event_update_time(event);
4688 		if (group)
4689 			perf_event_update_sibling_time(event);
4690 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4691 	}
4692 
4693 	return ret;
4694 }
4695 
4696 /*
4697  * Initialize the perf_event context in a task_struct:
4698  */
4699 static void __perf_event_init_context(struct perf_event_context *ctx)
4700 {
4701 	raw_spin_lock_init(&ctx->lock);
4702 	mutex_init(&ctx->mutex);
4703 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4704 	perf_event_groups_init(&ctx->pinned_groups);
4705 	perf_event_groups_init(&ctx->flexible_groups);
4706 	INIT_LIST_HEAD(&ctx->event_list);
4707 	refcount_set(&ctx->refcount, 1);
4708 }
4709 
4710 static void
4711 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4712 {
4713 	epc->pmu = pmu;
4714 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4715 	INIT_LIST_HEAD(&epc->pinned_active);
4716 	INIT_LIST_HEAD(&epc->flexible_active);
4717 	atomic_set(&epc->refcount, 1);
4718 }
4719 
4720 static struct perf_event_context *
4721 alloc_perf_context(struct task_struct *task)
4722 {
4723 	struct perf_event_context *ctx;
4724 
4725 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4726 	if (!ctx)
4727 		return NULL;
4728 
4729 	__perf_event_init_context(ctx);
4730 	if (task)
4731 		ctx->task = get_task_struct(task);
4732 
4733 	return ctx;
4734 }
4735 
4736 static struct task_struct *
4737 find_lively_task_by_vpid(pid_t vpid)
4738 {
4739 	struct task_struct *task;
4740 
4741 	rcu_read_lock();
4742 	if (!vpid)
4743 		task = current;
4744 	else
4745 		task = find_task_by_vpid(vpid);
4746 	if (task)
4747 		get_task_struct(task);
4748 	rcu_read_unlock();
4749 
4750 	if (!task)
4751 		return ERR_PTR(-ESRCH);
4752 
4753 	return task;
4754 }
4755 
4756 /*
4757  * Returns a matching context with refcount and pincount.
4758  */
4759 static struct perf_event_context *
4760 find_get_context(struct task_struct *task, struct perf_event *event)
4761 {
4762 	struct perf_event_context *ctx, *clone_ctx = NULL;
4763 	struct perf_cpu_context *cpuctx;
4764 	unsigned long flags;
4765 	int err;
4766 
4767 	if (!task) {
4768 		/* Must be root to operate on a CPU event: */
4769 		err = perf_allow_cpu(&event->attr);
4770 		if (err)
4771 			return ERR_PTR(err);
4772 
4773 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4774 		ctx = &cpuctx->ctx;
4775 		get_ctx(ctx);
4776 		raw_spin_lock_irqsave(&ctx->lock, flags);
4777 		++ctx->pin_count;
4778 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4779 
4780 		return ctx;
4781 	}
4782 
4783 	err = -EINVAL;
4784 retry:
4785 	ctx = perf_lock_task_context(task, &flags);
4786 	if (ctx) {
4787 		clone_ctx = unclone_ctx(ctx);
4788 		++ctx->pin_count;
4789 
4790 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4791 
4792 		if (clone_ctx)
4793 			put_ctx(clone_ctx);
4794 	} else {
4795 		ctx = alloc_perf_context(task);
4796 		err = -ENOMEM;
4797 		if (!ctx)
4798 			goto errout;
4799 
4800 		err = 0;
4801 		mutex_lock(&task->perf_event_mutex);
4802 		/*
4803 		 * If it has already passed perf_event_exit_task().
4804 		 * we must see PF_EXITING, it takes this mutex too.
4805 		 */
4806 		if (task->flags & PF_EXITING)
4807 			err = -ESRCH;
4808 		else if (task->perf_event_ctxp)
4809 			err = -EAGAIN;
4810 		else {
4811 			get_ctx(ctx);
4812 			++ctx->pin_count;
4813 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4814 		}
4815 		mutex_unlock(&task->perf_event_mutex);
4816 
4817 		if (unlikely(err)) {
4818 			put_ctx(ctx);
4819 
4820 			if (err == -EAGAIN)
4821 				goto retry;
4822 			goto errout;
4823 		}
4824 	}
4825 
4826 	return ctx;
4827 
4828 errout:
4829 	return ERR_PTR(err);
4830 }
4831 
4832 static struct perf_event_pmu_context *
4833 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4834 		     struct perf_event *event)
4835 {
4836 	struct perf_event_pmu_context *new = NULL, *epc;
4837 	void *task_ctx_data = NULL;
4838 
4839 	if (!ctx->task) {
4840 		/*
4841 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4842 		 * relies on the fact that find_get_pmu_context() cannot fail
4843 		 * for CPU contexts.
4844 		 */
4845 		struct perf_cpu_pmu_context *cpc;
4846 
4847 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4848 		epc = &cpc->epc;
4849 		raw_spin_lock_irq(&ctx->lock);
4850 		if (!epc->ctx) {
4851 			atomic_set(&epc->refcount, 1);
4852 			epc->embedded = 1;
4853 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4854 			epc->ctx = ctx;
4855 		} else {
4856 			WARN_ON_ONCE(epc->ctx != ctx);
4857 			atomic_inc(&epc->refcount);
4858 		}
4859 		raw_spin_unlock_irq(&ctx->lock);
4860 		return epc;
4861 	}
4862 
4863 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4864 	if (!new)
4865 		return ERR_PTR(-ENOMEM);
4866 
4867 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4868 		task_ctx_data = alloc_task_ctx_data(pmu);
4869 		if (!task_ctx_data) {
4870 			kfree(new);
4871 			return ERR_PTR(-ENOMEM);
4872 		}
4873 	}
4874 
4875 	__perf_init_event_pmu_context(new, pmu);
4876 
4877 	/*
4878 	 * XXX
4879 	 *
4880 	 * lockdep_assert_held(&ctx->mutex);
4881 	 *
4882 	 * can't because perf_event_init_task() doesn't actually hold the
4883 	 * child_ctx->mutex.
4884 	 */
4885 
4886 	raw_spin_lock_irq(&ctx->lock);
4887 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4888 		if (epc->pmu == pmu) {
4889 			WARN_ON_ONCE(epc->ctx != ctx);
4890 			atomic_inc(&epc->refcount);
4891 			goto found_epc;
4892 		}
4893 	}
4894 
4895 	epc = new;
4896 	new = NULL;
4897 
4898 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4899 	epc->ctx = ctx;
4900 
4901 found_epc:
4902 	if (task_ctx_data && !epc->task_ctx_data) {
4903 		epc->task_ctx_data = task_ctx_data;
4904 		task_ctx_data = NULL;
4905 		ctx->nr_task_data++;
4906 	}
4907 	raw_spin_unlock_irq(&ctx->lock);
4908 
4909 	free_task_ctx_data(pmu, task_ctx_data);
4910 	kfree(new);
4911 
4912 	return epc;
4913 }
4914 
4915 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4916 {
4917 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4918 }
4919 
4920 static void free_epc_rcu(struct rcu_head *head)
4921 {
4922 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4923 
4924 	kfree(epc->task_ctx_data);
4925 	kfree(epc);
4926 }
4927 
4928 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4929 {
4930 	struct perf_event_context *ctx = epc->ctx;
4931 	unsigned long flags;
4932 
4933 	/*
4934 	 * XXX
4935 	 *
4936 	 * lockdep_assert_held(&ctx->mutex);
4937 	 *
4938 	 * can't because of the call-site in _free_event()/put_event()
4939 	 * which isn't always called under ctx->mutex.
4940 	 */
4941 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4942 		return;
4943 
4944 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4945 
4946 	list_del_init(&epc->pmu_ctx_entry);
4947 	epc->ctx = NULL;
4948 
4949 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4950 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4951 
4952 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4953 
4954 	if (epc->embedded)
4955 		return;
4956 
4957 	call_rcu(&epc->rcu_head, free_epc_rcu);
4958 }
4959 
4960 static void perf_event_free_filter(struct perf_event *event);
4961 
4962 static void free_event_rcu(struct rcu_head *head)
4963 {
4964 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4965 
4966 	if (event->ns)
4967 		put_pid_ns(event->ns);
4968 	perf_event_free_filter(event);
4969 	kmem_cache_free(perf_event_cache, event);
4970 }
4971 
4972 static void ring_buffer_attach(struct perf_event *event,
4973 			       struct perf_buffer *rb);
4974 
4975 static void detach_sb_event(struct perf_event *event)
4976 {
4977 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4978 
4979 	raw_spin_lock(&pel->lock);
4980 	list_del_rcu(&event->sb_list);
4981 	raw_spin_unlock(&pel->lock);
4982 }
4983 
4984 static bool is_sb_event(struct perf_event *event)
4985 {
4986 	struct perf_event_attr *attr = &event->attr;
4987 
4988 	if (event->parent)
4989 		return false;
4990 
4991 	if (event->attach_state & PERF_ATTACH_TASK)
4992 		return false;
4993 
4994 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4995 	    attr->comm || attr->comm_exec ||
4996 	    attr->task || attr->ksymbol ||
4997 	    attr->context_switch || attr->text_poke ||
4998 	    attr->bpf_event)
4999 		return true;
5000 	return false;
5001 }
5002 
5003 static void unaccount_pmu_sb_event(struct perf_event *event)
5004 {
5005 	if (is_sb_event(event))
5006 		detach_sb_event(event);
5007 }
5008 
5009 #ifdef CONFIG_NO_HZ_FULL
5010 static DEFINE_SPINLOCK(nr_freq_lock);
5011 #endif
5012 
5013 static void unaccount_freq_event_nohz(void)
5014 {
5015 #ifdef CONFIG_NO_HZ_FULL
5016 	spin_lock(&nr_freq_lock);
5017 	if (atomic_dec_and_test(&nr_freq_events))
5018 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5019 	spin_unlock(&nr_freq_lock);
5020 #endif
5021 }
5022 
5023 static void unaccount_freq_event(void)
5024 {
5025 	if (tick_nohz_full_enabled())
5026 		unaccount_freq_event_nohz();
5027 	else
5028 		atomic_dec(&nr_freq_events);
5029 }
5030 
5031 static void unaccount_event(struct perf_event *event)
5032 {
5033 	bool dec = false;
5034 
5035 	if (event->parent)
5036 		return;
5037 
5038 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5039 		dec = true;
5040 	if (event->attr.mmap || event->attr.mmap_data)
5041 		atomic_dec(&nr_mmap_events);
5042 	if (event->attr.build_id)
5043 		atomic_dec(&nr_build_id_events);
5044 	if (event->attr.comm)
5045 		atomic_dec(&nr_comm_events);
5046 	if (event->attr.namespaces)
5047 		atomic_dec(&nr_namespaces_events);
5048 	if (event->attr.cgroup)
5049 		atomic_dec(&nr_cgroup_events);
5050 	if (event->attr.task)
5051 		atomic_dec(&nr_task_events);
5052 	if (event->attr.freq)
5053 		unaccount_freq_event();
5054 	if (event->attr.context_switch) {
5055 		dec = true;
5056 		atomic_dec(&nr_switch_events);
5057 	}
5058 	if (is_cgroup_event(event))
5059 		dec = true;
5060 	if (has_branch_stack(event))
5061 		dec = true;
5062 	if (event->attr.ksymbol)
5063 		atomic_dec(&nr_ksymbol_events);
5064 	if (event->attr.bpf_event)
5065 		atomic_dec(&nr_bpf_events);
5066 	if (event->attr.text_poke)
5067 		atomic_dec(&nr_text_poke_events);
5068 
5069 	if (dec) {
5070 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5071 			schedule_delayed_work(&perf_sched_work, HZ);
5072 	}
5073 
5074 	unaccount_pmu_sb_event(event);
5075 }
5076 
5077 static void perf_sched_delayed(struct work_struct *work)
5078 {
5079 	mutex_lock(&perf_sched_mutex);
5080 	if (atomic_dec_and_test(&perf_sched_count))
5081 		static_branch_disable(&perf_sched_events);
5082 	mutex_unlock(&perf_sched_mutex);
5083 }
5084 
5085 /*
5086  * The following implement mutual exclusion of events on "exclusive" pmus
5087  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5088  * at a time, so we disallow creating events that might conflict, namely:
5089  *
5090  *  1) cpu-wide events in the presence of per-task events,
5091  *  2) per-task events in the presence of cpu-wide events,
5092  *  3) two matching events on the same perf_event_context.
5093  *
5094  * The former two cases are handled in the allocation path (perf_event_alloc(),
5095  * _free_event()), the latter -- before the first perf_install_in_context().
5096  */
5097 static int exclusive_event_init(struct perf_event *event)
5098 {
5099 	struct pmu *pmu = event->pmu;
5100 
5101 	if (!is_exclusive_pmu(pmu))
5102 		return 0;
5103 
5104 	/*
5105 	 * Prevent co-existence of per-task and cpu-wide events on the
5106 	 * same exclusive pmu.
5107 	 *
5108 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5109 	 * events on this "exclusive" pmu, positive means there are
5110 	 * per-task events.
5111 	 *
5112 	 * Since this is called in perf_event_alloc() path, event::ctx
5113 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5114 	 * to mean "per-task event", because unlike other attach states it
5115 	 * never gets cleared.
5116 	 */
5117 	if (event->attach_state & PERF_ATTACH_TASK) {
5118 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5119 			return -EBUSY;
5120 	} else {
5121 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5122 			return -EBUSY;
5123 	}
5124 
5125 	return 0;
5126 }
5127 
5128 static void exclusive_event_destroy(struct perf_event *event)
5129 {
5130 	struct pmu *pmu = event->pmu;
5131 
5132 	if (!is_exclusive_pmu(pmu))
5133 		return;
5134 
5135 	/* see comment in exclusive_event_init() */
5136 	if (event->attach_state & PERF_ATTACH_TASK)
5137 		atomic_dec(&pmu->exclusive_cnt);
5138 	else
5139 		atomic_inc(&pmu->exclusive_cnt);
5140 }
5141 
5142 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5143 {
5144 	if ((e1->pmu == e2->pmu) &&
5145 	    (e1->cpu == e2->cpu ||
5146 	     e1->cpu == -1 ||
5147 	     e2->cpu == -1))
5148 		return true;
5149 	return false;
5150 }
5151 
5152 static bool exclusive_event_installable(struct perf_event *event,
5153 					struct perf_event_context *ctx)
5154 {
5155 	struct perf_event *iter_event;
5156 	struct pmu *pmu = event->pmu;
5157 
5158 	lockdep_assert_held(&ctx->mutex);
5159 
5160 	if (!is_exclusive_pmu(pmu))
5161 		return true;
5162 
5163 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5164 		if (exclusive_event_match(iter_event, event))
5165 			return false;
5166 	}
5167 
5168 	return true;
5169 }
5170 
5171 static void perf_addr_filters_splice(struct perf_event *event,
5172 				       struct list_head *head);
5173 
5174 static void perf_pending_task_sync(struct perf_event *event)
5175 {
5176 	struct callback_head *head = &event->pending_task;
5177 
5178 	if (!event->pending_work)
5179 		return;
5180 	/*
5181 	 * If the task is queued to the current task's queue, we
5182 	 * obviously can't wait for it to complete. Simply cancel it.
5183 	 */
5184 	if (task_work_cancel(current, head)) {
5185 		event->pending_work = 0;
5186 		local_dec(&event->ctx->nr_pending);
5187 		return;
5188 	}
5189 
5190 	/*
5191 	 * All accesses related to the event are within the same
5192 	 * non-preemptible section in perf_pending_task(). The RCU
5193 	 * grace period before the event is freed will make sure all
5194 	 * those accesses are complete by then.
5195 	 */
5196 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5197 }
5198 
5199 static void _free_event(struct perf_event *event)
5200 {
5201 	irq_work_sync(&event->pending_irq);
5202 	perf_pending_task_sync(event);
5203 
5204 	unaccount_event(event);
5205 
5206 	security_perf_event_free(event);
5207 
5208 	if (event->rb) {
5209 		/*
5210 		 * Can happen when we close an event with re-directed output.
5211 		 *
5212 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5213 		 * over us; possibly making our ring_buffer_put() the last.
5214 		 */
5215 		mutex_lock(&event->mmap_mutex);
5216 		ring_buffer_attach(event, NULL);
5217 		mutex_unlock(&event->mmap_mutex);
5218 	}
5219 
5220 	if (is_cgroup_event(event))
5221 		perf_detach_cgroup(event);
5222 
5223 	if (!event->parent) {
5224 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5225 			put_callchain_buffers();
5226 	}
5227 
5228 	perf_event_free_bpf_prog(event);
5229 	perf_addr_filters_splice(event, NULL);
5230 	kfree(event->addr_filter_ranges);
5231 
5232 	if (event->destroy)
5233 		event->destroy(event);
5234 
5235 	/*
5236 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5237 	 * hw.target.
5238 	 */
5239 	if (event->hw.target)
5240 		put_task_struct(event->hw.target);
5241 
5242 	if (event->pmu_ctx)
5243 		put_pmu_ctx(event->pmu_ctx);
5244 
5245 	/*
5246 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5247 	 * all task references must be cleaned up.
5248 	 */
5249 	if (event->ctx)
5250 		put_ctx(event->ctx);
5251 
5252 	exclusive_event_destroy(event);
5253 	module_put(event->pmu->module);
5254 
5255 	call_rcu(&event->rcu_head, free_event_rcu);
5256 }
5257 
5258 /*
5259  * Used to free events which have a known refcount of 1, such as in error paths
5260  * where the event isn't exposed yet and inherited events.
5261  */
5262 static void free_event(struct perf_event *event)
5263 {
5264 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5265 				"unexpected event refcount: %ld; ptr=%p\n",
5266 				atomic_long_read(&event->refcount), event)) {
5267 		/* leak to avoid use-after-free */
5268 		return;
5269 	}
5270 
5271 	_free_event(event);
5272 }
5273 
5274 /*
5275  * Remove user event from the owner task.
5276  */
5277 static void perf_remove_from_owner(struct perf_event *event)
5278 {
5279 	struct task_struct *owner;
5280 
5281 	rcu_read_lock();
5282 	/*
5283 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5284 	 * observe !owner it means the list deletion is complete and we can
5285 	 * indeed free this event, otherwise we need to serialize on
5286 	 * owner->perf_event_mutex.
5287 	 */
5288 	owner = READ_ONCE(event->owner);
5289 	if (owner) {
5290 		/*
5291 		 * Since delayed_put_task_struct() also drops the last
5292 		 * task reference we can safely take a new reference
5293 		 * while holding the rcu_read_lock().
5294 		 */
5295 		get_task_struct(owner);
5296 	}
5297 	rcu_read_unlock();
5298 
5299 	if (owner) {
5300 		/*
5301 		 * If we're here through perf_event_exit_task() we're already
5302 		 * holding ctx->mutex which would be an inversion wrt. the
5303 		 * normal lock order.
5304 		 *
5305 		 * However we can safely take this lock because its the child
5306 		 * ctx->mutex.
5307 		 */
5308 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5309 
5310 		/*
5311 		 * We have to re-check the event->owner field, if it is cleared
5312 		 * we raced with perf_event_exit_task(), acquiring the mutex
5313 		 * ensured they're done, and we can proceed with freeing the
5314 		 * event.
5315 		 */
5316 		if (event->owner) {
5317 			list_del_init(&event->owner_entry);
5318 			smp_store_release(&event->owner, NULL);
5319 		}
5320 		mutex_unlock(&owner->perf_event_mutex);
5321 		put_task_struct(owner);
5322 	}
5323 }
5324 
5325 static void put_event(struct perf_event *event)
5326 {
5327 	if (!atomic_long_dec_and_test(&event->refcount))
5328 		return;
5329 
5330 	_free_event(event);
5331 }
5332 
5333 /*
5334  * Kill an event dead; while event:refcount will preserve the event
5335  * object, it will not preserve its functionality. Once the last 'user'
5336  * gives up the object, we'll destroy the thing.
5337  */
5338 int perf_event_release_kernel(struct perf_event *event)
5339 {
5340 	struct perf_event_context *ctx = event->ctx;
5341 	struct perf_event *child, *tmp;
5342 	LIST_HEAD(free_list);
5343 
5344 	/*
5345 	 * If we got here through err_alloc: free_event(event); we will not
5346 	 * have attached to a context yet.
5347 	 */
5348 	if (!ctx) {
5349 		WARN_ON_ONCE(event->attach_state &
5350 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5351 		goto no_ctx;
5352 	}
5353 
5354 	if (!is_kernel_event(event))
5355 		perf_remove_from_owner(event);
5356 
5357 	ctx = perf_event_ctx_lock(event);
5358 	WARN_ON_ONCE(ctx->parent_ctx);
5359 
5360 	/*
5361 	 * Mark this event as STATE_DEAD, there is no external reference to it
5362 	 * anymore.
5363 	 *
5364 	 * Anybody acquiring event->child_mutex after the below loop _must_
5365 	 * also see this, most importantly inherit_event() which will avoid
5366 	 * placing more children on the list.
5367 	 *
5368 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5369 	 * child events.
5370 	 */
5371 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5372 
5373 	perf_event_ctx_unlock(event, ctx);
5374 
5375 again:
5376 	mutex_lock(&event->child_mutex);
5377 	list_for_each_entry(child, &event->child_list, child_list) {
5378 		void *var = NULL;
5379 
5380 		/*
5381 		 * Cannot change, child events are not migrated, see the
5382 		 * comment with perf_event_ctx_lock_nested().
5383 		 */
5384 		ctx = READ_ONCE(child->ctx);
5385 		/*
5386 		 * Since child_mutex nests inside ctx::mutex, we must jump
5387 		 * through hoops. We start by grabbing a reference on the ctx.
5388 		 *
5389 		 * Since the event cannot get freed while we hold the
5390 		 * child_mutex, the context must also exist and have a !0
5391 		 * reference count.
5392 		 */
5393 		get_ctx(ctx);
5394 
5395 		/*
5396 		 * Now that we have a ctx ref, we can drop child_mutex, and
5397 		 * acquire ctx::mutex without fear of it going away. Then we
5398 		 * can re-acquire child_mutex.
5399 		 */
5400 		mutex_unlock(&event->child_mutex);
5401 		mutex_lock(&ctx->mutex);
5402 		mutex_lock(&event->child_mutex);
5403 
5404 		/*
5405 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5406 		 * state, if child is still the first entry, it didn't get freed
5407 		 * and we can continue doing so.
5408 		 */
5409 		tmp = list_first_entry_or_null(&event->child_list,
5410 					       struct perf_event, child_list);
5411 		if (tmp == child) {
5412 			perf_remove_from_context(child, DETACH_GROUP);
5413 			list_move(&child->child_list, &free_list);
5414 			/*
5415 			 * This matches the refcount bump in inherit_event();
5416 			 * this can't be the last reference.
5417 			 */
5418 			put_event(event);
5419 		} else {
5420 			var = &ctx->refcount;
5421 		}
5422 
5423 		mutex_unlock(&event->child_mutex);
5424 		mutex_unlock(&ctx->mutex);
5425 		put_ctx(ctx);
5426 
5427 		if (var) {
5428 			/*
5429 			 * If perf_event_free_task() has deleted all events from the
5430 			 * ctx while the child_mutex got released above, make sure to
5431 			 * notify about the preceding put_ctx().
5432 			 */
5433 			smp_mb(); /* pairs with wait_var_event() */
5434 			wake_up_var(var);
5435 		}
5436 		goto again;
5437 	}
5438 	mutex_unlock(&event->child_mutex);
5439 
5440 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5441 		void *var = &child->ctx->refcount;
5442 
5443 		list_del(&child->child_list);
5444 		free_event(child);
5445 
5446 		/*
5447 		 * Wake any perf_event_free_task() waiting for this event to be
5448 		 * freed.
5449 		 */
5450 		smp_mb(); /* pairs with wait_var_event() */
5451 		wake_up_var(var);
5452 	}
5453 
5454 no_ctx:
5455 	put_event(event); /* Must be the 'last' reference */
5456 	return 0;
5457 }
5458 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5459 
5460 /*
5461  * Called when the last reference to the file is gone.
5462  */
5463 static int perf_release(struct inode *inode, struct file *file)
5464 {
5465 	perf_event_release_kernel(file->private_data);
5466 	return 0;
5467 }
5468 
5469 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5470 {
5471 	struct perf_event *child;
5472 	u64 total = 0;
5473 
5474 	*enabled = 0;
5475 	*running = 0;
5476 
5477 	mutex_lock(&event->child_mutex);
5478 
5479 	(void)perf_event_read(event, false);
5480 	total += perf_event_count(event);
5481 
5482 	*enabled += event->total_time_enabled +
5483 			atomic64_read(&event->child_total_time_enabled);
5484 	*running += event->total_time_running +
5485 			atomic64_read(&event->child_total_time_running);
5486 
5487 	list_for_each_entry(child, &event->child_list, child_list) {
5488 		(void)perf_event_read(child, false);
5489 		total += perf_event_count(child);
5490 		*enabled += child->total_time_enabled;
5491 		*running += child->total_time_running;
5492 	}
5493 	mutex_unlock(&event->child_mutex);
5494 
5495 	return total;
5496 }
5497 
5498 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5499 {
5500 	struct perf_event_context *ctx;
5501 	u64 count;
5502 
5503 	ctx = perf_event_ctx_lock(event);
5504 	count = __perf_event_read_value(event, enabled, running);
5505 	perf_event_ctx_unlock(event, ctx);
5506 
5507 	return count;
5508 }
5509 EXPORT_SYMBOL_GPL(perf_event_read_value);
5510 
5511 static int __perf_read_group_add(struct perf_event *leader,
5512 					u64 read_format, u64 *values)
5513 {
5514 	struct perf_event_context *ctx = leader->ctx;
5515 	struct perf_event *sub, *parent;
5516 	unsigned long flags;
5517 	int n = 1; /* skip @nr */
5518 	int ret;
5519 
5520 	ret = perf_event_read(leader, true);
5521 	if (ret)
5522 		return ret;
5523 
5524 	raw_spin_lock_irqsave(&ctx->lock, flags);
5525 	/*
5526 	 * Verify the grouping between the parent and child (inherited)
5527 	 * events is still in tact.
5528 	 *
5529 	 * Specifically:
5530 	 *  - leader->ctx->lock pins leader->sibling_list
5531 	 *  - parent->child_mutex pins parent->child_list
5532 	 *  - parent->ctx->mutex pins parent->sibling_list
5533 	 *
5534 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5535 	 * ctx->mutex), group destruction is not atomic between children, also
5536 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5537 	 * group.
5538 	 *
5539 	 * Therefore it is possible to have parent and child groups in a
5540 	 * different configuration and summing over such a beast makes no sense
5541 	 * what so ever.
5542 	 *
5543 	 * Reject this.
5544 	 */
5545 	parent = leader->parent;
5546 	if (parent &&
5547 	    (parent->group_generation != leader->group_generation ||
5548 	     parent->nr_siblings != leader->nr_siblings)) {
5549 		ret = -ECHILD;
5550 		goto unlock;
5551 	}
5552 
5553 	/*
5554 	 * Since we co-schedule groups, {enabled,running} times of siblings
5555 	 * will be identical to those of the leader, so we only publish one
5556 	 * set.
5557 	 */
5558 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5559 		values[n++] += leader->total_time_enabled +
5560 			atomic64_read(&leader->child_total_time_enabled);
5561 	}
5562 
5563 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5564 		values[n++] += leader->total_time_running +
5565 			atomic64_read(&leader->child_total_time_running);
5566 	}
5567 
5568 	/*
5569 	 * Write {count,id} tuples for every sibling.
5570 	 */
5571 	values[n++] += perf_event_count(leader);
5572 	if (read_format & PERF_FORMAT_ID)
5573 		values[n++] = primary_event_id(leader);
5574 	if (read_format & PERF_FORMAT_LOST)
5575 		values[n++] = atomic64_read(&leader->lost_samples);
5576 
5577 	for_each_sibling_event(sub, leader) {
5578 		values[n++] += perf_event_count(sub);
5579 		if (read_format & PERF_FORMAT_ID)
5580 			values[n++] = primary_event_id(sub);
5581 		if (read_format & PERF_FORMAT_LOST)
5582 			values[n++] = atomic64_read(&sub->lost_samples);
5583 	}
5584 
5585 unlock:
5586 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5587 	return ret;
5588 }
5589 
5590 static int perf_read_group(struct perf_event *event,
5591 				   u64 read_format, char __user *buf)
5592 {
5593 	struct perf_event *leader = event->group_leader, *child;
5594 	struct perf_event_context *ctx = leader->ctx;
5595 	int ret;
5596 	u64 *values;
5597 
5598 	lockdep_assert_held(&ctx->mutex);
5599 
5600 	values = kzalloc(event->read_size, GFP_KERNEL);
5601 	if (!values)
5602 		return -ENOMEM;
5603 
5604 	values[0] = 1 + leader->nr_siblings;
5605 
5606 	mutex_lock(&leader->child_mutex);
5607 
5608 	ret = __perf_read_group_add(leader, read_format, values);
5609 	if (ret)
5610 		goto unlock;
5611 
5612 	list_for_each_entry(child, &leader->child_list, child_list) {
5613 		ret = __perf_read_group_add(child, read_format, values);
5614 		if (ret)
5615 			goto unlock;
5616 	}
5617 
5618 	mutex_unlock(&leader->child_mutex);
5619 
5620 	ret = event->read_size;
5621 	if (copy_to_user(buf, values, event->read_size))
5622 		ret = -EFAULT;
5623 	goto out;
5624 
5625 unlock:
5626 	mutex_unlock(&leader->child_mutex);
5627 out:
5628 	kfree(values);
5629 	return ret;
5630 }
5631 
5632 static int perf_read_one(struct perf_event *event,
5633 				 u64 read_format, char __user *buf)
5634 {
5635 	u64 enabled, running;
5636 	u64 values[5];
5637 	int n = 0;
5638 
5639 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5640 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5641 		values[n++] = enabled;
5642 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5643 		values[n++] = running;
5644 	if (read_format & PERF_FORMAT_ID)
5645 		values[n++] = primary_event_id(event);
5646 	if (read_format & PERF_FORMAT_LOST)
5647 		values[n++] = atomic64_read(&event->lost_samples);
5648 
5649 	if (copy_to_user(buf, values, n * sizeof(u64)))
5650 		return -EFAULT;
5651 
5652 	return n * sizeof(u64);
5653 }
5654 
5655 static bool is_event_hup(struct perf_event *event)
5656 {
5657 	bool no_children;
5658 
5659 	if (event->state > PERF_EVENT_STATE_EXIT)
5660 		return false;
5661 
5662 	mutex_lock(&event->child_mutex);
5663 	no_children = list_empty(&event->child_list);
5664 	mutex_unlock(&event->child_mutex);
5665 	return no_children;
5666 }
5667 
5668 /*
5669  * Read the performance event - simple non blocking version for now
5670  */
5671 static ssize_t
5672 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5673 {
5674 	u64 read_format = event->attr.read_format;
5675 	int ret;
5676 
5677 	/*
5678 	 * Return end-of-file for a read on an event that is in
5679 	 * error state (i.e. because it was pinned but it couldn't be
5680 	 * scheduled on to the CPU at some point).
5681 	 */
5682 	if (event->state == PERF_EVENT_STATE_ERROR)
5683 		return 0;
5684 
5685 	if (count < event->read_size)
5686 		return -ENOSPC;
5687 
5688 	WARN_ON_ONCE(event->ctx->parent_ctx);
5689 	if (read_format & PERF_FORMAT_GROUP)
5690 		ret = perf_read_group(event, read_format, buf);
5691 	else
5692 		ret = perf_read_one(event, read_format, buf);
5693 
5694 	return ret;
5695 }
5696 
5697 static ssize_t
5698 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5699 {
5700 	struct perf_event *event = file->private_data;
5701 	struct perf_event_context *ctx;
5702 	int ret;
5703 
5704 	ret = security_perf_event_read(event);
5705 	if (ret)
5706 		return ret;
5707 
5708 	ctx = perf_event_ctx_lock(event);
5709 	ret = __perf_read(event, buf, count);
5710 	perf_event_ctx_unlock(event, ctx);
5711 
5712 	return ret;
5713 }
5714 
5715 static __poll_t perf_poll(struct file *file, poll_table *wait)
5716 {
5717 	struct perf_event *event = file->private_data;
5718 	struct perf_buffer *rb;
5719 	__poll_t events = EPOLLHUP;
5720 
5721 	poll_wait(file, &event->waitq, wait);
5722 
5723 	if (is_event_hup(event))
5724 		return events;
5725 
5726 	/*
5727 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5728 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5729 	 */
5730 	mutex_lock(&event->mmap_mutex);
5731 	rb = event->rb;
5732 	if (rb)
5733 		events = atomic_xchg(&rb->poll, 0);
5734 	mutex_unlock(&event->mmap_mutex);
5735 	return events;
5736 }
5737 
5738 static void _perf_event_reset(struct perf_event *event)
5739 {
5740 	(void)perf_event_read(event, false);
5741 	local64_set(&event->count, 0);
5742 	perf_event_update_userpage(event);
5743 }
5744 
5745 /* Assume it's not an event with inherit set. */
5746 u64 perf_event_pause(struct perf_event *event, bool reset)
5747 {
5748 	struct perf_event_context *ctx;
5749 	u64 count;
5750 
5751 	ctx = perf_event_ctx_lock(event);
5752 	WARN_ON_ONCE(event->attr.inherit);
5753 	_perf_event_disable(event);
5754 	count = local64_read(&event->count);
5755 	if (reset)
5756 		local64_set(&event->count, 0);
5757 	perf_event_ctx_unlock(event, ctx);
5758 
5759 	return count;
5760 }
5761 EXPORT_SYMBOL_GPL(perf_event_pause);
5762 
5763 /*
5764  * Holding the top-level event's child_mutex means that any
5765  * descendant process that has inherited this event will block
5766  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5767  * task existence requirements of perf_event_enable/disable.
5768  */
5769 static void perf_event_for_each_child(struct perf_event *event,
5770 					void (*func)(struct perf_event *))
5771 {
5772 	struct perf_event *child;
5773 
5774 	WARN_ON_ONCE(event->ctx->parent_ctx);
5775 
5776 	mutex_lock(&event->child_mutex);
5777 	func(event);
5778 	list_for_each_entry(child, &event->child_list, child_list)
5779 		func(child);
5780 	mutex_unlock(&event->child_mutex);
5781 }
5782 
5783 static void perf_event_for_each(struct perf_event *event,
5784 				  void (*func)(struct perf_event *))
5785 {
5786 	struct perf_event_context *ctx = event->ctx;
5787 	struct perf_event *sibling;
5788 
5789 	lockdep_assert_held(&ctx->mutex);
5790 
5791 	event = event->group_leader;
5792 
5793 	perf_event_for_each_child(event, func);
5794 	for_each_sibling_event(sibling, event)
5795 		perf_event_for_each_child(sibling, func);
5796 }
5797 
5798 static void __perf_event_period(struct perf_event *event,
5799 				struct perf_cpu_context *cpuctx,
5800 				struct perf_event_context *ctx,
5801 				void *info)
5802 {
5803 	u64 value = *((u64 *)info);
5804 	bool active;
5805 
5806 	if (event->attr.freq) {
5807 		event->attr.sample_freq = value;
5808 	} else {
5809 		event->attr.sample_period = value;
5810 		event->hw.sample_period = value;
5811 	}
5812 
5813 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5814 	if (active) {
5815 		perf_pmu_disable(event->pmu);
5816 		/*
5817 		 * We could be throttled; unthrottle now to avoid the tick
5818 		 * trying to unthrottle while we already re-started the event.
