xref: /openbmc/linux/kernel/events/core.c (revision 66a403d89b73d0caf4c3447f930886629efc5f21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
267 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
268 	struct event_function_struct efs = {
269 		.event = event,
270 		.func = func,
271 		.data = data,
272 	};
273 
274 	if (!event->parent) {
275 		/*
276 		 * If this is a !child event, we must hold ctx::mutex to
277 		 * stabilize the event->ctx relation. See
278 		 * perf_event_ctx_lock().
279 		 */
280 		lockdep_assert_held(&ctx->mutex);
281 	}
282 
283 	if (!task) {
284 		cpu_function_call(event->cpu, event_function, &efs);
285 		return;
286 	}
287 
288 	if (task == TASK_TOMBSTONE)
289 		return;
290 
291 again:
292 	if (!task_function_call(task, event_function, &efs))
293 		return;
294 
295 	perf_ctx_lock(cpuctx, ctx);
296 	/*
297 	 * Reload the task pointer, it might have been changed by
298 	 * a concurrent perf_event_context_sched_out().
299 	 */
300 	task = ctx->task;
301 	if (task == TASK_TOMBSTONE) {
302 		perf_ctx_unlock(cpuctx, ctx);
303 		return;
304 	}
305 	if (ctx->is_active) {
306 		perf_ctx_unlock(cpuctx, ctx);
307 		goto again;
308 	}
309 	func(event, NULL, ctx, data);
310 	perf_ctx_unlock(cpuctx, ctx);
311 }
312 
313 /*
314  * Similar to event_function_call() + event_function(), but hard assumes IRQs
315  * are already disabled and we're on the right CPU.
316  */
317 static void event_function_local(struct perf_event *event, event_f func, void *data)
318 {
319 	struct perf_event_context *ctx = event->ctx;
320 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
321 	struct task_struct *task = READ_ONCE(ctx->task);
322 	struct perf_event_context *task_ctx = NULL;
323 
324 	lockdep_assert_irqs_disabled();
325 
326 	if (task) {
327 		if (task == TASK_TOMBSTONE)
328 			return;
329 
330 		task_ctx = ctx;
331 	}
332 
333 	perf_ctx_lock(cpuctx, task_ctx);
334 
335 	task = ctx->task;
336 	if (task == TASK_TOMBSTONE)
337 		goto unlock;
338 
339 	if (task) {
340 		/*
341 		 * We must be either inactive or active and the right task,
342 		 * otherwise we're screwed, since we cannot IPI to somewhere
343 		 * else.
344 		 */
345 		if (ctx->is_active) {
346 			if (WARN_ON_ONCE(task != current))
347 				goto unlock;
348 
349 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
350 				goto unlock;
351 		}
352 	} else {
353 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
354 	}
355 
356 	func(event, cpuctx, ctx, data);
357 unlock:
358 	perf_ctx_unlock(cpuctx, task_ctx);
359 }
360 
361 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
362 		       PERF_FLAG_FD_OUTPUT  |\
363 		       PERF_FLAG_PID_CGROUP |\
364 		       PERF_FLAG_FD_CLOEXEC)
365 
366 /*
367  * branch priv levels that need permission checks
368  */
369 #define PERF_SAMPLE_BRANCH_PERM_PLM \
370 	(PERF_SAMPLE_BRANCH_KERNEL |\
371 	 PERF_SAMPLE_BRANCH_HV)
372 
373 enum event_type_t {
374 	EVENT_FLEXIBLE = 0x1,
375 	EVENT_PINNED = 0x2,
376 	EVENT_TIME = 0x4,
377 	/* see ctx_resched() for details */
378 	EVENT_CPU = 0x8,
379 	EVENT_CGROUP = 0x10,
380 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
381 };
382 
383 /*
384  * perf_sched_events : >0 events exist
385  */
386 
387 static void perf_sched_delayed(struct work_struct *work);
388 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
389 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
390 static DEFINE_MUTEX(perf_sched_mutex);
391 static atomic_t perf_sched_count;
392 
393 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
394 
395 static atomic_t nr_mmap_events __read_mostly;
396 static atomic_t nr_comm_events __read_mostly;
397 static atomic_t nr_namespaces_events __read_mostly;
398 static atomic_t nr_task_events __read_mostly;
399 static atomic_t nr_freq_events __read_mostly;
400 static atomic_t nr_switch_events __read_mostly;
401 static atomic_t nr_ksymbol_events __read_mostly;
402 static atomic_t nr_bpf_events __read_mostly;
403 static atomic_t nr_cgroup_events __read_mostly;
404 static atomic_t nr_text_poke_events __read_mostly;
405 static atomic_t nr_build_id_events __read_mostly;
406 
407 static LIST_HEAD(pmus);
408 static DEFINE_MUTEX(pmus_lock);
409 static struct srcu_struct pmus_srcu;
410 static cpumask_var_t perf_online_mask;
411 static struct kmem_cache *perf_event_cache;
412 
413 /*
414  * perf event paranoia level:
415  *  -1 - not paranoid at all
416  *   0 - disallow raw tracepoint access for unpriv
417  *   1 - disallow cpu events for unpriv
418  *   2 - disallow kernel profiling for unpriv
419  */
420 int sysctl_perf_event_paranoid __read_mostly = 2;
421 
422 /* Minimum for 512 kiB + 1 user control page */
423 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
424 
425 /*
426  * max perf event sample rate
427  */
428 #define DEFAULT_MAX_SAMPLE_RATE		100000
429 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
430 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
431 
432 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
433 
434 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
435 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
436 
437 static int perf_sample_allowed_ns __read_mostly =
438 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
439 
440 static void update_perf_cpu_limits(void)
441 {
442 	u64 tmp = perf_sample_period_ns;
443 
444 	tmp *= sysctl_perf_cpu_time_max_percent;
445 	tmp = div_u64(tmp, 100);
446 	if (!tmp)
447 		tmp = 1;
448 
449 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
450 }
451 
452 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
453 
454 int perf_proc_update_handler(struct ctl_table *table, int write,
455 		void *buffer, size_t *lenp, loff_t *ppos)
456 {
457 	int ret;
458 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
459 	/*
460 	 * If throttling is disabled don't allow the write:
461 	 */
462 	if (write && (perf_cpu == 100 || perf_cpu == 0))
463 		return -EINVAL;
464 
465 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 	if (ret || !write)
467 		return ret;
468 
469 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
470 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
471 	update_perf_cpu_limits();
472 
473 	return 0;
474 }
475 
476 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
477 
478 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
479 		void *buffer, size_t *lenp, loff_t *ppos)
480 {
481 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
482 
483 	if (ret || !write)
484 		return ret;
485 
486 	if (sysctl_perf_cpu_time_max_percent == 100 ||
487 	    sysctl_perf_cpu_time_max_percent == 0) {
488 		printk(KERN_WARNING
489 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
490 		WRITE_ONCE(perf_sample_allowed_ns, 0);
491 	} else {
492 		update_perf_cpu_limits();
493 	}
494 
495 	return 0;
496 }
497 
498 /*
499  * perf samples are done in some very critical code paths (NMIs).
500  * If they take too much CPU time, the system can lock up and not
501  * get any real work done.  This will drop the sample rate when
502  * we detect that events are taking too long.
503  */
504 #define NR_ACCUMULATED_SAMPLES 128
505 static DEFINE_PER_CPU(u64, running_sample_length);
506 
507 static u64 __report_avg;
508 static u64 __report_allowed;
509 
510 static void perf_duration_warn(struct irq_work *w)
511 {
512 	printk_ratelimited(KERN_INFO
513 		"perf: interrupt took too long (%lld > %lld), lowering "
514 		"kernel.perf_event_max_sample_rate to %d\n",
515 		__report_avg, __report_allowed,
516 		sysctl_perf_event_sample_rate);
517 }
518 
519 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
520 
521 void perf_sample_event_took(u64 sample_len_ns)
522 {
523 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
524 	u64 running_len;
525 	u64 avg_len;
526 	u32 max;
527 
528 	if (max_len == 0)
529 		return;
530 
531 	/* Decay the counter by 1 average sample. */
532 	running_len = __this_cpu_read(running_sample_length);
533 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
534 	running_len += sample_len_ns;
535 	__this_cpu_write(running_sample_length, running_len);
536 
537 	/*
538 	 * Note: this will be biased artifically low until we have
539 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
540 	 * from having to maintain a count.
541 	 */
542 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
543 	if (avg_len <= max_len)
544 		return;
545 
546 	__report_avg = avg_len;
547 	__report_allowed = max_len;
548 
549 	/*
550 	 * Compute a throttle threshold 25% below the current duration.
551 	 */
552 	avg_len += avg_len / 4;
553 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
554 	if (avg_len < max)
555 		max /= (u32)avg_len;
556 	else
557 		max = 1;
558 
559 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
560 	WRITE_ONCE(max_samples_per_tick, max);
561 
562 	sysctl_perf_event_sample_rate = max * HZ;
563 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
564 
565 	if (!irq_work_queue(&perf_duration_work)) {
566 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
567 			     "kernel.perf_event_max_sample_rate to %d\n",
568 			     __report_avg, __report_allowed,
569 			     sysctl_perf_event_sample_rate);
570 	}
571 }
572 
573 static atomic64_t perf_event_id;
574 
575 static void update_context_time(struct perf_event_context *ctx);
576 static u64 perf_event_time(struct perf_event *event);
577 
578 void __weak perf_event_print_debug(void)	{ }
579 
580 static inline u64 perf_clock(void)
581 {
582 	return local_clock();
583 }
584 
585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587 	return event->clock();
588 }
589 
590 /*
591  * State based event timekeeping...
592  *
593  * The basic idea is to use event->state to determine which (if any) time
594  * fields to increment with the current delta. This means we only need to
595  * update timestamps when we change state or when they are explicitly requested
596  * (read).
597  *
598  * Event groups make things a little more complicated, but not terribly so. The
599  * rules for a group are that if the group leader is OFF the entire group is
600  * OFF, irrespecive of what the group member states are. This results in
601  * __perf_effective_state().
602  *
603  * A futher ramification is that when a group leader flips between OFF and
604  * !OFF, we need to update all group member times.
605  *
606  *
607  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
608  * need to make sure the relevant context time is updated before we try and
609  * update our timestamps.
610  */
611 
612 static __always_inline enum perf_event_state
613 __perf_effective_state(struct perf_event *event)
614 {
615 	struct perf_event *leader = event->group_leader;
616 
617 	if (leader->state <= PERF_EVENT_STATE_OFF)
618 		return leader->state;
619 
620 	return event->state;
621 }
622 
623 static __always_inline void
624 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
625 {
626 	enum perf_event_state state = __perf_effective_state(event);
627 	u64 delta = now - event->tstamp;
628 
629 	*enabled = event->total_time_enabled;
630 	if (state >= PERF_EVENT_STATE_INACTIVE)
631 		*enabled += delta;
632 
633 	*running = event->total_time_running;
634 	if (state >= PERF_EVENT_STATE_ACTIVE)
635 		*running += delta;
636 }
637 
638 static void perf_event_update_time(struct perf_event *event)
639 {
640 	u64 now = perf_event_time(event);
641 
642 	__perf_update_times(event, now, &event->total_time_enabled,
643 					&event->total_time_running);
644 	event->tstamp = now;
645 }
646 
647 static void perf_event_update_sibling_time(struct perf_event *leader)
648 {
649 	struct perf_event *sibling;
650 
651 	for_each_sibling_event(sibling, leader)
652 		perf_event_update_time(sibling);
653 }
654 
655 static void
656 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
657 {
658 	if (event->state == state)
659 		return;
660 
661 	perf_event_update_time(event);
662 	/*
663 	 * If a group leader gets enabled/disabled all its siblings
664 	 * are affected too.
665 	 */
666 	if ((event->state < 0) ^ (state < 0))
667 		perf_event_update_sibling_time(event);
668 
669 	WRITE_ONCE(event->state, state);
670 }
671 
672 /*
673  * UP store-release, load-acquire
674  */
675 
676 #define __store_release(ptr, val)					\
677 do {									\
678 	barrier();							\
679 	WRITE_ONCE(*(ptr), (val));					\
680 } while (0)
681 
682 #define __load_acquire(ptr)						\
683 ({									\
684 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
685 	barrier();							\
686 	___p;								\
687 })
688 
689 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
690 {
691 	struct perf_event_pmu_context *pmu_ctx;
692 
693 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
694 		if (cgroup && !pmu_ctx->nr_cgroups)
695 			continue;
696 		perf_pmu_disable(pmu_ctx->pmu);
697 	}
698 }
699 
700 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
701 {
702 	struct perf_event_pmu_context *pmu_ctx;
703 
704 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
705 		if (cgroup && !pmu_ctx->nr_cgroups)
706 			continue;
707 		perf_pmu_enable(pmu_ctx->pmu);
708 	}
709 }
710 
711 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
712 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
713 
714 #ifdef CONFIG_CGROUP_PERF
715 
716 static inline bool
717 perf_cgroup_match(struct perf_event *event)
718 {
719 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
720 
721 	/* @event doesn't care about cgroup */
722 	if (!event->cgrp)
723 		return true;
724 
725 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
726 	if (!cpuctx->cgrp)
727 		return false;
728 
729 	/*
730 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
731 	 * also enabled for all its descendant cgroups.  If @cpuctx's
732 	 * cgroup is a descendant of @event's (the test covers identity
733 	 * case), it's a match.
734 	 */
735 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
736 				    event->cgrp->css.cgroup);
737 }
738 
739 static inline void perf_detach_cgroup(struct perf_event *event)
740 {
741 	css_put(&event->cgrp->css);
742 	event->cgrp = NULL;
743 }
744 
745 static inline int is_cgroup_event(struct perf_event *event)
746 {
747 	return event->cgrp != NULL;
748 }
749 
750 static inline u64 perf_cgroup_event_time(struct perf_event *event)
751 {
752 	struct perf_cgroup_info *t;
753 
754 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
755 	return t->time;
756 }
757 
758 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
759 {
760 	struct perf_cgroup_info *t;
761 
762 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
763 	if (!__load_acquire(&t->active))
764 		return t->time;
765 	now += READ_ONCE(t->timeoffset);
766 	return now;
767 }
768 
769 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
770 {
771 	if (adv)
772 		info->time += now - info->timestamp;
773 	info->timestamp = now;
774 	/*
775 	 * see update_context_time()
776 	 */
777 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
778 }
779 
780 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
781 {
782 	struct perf_cgroup *cgrp = cpuctx->cgrp;
783 	struct cgroup_subsys_state *css;
784 	struct perf_cgroup_info *info;
785 
786 	if (cgrp) {
787 		u64 now = perf_clock();
788 
789 		for (css = &cgrp->css; css; css = css->parent) {
790 			cgrp = container_of(css, struct perf_cgroup, css);
791 			info = this_cpu_ptr(cgrp->info);
792 
793 			__update_cgrp_time(info, now, true);
794 			if (final)
795 				__store_release(&info->active, 0);
796 		}
797 	}
798 }
799 
800 static inline void update_cgrp_time_from_event(struct perf_event *event)
801 {
802 	struct perf_cgroup_info *info;
803 
804 	/*
805 	 * ensure we access cgroup data only when needed and
806 	 * when we know the cgroup is pinned (css_get)
807 	 */
808 	if (!is_cgroup_event(event))
809 		return;
810 
811 	info = this_cpu_ptr(event->cgrp->info);
812 	/*
813 	 * Do not update time when cgroup is not active
814 	 */
815 	if (info->active)
816 		__update_cgrp_time(info, perf_clock(), true);
817 }
818 
819 static inline void
820 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
821 {
822 	struct perf_event_context *ctx = &cpuctx->ctx;
823 	struct perf_cgroup *cgrp = cpuctx->cgrp;
824 	struct perf_cgroup_info *info;
825 	struct cgroup_subsys_state *css;
826 
827 	/*
828 	 * ctx->lock held by caller
829 	 * ensure we do not access cgroup data
830 	 * unless we have the cgroup pinned (css_get)
831 	 */
832 	if (!cgrp)
833 		return;
834 
835 	WARN_ON_ONCE(!ctx->nr_cgroups);
836 
837 	for (css = &cgrp->css; css; css = css->parent) {
838 		cgrp = container_of(css, struct perf_cgroup, css);
839 		info = this_cpu_ptr(cgrp->info);
840 		__update_cgrp_time(info, ctx->timestamp, false);
841 		__store_release(&info->active, 1);
842 	}
843 }
844 
845 /*
846  * reschedule events based on the cgroup constraint of task.
847  */
848 static void perf_cgroup_switch(struct task_struct *task)
849 {
850 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
851 	struct perf_cgroup *cgrp;
852 
853 	/*
854 	 * cpuctx->cgrp is set when the first cgroup event enabled,
855 	 * and is cleared when the last cgroup event disabled.
856 	 */
857 	if (READ_ONCE(cpuctx->cgrp) == NULL)
858 		return;
859 
860 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
861 
862 	cgrp = perf_cgroup_from_task(task, NULL);
863 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
864 		return;
865 
866 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
867 	perf_ctx_disable(&cpuctx->ctx, true);
868 
869 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
870 	/*
871 	 * must not be done before ctxswout due
872 	 * to update_cgrp_time_from_cpuctx() in
873 	 * ctx_sched_out()
874 	 */
875 	cpuctx->cgrp = cgrp;
876 	/*
877 	 * set cgrp before ctxsw in to allow
878 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
879 	 * to not have to pass task around
880 	 */
881 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
882 
883 	perf_ctx_enable(&cpuctx->ctx, true);
884 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
885 }
886 
887 static int perf_cgroup_ensure_storage(struct perf_event *event,
888 				struct cgroup_subsys_state *css)
889 {
890 	struct perf_cpu_context *cpuctx;
891 	struct perf_event **storage;
892 	int cpu, heap_size, ret = 0;
893 
894 	/*
895 	 * Allow storage to have sufficent space for an iterator for each
896 	 * possibly nested cgroup plus an iterator for events with no cgroup.
897 	 */
898 	for (heap_size = 1; css; css = css->parent)
899 		heap_size++;
900 
901 	for_each_possible_cpu(cpu) {
902 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
903 		if (heap_size <= cpuctx->heap_size)
904 			continue;
905 
906 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
907 				       GFP_KERNEL, cpu_to_node(cpu));
908 		if (!storage) {
909 			ret = -ENOMEM;
910 			break;
911 		}
912 
913 		raw_spin_lock_irq(&cpuctx->ctx.lock);
914 		if (cpuctx->heap_size < heap_size) {
915 			swap(cpuctx->heap, storage);
916 			if (storage == cpuctx->heap_default)
917 				storage = NULL;
918 			cpuctx->heap_size = heap_size;
919 		}
920 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
921 
922 		kfree(storage);
923 	}
924 
925 	return ret;
926 }
927 
928 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
929 				      struct perf_event_attr *attr,
930 				      struct perf_event *group_leader)
931 {
932 	struct perf_cgroup *cgrp;
933 	struct cgroup_subsys_state *css;
934 	struct fd f = fdget(fd);
935 	int ret = 0;
936 
937 	if (!f.file)
938 		return -EBADF;
939 
940 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
941 					 &perf_event_cgrp_subsys);
942 	if (IS_ERR(css)) {
943 		ret = PTR_ERR(css);
944 		goto out;
945 	}
946 
947 	ret = perf_cgroup_ensure_storage(event, css);
948 	if (ret)
949 		goto out;
950 
951 	cgrp = container_of(css, struct perf_cgroup, css);
952 	event->cgrp = cgrp;
953 
954 	/*
955 	 * all events in a group must monitor
956 	 * the same cgroup because a task belongs
957 	 * to only one perf cgroup at a time
958 	 */
959 	if (group_leader && group_leader->cgrp != cgrp) {
960 		perf_detach_cgroup(event);
961 		ret = -EINVAL;
962 	}
963 out:
964 	fdput(f);
965 	return ret;
966 }
967 
968 static inline void
969 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
970 {
971 	struct perf_cpu_context *cpuctx;
972 
973 	if (!is_cgroup_event(event))
974 		return;
975 
976 	event->pmu_ctx->nr_cgroups++;
977 
978 	/*
979 	 * Because cgroup events are always per-cpu events,
980 	 * @ctx == &cpuctx->ctx.
981 	 */
982 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
983 
984 	if (ctx->nr_cgroups++)
985 		return;
986 
987 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
988 }
989 
990 static inline void
991 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
992 {
993 	struct perf_cpu_context *cpuctx;
994 
995 	if (!is_cgroup_event(event))
996 		return;
997 
998 	event->pmu_ctx->nr_cgroups--;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	if (--ctx->nr_cgroups)
1007 		return;
1008 
1009 	cpuctx->cgrp = NULL;
1010 }
1011 
1012 #else /* !CONFIG_CGROUP_PERF */
1013 
1014 static inline bool
1015 perf_cgroup_match(struct perf_event *event)
1016 {
1017 	return true;
1018 }
1019 
1020 static inline void perf_detach_cgroup(struct perf_event *event)
1021 {}
1022 
1023 static inline int is_cgroup_event(struct perf_event *event)
1024 {
1025 	return 0;
1026 }
1027 
1028 static inline void update_cgrp_time_from_event(struct perf_event *event)
1029 {
1030 }
1031 
1032 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1033 						bool final)
1034 {
1035 }
1036 
1037 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1038 				      struct perf_event_attr *attr,
1039 				      struct perf_event *group_leader)
1040 {
1041 	return -EINVAL;
1042 }
1043 
1044 static inline void
1045 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1046 {
1047 }
1048 
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051 	return 0;
1052 }
1053 
1054 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline void
1060 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1061 {
1062 }
1063 
1064 static inline void
1065 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1066 {
1067 }
1068 
1069 static void perf_cgroup_switch(struct task_struct *task)
1070 {
1071 }
1072 #endif
1073 
1074 /*
1075  * set default to be dependent on timer tick just
1076  * like original code
1077  */
1078 #define PERF_CPU_HRTIMER (1000 / HZ)
1079 /*
1080  * function must be called with interrupts disabled
1081  */
1082 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1083 {
1084 	struct perf_cpu_pmu_context *cpc;
1085 	bool rotations;
1086 
1087 	lockdep_assert_irqs_disabled();
1088 
1089 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1090 	rotations = perf_rotate_context(cpc);
1091 
1092 	raw_spin_lock(&cpc->hrtimer_lock);
1093 	if (rotations)
1094 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1095 	else
1096 		cpc->hrtimer_active = 0;
1097 	raw_spin_unlock(&cpc->hrtimer_lock);
1098 
1099 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1100 }
1101 
1102 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1103 {
1104 	struct hrtimer *timer = &cpc->hrtimer;
1105 	struct pmu *pmu = cpc->epc.pmu;
1106 	u64 interval;
1107 
1108 	/*
1109 	 * check default is sane, if not set then force to
1110 	 * default interval (1/tick)
1111 	 */
1112 	interval = pmu->hrtimer_interval_ms;
1113 	if (interval < 1)
1114 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1115 
1116 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1117 
1118 	raw_spin_lock_init(&cpc->hrtimer_lock);
1119 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1120 	timer->function = perf_mux_hrtimer_handler;
1121 }
1122 
1123 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1124 {
1125 	struct hrtimer *timer = &cpc->hrtimer;
1126 	unsigned long flags;
1127 
1128 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1129 	if (!cpc->hrtimer_active) {
1130 		cpc->hrtimer_active = 1;
1131 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1132 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1133 	}
1134 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1135 
1136 	return 0;
1137 }
1138 
1139 static int perf_mux_hrtimer_restart_ipi(void *arg)
1140 {
1141 	return perf_mux_hrtimer_restart(arg);
1142 }
1143 
1144 void perf_pmu_disable(struct pmu *pmu)
1145 {
1146 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1147 	if (!(*count)++)
1148 		pmu->pmu_disable(pmu);
1149 }
1150 
1151 void perf_pmu_enable(struct pmu *pmu)
1152 {
1153 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1154 	if (!--(*count))
1155 		pmu->pmu_enable(pmu);
1156 }
1157 
1158 static void perf_assert_pmu_disabled(struct pmu *pmu)
1159 {
1160 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1161 }
1162 
1163 static void get_ctx(struct perf_event_context *ctx)
1164 {
1165 	refcount_inc(&ctx->refcount);
1166 }
1167 
1168 static void *alloc_task_ctx_data(struct pmu *pmu)
1169 {
1170 	if (pmu->task_ctx_cache)
1171 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1172 
1173 	return NULL;
1174 }
1175 
1176 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1177 {
1178 	if (pmu->task_ctx_cache && task_ctx_data)
1179 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1180 }
1181 
1182 static void free_ctx(struct rcu_head *head)
1183 {
1184 	struct perf_event_context *ctx;
1185 
1186 	ctx = container_of(head, struct perf_event_context, rcu_head);
1187 	kfree(ctx);
1188 }
1189 
1190 static void put_ctx(struct perf_event_context *ctx)
1191 {
1192 	if (refcount_dec_and_test(&ctx->refcount)) {
1193 		if (ctx->parent_ctx)
1194 			put_ctx(ctx->parent_ctx);
1195 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1196 			put_task_struct(ctx->task);
1197 		call_rcu(&ctx->rcu_head, free_ctx);
1198 	}
1199 }
1200 
1201 /*
1202  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1203  * perf_pmu_migrate_context() we need some magic.
1204  *
1205  * Those places that change perf_event::ctx will hold both
1206  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1207  *
1208  * Lock ordering is by mutex address. There are two other sites where
1209  * perf_event_context::mutex nests and those are:
1210  *
1211  *  - perf_event_exit_task_context()	[ child , 0 ]
1212  *      perf_event_exit_event()
1213  *        put_event()			[ parent, 1 ]
1214  *
1215  *  - perf_event_init_context()		[ parent, 0 ]
1216  *      inherit_task_group()
1217  *        inherit_group()
1218  *          inherit_event()
1219  *            perf_event_alloc()
1220  *              perf_init_event()
1221  *                perf_try_init_event()	[ child , 1 ]
1222  *
1223  * While it appears there is an obvious deadlock here -- the parent and child
1224  * nesting levels are inverted between the two. This is in fact safe because
1225  * life-time rules separate them. That is an exiting task cannot fork, and a
1226  * spawning task cannot (yet) exit.
1227  *
1228  * But remember that these are parent<->child context relations, and
1229  * migration does not affect children, therefore these two orderings should not
1230  * interact.
1231  *
1232  * The change in perf_event::ctx does not affect children (as claimed above)
1233  * because the sys_perf_event_open() case will install a new event and break
1234  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1235  * concerned with cpuctx and that doesn't have children.
1236  *
1237  * The places that change perf_event::ctx will issue:
1238  *
1239  *   perf_remove_from_context();
1240  *   synchronize_rcu();
1241  *   perf_install_in_context();
1242  *
1243  * to affect the change. The remove_from_context() + synchronize_rcu() should
1244  * quiesce the event, after which we can install it in the new location. This
1245  * means that only external vectors (perf_fops, prctl) can perturb the event
1246  * while in transit. Therefore all such accessors should also acquire
1247  * perf_event_context::mutex to serialize against this.
1248  *
1249  * However; because event->ctx can change while we're waiting to acquire
1250  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1251  * function.
1252  *
1253  * Lock order:
1254  *    exec_update_lock
1255  *	task_struct::perf_event_mutex
1256  *	  perf_event_context::mutex
1257  *	    perf_event::child_mutex;
1258  *	      perf_event_context::lock
1259  *	    mmap_lock
1260  *	      perf_event::mmap_mutex
1261  *	        perf_buffer::aux_mutex
1262  *	      perf_addr_filters_head::lock
1263  *
1264  *    cpu_hotplug_lock
1265  *      pmus_lock
1266  *	  cpuctx->mutex / perf_event_context::mutex
1267  */
1268 static struct perf_event_context *
1269 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1270 {
1271 	struct perf_event_context *ctx;
1272 
1273 again:
1274 	rcu_read_lock();
1275 	ctx = READ_ONCE(event->ctx);
1276 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1277 		rcu_read_unlock();
1278 		goto again;
1279 	}
1280 	rcu_read_unlock();
1281 
1282 	mutex_lock_nested(&ctx->mutex, nesting);
1283 	if (event->ctx != ctx) {
1284 		mutex_unlock(&ctx->mutex);
1285 		put_ctx(ctx);
1286 		goto again;
1287 	}
1288 
1289 	return ctx;
1290 }
1291 
1292 static inline struct perf_event_context *
1293 perf_event_ctx_lock(struct perf_event *event)
1294 {
1295 	return perf_event_ctx_lock_nested(event, 0);
1296 }
1297 
1298 static void perf_event_ctx_unlock(struct perf_event *event,
1299 				  struct perf_event_context *ctx)
1300 {
1301 	mutex_unlock(&ctx->mutex);
1302 	put_ctx(ctx);
1303 }
1304 
1305 /*
1306  * This must be done under the ctx->lock, such as to serialize against
1307  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1308  * calling scheduler related locks and ctx->lock nests inside those.
1309  */
1310 static __must_check struct perf_event_context *
1311 unclone_ctx(struct perf_event_context *ctx)
1312 {
1313 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1314 
1315 	lockdep_assert_held(&ctx->lock);
1316 
1317 	if (parent_ctx)
1318 		ctx->parent_ctx = NULL;
1319 	ctx->generation++;
1320 
1321 	return parent_ctx;
1322 }
1323 
1324 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1325 				enum pid_type type)
1326 {
1327 	u32 nr;
1328 	/*
1329 	 * only top level events have the pid namespace they were created in
1330 	 */
1331 	if (event->parent)
1332 		event = event->parent;
1333 
1334 	nr = __task_pid_nr_ns(p, type, event->ns);
1335 	/* avoid -1 if it is idle thread or runs in another ns */
1336 	if (!nr && !pid_alive(p))
1337 		nr = -1;
1338 	return nr;
1339 }
1340 
1341 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1342 {
1343 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1344 }
1345 
1346 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1347 {
1348 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1349 }
1350 
1351 /*
1352  * If we inherit events we want to return the parent event id
1353  * to userspace.
1354  */
1355 static u64 primary_event_id(struct perf_event *event)
1356 {
1357 	u64 id = event->id;
1358 
1359 	if (event->parent)
1360 		id = event->parent->id;
1361 
1362 	return id;
1363 }
1364 
1365 /*
1366  * Get the perf_event_context for a task and lock it.
1367  *
1368  * This has to cope with the fact that until it is locked,
1369  * the context could get moved to another task.
1370  */
1371 static struct perf_event_context *
1372 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1373 {
1374 	struct perf_event_context *ctx;
1375 
1376 retry:
1377 	/*
1378 	 * One of the few rules of preemptible RCU is that one cannot do
1379 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1380 	 * part of the read side critical section was irqs-enabled -- see
1381 	 * rcu_read_unlock_special().
1382 	 *
1383 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1384 	 * side critical section has interrupts disabled.
1385 	 */
1386 	local_irq_save(*flags);
1387 	rcu_read_lock();
1388 	ctx = rcu_dereference(task->perf_event_ctxp);
1389 	if (ctx) {
1390 		/*
1391 		 * If this context is a clone of another, it might
1392 		 * get swapped for another underneath us by
1393 		 * perf_event_task_sched_out, though the
1394 		 * rcu_read_lock() protects us from any context
1395 		 * getting freed.  Lock the context and check if it
1396 		 * got swapped before we could get the lock, and retry
1397 		 * if so.  If we locked the right context, then it
1398 		 * can't get swapped on us any more.
1399 		 */
1400 		raw_spin_lock(&ctx->lock);
1401 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1402 			raw_spin_unlock(&ctx->lock);
1403 			rcu_read_unlock();
1404 			local_irq_restore(*flags);
1405 			goto retry;
1406 		}
1407 
1408 		if (ctx->task == TASK_TOMBSTONE ||
1409 		    !refcount_inc_not_zero(&ctx->refcount)) {
1410 			raw_spin_unlock(&ctx->lock);
1411 			ctx = NULL;
1412 		} else {
1413 			WARN_ON_ONCE(ctx->task != task);
1414 		}
1415 	}
1416 	rcu_read_unlock();
1417 	if (!ctx)
1418 		local_irq_restore(*flags);
1419 	return ctx;
1420 }
1421 
1422 /*
1423  * Get the context for a task and increment its pin_count so it
1424  * can't get swapped to another task.  This also increments its
1425  * reference count so that the context can't get freed.
1426  */
1427 static struct perf_event_context *
1428 perf_pin_task_context(struct task_struct *task)
1429 {
1430 	struct perf_event_context *ctx;
1431 	unsigned long flags;
1432 
1433 	ctx = perf_lock_task_context(task, &flags);
1434 	if (ctx) {
1435 		++ctx->pin_count;
1436 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1437 	}
1438 	return ctx;
1439 }
1440 
1441 static void perf_unpin_context(struct perf_event_context *ctx)
1442 {
1443 	unsigned long flags;
1444 
1445 	raw_spin_lock_irqsave(&ctx->lock, flags);
1446 	--ctx->pin_count;
1447 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1448 }
1449 
1450 /*
1451  * Update the record of the current time in a context.
1452  */
1453 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1454 {
1455 	u64 now = perf_clock();
1456 
1457 	lockdep_assert_held(&ctx->lock);
1458 
1459 	if (adv)
1460 		ctx->time += now - ctx->timestamp;
1461 	ctx->timestamp = now;
1462 
1463 	/*
1464 	 * The above: time' = time + (now - timestamp), can be re-arranged
1465 	 * into: time` = now + (time - timestamp), which gives a single value
1466 	 * offset to compute future time without locks on.
1467 	 *
1468 	 * See perf_event_time_now(), which can be used from NMI context where
1469 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1470 	 * both the above values in a consistent manner.
1471 	 */
1472 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1473 }
1474 
1475 static void update_context_time(struct perf_event_context *ctx)
1476 {
1477 	__update_context_time(ctx, true);
1478 }
1479 
1480 static u64 perf_event_time(struct perf_event *event)
1481 {
1482 	struct perf_event_context *ctx = event->ctx;
1483 
1484 	if (unlikely(!ctx))
1485 		return 0;
1486 
1487 	if (is_cgroup_event(event))
1488 		return perf_cgroup_event_time(event);
1489 
1490 	return ctx->time;
1491 }
1492 
1493 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1494 {
1495 	struct perf_event_context *ctx = event->ctx;
1496 
1497 	if (unlikely(!ctx))
1498 		return 0;
1499 
1500 	if (is_cgroup_event(event))
1501 		return perf_cgroup_event_time_now(event, now);
1502 
1503 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1504 		return ctx->time;
1505 
1506 	now += READ_ONCE(ctx->timeoffset);
1507 	return now;
1508 }
1509 
1510 static enum event_type_t get_event_type(struct perf_event *event)
1511 {
1512 	struct perf_event_context *ctx = event->ctx;
1513 	enum event_type_t event_type;
1514 
1515 	lockdep_assert_held(&ctx->lock);
1516 
1517 	/*
1518 	 * It's 'group type', really, because if our group leader is
1519 	 * pinned, so are we.
1520 	 */
1521 	if (event->group_leader != event)
1522 		event = event->group_leader;
1523 
1524 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1525 	if (!ctx->task)
1526 		event_type |= EVENT_CPU;
1527 
1528 	return event_type;
1529 }
1530 
1531 /*
1532  * Helper function to initialize event group nodes.
1533  */
1534 static void init_event_group(struct perf_event *event)
1535 {
1536 	RB_CLEAR_NODE(&event->group_node);
1537 	event->group_index = 0;
1538 }
1539 
1540 /*
1541  * Extract pinned or flexible groups from the context
1542  * based on event attrs bits.
1543  */
1544 static struct perf_event_groups *
1545 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1546 {
1547 	if (event->attr.pinned)
1548 		return &ctx->pinned_groups;
1549 	else
1550 		return &ctx->flexible_groups;
1551 }
1552 
1553 /*
1554  * Helper function to initializes perf_event_group trees.
1555  */
1556 static void perf_event_groups_init(struct perf_event_groups *groups)
1557 {
1558 	groups->tree = RB_ROOT;
1559 	groups->index = 0;
1560 }
1561 
1562 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1563 {
1564 	struct cgroup *cgroup = NULL;
1565 
1566 #ifdef CONFIG_CGROUP_PERF
1567 	if (event->cgrp)
1568 		cgroup = event->cgrp->css.cgroup;
1569 #endif
1570 
1571 	return cgroup;
1572 }
1573 
1574 /*
1575  * Compare function for event groups;
1576  *
1577  * Implements complex key that first sorts by CPU and then by virtual index
1578  * which provides ordering when rotating groups for the same CPU.
1579  */
1580 static __always_inline int
1581 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1582 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1583 		      const struct perf_event *right)
1584 {
1585 	if (left_cpu < right->cpu)
1586 		return -1;
1587 	if (left_cpu > right->cpu)
1588 		return 1;
1589 
1590 	if (left_pmu) {
1591 		if (left_pmu < right->pmu_ctx->pmu)
1592 			return -1;
1593 		if (left_pmu > right->pmu_ctx->pmu)
1594 			return 1;
1595 	}
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	{
1599 		const struct cgroup *right_cgroup = event_cgroup(right);
1600 
1601 		if (left_cgroup != right_cgroup) {
1602 			if (!left_cgroup) {
1603 				/*
1604 				 * Left has no cgroup but right does, no
1605 				 * cgroups come first.
1606 				 */
1607 				return -1;
1608 			}
1609 			if (!right_cgroup) {
1610 				/*
1611 				 * Right has no cgroup but left does, no
1612 				 * cgroups come first.
1613 				 */
1614 				return 1;
1615 			}
1616 			/* Two dissimilar cgroups, order by id. */
1617 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1618 				return -1;
1619 
1620 			return 1;
1621 		}
1622 	}
1623 #endif
1624 
1625 	if (left_group_index < right->group_index)
1626 		return -1;
1627 	if (left_group_index > right->group_index)
1628 		return 1;
1629 
1630 	return 0;
1631 }
1632 
1633 #define __node_2_pe(node) \
1634 	rb_entry((node), struct perf_event, group_node)
1635 
1636 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1637 {
1638 	struct perf_event *e = __node_2_pe(a);
1639 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1640 				     e->group_index, __node_2_pe(b)) < 0;
1641 }
1642 
1643 struct __group_key {
1644 	int cpu;
1645 	struct pmu *pmu;
1646 	struct cgroup *cgroup;
1647 };
1648 
1649 static inline int __group_cmp(const void *key, const struct rb_node *node)
1650 {
1651 	const struct __group_key *a = key;
1652 	const struct perf_event *b = __node_2_pe(node);
1653 
1654 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1655 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1656 }
1657 
1658 static inline int
1659 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1660 {
1661 	const struct __group_key *a = key;
1662 	const struct perf_event *b = __node_2_pe(node);
1663 
1664 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1665 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1666 				     b->group_index, b);
1667 }
1668 
1669 /*
1670  * Insert @event into @groups' tree; using
1671  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1672  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1673  */
1674 static void
1675 perf_event_groups_insert(struct perf_event_groups *groups,
1676 			 struct perf_event *event)
1677 {
1678 	event->group_index = ++groups->index;
1679 
1680 	rb_add(&event->group_node, &groups->tree, __group_less);
1681 }
1682 
1683 /*
1684  * Helper function to insert event into the pinned or flexible groups.
1685  */
1686 static void
1687 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1688 {
1689 	struct perf_event_groups *groups;
1690 
1691 	groups = get_event_groups(event, ctx);
1692 	perf_event_groups_insert(groups, event);
1693 }
1694 
1695 /*
1696  * Delete a group from a tree.
1697  */
1698 static void
1699 perf_event_groups_delete(struct perf_event_groups *groups,
1700 			 struct perf_event *event)
1701 {
1702 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1703 		     RB_EMPTY_ROOT(&groups->tree));
1704 
1705 	rb_erase(&event->group_node, &groups->tree);
1706 	init_event_group(event);
1707 }
1708 
1709 /*
1710  * Helper function to delete event from its groups.
1711  */
1712 static void
1713 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1714 {
1715 	struct perf_event_groups *groups;
1716 
1717 	groups = get_event_groups(event, ctx);
1718 	perf_event_groups_delete(groups, event);
1719 }
1720 
1721 /*
1722  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1723  */
1724 static struct perf_event *
1725 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1726 			struct pmu *pmu, struct cgroup *cgrp)
1727 {
1728 	struct __group_key key = {
1729 		.cpu = cpu,
1730 		.pmu = pmu,
1731 		.cgroup = cgrp,
1732 	};
1733 	struct rb_node *node;
1734 
1735 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1736 	if (node)
1737 		return __node_2_pe(node);
1738 
1739 	return NULL;
1740 }
1741 
1742 static struct perf_event *
1743 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1744 {
1745 	struct __group_key key = {
1746 		.cpu = event->cpu,
1747 		.pmu = pmu,
1748 		.cgroup = event_cgroup(event),
1749 	};
1750 	struct rb_node *next;
1751 
1752 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1753 	if (next)
1754 		return __node_2_pe(next);
1755 
1756 	return NULL;
1757 }
1758 
1759 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1760 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1761 	     event; event = perf_event_groups_next(event, pmu))
1762 
1763 /*
1764  * Iterate through the whole groups tree.
1765  */
1766 #define perf_event_groups_for_each(event, groups)			\
1767 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1768 				typeof(*event), group_node); event;	\
1769 		event = rb_entry_safe(rb_next(&event->group_node),	\
1770 				typeof(*event), group_node))
1771 
1772 /*
1773  * Add an event from the lists for its context.
1774  * Must be called with ctx->mutex and ctx->lock held.
1775  */
1776 static void
1777 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1778 {
1779 	lockdep_assert_held(&ctx->lock);
1780 
1781 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1782 	event->attach_state |= PERF_ATTACH_CONTEXT;
1783 
1784 	event->tstamp = perf_event_time(event);
1785 
1786 	/*
1787 	 * If we're a stand alone event or group leader, we go to the context
1788 	 * list, group events are kept attached to the group so that
1789 	 * perf_group_detach can, at all times, locate all siblings.
1790 	 */
1791 	if (event->group_leader == event) {
1792 		event->group_caps = event->event_caps;
1793 		add_event_to_groups(event, ctx);
1794 	}
1795 
1796 	list_add_rcu(&event->event_entry, &ctx->event_list);
1797 	ctx->nr_events++;
1798 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1799 		ctx->nr_user++;
1800 	if (event->attr.inherit_stat)
1801 		ctx->nr_stat++;
1802 
1803 	if (event->state > PERF_EVENT_STATE_OFF)
1804 		perf_cgroup_event_enable(event, ctx);
1805 
1806 	ctx->generation++;
1807 	event->pmu_ctx->nr_events++;
1808 }
1809 
1810 /*
1811  * Initialize event state based on the perf_event_attr::disabled.
1812  */
1813 static inline void perf_event__state_init(struct perf_event *event)
1814 {
1815 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1816 					      PERF_EVENT_STATE_INACTIVE;
1817 }
1818 
1819 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1820 {
1821 	int entry = sizeof(u64); /* value */
1822 	int size = 0;
1823 	int nr = 1;
1824 
1825 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1826 		size += sizeof(u64);
1827 
1828 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1829 		size += sizeof(u64);
1830 
1831 	if (read_format & PERF_FORMAT_ID)
1832 		entry += sizeof(u64);
1833 
1834 	if (read_format & PERF_FORMAT_LOST)
1835 		entry += sizeof(u64);
1836 
1837 	if (read_format & PERF_FORMAT_GROUP) {
1838 		nr += nr_siblings;
1839 		size += sizeof(u64);
1840 	}
1841 
1842 	/*
1843 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1844 	 * adding more siblings, this will never overflow.
1845 	 */
1846 	return size + nr * entry;
1847 }
1848 
1849 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1850 {
1851 	struct perf_sample_data *data;
1852 	u16 size = 0;
1853 
1854 	if (sample_type & PERF_SAMPLE_IP)
1855 		size += sizeof(data->ip);
1856 
1857 	if (sample_type & PERF_SAMPLE_ADDR)
1858 		size += sizeof(data->addr);
1859 
1860 	if (sample_type & PERF_SAMPLE_PERIOD)
1861 		size += sizeof(data->period);
1862 
1863 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1864 		size += sizeof(data->weight.full);
1865 
1866 	if (sample_type & PERF_SAMPLE_READ)
1867 		size += event->read_size;
1868 
1869 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1870 		size += sizeof(data->data_src.val);
1871 
1872 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1873 		size += sizeof(data->txn);
1874 
1875 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1876 		size += sizeof(data->phys_addr);
1877 
1878 	if (sample_type & PERF_SAMPLE_CGROUP)
1879 		size += sizeof(data->cgroup);
1880 
1881 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1882 		size += sizeof(data->data_page_size);
1883 
1884 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1885 		size += sizeof(data->code_page_size);
1886 
1887 	event->header_size = size;
1888 }
1889 
1890 /*
1891  * Called at perf_event creation and when events are attached/detached from a
1892  * group.
1893  */
1894 static void perf_event__header_size(struct perf_event *event)
1895 {
1896 	event->read_size =
1897 		__perf_event_read_size(event->attr.read_format,
1898 				       event->group_leader->nr_siblings);
1899 	__perf_event_header_size(event, event->attr.sample_type);
1900 }
1901 
1902 static void perf_event__id_header_size(struct perf_event *event)
1903 {
1904 	struct perf_sample_data *data;
1905 	u64 sample_type = event->attr.sample_type;
1906 	u16 size = 0;
1907 
1908 	if (sample_type & PERF_SAMPLE_TID)
1909 		size += sizeof(data->tid_entry);
1910 
1911 	if (sample_type & PERF_SAMPLE_TIME)
1912 		size += sizeof(data->time);
1913 
1914 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1915 		size += sizeof(data->id);
1916 
1917 	if (sample_type & PERF_SAMPLE_ID)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1921 		size += sizeof(data->stream_id);
1922 
1923 	if (sample_type & PERF_SAMPLE_CPU)
1924 		size += sizeof(data->cpu_entry);
1925 
1926 	event->id_header_size = size;
1927 }
1928 
1929 /*
1930  * Check that adding an event to the group does not result in anybody
1931  * overflowing the 64k event limit imposed by the output buffer.
1932  *
1933  * Specifically, check that the read_size for the event does not exceed 16k,
1934  * read_size being the one term that grows with groups size. Since read_size
1935  * depends on per-event read_format, also (re)check the existing events.
1936  *
1937  * This leaves 48k for the constant size fields and things like callchains,
1938  * branch stacks and register sets.
1939  */
1940 static bool perf_event_validate_size(struct perf_event *event)
1941 {
1942 	struct perf_event *sibling, *group_leader = event->group_leader;
1943 
1944 	if (__perf_event_read_size(event->attr.read_format,
1945 				   group_leader->nr_siblings + 1) > 16*1024)
1946 		return false;
1947 
1948 	if (__perf_event_read_size(group_leader->attr.read_format,
1949 				   group_leader->nr_siblings + 1) > 16*1024)
1950 		return false;
1951 
1952 	/*
1953 	 * When creating a new group leader, group_leader->ctx is initialized
1954 	 * after the size has been validated, but we cannot safely use
1955 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1956 	 * leader cannot have any siblings yet, so we can safely skip checking
1957 	 * the non-existent siblings.
1958 	 */
1959 	if (event == group_leader)
1960 		return true;
1961 
1962 	for_each_sibling_event(sibling, group_leader) {
1963 		if (__perf_event_read_size(sibling->attr.read_format,
1964 					   group_leader->nr_siblings + 1) > 16*1024)
1965 			return false;
1966 	}
1967 
1968 	return true;
1969 }
1970 
1971 static void perf_group_attach(struct perf_event *event)
1972 {
1973 	struct perf_event *group_leader = event->group_leader, *pos;
1974 
1975 	lockdep_assert_held(&event->ctx->lock);
1976 
1977 	/*
1978 	 * We can have double attach due to group movement (move_group) in
1979 	 * perf_event_open().
1980 	 */
1981 	if (event->attach_state & PERF_ATTACH_GROUP)
1982 		return;
1983 
1984 	event->attach_state |= PERF_ATTACH_GROUP;
1985 
1986 	if (group_leader == event)
1987 		return;
1988 
1989 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1990 
1991 	group_leader->group_caps &= event->event_caps;
1992 
1993 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1994 	group_leader->nr_siblings++;
1995 	group_leader->group_generation++;
1996 
1997 	perf_event__header_size(group_leader);
1998 
1999 	for_each_sibling_event(pos, group_leader)
2000 		perf_event__header_size(pos);
2001 }
2002 
2003 /*
2004  * Remove an event from the lists for its context.
2005  * Must be called with ctx->mutex and ctx->lock held.
2006  */
2007 static void
2008 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2009 {
2010 	WARN_ON_ONCE(event->ctx != ctx);
2011 	lockdep_assert_held(&ctx->lock);
2012 
2013 	/*
2014 	 * We can have double detach due to exit/hot-unplug + close.
2015 	 */
2016 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2017 		return;
2018 
2019 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2020 
2021 	ctx->nr_events--;
2022 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2023 		ctx->nr_user--;
2024 	if (event->attr.inherit_stat)
2025 		ctx->nr_stat--;
2026 
2027 	list_del_rcu(&event->event_entry);
2028 
2029 	if (event->group_leader == event)
2030 		del_event_from_groups(event, ctx);
2031 
2032 	/*
2033 	 * If event was in error state, then keep it
2034 	 * that way, otherwise bogus counts will be
2035 	 * returned on read(). The only way to get out
2036 	 * of error state is by explicit re-enabling
2037 	 * of the event
2038 	 */
2039 	if (event->state > PERF_EVENT_STATE_OFF) {
2040 		perf_cgroup_event_disable(event, ctx);
2041 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2042 	}
2043 
2044 	ctx->generation++;
2045 	event->pmu_ctx->nr_events--;
2046 }
2047 
2048 static int
2049 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2050 {
2051 	if (!has_aux(aux_event))
2052 		return 0;
2053 
2054 	if (!event->pmu->aux_output_match)
2055 		return 0;
2056 
2057 	return event->pmu->aux_output_match(aux_event);
2058 }
2059 
2060 static void put_event(struct perf_event *event);
2061 static void event_sched_out(struct perf_event *event,
2062 			    struct perf_event_context *ctx);
2063 
2064 static void perf_put_aux_event(struct perf_event *event)
2065 {
2066 	struct perf_event_context *ctx = event->ctx;
2067 	struct perf_event *iter;
2068 
2069 	/*
2070 	 * If event uses aux_event tear down the link
2071 	 */
2072 	if (event->aux_event) {
2073 		iter = event->aux_event;
2074 		event->aux_event = NULL;
2075 		put_event(iter);
2076 		return;
2077 	}
2078 
2079 	/*
2080 	 * If the event is an aux_event, tear down all links to
2081 	 * it from other events.
2082 	 */
2083 	for_each_sibling_event(iter, event->group_leader) {
2084 		if (iter->aux_event != event)
2085 			continue;
2086 
2087 		iter->aux_event = NULL;
2088 		put_event(event);
2089 
2090 		/*
2091 		 * If it's ACTIVE, schedule it out and put it into ERROR
2092 		 * state so that we don't try to schedule it again. Note
2093 		 * that perf_event_enable() will clear the ERROR status.
2094 		 */
2095 		event_sched_out(iter, ctx);
2096 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2097 	}
2098 }
2099 
2100 static bool perf_need_aux_event(struct perf_event *event)
2101 {
2102 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2103 }
2104 
2105 static int perf_get_aux_event(struct perf_event *event,
2106 			      struct perf_event *group_leader)
2107 {
2108 	/*
2109 	 * Our group leader must be an aux event if we want to be
2110 	 * an aux_output. This way, the aux event will precede its
2111 	 * aux_output events in the group, and therefore will always
2112 	 * schedule first.
2113 	 */
2114 	if (!group_leader)
2115 		return 0;
2116 
2117 	/*
2118 	 * aux_output and aux_sample_size are mutually exclusive.
2119 	 */
2120 	if (event->attr.aux_output && event->attr.aux_sample_size)
2121 		return 0;
2122 
2123 	if (event->attr.aux_output &&
2124 	    !perf_aux_output_match(event, group_leader))
2125 		return 0;
2126 
2127 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2128 		return 0;
2129 
2130 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2131 		return 0;
2132 
2133 	/*
2134 	 * Link aux_outputs to their aux event; this is undone in
2135 	 * perf_group_detach() by perf_put_aux_event(). When the
2136 	 * group in torn down, the aux_output events loose their
2137 	 * link to the aux_event and can't schedule any more.
2138 	 */
2139 	event->aux_event = group_leader;
2140 
2141 	return 1;
2142 }
2143 
2144 static inline struct list_head *get_event_list(struct perf_event *event)
2145 {
2146 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2147 				    &event->pmu_ctx->flexible_active;
2148 }
2149 
2150 /*
2151  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2152  * cannot exist on their own, schedule them out and move them into the ERROR
2153  * state. Also see _perf_event_enable(), it will not be able to recover
2154  * this ERROR state.
2155  */
2156 static inline void perf_remove_sibling_event(struct perf_event *event)
2157 {
2158 	event_sched_out(event, event->ctx);
2159 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2160 }
2161 
2162 static void perf_group_detach(struct perf_event *event)
2163 {
2164 	struct perf_event *leader = event->group_leader;
2165 	struct perf_event *sibling, *tmp;
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	lockdep_assert_held(&ctx->lock);
2169 
2170 	/*
2171 	 * We can have double detach due to exit/hot-unplug + close.
2172 	 */
2173 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2174 		return;
2175 
2176 	event->attach_state &= ~PERF_ATTACH_GROUP;
2177 
2178 	perf_put_aux_event(event);
2179 
2180 	/*
2181 	 * If this is a sibling, remove it from its group.