5819 		 */
5820 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5821 			event->hw.interrupts = 0;
5822 			perf_log_throttle(event, 1);
5823 		}
5824 		event->pmu->stop(event, PERF_EF_UPDATE);
5825 	}
5826 
5827 	local64_set(&event->hw.period_left, 0);
5828 
5829 	if (active) {
5830 		event->pmu->start(event, PERF_EF_RELOAD);
5831 		perf_pmu_enable(event->pmu);
5832 	}
5833 }
5834 
5835 static int perf_event_check_period(struct perf_event *event, u64 value)
5836 {
5837 	return event->pmu->check_period(event, value);
5838 }
5839 
5840 static int _perf_event_period(struct perf_event *event, u64 value)
5841 {
5842 	if (!is_sampling_event(event))
5843 		return -EINVAL;
5844 
5845 	if (!value)
5846 		return -EINVAL;
5847 
5848 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5849 		return -EINVAL;
5850 
5851 	if (perf_event_check_period(event, value))
5852 		return -EINVAL;
5853 
5854 	if (!event->attr.freq && (value & (1ULL << 63)))
5855 		return -EINVAL;
5856 
5857 	event_function_call(event, __perf_event_period, &value);
5858 
5859 	return 0;
5860 }
5861 
5862 int perf_event_period(struct perf_event *event, u64 value)
5863 {
5864 	struct perf_event_context *ctx;
5865 	int ret;
5866 
5867 	ctx = perf_event_ctx_lock(event);
5868 	ret = _perf_event_period(event, value);
5869 	perf_event_ctx_unlock(event, ctx);
5870 
5871 	return ret;
5872 }
5873 EXPORT_SYMBOL_GPL(perf_event_period);
5874 
5875 static const struct file_operations perf_fops;
5876 
5877 static inline int perf_fget_light(int fd, struct fd *p)
5878 {
5879 	struct fd f = fdget(fd);
5880 	if (!f.file)
5881 		return -EBADF;
5882 
5883 	if (f.file->f_op != &perf_fops) {
5884 		fdput(f);
5885 		return -EBADF;
5886 	}
5887 	*p = f;
5888 	return 0;
5889 }
5890 
5891 static int perf_event_set_output(struct perf_event *event,
5892 				 struct perf_event *output_event);
5893 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5894 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5895 			  struct perf_event_attr *attr);
5896 
5897 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5898 {
5899 	void (*func)(struct perf_event *);
5900 	u32 flags = arg;
5901 
5902 	switch (cmd) {
5903 	case PERF_EVENT_IOC_ENABLE:
5904 		func = _perf_event_enable;
5905 		break;
5906 	case PERF_EVENT_IOC_DISABLE:
5907 		func = _perf_event_disable;
5908 		break;
5909 	case PERF_EVENT_IOC_RESET:
5910 		func = _perf_event_reset;
5911 		break;
5912 
5913 	case PERF_EVENT_IOC_REFRESH:
5914 		return _perf_event_refresh(event, arg);
5915 
5916 	case PERF_EVENT_IOC_PERIOD:
5917 	{
5918 		u64 value;
5919 
5920 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5921 			return -EFAULT;
5922 
5923 		return _perf_event_period(event, value);
5924 	}
5925 	case PERF_EVENT_IOC_ID:
5926 	{
5927 		u64 id = primary_event_id(event);
5928 
5929 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5930 			return -EFAULT;
5931 		return 0;
5932 	}
5933 
5934 	case PERF_EVENT_IOC_SET_OUTPUT:
5935 	{
5936 		int ret;
5937 		if (arg != -1) {
5938 			struct perf_event *output_event;
5939 			struct fd output;
5940 			ret = perf_fget_light(arg, &output);
5941 			if (ret)
5942 				return ret;
5943 			output_event = output.file->private_data;
5944 			ret = perf_event_set_output(event, output_event);
5945 			fdput(output);
5946 		} else {
5947 			ret = perf_event_set_output(event, NULL);
5948 		}
5949 		return ret;
5950 	}
5951 
5952 	case PERF_EVENT_IOC_SET_FILTER:
5953 		return perf_event_set_filter(event, (void __user *)arg);
5954 
5955 	case PERF_EVENT_IOC_SET_BPF:
5956 	{
5957 		struct bpf_prog *prog;
5958 		int err;
5959 
5960 		prog = bpf_prog_get(arg);
5961 		if (IS_ERR(prog))
5962 			return PTR_ERR(prog);
5963 
5964 		err = perf_event_set_bpf_prog(event, prog, 0);
5965 		if (err) {
5966 			bpf_prog_put(prog);
5967 			return err;
5968 		}
5969 
5970 		return 0;
5971 	}
5972 
5973 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5974 		struct perf_buffer *rb;
5975 
5976 		rcu_read_lock();
5977 		rb = rcu_dereference(event->rb);
5978 		if (!rb || !rb->nr_pages) {
5979 			rcu_read_unlock();
5980 			return -EINVAL;
5981 		}
5982 		rb_toggle_paused(rb, !!arg);
5983 		rcu_read_unlock();
5984 		return 0;
5985 	}
5986 
5987 	case PERF_EVENT_IOC_QUERY_BPF:
5988 		return perf_event_query_prog_array(event, (void __user *)arg);
5989 
5990 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5991 		struct perf_event_attr new_attr;
5992 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5993 					 &new_attr);
5994 
5995 		if (err)
5996 			return err;
5997 
5998 		return perf_event_modify_attr(event,  &new_attr);
5999 	}
6000 	default:
6001 		return -ENOTTY;
6002 	}
6003 
6004 	if (flags & PERF_IOC_FLAG_GROUP)
6005 		perf_event_for_each(event, func);
6006 	else
6007 		perf_event_for_each_child(event, func);
6008 
6009 	return 0;
6010 }
6011 
6012 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6013 {
6014 	struct perf_event *event = file->private_data;
6015 	struct perf_event_context *ctx;
6016 	long ret;
6017 
6018 	/* Treat ioctl like writes as it is likely a mutating operation. */
6019 	ret = security_perf_event_write(event);
6020 	if (ret)
6021 		return ret;
6022 
6023 	ctx = perf_event_ctx_lock(event);
6024 	ret = _perf_ioctl(event, cmd, arg);
6025 	perf_event_ctx_unlock(event, ctx);
6026 
6027 	return ret;
6028 }
6029 
6030 #ifdef CONFIG_COMPAT
6031 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6032 				unsigned long arg)
6033 {
6034 	switch (_IOC_NR(cmd)) {
6035 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6036 	case _IOC_NR(PERF_EVENT_IOC_ID):
6037 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6038 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6039 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6040 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6041 			cmd &= ~IOCSIZE_MASK;
6042 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6043 		}
6044 		break;
6045 	}
6046 	return perf_ioctl(file, cmd, arg);
6047 }
6048 #else
6049 # define perf_compat_ioctl NULL
6050 #endif
6051 
6052 int perf_event_task_enable(void)
6053 {
6054 	struct perf_event_context *ctx;
6055 	struct perf_event *event;
6056 
6057 	mutex_lock(&current->perf_event_mutex);
6058 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6059 		ctx = perf_event_ctx_lock(event);
6060 		perf_event_for_each_child(event, _perf_event_enable);
6061 		perf_event_ctx_unlock(event, ctx);
6062 	}
6063 	mutex_unlock(&current->perf_event_mutex);
6064 
6065 	return 0;
6066 }
6067 
6068 int perf_event_task_disable(void)
6069 {
6070 	struct perf_event_context *ctx;
6071 	struct perf_event *event;
6072 
6073 	mutex_lock(&current->perf_event_mutex);
6074 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6075 		ctx = perf_event_ctx_lock(event);
6076 		perf_event_for_each_child(event, _perf_event_disable);
6077 		perf_event_ctx_unlock(event, ctx);
6078 	}
6079 	mutex_unlock(&current->perf_event_mutex);
6080 
6081 	return 0;
6082 }
6083 
6084 static int perf_event_index(struct perf_event *event)
6085 {
6086 	if (event->hw.state & PERF_HES_STOPPED)
6087 		return 0;
6088 
6089 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6090 		return 0;
6091 
6092 	return event->pmu->event_idx(event);
6093 }
6094 
6095 static void perf_event_init_userpage(struct perf_event *event)
6096 {
6097 	struct perf_event_mmap_page *userpg;
6098 	struct perf_buffer *rb;
6099 
6100 	rcu_read_lock();
6101 	rb = rcu_dereference(event->rb);
6102 	if (!rb)
6103 		goto unlock;
6104 
6105 	userpg = rb->user_page;
6106 
6107 	/* Allow new userspace to detect that bit 0 is deprecated */
6108 	userpg->cap_bit0_is_deprecated = 1;
6109 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6110 	userpg->data_offset = PAGE_SIZE;
6111 	userpg->data_size = perf_data_size(rb);
6112 
6113 unlock:
6114 	rcu_read_unlock();
6115 }
6116 
6117 void __weak arch_perf_update_userpage(
6118 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6119 {
6120 }
6121 
6122 /*
6123  * Callers need to ensure there can be no nesting of this function, otherwise
6124  * the seqlock logic goes bad. We can not serialize this because the arch
6125  * code calls this from NMI context.
6126  */
6127 void perf_event_update_userpage(struct perf_event *event)
6128 {
6129 	struct perf_event_mmap_page *userpg;
6130 	struct perf_buffer *rb;
6131 	u64 enabled, running, now;
6132 
6133 	rcu_read_lock();
6134 	rb = rcu_dereference(event->rb);
6135 	if (!rb)
6136 		goto unlock;
6137 
6138 	/*
6139 	 * compute total_time_enabled, total_time_running
6140 	 * based on snapshot values taken when the event
6141 	 * was last scheduled in.
6142 	 *
6143 	 * we cannot simply called update_context_time()
6144 	 * because of locking issue as we can be called in
6145 	 * NMI context
6146 	 */
6147 	calc_timer_values(event, &now, &enabled, &running);
6148 
6149 	userpg = rb->user_page;
6150 	/*
6151 	 * Disable preemption to guarantee consistent time stamps are stored to
6152 	 * the user page.
6153 	 */
6154 	preempt_disable();
6155 	++userpg->lock;
6156 	barrier();
6157 	userpg->index = perf_event_index(event);
6158 	userpg->offset = perf_event_count(event);
6159 	if (userpg->index)
6160 		userpg->offset -= local64_read(&event->hw.prev_count);
6161 
6162 	userpg->time_enabled = enabled +
6163 			atomic64_read(&event->child_total_time_enabled);
6164 
6165 	userpg->time_running = running +
6166 			atomic64_read(&event->child_total_time_running);
6167 
6168 	arch_perf_update_userpage(event, userpg, now);
6169 
6170 	barrier();
6171 	++userpg->lock;
6172 	preempt_enable();
6173 unlock:
6174 	rcu_read_unlock();
6175 }
6176 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6177 
6178 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6179 {
6180 	struct perf_event *event = vmf->vma->vm_file->private_data;
6181 	struct perf_buffer *rb;
6182 	vm_fault_t ret = VM_FAULT_SIGBUS;
6183 
6184 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6185 		if (vmf->pgoff == 0)
6186 			ret = 0;
6187 		return ret;
6188 	}
6189 
6190 	rcu_read_lock();
6191 	rb = rcu_dereference(event->rb);
6192 	if (!rb)
6193 		goto unlock;
6194 
6195 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6196 		goto unlock;
6197 
6198 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6199 	if (!vmf->page)
6200 		goto unlock;
6201 
6202 	get_page(vmf->page);
6203 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6204 	vmf->page->index   = vmf->pgoff;
6205 
6206 	ret = 0;
6207 unlock:
6208 	rcu_read_unlock();
6209 
6210 	return ret;
6211 }
6212 
6213 static void ring_buffer_attach(struct perf_event *event,
6214 			       struct perf_buffer *rb)
6215 {
6216 	struct perf_buffer *old_rb = NULL;
6217 	unsigned long flags;
6218 
6219 	WARN_ON_ONCE(event->parent);
6220 
6221 	if (event->rb) {
6222 		/*
6223 		 * Should be impossible, we set this when removing
6224 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6225 		 */
6226 		WARN_ON_ONCE(event->rcu_pending);
6227 
6228 		old_rb = event->rb;
6229 		spin_lock_irqsave(&old_rb->event_lock, flags);
6230 		list_del_rcu(&event->rb_entry);
6231 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6232 
6233 		event->rcu_batches = get_state_synchronize_rcu();
6234 		event->rcu_pending = 1;
6235 	}
6236 
6237 	if (rb) {
6238 		if (event->rcu_pending) {
6239 			cond_synchronize_rcu(event->rcu_batches);
6240 			event->rcu_pending = 0;
6241 		}
6242 
6243 		spin_lock_irqsave(&rb->event_lock, flags);
6244 		list_add_rcu(&event->rb_entry, &rb->event_list);
6245 		spin_unlock_irqrestore(&rb->event_lock, flags);
6246 	}
6247 
6248 	/*
6249 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6250 	 * before swizzling the event::rb pointer; if it's getting
6251 	 * unmapped, its aux_mmap_count will be 0 and it won't
6252 	 * restart. See the comment in __perf_pmu_output_stop().
6253 	 *
6254 	 * Data will inevitably be lost when set_output is done in
6255 	 * mid-air, but then again, whoever does it like this is
6256 	 * not in for the data anyway.
6257 	 */
6258 	if (has_aux(event))
6259 		perf_event_stop(event, 0);
6260 
6261 	rcu_assign_pointer(event->rb, rb);
6262 
6263 	if (old_rb) {
6264 		ring_buffer_put(old_rb);
6265 		/*
6266 		 * Since we detached before setting the new rb, so that we
6267 		 * could attach the new rb, we could have missed a wakeup.
6268 		 * Provide it now.
6269 		 */
6270 		wake_up_all(&event->waitq);
6271 	}
6272 }
6273 
6274 static void ring_buffer_wakeup(struct perf_event *event)
6275 {
6276 	struct perf_buffer *rb;
6277 
6278 	if (event->parent)
6279 		event = event->parent;
6280 
6281 	rcu_read_lock();
6282 	rb = rcu_dereference(event->rb);
6283 	if (rb) {
6284 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6285 			wake_up_all(&event->waitq);
6286 	}
6287 	rcu_read_unlock();
6288 }
6289 
6290 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6291 {
6292 	struct perf_buffer *rb;
6293 
6294 	if (event->parent)
6295 		event = event->parent;
6296 
6297 	rcu_read_lock();
6298 	rb = rcu_dereference(event->rb);
6299 	if (rb) {
6300 		if (!refcount_inc_not_zero(&rb->refcount))
6301 			rb = NULL;
6302 	}
6303 	rcu_read_unlock();
6304 
6305 	return rb;
6306 }
6307 
6308 void ring_buffer_put(struct perf_buffer *rb)
6309 {
6310 	if (!refcount_dec_and_test(&rb->refcount))
6311 		return;
6312 
6313 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6314 
6315 	call_rcu(&rb->rcu_head, rb_free_rcu);
6316 }
6317 
6318 static void perf_mmap_open(struct vm_area_struct *vma)
6319 {
6320 	struct perf_event *event = vma->vm_file->private_data;
6321 
6322 	atomic_inc(&event->mmap_count);
6323 	atomic_inc(&event->rb->mmap_count);
6324 
6325 	if (vma->vm_pgoff)
6326 		atomic_inc(&event->rb->aux_mmap_count);
6327 
6328 	if (event->pmu->event_mapped)
6329 		event->pmu->event_mapped(event, vma->vm_mm);
6330 }
6331 
6332 static void perf_pmu_output_stop(struct perf_event *event);
6333 
6334 /*
6335  * A buffer can be mmap()ed multiple times; either directly through the same
6336  * event, or through other events by use of perf_event_set_output().
6337  *
6338  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6339  * the buffer here, where we still have a VM context. This means we need
6340  * to detach all events redirecting to us.
6341  */
6342 static void perf_mmap_close(struct vm_area_struct *vma)
6343 {
6344 	struct perf_event *event = vma->vm_file->private_data;
6345 	struct perf_buffer *rb = ring_buffer_get(event);
6346 	struct user_struct *mmap_user = rb->mmap_user;
6347 	int mmap_locked = rb->mmap_locked;
6348 	unsigned long size = perf_data_size(rb);
6349 	bool detach_rest = false;
6350 
6351 	if (event->pmu->event_unmapped)
6352 		event->pmu->event_unmapped(event, vma->vm_mm);
6353 
6354 	/*
6355 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6356 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6357 	 * serialize with perf_mmap here.
6358 	 */
6359 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6360 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6361 		/*
6362 		 * Stop all AUX events that are writing to this buffer,
6363 		 * so that we can free its AUX pages and corresponding PMU
6364 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6365 		 * they won't start any more (see perf_aux_output_begin()).
6366 		 */
6367 		perf_pmu_output_stop(event);
6368 
6369 		/* now it's safe to free the pages */
6370 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6371 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6372 
6373 		/* this has to be the last one */
6374 		rb_free_aux(rb);
6375 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6376 
6377 		mutex_unlock(&event->mmap_mutex);
6378 	}
6379 
6380 	if (atomic_dec_and_test(&rb->mmap_count))
6381 		detach_rest = true;
6382 
6383 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6384 		goto out_put;
6385 
6386 	ring_buffer_attach(event, NULL);
6387 	mutex_unlock(&event->mmap_mutex);
6388 
6389 	/* If there's still other mmap()s of this buffer, we're done. */
6390 	if (!detach_rest)
6391 		goto out_put;
6392 
6393 	/*
6394 	 * No other mmap()s, detach from all other events that might redirect
6395 	 * into the now unreachable buffer. Somewhat complicated by the
6396 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6397 	 */
6398 again:
6399 	rcu_read_lock();
6400 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6401 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6402 			/*
6403 			 * This event is en-route to free_event() which will
6404 			 * detach it and remove it from the list.
6405 			 */
6406 			continue;
6407 		}
6408 		rcu_read_unlock();
6409 
6410 		mutex_lock(&event->mmap_mutex);
6411 		/*
6412 		 * Check we didn't race with perf_event_set_output() which can
6413 		 * swizzle the rb from under us while we were waiting to
6414 		 * acquire mmap_mutex.
6415 		 *
6416 		 * If we find a different rb; ignore this event, a next
6417 		 * iteration will no longer find it on the list. We have to
6418 		 * still restart the iteration to make sure we're not now
6419 		 * iterating the wrong list.
6420 		 */
6421 		if (event->rb == rb)
6422 			ring_buffer_attach(event, NULL);
6423 
6424 		mutex_unlock(&event->mmap_mutex);
6425 		put_event(event);
6426 
6427 		/*
6428 		 * Restart the iteration; either we're on the wrong list or
6429 		 * destroyed its integrity by doing a deletion.
6430 		 */
6431 		goto again;
6432 	}
6433 	rcu_read_unlock();
6434 
6435 	/*
6436 	 * It could be there's still a few 0-ref events on the list; they'll
6437 	 * get cleaned up by free_event() -- they'll also still have their
6438 	 * ref on the rb and will free it whenever they are done with it.
6439 	 *
6440 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6441 	 * undo the VM accounting.
6442 	 */
6443 
6444 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6445 			&mmap_user->locked_vm);
6446 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6447 	free_uid(mmap_user);
6448 
6449 out_put:
6450 	ring_buffer_put(rb); /* could be last */
6451 }
6452 
6453 static const struct vm_operations_struct perf_mmap_vmops = {
6454 	.open		= perf_mmap_open,
6455 	.close		= perf_mmap_close, /* non mergeable */
6456 	.fault		= perf_mmap_fault,
6457 	.page_mkwrite	= perf_mmap_fault,
6458 };
6459 
6460 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6461 {
6462 	struct perf_event *event = file->private_data;
6463 	unsigned long user_locked, user_lock_limit;
6464 	struct user_struct *user = current_user();
6465 	struct perf_buffer *rb = NULL;
6466 	unsigned long locked, lock_limit;
6467 	unsigned long vma_size;
6468 	unsigned long nr_pages;
6469 	long user_extra = 0, extra = 0;
6470 	int ret = 0, flags = 0;
6471 
6472 	/*
6473 	 * Don't allow mmap() of inherited per-task counters. This would
6474 	 * create a performance issue due to all children writing to the
6475 	 * same rb.
6476 	 */
6477 	if (event->cpu == -1 && event->attr.inherit)
6478 		return -EINVAL;
6479 
6480 	if (!(vma->vm_flags & VM_SHARED))
6481 		return -EINVAL;
6482 
6483 	ret = security_perf_event_read(event);
6484 	if (ret)
6485 		return ret;
6486 
6487 	vma_size = vma->vm_end - vma->vm_start;
6488 
6489 	if (vma->vm_pgoff == 0) {
6490 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6491 	} else {
6492 		/*
6493 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6494 		 * mapped, all subsequent mappings should have the same size
6495 		 * and offset. Must be above the normal perf buffer.
6496 		 */
6497 		u64 aux_offset, aux_size;
6498 
6499 		if (!event->rb)
6500 			return -EINVAL;
6501 
6502 		nr_pages = vma_size / PAGE_SIZE;
6503 		if (nr_pages > INT_MAX)
6504 			return -ENOMEM;
6505 
6506 		mutex_lock(&event->mmap_mutex);
6507 		ret = -EINVAL;
6508 
6509 		rb = event->rb;
6510 		if (!rb)
6511 			goto aux_unlock;
6512 
6513 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6514 		aux_size = READ_ONCE(rb->user_page->aux_size);
6515 
6516 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6517 			goto aux_unlock;
6518 
6519 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6520 			goto aux_unlock;
6521 
6522 		/* already mapped with a different offset */
6523 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6524 			goto aux_unlock;
6525 
6526 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6527 			goto aux_unlock;
6528 
6529 		/* already mapped with a different size */
6530 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6531 			goto aux_unlock;
6532 
6533 		if (!is_power_of_2(nr_pages))
6534 			goto aux_unlock;
6535 
6536 		if (!atomic_inc_not_zero(&rb->mmap_count))
6537 			goto aux_unlock;
6538 
6539 		if (rb_has_aux(rb)) {
6540 			atomic_inc(&rb->aux_mmap_count);
6541 			ret = 0;
6542 			goto unlock;
6543 		}
6544 
6545 		atomic_set(&rb->aux_mmap_count, 1);
6546 		user_extra = nr_pages;
6547 
6548 		goto accounting;
6549 	}
6550 
6551 	/*
6552 	 * If we have rb pages ensure they're a power-of-two number, so we
6553 	 * can do bitmasks instead of modulo.
6554 	 */
6555 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6556 		return -EINVAL;
6557 
6558 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6559 		return -EINVAL;
6560 
6561 	WARN_ON_ONCE(event->ctx->parent_ctx);
6562 again:
6563 	mutex_lock(&event->mmap_mutex);
6564 	if (event->rb) {
6565 		if (data_page_nr(event->rb) != nr_pages) {
6566 			ret = -EINVAL;
6567 			goto unlock;
6568 		}
6569 
6570 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6571 			/*
6572 			 * Raced against perf_mmap_close(); remove the
6573 			 * event and try again.
6574 			 */
6575 			ring_buffer_attach(event, NULL);
6576 			mutex_unlock(&event->mmap_mutex);
6577 			goto again;
6578 		}
6579 
6580 		goto unlock;
6581 	}
6582 
6583 	user_extra = nr_pages + 1;
6584 
6585 accounting:
6586 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6587 
6588 	/*
6589 	 * Increase the limit linearly with more CPUs:
6590 	 */
6591 	user_lock_limit *= num_online_cpus();
6592 
6593 	user_locked = atomic_long_read(&user->locked_vm);
6594 
6595 	/*
6596 	 * sysctl_perf_event_mlock may have changed, so that
6597 	 *     user->locked_vm > user_lock_limit
6598 	 */
6599 	if (user_locked > user_lock_limit)
6600 		user_locked = user_lock_limit;
6601 	user_locked += user_extra;
6602 
6603 	if (user_locked > user_lock_limit) {
6604 		/*
6605 		 * charge locked_vm until it hits user_lock_limit;
6606 		 * charge the rest from pinned_vm
6607 		 */
6608 		extra = user_locked - user_lock_limit;
6609 		user_extra -= extra;
6610 	}
6611 
6612 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6613 	lock_limit >>= PAGE_SHIFT;
6614 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6615 
6616 	if ((locked > lock_limit) && perf_is_paranoid() &&
6617 		!capable(CAP_IPC_LOCK)) {
6618 		ret = -EPERM;
6619 		goto unlock;
6620 	}
6621 
6622 	WARN_ON(!rb && event->rb);
6623 
6624 	if (vma->vm_flags & VM_WRITE)
6625 		flags |= RING_BUFFER_WRITABLE;
6626 
6627 	if (!rb) {
6628 		rb = rb_alloc(nr_pages,
6629 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6630 			      event->cpu, flags);
6631 
6632 		if (!rb) {
6633 			ret = -ENOMEM;
6634 			goto unlock;
6635 		}
6636 
6637 		atomic_set(&rb->mmap_count, 1);
6638 		rb->mmap_user = get_current_user();
6639 		rb->mmap_locked = extra;
6640 
6641 		ring_buffer_attach(event, rb);
6642 
6643 		perf_event_update_time(event);
6644 		perf_event_init_userpage(event);
6645 		perf_event_update_userpage(event);
6646 	} else {
6647 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6648 				   event->attr.aux_watermark, flags);
6649 		if (!ret)
6650 			rb->aux_mmap_locked = extra;
6651 	}
6652 
6653 unlock:
6654 	if (!ret) {
6655 		atomic_long_add(user_extra, &user->locked_vm);
6656 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6657 
6658 		atomic_inc(&event->mmap_count);
6659 	} else if (rb) {
6660 		atomic_dec(&rb->mmap_count);
6661 	}
6662 aux_unlock:
6663 	mutex_unlock(&event->mmap_mutex);
6664 
6665 	/*
6666 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6667 	 * vma.
6668 	 */
6669 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6670 	vma->vm_ops = &perf_mmap_vmops;
6671 
6672 	if (event->pmu->event_mapped)
6673 		event->pmu->event_mapped(event, vma->vm_mm);
6674 
6675 	return ret;
6676 }
6677 
6678 static int perf_fasync(int fd, struct file *filp, int on)
6679 {
6680 	struct inode *inode = file_inode(filp);
6681 	struct perf_event *event = filp->private_data;
6682 	int retval;
6683 
6684 	inode_lock(inode);
6685 	retval = fasync_helper(fd, filp, on, &event->fasync);
6686 	inode_unlock(inode);
6687 
6688 	if (retval < 0)
6689 		return retval;
6690 
6691 	return 0;
6692 }
6693 
6694 static const struct file_operations perf_fops = {
6695 	.llseek			= no_llseek,
6696 	.release		= perf_release,
6697 	.read			= perf_read,
6698 	.poll			= perf_poll,
6699 	.unlocked_ioctl		= perf_ioctl,
6700 	.compat_ioctl		= perf_compat_ioctl,
6701 	.mmap			= perf_mmap,
6702 	.fasync			= perf_fasync,
6703 };
6704 
6705 /*
6706  * Perf event wakeup
6707  *
6708  * If there's data, ensure we set the poll() state and publish everything
6709  * to user-space before waking everybody up.
6710  */
6711 
6712 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6713 {
6714 	/* only the parent has fasync state */
6715 	if (event->parent)
6716 		event = event->parent;
6717 	return &event->fasync;
6718 }
6719 
6720 void perf_event_wakeup(struct perf_event *event)
6721 {
6722 	ring_buffer_wakeup(event);
6723 
6724 	if (event->pending_kill) {
6725 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6726 		event->pending_kill = 0;
6727 	}
6728 }
6729 
6730 static void perf_sigtrap(struct perf_event *event)
6731 {
6732 	/*
6733 	 * We'd expect this to only occur if the irq_work is delayed and either
6734 	 * ctx->task or current has changed in the meantime. This can be the
6735 	 * case on architectures that do not implement arch_irq_work_raise().
6736 	 */
6737 	if (WARN_ON_ONCE(event->ctx->task != current))
6738 		return;
6739 
6740 	/*
6741 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6742 	 * task exiting.
6743 	 */
6744 	if (current->flags & PF_EXITING)
6745 		return;
6746 
6747 	send_sig_perf((void __user *)event->pending_addr,
6748 		      event->orig_type, event->attr.sig_data);
6749 }
6750 
6751 /*
6752  * Deliver the pending work in-event-context or follow the context.
6753  */
6754 static void __perf_pending_irq(struct perf_event *event)
6755 {
6756 	int cpu = READ_ONCE(event->oncpu);
6757 
6758 	/*
6759 	 * If the event isn't running; we done. event_sched_out() will have
6760 	 * taken care of things.
6761 	 */
6762 	if (cpu < 0)
6763 		return;
6764 
6765 	/*
6766 	 * Yay, we hit home and are in the context of the event.
6767 	 */
6768 	if (cpu == smp_processor_id()) {
6769 		if (event->pending_sigtrap) {
6770 			event->pending_sigtrap = 0;
6771 			perf_sigtrap(event);
6772 			local_dec(&event->ctx->nr_pending);
6773 		}
6774 		if (event->pending_disable) {
6775 			event->pending_disable = 0;
6776 			perf_event_disable_local(event);
6777 		}
6778 		return;
6779 	}
6780 
6781 	/*
6782 	 *  CPU-A			CPU-B
6783 	 *
6784 	 *  perf_event_disable_inatomic()
6785 	 *    @pending_disable = CPU-A;
6786 	 *    irq_work_queue();
6787 	 *
6788 	 *  sched-out
6789 	 *    @pending_disable = -1;
6790 	 *
6791 	 *				sched-in
6792 	 *				perf_event_disable_inatomic()
6793 	 *				  @pending_disable = CPU-B;
6794 	 *				  irq_work_queue(); // FAILS
6795 	 *
6796 	 *  irq_work_run()
6797 	 *    perf_pending_irq()
6798 	 *
6799 	 * But the event runs on CPU-B and wants disabling there.
6800 	 */
6801 	irq_work_queue_on(&event->pending_irq, cpu);
6802 }
6803 
6804 static void perf_pending_irq(struct irq_work *entry)
6805 {
6806 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6807 	int rctx;
6808 
6809 	/*
6810 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6811 	 * and we won't recurse 'further'.
6812 	 */
6813 	rctx = perf_swevent_get_recursion_context();
6814 
6815 	/*
6816 	 * The wakeup isn't bound to the context of the event -- it can happen
6817 	 * irrespective of where the event is.
6818 	 */
6819 	if (event->pending_wakeup) {
6820 		event->pending_wakeup = 0;
6821 		perf_event_wakeup(event);
6822 	}
6823 
6824 	__perf_pending_irq(event);
6825 
6826 	if (rctx >= 0)
6827 		perf_swevent_put_recursion_context(rctx);
6828 }
6829 
6830 static void perf_pending_task(struct callback_head *head)
6831 {
6832 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6833 	int rctx;
6834 
6835 	/*
6836 	 * All accesses to the event must belong to the same implicit RCU read-side
6837 	 * critical section as the ->pending_work reset. See comment in
6838 	 * perf_pending_task_sync().
6839 	 */
6840 	preempt_disable_notrace();
6841 	/*
6842 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6843 	 * and we won't recurse 'further'.
6844 	 */
6845 	rctx = perf_swevent_get_recursion_context();
6846 
6847 	if (event->pending_work) {
6848 		event->pending_work = 0;
6849 		perf_sigtrap(event);
6850 		local_dec(&event->ctx->nr_pending);
6851 		rcuwait_wake_up(&event->pending_work_wait);
6852 	}
6853 
6854 	if (rctx >= 0)
6855 		perf_swevent_put_recursion_context(rctx);
6856 	preempt_enable_notrace();
6857 }
6858 
6859 #ifdef CONFIG_GUEST_PERF_EVENTS
6860 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6861 
6862 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6863 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6864 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6865 
6866 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6867 {
6868 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6869 		return;
6870 
6871 	rcu_assign_pointer(perf_guest_cbs, cbs);
6872 	static_call_update(__perf_guest_state, cbs->state);
6873 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6874 
6875 	/* Implementing ->handle_intel_pt_intr is optional. */
6876 	if (cbs->handle_intel_pt_intr)
6877 		static_call_update(__perf_guest_handle_intel_pt_intr,
6878 				   cbs->handle_intel_pt_intr);
6879 }
6880 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6881 
6882 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6883 {
6884 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6885 		return;
6886 
6887 	rcu_assign_pointer(perf_guest_cbs, NULL);
6888 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6889 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6890 	static_call_update(__perf_guest_handle_intel_pt_intr,
6891 			   (void *)&__static_call_return0);
6892 	synchronize_rcu();
6893 }
6894 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6895 #endif
6896 
6897 static void
6898 perf_output_sample_regs(struct perf_output_handle *handle,
6899 			struct pt_regs *regs, u64 mask)
6900 {
6901 	int bit;
6902 	DECLARE_BITMAP(_mask, 64);
6903 
6904 	bitmap_from_u64(_mask, mask);
6905 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6906 		u64 val;
6907 
6908 		val = perf_reg_value(regs, bit);
6909 		perf_output_put(handle, val);
6910 	}
6911 }
6912 
6913 static void perf_sample_regs_user(struct perf_regs *regs_user,
6914 				  struct pt_regs *regs)
6915 {
6916 	if (user_mode(regs)) {
6917 		regs_user->abi = perf_reg_abi(current);
6918 		regs_user->regs = regs;
6919 	} else if (!(current->flags & PF_KTHREAD)) {
6920 		perf_get_regs_user(regs_user, regs);
6921 	} else {
6922 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6923 		regs_user->regs = NULL;
6924 	}
6925 }
6926 
6927 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6928 				  struct pt_regs *regs)
6929 {
6930 	regs_intr->regs = regs;
6931 	regs_intr->abi  = perf_reg_abi(current);
6932 }
6933 
6934 
6935 /*
6936  * Get remaining task size from user stack pointer.
6937  *
6938  * It'd be better to take stack vma map and limit this more
6939  * precisely, but there's no way to get it safely under interrupt,
6940  * so using TASK_SIZE as limit.
6941  */
6942 static u64 perf_ustack_task_size(struct pt_regs *regs)
6943 {
6944 	unsigned long addr = perf_user_stack_pointer(regs);
6945 
6946 	if (!addr || addr >= TASK_SIZE)
6947 		return 0;
6948 
6949 	return TASK_SIZE - addr;
6950 }
6951 
6952 static u16
6953 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6954 			struct pt_regs *regs)
6955 {
6956 	u64 task_size;
6957 
6958 	/* No regs, no stack pointer, no dump. */
6959 	if (!regs)
6960 		return 0;
6961 
6962 	/*
6963 	 * Check if we fit in with the requested stack size into the:
6964 	 * - TASK_SIZE
6965 	 *   If we don't, we limit the size to the TASK_SIZE.
6966 	 *
6967 	 * - remaining sample size
6968 	 *   If we don't, we customize the stack size to
6969 	 *   fit in to the remaining sample size.
6970 	 */
6971 
6972 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6973 	stack_size = min(stack_size, (u16) task_size);
6974 
6975 	/* Current header size plus static size and dynamic size. */
6976 	header_size += 2 * sizeof(u64);
6977 
6978 	/* Do we fit in with the current stack dump size? */
6979 	if ((u16) (header_size + stack_size) < header_size) {
6980 		/*
6981 		 * If we overflow the maximum size for the sample,
6982 		 * we customize the stack dump size to fit in.
6983 		 */
6984 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6985 		stack_size = round_up(stack_size, sizeof(u64));
6986 	}
6987 
6988 	return stack_size;
6989 }
6990 
6991 static void
6992 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6993 			  struct pt_regs *regs)
6994 {
6995 	/* Case of a kernel thread, nothing to dump */
6996 	if (!regs) {
6997 		u64 size = 0;
6998 		perf_output_put(handle, size);
6999 	} else {
7000 		unsigned long sp;
7001 		unsigned int rem;
7002 		u64 dyn_size;
7003 
7004 		/*
7005 		 * We dump:
7006 		 * static size
7007 		 *   - the size requested by user or the best one we can fit
7008 		 *     in to the sample max size
7009 		 * data
7010 		 *   - user stack dump data
7011 		 * dynamic size
7012 		 *   - the actual dumped size
7013 		 */
7014 
7015 		/* Static size. */
7016 		perf_output_put(handle, dump_size);
7017 
7018 		/* Data. */
7019 		sp = perf_user_stack_pointer(regs);
7020 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7021 		dyn_size = dump_size - rem;
7022 
7023 		perf_output_skip(handle, rem);
7024 
7025 		/* Dynamic size. */
7026 		perf_output_put(handle, dyn_size);
7027 	}
7028 }
7029 
7030 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7031 					  struct perf_sample_data *data,
7032 					  size_t size)
7033 {
7034 	struct perf_event *sampler = event->aux_event;
7035 	struct perf_buffer *rb;
7036 
7037 	data->aux_size = 0;
7038 
7039 	if (!sampler)
7040 		goto out;
7041 
7042 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7043 		goto out;
7044 
7045 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7046 		goto out;
7047 
7048 	rb = ring_buffer_get(sampler);
7049 	if (!rb)
7050 		goto out;
7051 
7052 	/*
7053 	 * If this is an NMI hit inside sampling code, don't take
7054 	 * the sample. See also perf_aux_sample_output().
7055 	 */
7056 	if (READ_ONCE(rb->aux_in_sampling)) {
7057 		data->aux_size = 0;
7058 	} else {
7059 		size = min_t(size_t, size, perf_aux_size(rb));
7060 		data->aux_size = ALIGN(size, sizeof(u64));
7061 	}
7062 	ring_buffer_put(rb);
7063 
7064 out:
7065 	return data->aux_size;
7066 }
7067 
7068 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7069                                  struct perf_event *event,
7070                                  struct perf_output_handle *handle,
7071                                  unsigned long size)
7072 {
7073 	unsigned long flags;
7074 	long ret;
7075 
7076 	/*
7077 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7078 	 * paths. If we start calling them in NMI context, they may race with
7079 	 * the IRQ ones, that is, for example, re-starting an event that's just
7080 	 * been stopped, which is why we're using a separate callback that
7081 	 * doesn't change the event state.
7082 	 *
7083 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7084 	 */
7085 	local_irq_save(flags);
7086 	/*
7087 	 * Guard against NMI hits inside the critical section;
7088 	 * see also perf_prepare_sample_aux().
7089 	 */
7090 	WRITE_ONCE(rb->aux_in_sampling, 1);
7091 	barrier();
7092 
7093 	ret = event->pmu->snapshot_aux(event, handle, size);
7094 
7095 	barrier();
7096 	WRITE_ONCE(rb->aux_in_sampling, 0);
7097 	local_irq_restore(flags);
7098 
7099 	return ret;
7100 }
7101 
7102 static void perf_aux_sample_output(struct perf_event *event,
7103 				   struct perf_output_handle *handle,
7104 				   struct perf_sample_data *data)
7105 {
7106 	struct perf_event *sampler = event->aux_event;
7107 	struct perf_buffer *rb;
7108 	unsigned long pad;
7109 	long size;
7110 
7111 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7112 		return;
7113 
7114 	rb = ring_buffer_get(sampler);
7115 	if (!rb)
7116 		return;
7117 
7118 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7119 
7120 	/*
7121 	 * An error here means that perf_output_copy() failed (returned a
7122 	 * non-zero surplus that it didn't copy), which in its current
7123 	 * enlightened implementation is not possible. If that changes, we'd
7124 	 * like to know.
7125 	 */
7126 	if (WARN_ON_ONCE(size < 0))
7127 		goto out_put;
7128 
7129 	/*
7130 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7131 	 * perf_prepare_sample_aux(), so should not be more than that.
7132 	 */
7133 	pad = data->aux_size - size;
7134 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7135 		pad = 8;
7136 
7137 	if (pad) {
7138 		u64 zero = 0;
7139 		perf_output_copy(handle, &zero, pad);
7140 	}
7141 
7142 out_put:
7143 	ring_buffer_put(rb);
7144 }
7145 
7146 /*
7147  * A set of common sample data types saved even for non-sample records
7148  * when event->attr.sample_id_all is set.
7149  */
7150 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7151 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7152 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7153 
7154 static void __perf_event_header__init_id(struct perf_sample_data *data,
7155 					 struct perf_event *event,
7156 					 u64 sample_type)
7157 {
7158 	data->type = event->attr.sample_type;
7159 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7160 
7161 	if (sample_type & PERF_SAMPLE_TID) {
7162 		/* namespace issues */
7163 		data->tid_entry.pid = perf_event_pid(event, current);
7164 		data->tid_entry.tid = perf_event_tid(event, current);
7165 	}
7166 
7167 	if (sample_type & PERF_SAMPLE_TIME)
7168 		data->time = perf_event_clock(event);
7169 
7170 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7171 		data->id = primary_event_id(event);
7172 
7173 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7174 		data->stream_id = event->id;
7175 
7176 	if (sample_type & PERF_SAMPLE_CPU) {
7177 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7178 		data->cpu_entry.reserved = 0;
7179 	}
7180 }
7181 
7182 void perf_event_header__init_id(struct perf_event_header *header,
7183 				struct perf_sample_data *data,
7184 				struct perf_event *event)
7185 {
7186 	if (event->attr.sample_id_all) {
7187 		header->size += event->id_header_size;
7188 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7189 	}
7190 }
7191 
7192 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7193 					   struct perf_sample_data *data)
7194 {
7195 	u64 sample_type = data->type;
7196 
7197 	if (sample_type & PERF_SAMPLE_TID)
7198 		perf_output_put(handle, data->tid_entry);
7199 
7200 	if (sample_type & PERF_SAMPLE_TIME)
7201 		perf_output_put(handle, data->time);
7202 
7203 	if (sample_type & PERF_SAMPLE_ID)
7204 		perf_output_put(handle, data->id);
7205 
7206 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7207 		perf_output_put(handle, data->stream_id);
7208 
7209 	if (sample_type & PERF_SAMPLE_CPU)
7210 		perf_output_put(handle, data->cpu_entry);
7211 
7212 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7213 		perf_output_put(handle, data->id);
7214 }
7215 
7216 void perf_event__output_id_sample(struct perf_event *event,
7217 				  struct perf_output_handle *handle,
7218 				  struct perf_sample_data *sample)
7219 {
7220 	if (event->attr.sample_id_all)
7221 		__perf_event__output_id_sample(handle, sample);
7222 }
7223 
7224 static void perf_output_read_one(struct perf_output_handle *handle,
7225 				 struct perf_event *event,
7226 				 u64 enabled, u64 running)
7227 {
7228 	u64 read_format = event->attr.read_format;
7229 	u64 values[5];
7230 	int n = 0;
7231 
7232 	values[n++] = perf_event_count(event);
7233 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7234 		values[n++] = enabled +
7235 			atomic64_read(&event->child_total_time_enabled);
7236 	}
7237 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7238 		values[n++] = running +
7239 			atomic64_read(&event->child_total_time_running);
7240 	}
7241 	if (read_format & PERF_FORMAT_ID)
7242 		values[n++] = primary_event_id(event);
7243 	if (read_format & PERF_FORMAT_LOST)
7244 		values[n++] = atomic64_read(&event->lost_samples);
7245 
7246 	__output_copy(handle, values, n * sizeof(u64));
7247 }
7248 
7249 static void perf_output_read_group(struct perf_output_handle *handle,
7250 			    struct perf_event *event,
7251 			    u64 enabled, u64 running)
7252 {
7253 	struct perf_event *leader = event->group_leader, *sub;
7254 	u64 read_format = event->attr.read_format;
7255 	unsigned long flags;
7256 	u64 values[6];
7257 	int n = 0;
7258 
7259 	/*
7260 	 * Disabling interrupts avoids all counter scheduling
7261 	 * (context switches, timer based rotation and IPIs).
7262 	 */
7263 	local_irq_save(flags);
7264 
7265 	values[n++] = 1 + leader->nr_siblings;
7266 
7267 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7268 		values[n++] = enabled;
7269 
7270 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7271 		values[n++] = running;
7272 
7273 	if ((leader != event) &&
7274 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7275 		leader->pmu->read(leader);
7276 
7277 	values[n++] = perf_event_count(leader);
7278 	if (read_format & PERF_FORMAT_ID)
7279 		values[n++] = primary_event_id(leader);
7280 	if (read_format & PERF_FORMAT_LOST)
7281 		values[n++] = atomic64_read(&leader->lost_samples);
7282 
7283 	__output_copy(handle, values, n * sizeof(u64));
7284 
7285 	for_each_sibling_event(sub, leader) {
7286 		n = 0;
7287 
7288 		if ((sub != event) &&
7289 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7290 			sub->pmu->read(sub);
7291 
7292 		values[n++] = perf_event_count(sub);
7293 		if (read_format & PERF_FORMAT_ID)
7294 			values[n++] = primary_event_id(sub);
7295 		if (read_format & PERF_FORMAT_LOST)
7296 			values[n++] = atomic64_read(&sub->lost_samples);
7297 
7298 		__output_copy(handle, values, n * sizeof(u64));
7299 	}
7300 
7301 	local_irq_restore(flags);
7302 }
7303 
7304 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7305 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7306 
7307 /*
7308  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7309  *
7310  * The problem is that its both hard and excessively expensive to iterate the
7311  * child list, not to mention that its impossible to IPI the children running
7312  * on another CPU, from interrupt/NMI context.
7313  */
7314 static void perf_output_read(struct perf_output_handle *handle,
7315 			     struct perf_event *event)
7316 {
7317 	u64 enabled = 0, running = 0, now;
7318 	u64 read_format = event->attr.read_format;
7319 
7320 	/*
7321 	 * compute total_time_enabled, total_time_running
7322 	 * based on snapshot values taken when the event
7323 	 * was last scheduled in.
7324 	 *
7325 	 * we cannot simply called update_context_time()
7326 	 * because of locking issue as we are called in
7327 	 * NMI context
7328 	 */
7329 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7330 		calc_timer_values(event, &now, &enabled, &running);
7331 
7332 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7333 		perf_output_read_group(handle, event, enabled, running);
7334 	else
7335 		perf_output_read_one(handle, event, enabled, running);
7336 }
7337 
7338 void perf_output_sample(struct perf_output_handle *handle,
7339 			struct perf_event_header *header,
7340 			struct perf_sample_data *data,
7341 			struct perf_event *event)
7342 {
7343 	u64 sample_type = data->type;
7344 
7345 	perf_output_put(handle, *header);
7346 
7347 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7348 		perf_output_put(handle, data->id);
7349 
7350 	if (sample_type & PERF_SAMPLE_IP)
7351 		perf_output_put(handle, data->ip);
7352 
7353 	if (sample_type & PERF_SAMPLE_TID)
7354 		perf_output_put(handle, data->tid_entry);
7355 
7356 	if (sample_type & PERF_SAMPLE_TIME)
7357 		perf_output_put(handle, data->time);
7358 
7359 	if (sample_type & PERF_SAMPLE_ADDR)
7360 		perf_output_put(handle, data->addr);
7361 
7362 	if (sample_type & PERF_SAMPLE_ID)
7363 		perf_output_put(handle, data->id);
7364 
7365 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7366 		perf_output_put(handle, data->stream_id);
7367 
7368 	if (sample_type & PERF_SAMPLE_CPU)
7369 		perf_output_put(handle, data->cpu_entry);
7370 
7371 	if (sample_type & PERF_SAMPLE_PERIOD)
7372 		perf_output_put(handle, data->period);
7373 
7374 	if (sample_type & PERF_SAMPLE_READ)
7375 		perf_output_read(handle, event);
7376 
7377 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7378 		int size = 1;
7379 
7380 		size += data->callchain->nr;
7381 		size *= sizeof(u64);
7382 		__output_copy(handle, data->callchain, size);
7383 	}
7384 
7385 	if (sample_type & PERF_SAMPLE_RAW) {
7386 		struct perf_raw_record *raw = data->raw;
7387 
7388 		if (raw) {
7389 			struct perf_raw_frag *frag = &raw->frag;
7390 
7391 			perf_output_put(handle, raw->size);
7392 			do {
7393 				if (frag->copy) {
7394 					__output_custom(handle, frag->copy,
7395 							frag->data, frag->size);
7396 				} else {
7397 					__output_copy(handle, frag->data,
7398 						      frag->size);
7399 				}
7400 				if (perf_raw_frag_last(frag))
7401 					break;
7402 				frag = frag->next;
7403 			} while (1);
7404 			if (frag->pad)
7405 				__output_skip(handle, NULL, frag->pad);
7406 		} else {
7407 			struct {
7408 				u32	size;
7409 				u32	data;
7410 			} raw = {
7411 				.size = sizeof(u32),
7412 				.data = 0,
7413 			};
7414 			perf_output_put(handle, raw);
7415 		}
7416 	}
7417 
7418 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7419 		if (data->br_stack) {
7420 			size_t size;
7421 
7422 			size = data->br_stack->nr
7423 			     * sizeof(struct perf_branch_entry);
7424 
7425 			perf_output_put(handle, data->br_stack->nr);
7426 			if (branch_sample_hw_index(event))
7427 				perf_output_put(handle, data->br_stack->hw_idx);
7428 			perf_output_copy(handle, data->br_stack->entries, size);
7429 		} else {
7430 			/*
7431 			 * we always store at least the value of nr
7432 			 */
7433 			u64 nr = 0;
7434 			perf_output_put(handle, nr);
7435 		}
7436 	}
7437 
7438 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7439 		u64 abi = data->regs_user.abi;
7440 
7441 		/*
7442 		 * If there are no regs to dump, notice it through
7443 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7444 		 */
7445 		perf_output_put(handle, abi);
7446 
7447 		if (abi) {
7448 			u64 mask = event->attr.sample_regs_user;
7449 			perf_output_sample_regs(handle,
7450 						data->regs_user.regs,
7451 						mask);
7452 		}
7453 	}
7454 
7455 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7456 		perf_output_sample_ustack(handle,
7457 					  data->stack_user_size,
7458 					  data->regs_user.regs);
7459 	}
7460 
7461 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7462 		perf_output_put(handle, data->weight.full);
7463 
7464 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7465 		perf_output_put(handle, data->data_src.val);
7466 
7467 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7468 		perf_output_put(handle, data->txn);
7469 
7470 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7471 		u64 abi = data->regs_intr.abi;
7472 		/*
7473 		 * If there are no regs to dump, notice it through
7474 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7475 		 */
7476 		perf_output_put(handle, abi);
7477 
7478 		if (abi) {
7479 			u64 mask = event->attr.sample_regs_intr;
7480 
7481 			perf_output_sample_regs(handle,
7482 						data->regs_intr.regs,
7483 						mask);
7484 		}
7485 	}
7486 
7487 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7488 		perf_output_put(handle, data->phys_addr);
7489 
7490 	if (sample_type & PERF_SAMPLE_CGROUP)
7491 		perf_output_put(handle, data->cgroup);
7492 
7493 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7494 		perf_output_put(handle, data->data_page_size);
7495 
7496 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7497 		perf_output_put(handle, data->code_page_size);
7498 
7499 	if (sample_type & PERF_SAMPLE_AUX) {
7500 		perf_output_put(handle, data->aux_size);
7501 
7502 		if (data->aux_size)
7503 			perf_aux_sample_output(event, handle, data);
7504 	}
7505 
7506 	if (!event->attr.watermark) {
7507 		int wakeup_events = event->attr.wakeup_events;
7508 
7509 		if (wakeup_events) {
7510 			struct perf_buffer *rb = handle->rb;
7511 			int events = local_inc_return(&rb->events);
7512 
7513 			if (events >= wakeup_events) {
7514 				local_sub(wakeup_events, &rb->events);
7515 				local_inc(&rb->wakeup);
7516 			}
7517 		}
7518 	}
7519 }
7520 
7521 static u64 perf_virt_to_phys(u64 virt)
7522 {
7523 	u64 phys_addr = 0;
7524 
7525 	if (!virt)
7526 		return 0;
7527 
7528 	if (virt >= TASK_SIZE) {
7529 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7530 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7531 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7532 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7533 	} else {
7534 		/*
7535 		 * Walking the pages tables for user address.
7536 		 * Interrupts are disabled, so it prevents any tear down
7537 		 * of the page tables.
7538 		 * Try IRQ-safe get_user_page_fast_only first.
7539 		 * If failed, leave phys_addr as 0.
7540 		 */
7541 		if (current->mm != NULL) {
7542 			struct page *p;
7543 
7544 			pagefault_disable();
7545 			if (get_user_page_fast_only(virt, 0, &p)) {
7546 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7547 				put_page(p);
7548 			}
7549 			pagefault_enable();
7550 		}
7551 	}
7552 
7553 	return phys_addr;
7554 }
7555 
7556 /*
7557  * Return the pagetable size of a given virtual address.
7558  */
7559 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7560 {
7561 	u64 size = 0;
7562 
7563 #ifdef CONFIG_HAVE_FAST_GUP
7564 	pgd_t *pgdp, pgd;
7565 	p4d_t *p4dp, p4d;
7566 	pud_t *pudp, pud;
7567 	pmd_t *pmdp, pmd;
7568 	pte_t *ptep, pte;
7569 
7570 	pgdp = pgd_offset(mm, addr);
7571 	pgd = READ_ONCE(*pgdp);
7572 	if (pgd_none(pgd))
7573 		return 0;
7574 
7575 	if (pgd_leaf(pgd))
7576 		return pgd_leaf_size(pgd);
7577 
7578 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7579 	p4d = READ_ONCE(*p4dp);
7580 	if (!p4d_present(p4d))
7581 		return 0;
7582 
7583 	if (p4d_leaf(p4d))
7584 		return p4d_leaf_size(p4d);
7585 
7586 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7587 	pud = READ_ONCE(*pudp);
7588 	if (!pud_present(pud))
7589 		return 0;
7590 
7591 	if (pud_leaf(pud))
7592 		return pud_leaf_size(pud);
7593 
7594 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7595 again:
7596 	pmd = pmdp_get_lockless(pmdp);
7597 	if (!pmd_present(pmd))
7598 		return 0;
7599 
7600 	if (pmd_leaf(pmd))
7601 		return pmd_leaf_size(pmd);
7602 
7603 	ptep = pte_offset_map(&pmd, addr);
7604 	if (!ptep)
7605 		goto again;
7606 
7607 	pte = ptep_get_lockless(ptep);
7608 	if (pte_present(pte))
7609 		size = pte_leaf_size(pte);
7610 	pte_unmap(ptep);
7611 #endif /* CONFIG_HAVE_FAST_GUP */
7612 
7613 	return size;
7614 }
7615 
7616 static u64 perf_get_page_size(unsigned long addr)
7617 {
7618 	struct mm_struct *mm;
7619 	unsigned long flags;
7620 	u64 size;
7621 
7622 	if (!addr)
7623 		return 0;
7624 
7625 	/*
7626 	 * Software page-table walkers must disable IRQs,
7627 	 * which prevents any tear down of the page tables.
7628 	 */
7629 	local_irq_save(flags);
7630 
7631 	mm = current->mm;
7632 	if (!mm) {
7633 		/*
7634 		 * For kernel threads and the like, use init_mm so that
7635 		 * we can find kernel memory.
7636 		 */
7637 		mm = &init_mm;
7638 	}
7639 
7640 	size = perf_get_pgtable_size(mm, addr);
7641 
7642 	local_irq_restore(flags);
7643 
7644 	return size;
7645 }
7646 
7647 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7648 
7649 struct perf_callchain_entry *
7650 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7651 {
7652 	bool kernel = !event->attr.exclude_callchain_kernel;
7653 	bool user   = !event->attr.exclude_callchain_user;
7654 	/* Disallow cross-task user callchains. */
7655 	bool crosstask = event->ctx->task && event->ctx->task != current;
7656 	const u32 max_stack = event->attr.sample_max_stack;
7657 	struct perf_callchain_entry *callchain;
7658 
7659 	if (!kernel && !user)
7660 		return &__empty_callchain;
7661 
7662 	callchain = get_perf_callchain(regs, 0, kernel, user,
7663 				       max_stack, crosstask, true);
7664 	return callchain ?: &__empty_callchain;
7665 }
7666 
7667 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7668 {
7669 	return d * !!(flags & s);
7670 }
7671 
7672 void perf_prepare_sample(struct perf_sample_data *data,
7673 			 struct perf_event *event,
7674 			 struct pt_regs *regs)
7675 {
7676 	u64 sample_type = event->attr.sample_type;
7677 	u64 filtered_sample_type;
7678 
7679 	/*
7680 	 * Add the sample flags that are dependent to others.  And clear the
7681 	 * sample flags that have already been done by the PMU driver.
7682 	 */
7683 	filtered_sample_type = sample_type;
7684 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7685 					   PERF_SAMPLE_IP);
7686 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7687 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7688 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7689 					   PERF_SAMPLE_REGS_USER);
7690 	filtered_sample_type &= ~data->sample_flags;
7691 
7692 	if (filtered_sample_type == 0) {
7693 		/* Make sure it has the correct data->type for output */
7694 		data->type = event->attr.sample_type;
7695 		return;
7696 	}
7697 
7698 	__perf_event_header__init_id(data, event, filtered_sample_type);
7699 
7700 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7701 		data->ip = perf_instruction_pointer(regs);
7702 		data->sample_flags |= PERF_SAMPLE_IP;
7703 	}
7704 
7705 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7706 		perf_sample_save_callchain(data, event, regs);
7707 
7708 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7709 		data->raw = NULL;
7710 		data->dyn_size += sizeof(u64);
7711 		data->sample_flags |= PERF_SAMPLE_RAW;
7712 	}
7713 
7714 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7715 		data->br_stack = NULL;
7716 		data->dyn_size += sizeof(u64);
7717 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7718 	}
7719 
7720 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7721 		perf_sample_regs_user(&data->regs_user, regs);
7722 
7723 	/*
7724 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7725 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7726 	 * the dyn_size if it's not requested by users.
7727 	 */
7728 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7729 		/* regs dump ABI info */
7730 		int size = sizeof(u64);
7731 
7732 		if (data->regs_user.regs) {
7733 			u64 mask = event->attr.sample_regs_user;
7734 			size += hweight64(mask) * sizeof(u64);
7735 		}
7736 
7737 		data->dyn_size += size;
7738 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7739 	}
7740 
7741 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7742 		/*
7743 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7744 		 * processed as the last one or have additional check added
7745 		 * in case new sample type is added, because we could eat
7746 		 * up the rest of the sample size.
7747 		 */
7748 		u16 stack_size = event->attr.sample_stack_user;
7749 		u16 header_size = perf_sample_data_size(data, event);
7750 		u16 size = sizeof(u64);
7751 
7752 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7753 						     data->regs_user.regs);
7754 
7755 		/*
7756 		 * If there is something to dump, add space for the dump
7757 		 * itself and for the field that tells the dynamic size,
7758 		 * which is how many have been actually dumped.
7759 		 */
7760 		if (stack_size)
7761 			size += sizeof(u64) + stack_size;
7762 
7763 		data->stack_user_size = stack_size;
7764 		data->dyn_size += size;
7765 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7766 	}
7767 
7768 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7769 		data->weight.full = 0;
7770 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7771 	}
7772 
7773 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7774 		data->data_src.val = PERF_MEM_NA;
7775 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7776 	}
7777 
7778 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7779 		data->txn = 0;
7780 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7781 	}
7782 
7783 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7784 		data->addr = 0;
7785 		data->sample_flags |= PERF_SAMPLE_ADDR;
7786 	}
7787 
7788 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7789 		/* regs dump ABI info */
7790 		int size = sizeof(u64);
7791 
7792 		perf_sample_regs_intr(&data->regs_intr, regs);
7793 
7794 		if (data->regs_intr.regs) {
7795 			u64 mask = event->attr.sample_regs_intr;
7796 
7797 			size += hweight64(mask) * sizeof(u64);
7798 		}
7799 
7800 		data->dyn_size += size;
7801 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7802 	}
7803 
7804 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7805 		data->phys_addr = perf_virt_to_phys(data->addr);
7806 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7807 	}
7808 
7809 #ifdef CONFIG_CGROUP_PERF
7810 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7811 		struct cgroup *cgrp;
7812 
7813 		/* protected by RCU */
7814 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7815 		data->cgroup = cgroup_id(cgrp);
7816 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7817 	}
7818 #endif
7819 
7820 	/*
7821 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7822 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7823 	 * but the value will not dump to the userspace.
7824 	 */
7825 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7826 		data->data_page_size = perf_get_page_size(data->addr);
7827 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7828 	}
7829 
7830 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7831 		data->code_page_size = perf_get_page_size(data->ip);
7832 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7833 	}
7834 
7835 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7836 		u64 size;
7837 		u16 header_size = perf_sample_data_size(data, event);
7838 
7839 		header_size += sizeof(u64); /* size */
7840 
7841 		/*
7842 		 * Given the 16bit nature of header::size, an AUX sample can
7843 		 * easily overflow it, what with all the preceding sample bits.
7844 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7845 		 * per sample in total (rounded down to 8 byte boundary).
7846 		 */
7847 		size = min_t(size_t, U16_MAX - header_size,
7848 			     event->attr.aux_sample_size);
7849 		size = rounddown(size, 8);
7850 		size = perf_prepare_sample_aux(event, data, size);
7851 
7852 		WARN_ON_ONCE(size + header_size > U16_MAX);
7853 		data->dyn_size += size + sizeof(u64); /* size above */
7854 		data->sample_flags |= PERF_SAMPLE_AUX;
7855 	}
7856 }
7857 
7858 void perf_prepare_header(struct perf_event_header *header,
7859 			 struct perf_sample_data *data,
7860 			 struct perf_event *event,
7861 			 struct pt_regs *regs)
7862 {
7863 	header->type = PERF_RECORD_SAMPLE;
7864 	header->size = perf_sample_data_size(data, event);
7865 	header->misc = perf_misc_flags(regs);
7866 
7867 	/*
7868 	 * If you're adding more sample types here, you likely need to do
7869 	 * something about the overflowing header::size, like repurpose the
7870 	 * lowest 3 bits of size, which should be always zero at the moment.
7871 	 * This raises a more important question, do we really need 512k sized
7872 	 * samples and why, so good argumentation is in order for whatever you
7873 	 * do here next.
7874 	 */
7875 	WARN_ON_ONCE(header->size & 7);
7876 }
7877 
7878 static __always_inline int
7879 __perf_event_output(struct perf_event *event,
7880 		    struct perf_sample_data *data,
7881 		    struct pt_regs *regs,
7882 		    int (*output_begin)(struct perf_output_handle *,
7883 					struct perf_sample_data *,
7884 					struct perf_event *,
7885 					unsigned int))
7886 {
7887 	struct perf_output_handle handle;
7888 	struct perf_event_header header;
7889 	int err;
7890 
7891 	/* protect the callchain buffers */
7892 	rcu_read_lock();
7893 
7894 	perf_prepare_sample(data, event, regs);
7895 	perf_prepare_header(&header, data, event, regs);
7896 
7897 	err = output_begin(&handle, data, event, header.size);
7898 	if (err)
7899 		goto exit;
7900 
7901 	perf_output_sample(&handle, &header, data, event);
7902 
7903 	perf_output_end(&handle);
7904 
7905 exit:
7906 	rcu_read_unlock();
7907 	return err;
7908 }
7909 
7910 void
7911 perf_event_output_forward(struct perf_event *event,
7912 			 struct perf_sample_data *data,
7913 			 struct pt_regs *regs)
7914 {
7915 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7916 }
7917 
7918 void
7919 perf_event_output_backward(struct perf_event *event,
7920 			   struct perf_sample_data *data,
7921 			   struct pt_regs *regs)
7922 {
7923 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7924 }
7925 
7926 int
7927 perf_event_output(struct perf_event *event,
7928 		  struct perf_sample_data *data,
7929 		  struct pt_regs *regs)
7930 {
7931 	return __perf_event_output(event, data, regs, perf_output_begin);
7932 }
7933 
7934 /*
7935  * read event_id
7936  */
7937 
7938 struct perf_read_event {
7939 	struct perf_event_header	header;
7940 
7941 	u32				pid;
7942 	u32				tid;
7943 };
7944 
7945 static void
7946 perf_event_read_event(struct perf_event *event,
7947 			struct task_struct *task)
7948 {
7949 	struct perf_output_handle handle;
7950 	struct perf_sample_data sample;
7951 	struct perf_read_event read_event = {
7952 		.header = {
7953 			.type = PERF_RECORD_READ,
7954 			.misc = 0,
7955 			.size = sizeof(read_event) + event->read_size,
7956 		},
7957 		.pid = perf_event_pid(event, task),
7958 		.tid = perf_event_tid(event, task),
7959 	};
7960 	int ret;
7961 
7962 	perf_event_header__init_id(&read_event.header, &sample, event);
7963 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7964 	if (ret)
7965 		return;
7966 
7967 	perf_output_put(&handle, read_event);
7968 	perf_output_read(&handle, event);
7969 	perf_event__output_id_sample(event, &handle, &sample);
7970 
7971 	perf_output_end(&handle);
7972 }
7973 
7974 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7975 
7976 static void
7977 perf_iterate_ctx(struct perf_event_context *ctx,
7978 		   perf_iterate_f output,
7979 		   void *data, bool all)
7980 {
7981 	struct perf_event *event;
7982 
7983 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7984 		if (!all) {
7985 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7986 				continue;
7987 			if (!event_filter_match(event))
7988 				continue;
7989 		}
7990 
7991 		output(event, data);
7992 	}
7993 }
7994 
7995 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7996 {
7997 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7998 	struct perf_event *event;
7999 
8000 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8001 		/*
8002 		 * Skip events that are not fully formed yet; ensure that
8003 		 * if we observe event->ctx, both event and ctx will be
8004 		 * complete enough. See perf_install_in_context().
8005 		 */
8006 		if (!smp_load_acquire(&event->ctx))
8007 			continue;
8008 
8009 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8010 			continue;
8011 		if (!event_filter_match(event))
8012 			continue;
8013 		output(event, data);
8014 	}
8015 }
8016 
8017 /*
8018  * Iterate all events that need to receive side-band events.
8019  *
8020  * For new callers; ensure that account_pmu_sb_event() includes
8021  * your event, otherwise it might not get delivered.
8022  */
8023 static void
8024 perf_iterate_sb(perf_iterate_f output, void *data,
8025 	       struct perf_event_context *task_ctx)
8026 {
8027 	struct perf_event_context *ctx;
8028 
8029 	rcu_read_lock();
8030 	preempt_disable();
8031 
8032 	/*
8033 	 * If we have task_ctx != NULL we only notify the task context itself.
8034 	 * The task_ctx is set only for EXIT events before releasing task
8035 	 * context.
8036 	 */
8037 	if (task_ctx) {
8038 		perf_iterate_ctx(task_ctx, output, data, false);
8039 		goto done;
8040 	}
8041 
8042 	perf_iterate_sb_cpu(output, data);
8043 
8044 	ctx = rcu_dereference(current->perf_event_ctxp);
8045 	if (ctx)
8046 		perf_iterate_ctx(ctx, output, data, false);
8047 done:
8048 	preempt_enable();
8049 	rcu_read_unlock();
8050 }
8051 
8052 /*
8053  * Clear all file-based filters at exec, they'll have to be
8054  * re-instated when/if these objects are mmapped again.
8055  */
8056 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8057 {
8058 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8059 	struct perf_addr_filter *filter;
8060 	unsigned int restart = 0, count = 0;
8061 	unsigned long flags;
8062 
8063 	if (!has_addr_filter(event))
8064 		return;
8065 
8066 	raw_spin_lock_irqsave(&ifh->lock, flags);
8067 	list_for_each_entry(filter, &ifh->list, entry) {
8068 		if (filter->path.dentry) {
8069 			event->addr_filter_ranges[count].start = 0;
8070 			event->addr_filter_ranges[count].size = 0;
8071 			restart++;
8072 		}
8073 
8074 		count++;
8075 	}
8076 
8077 	if (restart)
8078 		event->addr_filters_gen++;
8079 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8080 
8081 	if (restart)
8082 		perf_event_stop(event, 1);
8083 }
8084 
8085 void perf_event_exec(void)
8086 {
8087 	struct perf_event_context *ctx;
8088 
8089 	ctx = perf_pin_task_context(current);
8090 	if (!ctx)
8091 		return;
8092 
8093 	perf_event_enable_on_exec(ctx);
8094 	perf_event_remove_on_exec(ctx);
8095 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8096 
8097 	perf_unpin_context(ctx);
8098 	put_ctx(ctx);
8099 }
8100 
8101 struct remote_output {
8102 	struct perf_buffer	*rb;
8103 	int			err;
8104 };
8105 
8106 static void __perf_event_output_stop(struct perf_event *event, void *data)
8107 {
8108 	struct perf_event *parent = event->parent;
8109 	struct remote_output *ro = data;
8110 	struct perf_buffer *rb = ro->rb;
8111 	struct stop_event_data sd = {
8112 		.event	= event,
8113 	};
8114 
8115 	if (!has_aux(event))
8116 		return;
8117 
8118 	if (!parent)
8119 		parent = event;
8120 
8121 	/*
8122 	 * In case of inheritance, it will be the parent that links to the
8123 	 * ring-buffer, but it will be the child that's actually using it.