2182 	 */
2183 	if (leader != event) {
2184 		list_del_init(&event->sibling_list);
2185 		event->group_leader->nr_siblings--;
2186 		event->group_leader->group_generation++;
2187 		goto out;
2188 	}
2189 
2190 	/*
2191 	 * If this was a group event with sibling events then
2192 	 * upgrade the siblings to singleton events by adding them
2193 	 * to whatever list we are on.
2194 	 */
2195 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2196 
2197 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2198 			perf_remove_sibling_event(sibling);
2199 
2200 		sibling->group_leader = sibling;
2201 		list_del_init(&sibling->sibling_list);
2202 
2203 		/* Inherit group flags from the previous leader */
2204 		sibling->group_caps = event->group_caps;
2205 
2206 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2207 			add_event_to_groups(sibling, event->ctx);
2208 
2209 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2210 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2211 		}
2212 
2213 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2214 	}
2215 
2216 out:
2217 	for_each_sibling_event(tmp, leader)
2218 		perf_event__header_size(tmp);
2219 
2220 	perf_event__header_size(leader);
2221 }
2222 
2223 static void sync_child_event(struct perf_event *child_event);
2224 
2225 static void perf_child_detach(struct perf_event *event)
2226 {
2227 	struct perf_event *parent_event = event->parent;
2228 
2229 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2230 		return;
2231 
2232 	event->attach_state &= ~PERF_ATTACH_CHILD;
2233 
2234 	if (WARN_ON_ONCE(!parent_event))
2235 		return;
2236 
2237 	lockdep_assert_held(&parent_event->child_mutex);
2238 
2239 	sync_child_event(event);
2240 	list_del_init(&event->child_list);
2241 }
2242 
2243 static bool is_orphaned_event(struct perf_event *event)
2244 {
2245 	return event->state == PERF_EVENT_STATE_DEAD;
2246 }
2247 
2248 static inline int
2249 event_filter_match(struct perf_event *event)
2250 {
2251 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2252 	       perf_cgroup_match(event);
2253 }
2254 
2255 static void
2256 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2257 {
2258 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2259 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2260 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2261 
2262 	// XXX cpc serialization, probably per-cpu IRQ disabled
2263 
2264 	WARN_ON_ONCE(event->ctx != ctx);
2265 	lockdep_assert_held(&ctx->lock);
2266 
2267 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2268 		return;
2269 
2270 	/*
2271 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2272 	 * we can schedule events _OUT_ individually through things like
2273 	 * __perf_remove_from_context().
2274 	 */
2275 	list_del_init(&event->active_list);
2276 
2277 	perf_pmu_disable(event->pmu);
2278 
2279 	event->pmu->del(event, 0);
2280 	event->oncpu = -1;
2281 
2282 	if (event->pending_disable) {
2283 		event->pending_disable = 0;
2284 		perf_cgroup_event_disable(event, ctx);
2285 		state = PERF_EVENT_STATE_OFF;
2286 	}
2287 
2288 	if (event->pending_sigtrap) {
2289 		event->pending_sigtrap = 0;
2290 		if (state != PERF_EVENT_STATE_OFF &&
2291 		    !event->pending_work &&
2292 		    !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2293 			event->pending_work = 1;
2294 		} else {
2295 			local_dec(&event->ctx->nr_pending);
2296 		}
2297 	}
2298 
2299 	perf_event_set_state(event, state);
2300 
2301 	if (!is_software_event(event))
2302 		cpc->active_oncpu--;
2303 	if (event->attr.freq && event->attr.sample_freq)
2304 		ctx->nr_freq--;
2305 	if (event->attr.exclusive || !cpc->active_oncpu)
2306 		cpc->exclusive = 0;
2307 
2308 	perf_pmu_enable(event->pmu);
2309 }
2310 
2311 static void
2312 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2313 {
2314 	struct perf_event *event;
2315 
2316 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2317 		return;
2318 
2319 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2320 
2321 	event_sched_out(group_event, ctx);
2322 
2323 	/*
2324 	 * Schedule out siblings (if any):
2325 	 */
2326 	for_each_sibling_event(event, group_event)
2327 		event_sched_out(event, ctx);
2328 }
2329 
2330 #define DETACH_GROUP	0x01UL
2331 #define DETACH_CHILD	0x02UL
2332 #define DETACH_DEAD	0x04UL
2333 
2334 /*
2335  * Cross CPU call to remove a performance event
2336  *
2337  * We disable the event on the hardware level first. After that we
2338  * remove it from the context list.
2339  */
2340 static void
2341 __perf_remove_from_context(struct perf_event *event,
2342 			   struct perf_cpu_context *cpuctx,
2343 			   struct perf_event_context *ctx,
2344 			   void *info)
2345 {
2346 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2347 	unsigned long flags = (unsigned long)info;
2348 
2349 	if (ctx->is_active & EVENT_TIME) {
2350 		update_context_time(ctx);
2351 		update_cgrp_time_from_cpuctx(cpuctx, false);
2352 	}
2353 
2354 	/*
2355 	 * Ensure event_sched_out() switches to OFF, at the very least
2356 	 * this avoids raising perf_pending_task() at this time.
2357 	 */
2358 	if (flags & DETACH_DEAD)
2359 		event->pending_disable = 1;
2360 	event_sched_out(event, ctx);
2361 	if (flags & DETACH_GROUP)
2362 		perf_group_detach(event);
2363 	if (flags & DETACH_CHILD)
2364 		perf_child_detach(event);
2365 	list_del_event(event, ctx);
2366 	if (flags & DETACH_DEAD)
2367 		event->state = PERF_EVENT_STATE_DEAD;
2368 
2369 	if (!pmu_ctx->nr_events) {
2370 		pmu_ctx->rotate_necessary = 0;
2371 
2372 		if (ctx->task && ctx->is_active) {
2373 			struct perf_cpu_pmu_context *cpc;
2374 
2375 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2376 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2377 			cpc->task_epc = NULL;
2378 		}
2379 	}
2380 
2381 	if (!ctx->nr_events && ctx->is_active) {
2382 		if (ctx == &cpuctx->ctx)
2383 			update_cgrp_time_from_cpuctx(cpuctx, true);
2384 
2385 		ctx->is_active = 0;
2386 		if (ctx->task) {
2387 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2388 			cpuctx->task_ctx = NULL;
2389 		}
2390 	}
2391 }
2392 
2393 /*
2394  * Remove the event from a task's (or a CPU's) list of events.
2395  *
2396  * If event->ctx is a cloned context, callers must make sure that
2397  * every task struct that event->ctx->task could possibly point to
2398  * remains valid.  This is OK when called from perf_release since
2399  * that only calls us on the top-level context, which can't be a clone.
2400  * When called from perf_event_exit_task, it's OK because the
2401  * context has been detached from its task.
2402  */
2403 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2404 {
2405 	struct perf_event_context *ctx = event->ctx;
2406 
2407 	lockdep_assert_held(&ctx->mutex);
2408 
2409 	/*
2410 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2411 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2412 	 * event_function_call() user.
2413 	 */
2414 	raw_spin_lock_irq(&ctx->lock);
2415 	if (!ctx->is_active) {
2416 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2417 					   ctx, (void *)flags);
2418 		raw_spin_unlock_irq(&ctx->lock);
2419 		return;
2420 	}
2421 	raw_spin_unlock_irq(&ctx->lock);
2422 
2423 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2424 }
2425 
2426 /*
2427  * Cross CPU call to disable a performance event
2428  */
2429 static void __perf_event_disable(struct perf_event *event,
2430 				 struct perf_cpu_context *cpuctx,
2431 				 struct perf_event_context *ctx,
2432 				 void *info)
2433 {
2434 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2435 		return;
2436 
2437 	if (ctx->is_active & EVENT_TIME) {
2438 		update_context_time(ctx);
2439 		update_cgrp_time_from_event(event);
2440 	}
2441 
2442 	perf_pmu_disable(event->pmu_ctx->pmu);
2443 
2444 	if (event == event->group_leader)
2445 		group_sched_out(event, ctx);
2446 	else
2447 		event_sched_out(event, ctx);
2448 
2449 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2450 	perf_cgroup_event_disable(event, ctx);
2451 
2452 	perf_pmu_enable(event->pmu_ctx->pmu);
2453 }
2454 
2455 /*
2456  * Disable an event.
2457  *
2458  * If event->ctx is a cloned context, callers must make sure that
2459  * every task struct that event->ctx->task could possibly point to
2460  * remains valid.  This condition is satisfied when called through
2461  * perf_event_for_each_child or perf_event_for_each because they
2462  * hold the top-level event's child_mutex, so any descendant that
2463  * goes to exit will block in perf_event_exit_event().
2464  *
2465  * When called from perf_pending_irq it's OK because event->ctx
2466  * is the current context on this CPU and preemption is disabled,
2467  * hence we can't get into perf_event_task_sched_out for this context.
2468  */
2469 static void _perf_event_disable(struct perf_event *event)
2470 {
2471 	struct perf_event_context *ctx = event->ctx;
2472 
2473 	raw_spin_lock_irq(&ctx->lock);
2474 	if (event->state <= PERF_EVENT_STATE_OFF) {
2475 		raw_spin_unlock_irq(&ctx->lock);
2476 		return;
2477 	}
2478 	raw_spin_unlock_irq(&ctx->lock);
2479 
2480 	event_function_call(event, __perf_event_disable, NULL);
2481 }
2482 
2483 void perf_event_disable_local(struct perf_event *event)
2484 {
2485 	event_function_local(event, __perf_event_disable, NULL);
2486 }
2487 
2488 /*
2489  * Strictly speaking kernel users cannot create groups and therefore this
2490  * interface does not need the perf_event_ctx_lock() magic.
2491  */
2492 void perf_event_disable(struct perf_event *event)
2493 {
2494 	struct perf_event_context *ctx;
2495 
2496 	ctx = perf_event_ctx_lock(event);
2497 	_perf_event_disable(event);
2498 	perf_event_ctx_unlock(event, ctx);
2499 }
2500 EXPORT_SYMBOL_GPL(perf_event_disable);
2501 
2502 void perf_event_disable_inatomic(struct perf_event *event)
2503 {
2504 	event->pending_disable = 1;
2505 	irq_work_queue(&event->pending_irq);
2506 }
2507 
2508 #define MAX_INTERRUPTS (~0ULL)
2509 
2510 static void perf_log_throttle(struct perf_event *event, int enable);
2511 static void perf_log_itrace_start(struct perf_event *event);
2512 
2513 static int
2514 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2515 {
2516 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2517 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2518 	int ret = 0;
2519 
2520 	WARN_ON_ONCE(event->ctx != ctx);
2521 
2522 	lockdep_assert_held(&ctx->lock);
2523 
2524 	if (event->state <= PERF_EVENT_STATE_OFF)
2525 		return 0;
2526 
2527 	WRITE_ONCE(event->oncpu, smp_processor_id());
2528 	/*
2529 	 * Order event::oncpu write to happen before the ACTIVE state is
2530 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2531 	 * ->oncpu if it sees ACTIVE.
2532 	 */
2533 	smp_wmb();
2534 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2535 
2536 	/*
2537 	 * Unthrottle events, since we scheduled we might have missed several
2538 	 * ticks already, also for a heavily scheduling task there is little
2539 	 * guarantee it'll get a tick in a timely manner.
2540 	 */
2541 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2542 		perf_log_throttle(event, 1);
2543 		event->hw.interrupts = 0;
2544 	}
2545 
2546 	perf_pmu_disable(event->pmu);
2547 
2548 	perf_log_itrace_start(event);
2549 
2550 	if (event->pmu->add(event, PERF_EF_START)) {
2551 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2552 		event->oncpu = -1;
2553 		ret = -EAGAIN;
2554 		goto out;
2555 	}
2556 
2557 	if (!is_software_event(event))
2558 		cpc->active_oncpu++;
2559 	if (event->attr.freq && event->attr.sample_freq)
2560 		ctx->nr_freq++;
2561 
2562 	if (event->attr.exclusive)
2563 		cpc->exclusive = 1;
2564 
2565 out:
2566 	perf_pmu_enable(event->pmu);
2567 
2568 	return ret;
2569 }
2570 
2571 static int
2572 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2573 {
2574 	struct perf_event *event, *partial_group = NULL;
2575 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2576 
2577 	if (group_event->state == PERF_EVENT_STATE_OFF)
2578 		return 0;
2579 
2580 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2581 
2582 	if (event_sched_in(group_event, ctx))
2583 		goto error;
2584 
2585 	/*
2586 	 * Schedule in siblings as one group (if any):
2587 	 */
2588 	for_each_sibling_event(event, group_event) {
2589 		if (event_sched_in(event, ctx)) {
2590 			partial_group = event;
2591 			goto group_error;
2592 		}
2593 	}
2594 
2595 	if (!pmu->commit_txn(pmu))
2596 		return 0;
2597 
2598 group_error:
2599 	/*
2600 	 * Groups can be scheduled in as one unit only, so undo any
2601 	 * partial group before returning:
2602 	 * The events up to the failed event are scheduled out normally.
2603 	 */
2604 	for_each_sibling_event(event, group_event) {
2605 		if (event == partial_group)
2606 			break;
2607 
2608 		event_sched_out(event, ctx);
2609 	}
2610 	event_sched_out(group_event, ctx);
2611 
2612 error:
2613 	pmu->cancel_txn(pmu);
2614 	return -EAGAIN;
2615 }
2616 
2617 /*
2618  * Work out whether we can put this event group on the CPU now.
2619  */
2620 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2621 {
2622 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2623 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2624 
2625 	/*
2626 	 * Groups consisting entirely of software events can always go on.
2627 	 */
2628 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2629 		return 1;
2630 	/*
2631 	 * If an exclusive group is already on, no other hardware
2632 	 * events can go on.
2633 	 */
2634 	if (cpc->exclusive)
2635 		return 0;
2636 	/*
2637 	 * If this group is exclusive and there are already
2638 	 * events on the CPU, it can't go on.
2639 	 */
2640 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2641 		return 0;
2642 	/*
2643 	 * Otherwise, try to add it if all previous groups were able
2644 	 * to go on.
2645 	 */
2646 	return can_add_hw;
2647 }
2648 
2649 static void add_event_to_ctx(struct perf_event *event,
2650 			       struct perf_event_context *ctx)
2651 {
2652 	list_add_event(event, ctx);
2653 	perf_group_attach(event);
2654 }
2655 
2656 static void task_ctx_sched_out(struct perf_event_context *ctx,
2657 				enum event_type_t event_type)
2658 {
2659 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2660 
2661 	if (!cpuctx->task_ctx)
2662 		return;
2663 
2664 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2665 		return;
2666 
2667 	ctx_sched_out(ctx, event_type);
2668 }
2669 
2670 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2671 				struct perf_event_context *ctx)
2672 {
2673 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2674 	if (ctx)
2675 		 ctx_sched_in(ctx, EVENT_PINNED);
2676 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2677 	if (ctx)
2678 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2679 }
2680 
2681 /*
2682  * We want to maintain the following priority of scheduling:
2683  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2684  *  - task pinned (EVENT_PINNED)
2685  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2686  *  - task flexible (EVENT_FLEXIBLE).
2687  *
2688  * In order to avoid unscheduling and scheduling back in everything every
2689  * time an event is added, only do it for the groups of equal priority and
2690  * below.
2691  *
2692  * This can be called after a batch operation on task events, in which case
2693  * event_type is a bit mask of the types of events involved. For CPU events,
2694  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2695  */
2696 /*
2697  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2698  * event to the context or enabling existing event in the context. We can
2699  * probably optimize it by rescheduling only affected pmu_ctx.
2700  */
2701 static void ctx_resched(struct perf_cpu_context *cpuctx,
2702 			struct perf_event_context *task_ctx,
2703 			enum event_type_t event_type)
2704 {
2705 	bool cpu_event = !!(event_type & EVENT_CPU);
2706 
2707 	/*
2708 	 * If pinned groups are involved, flexible groups also need to be
2709 	 * scheduled out.
2710 	 */
2711 	if (event_type & EVENT_PINNED)
2712 		event_type |= EVENT_FLEXIBLE;
2713 
2714 	event_type &= EVENT_ALL;
2715 
2716 	perf_ctx_disable(&cpuctx->ctx, false);
2717 	if (task_ctx) {
2718 		perf_ctx_disable(task_ctx, false);
2719 		task_ctx_sched_out(task_ctx, event_type);
2720 	}
2721 
2722 	/*
2723 	 * Decide which cpu ctx groups to schedule out based on the types
2724 	 * of events that caused rescheduling:
2725 	 *  - EVENT_CPU: schedule out corresponding groups;
2726 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2727 	 *  - otherwise, do nothing more.
2728 	 */
2729 	if (cpu_event)
2730 		ctx_sched_out(&cpuctx->ctx, event_type);
2731 	else if (event_type & EVENT_PINNED)
2732 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2733 
2734 	perf_event_sched_in(cpuctx, task_ctx);
2735 
2736 	perf_ctx_enable(&cpuctx->ctx, false);
2737 	if (task_ctx)
2738 		perf_ctx_enable(task_ctx, false);
2739 }
2740 
2741 void perf_pmu_resched(struct pmu *pmu)
2742 {
2743 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2744 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2745 
2746 	perf_ctx_lock(cpuctx, task_ctx);
2747 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2748 	perf_ctx_unlock(cpuctx, task_ctx);
2749 }
2750 
2751 /*
2752  * Cross CPU call to install and enable a performance event
2753  *
2754  * Very similar to remote_function() + event_function() but cannot assume that
2755  * things like ctx->is_active and cpuctx->task_ctx are set.
2756  */
2757 static int  __perf_install_in_context(void *info)
2758 {
2759 	struct perf_event *event = info;
2760 	struct perf_event_context *ctx = event->ctx;
2761 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2762 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2763 	bool reprogram = true;
2764 	int ret = 0;
2765 
2766 	raw_spin_lock(&cpuctx->ctx.lock);
2767 	if (ctx->task) {
2768 		raw_spin_lock(&ctx->lock);
2769 		task_ctx = ctx;
2770 
2771 		reprogram = (ctx->task == current);
2772 
2773 		/*
2774 		 * If the task is running, it must be running on this CPU,
2775 		 * otherwise we cannot reprogram things.
2776 		 *
2777 		 * If its not running, we don't care, ctx->lock will
2778 		 * serialize against it becoming runnable.
2779 		 */
2780 		if (task_curr(ctx->task) && !reprogram) {
2781 			ret = -ESRCH;
2782 			goto unlock;
2783 		}
2784 
2785 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2786 	} else if (task_ctx) {
2787 		raw_spin_lock(&task_ctx->lock);
2788 	}
2789 
2790 #ifdef CONFIG_CGROUP_PERF
2791 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2792 		/*
2793 		 * If the current cgroup doesn't match the event's
2794 		 * cgroup, we should not try to schedule it.
2795 		 */
2796 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2797 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2798 					event->cgrp->css.cgroup);
2799 	}
2800 #endif
2801 
2802 	if (reprogram) {
2803 		ctx_sched_out(ctx, EVENT_TIME);
2804 		add_event_to_ctx(event, ctx);
2805 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2806 	} else {
2807 		add_event_to_ctx(event, ctx);
2808 	}
2809 
2810 unlock:
2811 	perf_ctx_unlock(cpuctx, task_ctx);
2812 
2813 	return ret;
2814 }
2815 
2816 static bool exclusive_event_installable(struct perf_event *event,
2817 					struct perf_event_context *ctx);
2818 
2819 /*
2820  * Attach a performance event to a context.
2821  *
2822  * Very similar to event_function_call, see comment there.
2823  */
2824 static void
2825 perf_install_in_context(struct perf_event_context *ctx,
2826 			struct perf_event *event,
2827 			int cpu)
2828 {
2829 	struct task_struct *task = READ_ONCE(ctx->task);
2830 
2831 	lockdep_assert_held(&ctx->mutex);
2832 
2833 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2834 
2835 	if (event->cpu != -1)
2836 		WARN_ON_ONCE(event->cpu != cpu);
2837 
2838 	/*
2839 	 * Ensures that if we can observe event->ctx, both the event and ctx
2840 	 * will be 'complete'. See perf_iterate_sb_cpu().
2841 	 */
2842 	smp_store_release(&event->ctx, ctx);
2843 
2844 	/*
2845 	 * perf_event_attr::disabled events will not run and can be initialized
2846 	 * without IPI. Except when this is the first event for the context, in
2847 	 * that case we need the magic of the IPI to set ctx->is_active.
2848 	 *
2849 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2850 	 * event will issue the IPI and reprogram the hardware.
2851 	 */
2852 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2853 	    ctx->nr_events && !is_cgroup_event(event)) {
2854 		raw_spin_lock_irq(&ctx->lock);
2855 		if (ctx->task == TASK_TOMBSTONE) {
2856 			raw_spin_unlock_irq(&ctx->lock);
2857 			return;
2858 		}
2859 		add_event_to_ctx(event, ctx);
2860 		raw_spin_unlock_irq(&ctx->lock);
2861 		return;
2862 	}
2863 
2864 	if (!task) {
2865 		cpu_function_call(cpu, __perf_install_in_context, event);
2866 		return;
2867 	}
2868 
2869 	/*
2870 	 * Should not happen, we validate the ctx is still alive before calling.
2871 	 */
2872 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2873 		return;
2874 
2875 	/*
2876 	 * Installing events is tricky because we cannot rely on ctx->is_active
2877 	 * to be set in case this is the nr_events 0 -> 1 transition.
2878 	 *
2879 	 * Instead we use task_curr(), which tells us if the task is running.
2880 	 * However, since we use task_curr() outside of rq::lock, we can race
2881 	 * against the actual state. This means the result can be wrong.
2882 	 *
2883 	 * If we get a false positive, we retry, this is harmless.
2884 	 *
2885 	 * If we get a false negative, things are complicated. If we are after
2886 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2887 	 * value must be correct. If we're before, it doesn't matter since
2888 	 * perf_event_context_sched_in() will program the counter.
2889 	 *
2890 	 * However, this hinges on the remote context switch having observed
2891 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2892 	 * ctx::lock in perf_event_context_sched_in().
2893 	 *
2894 	 * We do this by task_function_call(), if the IPI fails to hit the task
2895 	 * we know any future context switch of task must see the
2896 	 * perf_event_ctpx[] store.
2897 	 */
2898 
2899 	/*
2900 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2901 	 * task_cpu() load, such that if the IPI then does not find the task
2902 	 * running, a future context switch of that task must observe the
2903 	 * store.
2904 	 */
2905 	smp_mb();
2906 again:
2907 	if (!task_function_call(task, __perf_install_in_context, event))
2908 		return;
2909 
2910 	raw_spin_lock_irq(&ctx->lock);
2911 	task = ctx->task;
2912 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2913 		/*
2914 		 * Cannot happen because we already checked above (which also
2915 		 * cannot happen), and we hold ctx->mutex, which serializes us
2916 		 * against perf_event_exit_task_context().
2917 		 */
2918 		raw_spin_unlock_irq(&ctx->lock);
2919 		return;
2920 	}
2921 	/*
2922 	 * If the task is not running, ctx->lock will avoid it becoming so,
2923 	 * thus we can safely install the event.
2924 	 */
2925 	if (task_curr(task)) {
2926 		raw_spin_unlock_irq(&ctx->lock);
2927 		goto again;
2928 	}
2929 	add_event_to_ctx(event, ctx);
2930 	raw_spin_unlock_irq(&ctx->lock);
2931 }
2932 
2933 /*
2934  * Cross CPU call to enable a performance event
2935  */
2936 static void __perf_event_enable(struct perf_event *event,
2937 				struct perf_cpu_context *cpuctx,
2938 				struct perf_event_context *ctx,
2939 				void *info)
2940 {
2941 	struct perf_event *leader = event->group_leader;
2942 	struct perf_event_context *task_ctx;
2943 
2944 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2945 	    event->state <= PERF_EVENT_STATE_ERROR)
2946 		return;
2947 
2948 	if (ctx->is_active)
2949 		ctx_sched_out(ctx, EVENT_TIME);
2950 
2951 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2952 	perf_cgroup_event_enable(event, ctx);
2953 
2954 	if (!ctx->is_active)
2955 		return;
2956 
2957 	if (!event_filter_match(event)) {
2958 		ctx_sched_in(ctx, EVENT_TIME);
2959 		return;
2960 	}
2961 
2962 	/*
2963 	 * If the event is in a group and isn't the group leader,
2964 	 * then don't put it on unless the group is on.
2965 	 */
2966 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2967 		ctx_sched_in(ctx, EVENT_TIME);
2968 		return;
2969 	}
2970 
2971 	task_ctx = cpuctx->task_ctx;
2972 	if (ctx->task)
2973 		WARN_ON_ONCE(task_ctx != ctx);
2974 
2975 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2976 }
2977 
2978 /*
2979  * Enable an event.
2980  *
2981  * If event->ctx is a cloned context, callers must make sure that
2982  * every task struct that event->ctx->task could possibly point to
2983  * remains valid.  This condition is satisfied when called through
2984  * perf_event_for_each_child or perf_event_for_each as described
2985  * for perf_event_disable.
2986  */
2987 static void _perf_event_enable(struct perf_event *event)
2988 {
2989 	struct perf_event_context *ctx = event->ctx;
2990 
2991 	raw_spin_lock_irq(&ctx->lock);
2992 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2993 	    event->state <  PERF_EVENT_STATE_ERROR) {
2994 out:
2995 		raw_spin_unlock_irq(&ctx->lock);
2996 		return;
2997 	}
2998 
2999 	/*
3000 	 * If the event is in error state, clear that first.
3001 	 *
3002 	 * That way, if we see the event in error state below, we know that it
3003 	 * has gone back into error state, as distinct from the task having
3004 	 * been scheduled away before the cross-call arrived.
3005 	 */
3006 	if (event->state == PERF_EVENT_STATE_ERROR) {
3007 		/*
3008 		 * Detached SIBLING events cannot leave ERROR state.
3009 		 */
3010 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3011 		    event->group_leader == event)
3012 			goto out;
3013 
3014 		event->state = PERF_EVENT_STATE_OFF;
3015 	}
3016 	raw_spin_unlock_irq(&ctx->lock);
3017 
3018 	event_function_call(event, __perf_event_enable, NULL);
3019 }
3020 
3021 /*
3022  * See perf_event_disable();
3023  */
3024 void perf_event_enable(struct perf_event *event)
3025 {
3026 	struct perf_event_context *ctx;
3027 
3028 	ctx = perf_event_ctx_lock(event);
3029 	_perf_event_enable(event);
3030 	perf_event_ctx_unlock(event, ctx);
3031 }
3032 EXPORT_SYMBOL_GPL(perf_event_enable);
3033 
3034 struct stop_event_data {
3035 	struct perf_event	*event;
3036 	unsigned int		restart;
3037 };
3038 
3039 static int __perf_event_stop(void *info)
3040 {
3041 	struct stop_event_data *sd = info;
3042 	struct perf_event *event = sd->event;
3043 
3044 	/* if it's already INACTIVE, do nothing */
3045 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046 		return 0;
3047 
3048 	/* matches smp_wmb() in event_sched_in() */
3049 	smp_rmb();
3050 
3051 	/*
3052 	 * There is a window with interrupts enabled before we get here,
3053 	 * so we need to check again lest we try to stop another CPU's event.