8124 	 *
8125 	 * We are using event::rb to determine if the event should be stopped,
8126 	 * however this may race with ring_buffer_attach() (through set_output),
8127 	 * which will make us skip the event that actually needs to be stopped.
8128 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8129 	 * its rb pointer.
8130 	 */
8131 	if (rcu_dereference(parent->rb) == rb)
8132 		ro->err = __perf_event_stop(&sd);
8133 }
8134 
8135 static int __perf_pmu_output_stop(void *info)
8136 {
8137 	struct perf_event *event = info;
8138 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8139 	struct remote_output ro = {
8140 		.rb	= event->rb,
8141 	};
8142 
8143 	rcu_read_lock();
8144 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8145 	if (cpuctx->task_ctx)
8146 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8147 				   &ro, false);
8148 	rcu_read_unlock();
8149 
8150 	return ro.err;
8151 }
8152 
8153 static void perf_pmu_output_stop(struct perf_event *event)
8154 {
8155 	struct perf_event *iter;
8156 	int err, cpu;
8157 
8158 restart:
8159 	rcu_read_lock();
8160 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8161 		/*
8162 		 * For per-CPU events, we need to make sure that neither they
8163 		 * nor their children are running; for cpu==-1 events it's
8164 		 * sufficient to stop the event itself if it's active, since
8165 		 * it can't have children.
8166 		 */
8167 		cpu = iter->cpu;
8168 		if (cpu == -1)
8169 			cpu = READ_ONCE(iter->oncpu);
8170 
8171 		if (cpu == -1)
8172 			continue;
8173 
8174 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8175 		if (err == -EAGAIN) {
8176 			rcu_read_unlock();
8177 			goto restart;
8178 		}
8179 	}
8180 	rcu_read_unlock();
8181 }
8182 
8183 /*
8184  * task tracking -- fork/exit
8185  *
8186  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8187  */
8188 
8189 struct perf_task_event {
8190 	struct task_struct		*task;
8191 	struct perf_event_context	*task_ctx;
8192 
8193 	struct {
8194 		struct perf_event_header	header;
8195 
8196 		u32				pid;
8197 		u32				ppid;
8198 		u32				tid;
8199 		u32				ptid;
8200 		u64				time;
8201 	} event_id;
8202 };
8203 
8204 static int perf_event_task_match(struct perf_event *event)
8205 {
8206 	return event->attr.comm  || event->attr.mmap ||
8207 	       event->attr.mmap2 || event->attr.mmap_data ||
8208 	       event->attr.task;
8209 }
8210 
8211 static void perf_event_task_output(struct perf_event *event,
8212 				   void *data)
8213 {
8214 	struct perf_task_event *task_event = data;
8215 	struct perf_output_handle handle;
8216 	struct perf_sample_data	sample;
8217 	struct task_struct *task = task_event->task;
8218 	int ret, size = task_event->event_id.header.size;
8219 
8220 	if (!perf_event_task_match(event))
8221 		return;
8222 
8223 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8224 
8225 	ret = perf_output_begin(&handle, &sample, event,
8226 				task_event->event_id.header.size);
8227 	if (ret)
8228 		goto out;
8229 
8230 	task_event->event_id.pid = perf_event_pid(event, task);
8231 	task_event->event_id.tid = perf_event_tid(event, task);
8232 
8233 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8234 		task_event->event_id.ppid = perf_event_pid(event,
8235 							task->real_parent);
8236 		task_event->event_id.ptid = perf_event_pid(event,
8237 							task->real_parent);
8238 	} else {  /* PERF_RECORD_FORK */
8239 		task_event->event_id.ppid = perf_event_pid(event, current);
8240 		task_event->event_id.ptid = perf_event_tid(event, current);
8241 	}
8242 
8243 	task_event->event_id.time = perf_event_clock(event);
8244 
8245 	perf_output_put(&handle, task_event->event_id);
8246 
8247 	perf_event__output_id_sample(event, &handle, &sample);
8248 
8249 	perf_output_end(&handle);
8250 out:
8251 	task_event->event_id.header.size = size;
8252 }
8253 
8254 static void perf_event_task(struct task_struct *task,
8255 			      struct perf_event_context *task_ctx,
8256 			      int new)
8257 {
8258 	struct perf_task_event task_event;
8259 
8260 	if (!atomic_read(&nr_comm_events) &&
8261 	    !atomic_read(&nr_mmap_events) &&
8262 	    !atomic_read(&nr_task_events))
8263 		return;
8264 
8265 	task_event = (struct perf_task_event){
8266 		.task	  = task,
8267 		.task_ctx = task_ctx,
8268 		.event_id    = {
8269 			.header = {
8270 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8271 				.misc = 0,
8272 				.size = sizeof(task_event.event_id),
8273 			},
8274 			/* .pid  */
8275 			/* .ppid */
8276 			/* .tid  */
8277 			/* .ptid */
8278 			/* .time */
8279 		},
8280 	};
8281 
8282 	perf_iterate_sb(perf_event_task_output,
8283 		       &task_event,
8284 		       task_ctx);
8285 }
8286 
8287 void perf_event_fork(struct task_struct *task)
8288 {
8289 	perf_event_task(task, NULL, 1);
8290 	perf_event_namespaces(task);
8291 }
8292 
8293 /*
8294  * comm tracking
8295  */
8296 
8297 struct perf_comm_event {
8298 	struct task_struct	*task;
8299 	char			*comm;
8300 	int			comm_size;
8301 
8302 	struct {
8303 		struct perf_event_header	header;
8304 
8305 		u32				pid;
8306 		u32				tid;
8307 	} event_id;
8308 };
8309 
8310 static int perf_event_comm_match(struct perf_event *event)
8311 {
8312 	return event->attr.comm;
8313 }
8314 
8315 static void perf_event_comm_output(struct perf_event *event,
8316 				   void *data)
8317 {
8318 	struct perf_comm_event *comm_event = data;
8319 	struct perf_output_handle handle;
8320 	struct perf_sample_data sample;
8321 	int size = comm_event->event_id.header.size;
8322 	int ret;
8323 
8324 	if (!perf_event_comm_match(event))
8325 		return;
8326 
8327 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8328 	ret = perf_output_begin(&handle, &sample, event,
8329 				comm_event->event_id.header.size);
8330 
8331 	if (ret)
8332 		goto out;
8333 
8334 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8335 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8336 
8337 	perf_output_put(&handle, comm_event->event_id);
8338 	__output_copy(&handle, comm_event->comm,
8339 				   comm_event->comm_size);
8340 
8341 	perf_event__output_id_sample(event, &handle, &sample);
8342 
8343 	perf_output_end(&handle);
8344 out:
8345 	comm_event->event_id.header.size = size;
8346 }
8347 
8348 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8349 {
8350 	char comm[TASK_COMM_LEN];
8351 	unsigned int size;
8352 
8353 	memset(comm, 0, sizeof(comm));
8354 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8355 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8356 
8357 	comm_event->comm = comm;
8358 	comm_event->comm_size = size;
8359 
8360 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8361 
8362 	perf_iterate_sb(perf_event_comm_output,
8363 		       comm_event,
8364 		       NULL);
8365 }
8366 
8367 void perf_event_comm(struct task_struct *task, bool exec)
8368 {
8369 	struct perf_comm_event comm_event;
8370 
8371 	if (!atomic_read(&nr_comm_events))
8372 		return;
8373 
8374 	comm_event = (struct perf_comm_event){
8375 		.task	= task,
8376 		/* .comm      */
8377 		/* .comm_size */
8378 		.event_id  = {
8379 			.header = {
8380 				.type = PERF_RECORD_COMM,
8381 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8382 				/* .size */
8383 			},
8384 			/* .pid */
8385 			/* .tid */
8386 		},
8387 	};
8388 
8389 	perf_event_comm_event(&comm_event);
8390 }
8391 
8392 /*
8393  * namespaces tracking
8394  */
8395 
8396 struct perf_namespaces_event {
8397 	struct task_struct		*task;
8398 
8399 	struct {
8400 		struct perf_event_header	header;
8401 
8402 		u32				pid;
8403 		u32				tid;
8404 		u64				nr_namespaces;
8405 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8406 	} event_id;
8407 };
8408 
8409 static int perf_event_namespaces_match(struct perf_event *event)
8410 {
8411 	return event->attr.namespaces;
8412 }
8413 
8414 static void perf_event_namespaces_output(struct perf_event *event,
8415 					 void *data)
8416 {
8417 	struct perf_namespaces_event *namespaces_event = data;
8418 	struct perf_output_handle handle;
8419 	struct perf_sample_data sample;
8420 	u16 header_size = namespaces_event->event_id.header.size;
8421 	int ret;
8422 
8423 	if (!perf_event_namespaces_match(event))
8424 		return;
8425 
8426 	perf_event_header__init_id(&namespaces_event->event_id.header,
8427 				   &sample, event);
8428 	ret = perf_output_begin(&handle, &sample, event,
8429 				namespaces_event->event_id.header.size);
8430 	if (ret)
8431 		goto out;
8432 
8433 	namespaces_event->event_id.pid = perf_event_pid(event,
8434 							namespaces_event->task);
8435 	namespaces_event->event_id.tid = perf_event_tid(event,
8436 							namespaces_event->task);
8437 
8438 	perf_output_put(&handle, namespaces_event->event_id);
8439 
8440 	perf_event__output_id_sample(event, &handle, &sample);
8441 
8442 	perf_output_end(&handle);
8443 out:
8444 	namespaces_event->event_id.header.size = header_size;
8445 }
8446 
8447 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8448 				   struct task_struct *task,
8449 				   const struct proc_ns_operations *ns_ops)
8450 {
8451 	struct path ns_path;
8452 	struct inode *ns_inode;
8453 	int error;
8454 
8455 	error = ns_get_path(&ns_path, task, ns_ops);
8456 	if (!error) {
8457 		ns_inode = ns_path.dentry->d_inode;
8458 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8459 		ns_link_info->ino = ns_inode->i_ino;
8460 		path_put(&ns_path);
8461 	}
8462 }
8463 
8464 void perf_event_namespaces(struct task_struct *task)
8465 {
8466 	struct perf_namespaces_event namespaces_event;
8467 	struct perf_ns_link_info *ns_link_info;
8468 
8469 	if (!atomic_read(&nr_namespaces_events))
8470 		return;
8471 
8472 	namespaces_event = (struct perf_namespaces_event){
8473 		.task	= task,
8474 		.event_id  = {
8475 			.header = {
8476 				.type = PERF_RECORD_NAMESPACES,
8477 				.misc = 0,
8478 				.size = sizeof(namespaces_event.event_id),
8479 			},
8480 			/* .pid */
8481 			/* .tid */
8482 			.nr_namespaces = NR_NAMESPACES,
8483 			/* .link_info[NR_NAMESPACES] */
8484 		},
8485 	};
8486 
8487 	ns_link_info = namespaces_event.event_id.link_info;
8488 
8489 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8490 			       task, &mntns_operations);
8491 
8492 #ifdef CONFIG_USER_NS
8493 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8494 			       task, &userns_operations);
8495 #endif
8496 #ifdef CONFIG_NET_NS
8497 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8498 			       task, &netns_operations);
8499 #endif
8500 #ifdef CONFIG_UTS_NS
8501 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8502 			       task, &utsns_operations);
8503 #endif
8504 #ifdef CONFIG_IPC_NS
8505 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8506 			       task, &ipcns_operations);
8507 #endif
8508 #ifdef CONFIG_PID_NS
8509 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8510 			       task, &pidns_operations);
8511 #endif
8512 #ifdef CONFIG_CGROUPS
8513 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8514 			       task, &cgroupns_operations);
8515 #endif
8516 
8517 	perf_iterate_sb(perf_event_namespaces_output,
8518 			&namespaces_event,
8519 			NULL);
8520 }
8521 
8522 /*
8523  * cgroup tracking
8524  */
8525 #ifdef CONFIG_CGROUP_PERF
8526 
8527 struct perf_cgroup_event {
8528 	char				*path;
8529 	int				path_size;
8530 	struct {
8531 		struct perf_event_header	header;
8532 		u64				id;
8533 		char				path[];
8534 	} event_id;
8535 };
8536 
8537 static int perf_event_cgroup_match(struct perf_event *event)
8538 {
8539 	return event->attr.cgroup;
8540 }
8541 
8542 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8543 {
8544 	struct perf_cgroup_event *cgroup_event = data;
8545 	struct perf_output_handle handle;
8546 	struct perf_sample_data sample;
8547 	u16 header_size = cgroup_event->event_id.header.size;
8548 	int ret;
8549 
8550 	if (!perf_event_cgroup_match(event))
8551 		return;
8552 
8553 	perf_event_header__init_id(&cgroup_event->event_id.header,
8554 				   &sample, event);
8555 	ret = perf_output_begin(&handle, &sample, event,
8556 				cgroup_event->event_id.header.size);
8557 	if (ret)
8558 		goto out;
8559 
8560 	perf_output_put(&handle, cgroup_event->event_id);
8561 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8562 
8563 	perf_event__output_id_sample(event, &handle, &sample);
8564 
8565 	perf_output_end(&handle);
8566 out:
8567 	cgroup_event->event_id.header.size = header_size;
8568 }
8569 
8570 static void perf_event_cgroup(struct cgroup *cgrp)
8571 {
8572 	struct perf_cgroup_event cgroup_event;
8573 	char path_enomem[16] = "//enomem";
8574 	char *pathname;
8575 	size_t size;
8576 
8577 	if (!atomic_read(&nr_cgroup_events))
8578 		return;
8579 
8580 	cgroup_event = (struct perf_cgroup_event){
8581 		.event_id  = {
8582 			.header = {
8583 				.type = PERF_RECORD_CGROUP,
8584 				.misc = 0,
8585 				.size = sizeof(cgroup_event.event_id),
8586 			},
8587 			.id = cgroup_id(cgrp),
8588 		},
8589 	};
8590 
8591 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8592 	if (pathname == NULL) {
8593 		cgroup_event.path = path_enomem;
8594 	} else {
8595 		/* just to be sure to have enough space for alignment */
8596 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8597 		cgroup_event.path = pathname;
8598 	}
8599 
8600 	/*
8601 	 * Since our buffer works in 8 byte units we need to align our string
8602 	 * size to a multiple of 8. However, we must guarantee the tail end is
8603 	 * zero'd out to avoid leaking random bits to userspace.
8604 	 */
8605 	size = strlen(cgroup_event.path) + 1;
8606 	while (!IS_ALIGNED(size, sizeof(u64)))
8607 		cgroup_event.path[size++] = '\0';
8608 
8609 	cgroup_event.event_id.header.size += size;
8610 	cgroup_event.path_size = size;
8611 
8612 	perf_iterate_sb(perf_event_cgroup_output,
8613 			&cgroup_event,
8614 			NULL);
8615 
8616 	kfree(pathname);
8617 }
8618 
8619 #endif
8620 
8621 /*
8622  * mmap tracking
8623  */
8624 
8625 struct perf_mmap_event {
8626 	struct vm_area_struct	*vma;
8627 
8628 	const char		*file_name;
8629 	int			file_size;
8630 	int			maj, min;
8631 	u64			ino;
8632 	u64			ino_generation;
8633 	u32			prot, flags;
8634 	u8			build_id[BUILD_ID_SIZE_MAX];
8635 	u32			build_id_size;
8636 
8637 	struct {
8638 		struct perf_event_header	header;
8639 
8640 		u32				pid;
8641 		u32				tid;
8642 		u64				start;
8643 		u64				len;
8644 		u64				pgoff;
8645 	} event_id;
8646 };
8647 
8648 static int perf_event_mmap_match(struct perf_event *event,
8649 				 void *data)
8650 {
8651 	struct perf_mmap_event *mmap_event = data;
8652 	struct vm_area_struct *vma = mmap_event->vma;
8653 	int executable = vma->vm_flags & VM_EXEC;
8654 
8655 	return (!executable && event->attr.mmap_data) ||
8656 	       (executable && (event->attr.mmap || event->attr.mmap2));
8657 }
8658 
8659 static void perf_event_mmap_output(struct perf_event *event,
8660 				   void *data)
8661 {
8662 	struct perf_mmap_event *mmap_event = data;
8663 	struct perf_output_handle handle;
8664 	struct perf_sample_data sample;
8665 	int size = mmap_event->event_id.header.size;
8666 	u32 type = mmap_event->event_id.header.type;
8667 	bool use_build_id;
8668 	int ret;
8669 
8670 	if (!perf_event_mmap_match(event, data))
8671 		return;
8672 
8673 	if (event->attr.mmap2) {
8674 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8675 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8676 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8677 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8678 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8679 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8680 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8681 	}
8682 
8683 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8684 	ret = perf_output_begin(&handle, &sample, event,
8685 				mmap_event->event_id.header.size);
8686 	if (ret)
8687 		goto out;
8688 
8689 	mmap_event->event_id.pid = perf_event_pid(event, current);
8690 	mmap_event->event_id.tid = perf_event_tid(event, current);
8691 
8692 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8693 
8694 	if (event->attr.mmap2 && use_build_id)
8695 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8696 
8697 	perf_output_put(&handle, mmap_event->event_id);
8698 
8699 	if (event->attr.mmap2) {
8700 		if (use_build_id) {
8701 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8702 
8703 			__output_copy(&handle, size, 4);
8704 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8705 		} else {
8706 			perf_output_put(&handle, mmap_event->maj);
8707 			perf_output_put(&handle, mmap_event->min);
8708 			perf_output_put(&handle, mmap_event->ino);
8709 			perf_output_put(&handle, mmap_event->ino_generation);
8710 		}
8711 		perf_output_put(&handle, mmap_event->prot);
8712 		perf_output_put(&handle, mmap_event->flags);
8713 	}
8714 
8715 	__output_copy(&handle, mmap_event->file_name,
8716 				   mmap_event->file_size);
8717 
8718 	perf_event__output_id_sample(event, &handle, &sample);
8719 
8720 	perf_output_end(&handle);
8721 out:
8722 	mmap_event->event_id.header.size = size;
8723 	mmap_event->event_id.header.type = type;
8724 }
8725 
8726 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8727 {
8728 	struct vm_area_struct *vma = mmap_event->vma;
8729 	struct file *file = vma->vm_file;
8730 	int maj = 0, min = 0;
8731 	u64 ino = 0, gen = 0;
8732 	u32 prot = 0, flags = 0;
8733 	unsigned int size;
8734 	char tmp[16];
8735 	char *buf = NULL;
8736 	char *name = NULL;
8737 
8738 	if (vma->vm_flags & VM_READ)
8739 		prot |= PROT_READ;
8740 	if (vma->vm_flags & VM_WRITE)
8741 		prot |= PROT_WRITE;
8742 	if (vma->vm_flags & VM_EXEC)
8743 		prot |= PROT_EXEC;
8744 
8745 	if (vma->vm_flags & VM_MAYSHARE)
8746 		flags = MAP_SHARED;
8747 	else
8748 		flags = MAP_PRIVATE;
8749 
8750 	if (vma->vm_flags & VM_LOCKED)
8751 		flags |= MAP_LOCKED;
8752 	if (is_vm_hugetlb_page(vma))
8753 		flags |= MAP_HUGETLB;
8754 
8755 	if (file) {
8756 		struct inode *inode;
8757 		dev_t dev;
8758 
8759 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8760 		if (!buf) {
8761 			name = "//enomem";
8762 			goto cpy_name;
8763 		}
8764 		/*
8765 		 * d_path() works from the end of the rb backwards, so we
8766 		 * need to add enough zero bytes after the string to handle
8767 		 * the 64bit alignment we do later.
8768 		 */
8769 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8770 		if (IS_ERR(name)) {
8771 			name = "//toolong";
8772 			goto cpy_name;
8773 		}
8774 		inode = file_inode(vma->vm_file);
8775 		dev = inode->i_sb->s_dev;
8776 		ino = inode->i_ino;
8777 		gen = inode->i_generation;
8778 		maj = MAJOR(dev);
8779 		min = MINOR(dev);
8780 
8781 		goto got_name;
8782 	} else {
8783 		if (vma->vm_ops && vma->vm_ops->name)
8784 			name = (char *) vma->vm_ops->name(vma);
8785 		if (!name)
8786 			name = (char *)arch_vma_name(vma);
8787 		if (!name) {
8788 			if (vma_is_initial_heap(vma))
8789 				name = "[heap]";
8790 			else if (vma_is_initial_stack(vma))
8791 				name = "[stack]";
8792 			else
8793 				name = "//anon";
8794 		}
8795 	}
8796 
8797 cpy_name:
8798 	strscpy(tmp, name, sizeof(tmp));
8799 	name = tmp;
8800 got_name:
8801 	/*
8802 	 * Since our buffer works in 8 byte units we need to align our string
8803 	 * size to a multiple of 8. However, we must guarantee the tail end is
8804 	 * zero'd out to avoid leaking random bits to userspace.
8805 	 */
8806 	size = strlen(name)+1;
8807 	while (!IS_ALIGNED(size, sizeof(u64)))
8808 		name[size++] = '\0';
8809 
8810 	mmap_event->file_name = name;
8811 	mmap_event->file_size = size;
8812 	mmap_event->maj = maj;
8813 	mmap_event->min = min;
8814 	mmap_event->ino = ino;
8815 	mmap_event->ino_generation = gen;
8816 	mmap_event->prot = prot;
8817 	mmap_event->flags = flags;
8818 
8819 	if (!(vma->vm_flags & VM_EXEC))
8820 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8821 
8822 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8823 
8824 	if (atomic_read(&nr_build_id_events))
8825 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8826 
8827 	perf_iterate_sb(perf_event_mmap_output,
8828 		       mmap_event,
8829 		       NULL);
8830 
8831 	kfree(buf);
8832 }
8833 
8834 /*
8835  * Check whether inode and address range match filter criteria.
8836  */
8837 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8838 				     struct file *file, unsigned long offset,
8839 				     unsigned long size)
8840 {
8841 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8842 	if (!filter->path.dentry)
8843 		return false;
8844 
8845 	if (d_inode(filter->path.dentry) != file_inode(file))
8846 		return false;
8847 
8848 	if (filter->offset > offset + size)
8849 		return false;
8850 
8851 	if (filter->offset + filter->size < offset)
8852 		return false;
8853 
8854 	return true;
8855 }
8856 
8857 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8858 					struct vm_area_struct *vma,
8859 					struct perf_addr_filter_range *fr)
8860 {
8861 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8862 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8863 	struct file *file = vma->vm_file;
8864 
8865 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8866 		return false;
8867 
8868 	if (filter->offset < off) {
8869 		fr->start = vma->vm_start;
8870 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8871 	} else {
8872 		fr->start = vma->vm_start + filter->offset - off;
8873 		fr->size = min(vma->vm_end - fr->start, filter->size);
8874 	}
8875 
8876 	return true;
8877 }
8878 
8879 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8880 {
8881 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8882 	struct vm_area_struct *vma = data;
8883 	struct perf_addr_filter *filter;
8884 	unsigned int restart = 0, count = 0;
8885 	unsigned long flags;
8886 
8887 	if (!has_addr_filter(event))
8888 		return;
8889 
8890 	if (!vma->vm_file)
8891 		return;
8892 
8893 	raw_spin_lock_irqsave(&ifh->lock, flags);
8894 	list_for_each_entry(filter, &ifh->list, entry) {
8895 		if (perf_addr_filter_vma_adjust(filter, vma,
8896 						&event->addr_filter_ranges[count]))
8897 			restart++;
8898 
8899 		count++;
8900 	}
8901 
8902 	if (restart)
8903 		event->addr_filters_gen++;
8904 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8905 
8906 	if (restart)
8907 		perf_event_stop(event, 1);
8908 }
8909 
8910 /*
8911  * Adjust all task's events' filters to the new vma
8912  */
8913 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8914 {
8915 	struct perf_event_context *ctx;
8916 
8917 	/*
8918 	 * Data tracing isn't supported yet and as such there is no need
8919 	 * to keep track of anything that isn't related to executable code:
8920 	 */
8921 	if (!(vma->vm_flags & VM_EXEC))
8922 		return;
8923 
8924 	rcu_read_lock();
8925 	ctx = rcu_dereference(current->perf_event_ctxp);
8926 	if (ctx)
8927 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8928 	rcu_read_unlock();
8929 }
8930 
8931 void perf_event_mmap(struct vm_area_struct *vma)
8932 {
8933 	struct perf_mmap_event mmap_event;
8934 
8935 	if (!atomic_read(&nr_mmap_events))
8936 		return;
8937 
8938 	mmap_event = (struct perf_mmap_event){
8939 		.vma	= vma,
8940 		/* .file_name */
8941 		/* .file_size */
8942 		.event_id  = {
8943 			.header = {
8944 				.type = PERF_RECORD_MMAP,
8945 				.misc = PERF_RECORD_MISC_USER,
8946 				/* .size */
8947 			},
8948 			/* .pid */
8949 			/* .tid */
8950 			.start  = vma->vm_start,
8951 			.len    = vma->vm_end - vma->vm_start,
8952 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8953 		},
8954 		/* .maj (attr_mmap2 only) */
8955 		/* .min (attr_mmap2 only) */
8956 		/* .ino (attr_mmap2 only) */
8957 		/* .ino_generation (attr_mmap2 only) */
8958 		/* .prot (attr_mmap2 only) */
8959 		/* .flags (attr_mmap2 only) */
8960 	};
8961 
8962 	perf_addr_filters_adjust(vma);
8963 	perf_event_mmap_event(&mmap_event);
8964 }
8965 
8966 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8967 			  unsigned long size, u64 flags)
8968 {
8969 	struct perf_output_handle handle;
8970 	struct perf_sample_data sample;
8971 	struct perf_aux_event {
8972 		struct perf_event_header	header;
8973 		u64				offset;
8974 		u64				size;
8975 		u64				flags;
8976 	} rec = {
8977 		.header = {
8978 			.type = PERF_RECORD_AUX,
8979 			.misc = 0,
8980 			.size = sizeof(rec),
8981 		},
8982 		.offset		= head,
8983 		.size		= size,
8984 		.flags		= flags,
8985 	};
8986 	int ret;
8987 
8988 	perf_event_header__init_id(&rec.header, &sample, event);
8989 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8990 
8991 	if (ret)
8992 		return;
8993 
8994 	perf_output_put(&handle, rec);
8995 	perf_event__output_id_sample(event, &handle, &sample);
8996 
8997 	perf_output_end(&handle);
8998 }
8999 
9000 /*
9001  * Lost/dropped samples logging
9002  */
9003 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9004 {
9005 	struct perf_output_handle handle;
9006 	struct perf_sample_data sample;
9007 	int ret;
9008 
9009 	struct {
9010 		struct perf_event_header	header;
9011 		u64				lost;
9012 	} lost_samples_event = {
9013 		.header = {
9014 			.type = PERF_RECORD_LOST_SAMPLES,
9015 			.misc = 0,
9016 			.size = sizeof(lost_samples_event),
9017 		},
9018 		.lost		= lost,
9019 	};
9020 
9021 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9022 
9023 	ret = perf_output_begin(&handle, &sample, event,
9024 				lost_samples_event.header.size);
9025 	if (ret)
9026 		return;
9027 
9028 	perf_output_put(&handle, lost_samples_event);
9029 	perf_event__output_id_sample(event, &handle, &sample);
9030 	perf_output_end(&handle);
9031 }
9032 
9033 /*
9034  * context_switch tracking
9035  */
9036 
9037 struct perf_switch_event {
9038 	struct task_struct	*task;
9039 	struct task_struct	*next_prev;
9040 
9041 	struct {
9042 		struct perf_event_header	header;
9043 		u32				next_prev_pid;
9044 		u32				next_prev_tid;
9045 	} event_id;
9046 };
9047 
9048 static int perf_event_switch_match(struct perf_event *event)
9049 {
9050 	return event->attr.context_switch;
9051 }
9052 
9053 static void perf_event_switch_output(struct perf_event *event, void *data)
9054 {
9055 	struct perf_switch_event *se = data;
9056 	struct perf_output_handle handle;
9057 	struct perf_sample_data sample;
9058 	int ret;
9059 
9060 	if (!perf_event_switch_match(event))
9061 		return;
9062 
9063 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9064 	if (event->ctx->task) {
9065 		se->event_id.header.type = PERF_RECORD_SWITCH;
9066 		se->event_id.header.size = sizeof(se->event_id.header);
9067 	} else {
9068 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9069 		se->event_id.header.size = sizeof(se->event_id);
9070 		se->event_id.next_prev_pid =
9071 					perf_event_pid(event, se->next_prev);
9072 		se->event_id.next_prev_tid =
9073 					perf_event_tid(event, se->next_prev);
9074 	}
9075 
9076 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9077 
9078 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9079 	if (ret)
9080 		return;
9081 
9082 	if (event->ctx->task)
9083 		perf_output_put(&handle, se->event_id.header);
9084 	else
9085 		perf_output_put(&handle, se->event_id);
9086 
9087 	perf_event__output_id_sample(event, &handle, &sample);
9088 
9089 	perf_output_end(&handle);
9090 }
9091 
9092 static void perf_event_switch(struct task_struct *task,
9093 			      struct task_struct *next_prev, bool sched_in)
9094 {
9095 	struct perf_switch_event switch_event;
9096 
9097 	/* N.B. caller checks nr_switch_events != 0 */
9098 
9099 	switch_event = (struct perf_switch_event){
9100 		.task		= task,
9101 		.next_prev	= next_prev,
9102 		.event_id	= {
9103 			.header = {
9104 				/* .type */
9105 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9106 				/* .size */
9107 			},
9108 			/* .next_prev_pid */
9109 			/* .next_prev_tid */
9110 		},
9111 	};
9112 
9113 	if (!sched_in && task->on_rq) {
9114 		switch_event.event_id.header.misc |=
9115 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9116 	}
9117 
9118 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9119 }
9120 
9121 /*
9122  * IRQ throttle logging
9123  */
9124 
9125 static void perf_log_throttle(struct perf_event *event, int enable)
9126 {
9127 	struct perf_output_handle handle;
9128 	struct perf_sample_data sample;
9129 	int ret;
9130 
9131 	struct {
9132 		struct perf_event_header	header;
9133 		u64				time;
9134 		u64				id;
9135 		u64				stream_id;
9136 	} throttle_event = {
9137 		.header = {
9138 			.type = PERF_RECORD_THROTTLE,
9139 			.misc = 0,
9140 			.size = sizeof(throttle_event),
9141 		},
9142 		.time		= perf_event_clock(event),
9143 		.id		= primary_event_id(event),
9144 		.stream_id	= event->id,
9145 	};
9146 
9147 	if (enable)
9148 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9149 
9150 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9151 
9152 	ret = perf_output_begin(&handle, &sample, event,
9153 				throttle_event.header.size);
9154 	if (ret)
9155 		return;
9156 
9157 	perf_output_put(&handle, throttle_event);
9158 	perf_event__output_id_sample(event, &handle, &sample);
9159 	perf_output_end(&handle);
9160 }
9161 
9162 /*
9163  * ksymbol register/unregister tracking
9164  */
9165 
9166 struct perf_ksymbol_event {
9167 	const char	*name;
9168 	int		name_len;
9169 	struct {
9170 		struct perf_event_header        header;
9171 		u64				addr;
9172 		u32				len;
9173 		u16				ksym_type;
9174 		u16				flags;
9175 	} event_id;
9176 };
9177 
9178 static int perf_event_ksymbol_match(struct perf_event *event)
9179 {
9180 	return event->attr.ksymbol;
9181 }
9182 
9183 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9184 {
9185 	struct perf_ksymbol_event *ksymbol_event = data;
9186 	struct perf_output_handle handle;
9187 	struct perf_sample_data sample;
9188 	int ret;
9189 
9190 	if (!perf_event_ksymbol_match(event))
9191 		return;
9192 
9193 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9194 				   &sample, event);
9195 	ret = perf_output_begin(&handle, &sample, event,
9196 				ksymbol_event->event_id.header.size);
9197 	if (ret)
9198 		return;
9199 
9200 	perf_output_put(&handle, ksymbol_event->event_id);
9201 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9202 	perf_event__output_id_sample(event, &handle, &sample);
9203 
9204 	perf_output_end(&handle);
9205 }
9206 
9207 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9208 			const char *sym)
9209 {
9210 	struct perf_ksymbol_event ksymbol_event;
9211 	char name[KSYM_NAME_LEN];
9212 	u16 flags = 0;
9213 	int name_len;
9214 
9215 	if (!atomic_read(&nr_ksymbol_events))
9216 		return;
9217 
9218 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9219 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9220 		goto err;
9221 
9222 	strscpy(name, sym, KSYM_NAME_LEN);
9223 	name_len = strlen(name) + 1;
9224 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9225 		name[name_len++] = '\0';
9226 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9227 
9228 	if (unregister)
9229 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9230 
9231 	ksymbol_event = (struct perf_ksymbol_event){
9232 		.name = name,
9233 		.name_len = name_len,
9234 		.event_id = {
9235 			.header = {
9236 				.type = PERF_RECORD_KSYMBOL,
9237 				.size = sizeof(ksymbol_event.event_id) +
9238 					name_len,
9239 			},
9240 			.addr = addr,
9241 			.len = len,
9242 			.ksym_type = ksym_type,
9243 			.flags = flags,
9244 		},
9245 	};
9246 
9247 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9248 	return;
9249 err:
9250 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9251 }
9252 
9253 /*
9254  * bpf program load/unload tracking
9255  */
9256 
9257 struct perf_bpf_event {
9258 	struct bpf_prog	*prog;
9259 	struct {
9260 		struct perf_event_header        header;
9261 		u16				type;
9262 		u16				flags;
9263 		u32				id;
9264 		u8				tag[BPF_TAG_SIZE];
9265 	} event_id;
9266 };
9267 
9268 static int perf_event_bpf_match(struct perf_event *event)
9269 {
9270 	return event->attr.bpf_event;
9271 }
9272 
9273 static void perf_event_bpf_output(struct perf_event *event, void *data)
9274 {
9275 	struct perf_bpf_event *bpf_event = data;
9276 	struct perf_output_handle handle;
9277 	struct perf_sample_data sample;
9278 	int ret;
9279 
9280 	if (!perf_event_bpf_match(event))
9281 		return;
9282 
9283 	perf_event_header__init_id(&bpf_event->event_id.header,
9284 				   &sample, event);
9285 	ret = perf_output_begin(&handle, &sample, event,
9286 				bpf_event->event_id.header.size);
9287 	if (ret)
9288 		return;
9289 
9290 	perf_output_put(&handle, bpf_event->event_id);
9291 	perf_event__output_id_sample(event, &handle, &sample);
9292 
9293 	perf_output_end(&handle);
9294 }
9295 
9296 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9297 					 enum perf_bpf_event_type type)
9298 {
9299 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9300 	int i;
9301 
9302 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9303 			   (u64)(unsigned long)prog->bpf_func,
9304 			   prog->jited_len, unregister,
9305 			   prog->aux->ksym.name);
9306 
9307 	for (i = 1; i < prog->aux->func_cnt; i++) {
9308 		struct bpf_prog *subprog = prog->aux->func[i];
9309 
9310 		perf_event_ksymbol(
9311 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9312 			(u64)(unsigned long)subprog->bpf_func,
9313 			subprog->jited_len, unregister,
9314 			subprog->aux->ksym.name);
9315 	}
9316 }
9317 
9318 void perf_event_bpf_event(struct bpf_prog *prog,
9319 			  enum perf_bpf_event_type type,
9320 			  u16 flags)
9321 {
9322 	struct perf_bpf_event bpf_event;
9323 
9324 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9325 	    type >= PERF_BPF_EVENT_MAX)
9326 		return;
9327 
9328 	switch (type) {
9329 	case PERF_BPF_EVENT_PROG_LOAD:
9330 	case PERF_BPF_EVENT_PROG_UNLOAD:
9331 		if (atomic_read(&nr_ksymbol_events))
9332 			perf_event_bpf_emit_ksymbols(prog, type);
9333 		break;
9334 	default:
9335 		break;
9336 	}
9337 
9338 	if (!atomic_read(&nr_bpf_events))
9339 		return;
9340 
9341 	bpf_event = (struct perf_bpf_event){
9342 		.prog = prog,
9343 		.event_id = {
9344 			.header = {
9345 				.type = PERF_RECORD_BPF_EVENT,
9346 				.size = sizeof(bpf_event.event_id),
9347 			},
9348 			.type = type,
9349 			.flags = flags,
9350 			.id = prog->aux->id,
9351 		},
9352 	};
9353 
9354 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9355 
9356 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9357 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9358 }
9359 
9360 struct perf_text_poke_event {
9361 	const void		*old_bytes;
9362 	const void		*new_bytes;
9363 	size_t			pad;
9364 	u16			old_len;
9365 	u16			new_len;
9366 
9367 	struct {
9368 		struct perf_event_header	header;
9369 
9370 		u64				addr;
9371 	} event_id;
9372 };
9373 
9374 static int perf_event_text_poke_match(struct perf_event *event)
9375 {
9376 	return event->attr.text_poke;
9377 }
9378 
9379 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9380 {
9381 	struct perf_text_poke_event *text_poke_event = data;
9382 	struct perf_output_handle handle;
9383 	struct perf_sample_data sample;
9384 	u64 padding = 0;
9385 	int ret;
9386 
9387 	if (!perf_event_text_poke_match(event))
9388 		return;
9389 
9390 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9391 
9392 	ret = perf_output_begin(&handle, &sample, event,
9393 				text_poke_event->event_id.header.size);
9394 	if (ret)
9395 		return;
9396 
9397 	perf_output_put(&handle, text_poke_event->event_id);
9398 	perf_output_put(&handle, text_poke_event->old_len);
9399 	perf_output_put(&handle, text_poke_event->new_len);
9400 
9401 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9402 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9403 
9404 	if (text_poke_event->pad)
9405 		__output_copy(&handle, &padding, text_poke_event->pad);
9406 
9407 	perf_event__output_id_sample(event, &handle, &sample);
9408 
9409 	perf_output_end(&handle);
9410 }
9411 
9412 void perf_event_text_poke(const void *addr, const void *old_bytes,
9413 			  size_t old_len, const void *new_bytes, size_t new_len)
9414 {
9415 	struct perf_text_poke_event text_poke_event;
9416 	size_t tot, pad;
9417 
9418 	if (!atomic_read(&nr_text_poke_events))
9419 		return;
9420 
9421 	tot  = sizeof(text_poke_event.old_len) + old_len;
9422 	tot += sizeof(text_poke_event.new_len) + new_len;
9423 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9424 
9425 	text_poke_event = (struct perf_text_poke_event){
9426 		.old_bytes    = old_bytes,
9427 		.new_bytes    = new_bytes,
9428 		.pad          = pad,
9429 		.old_len      = old_len,
9430 		.new_len      = new_len,
9431 		.event_id  = {
9432 			.header = {
9433 				.type = PERF_RECORD_TEXT_POKE,
9434 				.misc = PERF_RECORD_MISC_KERNEL,
9435 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9436 			},
9437 			.addr = (unsigned long)addr,
9438 		},
9439 	};
9440 
9441 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9442 }
9443 
9444 void perf_event_itrace_started(struct perf_event *event)
9445 {
9446 	event->attach_state |= PERF_ATTACH_ITRACE;
9447 }
9448 
9449 static void perf_log_itrace_start(struct perf_event *event)
9450 {
9451 	struct perf_output_handle handle;
9452 	struct perf_sample_data sample;
9453 	struct perf_aux_event {
9454 		struct perf_event_header        header;
9455 		u32				pid;
9456 		u32				tid;
9457 	} rec;
9458 	int ret;
9459 
9460 	if (event->parent)
9461 		event = event->parent;
9462 
9463 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9464 	    event->attach_state & PERF_ATTACH_ITRACE)
9465 		return;
9466 
9467 	rec.header.type	= PERF_RECORD_ITRACE_START;
9468 	rec.header.misc	= 0;
9469 	rec.header.size	= sizeof(rec);
9470 	rec.pid	= perf_event_pid(event, current);
9471 	rec.tid	= perf_event_tid(event, current);
9472 
9473 	perf_event_header__init_id(&rec.header, &sample, event);
9474 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9475 
9476 	if (ret)
9477 		return;
9478 
9479 	perf_output_put(&handle, rec);
9480 	perf_event__output_id_sample(event, &handle, &sample);
9481 
9482 	perf_output_end(&handle);
9483 }
9484 
9485 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9486 {
9487 	struct perf_output_handle handle;
9488 	struct perf_sample_data sample;
9489 	struct perf_aux_event {
9490 		struct perf_event_header        header;
9491 		u64				hw_id;
9492 	} rec;
9493 	int ret;
9494 
9495 	if (event->parent)
9496 		event = event->parent;
9497 
9498 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9499 	rec.header.misc	= 0;
9500 	rec.header.size	= sizeof(rec);
9501 	rec.hw_id	= hw_id;
9502 
9503 	perf_event_header__init_id(&rec.header, &sample, event);
9504 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9505 
9506 	if (ret)
9507 		return;
9508 
9509 	perf_output_put(&handle, rec);
9510 	perf_event__output_id_sample(event, &handle, &sample);
9511 
9512 	perf_output_end(&handle);
9513 }
9514 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9515 
9516 static int
9517 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9518 {
9519 	struct hw_perf_event *hwc = &event->hw;
9520 	int ret = 0;
9521 	u64 seq;
9522 
9523 	seq = __this_cpu_read(perf_throttled_seq);
9524 	if (seq != hwc->interrupts_seq) {
9525 		hwc->interrupts_seq = seq;
9526 		hwc->interrupts = 1;
9527 	} else {
9528 		hwc->interrupts++;
9529 		if (unlikely(throttle &&
9530 			     hwc->interrupts > max_samples_per_tick)) {
9531 			__this_cpu_inc(perf_throttled_count);
9532 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9533 			hwc->interrupts = MAX_INTERRUPTS;
9534 			perf_log_throttle(event, 0);
9535 			ret = 1;
9536 		}
9537 	}
9538 
9539 	if (event->attr.freq) {
9540 		u64 now = perf_clock();
9541 		s64 delta = now - hwc->freq_time_stamp;
9542 
9543 		hwc->freq_time_stamp = now;
9544 
9545 		if (delta > 0 && delta < 2*TICK_NSEC)
9546 			perf_adjust_period(event, delta, hwc->last_period, true);
9547 	}
9548 
9549 	return ret;
9550 }
9551 
9552 int perf_event_account_interrupt(struct perf_event *event)
9553 {
9554 	return __perf_event_account_interrupt(event, 1);
9555 }
9556 
9557 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9558 {
9559 	/*
9560 	 * Due to interrupt latency (AKA "skid"), we may enter the
9561 	 * kernel before taking an overflow, even if the PMU is only
9562 	 * counting user events.