3054 	 */
3055 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3056 		return -EAGAIN;
3057 
3058 	event->pmu->stop(event, PERF_EF_UPDATE);
3059 
3060 	/*
3061 	 * May race with the actual stop (through perf_pmu_output_stop()),
3062 	 * but it is only used for events with AUX ring buffer, and such
3063 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3064 	 * see comments in perf_aux_output_begin().
3065 	 *
3066 	 * Since this is happening on an event-local CPU, no trace is lost
3067 	 * while restarting.
3068 	 */
3069 	if (sd->restart)
3070 		event->pmu->start(event, 0);
3071 
3072 	return 0;
3073 }
3074 
3075 static int perf_event_stop(struct perf_event *event, int restart)
3076 {
3077 	struct stop_event_data sd = {
3078 		.event		= event,
3079 		.restart	= restart,
3080 	};
3081 	int ret = 0;
3082 
3083 	do {
3084 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3085 			return 0;
3086 
3087 		/* matches smp_wmb() in event_sched_in() */
3088 		smp_rmb();
3089 
3090 		/*
3091 		 * We only want to restart ACTIVE events, so if the event goes
3092 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3093 		 * fall through with ret==-ENXIO.
3094 		 */
3095 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3096 					__perf_event_stop, &sd);
3097 	} while (ret == -EAGAIN);
3098 
3099 	return ret;
3100 }
3101 
3102 /*
3103  * In order to contain the amount of racy and tricky in the address filter
3104  * configuration management, it is a two part process:
3105  *
3106  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3107  *      we update the addresses of corresponding vmas in
3108  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3109  * (p2) when an event is scheduled in (pmu::add), it calls
3110  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3111  *      if the generation has changed since the previous call.
3112  *
3113  * If (p1) happens while the event is active, we restart it to force (p2).
3114  *
3115  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3116  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3117  *     ioctl;
3118  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3119  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3120  *     for reading;
3121  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3122  *     of exec.
3123  */
3124 void perf_event_addr_filters_sync(struct perf_event *event)
3125 {
3126 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3127 
3128 	if (!has_addr_filter(event))
3129 		return;
3130 
3131 	raw_spin_lock(&ifh->lock);
3132 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3133 		event->pmu->addr_filters_sync(event);
3134 		event->hw.addr_filters_gen = event->addr_filters_gen;
3135 	}
3136 	raw_spin_unlock(&ifh->lock);
3137 }
3138 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3139 
3140 static int _perf_event_refresh(struct perf_event *event, int refresh)
3141 {
3142 	/*
3143 	 * not supported on inherited events
3144 	 */
3145 	if (event->attr.inherit || !is_sampling_event(event))
3146 		return -EINVAL;
3147 
3148 	atomic_add(refresh, &event->event_limit);
3149 	_perf_event_enable(event);
3150 
3151 	return 0;
3152 }
3153 
3154 /*
3155  * See perf_event_disable()
3156  */
3157 int perf_event_refresh(struct perf_event *event, int refresh)
3158 {
3159 	struct perf_event_context *ctx;
3160 	int ret;
3161 
3162 	ctx = perf_event_ctx_lock(event);
3163 	ret = _perf_event_refresh(event, refresh);
3164 	perf_event_ctx_unlock(event, ctx);
3165 
3166 	return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(perf_event_refresh);
3169 
3170 static int perf_event_modify_breakpoint(struct perf_event *bp,
3171 					 struct perf_event_attr *attr)
3172 {
3173 	int err;
3174 
3175 	_perf_event_disable(bp);
3176 
3177 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3178 
3179 	if (!bp->attr.disabled)
3180 		_perf_event_enable(bp);
3181 
3182 	return err;
3183 }
3184 
3185 /*
3186  * Copy event-type-independent attributes that may be modified.
3187  */
3188 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3189 					const struct perf_event_attr *from)
3190 {
3191 	to->sig_data = from->sig_data;
3192 }
3193 
3194 static int perf_event_modify_attr(struct perf_event *event,
3195 				  struct perf_event_attr *attr)
3196 {
3197 	int (*func)(struct perf_event *, struct perf_event_attr *);
3198 	struct perf_event *child;
3199 	int err;
3200 
3201 	if (event->attr.type != attr->type)
3202 		return -EINVAL;
3203 
3204 	switch (event->attr.type) {
3205 	case PERF_TYPE_BREAKPOINT:
3206 		func = perf_event_modify_breakpoint;
3207 		break;
3208 	default:
3209 		/* Place holder for future additions. */
3210 		return -EOPNOTSUPP;
3211 	}
3212 
3213 	WARN_ON_ONCE(event->ctx->parent_ctx);
3214 
3215 	mutex_lock(&event->child_mutex);
3216 	/*
3217 	 * Event-type-independent attributes must be copied before event-type
3218 	 * modification, which will validate that final attributes match the
3219 	 * source attributes after all relevant attributes have been copied.
3220 	 */
3221 	perf_event_modify_copy_attr(&event->attr, attr);
3222 	err = func(event, attr);
3223 	if (err)
3224 		goto out;
3225 	list_for_each_entry(child, &event->child_list, child_list) {
3226 		perf_event_modify_copy_attr(&child->attr, attr);
3227 		err = func(child, attr);
3228 		if (err)
3229 			goto out;
3230 	}
3231 out:
3232 	mutex_unlock(&event->child_mutex);
3233 	return err;
3234 }
3235 
3236 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3237 				enum event_type_t event_type)
3238 {
3239 	struct perf_event_context *ctx = pmu_ctx->ctx;
3240 	struct perf_event *event, *tmp;
3241 	struct pmu *pmu = pmu_ctx->pmu;
3242 
3243 	if (ctx->task && !ctx->is_active) {
3244 		struct perf_cpu_pmu_context *cpc;
3245 
3246 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3247 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3248 		cpc->task_epc = NULL;
3249 	}
3250 
3251 	if (!event_type)
3252 		return;
3253 
3254 	perf_pmu_disable(pmu);
3255 	if (event_type & EVENT_PINNED) {
3256 		list_for_each_entry_safe(event, tmp,
3257 					 &pmu_ctx->pinned_active,
3258 					 active_list)
3259 			group_sched_out(event, ctx);
3260 	}
3261 
3262 	if (event_type & EVENT_FLEXIBLE) {
3263 		list_for_each_entry_safe(event, tmp,
3264 					 &pmu_ctx->flexible_active,
3265 					 active_list)
3266 			group_sched_out(event, ctx);
3267 		/*
3268 		 * Since we cleared EVENT_FLEXIBLE, also clear
3269 		 * rotate_necessary, is will be reset by
3270 		 * ctx_flexible_sched_in() when needed.
3271 		 */
3272 		pmu_ctx->rotate_necessary = 0;
3273 	}
3274 	perf_pmu_enable(pmu);
3275 }
3276 
3277 static void
3278 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3279 {
3280 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3281 	struct perf_event_pmu_context *pmu_ctx;
3282 	int is_active = ctx->is_active;
3283 	bool cgroup = event_type & EVENT_CGROUP;
3284 
3285 	event_type &= ~EVENT_CGROUP;
3286 
3287 	lockdep_assert_held(&ctx->lock);
3288 
3289 	if (likely(!ctx->nr_events)) {
3290 		/*
3291 		 * See __perf_remove_from_context().
3292 		 */
3293 		WARN_ON_ONCE(ctx->is_active);
3294 		if (ctx->task)
3295 			WARN_ON_ONCE(cpuctx->task_ctx);
3296 		return;
3297 	}
3298 
3299 	/*
3300 	 * Always update time if it was set; not only when it changes.
3301 	 * Otherwise we can 'forget' to update time for any but the last
3302 	 * context we sched out. For example:
3303 	 *
3304 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3305 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3306 	 *
3307 	 * would only update time for the pinned events.
3308 	 */
3309 	if (is_active & EVENT_TIME) {
3310 		/* update (and stop) ctx time */
3311 		update_context_time(ctx);
3312 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3313 		/*
3314 		 * CPU-release for the below ->is_active store,
3315 		 * see __load_acquire() in perf_event_time_now()
3316 		 */
3317 		barrier();
3318 	}
3319 
3320 	ctx->is_active &= ~event_type;
3321 	if (!(ctx->is_active & EVENT_ALL))
3322 		ctx->is_active = 0;
3323 
3324 	if (ctx->task) {
3325 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3326 		if (!ctx->is_active)
3327 			cpuctx->task_ctx = NULL;
3328 	}
3329 
3330 	is_active ^= ctx->is_active; /* changed bits */
3331 
3332 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3333 		if (cgroup && !pmu_ctx->nr_cgroups)
3334 			continue;
3335 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3336 	}
3337 }
3338 
3339 /*
3340  * Test whether two contexts are equivalent, i.e. whether they have both been
3341  * cloned from the same version of the same context.
3342  *
3343  * Equivalence is measured using a generation number in the context that is
3344  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3345  * and list_del_event().
3346  */
3347 static int context_equiv(struct perf_event_context *ctx1,
3348 			 struct perf_event_context *ctx2)
3349 {
3350 	lockdep_assert_held(&ctx1->lock);
3351 	lockdep_assert_held(&ctx2->lock);
3352 
3353 	/* Pinning disables the swap optimization */
3354 	if (ctx1->pin_count || ctx2->pin_count)
3355 		return 0;
3356 
3357 	/* If ctx1 is the parent of ctx2 */
3358 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3359 		return 1;
3360 
3361 	/* If ctx2 is the parent of ctx1 */
3362 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3363 		return 1;
3364 
3365 	/*
3366 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3367 	 * hierarchy, see perf_event_init_context().
3368 	 */
3369 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3370 			ctx1->parent_gen == ctx2->parent_gen)
3371 		return 1;
3372 
3373 	/* Unmatched */
3374 	return 0;
3375 }
3376 
3377 static void __perf_event_sync_stat(struct perf_event *event,
3378 				     struct perf_event *next_event)
3379 {
3380 	u64 value;
3381 
3382 	if (!event->attr.inherit_stat)
3383 		return;
3384 
3385 	/*
3386 	 * Update the event value, we cannot use perf_event_read()
3387 	 * because we're in the middle of a context switch and have IRQs
3388 	 * disabled, which upsets smp_call_function_single(), however
3389 	 * we know the event must be on the current CPU, therefore we
3390 	 * don't need to use it.
3391 	 */
3392 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3393 		event->pmu->read(event);
3394 
3395 	perf_event_update_time(event);
3396 
3397 	/*
3398 	 * In order to keep per-task stats reliable we need to flip the event
3399 	 * values when we flip the contexts.
3400 	 */
3401 	value = local64_read(&next_event->count);
3402 	value = local64_xchg(&event->count, value);
3403 	local64_set(&next_event->count, value);
3404 
3405 	swap(event->total_time_enabled, next_event->total_time_enabled);
3406 	swap(event->total_time_running, next_event->total_time_running);
3407 
3408 	/*
3409 	 * Since we swizzled the values, update the user visible data too.
3410 	 */
3411 	perf_event_update_userpage(event);
3412 	perf_event_update_userpage(next_event);
3413 }
3414 
3415 static void perf_event_sync_stat(struct perf_event_context *ctx,
3416 				   struct perf_event_context *next_ctx)
3417 {
3418 	struct perf_event *event, *next_event;
3419 
3420 	if (!ctx->nr_stat)
3421 		return;
3422 
3423 	update_context_time(ctx);
3424 
3425 	event = list_first_entry(&ctx->event_list,
3426 				   struct perf_event, event_entry);
3427 
3428 	next_event = list_first_entry(&next_ctx->event_list,
3429 					struct perf_event, event_entry);
3430 
3431 	while (&event->event_entry != &ctx->event_list &&
3432 	       &next_event->event_entry != &next_ctx->event_list) {
3433 
3434 		__perf_event_sync_stat(event, next_event);
3435 
3436 		event = list_next_entry(event, event_entry);
3437 		next_event = list_next_entry(next_event, event_entry);
3438 	}
3439 }
3440 
3441 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3442 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3443 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3444 	     !list_entry_is_head(pos1, head1, member) &&		\
3445 	     !list_entry_is_head(pos2, head2, member);			\
3446 	     pos1 = list_next_entry(pos1, member),			\
3447 	     pos2 = list_next_entry(pos2, member))
3448 
3449 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3450 					  struct perf_event_context *next_ctx)
3451 {
3452 	struct perf_event_pmu_context *prev_epc, *next_epc;
3453 
3454 	if (!prev_ctx->nr_task_data)
3455 		return;
3456 
3457 	double_list_for_each_entry(prev_epc, next_epc,
3458 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3459 				   pmu_ctx_entry) {
3460 
3461 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3462 			continue;
3463 
3464 		/*
3465 		 * PMU specific parts of task perf context can require
3466 		 * additional synchronization. As an example of such
3467 		 * synchronization see implementation details of Intel
3468 		 * LBR call stack data profiling;
3469 		 */
3470 		if (prev_epc->pmu->swap_task_ctx)
3471 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3472 		else
3473 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3474 	}
3475 }
3476 
3477 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3478 {
3479 	struct perf_event_pmu_context *pmu_ctx;
3480 	struct perf_cpu_pmu_context *cpc;
3481 
3482 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3483 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3484 
3485 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3486 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3487 	}
3488 }
3489 
3490 static void
3491 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3492 {
3493 	struct perf_event_context *ctx = task->perf_event_ctxp;
3494 	struct perf_event_context *next_ctx;
3495 	struct perf_event_context *parent, *next_parent;
3496 	int do_switch = 1;
3497 
3498 	if (likely(!ctx))
3499 		return;
3500 
3501 	rcu_read_lock();
3502 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3503 	if (!next_ctx)
3504 		goto unlock;
3505 
3506 	parent = rcu_dereference(ctx->parent_ctx);
3507 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3508 
3509 	/* If neither context have a parent context; they cannot be clones. */
3510 	if (!parent && !next_parent)
3511 		goto unlock;
3512 
3513 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3514 		/*
3515 		 * Looks like the two contexts are clones, so we might be
3516 		 * able to optimize the context switch.  We lock both
3517 		 * contexts and check that they are clones under the
3518 		 * lock (including re-checking that neither has been
3519 		 * uncloned in the meantime).  It doesn't matter which
3520 		 * order we take the locks because no other cpu could
3521 		 * be trying to lock both of these tasks.
3522 		 */
3523 		raw_spin_lock(&ctx->lock);
3524 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3525 		if (context_equiv(ctx, next_ctx)) {
3526 
3527 			perf_ctx_disable(ctx, false);
3528 
3529 			/* PMIs are disabled; ctx->nr_pending is stable. */
3530 			if (local_read(&ctx->nr_pending) ||
3531 			    local_read(&next_ctx->nr_pending)) {
3532 				/*
3533 				 * Must not swap out ctx when there's pending
3534 				 * events that rely on the ctx->task relation.
3535 				 */
3536 				raw_spin_unlock(&next_ctx->lock);
3537 				rcu_read_unlock();
3538 				goto inside_switch;
3539 			}
3540 
3541 			WRITE_ONCE(ctx->task, next);
3542 			WRITE_ONCE(next_ctx->task, task);
3543 
3544 			perf_ctx_sched_task_cb(ctx, false);
3545 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3546 
3547 			perf_ctx_enable(ctx, false);
3548 
3549 			/*
3550 			 * RCU_INIT_POINTER here is safe because we've not
3551 			 * modified the ctx and the above modification of
3552 			 * ctx->task and ctx->task_ctx_data are immaterial
3553 			 * since those values are always verified under
3554 			 * ctx->lock which we're now holding.
3555 			 */
3556 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3557 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3558 
3559 			do_switch = 0;
3560 
3561 			perf_event_sync_stat(ctx, next_ctx);
3562 		}
3563 		raw_spin_unlock(&next_ctx->lock);
3564 		raw_spin_unlock(&ctx->lock);
3565 	}
3566 unlock:
3567 	rcu_read_unlock();
3568 
3569 	if (do_switch) {
3570 		raw_spin_lock(&ctx->lock);
3571 		perf_ctx_disable(ctx, false);
3572 
3573 inside_switch:
3574 		perf_ctx_sched_task_cb(ctx, false);
3575 		task_ctx_sched_out(ctx, EVENT_ALL);
3576 
3577 		perf_ctx_enable(ctx, false);
3578 		raw_spin_unlock(&ctx->lock);
3579 	}
3580 }
3581 
3582 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3583 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3584 
3585 void perf_sched_cb_dec(struct pmu *pmu)
3586 {
3587 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3588 
3589 	this_cpu_dec(perf_sched_cb_usages);
3590 	barrier();
3591 
3592 	if (!--cpc->sched_cb_usage)
3593 		list_del(&cpc->sched_cb_entry);
3594 }
3595 
3596 
3597 void perf_sched_cb_inc(struct pmu *pmu)
3598 {
3599 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3600 
3601 	if (!cpc->sched_cb_usage++)
3602 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3603 
3604 	barrier();
3605 	this_cpu_inc(perf_sched_cb_usages);
3606 }
3607 
3608 /*
3609  * This function provides the context switch callback to the lower code
3610  * layer. It is invoked ONLY when the context switch callback is enabled.
3611  *
3612  * This callback is relevant even to per-cpu events; for example multi event
3613  * PEBS requires this to provide PID/TID information. This requires we flush
3614  * all queued PEBS records before we context switch to a new task.
3615  */
3616 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3617 {
3618 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3619 	struct pmu *pmu;
3620 
3621 	pmu = cpc->epc.pmu;
3622 
3623 	/* software PMUs will not have sched_task */
3624 	if (WARN_ON_ONCE(!pmu->sched_task))
3625 		return;
3626 
3627 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3628 	perf_pmu_disable(pmu);
3629 
3630 	pmu->sched_task(cpc->task_epc, sched_in);
3631 
3632 	perf_pmu_enable(pmu);
3633 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3634 }
3635 
3636 static void perf_pmu_sched_task(struct task_struct *prev,
3637 				struct task_struct *next,
3638 				bool sched_in)
3639 {
3640 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3641 	struct perf_cpu_pmu_context *cpc;
3642 
3643 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3644 	if (prev == next || cpuctx->task_ctx)
3645 		return;
3646 
3647 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3648 		__perf_pmu_sched_task(cpc, sched_in);
3649 }
3650 
3651 static void perf_event_switch(struct task_struct *task,
3652 			      struct task_struct *next_prev, bool sched_in);
3653 
3654 /*
3655  * Called from scheduler to remove the events of the current task,
3656  * with interrupts disabled.
3657  *
3658  * We stop each event and update the event value in event->count.
3659  *
3660  * This does not protect us against NMI, but disable()
3661  * sets the disabled bit in the control field of event _before_
3662  * accessing the event control register. If a NMI hits, then it will
3663  * not restart the event.
3664  */
3665 void __perf_event_task_sched_out(struct task_struct *task,
3666 				 struct task_struct *next)
3667 {
3668 	if (__this_cpu_read(perf_sched_cb_usages))
3669 		perf_pmu_sched_task(task, next, false);
3670 
3671 	if (atomic_read(&nr_switch_events))
3672 		perf_event_switch(task, next, false);
3673 
3674 	perf_event_context_sched_out(task, next);
3675 
3676 	/*
3677 	 * if cgroup events exist on this CPU, then we need
3678 	 * to check if we have to switch out PMU state.
3679 	 * cgroup event are system-wide mode only
3680 	 */
3681 	perf_cgroup_switch(next);
3682 }
3683 
3684 static bool perf_less_group_idx(const void *l, const void *r)
3685 {
3686 	const struct perf_event *le = *(const struct perf_event **)l;
3687 	const struct perf_event *re = *(const struct perf_event **)r;
3688 
3689 	return le->group_index < re->group_index;
3690 }
3691 
3692 static void swap_ptr(void *l, void *r)
3693 {
3694 	void **lp = l, **rp = r;
3695 
3696 	swap(*lp, *rp);
3697 }
3698 
3699 static const struct min_heap_callbacks perf_min_heap = {
3700 	.elem_size = sizeof(struct perf_event *),
3701 	.less = perf_less_group_idx,
3702 	.swp = swap_ptr,
3703 };
3704 
3705 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3706 {
3707 	struct perf_event **itrs = heap->data;
3708 
3709 	if (event) {
3710 		itrs[heap->nr] = event;
3711 		heap->nr++;
3712 	}
3713 }
3714 
3715 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3716 {
3717 	struct perf_cpu_pmu_context *cpc;
3718 
3719 	if (!pmu_ctx->ctx->task)
3720 		return;
3721 
3722 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3723 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3724 	cpc->task_epc = pmu_ctx;
3725 }
3726 
3727 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3728 				struct perf_event_groups *groups, int cpu,
3729 				struct pmu *pmu,
3730 				int (*func)(struct perf_event *, void *),
3731 				void *data)
3732 {
3733 #ifdef CONFIG_CGROUP_PERF
3734 	struct cgroup_subsys_state *css = NULL;
3735 #endif
3736 	struct perf_cpu_context *cpuctx = NULL;
3737 	/* Space for per CPU and/or any CPU event iterators. */
3738 	struct perf_event *itrs[2];
3739 	struct min_heap event_heap;
3740 	struct perf_event **evt;
3741 	int ret;
3742 
3743 	if (pmu->filter && pmu->filter(pmu, cpu))
3744 		return 0;
3745 
3746 	if (!ctx->task) {
3747 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3748 		event_heap = (struct min_heap){
3749 			.data = cpuctx->heap,
3750 			.nr = 0,
3751 			.size = cpuctx->heap_size,
3752 		};
3753 
3754 		lockdep_assert_held(&cpuctx->ctx.lock);
3755 
3756 #ifdef CONFIG_CGROUP_PERF
3757 		if (cpuctx->cgrp)
3758 			css = &cpuctx->cgrp->css;
3759 #endif
3760 	} else {
3761 		event_heap = (struct min_heap){
3762 			.data = itrs,
3763 			.nr = 0,
3764 			.size = ARRAY_SIZE(itrs),
3765 		};
3766 		/* Events not within a CPU context may be on any CPU. */
3767 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3768 	}
3769 	evt = event_heap.data;
3770 
3771 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3772 
3773 #ifdef CONFIG_CGROUP_PERF
3774 	for (; css; css = css->parent)
3775 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3776 #endif
3777 
3778 	if (event_heap.nr) {
3779 		__link_epc((*evt)->pmu_ctx);
3780 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3781 	}
3782 
3783 	min_heapify_all(&event_heap, &perf_min_heap);
3784 
3785 	while (event_heap.nr) {
3786 		ret = func(*evt, data);
3787 		if (ret)
3788 			return ret;
3789 
3790 		*evt = perf_event_groups_next(*evt, pmu);
3791 		if (*evt)
3792 			min_heapify(&event_heap, 0, &perf_min_heap);
3793 		else
3794 			min_heap_pop(&event_heap, &perf_min_heap);
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 /*
3801  * Because the userpage is strictly per-event (there is no concept of context,
3802  * so there cannot be a context indirection), every userpage must be updated
3803  * when context time starts :-(
3804  *
3805  * IOW, we must not miss EVENT_TIME edges.
3806  */
3807 static inline bool event_update_userpage(struct perf_event *event)
3808 {
3809 	if (likely(!atomic_read(&event->mmap_count)))
3810 		return false;
3811 
3812 	perf_event_update_time(event);
3813 	perf_event_update_userpage(event);
3814 
3815 	return true;
3816 }
3817 
3818 static inline void group_update_userpage(struct perf_event *group_event)
3819 {
3820 	struct perf_event *event;
3821 
3822 	if (!event_update_userpage(group_event))
3823 		return;
3824 
3825 	for_each_sibling_event(event, group_event)
3826 		event_update_userpage(event);
3827 }
3828 
3829 static int merge_sched_in(struct perf_event *event, void *data)
3830 {
3831 	struct perf_event_context *ctx = event->ctx;
3832 	int *can_add_hw = data;
3833 
3834 	if (event->state <= PERF_EVENT_STATE_OFF)
3835 		return 0;
3836 
3837 	if (!event_filter_match(event))
3838 		return 0;
3839 
3840 	if (group_can_go_on(event, *can_add_hw)) {
3841 		if (!group_sched_in(event, ctx))
3842 			list_add_tail(&event->active_list, get_event_list(event));
3843 	}
3844 
3845 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3846 		*can_add_hw = 0;
3847 		if (event->attr.pinned) {
3848 			perf_cgroup_event_disable(event, ctx);
3849 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3850 		} else {
3851 			struct perf_cpu_pmu_context *cpc;
3852 
3853 			event->pmu_ctx->rotate_necessary = 1;
3854 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3855 			perf_mux_hrtimer_restart(cpc);
3856 			group_update_userpage(event);
3857 		}
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3864 				struct perf_event_groups *groups,
3865 				struct pmu *pmu)
3866 {
3867 	int can_add_hw = 1;
3868 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3869 			   merge_sched_in, &can_add_hw);
3870 }
3871 
3872 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3873 				struct perf_event_groups *groups,
3874 				bool cgroup)
3875 {
3876 	struct perf_event_pmu_context *pmu_ctx;
3877 
3878 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3879 		if (cgroup && !pmu_ctx->nr_cgroups)
3880 			continue;
3881 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3882 	}
3883 }
3884 
3885 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3886 			       struct pmu *pmu)
3887 {
3888 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3889 }
3890 
3891 static void
3892 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3893 {
3894 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3895 	int is_active = ctx->is_active;
3896 	bool cgroup = event_type & EVENT_CGROUP;
3897 
3898 	event_type &= ~EVENT_CGROUP;
3899 
3900 	lockdep_assert_held(&ctx->lock);
3901 
3902 	if (likely(!ctx->nr_events))
3903 		return;
3904 
3905 	if (!(is_active & EVENT_TIME)) {
3906 		/* start ctx time */
3907 		__update_context_time(ctx, false);
3908 		perf_cgroup_set_timestamp(cpuctx);
3909 		/*
3910 		 * CPU-release for the below ->is_active store,
3911 		 * see __load_acquire() in perf_event_time_now()
3912 		 */
3913 		barrier();
3914 	}
3915 
3916 	ctx->is_active |= (event_type | EVENT_TIME);
3917 	if (ctx->task) {
3918 		if (!is_active)
3919 			cpuctx->task_ctx = ctx;
3920 		else
3921 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3922 	}
3923 
3924 	is_active ^= ctx->is_active; /* changed bits */
3925 
3926 	/*
3927 	 * First go through the list and put on any pinned groups
3928 	 * in order to give them the best chance of going on.