9563 	 */
9564 	if (event->attr.exclude_kernel && !user_mode(regs))
9565 		return false;
9566 
9567 	return true;
9568 }
9569 
9570 /*
9571  * Generic event overflow handling, sampling.
9572  */
9573 
9574 static int __perf_event_overflow(struct perf_event *event,
9575 				 int throttle, struct perf_sample_data *data,
9576 				 struct pt_regs *regs)
9577 {
9578 	int events = atomic_read(&event->event_limit);
9579 	int ret = 0;
9580 
9581 	/*
9582 	 * Non-sampling counters might still use the PMI to fold short
9583 	 * hardware counters, ignore those.
9584 	 */
9585 	if (unlikely(!is_sampling_event(event)))
9586 		return 0;
9587 
9588 	ret = __perf_event_account_interrupt(event, throttle);
9589 
9590 	/*
9591 	 * XXX event_limit might not quite work as expected on inherited
9592 	 * events
9593 	 */
9594 
9595 	event->pending_kill = POLL_IN;
9596 	if (events && atomic_dec_and_test(&event->event_limit)) {
9597 		ret = 1;
9598 		event->pending_kill = POLL_HUP;
9599 		perf_event_disable_inatomic(event);
9600 	}
9601 
9602 	if (event->attr.sigtrap) {
9603 		/*
9604 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9605 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9606 		 * it is the first event, on the other hand, we should also not
9607 		 * trigger the WARN or override the data address.
9608 		 */
9609 		bool valid_sample = sample_is_allowed(event, regs);
9610 		unsigned int pending_id = 1;
9611 
9612 		if (regs)
9613 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9614 		if (!event->pending_sigtrap) {
9615 			event->pending_sigtrap = pending_id;
9616 			local_inc(&event->ctx->nr_pending);
9617 		} else if (event->attr.exclude_kernel && valid_sample) {
9618 			/*
9619 			 * Should not be able to return to user space without
9620 			 * consuming pending_sigtrap; with exceptions:
9621 			 *
9622 			 *  1. Where !exclude_kernel, events can overflow again
9623 			 *     in the kernel without returning to user space.
9624 			 *
9625 			 *  2. Events that can overflow again before the IRQ-
9626 			 *     work without user space progress (e.g. hrtimer).
9627 			 *     To approximate progress (with false negatives),
9628 			 *     check 32-bit hash of the current IP.
9629 			 */
9630 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9631 		}
9632 
9633 		event->pending_addr = 0;
9634 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9635 			event->pending_addr = data->addr;
9636 		irq_work_queue(&event->pending_irq);
9637 	}
9638 
9639 	READ_ONCE(event->overflow_handler)(event, data, regs);
9640 
9641 	if (*perf_event_fasync(event) && event->pending_kill) {
9642 		event->pending_wakeup = 1;
9643 		irq_work_queue(&event->pending_irq);
9644 	}
9645 
9646 	return ret;
9647 }
9648 
9649 int perf_event_overflow(struct perf_event *event,
9650 			struct perf_sample_data *data,
9651 			struct pt_regs *regs)
9652 {
9653 	return __perf_event_overflow(event, 1, data, regs);
9654 }
9655 
9656 /*
9657  * Generic software event infrastructure
9658  */
9659 
9660 struct swevent_htable {
9661 	struct swevent_hlist		*swevent_hlist;
9662 	struct mutex			hlist_mutex;
9663 	int				hlist_refcount;
9664 
9665 	/* Recursion avoidance in each contexts */
9666 	int				recursion[PERF_NR_CONTEXTS];
9667 };
9668 
9669 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9670 
9671 /*
9672  * We directly increment event->count and keep a second value in
9673  * event->hw.period_left to count intervals. This period event
9674  * is kept in the range [-sample_period, 0] so that we can use the
9675  * sign as trigger.
9676  */
9677 
9678 u64 perf_swevent_set_period(struct perf_event *event)
9679 {
9680 	struct hw_perf_event *hwc = &event->hw;
9681 	u64 period = hwc->last_period;
9682 	u64 nr, offset;
9683 	s64 old, val;
9684 
9685 	hwc->last_period = hwc->sample_period;
9686 
9687 	old = local64_read(&hwc->period_left);
9688 	do {
9689 		val = old;
9690 		if (val < 0)
9691 			return 0;
9692 
9693 		nr = div64_u64(period + val, period);
9694 		offset = nr * period;
9695 		val -= offset;
9696 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9697 
9698 	return nr;
9699 }
9700 
9701 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9702 				    struct perf_sample_data *data,
9703 				    struct pt_regs *regs)
9704 {
9705 	struct hw_perf_event *hwc = &event->hw;
9706 	int throttle = 0;
9707 
9708 	if (!overflow)
9709 		overflow = perf_swevent_set_period(event);
9710 
9711 	if (hwc->interrupts == MAX_INTERRUPTS)
9712 		return;
9713 
9714 	for (; overflow; overflow--) {
9715 		if (__perf_event_overflow(event, throttle,
9716 					    data, regs)) {
9717 			/*
9718 			 * We inhibit the overflow from happening when
9719 			 * hwc->interrupts == MAX_INTERRUPTS.
9720 			 */
9721 			break;
9722 		}
9723 		throttle = 1;
9724 	}
9725 }
9726 
9727 static void perf_swevent_event(struct perf_event *event, u64 nr,
9728 			       struct perf_sample_data *data,
9729 			       struct pt_regs *regs)
9730 {
9731 	struct hw_perf_event *hwc = &event->hw;
9732 
9733 	local64_add(nr, &event->count);
9734 
9735 	if (!regs)
9736 		return;
9737 
9738 	if (!is_sampling_event(event))
9739 		return;
9740 
9741 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9742 		data->period = nr;
9743 		return perf_swevent_overflow(event, 1, data, regs);
9744 	} else
9745 		data->period = event->hw.last_period;
9746 
9747 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9748 		return perf_swevent_overflow(event, 1, data, regs);
9749 
9750 	if (local64_add_negative(nr, &hwc->period_left))
9751 		return;
9752 
9753 	perf_swevent_overflow(event, 0, data, regs);
9754 }
9755 
9756 static int perf_exclude_event(struct perf_event *event,
9757 			      struct pt_regs *regs)
9758 {
9759 	if (event->hw.state & PERF_HES_STOPPED)
9760 		return 1;
9761 
9762 	if (regs) {
9763 		if (event->attr.exclude_user && user_mode(regs))
9764 			return 1;
9765 
9766 		if (event->attr.exclude_kernel && !user_mode(regs))
9767 			return 1;
9768 	}
9769 
9770 	return 0;
9771 }
9772 
9773 static int perf_swevent_match(struct perf_event *event,
9774 				enum perf_type_id type,
9775 				u32 event_id,
9776 				struct perf_sample_data *data,
9777 				struct pt_regs *regs)
9778 {
9779 	if (event->attr.type != type)
9780 		return 0;
9781 
9782 	if (event->attr.config != event_id)
9783 		return 0;
9784 
9785 	if (perf_exclude_event(event, regs))
9786 		return 0;
9787 
9788 	return 1;
9789 }
9790 
9791 static inline u64 swevent_hash(u64 type, u32 event_id)
9792 {
9793 	u64 val = event_id | (type << 32);
9794 
9795 	return hash_64(val, SWEVENT_HLIST_BITS);
9796 }
9797 
9798 static inline struct hlist_head *
9799 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9800 {
9801 	u64 hash = swevent_hash(type, event_id);
9802 
9803 	return &hlist->heads[hash];
9804 }
9805 
9806 /* For the read side: events when they trigger */
9807 static inline struct hlist_head *
9808 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9809 {
9810 	struct swevent_hlist *hlist;
9811 
9812 	hlist = rcu_dereference(swhash->swevent_hlist);
9813 	if (!hlist)
9814 		return NULL;
9815 
9816 	return __find_swevent_head(hlist, type, event_id);
9817 }
9818 
9819 /* For the event head insertion and removal in the hlist */
9820 static inline struct hlist_head *
9821 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9822 {
9823 	struct swevent_hlist *hlist;
9824 	u32 event_id = event->attr.config;
9825 	u64 type = event->attr.type;
9826 
9827 	/*
9828 	 * Event scheduling is always serialized against hlist allocation
9829 	 * and release. Which makes the protected version suitable here.
9830 	 * The context lock guarantees that.
9831 	 */
9832 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9833 					  lockdep_is_held(&event->ctx->lock));
9834 	if (!hlist)
9835 		return NULL;
9836 
9837 	return __find_swevent_head(hlist, type, event_id);
9838 }
9839 
9840 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9841 				    u64 nr,
9842 				    struct perf_sample_data *data,
9843 				    struct pt_regs *regs)
9844 {
9845 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9846 	struct perf_event *event;
9847 	struct hlist_head *head;
9848 
9849 	rcu_read_lock();
9850 	head = find_swevent_head_rcu(swhash, type, event_id);
9851 	if (!head)
9852 		goto end;
9853 
9854 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9855 		if (perf_swevent_match(event, type, event_id, data, regs))
9856 			perf_swevent_event(event, nr, data, regs);
9857 	}
9858 end:
9859 	rcu_read_unlock();
9860 }
9861 
9862 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9863 
9864 int perf_swevent_get_recursion_context(void)
9865 {
9866 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9867 
9868 	return get_recursion_context(swhash->recursion);
9869 }
9870 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9871 
9872 void perf_swevent_put_recursion_context(int rctx)
9873 {
9874 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9875 
9876 	put_recursion_context(swhash->recursion, rctx);
9877 }
9878 
9879 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9880 {
9881 	struct perf_sample_data data;
9882 
9883 	if (WARN_ON_ONCE(!regs))
9884 		return;
9885 
9886 	perf_sample_data_init(&data, addr, 0);
9887 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9888 }
9889 
9890 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9891 {
9892 	int rctx;
9893 
9894 	preempt_disable_notrace();
9895 	rctx = perf_swevent_get_recursion_context();
9896 	if (unlikely(rctx < 0))
9897 		goto fail;
9898 
9899 	___perf_sw_event(event_id, nr, regs, addr);
9900 
9901 	perf_swevent_put_recursion_context(rctx);
9902 fail:
9903 	preempt_enable_notrace();
9904 }
9905 
9906 static void perf_swevent_read(struct perf_event *event)
9907 {
9908 }
9909 
9910 static int perf_swevent_add(struct perf_event *event, int flags)
9911 {
9912 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9913 	struct hw_perf_event *hwc = &event->hw;
9914 	struct hlist_head *head;
9915 
9916 	if (is_sampling_event(event)) {
9917 		hwc->last_period = hwc->sample_period;
9918 		perf_swevent_set_period(event);
9919 	}
9920 
9921 	hwc->state = !(flags & PERF_EF_START);
9922 
9923 	head = find_swevent_head(swhash, event);
9924 	if (WARN_ON_ONCE(!head))
9925 		return -EINVAL;
9926 
9927 	hlist_add_head_rcu(&event->hlist_entry, head);
9928 	perf_event_update_userpage(event);
9929 
9930 	return 0;
9931 }
9932 
9933 static void perf_swevent_del(struct perf_event *event, int flags)
9934 {
9935 	hlist_del_rcu(&event->hlist_entry);
9936 }
9937 
9938 static void perf_swevent_start(struct perf_event *event, int flags)
9939 {
9940 	event->hw.state = 0;
9941 }
9942 
9943 static void perf_swevent_stop(struct perf_event *event, int flags)
9944 {
9945 	event->hw.state = PERF_HES_STOPPED;
9946 }
9947 
9948 /* Deref the hlist from the update side */
9949 static inline struct swevent_hlist *
9950 swevent_hlist_deref(struct swevent_htable *swhash)
9951 {
9952 	return rcu_dereference_protected(swhash->swevent_hlist,
9953 					 lockdep_is_held(&swhash->hlist_mutex));
9954 }
9955 
9956 static void swevent_hlist_release(struct swevent_htable *swhash)
9957 {
9958 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9959 
9960 	if (!hlist)
9961 		return;
9962 
9963 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9964 	kfree_rcu(hlist, rcu_head);
9965 }
9966 
9967 static void swevent_hlist_put_cpu(int cpu)
9968 {
9969 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9970 
9971 	mutex_lock(&swhash->hlist_mutex);
9972 
9973 	if (!--swhash->hlist_refcount)
9974 		swevent_hlist_release(swhash);
9975 
9976 	mutex_unlock(&swhash->hlist_mutex);
9977 }
9978 
9979 static void swevent_hlist_put(void)
9980 {
9981 	int cpu;
9982 
9983 	for_each_possible_cpu(cpu)
9984 		swevent_hlist_put_cpu(cpu);
9985 }
9986 
9987 static int swevent_hlist_get_cpu(int cpu)
9988 {
9989 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9990 	int err = 0;
9991 
9992 	mutex_lock(&swhash->hlist_mutex);
9993 	if (!swevent_hlist_deref(swhash) &&
9994 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9995 		struct swevent_hlist *hlist;
9996 
9997 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9998 		if (!hlist) {
9999 			err = -ENOMEM;
10000 			goto exit;
10001 		}
10002 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10003 	}
10004 	swhash->hlist_refcount++;
10005 exit:
10006 	mutex_unlock(&swhash->hlist_mutex);
10007 
10008 	return err;
10009 }
10010 
10011 static int swevent_hlist_get(void)
10012 {
10013 	int err, cpu, failed_cpu;
10014 
10015 	mutex_lock(&pmus_lock);
10016 	for_each_possible_cpu(cpu) {
10017 		err = swevent_hlist_get_cpu(cpu);
10018 		if (err) {
10019 			failed_cpu = cpu;
10020 			goto fail;
10021 		}
10022 	}
10023 	mutex_unlock(&pmus_lock);
10024 	return 0;
10025 fail:
10026 	for_each_possible_cpu(cpu) {
10027 		if (cpu == failed_cpu)
10028 			break;
10029 		swevent_hlist_put_cpu(cpu);
10030 	}
10031 	mutex_unlock(&pmus_lock);
10032 	return err;
10033 }
10034 
10035 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10036 
10037 static void sw_perf_event_destroy(struct perf_event *event)
10038 {
10039 	u64 event_id = event->attr.config;
10040 
10041 	WARN_ON(event->parent);
10042 
10043 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10044 	swevent_hlist_put();
10045 }
10046 
10047 static struct pmu perf_cpu_clock; /* fwd declaration */
10048 static struct pmu perf_task_clock;
10049 
10050 static int perf_swevent_init(struct perf_event *event)
10051 {
10052 	u64 event_id = event->attr.config;
10053 
10054 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10055 		return -ENOENT;
10056 
10057 	/*
10058 	 * no branch sampling for software events
10059 	 */
10060 	if (has_branch_stack(event))
10061 		return -EOPNOTSUPP;
10062 
10063 	switch (event_id) {
10064 	case PERF_COUNT_SW_CPU_CLOCK:
10065 		event->attr.type = perf_cpu_clock.type;
10066 		return -ENOENT;
10067 	case PERF_COUNT_SW_TASK_CLOCK:
10068 		event->attr.type = perf_task_clock.type;
10069 		return -ENOENT;
10070 
10071 	default:
10072 		break;
10073 	}
10074 
10075 	if (event_id >= PERF_COUNT_SW_MAX)
10076 		return -ENOENT;
10077 
10078 	if (!event->parent) {
10079 		int err;
10080 
10081 		err = swevent_hlist_get();
10082 		if (err)
10083 			return err;
10084 
10085 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10086 		event->destroy = sw_perf_event_destroy;
10087 	}
10088 
10089 	return 0;
10090 }
10091 
10092 static struct pmu perf_swevent = {
10093 	.task_ctx_nr	= perf_sw_context,
10094 
10095 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10096 
10097 	.event_init	= perf_swevent_init,
10098 	.add		= perf_swevent_add,
10099 	.del		= perf_swevent_del,
10100 	.start		= perf_swevent_start,
10101 	.stop		= perf_swevent_stop,
10102 	.read		= perf_swevent_read,
10103 };
10104 
10105 #ifdef CONFIG_EVENT_TRACING
10106 
10107 static void tp_perf_event_destroy(struct perf_event *event)
10108 {
10109 	perf_trace_destroy(event);
10110 }
10111 
10112 static int perf_tp_event_init(struct perf_event *event)
10113 {
10114 	int err;
10115 
10116 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10117 		return -ENOENT;
10118 
10119 	/*
10120 	 * no branch sampling for tracepoint events
10121 	 */
10122 	if (has_branch_stack(event))
10123 		return -EOPNOTSUPP;
10124 
10125 	err = perf_trace_init(event);
10126 	if (err)
10127 		return err;
10128 
10129 	event->destroy = tp_perf_event_destroy;
10130 
10131 	return 0;
10132 }
10133 
10134 static struct pmu perf_tracepoint = {
10135 	.task_ctx_nr	= perf_sw_context,
10136 
10137 	.event_init	= perf_tp_event_init,
10138 	.add		= perf_trace_add,
10139 	.del		= perf_trace_del,
10140 	.start		= perf_swevent_start,
10141 	.stop		= perf_swevent_stop,
10142 	.read		= perf_swevent_read,
10143 };
10144 
10145 static int perf_tp_filter_match(struct perf_event *event,
10146 				struct perf_sample_data *data)
10147 {
10148 	void *record = data->raw->frag.data;
10149 
10150 	/* only top level events have filters set */
10151 	if (event->parent)
10152 		event = event->parent;
10153 
10154 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10155 		return 1;
10156 	return 0;
10157 }
10158 
10159 static int perf_tp_event_match(struct perf_event *event,
10160 				struct perf_sample_data *data,
10161 				struct pt_regs *regs)
10162 {
10163 	if (event->hw.state & PERF_HES_STOPPED)
10164 		return 0;
10165 	/*
10166 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10167 	 */
10168 	if (event->attr.exclude_kernel && !user_mode(regs))
10169 		return 0;
10170 
10171 	if (!perf_tp_filter_match(event, data))
10172 		return 0;
10173 
10174 	return 1;
10175 }
10176 
10177 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10178 			       struct trace_event_call *call, u64 count,
10179 			       struct pt_regs *regs, struct hlist_head *head,
10180 			       struct task_struct *task)
10181 {
10182 	if (bpf_prog_array_valid(call)) {
10183 		*(struct pt_regs **)raw_data = regs;
10184 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10185 			perf_swevent_put_recursion_context(rctx);
10186 			return;
10187 		}
10188 	}
10189 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10190 		      rctx, task);
10191 }
10192 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10193 
10194 static void __perf_tp_event_target_task(u64 count, void *record,
10195 					struct pt_regs *regs,
10196 					struct perf_sample_data *data,
10197 					struct perf_event *event)
10198 {
10199 	struct trace_entry *entry = record;
10200 
10201 	if (event->attr.config != entry->type)
10202 		return;
10203 	/* Cannot deliver synchronous signal to other task. */
10204 	if (event->attr.sigtrap)
10205 		return;
10206 	if (perf_tp_event_match(event, data, regs))
10207 		perf_swevent_event(event, count, data, regs);
10208 }
10209 
10210 static void perf_tp_event_target_task(u64 count, void *record,
10211 				      struct pt_regs *regs,
10212 				      struct perf_sample_data *data,
10213 				      struct perf_event_context *ctx)
10214 {
10215 	unsigned int cpu = smp_processor_id();
10216 	struct pmu *pmu = &perf_tracepoint;
10217 	struct perf_event *event, *sibling;
10218 
10219 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10220 		__perf_tp_event_target_task(count, record, regs, data, event);
10221 		for_each_sibling_event(sibling, event)
10222 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10223 	}
10224 
10225 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10226 		__perf_tp_event_target_task(count, record, regs, data, event);
10227 		for_each_sibling_event(sibling, event)
10228 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10229 	}
10230 }
10231 
10232 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10233 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10234 		   struct task_struct *task)
10235 {
10236 	struct perf_sample_data data;
10237 	struct perf_event *event;
10238 
10239 	struct perf_raw_record raw = {
10240 		.frag = {
10241 			.size = entry_size,
10242 			.data = record,
10243 		},
10244 	};
10245 
10246 	perf_sample_data_init(&data, 0, 0);
10247 	perf_sample_save_raw_data(&data, &raw);
10248 
10249 	perf_trace_buf_update(record, event_type);
10250 
10251 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10252 		if (perf_tp_event_match(event, &data, regs)) {
10253 			perf_swevent_event(event, count, &data, regs);
10254 
10255 			/*
10256 			 * Here use the same on-stack perf_sample_data,
10257 			 * some members in data are event-specific and
10258 			 * need to be re-computed for different sweveents.
10259 			 * Re-initialize data->sample_flags safely to avoid
10260 			 * the problem that next event skips preparing data
10261 			 * because data->sample_flags is set.
10262 			 */
10263 			perf_sample_data_init(&data, 0, 0);
10264 			perf_sample_save_raw_data(&data, &raw);
10265 		}
10266 	}
10267 
10268 	/*
10269 	 * If we got specified a target task, also iterate its context and
10270 	 * deliver this event there too.
10271 	 */
10272 	if (task && task != current) {
10273 		struct perf_event_context *ctx;
10274 
10275 		rcu_read_lock();
10276 		ctx = rcu_dereference(task->perf_event_ctxp);
10277 		if (!ctx)
10278 			goto unlock;
10279 
10280 		raw_spin_lock(&ctx->lock);
10281 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10282 		raw_spin_unlock(&ctx->lock);
10283 unlock:
10284 		rcu_read_unlock();
10285 	}
10286 
10287 	perf_swevent_put_recursion_context(rctx);
10288 }
10289 EXPORT_SYMBOL_GPL(perf_tp_event);
10290 
10291 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10292 /*
10293  * Flags in config, used by dynamic PMU kprobe and uprobe
10294  * The flags should match following PMU_FORMAT_ATTR().
10295  *
10296  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10297  *                               if not set, create kprobe/uprobe
10298  *
10299  * The following values specify a reference counter (or semaphore in the
10300  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10301  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10302  *
10303  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10304  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10305  */
10306 enum perf_probe_config {
10307 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10308 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10309 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10310 };
10311 
10312 PMU_FORMAT_ATTR(retprobe, "config:0");
10313 #endif
10314 
10315 #ifdef CONFIG_KPROBE_EVENTS
10316 static struct attribute *kprobe_attrs[] = {
10317 	&format_attr_retprobe.attr,
10318 	NULL,
10319 };
10320 
10321 static struct attribute_group kprobe_format_group = {
10322 	.name = "format",
10323 	.attrs = kprobe_attrs,
10324 };
10325 
10326 static const struct attribute_group *kprobe_attr_groups[] = {
10327 	&kprobe_format_group,
10328 	NULL,
10329 };
10330 
10331 static int perf_kprobe_event_init(struct perf_event *event);
10332 static struct pmu perf_kprobe = {
10333 	.task_ctx_nr	= perf_sw_context,
10334 	.event_init	= perf_kprobe_event_init,
10335 	.add		= perf_trace_add,
10336 	.del		= perf_trace_del,
10337 	.start		= perf_swevent_start,
10338 	.stop		= perf_swevent_stop,
10339 	.read		= perf_swevent_read,
10340 	.attr_groups	= kprobe_attr_groups,
10341 };
10342 
10343 static int perf_kprobe_event_init(struct perf_event *event)
10344 {
10345 	int err;
10346 	bool is_retprobe;
10347 
10348 	if (event->attr.type != perf_kprobe.type)
10349 		return -ENOENT;
10350 
10351 	if (!perfmon_capable())
10352 		return -EACCES;
10353 
10354 	/*
10355 	 * no branch sampling for probe events
10356 	 */
10357 	if (has_branch_stack(event))
10358 		return -EOPNOTSUPP;
10359 
10360 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10361 	err = perf_kprobe_init(event, is_retprobe);
10362 	if (err)
10363 		return err;
10364 
10365 	event->destroy = perf_kprobe_destroy;
10366 
10367 	return 0;
10368 }
10369 #endif /* CONFIG_KPROBE_EVENTS */
10370 
10371 #ifdef CONFIG_UPROBE_EVENTS
10372 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10373 
10374 static struct attribute *uprobe_attrs[] = {
10375 	&format_attr_retprobe.attr,
10376 	&format_attr_ref_ctr_offset.attr,
10377 	NULL,
10378 };
10379 
10380 static struct attribute_group uprobe_format_group = {
10381 	.name = "format",
10382 	.attrs = uprobe_attrs,
10383 };
10384 
10385 static const struct attribute_group *uprobe_attr_groups[] = {
10386 	&uprobe_format_group,
10387 	NULL,
10388 };
10389 
10390 static int perf_uprobe_event_init(struct perf_event *event);
10391 static struct pmu perf_uprobe = {
10392 	.task_ctx_nr	= perf_sw_context,
10393 	.event_init	= perf_uprobe_event_init,
10394 	.add		= perf_trace_add,
10395 	.del		= perf_trace_del,
10396 	.start		= perf_swevent_start,
10397 	.stop		= perf_swevent_stop,
10398 	.read		= perf_swevent_read,
10399 	.attr_groups	= uprobe_attr_groups,
10400 };
10401 
10402 static int perf_uprobe_event_init(struct perf_event *event)
10403 {
10404 	int err;
10405 	unsigned long ref_ctr_offset;
10406 	bool is_retprobe;
10407 
10408 	if (event->attr.type != perf_uprobe.type)
10409 		return -ENOENT;
10410 
10411 	if (!perfmon_capable())
10412 		return -EACCES;
10413 
10414 	/*
10415 	 * no branch sampling for probe events
10416 	 */
10417 	if (has_branch_stack(event))
10418 		return -EOPNOTSUPP;
10419 
10420 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10421 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10422 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10423 	if (err)
10424 		return err;
10425 
10426 	event->destroy = perf_uprobe_destroy;
10427 
10428 	return 0;
10429 }
10430 #endif /* CONFIG_UPROBE_EVENTS */
10431 
10432 static inline void perf_tp_register(void)
10433 {
10434 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10435 #ifdef CONFIG_KPROBE_EVENTS
10436 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10437 #endif
10438 #ifdef CONFIG_UPROBE_EVENTS
10439 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10440 #endif
10441 }
10442 
10443 static void perf_event_free_filter(struct perf_event *event)
10444 {
10445 	ftrace_profile_free_filter(event);
10446 }
10447 
10448 #ifdef CONFIG_BPF_SYSCALL
10449 static void bpf_overflow_handler(struct perf_event *event,
10450 				 struct perf_sample_data *data,
10451 				 struct pt_regs *regs)
10452 {
10453 	struct bpf_perf_event_data_kern ctx = {
10454 		.data = data,
10455 		.event = event,
10456 	};
10457 	struct bpf_prog *prog;
10458 	int ret = 0;
10459 
10460 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10461 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10462 		goto out;
10463 	rcu_read_lock();
10464 	prog = READ_ONCE(event->prog);
10465 	if (prog) {
10466 		perf_prepare_sample(data, event, regs);
10467 		ret = bpf_prog_run(prog, &ctx);
10468 	}
10469 	rcu_read_unlock();
10470 out:
10471 	__this_cpu_dec(bpf_prog_active);
10472 	if (!ret)
10473 		return;
10474 
10475 	event->orig_overflow_handler(event, data, regs);
10476 }
10477 
10478 static int perf_event_set_bpf_handler(struct perf_event *event,
10479 				      struct bpf_prog *prog,
10480 				      u64 bpf_cookie)
10481 {
10482 	if (event->overflow_handler_context)
10483 		/* hw breakpoint or kernel counter */
10484 		return -EINVAL;
10485 
10486 	if (event->prog)
10487 		return -EEXIST;
10488 
10489 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10490 		return -EINVAL;
10491 
10492 	if (event->attr.precise_ip &&
10493 	    prog->call_get_stack &&
10494 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10495 	     event->attr.exclude_callchain_kernel ||
10496 	     event->attr.exclude_callchain_user)) {
10497 		/*
10498 		 * On perf_event with precise_ip, calling bpf_get_stack()
10499 		 * may trigger unwinder warnings and occasional crashes.
10500 		 * bpf_get_[stack|stackid] works around this issue by using
10501 		 * callchain attached to perf_sample_data. If the
10502 		 * perf_event does not full (kernel and user) callchain
10503 		 * attached to perf_sample_data, do not allow attaching BPF
10504 		 * program that calls bpf_get_[stack|stackid].
10505 		 */
10506 		return -EPROTO;
10507 	}
10508 
10509 	event->prog = prog;
10510 	event->bpf_cookie = bpf_cookie;
10511 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10512 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10513 	return 0;
10514 }
10515 
10516 static void perf_event_free_bpf_handler(struct perf_event *event)
10517 {
10518 	struct bpf_prog *prog = event->prog;
10519 
10520 	if (!prog)
10521 		return;
10522 
10523 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10524 	event->prog = NULL;
10525 	bpf_prog_put(prog);
10526 }
10527 #else
10528 static int perf_event_set_bpf_handler(struct perf_event *event,
10529 				      struct bpf_prog *prog,
10530 				      u64 bpf_cookie)
10531 {
10532 	return -EOPNOTSUPP;
10533 }
10534 static void perf_event_free_bpf_handler(struct perf_event *event)
10535 {
10536 }
10537 #endif
10538 
10539 /*
10540  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10541  * with perf_event_open()
10542  */
10543 static inline bool perf_event_is_tracing(struct perf_event *event)
10544 {
10545 	if (event->pmu == &perf_tracepoint)
10546 		return true;
10547 #ifdef CONFIG_KPROBE_EVENTS
10548 	if (event->pmu == &perf_kprobe)
10549 		return true;
10550 #endif
10551 #ifdef CONFIG_UPROBE_EVENTS
10552 	if (event->pmu == &perf_uprobe)
10553 		return true;
10554 #endif
10555 	return false;
10556 }
10557 
10558 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10559 			    u64 bpf_cookie)
10560 {
10561 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10562 
10563 	if (!perf_event_is_tracing(event))
10564 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10565 
10566 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10567 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10568 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10569 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10570 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10571 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10572 		return -EINVAL;
10573 
10574 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10575 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10576 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10577 		return -EINVAL;
10578 
10579 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10580 		/* only uprobe programs are allowed to be sleepable */
10581 		return -EINVAL;
10582 
10583 	/* Kprobe override only works for kprobes, not uprobes. */
10584 	if (prog->kprobe_override && !is_kprobe)
10585 		return -EINVAL;
10586 
10587 	if (is_tracepoint || is_syscall_tp) {
10588 		int off = trace_event_get_offsets(event->tp_event);
10589 
10590 		if (prog->aux->max_ctx_offset > off)
10591 			return -EACCES;
10592 	}
10593 
10594 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10595 }
10596 
10597 void perf_event_free_bpf_prog(struct perf_event *event)
10598 {
10599 	if (!perf_event_is_tracing(event)) {
10600 		perf_event_free_bpf_handler(event);
10601 		return;
10602 	}
10603 	perf_event_detach_bpf_prog(event);
10604 }
10605 
10606 #else
10607 
10608 static inline void perf_tp_register(void)
10609 {
10610 }
10611 
10612 static void perf_event_free_filter(struct perf_event *event)
10613 {
10614 }
10615 
10616 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10617 			    u64 bpf_cookie)
10618 {
10619 	return -ENOENT;
10620 }
10621 
10622 void perf_event_free_bpf_prog(struct perf_event *event)
10623 {
10624 }
10625 #endif /* CONFIG_EVENT_TRACING */
10626 
10627 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10628 void perf_bp_event(struct perf_event *bp, void *data)
10629 {
10630 	struct perf_sample_data sample;
10631 	struct pt_regs *regs = data;
10632 
10633 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10634 
10635 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10636 		perf_swevent_event(bp, 1, &sample, regs);
10637 }
10638 #endif
10639 
10640 /*
10641  * Allocate a new address filter
10642  */
10643 static struct perf_addr_filter *
10644 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10645 {
10646 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10647 	struct perf_addr_filter *filter;
10648 
10649 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10650 	if (!filter)
10651 		return NULL;
10652 
10653 	INIT_LIST_HEAD(&filter->entry);
10654 	list_add_tail(&filter->entry, filters);
10655 
10656 	return filter;
10657 }
10658 
10659 static void free_filters_list(struct list_head *filters)
10660 {
10661 	struct perf_addr_filter *filter, *iter;
10662 
10663 	list_for_each_entry_safe(filter, iter, filters, entry) {
10664 		path_put(&filter->path);
10665 		list_del(&filter->entry);
10666 		kfree(filter);
10667 	}
10668 }
10669 
10670 /*
10671  * Free existing address filters and optionally install new ones
10672  */
10673 static void perf_addr_filters_splice(struct perf_event *event,
10674 				     struct list_head *head)
10675 {
10676 	unsigned long flags;
10677 	LIST_HEAD(list);
10678 
10679 	if (!has_addr_filter(event))
10680 		return;
10681 
10682 	/* don't bother with children, they don't have their own filters */
10683 	if (event->parent)
10684 		return;
10685 
10686 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10687 
10688 	list_splice_init(&event->addr_filters.list, &list);
10689 	if (head)
10690 		list_splice(head, &event->addr_filters.list);
10691 
10692 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10693 
10694 	free_filters_list(&list);
10695 }
10696 
10697 /*
10698  * Scan through mm's vmas and see if one of them matches the
10699  * @filter; if so, adjust filter's address range.
10700  * Called with mm::mmap_lock down for reading.
10701  */
10702 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10703 				   struct mm_struct *mm,
10704 				   struct perf_addr_filter_range *fr)
10705 {
10706 	struct vm_area_struct *vma;
10707 	VMA_ITERATOR(vmi, mm, 0);
10708 
10709 	for_each_vma(vmi, vma) {
10710 		if (!vma->vm_file)
10711 			continue;
10712 
10713 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10714 			return;
10715 	}
10716 }
10717 
10718 /*
10719  * Update event's address range filters based on the
10720  * task's existing mappings, if any.
10721  */
10722 static void perf_event_addr_filters_apply(struct perf_event *event)
10723 {
10724 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10725 	struct task_struct *task = READ_ONCE(event->ctx->task);
10726 	struct perf_addr_filter *filter;
10727 	struct mm_struct *mm = NULL;
10728 	unsigned int count = 0;
10729 	unsigned long flags;
10730 
10731 	/*
10732 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10733 	 * will stop on the parent's child_mutex that our caller is also holding
10734 	 */
10735 	if (task == TASK_TOMBSTONE)
10736 		return;
10737 
10738 	if (ifh->nr_file_filters) {
10739 		mm = get_task_mm(task);
10740 		if (!mm)
10741 			goto restart;
10742 
10743 		mmap_read_lock(mm);
10744 	}
10745 
10746 	raw_spin_lock_irqsave(&ifh->lock, flags);
10747 	list_for_each_entry(filter, &ifh->list, entry) {
10748 		if (filter->path.dentry) {
10749 			/*
10750 			 * Adjust base offset if the filter is associated to a
10751 			 * binary that needs to be mapped:
10752 			 */
10753 			event->addr_filter_ranges[count].start = 0;
10754 			event->addr_filter_ranges[count].size = 0;
10755 
10756 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10757 		} else {
10758 			event->addr_filter_ranges[count].start = filter->offset;
10759 			event->addr_filter_ranges[count].size  = filter->size;
10760 		}
10761 
10762 		count++;
10763 	}
10764 
10765 	event->addr_filters_gen++;
10766 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10767 
10768 	if (ifh->nr_file_filters) {
10769 		mmap_read_unlock(mm);
10770 
10771 		mmput(mm);
10772 	}
10773 
10774 restart:
10775 	perf_event_stop(event, 1);
10776 }
10777 
10778 /*
10779  * Address range filtering: limiting the data to certain
10780  * instruction address ranges. Filters are ioctl()ed to us from
10781  * userspace as ascii strings.
10782  *
10783  * Filter string format:
10784  *
10785  * ACTION RANGE_SPEC
10786  * where ACTION is one of the
10787  *  * "filter": limit the trace to this region
10788  *  * "start": start tracing from this address
10789  *  * "stop": stop tracing at this address/region;
10790  * RANGE_SPEC is
10791  *  * for kernel addresses: <start address>[/<size>]
10792  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10793  *
10794  * if <size> is not specified or is zero, the range is treated as a single
10795  * address; not valid for ACTION=="filter".
10796  */
10797 enum {
10798 	IF_ACT_NONE = -1,
10799 	IF_ACT_FILTER,
10800 	IF_ACT_START,
10801 	IF_ACT_STOP,
10802 	IF_SRC_FILE,
10803 	IF_SRC_KERNEL,
10804 	IF_SRC_FILEADDR,
10805 	IF_SRC_KERNELADDR,
10806 };
10807 
10808 enum {
10809 	IF_STATE_ACTION = 0,
10810 	IF_STATE_SOURCE,
10811 	IF_STATE_END,
10812 };
10813 
10814 static const match_table_t if_tokens = {
10815 	{ IF_ACT_FILTER,	"filter" },
10816 	{ IF_ACT_START,		"start" },
10817 	{ IF_ACT_STOP,		"stop" },
10818 	{ IF_SRC_FILE,		"%u/%u@%s" },
10819 	{ IF_SRC_KERNEL,	"%u/%u" },
10820 	{ IF_SRC_FILEADDR,	"%u@%s" },
10821 	{ IF_SRC_KERNELADDR,	"%u" },
10822 	{ IF_ACT_NONE,		NULL },
10823 };
10824 
10825 /*
10826  * Address filter string parser
10827  */
10828 static int
10829 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10830 			     struct list_head *filters)
10831 {
10832 	struct perf_addr_filter *filter = NULL;
10833 	char *start, *orig, *filename = NULL;
10834 	substring_t args[MAX_OPT_ARGS];
10835 	int state = IF_STATE_ACTION, token;
10836 	unsigned int kernel = 0;
10837 	int ret = -EINVAL;
10838 
10839 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10840 	if (!fstr)
10841 		return -ENOMEM;
10842 
10843 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10844 		static const enum perf_addr_filter_action_t actions[] = {
10845 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10846 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10847 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10848 		};
10849 		ret = -EINVAL;
10850 
10851 		if (!*start)
10852 			continue;
10853 
10854 		/* filter definition begins */
10855 		if (state == IF_STATE_ACTION) {
10856 			filter = perf_addr_filter_new(event, filters);
10857 			if (!filter)
10858 				goto fail;
10859 		}
10860 
10861 		token = match_token(start, if_tokens, args);
10862 		switch (token) {
10863 		case IF_ACT_FILTER:
10864 		case IF_ACT_START:
10865 		case IF_ACT_STOP:
10866 			if (state != IF_STATE_ACTION)
10867 				goto fail;
10868 
10869 			filter->action = actions[token];
10870 			state = IF_STATE_SOURCE;
10871 			break;
10872 
10873 		case IF_SRC_KERNELADDR:
10874 		case IF_SRC_KERNEL:
10875 			kernel = 1;
10876 			fallthrough;
10877 
10878 		case IF_SRC_FILEADDR:
10879 		case IF_SRC_FILE:
10880 			if (state != IF_STATE_SOURCE)
10881 				goto fail;
10882 
10883 			*args[0].to = 0;
10884 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10885 			if (ret)
10886 				goto fail;
10887 
10888 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10889 				*args[1].to = 0;
10890 				ret = kstrtoul(args[1].from, 0, &filter->size);
10891 				if (ret)
10892 					goto fail;
10893 			}
10894 
10895 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10896 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10897 
10898 				kfree(filename);
10899 				filename = match_strdup(&args[fpos]);
10900 				if (!filename) {
10901 					ret = -ENOMEM;
10902 					goto fail;
10903 				}
10904 			}
10905 
10906 			state = IF_STATE_END;
10907 			break;
10908 
10909 		default:
10910 			goto fail;
10911 		}
10912 
10913 		/*
10914 		 * Filter definition is fully parsed, validate and install it.
10915 		 * Make sure that it doesn't contradict itself or the event's
10916 		 * attribute.
10917 		 */
10918 		if (state == IF_STATE_END) {
10919 			ret = -EINVAL;
10920 
10921 			/*
10922 			 * ACTION "filter" must have a non-zero length region
10923 			 * specified.
10924 			 */
10925 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10926 			    !filter->size)
10927 				goto fail;
10928 
10929 			if (!kernel) {
10930 				if (!filename)
10931 					goto fail;
10932 
10933 				/*
10934 				 * For now, we only support file-based filters
10935 				 * in per-task events; doing so for CPU-wide
10936 				 * events requires additional context switching
10937 				 * trickery, since same object code will be
10938 				 * mapped at different virtual addresses in
10939 				 * different processes.
10940 				 */
10941 				ret = -EOPNOTSUPP;
10942 				if (!event->ctx->task)
10943 					goto fail;
10944 
10945 				/* look up the path and grab its inode */
10946 				ret = kern_path(filename, LOOKUP_FOLLOW,
10947 						&filter->path);
10948 				if (ret)
10949 					goto fail;
10950 
10951 				ret = -EINVAL;
10952 				if (!filter->path.dentry ||
10953 				    !S_ISREG(d_inode(filter->path.dentry)
10954 					     ->i_mode))
10955 					goto fail;
10956 
10957 				event->addr_filters.nr_file_filters++;
10958 			}
10959 
10960 			/* ready to consume more filters */
10961 			kfree(filename);
10962 			filename = NULL;
10963 			state = IF_STATE_ACTION;
10964 			filter = NULL;
10965 			kernel = 0;
10966 		}
10967 	}
10968 
10969 	if (state != IF_STATE_ACTION)
10970 		goto fail;
10971 
10972 	kfree(filename);
10973 	kfree(orig);
10974 
10975 	return 0;
10976 
10977 fail:
10978 	kfree(filename);
10979 	free_filters_list(filters);
10980 	kfree(orig);
10981 
10982 	return ret;
10983 }
10984 
10985 static int
10986 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10987 {
10988 	LIST_HEAD(filters);
10989 	int ret;
10990 
10991 	/*
10992 	 * Since this is called in perf_ioctl() path, we're already holding
10993 	 * ctx::mutex.
10994 	 */
10995 	lockdep_assert_held(&event->ctx->mutex);
10996 
10997 	if (WARN_ON_ONCE(event->parent))
10998 		return -EINVAL;
10999 
11000 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11001 	if (ret)
11002 		goto fail_clear_files;
11003 
11004 	ret = event->pmu->addr_filters_validate(&filters);
11005 	if (ret)
11006 		goto fail_free_filters;
11007 
11008 	/* remove existing filters, if any */
11009 	perf_addr_filters_splice(event, &filters);
11010 
11011 	/* install new filters */
11012 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11013 
11014 	return ret;
11015 
11016 fail_free_filters:
11017 	free_filters_list(&filters);
11018 
11019 fail_clear_files:
11020 	event->addr_filters.nr_file_filters = 0;
11021 
11022 	return ret;
11023 }
11024 
11025 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11026 {
11027 	int ret = -EINVAL;
11028 	char *filter_str;
11029 
11030 	filter_str = strndup_user(arg, PAGE_SIZE);
11031 	if (IS_ERR(filter_str))
11032 		return PTR_ERR(filter_str);
11033 
11034 #ifdef CONFIG_EVENT_TRACING
11035 	if (perf_event_is_tracing(event)) {
11036 		struct perf_event_context *ctx = event->ctx;
11037 
11038 		/*
11039 		 * Beware, here be dragons!!
11040 		 *
11041 		 * the tracepoint muck will deadlock against ctx->mutex, but
11042 		 * the tracepoint stuff does not actually need it. So
11043 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11044 		 * already have a reference on ctx.
11045 		 *
11046 		 * This can result in event getting moved to a different ctx,
11047 		 * but that does not affect the tracepoint state.
11048 		 */
11049 		mutex_unlock(&ctx->mutex);
11050 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11051 		mutex_lock(&ctx->mutex);
11052 	} else
11053 #endif
11054 	if (has_addr_filter(event))
11055 		ret = perf_event_set_addr_filter(event, filter_str);
11056 
11057 	kfree(filter_str);
11058 	return ret;
11059 }
11060 
11061 /*
11062  * hrtimer based swevent callback
11063  */
11064 
11065 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11066 {
11067 	enum hrtimer_restart ret = HRTIMER_RESTART;
11068 	struct perf_sample_data data;
11069 	struct pt_regs *regs;
11070 	struct perf_event *event;
11071 	u64 period;
11072 
11073 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11074 
11075 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11076 		return HRTIMER_NORESTART;
11077 
11078 	event->pmu->read(event);
11079 
11080 	perf_sample_data_init(&data, 0, event->hw.last_period);
11081 	regs = get_irq_regs();
11082 
11083 	if (regs && !perf_exclude_event(event, regs)) {
11084 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11085 			if (__perf_event_overflow(event, 1, &data, regs))
11086 				ret = HRTIMER_NORESTART;
11087 	}
11088 
11089 	period = max_t(u64, 10000, event->hw.sample_period);
11090 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11091 
11092 	return ret;
11093 }
11094 
11095 static void perf_swevent_start_hrtimer(struct perf_event *event)
11096 {
11097 	struct hw_perf_event *hwc = &event->hw;
11098 	s64 period;
11099 
11100 	if (!is_sampling_event(event))
11101 		return;
11102 
11103 	period = local64_read(&hwc->period_left);
11104 	if (period) {
11105 		if (period < 0)
11106 			period = 10000;
11107 
11108 		local64_set(&hwc->period_left, 0);
11109 	} else {
11110 		period = max_t(u64, 10000, hwc->sample_period);
11111 	}
11112 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11113 		      HRTIMER_MODE_REL_PINNED_HARD);
11114 }
11115 
11116 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11117 {
11118 	struct hw_perf_event *hwc = &event->hw;
11119 
11120 	if (is_sampling_event(event)) {
11121 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11122 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11123 
11124 		hrtimer_cancel(&hwc->hrtimer);
11125 	}
11126 }
11127 
11128 static void perf_swevent_init_hrtimer(struct perf_event *event)
11129 {
11130 	struct hw_perf_event *hwc = &event->hw;
11131 
11132 	if (!is_sampling_event(event))
11133 		return;
11134 
11135 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11136 	hwc->hrtimer.function = perf_swevent_hrtimer;
11137 
11138 	/*
11139 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11140 	 * mapping and avoid the whole period adjust feedback stuff.
11141 	 */
11142 	if (event->attr.freq) {
11143 		long freq = event->attr.sample_freq;
11144 
11145 		event->attr.sample_period = NSEC_PER_SEC / freq;
11146 		hwc->sample_period = event->attr.sample_period;
11147 		local64_set(&hwc->period_left, hwc->sample_period);
11148 		hwc->last_period = hwc->sample_period;
11149 		event->attr.freq = 0;
11150 	}
11151 }
11152 
11153 /*
11154  * Software event: cpu wall time clock
11155  */
11156 
11157 static void cpu_clock_event_update(struct perf_event *event)
11158 {
11159 	s64 prev;
11160 	u64 now;
11161 
11162 	now = local_clock();
11163 	prev = local64_xchg(&event->hw.prev_count, now);
11164 	local64_add(now - prev, &event->count);
11165 }
11166 
11167 static void cpu_clock_event_start(struct perf_event *event, int flags)
11168 {
11169 	local64_set(&event->hw.prev_count, local_clock());
11170 	perf_swevent_start_hrtimer(event);
11171 }
11172 
11173 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11174 {
11175 	perf_swevent_cancel_hrtimer(event);
11176 	cpu_clock_event_update(event);
11177 }
11178 
11179 static int cpu_clock_event_add(struct perf_event *event, int flags)
11180 {
11181 	if (flags & PERF_EF_START)
11182 		cpu_clock_event_start(event, flags);
11183 	perf_event_update_userpage(event);
11184 
11185 	return 0;
11186 }
11187 
11188 static void cpu_clock_event_del(struct perf_event *event, int flags)
11189 {
11190 	cpu_clock_event_stop(event, flags);
11191 }
11192 
11193 static void cpu_clock_event_read(struct perf_event *event)
11194 {
11195 	cpu_clock_event_update(event);
11196 }
11197 
11198 static int cpu_clock_event_init(struct perf_event *event)
11199 {
11200 	if (event->attr.type != perf_cpu_clock.type)
11201 		return -ENOENT;
11202 
11203 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11204 		return -ENOENT;
11205 
11206 	/*
11207 	 * no branch sampling for software events
11208 	 */
11209 	if (has_branch_stack(event))
11210 		return -EOPNOTSUPP;
11211 
11212 	perf_swevent_init_hrtimer(event);
11213 
11214 	return 0;
11215 }
11216 
11217 static struct pmu perf_cpu_clock = {
11218 	.task_ctx_nr	= perf_sw_context,
11219 
11220 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11221 	.dev		= PMU_NULL_DEV,
11222 
11223 	.event_init	= cpu_clock_event_init,
11224 	.add		= cpu_clock_event_add,
11225 	.del		= cpu_clock_event_del,
11226 	.start		= cpu_clock_event_start,
11227 	.stop		= cpu_clock_event_stop,
11228 	.read		= cpu_clock_event_read,
11229 };
11230 
11231 /*
11232  * Software event: task time clock
11233  */
11234 
11235 static void task_clock_event_update(struct perf_event *event, u64 now)
11236 {
11237 	u64 prev;
11238 	s64 delta;
11239 
11240 	prev = local64_xchg(&event->hw.prev_count, now);
11241 	delta = now - prev;
11242 	local64_add(delta, &event->count);
11243 }
11244 
11245 static void task_clock_event_start(struct perf_event *event, int flags)
11246 {
11247 	local64_set(&event->hw.prev_count, event->ctx->time);
11248 	perf_swevent_start_hrtimer(event);
11249 }
11250 
11251 static void task_clock_event_stop(struct perf_event *event, int flags)
11252 {
11253 	perf_swevent_cancel_hrtimer(event);
11254 	task_clock_event_update(event, event->ctx->time);
11255 }
11256 
11257 static int task_clock_event_add(struct perf_event *event, int flags)
11258 {
11259 	if (flags & PERF_EF_START)
11260 		task_clock_event_start(event, flags);
11261 	perf_event_update_userpage(event);
11262 
11263 	return 0;
11264 }
11265 
11266 static void task_clock_event_del(struct perf_event *event, int flags)
11267 {
11268 	task_clock_event_stop(event, PERF_EF_UPDATE);
11269 }
11270 
11271 static void task_clock_event_read(struct perf_event *event)
11272 {
11273 	u64 now = perf_clock();
11274 	u64 delta = now - event->ctx->timestamp;
11275 	u64 time = event->ctx->time + delta;
11276 
11277 	task_clock_event_update(event, time);
11278 }
11279 
11280 static int task_clock_event_init(struct perf_event *event)
11281 {
11282 	if (event->attr.type != perf_task_clock.type)
11283 		return -ENOENT;
11284 
11285 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11286 		return -ENOENT;
11287 
11288 	/*
11289 	 * no branch sampling for software events
11290 	 */
11291 	if (has_branch_stack(event))
11292 		return -EOPNOTSUPP;
11293 
11294 	perf_swevent_init_hrtimer(event);
11295 
11296 	return 0;
11297 }
11298 
11299 static struct pmu perf_task_clock = {
11300 	.task_ctx_nr	= perf_sw_context,
11301 
11302 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11303 	.dev		= PMU_NULL_DEV,
11304 
11305 	.event_init	= task_clock_event_init,
11306 	.add		= task_clock_event_add,
11307 	.del		= task_clock_event_del,
11308 	.start		= task_clock_event_start,
11309 	.stop		= task_clock_event_stop,
11310 	.read		= task_clock_event_read,
11311 };
11312 
11313 static void perf_pmu_nop_void(struct pmu *pmu)
11314 {
11315 }
11316 
11317 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11318 {
11319 }
11320 
11321 static int perf_pmu_nop_int(struct pmu *pmu)
11322 {
11323 	return 0;
11324 }
11325 
11326 static int perf_event_nop_int(struct perf_event *event, u64 value)
11327 {
11328 	return 0;
11329 }
11330 
11331 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11332 
11333 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11334 {
11335 	__this_cpu_write(nop_txn_flags, flags);
11336 
11337 	if (flags & ~PERF_PMU_TXN_ADD)
11338 		return;
11339 
11340 	perf_pmu_disable(pmu);
11341 }
11342 
11343 static int perf_pmu_commit_txn(struct pmu *pmu)
11344 {
11345 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11346 
11347 	__this_cpu_write(nop_txn_flags, 0);
11348 
11349 	if (flags & ~PERF_PMU_TXN_ADD)
11350 		return 0;
11351 
11352 	perf_pmu_enable(pmu);
11353 	return 0;
11354 }
11355 
11356 static void perf_pmu_cancel_txn(struct pmu *pmu)
11357 {
11358 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11359 
11360 	__this_cpu_write(nop_txn_flags, 0);
11361 
11362 	if (flags & ~PERF_PMU_TXN_ADD)
11363 		return;
11364 
11365 	perf_pmu_enable(pmu);
11366 }
11367 
11368 static int perf_event_idx_default(struct perf_event *event)
11369 {
11370 	return 0;
11371 }
11372 
11373 static void free_pmu_context(struct pmu *pmu)
11374 {
11375 	free_percpu(pmu->cpu_pmu_context);
11376 }
11377 
11378 /*
11379  * Let userspace know that this PMU supports address range filtering:
11380  */
11381 static ssize_t nr_addr_filters_show(struct device *dev,
11382 				    struct device_attribute *attr,
11383 				    char *page)
11384 {
11385 	struct pmu *pmu = dev_get_drvdata(dev);
11386 
11387 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11388 }
11389 DEVICE_ATTR_RO(nr_addr_filters);
11390 
11391 static struct idr pmu_idr;
11392 
11393 static ssize_t
11394 type_show(struct device *dev, struct device_attribute *attr, char *page)
11395 {
11396 	struct pmu *pmu = dev_get_drvdata(dev);
11397 
11398 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11399 }
11400 static DEVICE_ATTR_RO(type);
11401 
11402 static ssize_t
11403 perf_event_mux_interval_ms_show(struct device *dev,
11404 				struct device_attribute *attr,
11405 				char *page)
11406 {
11407 	struct pmu *pmu = dev_get_drvdata(dev);
11408 
11409 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11410 }
11411 
11412 static DEFINE_MUTEX(mux_interval_mutex);
11413 
11414 static ssize_t
11415 perf_event_mux_interval_ms_store(struct device *dev,
11416 				 struct device_attribute *attr,
11417 				 const char *buf, size_t count)
11418 {
11419 	struct pmu *pmu = dev_get_drvdata(dev);
11420 	int timer, cpu, ret;
11421 
11422 	ret = kstrtoint(buf, 0, &timer);
11423 	if (ret)
11424 		return ret;
11425 
11426 	if (timer < 1)
11427 		return -EINVAL;
11428 
11429 	/* same value, noting to do */
11430 	if (timer == pmu->hrtimer_interval_ms)
11431 		return count;
11432 
11433 	mutex_lock(&mux_interval_mutex);
11434 	pmu->hrtimer_interval_ms = timer;
11435 
11436 	/* update all cpuctx for this PMU */
11437 	cpus_read_lock();
11438 	for_each_online_cpu(cpu) {
11439 		struct perf_cpu_pmu_context *cpc;
11440 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11441 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11442 
11443 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11444 	}
11445 	cpus_read_unlock();
11446 	mutex_unlock(&mux_interval_mutex);
11447 
11448 	return count;
11449 }
11450 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11451 
11452 static struct attribute *pmu_dev_attrs[] = {
11453 	&dev_attr_type.attr,
11454 	&dev_attr_perf_event_mux_interval_ms.attr,
11455 	&dev_attr_nr_addr_filters.attr,
11456 	NULL,
11457 };
11458 
11459 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11460 {
11461 	struct device *dev = kobj_to_dev(kobj);
11462 	struct pmu *pmu = dev_get_drvdata(dev);
11463 
11464 	if (n == 2 && !pmu->nr_addr_filters)
11465 		return 0;
11466 
11467 	return a->mode;
11468 }
11469 
11470 static struct attribute_group pmu_dev_attr_group = {
11471 	.is_visible = pmu_dev_is_visible,
11472 	.attrs = pmu_dev_attrs,
11473 };
11474 
11475 static const struct attribute_group *pmu_dev_groups[] = {
11476 	&pmu_dev_attr_group,
11477 	NULL,
11478 };
11479 
11480 static int pmu_bus_running;
11481 static struct bus_type pmu_bus = {
11482 	.name		= "event_source",
11483 	.dev_groups	= pmu_dev_groups,
11484 };
11485 
11486 static void pmu_dev_release(struct device *dev)
11487 {
11488 	kfree(dev);
11489 }
11490 
11491 static int pmu_dev_alloc(struct pmu *pmu)
11492 {
11493 	int ret = -ENOMEM;
11494 
11495 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11496 	if (!pmu->dev)
11497 		goto out;
11498 
11499 	pmu->dev->groups = pmu->attr_groups;
11500 	device_initialize(pmu->dev);
11501 
11502 	dev_set_drvdata(pmu->dev, pmu);
11503 	pmu->dev->bus = &pmu_bus;
11504 	pmu->dev->parent = pmu->parent;
11505 	pmu->dev->release = pmu_dev_release;
11506 
11507 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11508 	if (ret)
11509 		goto free_dev;
11510 
11511 	ret = device_add(pmu->dev);
11512 	if (ret)
11513 		goto free_dev;
11514 
11515 	if (pmu->attr_update) {
11516 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11517 		if (ret)
11518 			goto del_dev;
11519 	}
11520 
11521 out:
11522 	return ret;
11523 
11524 del_dev:
11525 	device_del(pmu->dev);
11526 
11527 free_dev:
11528 	put_device(pmu->dev);
11529 	goto out;
11530 }
11531 
11532 static struct lock_class_key cpuctx_mutex;
11533 static struct lock_class_key cpuctx_lock;
11534 
11535 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11536 {
11537 	int cpu, ret, max = PERF_TYPE_MAX;
11538 
11539 	mutex_lock(&pmus_lock);
11540 	ret = -ENOMEM;
11541 	pmu->pmu_disable_count = alloc_percpu(int);
11542 	if (!pmu->pmu_disable_count)
11543 		goto unlock;
11544 
11545 	pmu->type = -1;
11546 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11547 		ret = -EINVAL;
11548 		goto free_pdc;
11549 	}
11550 
11551 	pmu->name = name;
11552 
11553 	if (type >= 0)
11554 		max = type;
11555 
11556 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11557 	if (ret < 0)
11558 		goto free_pdc;
11559 
11560 	WARN_ON(type >= 0 && ret != type);
11561 
11562 	type = ret;
11563 	pmu->type = type;
11564 
11565 	if (pmu_bus_running && !pmu->dev) {
11566 		ret = pmu_dev_alloc(pmu);
11567 		if (ret)
11568 			goto free_idr;
11569 	}
11570 
11571 	ret = -ENOMEM;
11572 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11573 	if (!pmu->cpu_pmu_context)
11574 		goto free_dev;
11575 
11576 	for_each_possible_cpu(cpu) {
11577 		struct perf_cpu_pmu_context *cpc;
11578 
11579 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11580 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11581 		__perf_mux_hrtimer_init(cpc, cpu);
11582 	}
11583 
11584 	if (!pmu->start_txn) {
11585 		if (pmu->pmu_enable) {
11586 			/*
11587 			 * If we have pmu_enable/pmu_disable calls, install
11588 			 * transaction stubs that use that to try and batch
11589 			 * hardware accesses.
11590 			 */
11591 			pmu->start_txn  = perf_pmu_start_txn;
11592 			pmu->commit_txn = perf_pmu_commit_txn;
11593 			pmu->cancel_txn = perf_pmu_cancel_txn;
11594 		} else {
11595 			pmu->start_txn  = perf_pmu_nop_txn;
11596 			pmu->commit_txn = perf_pmu_nop_int;
11597 			pmu->cancel_txn = perf_pmu_nop_void;
11598 		}
11599 	}
11600 
11601 	if (!pmu->pmu_enable) {
11602 		pmu->pmu_enable  = perf_pmu_nop_void;
11603 		pmu->pmu_disable = perf_pmu_nop_void;
11604 	}
11605 
11606 	if (!pmu->check_period)
11607 		pmu->check_period = perf_event_nop_int;
11608 
11609 	if (!pmu->event_idx)
11610 		pmu->event_idx = perf_event_idx_default;
11611 
11612 	list_add_rcu(&pmu->entry, &pmus);
11613 	atomic_set(&pmu->exclusive_cnt, 0);
11614 	ret = 0;
11615 unlock:
11616 	mutex_unlock(&pmus_lock);
11617 
11618 	return ret;
11619 
11620 free_dev:
11621 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11622 		device_del(pmu->dev);
11623 		put_device(pmu->dev);
11624 	}
11625 
11626 free_idr:
11627 	idr_remove(&pmu_idr, pmu->type);
11628 
11629 free_pdc:
11630 	free_percpu(pmu->pmu_disable_count);
11631 	goto unlock;
11632 }
11633 EXPORT_SYMBOL_GPL(perf_pmu_register);
11634 
11635 void perf_pmu_unregister(struct pmu *pmu)
11636 {
11637 	mutex_lock(&pmus_lock);
11638 	list_del_rcu(&pmu->entry);
11639 
11640 	/*
11641 	 * We dereference the pmu list under both SRCU and regular RCU, so
11642 	 * synchronize against both of those.