3929 	 */
3930 	if (is_active & EVENT_PINNED)
3931 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3932 
3933 	/* Then walk through the lower prio flexible groups */
3934 	if (is_active & EVENT_FLEXIBLE)
3935 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3936 }
3937 
3938 static void perf_event_context_sched_in(struct task_struct *task)
3939 {
3940 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3941 	struct perf_event_context *ctx;
3942 
3943 	rcu_read_lock();
3944 	ctx = rcu_dereference(task->perf_event_ctxp);
3945 	if (!ctx)
3946 		goto rcu_unlock;
3947 
3948 	if (cpuctx->task_ctx == ctx) {
3949 		perf_ctx_lock(cpuctx, ctx);
3950 		perf_ctx_disable(ctx, false);
3951 
3952 		perf_ctx_sched_task_cb(ctx, true);
3953 
3954 		perf_ctx_enable(ctx, false);
3955 		perf_ctx_unlock(cpuctx, ctx);
3956 		goto rcu_unlock;
3957 	}
3958 
3959 	perf_ctx_lock(cpuctx, ctx);
3960 	/*
3961 	 * We must check ctx->nr_events while holding ctx->lock, such
3962 	 * that we serialize against perf_install_in_context().
3963 	 */
3964 	if (!ctx->nr_events)
3965 		goto unlock;
3966 
3967 	perf_ctx_disable(ctx, false);
3968 	/*
3969 	 * We want to keep the following priority order:
3970 	 * cpu pinned (that don't need to move), task pinned,
3971 	 * cpu flexible, task flexible.
3972 	 *
3973 	 * However, if task's ctx is not carrying any pinned
3974 	 * events, no need to flip the cpuctx's events around.
3975 	 */
3976 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3977 		perf_ctx_disable(&cpuctx->ctx, false);
3978 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3979 	}
3980 
3981 	perf_event_sched_in(cpuctx, ctx);
3982 
3983 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3984 
3985 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3986 		perf_ctx_enable(&cpuctx->ctx, false);
3987 
3988 	perf_ctx_enable(ctx, false);
3989 
3990 unlock:
3991 	perf_ctx_unlock(cpuctx, ctx);
3992 rcu_unlock:
3993 	rcu_read_unlock();
3994 }
3995 
3996 /*
3997  * Called from scheduler to add the events of the current task
3998  * with interrupts disabled.
3999  *
4000  * We restore the event value and then enable it.
4001  *
4002  * This does not protect us against NMI, but enable()
4003  * sets the enabled bit in the control field of event _before_
4004  * accessing the event control register. If a NMI hits, then it will
4005  * keep the event running.
4006  */
4007 void __perf_event_task_sched_in(struct task_struct *prev,
4008 				struct task_struct *task)
4009 {
4010 	perf_event_context_sched_in(task);
4011 
4012 	if (atomic_read(&nr_switch_events))
4013 		perf_event_switch(task, prev, true);
4014 
4015 	if (__this_cpu_read(perf_sched_cb_usages))
4016 		perf_pmu_sched_task(prev, task, true);
4017 }
4018 
4019 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4020 {
4021 	u64 frequency = event->attr.sample_freq;
4022 	u64 sec = NSEC_PER_SEC;
4023 	u64 divisor, dividend;
4024 
4025 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4026 
4027 	count_fls = fls64(count);
4028 	nsec_fls = fls64(nsec);
4029 	frequency_fls = fls64(frequency);
4030 	sec_fls = 30;
4031 
4032 	/*
4033 	 * We got @count in @nsec, with a target of sample_freq HZ
4034 	 * the target period becomes:
4035 	 *
4036 	 *             @count * 10^9
4037 	 * period = -------------------
4038 	 *          @nsec * sample_freq
4039 	 *
4040 	 */
4041 
4042 	/*
4043 	 * Reduce accuracy by one bit such that @a and @b converge
4044 	 * to a similar magnitude.
4045 	 */
4046 #define REDUCE_FLS(a, b)		\
4047 do {					\
4048 	if (a##_fls > b##_fls) {	\
4049 		a >>= 1;		\
4050 		a##_fls--;		\
4051 	} else {			\
4052 		b >>= 1;		\
4053 		b##_fls--;		\
4054 	}				\
4055 } while (0)
4056 
4057 	/*
4058 	 * Reduce accuracy until either term fits in a u64, then proceed with
4059 	 * the other, so that finally we can do a u64/u64 division.
4060 	 */
4061 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4062 		REDUCE_FLS(nsec, frequency);
4063 		REDUCE_FLS(sec, count);
4064 	}
4065 
4066 	if (count_fls + sec_fls > 64) {
4067 		divisor = nsec * frequency;
4068 
4069 		while (count_fls + sec_fls > 64) {
4070 			REDUCE_FLS(count, sec);
4071 			divisor >>= 1;
4072 		}
4073 
4074 		dividend = count * sec;
4075 	} else {
4076 		dividend = count * sec;
4077 
4078 		while (nsec_fls + frequency_fls > 64) {
4079 			REDUCE_FLS(nsec, frequency);
4080 			dividend >>= 1;
4081 		}
4082 
4083 		divisor = nsec * frequency;
4084 	}
4085 
4086 	if (!divisor)
4087 		return dividend;
4088 
4089 	return div64_u64(dividend, divisor);
4090 }
4091 
4092 static DEFINE_PER_CPU(int, perf_throttled_count);
4093 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4094 
4095 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4096 {
4097 	struct hw_perf_event *hwc = &event->hw;
4098 	s64 period, sample_period;
4099 	s64 delta;
4100 
4101 	period = perf_calculate_period(event, nsec, count);
4102 
4103 	delta = (s64)(period - hwc->sample_period);
4104 	delta = (delta + 7) / 8; /* low pass filter */
4105 
4106 	sample_period = hwc->sample_period + delta;
4107 
4108 	if (!sample_period)
4109 		sample_period = 1;
4110 
4111 	hwc->sample_period = sample_period;
4112 
4113 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4114 		if (disable)
4115 			event->pmu->stop(event, PERF_EF_UPDATE);
4116 
4117 		local64_set(&hwc->period_left, 0);
4118 
4119 		if (disable)
4120 			event->pmu->start(event, PERF_EF_RELOAD);
4121 	}
4122 }
4123 
4124 /*
4125  * combine freq adjustment with unthrottling to avoid two passes over the
4126  * events. At the same time, make sure, having freq events does not change
4127  * the rate of unthrottling as that would introduce bias.
4128  */
4129 static void
4130 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4131 {
4132 	struct perf_event *event;
4133 	struct hw_perf_event *hwc;
4134 	u64 now, period = TICK_NSEC;
4135 	s64 delta;
4136 
4137 	/*
4138 	 * only need to iterate over all events iff:
4139 	 * - context have events in frequency mode (needs freq adjust)
4140 	 * - there are events to unthrottle on this cpu
4141 	 */
4142 	if (!(ctx->nr_freq || unthrottle))
4143 		return;
4144 
4145 	raw_spin_lock(&ctx->lock);
4146 
4147 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4148 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4149 			continue;
4150 
4151 		// XXX use visit thingy to avoid the -1,cpu match
4152 		if (!event_filter_match(event))
4153 			continue;
4154 
4155 		perf_pmu_disable(event->pmu);
4156 
4157 		hwc = &event->hw;
4158 
4159 		if (hwc->interrupts == MAX_INTERRUPTS) {
4160 			hwc->interrupts = 0;
4161 			perf_log_throttle(event, 1);
4162 			event->pmu->start(event, 0);
4163 		}
4164 
4165 		if (!event->attr.freq || !event->attr.sample_freq)
4166 			goto next;
4167 
4168 		/*
4169 		 * stop the event and update event->count
4170 		 */
4171 		event->pmu->stop(event, PERF_EF_UPDATE);
4172 
4173 		now = local64_read(&event->count);
4174 		delta = now - hwc->freq_count_stamp;
4175 		hwc->freq_count_stamp = now;
4176 
4177 		/*
4178 		 * restart the event
4179 		 * reload only if value has changed
4180 		 * we have stopped the event so tell that
4181 		 * to perf_adjust_period() to avoid stopping it
4182 		 * twice.
4183 		 */
4184 		if (delta > 0)
4185 			perf_adjust_period(event, period, delta, false);
4186 
4187 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4188 	next:
4189 		perf_pmu_enable(event->pmu);
4190 	}
4191 
4192 	raw_spin_unlock(&ctx->lock);
4193 }
4194 
4195 /*
4196  * Move @event to the tail of the @ctx's elegible events.
4197  */
4198 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4199 {
4200 	/*
4201 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4202 	 * disabled by the inheritance code.
4203 	 */
4204 	if (ctx->rotate_disable)
4205 		return;
4206 
4207 	perf_event_groups_delete(&ctx->flexible_groups, event);
4208 	perf_event_groups_insert(&ctx->flexible_groups, event);
4209 }
4210 
4211 /* pick an event from the flexible_groups to rotate */
4212 static inline struct perf_event *
4213 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4214 {
4215 	struct perf_event *event;
4216 	struct rb_node *node;
4217 	struct rb_root *tree;
4218 	struct __group_key key = {
4219 		.pmu = pmu_ctx->pmu,
4220 	};
4221 
4222 	/* pick the first active flexible event */
4223 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4224 					 struct perf_event, active_list);
4225 	if (event)
4226 		goto out;
4227 
4228 	/* if no active flexible event, pick the first event */
4229 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4230 
4231 	if (!pmu_ctx->ctx->task) {
4232 		key.cpu = smp_processor_id();
4233 
4234 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4235 		if (node)
4236 			event = __node_2_pe(node);
4237 		goto out;
4238 	}
4239 
4240 	key.cpu = -1;
4241 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4242 	if (node) {
4243 		event = __node_2_pe(node);
4244 		goto out;
4245 	}
4246 
4247 	key.cpu = smp_processor_id();
4248 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4249 	if (node)
4250 		event = __node_2_pe(node);
4251 
4252 out:
4253 	/*
4254 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4255 	 * finds there are unschedulable events, it will set it again.
4256 	 */
4257 	pmu_ctx->rotate_necessary = 0;
4258 
4259 	return event;
4260 }
4261 
4262 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4263 {
4264 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4265 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4266 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4267 	int cpu_rotate, task_rotate;
4268 	struct pmu *pmu;
4269 
4270 	/*
4271 	 * Since we run this from IRQ context, nobody can install new
4272 	 * events, thus the event count values are stable.
4273 	 */
4274 
4275 	cpu_epc = &cpc->epc;
4276 	pmu = cpu_epc->pmu;
4277 	task_epc = cpc->task_epc;
4278 
4279 	cpu_rotate = cpu_epc->rotate_necessary;
4280 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4281 
4282 	if (!(cpu_rotate || task_rotate))
4283 		return false;
4284 
4285 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4286 	perf_pmu_disable(pmu);
4287 
4288 	if (task_rotate)
4289 		task_event = ctx_event_to_rotate(task_epc);
4290 	if (cpu_rotate)
4291 		cpu_event = ctx_event_to_rotate(cpu_epc);
4292 
4293 	/*
4294 	 * As per the order given at ctx_resched() first 'pop' task flexible
4295 	 * and then, if needed CPU flexible.
4296 	 */
4297 	if (task_event || (task_epc && cpu_event)) {
4298 		update_context_time(task_epc->ctx);
4299 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4300 	}
4301 
4302 	if (cpu_event) {
4303 		update_context_time(&cpuctx->ctx);
4304 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4305 		rotate_ctx(&cpuctx->ctx, cpu_event);
4306 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4307 	}
4308 
4309 	if (task_event)
4310 		rotate_ctx(task_epc->ctx, task_event);
4311 
4312 	if (task_event || (task_epc && cpu_event))
4313 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4314 
4315 	perf_pmu_enable(pmu);
4316 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4317 
4318 	return true;
4319 }
4320 
4321 void perf_event_task_tick(void)
4322 {
4323 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4324 	struct perf_event_context *ctx;
4325 	int throttled;
4326 
4327 	lockdep_assert_irqs_disabled();
4328 
4329 	__this_cpu_inc(perf_throttled_seq);
4330 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4331 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4332 
4333 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4334 
4335 	rcu_read_lock();
4336 	ctx = rcu_dereference(current->perf_event_ctxp);
4337 	if (ctx)
4338 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4339 	rcu_read_unlock();
4340 }
4341 
4342 static int event_enable_on_exec(struct perf_event *event,
4343 				struct perf_event_context *ctx)
4344 {
4345 	if (!event->attr.enable_on_exec)
4346 		return 0;
4347 
4348 	event->attr.enable_on_exec = 0;
4349 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4350 		return 0;
4351 
4352 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4353 
4354 	return 1;
4355 }
4356 
4357 /*
4358  * Enable all of a task's events that have been marked enable-on-exec.
4359  * This expects task == current.
4360  */
4361 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4362 {
4363 	struct perf_event_context *clone_ctx = NULL;
4364 	enum event_type_t event_type = 0;
4365 	struct perf_cpu_context *cpuctx;
4366 	struct perf_event *event;
4367 	unsigned long flags;
4368 	int enabled = 0;
4369 
4370 	local_irq_save(flags);
4371 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4372 		goto out;
4373 
4374 	if (!ctx->nr_events)
4375 		goto out;
4376 
4377 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4378 	perf_ctx_lock(cpuctx, ctx);
4379 	ctx_sched_out(ctx, EVENT_TIME);
4380 
4381 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4382 		enabled |= event_enable_on_exec(event, ctx);
4383 		event_type |= get_event_type(event);
4384 	}
4385 
4386 	/*
4387 	 * Unclone and reschedule this context if we enabled any event.
4388 	 */
4389 	if (enabled) {
4390 		clone_ctx = unclone_ctx(ctx);
4391 		ctx_resched(cpuctx, ctx, event_type);
4392 	} else {
4393 		ctx_sched_in(ctx, EVENT_TIME);
4394 	}
4395 	perf_ctx_unlock(cpuctx, ctx);
4396 
4397 out:
4398 	local_irq_restore(flags);
4399 
4400 	if (clone_ctx)
4401 		put_ctx(clone_ctx);
4402 }
4403 
4404 static void perf_remove_from_owner(struct perf_event *event);
4405 static void perf_event_exit_event(struct perf_event *event,
4406 				  struct perf_event_context *ctx);
4407 
4408 /*
4409  * Removes all events from the current task that have been marked
4410  * remove-on-exec, and feeds their values back to parent events.
4411  */
4412 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4413 {
4414 	struct perf_event_context *clone_ctx = NULL;
4415 	struct perf_event *event, *next;
4416 	unsigned long flags;
4417 	bool modified = false;
4418 
4419 	mutex_lock(&ctx->mutex);
4420 
4421 	if (WARN_ON_ONCE(ctx->task != current))
4422 		goto unlock;
4423 
4424 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4425 		if (!event->attr.remove_on_exec)
4426 			continue;
4427 
4428 		if (!is_kernel_event(event))
4429 			perf_remove_from_owner(event);
4430 
4431 		modified = true;
4432 
4433 		perf_event_exit_event(event, ctx);
4434 	}
4435 
4436 	raw_spin_lock_irqsave(&ctx->lock, flags);
4437 	if (modified)
4438 		clone_ctx = unclone_ctx(ctx);
4439 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4440 
4441 unlock:
4442 	mutex_unlock(&ctx->mutex);
4443 
4444 	if (clone_ctx)
4445 		put_ctx(clone_ctx);
4446 }
4447 
4448 struct perf_read_data {
4449 	struct perf_event *event;
4450 	bool group;
4451 	int ret;
4452 };
4453 
4454 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4455 {
4456 	u16 local_pkg, event_pkg;
4457 
4458 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4459 		int local_cpu = smp_processor_id();
4460 
4461 		event_pkg = topology_physical_package_id(event_cpu);
4462 		local_pkg = topology_physical_package_id(local_cpu);
4463 
4464 		if (event_pkg == local_pkg)
4465 			return local_cpu;
4466 	}
4467 
4468 	return event_cpu;
4469 }
4470 
4471 /*
4472  * Cross CPU call to read the hardware event
4473  */
4474 static void __perf_event_read(void *info)
4475 {
4476 	struct perf_read_data *data = info;
4477 	struct perf_event *sub, *event = data->event;
4478 	struct perf_event_context *ctx = event->ctx;
4479 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4480 	struct pmu *pmu = event->pmu;
4481 
4482 	/*
4483 	 * If this is a task context, we need to check whether it is
4484 	 * the current task context of this cpu.  If not it has been
4485 	 * scheduled out before the smp call arrived.  In that case
4486 	 * event->count would have been updated to a recent sample
4487 	 * when the event was scheduled out.
4488 	 */
4489 	if (ctx->task && cpuctx->task_ctx != ctx)
4490 		return;
4491 
4492 	raw_spin_lock(&ctx->lock);
4493 	if (ctx->is_active & EVENT_TIME) {
4494 		update_context_time(ctx);
4495 		update_cgrp_time_from_event(event);
4496 	}
4497 
4498 	perf_event_update_time(event);
4499 	if (data->group)
4500 		perf_event_update_sibling_time(event);
4501 
4502 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4503 		goto unlock;
4504 
4505 	if (!data->group) {
4506 		pmu->read(event);
4507 		data->ret = 0;
4508 		goto unlock;
4509 	}
4510 
4511 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4512 
4513 	pmu->read(event);
4514 
4515 	for_each_sibling_event(sub, event) {
4516 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4517 			/*
4518 			 * Use sibling's PMU rather than @event's since
4519 			 * sibling could be on different (eg: software) PMU.
4520 			 */
4521 			sub->pmu->read(sub);
4522 		}
4523 	}
4524 
4525 	data->ret = pmu->commit_txn(pmu);
4526 
4527 unlock:
4528 	raw_spin_unlock(&ctx->lock);
4529 }
4530 
4531 static inline u64 perf_event_count(struct perf_event *event)
4532 {
4533 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4534 }
4535 
4536 static void calc_timer_values(struct perf_event *event,
4537 				u64 *now,
4538 				u64 *enabled,
4539 				u64 *running)
4540 {
4541 	u64 ctx_time;
4542 
4543 	*now = perf_clock();
4544 	ctx_time = perf_event_time_now(event, *now);
4545 	__perf_update_times(event, ctx_time, enabled, running);
4546 }
4547 
4548 /*
4549  * NMI-safe method to read a local event, that is an event that
4550  * is:
4551  *   - either for the current task, or for this CPU
4552  *   - does not have inherit set, for inherited task events
4553  *     will not be local and we cannot read them atomically
4554  *   - must not have a pmu::count method
4555  */
4556 int perf_event_read_local(struct perf_event *event, u64 *value,
4557 			  u64 *enabled, u64 *running)
4558 {
4559 	unsigned long flags;
4560 	int ret = 0;
4561 
4562 	/*
4563 	 * Disabling interrupts avoids all counter scheduling (context
4564 	 * switches, timer based rotation and IPIs).
4565 	 */
4566 	local_irq_save(flags);
4567 
4568 	/*
4569 	 * It must not be an event with inherit set, we cannot read
4570 	 * all child counters from atomic context.
4571 	 */
4572 	if (event->attr.inherit) {
4573 		ret = -EOPNOTSUPP;
4574 		goto out;
4575 	}
4576 
4577 	/* If this is a per-task event, it must be for current */
4578 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4579 	    event->hw.target != current) {
4580 		ret = -EINVAL;
4581 		goto out;
4582 	}
4583 
4584 	/* If this is a per-CPU event, it must be for this CPU */
4585 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4586 	    event->cpu != smp_processor_id()) {
4587 		ret = -EINVAL;
4588 		goto out;
4589 	}
4590 
4591 	/* If this is a pinned event it must be running on this CPU */
4592 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4593 		ret = -EBUSY;
4594 		goto out;
4595 	}
4596 
4597 	/*
4598 	 * If the event is currently on this CPU, its either a per-task event,
4599 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4600 	 * oncpu == -1).
4601 	 */
4602 	if (event->oncpu == smp_processor_id())
4603 		event->pmu->read(event);
4604 
4605 	*value = local64_read(&event->count);
4606 	if (enabled || running) {
4607 		u64 __enabled, __running, __now;
4608 
4609 		calc_timer_values(event, &__now, &__enabled, &__running);
4610 		if (enabled)
4611 			*enabled = __enabled;
4612 		if (running)
4613 			*running = __running;
4614 	}
4615 out:
4616 	local_irq_restore(flags);
4617 
4618 	return ret;
4619 }
4620 
4621 static int perf_event_read(struct perf_event *event, bool group)
4622 {
4623 	enum perf_event_state state = READ_ONCE(event->state);
4624 	int event_cpu, ret = 0;
4625 
4626 	/*
4627 	 * If event is enabled and currently active on a CPU, update the
4628 	 * value in the event structure:
4629 	 */
4630 again:
4631 	if (state == PERF_EVENT_STATE_ACTIVE) {
4632 		struct perf_read_data data;
4633 
4634 		/*
4635 		 * Orders the ->state and ->oncpu loads such that if we see
4636 		 * ACTIVE we must also see the right ->oncpu.
4637 		 *
4638 		 * Matches the smp_wmb() from event_sched_in().
4639 		 */
4640 		smp_rmb();
4641 
4642 		event_cpu = READ_ONCE(event->oncpu);
4643 		if ((unsigned)event_cpu >= nr_cpu_ids)
4644 			return 0;
4645 
4646 		data = (struct perf_read_data){
4647 			.event = event,
4648 			.group = group,
4649 			.ret = 0,
4650 		};
4651 
4652 		preempt_disable();
4653 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4654 
4655 		/*
4656 		 * Purposely ignore the smp_call_function_single() return
4657 		 * value.
4658 		 *
4659 		 * If event_cpu isn't a valid CPU it means the event got
4660 		 * scheduled out and that will have updated the event count.
4661 		 *
4662 		 * Therefore, either way, we'll have an up-to-date event count
4663 		 * after this.
4664 		 */
4665 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4666 		preempt_enable();
4667 		ret = data.ret;
4668 
4669 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4670 		struct perf_event_context *ctx = event->ctx;
4671 		unsigned long flags;
4672 
4673 		raw_spin_lock_irqsave(&ctx->lock, flags);
4674 		state = event->state;
4675 		if (state != PERF_EVENT_STATE_INACTIVE) {
4676 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4677 			goto again;
4678 		}
4679 
4680 		/*
4681 		 * May read while context is not active (e.g., thread is
4682 		 * blocked), in that case we cannot update context time
4683 		 */
4684 		if (ctx->is_active & EVENT_TIME) {
4685 			update_context_time(ctx);
4686 			update_cgrp_time_from_event(event);
4687 		}
4688 
4689 		perf_event_update_time(event);
4690 		if (group)
4691 			perf_event_update_sibling_time(event);
4692 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4693 	}
4694 
4695 	return ret;
4696 }
4697 
4698 /*
4699  * Initialize the perf_event context in a task_struct:
4700  */
4701 static void __perf_event_init_context(struct perf_event_context *ctx)
4702 {
4703 	raw_spin_lock_init(&ctx->lock);
4704 	mutex_init(&ctx->mutex);
4705 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4706 	perf_event_groups_init(&ctx->pinned_groups);
4707 	perf_event_groups_init(&ctx->flexible_groups);
4708 	INIT_LIST_HEAD(&ctx->event_list);
4709 	refcount_set(&ctx->refcount, 1);
4710 }
4711 
4712 static void
4713 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4714 {
4715 	epc->pmu = pmu;
4716 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4717 	INIT_LIST_HEAD(&epc->pinned_active);
4718 	INIT_LIST_HEAD(&epc->flexible_active);
4719 	atomic_set(&epc->refcount, 1);
4720 }
4721 
4722 static struct perf_event_context *
4723 alloc_perf_context(struct task_struct *task)
4724 {
4725 	struct perf_event_context *ctx;
4726 
4727 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4728 	if (!ctx)
4729 		return NULL;
4730 
4731 	__perf_event_init_context(ctx);
4732 	if (task)
4733 		ctx->task = get_task_struct(task);
4734 
4735 	return ctx;
4736 }
4737 
4738 static struct task_struct *
4739 find_lively_task_by_vpid(pid_t vpid)
4740 {
4741 	struct task_struct *task;
4742 
4743 	rcu_read_lock();
4744 	if (!vpid)
4745 		task = current;
4746 	else
4747 		task = find_task_by_vpid(vpid);
4748 	if (task)
4749 		get_task_struct(task);
4750 	rcu_read_unlock();
4751 
4752 	if (!task)
4753 		return ERR_PTR(-ESRCH);
4754 
4755 	return task;
4756 }
4757 
4758 /*
4759  * Returns a matching context with refcount and pincount.
4760  */
4761 static struct perf_event_context *
4762 find_get_context(struct task_struct *task, struct perf_event *event)
4763 {
4764 	struct perf_event_context *ctx, *clone_ctx = NULL;
4765 	struct perf_cpu_context *cpuctx;
4766 	unsigned long flags;
4767 	int err;
4768 
4769 	if (!task) {
4770 		/* Must be root to operate on a CPU event: */
4771 		err = perf_allow_cpu(&event->attr);
4772 		if (err)
4773 			return ERR_PTR(err);
4774 
4775 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4776 		ctx = &cpuctx->ctx;
4777 		get_ctx(ctx);
4778 		raw_spin_lock_irqsave(&ctx->lock, flags);
4779 		++ctx->pin_count;
4780 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4781 
4782 		return ctx;
4783 	}
4784 
4785 	err = -EINVAL;
4786 retry:
4787 	ctx = perf_lock_task_context(task, &flags);
4788 	if (ctx) {
4789 		clone_ctx = unclone_ctx(ctx);
4790 		++ctx->pin_count;
4791 
4792 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4793 
4794 		if (clone_ctx)
4795 			put_ctx(clone_ctx);
4796 	} else {
4797 		ctx = alloc_perf_context(task);
4798 		err = -ENOMEM;
4799 		if (!ctx)
4800 			goto errout;
4801 
4802 		err = 0;
4803 		mutex_lock(&task->perf_event_mutex);
4804 		/*
4805 		 * If it has already passed perf_event_exit_task().
4806 		 * we must see PF_EXITING, it takes this mutex too.
4807 		 */
4808 		if (task->flags & PF_EXITING)
4809 			err = -ESRCH;
4810 		else if (task->perf_event_ctxp)
4811 			err = -EAGAIN;
4812 		else {
4813 			get_ctx(ctx);
4814 			++ctx->pin_count;
4815 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4816 		}
4817 		mutex_unlock(&task->perf_event_mutex);
4818 
4819 		if (unlikely(err)) {
4820 			put_ctx(ctx);
4821 
4822 			if (err == -EAGAIN)
4823 				goto retry;
4824 			goto errout;
4825 		}
4826 	}
4827 
4828 	return ctx;
4829 
4830 errout:
4831 	return ERR_PTR(err);
4832 }
4833 
4834 static struct perf_event_pmu_context *
4835 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4836 		     struct perf_event *event)
4837 {
4838 	struct perf_event_pmu_context *new = NULL, *epc;
4839 	void *task_ctx_data = NULL;
4840 
4841 	if (!ctx->task) {
4842 		/*
4843 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4844 		 * relies on the fact that find_get_pmu_context() cannot fail
4845 		 * for CPU contexts.