11643 	 */
11644 	synchronize_srcu(&pmus_srcu);
11645 	synchronize_rcu();
11646 
11647 	free_percpu(pmu->pmu_disable_count);
11648 	idr_remove(&pmu_idr, pmu->type);
11649 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11650 		if (pmu->nr_addr_filters)
11651 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11652 		device_del(pmu->dev);
11653 		put_device(pmu->dev);
11654 	}
11655 	free_pmu_context(pmu);
11656 	mutex_unlock(&pmus_lock);
11657 }
11658 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11659 
11660 static inline bool has_extended_regs(struct perf_event *event)
11661 {
11662 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11663 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11664 }
11665 
11666 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11667 {
11668 	struct perf_event_context *ctx = NULL;
11669 	int ret;
11670 
11671 	if (!try_module_get(pmu->module))
11672 		return -ENODEV;
11673 
11674 	/*
11675 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11676 	 * for example, validate if the group fits on the PMU. Therefore,
11677 	 * if this is a sibling event, acquire the ctx->mutex to protect
11678 	 * the sibling_list.
11679 	 */
11680 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11681 		/*
11682 		 * This ctx->mutex can nest when we're called through
11683 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11684 		 */
11685 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11686 						 SINGLE_DEPTH_NESTING);
11687 		BUG_ON(!ctx);
11688 	}
11689 
11690 	event->pmu = pmu;
11691 	ret = pmu->event_init(event);
11692 
11693 	if (ctx)
11694 		perf_event_ctx_unlock(event->group_leader, ctx);
11695 
11696 	if (!ret) {
11697 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11698 		    has_extended_regs(event))
11699 			ret = -EOPNOTSUPP;
11700 
11701 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11702 		    event_has_any_exclude_flag(event))
11703 			ret = -EINVAL;
11704 
11705 		if (ret && event->destroy)
11706 			event->destroy(event);
11707 	}
11708 
11709 	if (ret)
11710 		module_put(pmu->module);
11711 
11712 	return ret;
11713 }
11714 
11715 static struct pmu *perf_init_event(struct perf_event *event)
11716 {
11717 	bool extended_type = false;
11718 	int idx, type, ret;
11719 	struct pmu *pmu;
11720 
11721 	idx = srcu_read_lock(&pmus_srcu);
11722 
11723 	/*
11724 	 * Save original type before calling pmu->event_init() since certain
11725 	 * pmus overwrites event->attr.type to forward event to another pmu.
11726 	 */
11727 	event->orig_type = event->attr.type;
11728 
11729 	/* Try parent's PMU first: */
11730 	if (event->parent && event->parent->pmu) {
11731 		pmu = event->parent->pmu;
11732 		ret = perf_try_init_event(pmu, event);
11733 		if (!ret)
11734 			goto unlock;
11735 	}
11736 
11737 	/*
11738 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11739 	 * are often aliases for PERF_TYPE_RAW.
11740 	 */
11741 	type = event->attr.type;
11742 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11743 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11744 		if (!type) {
11745 			type = PERF_TYPE_RAW;
11746 		} else {
11747 			extended_type = true;
11748 			event->attr.config &= PERF_HW_EVENT_MASK;
11749 		}
11750 	}
11751 
11752 again:
11753 	rcu_read_lock();
11754 	pmu = idr_find(&pmu_idr, type);
11755 	rcu_read_unlock();
11756 	if (pmu) {
11757 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11758 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11759 			goto fail;
11760 
11761 		ret = perf_try_init_event(pmu, event);
11762 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11763 			type = event->attr.type;
11764 			goto again;
11765 		}
11766 
11767 		if (ret)
11768 			pmu = ERR_PTR(ret);
11769 
11770 		goto unlock;
11771 	}
11772 
11773 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11774 		ret = perf_try_init_event(pmu, event);
11775 		if (!ret)
11776 			goto unlock;
11777 
11778 		if (ret != -ENOENT) {
11779 			pmu = ERR_PTR(ret);
11780 			goto unlock;
11781 		}
11782 	}
11783 fail:
11784 	pmu = ERR_PTR(-ENOENT);
11785 unlock:
11786 	srcu_read_unlock(&pmus_srcu, idx);
11787 
11788 	return pmu;
11789 }
11790 
11791 static void attach_sb_event(struct perf_event *event)
11792 {
11793 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11794 
11795 	raw_spin_lock(&pel->lock);
11796 	list_add_rcu(&event->sb_list, &pel->list);
11797 	raw_spin_unlock(&pel->lock);
11798 }
11799 
11800 /*
11801  * We keep a list of all !task (and therefore per-cpu) events
11802  * that need to receive side-band records.
11803  *
11804  * This avoids having to scan all the various PMU per-cpu contexts
11805  * looking for them.
11806  */
11807 static void account_pmu_sb_event(struct perf_event *event)
11808 {
11809 	if (is_sb_event(event))
11810 		attach_sb_event(event);
11811 }
11812 
11813 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11814 static void account_freq_event_nohz(void)
11815 {
11816 #ifdef CONFIG_NO_HZ_FULL
11817 	/* Lock so we don't race with concurrent unaccount */
11818 	spin_lock(&nr_freq_lock);
11819 	if (atomic_inc_return(&nr_freq_events) == 1)
11820 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11821 	spin_unlock(&nr_freq_lock);
11822 #endif
11823 }
11824 
11825 static void account_freq_event(void)
11826 {
11827 	if (tick_nohz_full_enabled())
11828 		account_freq_event_nohz();
11829 	else
11830 		atomic_inc(&nr_freq_events);
11831 }
11832 
11833 
11834 static void account_event(struct perf_event *event)
11835 {
11836 	bool inc = false;
11837 
11838 	if (event->parent)
11839 		return;
11840 
11841 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11842 		inc = true;
11843 	if (event->attr.mmap || event->attr.mmap_data)
11844 		atomic_inc(&nr_mmap_events);
11845 	if (event->attr.build_id)
11846 		atomic_inc(&nr_build_id_events);
11847 	if (event->attr.comm)
11848 		atomic_inc(&nr_comm_events);
11849 	if (event->attr.namespaces)
11850 		atomic_inc(&nr_namespaces_events);
11851 	if (event->attr.cgroup)
11852 		atomic_inc(&nr_cgroup_events);
11853 	if (event->attr.task)
11854 		atomic_inc(&nr_task_events);
11855 	if (event->attr.freq)
11856 		account_freq_event();
11857 	if (event->attr.context_switch) {
11858 		atomic_inc(&nr_switch_events);
11859 		inc = true;
11860 	}
11861 	if (has_branch_stack(event))
11862 		inc = true;
11863 	if (is_cgroup_event(event))
11864 		inc = true;
11865 	if (event->attr.ksymbol)
11866 		atomic_inc(&nr_ksymbol_events);
11867 	if (event->attr.bpf_event)
11868 		atomic_inc(&nr_bpf_events);
11869 	if (event->attr.text_poke)
11870 		atomic_inc(&nr_text_poke_events);
11871 
11872 	if (inc) {
11873 		/*
11874 		 * We need the mutex here because static_branch_enable()
11875 		 * must complete *before* the perf_sched_count increment
11876 		 * becomes visible.
11877 		 */
11878 		if (atomic_inc_not_zero(&perf_sched_count))
11879 			goto enabled;
11880 
11881 		mutex_lock(&perf_sched_mutex);
11882 		if (!atomic_read(&perf_sched_count)) {
11883 			static_branch_enable(&perf_sched_events);
11884 			/*
11885 			 * Guarantee that all CPUs observe they key change and
11886 			 * call the perf scheduling hooks before proceeding to
11887 			 * install events that need them.
11888 			 */
11889 			synchronize_rcu();
11890 		}
11891 		/*
11892 		 * Now that we have waited for the sync_sched(), allow further
11893 		 * increments to by-pass the mutex.
11894 		 */
11895 		atomic_inc(&perf_sched_count);
11896 		mutex_unlock(&perf_sched_mutex);
11897 	}
11898 enabled:
11899 
11900 	account_pmu_sb_event(event);
11901 }
11902 
11903 /*
11904  * Allocate and initialize an event structure
11905  */
11906 static struct perf_event *
11907 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11908 		 struct task_struct *task,
11909 		 struct perf_event *group_leader,
11910 		 struct perf_event *parent_event,
11911 		 perf_overflow_handler_t overflow_handler,
11912 		 void *context, int cgroup_fd)
11913 {
11914 	struct pmu *pmu;
11915 	struct perf_event *event;
11916 	struct hw_perf_event *hwc;
11917 	long err = -EINVAL;
11918 	int node;
11919 
11920 	if ((unsigned)cpu >= nr_cpu_ids) {
11921 		if (!task || cpu != -1)
11922 			return ERR_PTR(-EINVAL);
11923 	}
11924 	if (attr->sigtrap && !task) {
11925 		/* Requires a task: avoid signalling random tasks. */
11926 		return ERR_PTR(-EINVAL);
11927 	}
11928 
11929 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11930 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11931 				      node);
11932 	if (!event)
11933 		return ERR_PTR(-ENOMEM);
11934 
11935 	/*
11936 	 * Single events are their own group leaders, with an
11937 	 * empty sibling list:
11938 	 */
11939 	if (!group_leader)
11940 		group_leader = event;
11941 
11942 	mutex_init(&event->child_mutex);
11943 	INIT_LIST_HEAD(&event->child_list);
11944 
11945 	INIT_LIST_HEAD(&event->event_entry);
11946 	INIT_LIST_HEAD(&event->sibling_list);
11947 	INIT_LIST_HEAD(&event->active_list);
11948 	init_event_group(event);
11949 	INIT_LIST_HEAD(&event->rb_entry);
11950 	INIT_LIST_HEAD(&event->active_entry);
11951 	INIT_LIST_HEAD(&event->addr_filters.list);
11952 	INIT_HLIST_NODE(&event->hlist_entry);
11953 
11954 
11955 	init_waitqueue_head(&event->waitq);
11956 	init_irq_work(&event->pending_irq, perf_pending_irq);
11957 	init_task_work(&event->pending_task, perf_pending_task);
11958 	rcuwait_init(&event->pending_work_wait);
11959 
11960 	mutex_init(&event->mmap_mutex);
11961 	raw_spin_lock_init(&event->addr_filters.lock);
11962 
11963 	atomic_long_set(&event->refcount, 1);
11964 	event->cpu		= cpu;
11965 	event->attr		= *attr;
11966 	event->group_leader	= group_leader;
11967 	event->pmu		= NULL;
11968 	event->oncpu		= -1;
11969 
11970 	event->parent		= parent_event;
11971 
11972 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11973 	event->id		= atomic64_inc_return(&perf_event_id);
11974 
11975 	event->state		= PERF_EVENT_STATE_INACTIVE;
11976 
11977 	if (parent_event)
11978 		event->event_caps = parent_event->event_caps;
11979 
11980 	if (task) {
11981 		event->attach_state = PERF_ATTACH_TASK;
11982 		/*
11983 		 * XXX pmu::event_init needs to know what task to account to
11984 		 * and we cannot use the ctx information because we need the
11985 		 * pmu before we get a ctx.
11986 		 */
11987 		event->hw.target = get_task_struct(task);
11988 	}
11989 
11990 	event->clock = &local_clock;
11991 	if (parent_event)
11992 		event->clock = parent_event->clock;
11993 
11994 	if (!overflow_handler && parent_event) {
11995 		overflow_handler = parent_event->overflow_handler;
11996 		context = parent_event->overflow_handler_context;
11997 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11998 		if (overflow_handler == bpf_overflow_handler) {
11999 			struct bpf_prog *prog = parent_event->prog;
12000 
12001 			bpf_prog_inc(prog);
12002 			event->prog = prog;
12003 			event->orig_overflow_handler =
12004 				parent_event->orig_overflow_handler;
12005 		}
12006 #endif
12007 	}
12008 
12009 	if (overflow_handler) {
12010 		event->overflow_handler	= overflow_handler;
12011 		event->overflow_handler_context = context;
12012 	} else if (is_write_backward(event)){
12013 		event->overflow_handler = perf_event_output_backward;
12014 		event->overflow_handler_context = NULL;
12015 	} else {
12016 		event->overflow_handler = perf_event_output_forward;
12017 		event->overflow_handler_context = NULL;
12018 	}
12019 
12020 	perf_event__state_init(event);
12021 
12022 	pmu = NULL;
12023 
12024 	hwc = &event->hw;
12025 	hwc->sample_period = attr->sample_period;
12026 	if (attr->freq && attr->sample_freq)
12027 		hwc->sample_period = 1;
12028 	hwc->last_period = hwc->sample_period;
12029 
12030 	local64_set(&hwc->period_left, hwc->sample_period);
12031 
12032 	/*
12033 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12034 	 * See perf_output_read().
12035 	 */
12036 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12037 		goto err_ns;
12038 
12039 	if (!has_branch_stack(event))
12040 		event->attr.branch_sample_type = 0;
12041 
12042 	pmu = perf_init_event(event);
12043 	if (IS_ERR(pmu)) {
12044 		err = PTR_ERR(pmu);
12045 		goto err_ns;
12046 	}
12047 
12048 	/*
12049 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12050 	 * events (they don't make sense as the cgroup will be different
12051 	 * on other CPUs in the uncore mask).
12052 	 */
12053 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12054 		err = -EINVAL;
12055 		goto err_pmu;
12056 	}
12057 
12058 	if (event->attr.aux_output &&
12059 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12060 		err = -EOPNOTSUPP;
12061 		goto err_pmu;
12062 	}
12063 
12064 	if (cgroup_fd != -1) {
12065 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12066 		if (err)
12067 			goto err_pmu;
12068 	}
12069 
12070 	err = exclusive_event_init(event);
12071 	if (err)
12072 		goto err_pmu;
12073 
12074 	if (has_addr_filter(event)) {
12075 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12076 						    sizeof(struct perf_addr_filter_range),
12077 						    GFP_KERNEL);
12078 		if (!event->addr_filter_ranges) {
12079 			err = -ENOMEM;
12080 			goto err_per_task;
12081 		}
12082 
12083 		/*
12084 		 * Clone the parent's vma offsets: they are valid until exec()
12085 		 * even if the mm is not shared with the parent.
12086 		 */
12087 		if (event->parent) {
12088 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12089 
12090 			raw_spin_lock_irq(&ifh->lock);
12091 			memcpy(event->addr_filter_ranges,
12092 			       event->parent->addr_filter_ranges,
12093 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12094 			raw_spin_unlock_irq(&ifh->lock);
12095 		}
12096 
12097 		/* force hw sync on the address filters */
12098 		event->addr_filters_gen = 1;
12099 	}
12100 
12101 	if (!event->parent) {
12102 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12103 			err = get_callchain_buffers(attr->sample_max_stack);
12104 			if (err)
12105 				goto err_addr_filters;
12106 		}
12107 	}
12108 
12109 	err = security_perf_event_alloc(event);
12110 	if (err)
12111 		goto err_callchain_buffer;
12112 
12113 	/* symmetric to unaccount_event() in _free_event() */
12114 	account_event(event);
12115 
12116 	return event;
12117 
12118 err_callchain_buffer:
12119 	if (!event->parent) {
12120 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12121 			put_callchain_buffers();
12122 	}
12123 err_addr_filters:
12124 	kfree(event->addr_filter_ranges);
12125 
12126 err_per_task:
12127 	exclusive_event_destroy(event);
12128 
12129 err_pmu:
12130 	if (is_cgroup_event(event))
12131 		perf_detach_cgroup(event);
12132 	if (event->destroy)
12133 		event->destroy(event);
12134 	module_put(pmu->module);
12135 err_ns:
12136 	if (event->hw.target)
12137 		put_task_struct(event->hw.target);
12138 	call_rcu(&event->rcu_head, free_event_rcu);
12139 
12140 	return ERR_PTR(err);
12141 }
12142 
12143 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12144 			  struct perf_event_attr *attr)
12145 {
12146 	u32 size;
12147 	int ret;
12148 
12149 	/* Zero the full structure, so that a short copy will be nice. */
12150 	memset(attr, 0, sizeof(*attr));
12151 
12152 	ret = get_user(size, &uattr->size);
12153 	if (ret)
12154 		return ret;
12155 
12156 	/* ABI compatibility quirk: */
12157 	if (!size)
12158 		size = PERF_ATTR_SIZE_VER0;
12159 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12160 		goto err_size;
12161 
12162 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12163 	if (ret) {
12164 		if (ret == -E2BIG)
12165 			goto err_size;
12166 		return ret;
12167 	}
12168 
12169 	attr->size = size;
12170 
12171 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12172 		return -EINVAL;
12173 
12174 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12175 		return -EINVAL;
12176 
12177 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12178 		return -EINVAL;
12179 
12180 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12181 		u64 mask = attr->branch_sample_type;
12182 
12183 		/* only using defined bits */
12184 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12185 			return -EINVAL;
12186 
12187 		/* at least one branch bit must be set */
12188 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12189 			return -EINVAL;
12190 
12191 		/* propagate priv level, when not set for branch */
12192 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12193 
12194 			/* exclude_kernel checked on syscall entry */
12195 			if (!attr->exclude_kernel)
12196 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12197 
12198 			if (!attr->exclude_user)
12199 				mask |= PERF_SAMPLE_BRANCH_USER;
12200 
12201 			if (!attr->exclude_hv)
12202 				mask |= PERF_SAMPLE_BRANCH_HV;
12203 			/*
12204 			 * adjust user setting (for HW filter setup)
12205 			 */
12206 			attr->branch_sample_type = mask;
12207 		}
12208 		/* privileged levels capture (kernel, hv): check permissions */
12209 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12210 			ret = perf_allow_kernel(attr);
12211 			if (ret)
12212 				return ret;
12213 		}
12214 	}
12215 
12216 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12217 		ret = perf_reg_validate(attr->sample_regs_user);
12218 		if (ret)
12219 			return ret;
12220 	}
12221 
12222 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12223 		if (!arch_perf_have_user_stack_dump())
12224 			return -ENOSYS;
12225 
12226 		/*
12227 		 * We have __u32 type for the size, but so far
12228 		 * we can only use __u16 as maximum due to the
12229 		 * __u16 sample size limit.
12230 		 */
12231 		if (attr->sample_stack_user >= USHRT_MAX)
12232 			return -EINVAL;
12233 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12234 			return -EINVAL;
12235 	}
12236 
12237 	if (!attr->sample_max_stack)
12238 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12239 
12240 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12241 		ret = perf_reg_validate(attr->sample_regs_intr);
12242 
12243 #ifndef CONFIG_CGROUP_PERF
12244 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12245 		return -EINVAL;
12246 #endif
12247 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12248 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12249 		return -EINVAL;
12250 
12251 	if (!attr->inherit && attr->inherit_thread)
12252 		return -EINVAL;
12253 
12254 	if (attr->remove_on_exec && attr->enable_on_exec)
12255 		return -EINVAL;
12256 
12257 	if (attr->sigtrap && !attr->remove_on_exec)
12258 		return -EINVAL;
12259 
12260 out:
12261 	return ret;
12262 
12263 err_size:
12264 	put_user(sizeof(*attr), &uattr->size);
12265 	ret = -E2BIG;
12266 	goto out;
12267 }
12268 
12269 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12270 {
12271 	if (b < a)
12272 		swap(a, b);
12273 
12274 	mutex_lock(a);
12275 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12276 }
12277 
12278 static int
12279 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12280 {
12281 	struct perf_buffer *rb = NULL;
12282 	int ret = -EINVAL;
12283 
12284 	if (!output_event) {
12285 		mutex_lock(&event->mmap_mutex);
12286 		goto set;
12287 	}
12288 
12289 	/* don't allow circular references */
12290 	if (event == output_event)
12291 		goto out;
12292 
12293 	/*
12294 	 * Don't allow cross-cpu buffers
12295 	 */
12296 	if (output_event->cpu != event->cpu)
12297 		goto out;
12298 
12299 	/*
12300 	 * If its not a per-cpu rb, it must be the same task.
12301 	 */
12302 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12303 		goto out;
12304 
12305 	/*
12306 	 * Mixing clocks in the same buffer is trouble you don't need.
12307 	 */
12308 	if (output_event->clock != event->clock)
12309 		goto out;
12310 
12311 	/*
12312 	 * Either writing ring buffer from beginning or from end.
12313 	 * Mixing is not allowed.
12314 	 */
12315 	if (is_write_backward(output_event) != is_write_backward(event))
12316 		goto out;
12317 
12318 	/*
12319 	 * If both events generate aux data, they must be on the same PMU
12320 	 */
12321 	if (has_aux(event) && has_aux(output_event) &&
12322 	    event->pmu != output_event->pmu)
12323 		goto out;
12324 
12325 	/*
12326 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12327 	 * output_event is already on rb->event_list, and the list iteration
12328 	 * restarts after every removal, it is guaranteed this new event is
12329 	 * observed *OR* if output_event is already removed, it's guaranteed we
12330 	 * observe !rb->mmap_count.
12331 	 */
12332 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12333 set:
12334 	/* Can't redirect output if we've got an active mmap() */
12335 	if (atomic_read(&event->mmap_count))
12336 		goto unlock;
12337 
12338 	if (output_event) {
12339 		/* get the rb we want to redirect to */
12340 		rb = ring_buffer_get(output_event);
12341 		if (!rb)
12342 			goto unlock;
12343 
12344 		/* did we race against perf_mmap_close() */
12345 		if (!atomic_read(&rb->mmap_count)) {
12346 			ring_buffer_put(rb);
12347 			goto unlock;
12348 		}
12349 	}
12350 
12351 	ring_buffer_attach(event, rb);
12352 
12353 	ret = 0;
12354 unlock:
12355 	mutex_unlock(&event->mmap_mutex);
12356 	if (output_event)
12357 		mutex_unlock(&output_event->mmap_mutex);
12358 
12359 out:
12360 	return ret;
12361 }
12362 
12363 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12364 {
12365 	bool nmi_safe = false;
12366 
12367 	switch (clk_id) {
12368 	case CLOCK_MONOTONIC:
12369 		event->clock = &ktime_get_mono_fast_ns;
12370 		nmi_safe = true;
12371 		break;
12372 
12373 	case CLOCK_MONOTONIC_RAW:
12374 		event->clock = &ktime_get_raw_fast_ns;
12375 		nmi_safe = true;
12376 		break;
12377 
12378 	case CLOCK_REALTIME:
12379 		event->clock = &ktime_get_real_ns;
12380 		break;
12381 
12382 	case CLOCK_BOOTTIME:
12383 		event->clock = &ktime_get_boottime_ns;
12384 		break;
12385 
12386 	case CLOCK_TAI:
12387 		event->clock = &ktime_get_clocktai_ns;
12388 		break;
12389 
12390 	default:
12391 		return -EINVAL;
12392 	}
12393 
12394 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12395 		return -EINVAL;
12396 
12397 	return 0;
12398 }
12399 
12400 static bool
12401 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12402 {
12403 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12404 	bool is_capable = perfmon_capable();
12405 
12406 	if (attr->sigtrap) {
12407 		/*
12408 		 * perf_event_attr::sigtrap sends signals to the other task.
12409 		 * Require the current task to also have CAP_KILL.
12410 		 */
12411 		rcu_read_lock();
12412 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12413 		rcu_read_unlock();
12414 
12415 		/*
12416 		 * If the required capabilities aren't available, checks for
12417 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12418 		 * can effectively change the target task.
12419 		 */
12420 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12421 	}
12422 
12423 	/*
12424 	 * Preserve ptrace permission check for backwards compatibility. The
12425 	 * ptrace check also includes checks that the current task and other
12426 	 * task have matching uids, and is therefore not done here explicitly.
12427 	 */
12428 	return is_capable || ptrace_may_access(task, ptrace_mode);
12429 }
12430 
12431 /**
12432  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12433  *
12434  * @attr_uptr:	event_id type attributes for monitoring/sampling
12435  * @pid:		target pid
12436  * @cpu:		target cpu
12437  * @group_fd:		group leader event fd
12438  * @flags:		perf event open flags
12439  */
12440 SYSCALL_DEFINE5(perf_event_open,
12441 		struct perf_event_attr __user *, attr_uptr,
12442 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12443 {
12444 	struct perf_event *group_leader = NULL, *output_event = NULL;
12445 	struct perf_event_pmu_context *pmu_ctx;
12446 	struct perf_event *event, *sibling;
12447 	struct perf_event_attr attr;
12448 	struct perf_event_context *ctx;
12449 	struct file *event_file = NULL;
12450 	struct fd group = {NULL, 0};
12451 	struct task_struct *task = NULL;
12452 	struct pmu *pmu;
12453 	int event_fd;
12454 	int move_group = 0;
12455 	int err;
12456 	int f_flags = O_RDWR;
12457 	int cgroup_fd = -1;
12458 
12459 	/* for future expandability... */
12460 	if (flags & ~PERF_FLAG_ALL)
12461 		return -EINVAL;
12462 
12463 	err = perf_copy_attr(attr_uptr, &attr);
12464 	if (err)
12465 		return err;
12466 
12467 	/* Do we allow access to perf_event_open(2) ? */
12468 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12469 	if (err)
12470 		return err;
12471 
12472 	if (!attr.exclude_kernel) {
12473 		err = perf_allow_kernel(&attr);
12474 		if (err)
12475 			return err;
12476 	}
12477 
12478 	if (attr.namespaces) {
12479 		if (!perfmon_capable())
12480 			return -EACCES;
12481 	}
12482 
12483 	if (attr.freq) {
12484 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12485 			return -EINVAL;
12486 	} else {
12487 		if (attr.sample_period & (1ULL << 63))
12488 			return -EINVAL;
12489 	}
12490 
12491 	/* Only privileged users can get physical addresses */
12492 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12493 		err = perf_allow_kernel(&attr);
12494 		if (err)
12495 			return err;
12496 	}
12497 
12498 	/* REGS_INTR can leak data, lockdown must prevent this */
12499 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12500 		err = security_locked_down(LOCKDOWN_PERF);
12501 		if (err)
12502 			return err;
12503 	}
12504 
12505 	/*
12506 	 * In cgroup mode, the pid argument is used to pass the fd
12507 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12508 	 * designates the cpu on which to monitor threads from that
12509 	 * cgroup.
12510 	 */
12511 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12512 		return -EINVAL;
12513 
12514 	if (flags & PERF_FLAG_FD_CLOEXEC)
12515 		f_flags |= O_CLOEXEC;
12516 
12517 	event_fd = get_unused_fd_flags(f_flags);
12518 	if (event_fd < 0)
12519 		return event_fd;
12520 
12521 	if (group_fd != -1) {
12522 		err = perf_fget_light(group_fd, &group);
12523 		if (err)
12524 			goto err_fd;
12525 		group_leader = group.file->private_data;
12526 		if (flags & PERF_FLAG_FD_OUTPUT)
12527 			output_event = group_leader;
12528 		if (flags & PERF_FLAG_FD_NO_GROUP)
12529 			group_leader = NULL;
12530 	}
12531 
12532 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12533 		task = find_lively_task_by_vpid(pid);
12534 		if (IS_ERR(task)) {
12535 			err = PTR_ERR(task);
12536 			goto err_group_fd;
12537 		}
12538 	}
12539 
12540 	if (task && group_leader &&
12541 	    group_leader->attr.inherit != attr.inherit) {
12542 		err = -EINVAL;
12543 		goto err_task;
12544 	}
12545 
12546 	if (flags & PERF_FLAG_PID_CGROUP)
12547 		cgroup_fd = pid;
12548 
12549 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12550 				 NULL, NULL, cgroup_fd);
12551 	if (IS_ERR(event)) {
12552 		err = PTR_ERR(event);
12553 		goto err_task;
12554 	}
12555 
12556 	if (is_sampling_event(event)) {
12557 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12558 			err = -EOPNOTSUPP;
12559 			goto err_alloc;
12560 		}
12561 	}
12562 
12563 	/*
12564 	 * Special case software events and allow them to be part of
12565 	 * any hardware group.
12566 	 */
12567 	pmu = event->pmu;
12568 
12569 	if (attr.use_clockid) {
12570 		err = perf_event_set_clock(event, attr.clockid);
12571 		if (err)
12572 			goto err_alloc;
12573 	}
12574 
12575 	if (pmu->task_ctx_nr == perf_sw_context)
12576 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12577 
12578 	if (task) {
12579 		err = down_read_interruptible(&task->signal->exec_update_lock);
12580 		if (err)
12581 			goto err_alloc;
12582 
12583 		/*
12584 		 * We must hold exec_update_lock across this and any potential
12585 		 * perf_install_in_context() call for this new event to
12586 		 * serialize against exec() altering our credentials (and the
12587 		 * perf_event_exit_task() that could imply).
12588 		 */
12589 		err = -EACCES;
12590 		if (!perf_check_permission(&attr, task))
12591 			goto err_cred;
12592 	}
12593 
12594 	/*
12595 	 * Get the target context (task or percpu):
12596 	 */
12597 	ctx = find_get_context(task, event);
12598 	if (IS_ERR(ctx)) {
12599 		err = PTR_ERR(ctx);
12600 		goto err_cred;
12601 	}
12602 
12603 	mutex_lock(&ctx->mutex);
12604 
12605 	if (ctx->task == TASK_TOMBSTONE) {
12606 		err = -ESRCH;
12607 		goto err_locked;
12608 	}
12609 
12610 	if (!task) {
12611 		/*
12612 		 * Check if the @cpu we're creating an event for is online.
12613 		 *
12614 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12615 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12616 		 */
12617 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12618 
12619 		if (!cpuctx->online) {
12620 			err = -ENODEV;
12621 			goto err_locked;
12622 		}
12623 	}
12624 
12625 	if (group_leader) {
12626 		err = -EINVAL;
12627 
12628 		/*
12629 		 * Do not allow a recursive hierarchy (this new sibling
12630 		 * becoming part of another group-sibling):
12631 		 */
12632 		if (group_leader->group_leader != group_leader)
12633 			goto err_locked;
12634 
12635 		/* All events in a group should have the same clock */
12636 		if (group_leader->clock != event->clock)
12637 			goto err_locked;
12638 
12639 		/*
12640 		 * Make sure we're both events for the same CPU;
12641 		 * grouping events for different CPUs is broken; since
12642 		 * you can never concurrently schedule them anyhow.
12643 		 */
12644 		if (group_leader->cpu != event->cpu)
12645 			goto err_locked;
12646 
12647 		/*
12648 		 * Make sure we're both on the same context; either task or cpu.
12649 		 */
12650 		if (group_leader->ctx != ctx)
12651 			goto err_locked;
12652 
12653 		/*
12654 		 * Only a group leader can be exclusive or pinned
12655 		 */
12656 		if (attr.exclusive || attr.pinned)
12657 			goto err_locked;
12658 
12659 		if (is_software_event(event) &&
12660 		    !in_software_context(group_leader)) {
12661 			/*
12662 			 * If the event is a sw event, but the group_leader
12663 			 * is on hw context.
12664 			 *
12665 			 * Allow the addition of software events to hw
12666 			 * groups, this is safe because software events
12667 			 * never fail to schedule.
12668 			 *
12669 			 * Note the comment that goes with struct
12670 			 * perf_event_pmu_context.
12671 			 */
12672 			pmu = group_leader->pmu_ctx->pmu;
12673 		} else if (!is_software_event(event)) {
12674 			if (is_software_event(group_leader) &&
12675 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12676 				/*
12677 				 * In case the group is a pure software group, and we
12678 				 * try to add a hardware event, move the whole group to
12679 				 * the hardware context.
12680 				 */
12681 				move_group = 1;
12682 			}
12683 
12684 			/* Don't allow group of multiple hw events from different pmus */
12685 			if (!in_software_context(group_leader) &&
12686 			    group_leader->pmu_ctx->pmu != pmu)
12687 				goto err_locked;
12688 		}
12689 	}
12690 
12691 	/*
12692 	 * Now that we're certain of the pmu; find the pmu_ctx.
12693 	 */
12694 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12695 	if (IS_ERR(pmu_ctx)) {
12696 		err = PTR_ERR(pmu_ctx);
12697 		goto err_locked;
12698 	}
12699 	event->pmu_ctx = pmu_ctx;
12700 
12701 	if (output_event) {
12702 		err = perf_event_set_output(event, output_event);
12703 		if (err)
12704 			goto err_context;
12705 	}
12706 
12707 	if (!perf_event_validate_size(event)) {
12708 		err = -E2BIG;
12709 		goto err_context;
12710 	}
12711 
12712 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12713 		err = -EINVAL;
12714 		goto err_context;
12715 	}
12716 
12717 	/*
12718 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12719 	 * because we need to serialize with concurrent event creation.
12720 	 */
12721 	if (!exclusive_event_installable(event, ctx)) {
12722 		err = -EBUSY;
12723 		goto err_context;
12724 	}
12725 
12726 	WARN_ON_ONCE(ctx->parent_ctx);
12727 
12728 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12729 	if (IS_ERR(event_file)) {
12730 		err = PTR_ERR(event_file);
12731 		event_file = NULL;
12732 		goto err_context;
12733 	}
12734 
12735 	/*
12736 	 * This is the point on no return; we cannot fail hereafter. This is
12737 	 * where we start modifying current state.
12738 	 */
12739 
12740 	if (move_group) {
12741 		perf_remove_from_context(group_leader, 0);
12742 		put_pmu_ctx(group_leader->pmu_ctx);
12743 
12744 		for_each_sibling_event(sibling, group_leader) {
12745 			perf_remove_from_context(sibling, 0);
12746 			put_pmu_ctx(sibling->pmu_ctx);
12747 		}
12748 
12749 		/*
12750 		 * Install the group siblings before the group leader.
12751 		 *
12752 		 * Because a group leader will try and install the entire group
12753 		 * (through the sibling list, which is still in-tact), we can
12754 		 * end up with siblings installed in the wrong context.
12755 		 *
12756 		 * By installing siblings first we NO-OP because they're not
12757 		 * reachable through the group lists.
12758 		 */
12759 		for_each_sibling_event(sibling, group_leader) {
12760 			sibling->pmu_ctx = pmu_ctx;
12761 			get_pmu_ctx(pmu_ctx);
12762 			perf_event__state_init(sibling);
12763 			perf_install_in_context(ctx, sibling, sibling->cpu);
12764 		}
12765 
12766 		/*
12767 		 * Removing from the context ends up with disabled
12768 		 * event. What we want here is event in the initial
12769 		 * startup state, ready to be add into new context.
12770 		 */
12771 		group_leader->pmu_ctx = pmu_ctx;
12772 		get_pmu_ctx(pmu_ctx);
12773 		perf_event__state_init(group_leader);
12774 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12775 	}
12776 
12777 	/*
12778 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12779 	 * that we're serialized against further additions and before
12780 	 * perf_install_in_context() which is the point the event is active and
12781 	 * can use these values.
12782 	 */
12783 	perf_event__header_size(event);
12784 	perf_event__id_header_size(event);
12785 
12786 	event->owner = current;
12787 
12788 	perf_install_in_context(ctx, event, event->cpu);
12789 	perf_unpin_context(ctx);
12790 
12791 	mutex_unlock(&ctx->mutex);
12792 
12793 	if (task) {
12794 		up_read(&task->signal->exec_update_lock);
12795 		put_task_struct(task);
12796 	}
12797 
12798 	mutex_lock(&current->perf_event_mutex);
12799 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12800 	mutex_unlock(&current->perf_event_mutex);
12801 
12802 	/*
12803 	 * Drop the reference on the group_event after placing the
12804 	 * new event on the sibling_list. This ensures destruction
12805 	 * of the group leader will find the pointer to itself in
12806 	 * perf_group_detach().
12807 	 */
12808 	fdput(group);
12809 	fd_install(event_fd, event_file);
12810 	return event_fd;
12811 
12812 err_context:
12813 	put_pmu_ctx(event->pmu_ctx);
12814 	event->pmu_ctx = NULL; /* _free_event() */
12815 err_locked:
12816 	mutex_unlock(&ctx->mutex);
12817 	perf_unpin_context(ctx);
12818 	put_ctx(ctx);
12819 err_cred:
12820 	if (task)
12821 		up_read(&task->signal->exec_update_lock);
12822 err_alloc:
12823 	free_event(event);
12824 err_task:
12825 	if (task)
12826 		put_task_struct(task);
12827 err_group_fd:
12828 	fdput(group);
12829 err_fd:
12830 	put_unused_fd(event_fd);
12831 	return err;
12832 }
12833 
12834 /**
12835  * perf_event_create_kernel_counter
12836  *
12837  * @attr: attributes of the counter to create
12838  * @cpu: cpu in which the counter is bound
12839  * @task: task to profile (NULL for percpu)
12840  * @overflow_handler: callback to trigger when we hit the event
12841  * @context: context data could be used in overflow_handler callback
12842  */
12843 struct perf_event *
12844 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12845 				 struct task_struct *task,
12846 				 perf_overflow_handler_t overflow_handler,
12847 				 void *context)
12848 {
12849 	struct perf_event_pmu_context *pmu_ctx;
12850 	struct perf_event_context *ctx;
12851 	struct perf_event *event;
12852 	struct pmu *pmu;
12853 	int err;
12854 
12855 	/*
12856 	 * Grouping is not supported for kernel events, neither is 'AUX',
12857 	 * make sure the caller's intentions are adjusted.
12858 	 */
12859 	if (attr->aux_output)
12860 		return ERR_PTR(-EINVAL);
12861 
12862 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12863 				 overflow_handler, context, -1);
12864 	if (IS_ERR(event)) {
12865 		err = PTR_ERR(event);
12866 		goto err;
12867 	}
12868 
12869 	/* Mark owner so we could distinguish it from user events. */
12870 	event->owner = TASK_TOMBSTONE;
12871 	pmu = event->pmu;
12872 
12873 	if (pmu->task_ctx_nr == perf_sw_context)
12874 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12875 
12876 	/*
12877 	 * Get the target context (task or percpu):
12878 	 */
12879 	ctx = find_get_context(task, event);
12880 	if (IS_ERR(ctx)) {
12881 		err = PTR_ERR(ctx);
12882 		goto err_alloc;
12883 	}
12884 
12885 	WARN_ON_ONCE(ctx->parent_ctx);
12886 	mutex_lock(&ctx->mutex);
12887 	if (ctx->task == TASK_TOMBSTONE) {
12888 		err = -ESRCH;
12889 		goto err_unlock;
12890 	}
12891 
12892 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12893 	if (IS_ERR(pmu_ctx)) {
12894 		err = PTR_ERR(pmu_ctx);
12895 		goto err_unlock;
12896 	}
12897 	event->pmu_ctx = pmu_ctx;
12898 
12899 	if (!task) {
12900 		/*
12901 		 * Check if the @cpu we're creating an event for is online.
12902 		 *
12903 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12904 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12905 		 */
12906 		struct perf_cpu_context *cpuctx =
12907 			container_of(ctx, struct perf_cpu_context, ctx);
12908 		if (!cpuctx->online) {
12909 			err = -ENODEV;
12910 			goto err_pmu_ctx;
12911 		}
12912 	}
12913 
12914 	if (!exclusive_event_installable(event, ctx)) {
12915 		err = -EBUSY;
12916 		goto err_pmu_ctx;
12917 	}
12918 
12919 	perf_install_in_context(ctx, event, event->cpu);
12920 	perf_unpin_context(ctx);
12921 	mutex_unlock(&ctx->mutex);
12922 
12923 	return event;
12924 
12925 err_pmu_ctx:
12926 	put_pmu_ctx(pmu_ctx);
12927 	event->pmu_ctx = NULL; /* _free_event() */
12928 err_unlock:
12929 	mutex_unlock(&ctx->mutex);
12930 	perf_unpin_context(ctx);
12931 	put_ctx(ctx);
12932 err_alloc:
12933 	free_event(event);
12934 err:
12935 	return ERR_PTR(err);
12936 }
12937 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12938 
12939 static void __perf_pmu_remove(struct perf_event_context *ctx,
12940 			      int cpu, struct pmu *pmu,
12941 			      struct perf_event_groups *groups,
12942 			      struct list_head *events)
12943 {
12944 	struct perf_event *event, *sibling;
12945 
12946 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12947 		perf_remove_from_context(event, 0);
12948 		put_pmu_ctx(event->pmu_ctx);
12949 		list_add(&event->migrate_entry, events);
12950 
12951 		for_each_sibling_event(sibling, event) {
12952 			perf_remove_from_context(sibling, 0);
12953 			put_pmu_ctx(sibling->pmu_ctx);
12954 			list_add(&sibling->migrate_entry, events);
12955 		}
12956 	}
12957 }
12958 
12959 static void __perf_pmu_install_event(struct pmu *pmu,
12960 				     struct perf_event_context *ctx,
12961 				     int cpu, struct perf_event *event)
12962 {
12963 	struct perf_event_pmu_context *epc;
12964 	struct perf_event_context *old_ctx = event->ctx;
12965 
12966 	get_ctx(ctx); /* normally find_get_context() */
12967 
12968 	event->cpu = cpu;
12969 	epc = find_get_pmu_context(pmu, ctx, event);
12970 	event->pmu_ctx = epc;
12971 
12972 	if (event->state >= PERF_EVENT_STATE_OFF)
12973 		event->state = PERF_EVENT_STATE_INACTIVE;
12974 	perf_install_in_context(ctx, event, cpu);
12975 
12976 	/*
12977 	 * Now that event->ctx is updated and visible, put the old ctx.
12978 	 */
12979 	put_ctx(old_ctx);
12980 }
12981 
12982 static void __perf_pmu_install(struct perf_event_context *ctx,
12983 			       int cpu, struct pmu *pmu, struct list_head *events)
12984 {
12985 	struct perf_event *event, *tmp;
12986 
12987 	/*
12988 	 * Re-instate events in 2 passes.
12989 	 *
12990 	 * Skip over group leaders and only install siblings on this first
12991 	 * pass, siblings will not get enabled without a leader, however a
12992 	 * leader will enable its siblings, even if those are still on the old
12993 	 * context.
12994 	 */
12995 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12996 		if (event->group_leader == event)
12997 			continue;
12998 
12999 		list_del(&event->migrate_entry);
13000 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13001 	}
13002 
13003 	/*
13004 	 * Once all the siblings are setup properly, install the group leaders
13005 	 * to make it go.
13006 	 */
13007 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13008 		list_del(&event->migrate_entry);
13009 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13010 	}
13011 }
13012 
13013 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13014 {
13015 	struct perf_event_context *src_ctx, *dst_ctx;
13016 	LIST_HEAD(events);
13017 
13018 	/*
13019 	 * Since per-cpu context is persistent, no need to grab an extra
13020 	 * reference.
13021 	 */
13022 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13023 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13024 
13025 	/*
13026 	 * See perf_event_ctx_lock() for comments on the details
13027 	 * of swizzling perf_event::ctx.
13028 	 */
13029 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13030 
13031 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13032 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13033 
13034 	if (!list_empty(&events)) {
13035 		/*
13036 		 * Wait for the events to quiesce before re-instating them.
13037 		 */
13038 		synchronize_rcu();
13039 
13040 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13041 	}
13042 
13043 	mutex_unlock(&dst_ctx->mutex);
13044 	mutex_unlock(&src_ctx->mutex);
13045 }
13046 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13047 
13048 static void sync_child_event(struct perf_event *child_event)
13049 {
13050 	struct perf_event *parent_event = child_event->parent;
13051 	u64 child_val;
13052 
13053 	if (child_event->attr.inherit_stat) {
13054 		struct task_struct *task = child_event->ctx->task;
13055 
13056 		if (task && task != TASK_TOMBSTONE)
13057 			perf_event_read_event(child_event, task);
13058 	}
13059 
13060 	child_val = perf_event_count(child_event);
13061 
13062 	/*
13063 	 * Add back the child's count to the parent's count:
13064 	 */
13065 	atomic64_add(child_val, &parent_event->child_count);
13066 	atomic64_add(child_event->total_time_enabled,
13067 		     &parent_event->child_total_time_enabled);
13068 	atomic64_add(child_event->total_time_running,
13069 		     &parent_event->child_total_time_running);
13070 }
13071 
13072 static void
13073 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13074 {
13075 	struct perf_event *parent_event = event->parent;
13076 	unsigned long detach_flags = 0;
13077 
13078 	if (parent_event) {
13079 		/*
13080 		 * Do not destroy the 'original' grouping; because of the
13081 		 * context switch optimization the original events could've
13082 		 * ended up in a random child task.
13083 		 *
13084 		 * If we were to destroy the original group, all group related
13085 		 * operations would cease to function properly after this
13086 		 * random child dies.
13087 		 *
13088 		 * Do destroy all inherited groups, we don't care about those
13089 		 * and being thorough is better.
13090 		 */
13091 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13092 		mutex_lock(&parent_event->child_mutex);
13093 	}
13094 
13095 	perf_remove_from_context(event, detach_flags);
13096 
13097 	raw_spin_lock_irq(&ctx->lock);
13098 	if (event->state > PERF_EVENT_STATE_EXIT)
13099 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13100 	raw_spin_unlock_irq(&ctx->lock);
13101 
13102 	/*
13103 	 * Child events can be freed.
13104 	 */
13105 	if (parent_event) {
13106 		mutex_unlock(&parent_event->child_mutex);
13107 		/*
13108 		 * Kick perf_poll() for is_event_hup();
13109 		 */
13110 		perf_event_wakeup(parent_event);
13111 		free_event(event);
13112 		put_event(parent_event);
13113 		return;
13114 	}
13115 
13116 	/*
13117 	 * Parent events are governed by their filedesc, retain them.
13118 	 */
13119 	perf_event_wakeup(event);
13120 }
13121 
13122 static void perf_event_exit_task_context(struct task_struct *child)
13123 {
13124 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13125 	struct perf_event *child_event, *next;
13126 
13127 	WARN_ON_ONCE(child != current);
13128 
13129 	child_ctx = perf_pin_task_context(child);
13130 	if (!child_ctx)
13131 		return;
13132 
13133 	/*
13134 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13135 	 * ctx::mutex over the entire thing. This serializes against almost
13136 	 * everything that wants to access the ctx.
13137 	 *
13138 	 * The exception is sys_perf_event_open() /
13139 	 * perf_event_create_kernel_count() which does find_get_context()
13140 	 * without ctx::mutex (it cannot because of the move_group double mutex
13141 	 * lock thing). See the comments in perf_install_in_context().
13142 	 */
13143 	mutex_lock(&child_ctx->mutex);
13144 
13145 	/*
13146 	 * In a single ctx::lock section, de-schedule the events and detach the
13147 	 * context from the task such that we cannot ever get it scheduled back
13148 	 * in.
13149 	 */
13150 	raw_spin_lock_irq(&child_ctx->lock);
13151 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13152 
13153 	/*
13154 	 * Now that the context is inactive, destroy the task <-> ctx relation
13155 	 * and mark the context dead.
13156 	 */
13157 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13158 	put_ctx(child_ctx); /* cannot be last */
13159 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13160 	put_task_struct(current); /* cannot be last */
13161 
13162 	clone_ctx = unclone_ctx(child_ctx);
13163 	raw_spin_unlock_irq(&child_ctx->lock);
13164 
13165 	if (clone_ctx)
13166 		put_ctx(clone_ctx);
13167 
13168 	/*
13169 	 * Report the task dead after unscheduling the events so that we
13170 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13171 	 * get a few PERF_RECORD_READ events.
13172 	 */
13173 	perf_event_task(child, child_ctx, 0);
13174 
13175 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13176 		perf_event_exit_event(child_event, child_ctx);
13177 
13178 	mutex_unlock(&child_ctx->mutex);
13179 
13180 	put_ctx(child_ctx);
13181 }
13182 
13183 /*
13184  * When a child task exits, feed back event values to parent events.
13185  *
13186  * Can be called with exec_update_lock held when called from
13187  * setup_new_exec().
13188  */
13189 void perf_event_exit_task(struct task_struct *child)
13190 {
13191 	struct perf_event *event, *tmp;
13192 
13193 	mutex_lock(&child->perf_event_mutex);
13194 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13195 				 owner_entry) {
13196 		list_del_init(&event->owner_entry);
13197 
13198 		/*
13199 		 * Ensure the list deletion is visible before we clear
13200 		 * the owner, closes a race against perf_release() where
13201 		 * we need to serialize on the owner->perf_event_mutex.
13202 		 */
13203 		smp_store_release(&event->owner, NULL);
13204 	}
13205 	mutex_unlock(&child->perf_event_mutex);
13206 
13207 	perf_event_exit_task_context(child);
13208 
13209 	/*
13210 	 * The perf_event_exit_task_context calls perf_event_task
13211 	 * with child's task_ctx, which generates EXIT events for
13212 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13213 	 * At this point we need to send EXIT events to cpu contexts.
13214 	 */
13215 	perf_event_task(child, NULL, 0);
13216 }
13217 
13218 static void perf_free_event(struct perf_event *event,
13219 			    struct perf_event_context *ctx)
13220 {
13221 	struct perf_event *parent = event->parent;
13222 
13223 	if (WARN_ON_ONCE(!parent))
13224 		return;
13225 
13226 	mutex_lock(&parent->child_mutex);
13227 	list_del_init(&event->child_list);
13228 	mutex_unlock(&parent->child_mutex);
13229 
13230 	put_event(parent);
13231 
13232 	raw_spin_lock_irq(&ctx->lock);
13233 	perf_group_detach(event);
13234 	list_del_event(event, ctx);
13235 	raw_spin_unlock_irq(&ctx->lock);
13236 	free_event(event);
13237 }
13238 
13239 /*
13240  * Free a context as created by inheritance by perf_event_init_task() below,
13241  * used by fork() in case of fail.
13242  *
13243  * Even though the task has never lived, the context and events have been
13244  * exposed through the child_list, so we must take care tearing it all down.
13245  */
13246 void perf_event_free_task(struct task_struct *task)
13247 {
13248 	struct perf_event_context *ctx;
13249 	struct perf_event *event, *tmp;
13250 
13251 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13252 	if (!ctx)
13253 		return;
13254 
13255 	mutex_lock(&ctx->mutex);
13256 	raw_spin_lock_irq(&ctx->lock);
13257 	/*
13258 	 * Destroy the task <-> ctx relation and mark the context dead.
13259 	 *
13260 	 * This is important because even though the task hasn't been
13261 	 * exposed yet the context has been (through child_list).
13262 	 */
13263 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13264 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13265 	put_task_struct(task); /* cannot be last */
13266 	raw_spin_unlock_irq(&ctx->lock);
13267 
13268 
13269 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13270 		perf_free_event(event, ctx);
13271 
13272 	mutex_unlock(&ctx->mutex);
13273 
13274 	/*
13275 	 * perf_event_release_kernel() could've stolen some of our
13276 	 * child events and still have them on its free_list. In that
13277 	 * case we must wait for these events to have been freed (in
13278 	 * particular all their references to this task must've been
13279 	 * dropped).
13280 	 *
13281 	 * Without this copy_process() will unconditionally free this
13282 	 * task (irrespective of its reference count) and
13283 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13284 	 * use-after-free.
13285 	 *
13286 	 * Wait for all events to drop their context reference.
13287 	 */
13288 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13289 	put_ctx(ctx); /* must be last */
13290 }
13291 
13292 void perf_event_delayed_put(struct task_struct *task)
13293 {
13294 	WARN_ON_ONCE(task->perf_event_ctxp);
13295 }
13296 
13297 struct file *perf_event_get(unsigned int fd)
13298 {
13299 	struct file *file = fget(fd);
13300 	if (!file)
13301 		return ERR_PTR(-EBADF);
13302 
13303 	if (file->f_op != &perf_fops) {
13304 		fput(file);
13305 		return ERR_PTR(-EBADF);
13306 	}
13307 
13308 	return file;
13309 }
13310 
13311 const struct perf_event *perf_get_event(struct file *file)
13312 {
13313 	if (file->f_op != &perf_fops)
13314 		return ERR_PTR(-EINVAL);
13315 
13316 	return file->private_data;
13317 }
13318 
13319 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13320 {
13321 	if (!event)
13322 		return ERR_PTR(-EINVAL);
13323 
13324 	return &event->attr;
13325 }
13326 
13327 /*
13328  * Inherit an event from parent task to child task.
13329  *
13330  * Returns:
13331  *  - valid pointer on success
13332  *  - NULL for orphaned events
13333  *  - IS_ERR() on error
13334  */
13335 static struct perf_event *
13336 inherit_event(struct perf_event *parent_event,
13337 	      struct task_struct *parent,
13338 	      struct perf_event_context *parent_ctx,
13339 	      struct task_struct *child,
13340 	      struct perf_event *group_leader,
13341 	      struct perf_event_context *child_ctx)
13342 {
13343 	enum perf_event_state parent_state = parent_event->state;
13344 	struct perf_event_pmu_context *pmu_ctx;
13345 	struct perf_event *child_event;
13346 	unsigned long flags;
13347 
13348 	/*
13349 	 * Instead of creating recursive hierarchies of events,
13350 	 * we link inherited events back to the original parent,
13351 	 * which has a filp for sure, which we use as the reference
13352 	 * count:
13353 	 */
13354 	if (parent_event->parent)
13355 		parent_event = parent_event->parent;
13356 
13357 	child_event = perf_event_alloc(&parent_event->attr,
13358 					   parent_event->cpu,
13359 					   child,
13360 					   group_leader, parent_event,
13361 					   NULL, NULL, -1);
13362 	if (IS_ERR(child_event))
13363 		return child_event;
13364 
13365 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13366 	if (IS_ERR(pmu_ctx)) {
13367 		free_event(child_event);
13368 		return ERR_CAST(pmu_ctx);
13369 	}
13370 	child_event->pmu_ctx = pmu_ctx;
13371 
13372 	/*
13373 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13374 	 * must be under the same lock in order to serialize against
13375 	 * perf_event_release_kernel(), such that either we must observe
13376 	 * is_orphaned_event() or they will observe us on the child_list.
13377 	 */
13378 	mutex_lock(&parent_event->child_mutex);
13379 	if (is_orphaned_event(parent_event) ||
13380 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13381 		mutex_unlock(&parent_event->child_mutex);
13382 		/* task_ctx_data is freed with child_ctx */
13383 		free_event(child_event);
13384 		return NULL;
13385 	}
13386 
13387 	get_ctx(child_ctx);
13388 
13389 	/*
13390 	 * Make the child state follow the state of the parent event,
13391 	 * not its attr.disabled bit.  We hold the parent's mutex,
13392 	 * so we won't race with perf_event_{en, dis}able_family.
13393 	 */
13394 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13395 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13396 	else
13397 		child_event->state = PERF_EVENT_STATE_OFF;
13398 
13399 	if (parent_event->attr.freq) {
13400 		u64 sample_period = parent_event->hw.sample_period;
13401 		struct hw_perf_event *hwc = &child_event->hw;
13402 
13403 		hwc->sample_period = sample_period;
13404 		hwc->last_period   = sample_period;
13405 
13406 		local64_set(&hwc->period_left, sample_period);
13407 	}
13408 
13409 	child_event->ctx = child_ctx;
13410 	child_event->overflow_handler = parent_event->overflow_handler;
13411 	child_event->overflow_handler_context
13412 		= parent_event->overflow_handler_context;
13413 
13414 	/*
13415 	 * Precalculate sample_data sizes
13416 	 */
13417 	perf_event__header_size(child_event);
13418 	perf_event__id_header_size(child_event);
13419 
13420 	/*
13421 	 * Link it up in the child's context:
13422 	 */
13423 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13424 	add_event_to_ctx(child_event, child_ctx);
13425 	child_event->attach_state |= PERF_ATTACH_CHILD;
13426 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13427 
13428 	/*
13429 	 * Link this into the parent event's child list
13430 	 */
13431 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13432 	mutex_unlock(&parent_event->child_mutex);
13433 
13434 	return child_event;
13435 }
13436 
13437 /*
13438  * Inherits an event group.
13439  *
13440  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13441  * This matches with perf_event_release_kernel() removing all child events.
13442  *
13443  * Returns:
13444  *  - 0 on success
13445  *  - <0 on error
13446  */
13447 static int inherit_group(struct perf_event *parent_event,
13448 	      struct task_struct *parent,
13449 	      struct perf_event_context *parent_ctx,
13450 	      struct task_struct *child,
13451 	      struct perf_event_context *child_ctx)
13452 {
13453 	struct perf_event *leader;
13454 	struct perf_event *sub;
13455 	struct perf_event *child_ctr;
13456 
13457 	leader = inherit_event(parent_event, parent, parent_ctx,
13458 				 child, NULL, child_ctx);
13459 	if (IS_ERR(leader))
13460 		return PTR_ERR(leader);
13461 	/*
13462 	 * @leader can be NULL here because of is_orphaned_event(). In this
13463 	 * case inherit_event() will create individual events, similar to what
13464 	 * perf_group_detach() would do anyway.
13465 	 */
13466 	for_each_sibling_event(sub, parent_event) {
13467 		child_ctr = inherit_event(sub, parent, parent_ctx,
13468 					    child, leader, child_ctx);
13469 		if (IS_ERR(child_ctr))
13470 			return PTR_ERR(child_ctr);
13471 
13472 		if (sub->aux_event == parent_event && child_ctr &&
13473 		    !perf_get_aux_event(child_ctr, leader))
13474 			return -EINVAL;
13475 	}
13476 	if (leader)
13477 		leader->group_generation = parent_event->group_generation;
13478 	return 0;
13479 }
13480 
13481 /*
13482  * Creates the child task context and tries to inherit the event-group.
13483  *
13484  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13485  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13486  * consistent with perf_event_release_kernel() removing all child events.
13487  *
13488  * Returns:
13489  *  - 0 on success
13490  *  - <0 on error
13491  */
13492 static int
13493 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13494 		   struct perf_event_context *parent_ctx,
13495 		   struct task_struct *child,
13496 		   u64 clone_flags, int *inherited_all)
13497 {
13498 	struct perf_event_context *child_ctx;
13499 	int ret;
13500 
13501 	if (!event->attr.inherit ||
13502 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13503 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13504 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13505 		*inherited_all = 0;
13506 		return 0;
13507 	}
13508 
13509 	child_ctx = child->perf_event_ctxp;
13510 	if (!child_ctx) {
13511 		/*
13512 		 * This is executed from the parent task context, so
13513 		 * inherit events that have been marked for cloning.
13514 		 * First allocate and initialize a context for the
13515 		 * child.
13516 		 */
13517 		child_ctx = alloc_perf_context(child);
13518 		if (!child_ctx)
13519 			return -ENOMEM;
13520 
13521 		child->perf_event_ctxp = child_ctx;
13522 	}
13523 
13524 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13525 	if (ret)
13526 		*inherited_all = 0;
13527 
13528 	return ret;
13529 }
13530 
13531 /*
13532  * Initialize the perf_event context in task_struct
13533  */
13534 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13535 {
13536 	struct perf_event_context *child_ctx, *parent_ctx;
13537 	struct perf_event_context *cloned_ctx;
13538 	struct perf_event *event;
13539 	struct task_struct *parent = current;
13540 	int inherited_all = 1;
13541 	unsigned long flags;
13542 	int ret = 0;
13543 
13544 	if (likely(!parent->perf_event_ctxp))
13545 		return 0;
13546 
13547 	/*
13548 	 * If the parent's context is a clone, pin it so it won't get
13549 	 * swapped under us.
13550 	 */
13551 	parent_ctx = perf_pin_task_context(parent);
13552 	if (!parent_ctx)
13553 		return 0;
13554 
13555 	/*
13556 	 * No need to check if parent_ctx != NULL here; since we saw
13557 	 * it non-NULL earlier, the only reason for it to become NULL
13558 	 * is if we exit, and since we're currently in the middle of
13559 	 * a fork we can't be exiting at the same time.
13560 	 */
13561 
13562 	/*
13563 	 * Lock the parent list. No need to lock the child - not PID
13564 	 * hashed yet and not running, so nobody can access it.
13565 	 */
13566 	mutex_lock(&parent_ctx->mutex);
13567 
13568 	/*
13569 	 * We dont have to disable NMIs - we are only looking at
13570 	 * the list, not manipulating it:
13571 	 */
13572 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13573 		ret = inherit_task_group(event, parent, parent_ctx,
13574 					 child, clone_flags, &inherited_all);
13575 		if (ret)
13576 			goto out_unlock;
13577 	}
13578 
13579 	/*
13580 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13581 	 * to allocations, but we need to prevent rotation because
13582 	 * rotate_ctx() will change the list from interrupt context.
13583 	 */
13584 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13585 	parent_ctx->rotate_disable = 1;
13586 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13587 
13588 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13589 		ret = inherit_task_group(event, parent, parent_ctx,
13590 					 child, clone_flags, &inherited_all);
13591 		if (ret)
13592 			goto out_unlock;
13593 	}
13594 
13595 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13596 	parent_ctx->rotate_disable = 0;
13597 
13598 	child_ctx = child->perf_event_ctxp;
13599 
13600 	if (child_ctx && inherited_all) {
13601 		/*
13602 		 * Mark the child context as a clone of the parent
13603 		 * context, or of whatever the parent is a clone of.
13604 		 *
13605 		 * Note that if the parent is a clone, the holding of
13606 		 * parent_ctx->lock avoids it from being uncloned.
13607 		 */
13608 		cloned_ctx = parent_ctx->parent_ctx;
13609 		if (cloned_ctx) {
13610 			child_ctx->parent_ctx = cloned_ctx;
13611 			child_ctx->parent_gen = parent_ctx->parent_gen;
13612 		} else {
13613 			child_ctx->parent_ctx = parent_ctx;
13614 			child_ctx->parent_gen = parent_ctx->generation;
13615 		}
13616 		get_ctx(child_ctx->parent_ctx);
13617 	}
13618 
13619 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13620 out_unlock:
13621 	mutex_unlock(&parent_ctx->mutex);
13622 
13623 	perf_unpin_context(parent_ctx);
13624 	put_ctx(parent_ctx);
13625 
13626 	return ret;
13627 }
13628 
13629 /*
13630  * Initialize the perf_event context in task_struct
13631  */
13632 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13633 {
13634 	int ret;
13635 
13636 	child->perf_event_ctxp = NULL;
13637 	mutex_init(&child->perf_event_mutex);
13638 	INIT_LIST_HEAD(&child->perf_event_list);
13639 
13640 	ret = perf_event_init_context(child, clone_flags);
13641 	if (ret) {
13642 		perf_event_free_task(child);
13643 		return ret;
13644 	}
13645 
13646 	return 0;
13647 }
13648 
13649 static void __init perf_event_init_all_cpus(void)
13650 {
13651 	struct swevent_htable *swhash;
13652 	struct perf_cpu_context *cpuctx;
13653 	int cpu;
13654 
13655 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13656 
13657 	for_each_possible_cpu(cpu) {
13658 		swhash = &per_cpu(swevent_htable, cpu);
13659 		mutex_init(&swhash->hlist_mutex);
13660 
13661 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13662 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13663 
13664 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13665 
13666 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13667 		__perf_event_init_context(&cpuctx->ctx);
13668 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13669 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13670 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13671 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13672 		cpuctx->heap = cpuctx->heap_default;
13673 	}
13674 }
13675 
13676 static void perf_swevent_init_cpu(unsigned int cpu)
13677 {
13678 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13679 
13680 	mutex_lock(&swhash->hlist_mutex);
13681 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13682 		struct swevent_hlist *hlist;
13683 
13684 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13685 		WARN_ON(!hlist);
13686 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13687 	}
13688 	mutex_unlock(&swhash->hlist_mutex);
13689 }
13690 
13691 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13692 static void __perf_event_exit_context(void *__info)
13693 {
13694 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13695 	struct perf_event_context *ctx = __info;
13696 	struct perf_event *event;
13697 
13698 	raw_spin_lock(&ctx->lock);
13699 	ctx_sched_out(ctx, EVENT_TIME);
13700 	list_for_each_entry(event, &ctx->event_list, event_entry)
13701 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13702 	raw_spin_unlock(&ctx->lock);
13703 }
13704 
13705 static void perf_event_exit_cpu_context(int cpu)
13706 {
13707 	struct perf_cpu_context *cpuctx;
13708 	struct perf_event_context *ctx;
13709 
13710 	// XXX simplify cpuctx->online
13711 	mutex_lock(&pmus_lock);
13712 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13713 	ctx = &cpuctx->ctx;
13714 
13715 	mutex_lock(&ctx->mutex);
13716 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13717 	cpuctx->online = 0;
13718 	mutex_unlock(&ctx->mutex);
13719 	cpumask_clear_cpu(cpu, perf_online_mask);
13720 	mutex_unlock(&pmus_lock);
13721 }
13722 #else
13723 
13724 static void perf_event_exit_cpu_context(int cpu) { }
13725 
13726 #endif
13727 
13728 int perf_event_init_cpu(unsigned int cpu)
13729 {
13730 	struct perf_cpu_context *cpuctx;
13731 	struct perf_event_context *ctx;
13732 
13733 	perf_swevent_init_cpu(cpu);
13734 
13735 	mutex_lock(&pmus_lock);
13736 	cpumask_set_cpu(cpu, perf_online_mask);
13737 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13738 	ctx = &cpuctx->ctx;
13739 
13740 	mutex_lock(&ctx->mutex);
13741 	cpuctx->online = 1;
13742 	mutex_unlock(&ctx->mutex);
13743 	mutex_unlock(&pmus_lock);
13744 
13745 	return 0;
13746 }
13747 
13748 int perf_event_exit_cpu(unsigned int cpu)
13749 {
13750 	perf_event_exit_cpu_context(cpu);
13751 	return 0;
13752 }
13753 
13754 static int
13755 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13756 {
13757 	int cpu;
13758 
13759 	for_each_online_cpu(cpu)
13760 		perf_event_exit_cpu(cpu);
13761 
13762 	return NOTIFY_OK;
13763 }
13764 
13765 /*
13766  * Run the perf reboot notifier at the very last possible moment so that
13767  * the generic watchdog code runs as long as possible.
13768  */
13769 static struct notifier_block perf_reboot_notifier = {
13770 	.notifier_call = perf_reboot,
13771 	.priority = INT_MIN,
13772 };
13773 
13774 void __init perf_event_init(void)
13775 {
13776 	int ret;
13777 
13778 	idr_init(&pmu_idr);
13779 
13780 	perf_event_init_all_cpus();
13781 	init_srcu_struct(&pmus_srcu);
13782 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13783 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13784 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13785 	perf_tp_register();
13786 	perf_event_init_cpu(smp_processor_id());
13787 	register_reboot_notifier(&perf_reboot_notifier);
13788 
13789 	ret = init_hw_breakpoint();
13790 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13791 
13792 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13793 
13794 	/*
13795 	 * Build time assertion that we keep the data_head at the intended
13796 	 * location.  IOW, validation we got the __reserved[] size right.
13797 	 */
13798 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13799 		     != 1024);
13800 }
13801 
13802 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13803 			      char *page)
13804 {
13805 	struct perf_pmu_events_attr *pmu_attr =
13806 		container_of(attr, struct perf_pmu_events_attr, attr);
13807 
13808 	if (pmu_attr->event_str)
13809 		return sprintf(page, "%s\n", pmu_attr->event_str);
13810 
13811 	return 0;
13812 }
13813 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13814 
13815 static int __init perf_event_sysfs_init(void)
13816 {
13817 	struct pmu *pmu;
13818 	int ret;
13819 
13820 	mutex_lock(&pmus_lock);
13821 
13822 	ret = bus_register(&pmu_bus);
13823 	if (ret)
13824 		goto unlock;
13825 
13826 	list_for_each_entry(pmu, &pmus, entry) {
13827 		if (pmu->dev)
13828 			continue;
13829 
13830 		ret = pmu_dev_alloc(pmu);
13831 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13832 	}
13833 	pmu_bus_running = 1;
13834 	ret = 0;
13835 
13836 unlock:
13837 	mutex_unlock(&pmus_lock);
13838 
13839 	return ret;
13840 }
13841 device_initcall(perf_event_sysfs_init);
13842 
13843 #ifdef CONFIG_CGROUP_PERF
13844 static struct cgroup_subsys_state *
13845 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13846 {
13847 	struct perf_cgroup *jc;
13848 
13849 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13850 	if (!jc)
13851 		return ERR_PTR(-ENOMEM);
13852 
13853 	jc->info = alloc_percpu(struct perf_cgroup_info);
13854 	if (!jc->info) {
13855 		kfree(jc);
13856 		return ERR_PTR(-ENOMEM);
13857 	}
13858 
13859 	return &jc->css;
13860 }
13861 
13862 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13863 {
13864 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13865 
13866 	free_percpu(jc->info);
13867 	kfree(jc);
13868 }
13869 
13870 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13871 {
13872 	perf_event_cgroup(css->cgroup);
13873 	return 0;
13874 }
13875 
13876 static int __perf_cgroup_move(void *info)
13877 {
13878 	struct task_struct *task = info;
13879 
13880 	preempt_disable();
13881 	perf_cgroup_switch(task);
13882 	preempt_enable();
13883 
13884 	return 0;
13885 }
13886 
13887 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13888 {
13889 	struct task_struct *task;
13890 	struct cgroup_subsys_state *css;
13891 
13892 	cgroup_taskset_for_each(task, css, tset)
13893 		task_function_call(task, __perf_cgroup_move, task);
13894 }
13895 
13896 struct cgroup_subsys perf_event_cgrp_subsys = {
13897 	.css_alloc	= perf_cgroup_css_alloc,
13898 	.css_free	= perf_cgroup_css_free,
13899 	.css_online	= perf_cgroup_css_online,
13900 	.attach		= perf_cgroup_attach,
13901 	/*
13902 	 * Implicitly enable on dfl hierarchy so that perf events can
13903 	 * always be filtered by cgroup2 path as long as perf_event
13904 	 * controller is not mounted on a legacy hierarchy.
13905 	 */
13906 	.implicit_on_dfl = true,
13907 	.threaded	= true,
13908 };
13909 #endif /* CONFIG_CGROUP_PERF */
13910 
13911 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13912