4846 		 */
4847 		struct perf_cpu_pmu_context *cpc;
4848 
4849 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4850 		epc = &cpc->epc;
4851 		raw_spin_lock_irq(&ctx->lock);
4852 		if (!epc->ctx) {
4853 			atomic_set(&epc->refcount, 1);
4854 			epc->embedded = 1;
4855 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4856 			epc->ctx = ctx;
4857 		} else {
4858 			WARN_ON_ONCE(epc->ctx != ctx);
4859 			atomic_inc(&epc->refcount);
4860 		}
4861 		raw_spin_unlock_irq(&ctx->lock);
4862 		return epc;
4863 	}
4864 
4865 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4866 	if (!new)
4867 		return ERR_PTR(-ENOMEM);
4868 
4869 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4870 		task_ctx_data = alloc_task_ctx_data(pmu);
4871 		if (!task_ctx_data) {
4872 			kfree(new);
4873 			return ERR_PTR(-ENOMEM);
4874 		}
4875 	}
4876 
4877 	__perf_init_event_pmu_context(new, pmu);
4878 
4879 	/*
4880 	 * XXX
4881 	 *
4882 	 * lockdep_assert_held(&ctx->mutex);
4883 	 *
4884 	 * can't because perf_event_init_task() doesn't actually hold the
4885 	 * child_ctx->mutex.
4886 	 */
4887 
4888 	raw_spin_lock_irq(&ctx->lock);
4889 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4890 		if (epc->pmu == pmu) {
4891 			WARN_ON_ONCE(epc->ctx != ctx);
4892 			atomic_inc(&epc->refcount);
4893 			goto found_epc;
4894 		}
4895 	}
4896 
4897 	epc = new;
4898 	new = NULL;
4899 
4900 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4901 	epc->ctx = ctx;
4902 
4903 found_epc:
4904 	if (task_ctx_data && !epc->task_ctx_data) {
4905 		epc->task_ctx_data = task_ctx_data;
4906 		task_ctx_data = NULL;
4907 		ctx->nr_task_data++;
4908 	}
4909 	raw_spin_unlock_irq(&ctx->lock);
4910 
4911 	free_task_ctx_data(pmu, task_ctx_data);
4912 	kfree(new);
4913 
4914 	return epc;
4915 }
4916 
4917 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4918 {
4919 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4920 }
4921 
4922 static void free_epc_rcu(struct rcu_head *head)
4923 {
4924 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4925 
4926 	kfree(epc->task_ctx_data);
4927 	kfree(epc);
4928 }
4929 
4930 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4931 {
4932 	struct perf_event_context *ctx = epc->ctx;
4933 	unsigned long flags;
4934 
4935 	/*
4936 	 * XXX
4937 	 *
4938 	 * lockdep_assert_held(&ctx->mutex);
4939 	 *
4940 	 * can't because of the call-site in _free_event()/put_event()
4941 	 * which isn't always called under ctx->mutex.
4942 	 */
4943 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4944 		return;
4945 
4946 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4947 
4948 	list_del_init(&epc->pmu_ctx_entry);
4949 	epc->ctx = NULL;
4950 
4951 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4952 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4953 
4954 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4955 
4956 	if (epc->embedded)
4957 		return;
4958 
4959 	call_rcu(&epc->rcu_head, free_epc_rcu);
4960 }
4961 
4962 static void perf_event_free_filter(struct perf_event *event);
4963 
4964 static void free_event_rcu(struct rcu_head *head)
4965 {
4966 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4967 
4968 	if (event->ns)
4969 		put_pid_ns(event->ns);
4970 	perf_event_free_filter(event);
4971 	kmem_cache_free(perf_event_cache, event);
4972 }
4973 
4974 static void ring_buffer_attach(struct perf_event *event,
4975 			       struct perf_buffer *rb);
4976 
4977 static void detach_sb_event(struct perf_event *event)
4978 {
4979 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4980 
4981 	raw_spin_lock(&pel->lock);
4982 	list_del_rcu(&event->sb_list);
4983 	raw_spin_unlock(&pel->lock);
4984 }
4985 
4986 static bool is_sb_event(struct perf_event *event)
4987 {
4988 	struct perf_event_attr *attr = &event->attr;
4989 
4990 	if (event->parent)
4991 		return false;
4992 
4993 	if (event->attach_state & PERF_ATTACH_TASK)
4994 		return false;
4995 
4996 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4997 	    attr->comm || attr->comm_exec ||
4998 	    attr->task || attr->ksymbol ||
4999 	    attr->context_switch || attr->text_poke ||
5000 	    attr->bpf_event)
5001 		return true;
5002 	return false;
5003 }
5004 
5005 static void unaccount_pmu_sb_event(struct perf_event *event)
5006 {
5007 	if (is_sb_event(event))
5008 		detach_sb_event(event);
5009 }
5010 
5011 #ifdef CONFIG_NO_HZ_FULL
5012 static DEFINE_SPINLOCK(nr_freq_lock);
5013 #endif
5014 
5015 static void unaccount_freq_event_nohz(void)
5016 {
5017 #ifdef CONFIG_NO_HZ_FULL
5018 	spin_lock(&nr_freq_lock);
5019 	if (atomic_dec_and_test(&nr_freq_events))
5020 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5021 	spin_unlock(&nr_freq_lock);
5022 #endif
5023 }
5024 
5025 static void unaccount_freq_event(void)
5026 {
5027 	if (tick_nohz_full_enabled())
5028 		unaccount_freq_event_nohz();
5029 	else
5030 		atomic_dec(&nr_freq_events);
5031 }
5032 
5033 static void unaccount_event(struct perf_event *event)
5034 {
5035 	bool dec = false;
5036 
5037 	if (event->parent)
5038 		return;
5039 
5040 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5041 		dec = true;
5042 	if (event->attr.mmap || event->attr.mmap_data)
5043 		atomic_dec(&nr_mmap_events);
5044 	if (event->attr.build_id)
5045 		atomic_dec(&nr_build_id_events);
5046 	if (event->attr.comm)
5047 		atomic_dec(&nr_comm_events);
5048 	if (event->attr.namespaces)
5049 		atomic_dec(&nr_namespaces_events);
5050 	if (event->attr.cgroup)
5051 		atomic_dec(&nr_cgroup_events);
5052 	if (event->attr.task)
5053 		atomic_dec(&nr_task_events);
5054 	if (event->attr.freq)
5055 		unaccount_freq_event();
5056 	if (event->attr.context_switch) {
5057 		dec = true;
5058 		atomic_dec(&nr_switch_events);
5059 	}
5060 	if (is_cgroup_event(event))
5061 		dec = true;
5062 	if (has_branch_stack(event))
5063 		dec = true;
5064 	if (event->attr.ksymbol)
5065 		atomic_dec(&nr_ksymbol_events);
5066 	if (event->attr.bpf_event)
5067 		atomic_dec(&nr_bpf_events);
5068 	if (event->attr.text_poke)
5069 		atomic_dec(&nr_text_poke_events);
5070 
5071 	if (dec) {
5072 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5073 			schedule_delayed_work(&perf_sched_work, HZ);
5074 	}
5075 
5076 	unaccount_pmu_sb_event(event);
5077 }
5078 
5079 static void perf_sched_delayed(struct work_struct *work)
5080 {
5081 	mutex_lock(&perf_sched_mutex);
5082 	if (atomic_dec_and_test(&perf_sched_count))
5083 		static_branch_disable(&perf_sched_events);
5084 	mutex_unlock(&perf_sched_mutex);
5085 }
5086 
5087 /*
5088  * The following implement mutual exclusion of events on "exclusive" pmus
5089  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5090  * at a time, so we disallow creating events that might conflict, namely:
5091  *
5092  *  1) cpu-wide events in the presence of per-task events,
5093  *  2) per-task events in the presence of cpu-wide events,
5094  *  3) two matching events on the same perf_event_context.
5095  *
5096  * The former two cases are handled in the allocation path (perf_event_alloc(),
5097  * _free_event()), the latter -- before the first perf_install_in_context().
5098  */
5099 static int exclusive_event_init(struct perf_event *event)
5100 {
5101 	struct pmu *pmu = event->pmu;
5102 
5103 	if (!is_exclusive_pmu(pmu))
5104 		return 0;
5105 
5106 	/*
5107 	 * Prevent co-existence of per-task and cpu-wide events on the
5108 	 * same exclusive pmu.
5109 	 *
5110 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5111 	 * events on this "exclusive" pmu, positive means there are
5112 	 * per-task events.
5113 	 *
5114 	 * Since this is called in perf_event_alloc() path, event::ctx
5115 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5116 	 * to mean "per-task event", because unlike other attach states it
5117 	 * never gets cleared.
5118 	 */
5119 	if (event->attach_state & PERF_ATTACH_TASK) {
5120 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5121 			return -EBUSY;
5122 	} else {
5123 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5124 			return -EBUSY;
5125 	}
5126 
5127 	return 0;
5128 }
5129 
5130 static void exclusive_event_destroy(struct perf_event *event)
5131 {
5132 	struct pmu *pmu = event->pmu;
5133 
5134 	if (!is_exclusive_pmu(pmu))
5135 		return;
5136 
5137 	/* see comment in exclusive_event_init() */
5138 	if (event->attach_state & PERF_ATTACH_TASK)
5139 		atomic_dec(&pmu->exclusive_cnt);
5140 	else
5141 		atomic_inc(&pmu->exclusive_cnt);
5142 }
5143 
5144 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5145 {
5146 	if ((e1->pmu == e2->pmu) &&
5147 	    (e1->cpu == e2->cpu ||
5148 	     e1->cpu == -1 ||
5149 	     e2->cpu == -1))
5150 		return true;
5151 	return false;
5152 }
5153 
5154 static bool exclusive_event_installable(struct perf_event *event,
5155 					struct perf_event_context *ctx)
5156 {
5157 	struct perf_event *iter_event;
5158 	struct pmu *pmu = event->pmu;
5159 
5160 	lockdep_assert_held(&ctx->mutex);
5161 
5162 	if (!is_exclusive_pmu(pmu))
5163 		return true;
5164 
5165 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5166 		if (exclusive_event_match(iter_event, event))
5167 			return false;
5168 	}
5169 
5170 	return true;
5171 }
5172 
5173 static void perf_addr_filters_splice(struct perf_event *event,
5174 				       struct list_head *head);
5175 
5176 static void perf_pending_task_sync(struct perf_event *event)
5177 {
5178 	struct callback_head *head = &event->pending_task;
5179 
5180 	if (!event->pending_work)
5181 		return;
5182 	/*
5183 	 * If the task is queued to the current task's queue, we
5184 	 * obviously can't wait for it to complete. Simply cancel it.
5185 	 */
5186 	if (task_work_cancel(current, head)) {
5187 		event->pending_work = 0;
5188 		local_dec(&event->ctx->nr_pending);
5189 		return;
5190 	}
5191 
5192 	/*
5193 	 * All accesses related to the event are within the same
5194 	 * non-preemptible section in perf_pending_task(). The RCU
5195 	 * grace period before the event is freed will make sure all
5196 	 * those accesses are complete by then.
5197 	 */
5198 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5199 }
5200 
5201 static void _free_event(struct perf_event *event)
5202 {
5203 	irq_work_sync(&event->pending_irq);
5204 	perf_pending_task_sync(event);
5205 
5206 	unaccount_event(event);
5207 
5208 	security_perf_event_free(event);
5209 
5210 	if (event->rb) {
5211 		/*
5212 		 * Can happen when we close an event with re-directed output.
5213 		 *
5214 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5215 		 * over us; possibly making our ring_buffer_put() the last.
5216 		 */
5217 		mutex_lock(&event->mmap_mutex);
5218 		ring_buffer_attach(event, NULL);
5219 		mutex_unlock(&event->mmap_mutex);
5220 	}
5221 
5222 	if (is_cgroup_event(event))
5223 		perf_detach_cgroup(event);
5224 
5225 	if (!event->parent) {
5226 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5227 			put_callchain_buffers();
5228 	}
5229 
5230 	perf_event_free_bpf_prog(event);
5231 	perf_addr_filters_splice(event, NULL);
5232 	kfree(event->addr_filter_ranges);
5233 
5234 	if (event->destroy)
5235 		event->destroy(event);
5236 
5237 	/*
5238 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5239 	 * hw.target.
5240 	 */
5241 	if (event->hw.target)
5242 		put_task_struct(event->hw.target);
5243 
5244 	if (event->pmu_ctx)
5245 		put_pmu_ctx(event->pmu_ctx);
5246 
5247 	/*
5248 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5249 	 * all task references must be cleaned up.
5250 	 */
5251 	if (event->ctx)
5252 		put_ctx(event->ctx);
5253 
5254 	exclusive_event_destroy(event);
5255 	module_put(event->pmu->module);
5256 
5257 	call_rcu(&event->rcu_head, free_event_rcu);
5258 }
5259 
5260 /*
5261  * Used to free events which have a known refcount of 1, such as in error paths
5262  * where the event isn't exposed yet and inherited events.
5263  */
5264 static void free_event(struct perf_event *event)
5265 {
5266 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5267 				"unexpected event refcount: %ld; ptr=%p\n",
5268 				atomic_long_read(&event->refcount), event)) {
5269 		/* leak to avoid use-after-free */
5270 		return;
5271 	}
5272 
5273 	_free_event(event);
5274 }
5275 
5276 /*
5277  * Remove user event from the owner task.
5278  */
5279 static void perf_remove_from_owner(struct perf_event *event)
5280 {
5281 	struct task_struct *owner;
5282 
5283 	rcu_read_lock();
5284 	/*
5285 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5286 	 * observe !owner it means the list deletion is complete and we can
5287 	 * indeed free this event, otherwise we need to serialize on
5288 	 * owner->perf_event_mutex.
5289 	 */
5290 	owner = READ_ONCE(event->owner);
5291 	if (owner) {
5292 		/*
5293 		 * Since delayed_put_task_struct() also drops the last
5294 		 * task reference we can safely take a new reference
5295 		 * while holding the rcu_read_lock().
5296 		 */
5297 		get_task_struct(owner);
5298 	}
5299 	rcu_read_unlock();
5300 
5301 	if (owner) {
5302 		/*
5303 		 * If we're here through perf_event_exit_task() we're already
5304 		 * holding ctx->mutex which would be an inversion wrt. the
5305 		 * normal lock order.
5306 		 *
5307 		 * However we can safely take this lock because its the child
5308 		 * ctx->mutex.
5309 		 */
5310 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5311 
5312 		/*
5313 		 * We have to re-check the event->owner field, if it is cleared
5314 		 * we raced with perf_event_exit_task(), acquiring the mutex
5315 		 * ensured they're done, and we can proceed with freeing the
5316 		 * event.
5317 		 */
5318 		if (event->owner) {
5319 			list_del_init(&event->owner_entry);
5320 			smp_store_release(&event->owner, NULL);
5321 		}
5322 		mutex_unlock(&owner->perf_event_mutex);
5323 		put_task_struct(owner);
5324 	}
5325 }
5326 
5327 static void put_event(struct perf_event *event)
5328 {
5329 	if (!atomic_long_dec_and_test(&event->refcount))
5330 		return;
5331 
5332 	_free_event(event);
5333 }
5334 
5335 /*
5336  * Kill an event dead; while event:refcount will preserve the event
5337  * object, it will not preserve its functionality. Once the last 'user'
5338  * gives up the object, we'll destroy the thing.
5339  */
5340 int perf_event_release_kernel(struct perf_event *event)
5341 {
5342 	struct perf_event_context *ctx = event->ctx;
5343 	struct perf_event *child, *tmp;
5344 	LIST_HEAD(free_list);
5345 
5346 	/*
5347 	 * If we got here through err_alloc: free_event(event); we will not
5348 	 * have attached to a context yet.
5349 	 */
5350 	if (!ctx) {
5351 		WARN_ON_ONCE(event->attach_state &
5352 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5353 		goto no_ctx;
5354 	}
5355 
5356 	if (!is_kernel_event(event))
5357 		perf_remove_from_owner(event);
5358 
5359 	ctx = perf_event_ctx_lock(event);
5360 	WARN_ON_ONCE(ctx->parent_ctx);
5361 
5362 	/*
5363 	 * Mark this event as STATE_DEAD, there is no external reference to it
5364 	 * anymore.
5365 	 *
5366 	 * Anybody acquiring event->child_mutex after the below loop _must_
5367 	 * also see this, most importantly inherit_event() which will avoid
5368 	 * placing more children on the list.
5369 	 *
5370 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5371 	 * child events.
5372 	 */
5373 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5374 
5375 	perf_event_ctx_unlock(event, ctx);
5376 
5377 again:
5378 	mutex_lock(&event->child_mutex);
5379 	list_for_each_entry(child, &event->child_list, child_list) {
5380 		void *var = NULL;
5381 
5382 		/*
5383 		 * Cannot change, child events are not migrated, see the
5384 		 * comment with perf_event_ctx_lock_nested().
5385 		 */
5386 		ctx = READ_ONCE(child->ctx);
5387 		/*
5388 		 * Since child_mutex nests inside ctx::mutex, we must jump
5389 		 * through hoops. We start by grabbing a reference on the ctx.
5390 		 *
5391 		 * Since the event cannot get freed while we hold the
5392 		 * child_mutex, the context must also exist and have a !0
5393 		 * reference count.
5394 		 */
5395 		get_ctx(ctx);
5396 
5397 		/*
5398 		 * Now that we have a ctx ref, we can drop child_mutex, and
5399 		 * acquire ctx::mutex without fear of it going away. Then we
5400 		 * can re-acquire child_mutex.
5401 		 */
5402 		mutex_unlock(&event->child_mutex);
5403 		mutex_lock(&ctx->mutex);
5404 		mutex_lock(&event->child_mutex);
5405 
5406 		/*
5407 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5408 		 * state, if child is still the first entry, it didn't get freed
5409 		 * and we can continue doing so.
5410 		 */
5411 		tmp = list_first_entry_or_null(&event->child_list,
5412 					       struct perf_event, child_list);
5413 		if (tmp == child) {
5414 			perf_remove_from_context(child, DETACH_GROUP);
5415 			list_move(&child->child_list, &free_list);
5416 			/*
5417 			 * This matches the refcount bump in inherit_event();
5418 			 * this can't be the last reference.
5419 			 */
5420 			put_event(event);
5421 		} else {
5422 			var = &ctx->refcount;
5423 		}
5424 
5425 		mutex_unlock(&event->child_mutex);
5426 		mutex_unlock(&ctx->mutex);
5427 		put_ctx(ctx);
5428 
5429 		if (var) {
5430 			/*
5431 			 * If perf_event_free_task() has deleted all events from the
5432 			 * ctx while the child_mutex got released above, make sure to
5433 			 * notify about the preceding put_ctx().
5434 			 */
5435 			smp_mb(); /* pairs with wait_var_event() */
5436 			wake_up_var(var);
5437 		}
5438 		goto again;
5439 	}
5440 	mutex_unlock(&event->child_mutex);
5441 
5442 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5443 		void *var = &child->ctx->refcount;
5444 
5445 		list_del(&child->child_list);
5446 		free_event(child);
5447 
5448 		/*
5449 		 * Wake any perf_event_free_task() waiting for this event to be
5450 		 * freed.
5451 		 */
5452 		smp_mb(); /* pairs with wait_var_event() */
5453 		wake_up_var(var);
5454 	}
5455 
5456 no_ctx:
5457 	put_event(event); /* Must be the 'last' reference */
5458 	return 0;
5459 }
5460 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5461 
5462 /*
5463  * Called when the last reference to the file is gone.
5464  */
5465 static int perf_release(struct inode *inode, struct file *file)
5466 {
5467 	perf_event_release_kernel(file->private_data);
5468 	return 0;
5469 }
5470 
5471 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5472 {
5473 	struct perf_event *child;
5474 	u64 total = 0;
5475 
5476 	*enabled = 0;
5477 	*running = 0;
5478 
5479 	mutex_lock(&event->child_mutex);
5480 
5481 	(void)perf_event_read(event, false);
5482 	total += perf_event_count(event);
5483 
5484 	*enabled += event->total_time_enabled +
5485 			atomic64_read(&event->child_total_time_enabled);
5486 	*running += event->total_time_running +
5487 			atomic64_read(&event->child_total_time_running);
5488 
5489 	list_for_each_entry(child, &event->child_list, child_list) {
5490 		(void)perf_event_read(child, false);
5491 		total += perf_event_count(child);
5492 		*enabled += child->total_time_enabled;
5493 		*running += child->total_time_running;
5494 	}
5495 	mutex_unlock(&event->child_mutex);
5496 
5497 	return total;
5498 }
5499 
5500 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5501 {
5502 	struct perf_event_context *ctx;
5503 	u64 count;
5504 
5505 	ctx = perf_event_ctx_lock(event);
5506 	count = __perf_event_read_value(event, enabled, running);
5507 	perf_event_ctx_unlock(event, ctx);
5508 
5509 	return count;
5510 }
5511 EXPORT_SYMBOL_GPL(perf_event_read_value);
5512 
5513 static int __perf_read_group_add(struct perf_event *leader,
5514 					u64 read_format, u64 *values)
5515 {
5516 	struct perf_event_context *ctx = leader->ctx;
5517 	struct perf_event *sub, *parent;
5518 	unsigned long flags;
5519 	int n = 1; /* skip @nr */
5520 	int ret;
5521 
5522 	ret = perf_event_read(leader, true);
5523 	if (ret)
5524 		return ret;
5525 
5526 	raw_spin_lock_irqsave(&ctx->lock, flags);
5527 	/*
5528 	 * Verify the grouping between the parent and child (inherited)
5529 	 * events is still in tact.
5530 	 *
5531 	 * Specifically:
5532 	 *  - leader->ctx->lock pins leader->sibling_list
5533 	 *  - parent->child_mutex pins parent->child_list
5534 	 *  - parent->ctx->mutex pins parent->sibling_list
5535 	 *
5536 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5537 	 * ctx->mutex), group destruction is not atomic between children, also
5538 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5539 	 * group.
5540 	 *
5541 	 * Therefore it is possible to have parent and child groups in a
5542 	 * different configuration and summing over such a beast makes no sense
5543 	 * what so ever.
5544 	 *
5545 	 * Reject this.
5546 	 */
5547 	parent = leader->parent;
5548 	if (parent &&
5549 	    (parent->group_generation != leader->group_generation ||
5550 	     parent->nr_siblings != leader->nr_siblings)) {
5551 		ret = -ECHILD;
5552 		goto unlock;
5553 	}
5554 
5555 	/*
5556 	 * Since we co-schedule groups, {enabled,running} times of siblings
5557 	 * will be identical to those of the leader, so we only publish one
5558 	 * set.
5559 	 */
5560 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5561 		values[n++] += leader->total_time_enabled +
5562 			atomic64_read(&leader->child_total_time_enabled);
5563 	}
5564 
5565 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5566 		values[n++] += leader->total_time_running +
5567 			atomic64_read(&leader->child_total_time_running);
5568 	}
5569 
5570 	/*
5571 	 * Write {count,id} tuples for every sibling.
5572 	 */
5573 	values[n++] += perf_event_count(leader);
5574 	if (read_format & PERF_FORMAT_ID)
5575 		values[n++] = primary_event_id(leader);
5576 	if (read_format & PERF_FORMAT_LOST)
5577 		values[n++] = atomic64_read(&leader->lost_samples);
5578 
5579 	for_each_sibling_event(sub, leader) {
5580 		values[n++] += perf_event_count(sub);
5581 		if (read_format & PERF_FORMAT_ID)
5582 			values[n++] = primary_event_id(sub);
5583 		if (read_format & PERF_FORMAT_LOST)
5584 			values[n++] = atomic64_read(&sub->lost_samples);
5585 	}
5586 
5587 unlock:
5588 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5589 	return ret;
5590 }
5591 
5592 static int perf_read_group(struct perf_event *event,
5593 				   u64 read_format, char __user *buf)
5594 {
5595 	struct perf_event *leader = event->group_leader, *child;
5596 	struct perf_event_context *ctx = leader->ctx;
5597 	int ret;
5598 	u64 *values;
5599 
5600 	lockdep_assert_held(&ctx->mutex);
5601 
5602 	values = kzalloc(event->read_size, GFP_KERNEL);
5603 	if (!values)
5604 		return -ENOMEM;
5605 
5606 	values[0] = 1 + leader->nr_siblings;
5607 
5608 	mutex_lock(&leader->child_mutex);
5609 
5610 	ret = __perf_read_group_add(leader, read_format, values);
5611 	if (ret)
5612 		goto unlock;
5613 
5614 	list_for_each_entry(child, &leader->child_list, child_list) {
5615 		ret = __perf_read_group_add(child, read_format, values);
5616 		if (ret)
5617 			goto unlock;
5618 	}
5619 
5620 	mutex_unlock(&leader->child_mutex);
5621 
5622 	ret = event->read_size;
5623 	if (copy_to_user(buf, values, event->read_size))
5624 		ret = -EFAULT;
5625 	goto out;
5626 
5627 unlock:
5628 	mutex_unlock(&leader->child_mutex);
5629 out:
5630 	kfree(values);
5631 	return ret;
5632 }
5633 
5634 static int perf_read_one(struct perf_event *event,
5635 				 u64 read_format, char __user *buf)
5636 {
5637 	u64 enabled, running;
5638 	u64 values[5];
5639 	int n = 0;
5640 
5641 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5642 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5643 		values[n++] = enabled;
5644 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5645 		values[n++] = running;
5646 	if (read_format & PERF_FORMAT_ID)
5647 		values[n++] = primary_event_id(event);
5648 	if (read_format & PERF_FORMAT_LOST)
5649 		values[n++] = atomic64_read(&event->lost_samples);
5650 
5651 	if (copy_to_user(buf, values, n * sizeof(u64)))
5652 		return -EFAULT;
5653 
5654 	return n * sizeof(u64);
5655 }
5656 
5657 static bool is_event_hup(struct perf_event *event)
5658 {
5659 	bool no_children;
5660 
5661 	if (event->state > PERF_EVENT_STATE_EXIT)
5662 		return false;
5663 
5664 	mutex_lock(&event->child_mutex);
5665 	no_children = list_empty(&event->child_list);
5666 	mutex_unlock(&event->child_mutex);
5667 	return no_children;
5668 }
5669 
5670 /*
5671  * Read the performance event - simple non blocking version for now
5672  */
5673 static ssize_t
5674 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5675 {
5676 	u64 read_format = event->attr.read_format;
5677 	int ret;
5678 
5679 	/*
5680 	 * Return end-of-file for a read on an event that is in
5681 	 * error state (i.e. because it was pinned but it couldn't be
5682 	 * scheduled on to the CPU at some point).
5683 	 */
5684 	if (event->state == PERF_EVENT_STATE_ERROR)
5685 		return 0;
5686 
5687 	if (count < event->read_size)
5688 		return -ENOSPC;
5689 
5690 	WARN_ON_ONCE(event->ctx->parent_ctx);
5691 	if (read_format & PERF_FORMAT_GROUP)
5692 		ret = perf_read_group(event, read_format, buf);
5693 	else
5694 		ret = perf_read_one(event, read_format, buf);
5695 
5696 	return ret;
5697 }
5698 
5699 static ssize_t
5700 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5701 {
5702 	struct perf_event *event = file->private_data;
5703 	struct perf_event_context *ctx;
5704 	int ret;
5705 
5706 	ret = security_perf_event_read(event);
5707 	if (ret)
5708 		return ret;
5709 
5710 	ctx = perf_event_ctx_lock(event);
5711 	ret = __perf_read(event, buf, count);
5712 	perf_event_ctx_unlock(event, ctx);
5713 
5714 	return ret;
5715 }
5716 
5717 static __poll_t perf_poll(struct file *file, poll_table *wait)
5718 {
5719 	struct perf_event *event = file->private_data;
5720 	struct perf_buffer *rb;
5721 	__poll_t events = EPOLLHUP;
5722 
5723 	poll_wait(file, &event->waitq, wait);
5724 
5725 	if (is_event_hup(event))
5726 		return events;
5727 
5728 	/*
5729 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5730 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5731 	 */
5732 	mutex_lock(&event->mmap_mutex);
5733 	rb = event->rb;
5734 	if (rb)
5735 		events = atomic_xchg(&rb->poll, 0);
5736 	mutex_unlock(&event->mmap_mutex);
5737 	return events;
5738 }
5739 
5740 static void _perf_event_reset(struct perf_event *event)
5741 {
5742 	(void)perf_event_read(event, false);
5743 	local64_set(&event->count, 0);
5744 	perf_event_update_userpage(event);
5745 }
5746 
5747 /* Assume it's not an event with inherit set. */
5748 u64 perf_event_pause(struct perf_event *event, bool reset)
5749 {
5750 	struct perf_event_context *ctx;
5751 	u64 count;
5752 
5753 	ctx = perf_event_ctx_lock(event);
5754 	WARN_ON_ONCE(event->attr.inherit);
5755 	_perf_event_disable(event);
5756 	count = local64_read(&event->count);
5757 	if (reset)
5758 		local64_set(&event->count, 0);
5759 	perf_event_ctx_unlock(event, ctx);
5760 
5761 	return count;
5762 }
5763 EXPORT_SYMBOL_GPL(perf_event_pause);
5764 
5765 /*
5766  * Holding the top-level event's child_mutex means that any
5767  * descendant process that has inherited this event will block
5768  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5769  * task existence requirements of perf_event_enable/disable.
5770  */
5771 static void perf_event_for_each_child(struct perf_event *event,
5772 					void (*func)(struct perf_event *))
5773 {
5774 	struct perf_event *child;
5775 
5776 	WARN_ON_ONCE(event->ctx->parent_ctx);
5777 
5778 	mutex_lock(&event->child_mutex);
5779 	func(event);
5780 	list_for_each_entry(child, &event->child_list, child_list)
5781 		func(child);
5782 	mutex_unlock(&event->child_mutex);
5783 }
5784 
5785 static void perf_event_for_each(struct perf_event *event,
5786 				  void (*func)(struct perf_event *))
5787 {
5788 	struct perf_event_context *ctx = event->ctx;
5789 	struct perf_event *sibling;
5790 
5791 	lockdep_assert_held(&ctx->mutex);
5792 
5793 	event = event->group_leader;
5794 
5795 	perf_event_for_each_child(event, func);
5796 	for_each_sibling_event(sibling, event)
5797 		perf_event_for_each_child(sibling, func);
5798 }
5799 
5800 static void __perf_event_period(struct perf_event *event,
5801 				struct perf_cpu_context *cpuctx,
5802 				struct perf_event_context *ctx,
5803 				void *info)
5804 {
5805 	u64 value = *((u64 *)info);
5806 	bool active;
5807 
5808 	if (event->attr.freq) {
5809 		event->attr.sample_freq = value;
5810 	} else {
5811 		event->attr.sample_period = value;
5812 		event->hw.sample_period = value;
5813 	}
5814 
5815 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5816 	if (active) {
5817 		perf_pmu_disable(event->pmu);
5818 		/*
5819 		 * We could be throttled; unthrottle now to avoid the tick
5820 		 * trying to unthrottle while we already re-started the event.
5821 		 */
5822 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5823 			event->hw.interrupts = 0;
5824 			perf_log_throttle(event, 1);
5825 		}
5826 		event->pmu->stop(event, PERF_EF_UPDATE);
5827 	}
5828 
5829 	local64_set(&event->hw.period_left, 0);
5830 
5831 	if (active) {
5832 		event->pmu->start(event, PERF_EF_RELOAD);
5833 		perf_pmu_enable(event->pmu);
5834 	}
5835 }
5836 
5837 static int perf_event_check_period(struct perf_event *event, u64 value)
5838 {
5839 	return event->pmu->check_period(event, value);
5840 }
5841 
5842 static int _perf_event_period(struct perf_event *event, u64 value)
5843 {
5844 	if (!is_sampling_event(event))
5845 		return -EINVAL;
5846 
5847 	if (!value)
5848 		return -EINVAL;
5849 
5850 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5851 		return -EINVAL;
5852 
5853 	if (perf_event_check_period(event, value))
5854 		return -EINVAL;
5855 
5856 	if (!event->attr.freq && (value & (1ULL << 63)))
5857 		return -EINVAL;
5858 
5859 	event_function_call(event, __perf_event_period, &value);
5860 
5861 	return 0;
5862 }
5863 
5864 int perf_event_period(struct perf_event *event, u64 value)
5865 {
5866 	struct perf_event_context *ctx;
5867 	int ret;
5868 
5869 	ctx = perf_event_ctx_lock(event);
5870 	ret = _perf_event_period(event, value);
5871 	perf_event_ctx_unlock(event, ctx);
5872 
5873 	return ret;
5874 }
5875 EXPORT_SYMBOL_GPL(perf_event_period);
5876 
5877 static const struct file_operations perf_fops;
5878 
5879 static inline int perf_fget_light(int fd, struct fd *p)
5880 {
5881 	struct fd f = fdget(fd);
5882 	if (!f.file)
5883 		return -EBADF;
5884 
5885 	if (f.file->f_op != &perf_fops) {
5886 		fdput(f);
5887 		return -EBADF;
5888 	}
5889 	*p = f;
5890 	return 0;
5891 }
5892 
5893 static int perf_event_set_output(struct perf_event *event,
5894 				 struct perf_event *output_event);
5895 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5896 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5897 			  struct perf_event_attr *attr);
5898 
5899 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5900 {
5901 	void (*func)(struct perf_event *);
5902 	u32 flags = arg;
5903 
5904 	switch (cmd) {
5905 	case PERF_EVENT_IOC_ENABLE:
5906 		func = _perf_event_enable;
5907 		break;
5908 	case PERF_EVENT_IOC_DISABLE:
5909 		func = _perf_event_disable;
5910 		break;
5911 	case PERF_EVENT_IOC_RESET:
5912 		func = _perf_event_reset;
5913 		break;
5914 
5915 	case PERF_EVENT_IOC_REFRESH:
5916 		return _perf_event_refresh(event, arg);
5917 
5918 	case PERF_EVENT_IOC_PERIOD:
5919 	{
5920 		u64 value;
5921 
5922 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5923 			return -EFAULT;
5924 
5925 		return _perf_event_period(event, value);
5926 	}
5927 	case PERF_EVENT_IOC_ID:
5928 	{
5929 		u64 id = primary_event_id(event);
5930 
5931 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5932 			return -EFAULT;
5933 		return 0;
5934 	}
5935 
5936 	case PERF_EVENT_IOC_SET_OUTPUT:
5937 	{
5938 		int ret;
5939 		if (arg != -1) {
5940 			struct perf_event *output_event;
5941 			struct fd output;
5942 			ret = perf_fget_light(arg, &output);
5943 			if (ret)
5944 				return ret;
5945 			output_event = output.file->private_data;
5946 			ret = perf_event_set_output(event, output_event);
5947 			fdput(output);
5948 		} else {
5949 			ret = perf_event_set_output(event, NULL);
5950 		}
5951 		return ret;
5952 	}
5953 
5954 	case PERF_EVENT_IOC_SET_FILTER:
5955 		return perf_event_set_filter(event, (void __user *)arg);
5956 
5957 	case PERF_EVENT_IOC_SET_BPF:
5958 	{
5959 		struct bpf_prog *prog;
5960 		int err;
5961 
5962 		prog = bpf_prog_get(arg);
5963 		if (IS_ERR(prog))
5964 			return PTR_ERR(prog);
5965 
5966 		err = perf_event_set_bpf_prog(event, prog, 0);
5967 		if (err) {
5968 			bpf_prog_put(prog);
5969 			return err;
5970 		}
5971 
5972 		return 0;
5973 	}
5974 
5975 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5976 		struct perf_buffer *rb;
5977 
5978 		rcu_read_lock();
5979 		rb = rcu_dereference(event->rb);
5980 		if (!rb || !rb->nr_pages) {
5981 			rcu_read_unlock();
5982 			return -EINVAL;
5983 		}
5984 		rb_toggle_paused(rb, !!arg);
5985 		rcu_read_unlock();
5986 		return 0;
5987 	}
5988 
5989 	case PERF_EVENT_IOC_QUERY_BPF:
5990 		return perf_event_query_prog_array(event, (void __user *)arg);
5991 
5992 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5993 		struct perf_event_attr new_attr;
5994 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5995 					 &new_attr);
5996 
5997 		if (err)
5998 			return err;
5999 
6000 		return perf_event_modify_attr(event,  &new_attr);
6001 	}
6002 	default:
6003 		return -ENOTTY;
6004 	}
6005 
6006 	if (flags & PERF_IOC_FLAG_GROUP)
6007 		perf_event_for_each(event, func);
6008 	else
6009 		perf_event_for_each_child(event, func);
6010 
6011 	return 0;
6012 }
6013 
6014 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6015 {
6016 	struct perf_event *event = file->private_data;
6017 	struct perf_event_context *ctx;
6018 	long ret;
6019 
6020 	/* Treat ioctl like writes as it is likely a mutating operation. */
6021 	ret = security_perf_event_write(event);
6022 	if (ret)
6023 		return ret;
6024 
6025 	ctx = perf_event_ctx_lock(event);
6026 	ret = _perf_ioctl(event, cmd, arg);
6027 	perf_event_ctx_unlock(event, ctx);
6028 
6029 	return ret;
6030 }
6031 
6032 #ifdef CONFIG_COMPAT
6033 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6034 				unsigned long arg)
6035 {
6036 	switch (_IOC_NR(cmd)) {
6037 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6038 	case _IOC_NR(PERF_EVENT_IOC_ID):
6039 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6040 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6041 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6042 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6043 			cmd &= ~IOCSIZE_MASK;
6044 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6045 		}
6046 		break;
6047 	}
6048 	return perf_ioctl(file, cmd, arg);
6049 }
6050 #else
6051 # define perf_compat_ioctl NULL
6052 #endif
6053 
6054 int perf_event_task_enable(void)
6055 {
6056 	struct perf_event_context *ctx;
6057 	struct perf_event *event;
6058 
6059 	mutex_lock(&current->perf_event_mutex);
6060 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6061 		ctx = perf_event_ctx_lock(event);
6062 		perf_event_for_each_child(event, _perf_event_enable);
6063 		perf_event_ctx_unlock(event, ctx);
6064 	}
6065 	mutex_unlock(&current->perf_event_mutex);
6066 
6067 	return 0;
6068 }
6069 
6070 int perf_event_task_disable(void)
6071 {
6072 	struct perf_event_context *ctx;
6073 	struct perf_event *event;
6074 
6075 	mutex_lock(&current->perf_event_mutex);
6076 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6077 		ctx = perf_event_ctx_lock(event);
6078 		perf_event_for_each_child(event, _perf_event_disable);
6079 		perf_event_ctx_unlock(event, ctx);
6080 	}
6081 	mutex_unlock(&current->perf_event_mutex);
6082 
6083 	return 0;
6084 }
6085 
6086 static int perf_event_index(struct perf_event *event)
6087 {
6088 	if (event->hw.state & PERF_HES_STOPPED)
6089 		return 0;
6090 
6091 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6092 		return 0;
6093 
6094 	return event->pmu->event_idx(event);
6095 }
6096 
6097 static void perf_event_init_userpage(struct perf_event *event)
6098 {
6099 	struct perf_event_mmap_page *userpg;
6100 	struct perf_buffer *rb;
6101 
6102 	rcu_read_lock();
6103 	rb = rcu_dereference(event->rb);
6104 	if (!rb)
6105 		goto unlock;
6106 
6107 	userpg = rb->user_page;
6108 
6109 	/* Allow new userspace to detect that bit 0 is deprecated */
6110 	userpg->cap_bit0_is_deprecated = 1;
6111 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6112 	userpg->data_offset = PAGE_SIZE;
6113 	userpg->data_size = perf_data_size(rb);
6114 
6115 unlock:
6116 	rcu_read_unlock();
6117 }
6118 
6119 void __weak arch_perf_update_userpage(
6120 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6121 {
6122 }
6123 
6124 /*
6125  * Callers need to ensure there can be no nesting of this function, otherwise
6126  * the seqlock logic goes bad. We can not serialize this because the arch
6127  * code calls this from NMI context.
6128  */
6129 void perf_event_update_userpage(struct perf_event *event)
6130 {
6131 	struct perf_event_mmap_page *userpg;
6132 	struct perf_buffer *rb;
6133 	u64 enabled, running, now;
6134 
6135 	rcu_read_lock();
6136 	rb = rcu_dereference(event->rb);
6137 	if (!rb)
6138 		goto unlock;
6139 
6140 	/*
6141 	 * compute total_time_enabled, total_time_running
6142 	 * based on snapshot values taken when the event
6143 	 * was last scheduled in.
6144 	 *
6145 	 * we cannot simply called update_context_time()
6146 	 * because of locking issue as we can be called in
6147 	 * NMI context
6148 	 */
6149 	calc_timer_values(event, &now, &enabled, &running);
6150 
6151 	userpg = rb->user_page;
6152 	/*
6153 	 * Disable preemption to guarantee consistent time stamps are stored to
6154 	 * the user page.
6155 	 */
6156 	preempt_disable();
6157 	++userpg->lock;
6158 	barrier();
6159 	userpg->index = perf_event_index(event);
6160 	userpg->offset = perf_event_count(event);
6161 	if (userpg->index)
6162 		userpg->offset -= local64_read(&event->hw.prev_count);
6163 
6164 	userpg->time_enabled = enabled +
6165 			atomic64_read(&event->child_total_time_enabled);
6166 
6167 	userpg->time_running = running +
6168 			atomic64_read(&event->child_total_time_running);
6169 
6170 	arch_perf_update_userpage(event, userpg, now);
6171 
6172 	barrier();
6173 	++userpg->lock;
6174 	preempt_enable();
6175 unlock:
6176 	rcu_read_unlock();
6177 }
6178 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6179 
6180 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6181 {
6182 	struct perf_event *event = vmf->vma->vm_file->private_data;
6183 	struct perf_buffer *rb;
6184 	vm_fault_t ret = VM_FAULT_SIGBUS;
6185 
6186 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6187 		if (vmf->pgoff == 0)
6188 			ret = 0;
6189 		return ret;
6190 	}
6191 
6192 	rcu_read_lock();
6193 	rb = rcu_dereference(event->rb);
6194 	if (!rb)
6195 		goto unlock;
6196 
6197 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6198 		goto unlock;
6199 
6200 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6201 	if (!vmf->page)
6202 		goto unlock;
6203 
6204 	get_page(vmf->page);
6205 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6206 	vmf->page->index   = vmf->pgoff;
6207 
6208 	ret = 0;
6209 unlock:
6210 	rcu_read_unlock();
6211 
6212 	return ret;
6213 }
6214 
6215 static void ring_buffer_attach(struct perf_event *event,
6216 			       struct perf_buffer *rb)
6217 {
6218 	struct perf_buffer *old_rb = NULL;
6219 	unsigned long flags;
6220 
6221 	WARN_ON_ONCE(event->parent);
6222 
6223 	if (event->rb) {
6224 		/*
6225 		 * Should be impossible, we set this when removing
6226 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6227 		 */
6228 		WARN_ON_ONCE(event->rcu_pending);
6229 
6230 		old_rb = event->rb;
6231 		spin_lock_irqsave(&old_rb->event_lock, flags);
6232 		list_del_rcu(&event->rb_entry);
6233 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6234 
6235 		event->rcu_batches = get_state_synchronize_rcu();
6236 		event->rcu_pending = 1;
6237 	}
6238 
6239 	if (rb) {
6240 		if (event->rcu_pending) {
6241 			cond_synchronize_rcu(event->rcu_batches);
6242 			event->rcu_pending = 0;
6243 		}
6244 
6245 		spin_lock_irqsave(&rb->event_lock, flags);
6246 		list_add_rcu(&event->rb_entry, &rb->event_list);
6247 		spin_unlock_irqrestore(&rb->event_lock, flags);
6248 	}
6249 
6250 	/*
6251 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6252 	 * before swizzling the event::rb pointer; if it's getting
6253 	 * unmapped, its aux_mmap_count will be 0 and it won't
6254 	 * restart. See the comment in __perf_pmu_output_stop().
6255 	 *
6256 	 * Data will inevitably be lost when set_output is done in
6257 	 * mid-air, but then again, whoever does it like this is
6258 	 * not in for the data anyway.
6259 	 */
6260 	if (has_aux(event))
6261 		perf_event_stop(event, 0);
6262 
6263 	rcu_assign_pointer(event->rb, rb);
6264 
6265 	if (old_rb) {
6266 		ring_buffer_put(old_rb);
6267 		/*
6268 		 * Since we detached before setting the new rb, so that we
6269 		 * could attach the new rb, we could have missed a wakeup.
6270 		 * Provide it now.
6271 		 */
6272 		wake_up_all(&event->waitq);
6273 	}
6274 }
6275 
6276 static void ring_buffer_wakeup(struct perf_event *event)
6277 {
6278 	struct perf_buffer *rb;
6279 
6280 	if (event->parent)
6281 		event = event->parent;
6282 
6283 	rcu_read_lock();
6284 	rb = rcu_dereference(event->rb);
6285 	if (rb) {
6286 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6287 			wake_up_all(&event->waitq);
6288 	}
6289 	rcu_read_unlock();
6290 }
6291 
6292 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6293 {
6294 	struct perf_buffer *rb;
6295 
6296 	if (event->parent)
6297 		event = event->parent;
6298 
6299 	rcu_read_lock();
6300 	rb = rcu_dereference(event->rb);
6301 	if (rb) {
6302 		if (!refcount_inc_not_zero(&rb->refcount))
6303 			rb = NULL;
6304 	}
6305 	rcu_read_unlock();
6306 
6307 	return rb;
6308 }
6309 
6310 void ring_buffer_put(struct perf_buffer *rb)
6311 {
6312 	if (!refcount_dec_and_test(&rb->refcount))
6313 		return;
6314 
6315 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6316 
6317 	call_rcu(&rb->rcu_head, rb_free_rcu);
6318 }
6319 
6320 static void perf_mmap_open(struct vm_area_struct *vma)
6321 {
6322 	struct perf_event *event = vma->vm_file->private_data;
6323 
6324 	atomic_inc(&event->mmap_count);
6325 	atomic_inc(&event->rb->mmap_count);
6326 
6327 	if (vma->vm_pgoff)
6328 		atomic_inc(&event->rb->aux_mmap_count);
6329 
6330 	if (event->pmu->event_mapped)
6331 		event->pmu->event_mapped(event, vma->vm_mm);
6332 }
6333 
6334 static void perf_pmu_output_stop(struct perf_event *event);
6335 
6336 /*
6337  * A buffer can be mmap()ed multiple times; either directly through the same
6338  * event, or through other events by use of perf_event_set_output().
6339  *
6340  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6341  * the buffer here, where we still have a VM context. This means we need
6342  * to detach all events redirecting to us.
6343  */
6344 static void perf_mmap_close(struct vm_area_struct *vma)
6345 {
6346 	struct perf_event *event = vma->vm_file->private_data;
6347 	struct perf_buffer *rb = ring_buffer_get(event);
6348 	struct user_struct *mmap_user = rb->mmap_user;
6349 	int mmap_locked = rb->mmap_locked;
6350 	unsigned long size = perf_data_size(rb);
6351 	bool detach_rest = false;
6352 
6353 	if (event->pmu->event_unmapped)
6354 		event->pmu->event_unmapped(event, vma->vm_mm);
6355 
6356 	/*
6357 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6358 	 * to avoid complications.
6359 	 */
6360 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6361 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6362 		/*
6363 		 * Stop all AUX events that are writing to this buffer,
6364 		 * so that we can free its AUX pages and corresponding PMU
6365 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6366 		 * they won't start any more (see perf_aux_output_begin()).
6367 		 */
6368 		perf_pmu_output_stop(event);
6369 
6370 		/* now it's safe to free the pages */
6371 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6372 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6373 
6374 		/* this has to be the last one */
6375 		rb_free_aux(rb);
6376 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6377 
6378 		mutex_unlock(&rb->aux_mutex);
6379 	}
6380 
6381 	if (atomic_dec_and_test(&rb->mmap_count))
6382 		detach_rest = true;
6383 
6384 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6385 		goto out_put;
6386 
6387 	ring_buffer_attach(event, NULL);
6388 	mutex_unlock(&event->mmap_mutex);
6389 
6390 	/* If there's still other mmap()s of this buffer, we're done. */
6391 	if (!detach_rest)
6392 		goto out_put;
6393 
6394 	/*
6395 	 * No other mmap()s, detach from all other events that might redirect
6396 	 * into the now unreachable buffer. Somewhat complicated by the
6397 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6398 	 */
6399 again:
6400 	rcu_read_lock();
6401 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6402 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6403 			/*
6404 			 * This event is en-route to free_event() which will
6405 			 * detach it and remove it from the list.
6406 			 */
6407 			continue;
6408 		}
6409 		rcu_read_unlock();
6410 
6411 		mutex_lock(&event->mmap_mutex);
6412 		/*
6413 		 * Check we didn't race with perf_event_set_output() which can
6414 		 * swizzle the rb from under us while we were waiting to
6415 		 * acquire mmap_mutex.
6416 		 *
6417 		 * If we find a different rb; ignore this event, a next
6418 		 * iteration will no longer find it on the list. We have to
6419 		 * still restart the iteration to make sure we're not now
6420 		 * iterating the wrong list.
6421 		 */
6422 		if (event->rb == rb)
6423 			ring_buffer_attach(event, NULL);
6424 
6425 		mutex_unlock(&event->mmap_mutex);
6426 		put_event(event);
6427 
6428 		/*
6429 		 * Restart the iteration; either we're on the wrong list or
6430 		 * destroyed its integrity by doing a deletion.
6431 		 */
6432 		goto again;
6433 	}
6434 	rcu_read_unlock();
6435 
6436 	/*
6437 	 * It could be there's still a few 0-ref events on the list; they'll
6438 	 * get cleaned up by free_event() -- they'll also still have their
6439 	 * ref on the rb and will free it whenever they are done with it.
6440 	 *
6441 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6442 	 * undo the VM accounting.
6443 	 */
6444 
6445 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6446 			&mmap_user->locked_vm);
6447 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6448 	free_uid(mmap_user);
6449 
6450 out_put:
6451 	ring_buffer_put(rb); /* could be last */
6452 }
6453 
6454 static const struct vm_operations_struct perf_mmap_vmops = {
6455 	.open		= perf_mmap_open,
6456 	.close		= perf_mmap_close, /* non mergeable */
6457 	.fault		= perf_mmap_fault,
6458 	.page_mkwrite	= perf_mmap_fault,
6459 };
6460 
6461 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6462 {
6463 	struct perf_event *event = file->private_data;
6464 	unsigned long user_locked, user_lock_limit;
6465 	struct user_struct *user = current_user();
6466 	struct mutex *aux_mutex = NULL;
6467 	struct perf_buffer *rb = NULL;
6468 	unsigned long locked, lock_limit;
6469 	unsigned long vma_size;
6470 	unsigned long nr_pages;
6471 	long user_extra = 0, extra = 0;
6472 	int ret = 0, flags = 0;
6473 
6474 	/*
6475 	 * Don't allow mmap() of inherited per-task counters. This would
6476 	 * create a performance issue due to all children writing to the
6477 	 * same rb.
6478 	 */
6479 	if (event->cpu == -1 && event->attr.inherit)
6480 		return -EINVAL;
6481 
6482 	if (!(vma->vm_flags & VM_SHARED))
6483 		return -EINVAL;
6484 
6485 	ret = security_perf_event_read(event);
6486 	if (ret)
6487 		return ret;
6488 
6489 	vma_size = vma->vm_end - vma->vm_start;
6490 
6491 	if (vma->vm_pgoff == 0) {
6492 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6493 	} else {
6494 		/*
6495 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6496 		 * mapped, all subsequent mappings should have the same size
6497 		 * and offset. Must be above the normal perf buffer.
6498 		 */
6499 		u64 aux_offset, aux_size;
6500 
6501 		if (!event->rb)
6502 			return -EINVAL;
6503 
6504 		nr_pages = vma_size / PAGE_SIZE;
6505 		if (nr_pages > INT_MAX)
6506 			return -ENOMEM;
6507 
6508 		mutex_lock(&event->mmap_mutex);
6509 		ret = -EINVAL;
6510 
6511 		rb = event->rb;
6512 		if (!rb)
6513 			goto aux_unlock;
6514 
6515 		aux_mutex = &rb->aux_mutex;
6516 		mutex_lock(aux_mutex);
6517 
6518 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6519 		aux_size = READ_ONCE(rb->user_page->aux_size);
6520 
6521 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6522 			goto aux_unlock;
6523 
6524 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6525 			goto aux_unlock;
6526 
6527 		/* already mapped with a different offset */
6528 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6529 			goto aux_unlock;
6530 
6531 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6532 			goto aux_unlock;
6533 
6534 		/* already mapped with a different size */
6535 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6536 			goto aux_unlock;
6537 
6538 		if (!is_power_of_2(nr_pages))
6539 			goto aux_unlock;
6540 
6541 		if (!atomic_inc_not_zero(&rb->mmap_count))
6542 			goto aux_unlock;
6543 
6544 		if (rb_has_aux(rb)) {
6545 			atomic_inc(&rb->aux_mmap_count);
6546 			ret = 0;
6547 			goto unlock;
6548 		}
6549 
6550 		atomic_set(&rb->aux_mmap_count, 1);
6551 		user_extra = nr_pages;
6552 
6553 		goto accounting;
6554 	}
6555 
6556 	/*
6557 	 * If we have rb pages ensure they're a power-of-two number, so we
6558 	 * can do bitmasks instead of modulo.
6559 	 */
6560 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6561 		return -EINVAL;
6562 
6563 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6564 		return -EINVAL;
6565 
6566 	WARN_ON_ONCE(event->ctx->parent_ctx);
6567 again:
6568 	mutex_lock(&event->mmap_mutex);
6569 	if (event->rb) {
6570 		if (data_page_nr(event->rb) != nr_pages) {
6571 			ret = -EINVAL;
6572 			goto unlock;
6573 		}
6574 
6575 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6576 			/*
6577 			 * Raced against perf_mmap_close(); remove the
6578 			 * event and try again.
6579 			 */
6580 			ring_buffer_attach(event, NULL);
6581 			mutex_unlock(&event->mmap_mutex);
6582 			goto again;
6583 		}
6584 
6585 		goto unlock;
6586 	}
6587 
6588 	user_extra = nr_pages + 1;
6589 
6590 accounting:
6591 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6592 
6593 	/*
6594 	 * Increase the limit linearly with more CPUs:
6595 	 */
6596 	user_lock_limit *= num_online_cpus();
6597 
6598 	user_locked = atomic_long_read(&user->locked_vm);
6599 
6600 	/*
6601 	 * sysctl_perf_event_mlock may have changed, so that
6602 	 *     user->locked_vm > user_lock_limit
6603 	 */
6604 	if (user_locked > user_lock_limit)
6605 		user_locked = user_lock_limit;
6606 	user_locked += user_extra;
6607 
6608 	if (user_locked > user_lock_limit) {
6609 		/*
6610 		 * charge locked_vm until it hits user_lock_limit;
6611 		 * charge the rest from pinned_vm
6612 		 */
6613 		extra = user_locked - user_lock_limit;
6614 		user_extra -= extra;
6615 	}
6616 
6617 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6618 	lock_limit >>= PAGE_SHIFT;
6619 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6620 
6621 	if ((locked > lock_limit) && perf_is_paranoid() &&
6622 		!capable(CAP_IPC_LOCK)) {
6623 		ret = -EPERM;
6624 		goto unlock;
6625 	}
6626 
6627 	WARN_ON(!rb && event->rb);
6628 
6629 	if (vma->vm_flags & VM_WRITE)
6630 		flags |= RING_BUFFER_WRITABLE;
6631 
6632 	if (!rb) {
6633 		rb = rb_alloc(nr_pages,
6634 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6635 			      event->cpu, flags);
6636 
6637 		if (!rb) {
6638 			ret = -ENOMEM;
6639 			goto unlock;
6640 		}
6641 
6642 		atomic_set(&rb->mmap_count, 1);
6643 		rb->mmap_user = get_current_user();
6644 		rb->mmap_locked = extra;
6645 
6646 		ring_buffer_attach(event, rb);
6647 
6648 		perf_event_update_time(event);
6649 		perf_event_init_userpage(event);
6650 		perf_event_update_userpage(event);
6651 	} else {
6652 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6653 				   event->attr.aux_watermark, flags);
6654 		if (!ret)
6655 			rb->aux_mmap_locked = extra;
6656 	}
6657 
6658 unlock:
6659 	if (!ret) {
6660 		atomic_long_add(user_extra, &user->locked_vm);
6661 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6662 
6663 		atomic_inc(&event->mmap_count);
6664 	} else if (rb) {
6665 		atomic_dec(&rb->mmap_count);
6666 	}
6667 aux_unlock:
6668 	if (aux_mutex)
6669 		mutex_unlock(aux_mutex);
6670 	mutex_unlock(&event->mmap_mutex);
6671 
6672 	/*
6673 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6674 	 * vma.
6675 	 */
6676 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6677 	vma->vm_ops = &perf_mmap_vmops;
6678 
6679 	if (event->pmu->event_mapped)
6680 		event->pmu->event_mapped(event, vma->vm_mm);
6681 
6682 	return ret;
6683 }
6684 
6685 static int perf_fasync(int fd, struct file *filp, int on)
6686 {
6687 	struct inode *inode = file_inode(filp);
6688 	struct perf_event *event = filp->private_data;
6689 	int retval;
6690 
6691 	inode_lock(inode);
6692 	retval = fasync_helper(fd, filp, on, &event->fasync);
6693 	inode_unlock(inode);
6694 
6695 	if (retval < 0)
6696 		return retval;
6697 
6698 	return 0;
6699 }
6700 
6701 static const struct file_operations perf_fops = {
6702 	.llseek			= no_llseek,
6703 	.release		= perf_release,
6704 	.read			= perf_read,
6705 	.poll			= perf_poll,
6706 	.unlocked_ioctl		= perf_ioctl,
6707 	.compat_ioctl		= perf_compat_ioctl,
6708 	.mmap			= perf_mmap,
6709 	.fasync			= perf_fasync,
6710 };
6711 
6712 /*
6713  * Perf event wakeup
6714  *
6715  * If there's data, ensure we set the poll() state and publish everything
6716  * to user-space before waking everybody up.
6717  */
6718 
6719 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6720 {
6721 	/* only the parent has fasync state */
6722 	if (event->parent)
6723 		event = event->parent;
6724 	return &event->fasync;
6725 }
6726 
6727 void perf_event_wakeup(struct perf_event *event)
6728 {
6729 	ring_buffer_wakeup(event);
6730 
6731 	if (event->pending_kill) {
6732 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6733 		event->pending_kill = 0;
6734 	}
6735 }
6736 
6737 static void perf_sigtrap(struct perf_event *event)
6738 {
6739 	/*
6740 	 * We'd expect this to only occur if the irq_work is delayed and either
6741 	 * ctx->task or current has changed in the meantime. This can be the
6742 	 * case on architectures that do not implement arch_irq_work_raise().
6743 	 */
6744 	if (WARN_ON_ONCE(event->ctx->task != current))
6745 		return;
6746 
6747 	/*
6748 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6749 	 * task exiting.
6750 	 */
6751 	if (current->flags & PF_EXITING)
6752 		return;
6753 
6754 	send_sig_perf((void __user *)event->pending_addr,
6755 		      event->orig_type, event->attr.sig_data);
6756 }
6757 
6758 /*
6759  * Deliver the pending work in-event-context or follow the context.
6760  */
6761 static void __perf_pending_irq(struct perf_event *event)
6762 {
6763 	int cpu = READ_ONCE(event->oncpu);
6764 
6765 	/*
6766 	 * If the event isn't running; we done. event_sched_out() will have
6767 	 * taken care of things.
6768 	 */
6769 	if (cpu < 0)
6770 		return;
6771 
6772 	/*
6773 	 * Yay, we hit home and are in the context of the event.
6774 	 */
6775 	if (cpu == smp_processor_id()) {
6776 		if (event->pending_sigtrap) {
6777 			event->pending_sigtrap = 0;
6778 			perf_sigtrap(event);
6779 			local_dec(&event->ctx->nr_pending);
6780 		}
6781 		if (event->pending_disable) {
6782 			event->pending_disable = 0;
6783 			perf_event_disable_local(event);
6784 		}
6785 		return;
6786 	}
6787 
6788 	/*
6789 	 *  CPU-A			CPU-B
6790 	 *
6791 	 *  perf_event_disable_inatomic()
6792 	 *    @pending_disable = CPU-A;
6793 	 *    irq_work_queue();
6794 	 *
6795 	 *  sched-out
6796 	 *    @pending_disable = -1;
6797 	 *
6798 	 *				sched-in
6799 	 *				perf_event_disable_inatomic()
6800 	 *				  @pending_disable = CPU-B;
6801 	 *				  irq_work_queue(); // FAILS
6802 	 *
6803 	 *  irq_work_run()
6804 	 *    perf_pending_irq()
6805 	 *
6806 	 * But the event runs on CPU-B and wants disabling there.
6807 	 */
6808 	irq_work_queue_on(&event->pending_irq, cpu);
6809 }
6810 
6811 static void perf_pending_irq(struct irq_work *entry)
6812 {
6813 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6814 	int rctx;
6815 
6816 	/*
6817 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6818 	 * and we won't recurse 'further'.
6819 	 */
6820 	rctx = perf_swevent_get_recursion_context();
6821 
6822 	/*
6823 	 * The wakeup isn't bound to the context of the event -- it can happen
6824 	 * irrespective of where the event is.
6825 	 */
6826 	if (event->pending_wakeup) {
6827 		event->pending_wakeup = 0;
6828 		perf_event_wakeup(event);
6829 	}
6830 
6831 	__perf_pending_irq(event);
6832 
6833 	if (rctx >= 0)
6834 		perf_swevent_put_recursion_context(rctx);
6835 }
6836 
6837 static void perf_pending_task(struct callback_head *head)
6838 {
6839 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6840 	int rctx;
6841 
6842 	/*
6843 	 * All accesses to the event must belong to the same implicit RCU read-side
6844 	 * critical section as the ->pending_work reset. See comment in
6845 	 * perf_pending_task_sync().
6846 	 */
6847 	preempt_disable_notrace();
6848 	/*
6849 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6850 	 * and we won't recurse 'further'.
6851 	 */
6852 	rctx = perf_swevent_get_recursion_context();
6853 
6854 	if (event->pending_work) {
6855 		event->pending_work = 0;
6856 		perf_sigtrap(event);
6857 		local_dec(&event->ctx->nr_pending);
6858 		rcuwait_wake_up(&event->pending_work_wait);
6859 	}
6860 
6861 	if (rctx >= 0)
6862 		perf_swevent_put_recursion_context(rctx);
6863 	preempt_enable_notrace();
6864 }
6865 
6866 #ifdef CONFIG_GUEST_PERF_EVENTS
6867 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6868 
6869 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6870 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6871 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6872 
6873 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6874 {
6875 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6876 		return;
6877 
6878 	rcu_assign_pointer(perf_guest_cbs, cbs);
6879 	static_call_update(__perf_guest_state, cbs->state);
6880 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6881 
6882 	/* Implementing ->handle_intel_pt_intr is optional. */
6883 	if (cbs->handle_intel_pt_intr)
6884 		static_call_update(__perf_guest_handle_intel_pt_intr,
6885 				   cbs->handle_intel_pt_intr);
6886 }
6887 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6888 
6889 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6890 {
6891 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6892 		return;
6893 
6894 	rcu_assign_pointer(perf_guest_cbs, NULL);
6895 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6896 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6897 	static_call_update(__perf_guest_handle_intel_pt_intr,
6898 			   (void *)&__static_call_return0);
6899 	synchronize_rcu();
6900 }
6901 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6902 #endif
6903 
6904 static void
6905 perf_output_sample_regs(struct perf_output_handle *handle,
6906 			struct pt_regs *regs, u64 mask)
6907 {
6908 	int bit;
6909 	DECLARE_BITMAP(_mask, 64);
6910 
6911 	bitmap_from_u64(_mask, mask);
6912 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6913 		u64 val;
6914 
6915 		val = perf_reg_value(regs, bit);
6916 		perf_output_put(handle, val);
6917 	}
6918 }
6919 
6920 static void perf_sample_regs_user(struct perf_regs *regs_user,
6921 				  struct pt_regs *regs)
6922 {
6923 	if (user_mode(regs)) {
6924 		regs_user->abi = perf_reg_abi(current);
6925 		regs_user->regs = regs;
6926 	} else if (!(current->flags & PF_KTHREAD)) {
6927 		perf_get_regs_user(regs_user, regs);
6928 	} else {
6929 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6930 		regs_user->regs = NULL;
6931 	}
6932 }
6933 
6934 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6935 				  struct pt_regs *regs)
6936 {
6937 	regs_intr->regs = regs;
6938 	regs_intr->abi  = perf_reg_abi(current);
6939 }
6940 
6941 
6942 /*
6943  * Get remaining task size from user stack pointer.
6944  *
6945  * It'd be better to take stack vma map and limit this more
6946  * precisely, but there's no way to get it safely under interrupt,
6947  * so using TASK_SIZE as limit.
6948  */
6949 static u64 perf_ustack_task_size(struct pt_regs *regs)
6950 {
6951 	unsigned long addr = perf_user_stack_pointer(regs);
6952 
6953 	if (!addr || addr >= TASK_SIZE)
6954 		return 0;
6955 
6956 	return TASK_SIZE - addr;
6957 }
6958 
6959 static u16
6960 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6961 			struct pt_regs *regs)
6962 {
6963 	u64 task_size;
6964 
6965 	/* No regs, no stack pointer, no dump. */
6966 	if (!regs)
6967 		return 0;
6968 
6969 	/*
6970 	 * Check if we fit in with the requested stack size into the:
6971 	 * - TASK_SIZE
6972 	 *   If we don't, we limit the size to the TASK_SIZE.
6973 	 *
6974 	 * - remaining sample size
6975 	 *   If we don't, we customize the stack size to
6976 	 *   fit in to the remaining sample size.
6977 	 */
6978 
6979 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6980 	stack_size = min(stack_size, (u16) task_size);
6981 
6982 	/* Current header size plus static size and dynamic size. */
6983 	header_size += 2 * sizeof(u64);
6984 
6985 	/* Do we fit in with the current stack dump size? */
6986 	if ((u16) (header_size + stack_size) < header_size) {
6987 		/*
6988 		 * If we overflow the maximum size for the sample,
6989 		 * we customize the stack dump size to fit in.
6990 		 */
6991 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6992 		stack_size = round_up(stack_size, sizeof(u64));
6993 	}
6994 
6995 	return stack_size;
6996 }
6997 
6998 static void
6999 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7000 			  struct pt_regs *regs)
7001 {
7002 	/* Case of a kernel thread, nothing to dump */
7003 	if (!regs) {
7004 		u64 size = 0;
7005 		perf_output_put(handle, size);
7006 	} else {
7007 		unsigned long sp;
7008 		unsigned int rem;
7009 		u64 dyn_size;
7010 
7011 		/*
7012 		 * We dump:
7013 		 * static size
7014 		 *   - the size requested by user or the best one we can fit
7015 		 *     in to the sample max size
7016 		 * data
7017 		 *   - user stack dump data
7018 		 * dynamic size
7019 		 *   - the actual dumped size
7020 		 */
7021 
7022 		/* Static size. */
7023 		perf_output_put(handle, dump_size);
7024 
7025 		/* Data. */
7026 		sp = perf_user_stack_pointer(regs);
7027 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7028 		dyn_size = dump_size - rem;
7029 
7030 		perf_output_skip(handle, rem);
7031 
7032 		/* Dynamic size. */
7033 		perf_output_put(handle, dyn_size);
7034 	}
7035 }
7036 
7037 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7038 					  struct perf_sample_data *data,
7039 					  size_t size)
7040 {
7041 	struct perf_event *sampler = event->aux_event;
7042 	struct perf_buffer *rb;
7043 
7044 	data->aux_size = 0;
7045 
7046 	if (!sampler)
7047 		goto out;
7048 
7049 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7050 		goto out;
7051 
7052 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7053 		goto out;
7054 
7055 	rb = ring_buffer_get(sampler);
7056 	if (!rb)
7057 		goto out;
7058 
7059 	/*
7060 	 * If this is an NMI hit inside sampling code, don't take
7061 	 * the sample. See also perf_aux_sample_output().
7062 	 */
7063 	if (READ_ONCE(rb->aux_in_sampling)) {
7064 		data->aux_size = 0;
7065 	} else {
7066 		size = min_t(size_t, size, perf_aux_size(rb));
7067 		data->aux_size = ALIGN(size, sizeof(u64));
7068 	}
7069 	ring_buffer_put(rb);
7070 
7071 out:
7072 	return data->aux_size;
7073 }
7074 
7075 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7076                                  struct perf_event *event,
7077                                  struct perf_output_handle *handle,
7078                                  unsigned long size)
7079 {
7080 	unsigned long flags;
7081 	long ret;
7082 
7083 	/*
7084 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7085 	 * paths. If we start calling them in NMI context, they may race with
7086 	 * the IRQ ones, that is, for example, re-starting an event that's just
7087 	 * been stopped, which is why we're using a separate callback that
7088 	 * doesn't change the event state.
7089 	 *
7090 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7091 	 */
7092 	local_irq_save(flags);
7093 	/*
7094 	 * Guard against NMI hits inside the critical section;
7095 	 * see also perf_prepare_sample_aux().
7096 	 */
7097 	WRITE_ONCE(rb->aux_in_sampling, 1);
7098 	barrier();
7099 
7100 	ret = event->pmu->snapshot_aux(event, handle, size);
7101 
7102 	barrier();
7103 	WRITE_ONCE(rb->aux_in_sampling, 0);
7104 	local_irq_restore(flags);
7105 
7106 	return ret;
7107 }
7108 
7109 static void perf_aux_sample_output(struct perf_event *event,
7110 				   struct perf_output_handle *handle,
7111 				   struct perf_sample_data *data)
7112 {
7113 	struct perf_event *sampler = event->aux_event;
7114 	struct perf_buffer *rb;
7115 	unsigned long pad;
7116 	long size;
7117 
7118 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7119 		return;
7120 
7121 	rb = ring_buffer_get(sampler);
7122 	if (!rb)
7123 		return;
7124 
7125 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7126 
7127 	/*
7128 	 * An error here means that perf_output_copy() failed (returned a
7129 	 * non-zero surplus that it didn't copy), which in its current
7130 	 * enlightened implementation is not possible. If that changes, we'd
7131 	 * like to know.
7132 	 */
7133 	if (WARN_ON_ONCE(size < 0))
7134 		goto out_put;
7135 
7136 	/*
7137 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7138 	 * perf_prepare_sample_aux(), so should not be more than that.
7139 	 */
7140 	pad = data->aux_size - size;
7141 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7142 		pad = 8;
7143 
7144 	if (pad) {
7145 		u64 zero = 0;
7146 		perf_output_copy(handle, &zero, pad);
7147 	}
7148 
7149 out_put:
7150 	ring_buffer_put(rb);
7151 }
7152 
7153 /*
7154  * A set of common sample data types saved even for non-sample records
7155  * when event->attr.sample_id_all is set.
7156  */
7157 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7158 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7159 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7160 
7161 static void __perf_event_header__init_id(struct perf_sample_data *data,
7162 					 struct perf_event *event,
7163 					 u64 sample_type)
7164 {
7165 	data->type = event->attr.sample_type;
7166 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7167 
7168 	if (sample_type & PERF_SAMPLE_TID) {
7169 		/* namespace issues */
7170 		data->tid_entry.pid = perf_event_pid(event, current);
7171 		data->tid_entry.tid = perf_event_tid(event, current);
7172 	}
7173 
7174 	if (sample_type & PERF_SAMPLE_TIME)
7175 		data->time = perf_event_clock(event);
7176 
7177 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7178 		data->id = primary_event_id(event);
7179 
7180 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7181 		data->stream_id = event->id;
7182 
7183 	if (sample_type & PERF_SAMPLE_CPU) {
7184 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7185 		data->cpu_entry.reserved = 0;
7186 	}
7187 }
7188 
7189 void perf_event_header__init_id(struct perf_event_header *header,
7190 				struct perf_sample_data *data,
7191 				struct perf_event *event)
7192 {
7193 	if (event->attr.sample_id_all) {
7194 		header->size += event->id_header_size;
7195 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7196 	}
7197 }
7198 
7199 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7200 					   struct perf_sample_data *data)
7201 {
7202 	u64 sample_type = data->type;
7203 
7204 	if (sample_type & PERF_SAMPLE_TID)
7205 		perf_output_put(handle, data->tid_entry);
7206 
7207 	if (sample_type & PERF_SAMPLE_TIME)
7208 		perf_output_put(handle, data->time);
7209 
7210 	if (sample_type & PERF_SAMPLE_ID)
7211 		perf_output_put(handle, data->id);
7212 
7213 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7214 		perf_output_put(handle, data->stream_id);
7215 
7216 	if (sample_type & PERF_SAMPLE_CPU)
7217 		perf_output_put(handle, data->cpu_entry);
7218 
7219 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7220 		perf_output_put(handle, data->id);
7221 }
7222 
7223 void perf_event__output_id_sample(struct perf_event *event,
7224 				  struct perf_output_handle *handle,
7225 				  struct perf_sample_data *sample)
7226 {
7227 	if (event->attr.sample_id_all)
7228 		__perf_event__output_id_sample(handle, sample);
7229 }
7230 
7231 static void perf_output_read_one(struct perf_output_handle *handle,
7232 				 struct perf_event *event,
7233 				 u64 enabled, u64 running)
7234 {
7235 	u64 read_format = event->attr.read_format;
7236 	u64 values[5];
7237 	int n = 0;
7238 
7239 	values[n++] = perf_event_count(event);
7240 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7241 		values[n++] = enabled +
7242 			atomic64_read(&event->child_total_time_enabled);
7243 	}
7244 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7245 		values[n++] = running +
7246 			atomic64_read(&event->child_total_time_running);
7247 	}
7248 	if (read_format & PERF_FORMAT_ID)
7249 		values[n++] = primary_event_id(event);
7250 	if (read_format & PERF_FORMAT_LOST)
7251 		values[n++] = atomic64_read(&event->lost_samples);
7252 
7253 	__output_copy(handle, values, n * sizeof(u64));
7254 }
7255 
7256 static void perf_output_read_group(struct perf_output_handle *handle,
7257 			    struct perf_event *event,
7258 			    u64 enabled, u64 running)
7259 {
7260 	struct perf_event *leader = event->group_leader, *sub;
7261 	u64 read_format = event->attr.read_format;
7262 	unsigned long flags;
7263 	u64 values[6];
7264 	int n = 0;
7265 
7266 	/*
7267 	 * Disabling interrupts avoids all counter scheduling
7268 	 * (context switches, timer based rotation and IPIs).
7269 	 */
7270 	local_irq_save(flags);
7271 
7272 	values[n++] = 1 + leader->nr_siblings;
7273 
7274 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7275 		values[n++] = enabled;
7276 
7277 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7278 		values[n++] = running;
7279 
7280 	if ((leader != event) &&
7281 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7282 		leader->pmu->read(leader);
7283 
7284 	values[n++] = perf_event_count(leader);
7285 	if (read_format & PERF_FORMAT_ID)
7286 		values[n++] = primary_event_id(leader);
7287 	if (read_format & PERF_FORMAT_LOST)
7288 		values[n++] = atomic64_read(&leader->lost_samples);
7289 
7290 	__output_copy(handle, values, n * sizeof(u64));
7291 
7292 	for_each_sibling_event(sub, leader) {
7293 		n = 0;
7294 
7295 		if ((sub != event) &&
7296 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7297 			sub->pmu->read(sub);
7298 
7299 		values[n++] = perf_event_count(sub);
7300 		if (read_format & PERF_FORMAT_ID)
7301 			values[n++] = primary_event_id(sub);
7302 		if (read_format & PERF_FORMAT_LOST)
7303 			values[n++] = atomic64_read(&sub->lost_samples);
7304 
7305 		__output_copy(handle, values, n * sizeof(u64));
7306 	}
7307 
7308 	local_irq_restore(flags);
7309 }
7310 
7311 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7312 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7313 
7314 /*
7315  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7316  *
7317  * The problem is that its both hard and excessively expensive to iterate the
7318  * child list, not to mention that its impossible to IPI the children running
7319  * on another CPU, from interrupt/NMI context.
7320  */
7321 static void perf_output_read(struct perf_output_handle *handle,
7322 			     struct perf_event *event)
7323 {
7324 	u64 enabled = 0, running = 0, now;
7325 	u64 read_format = event->attr.read_format;
7326 
7327 	/*
7328 	 * compute total_time_enabled, total_time_running
7329 	 * based on snapshot values taken when the event
7330 	 * was last scheduled in.
7331 	 *
7332 	 * we cannot simply called update_context_time()
7333 	 * because of locking issue as we are called in
7334 	 * NMI context
7335 	 */
7336 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7337 		calc_timer_values(event, &now, &enabled, &running);
7338 
7339 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7340 		perf_output_read_group(handle, event, enabled, running);
7341 	else
7342 		perf_output_read_one(handle, event, enabled, running);
7343 }
7344 
7345 void perf_output_sample(struct perf_output_handle *handle,
7346 			struct perf_event_header *header,
7347 			struct perf_sample_data *data,
7348 			struct perf_event *event)
7349 {
7350 	u64 sample_type = data->type;
7351 
7352 	perf_output_put(handle, *header);
7353 
7354 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7355 		perf_output_put(handle, data->id);
7356 
7357 	if (sample_type & PERF_SAMPLE_IP)
7358 		perf_output_put(handle, data->ip);
7359 
7360 	if (sample_type & PERF_SAMPLE_TID)
7361 		perf_output_put(handle, data->tid_entry);
7362 
7363 	if (sample_type & PERF_SAMPLE_TIME)
7364 		perf_output_put(handle, data->time);
7365 
7366 	if (sample_type & PERF_SAMPLE_ADDR)
7367 		perf_output_put(handle, data->addr);
7368 
7369 	if (sample_type & PERF_SAMPLE_ID)
7370 		perf_output_put(handle, data->id);
7371 
7372 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7373 		perf_output_put(handle, data->stream_id);
7374 
7375 	if (sample_type & PERF_SAMPLE_CPU)
7376 		perf_output_put(handle, data->cpu_entry);
7377 
7378 	if (sample_type & PERF_SAMPLE_PERIOD)
7379 		perf_output_put(handle, data->period);
7380 
7381 	if (sample_type & PERF_SAMPLE_READ)
7382 		perf_output_read(handle, event);
7383 
7384 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7385 		int size = 1;
7386 
7387 		size += data->callchain->nr;
7388 		size *= sizeof(u64);
7389 		__output_copy(handle, data->callchain, size);
7390 	}
7391 
7392 	if (sample_type & PERF_SAMPLE_RAW) {
7393 		struct perf_raw_record *raw = data->raw;
7394 
7395 		if (raw) {
7396 			struct perf_raw_frag *frag = &raw->frag;
7397 
7398 			perf_output_put(handle, raw->size);
7399 			do {
7400 				if (frag->copy) {
7401 					__output_custom(handle, frag->copy,
7402 							frag->data, frag->size);
7403 				} else {
7404 					__output_copy(handle, frag->data,
7405 						      frag->size);
7406 				}
7407 				if (perf_raw_frag_last(frag))
7408 					break;
7409 				frag = frag->next;
7410 			} while (1);
7411 			if (frag->pad)
7412 				__output_skip(handle, NULL, frag->pad);
7413 		} else {
7414 			struct {
7415 				u32	size;
7416 				u32	data;
7417 			} raw = {
7418 				.size = sizeof(u32),
7419 				.data = 0,
7420 			};
7421 			perf_output_put(handle, raw);
7422 		}
7423 	}
7424 
7425 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7426 		if (data->br_stack) {
7427 			size_t size;
7428 
7429 			size = data->br_stack->nr
7430 			     * sizeof(struct perf_branch_entry);
7431 
7432 			perf_output_put(handle, data->br_stack->nr);
7433 			if (branch_sample_hw_index(event))
7434 				perf_output_put(handle, data->br_stack->hw_idx);
7435 			perf_output_copy(handle, data->br_stack->entries, size);
7436 		} else {
7437 			/*
7438 			 * we always store at least the value of nr
7439 			 */
7440 			u64 nr = 0;
7441 			perf_output_put(handle, nr);
7442 		}
7443 	}
7444 
7445 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7446 		u64 abi = data->regs_user.abi;
7447 
7448 		/*
7449 		 * If there are no regs to dump, notice it through
7450 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7451 		 */
7452 		perf_output_put(handle, abi);
7453 
7454 		if (abi) {
7455 			u64 mask = event->attr.sample_regs_user;
7456 			perf_output_sample_regs(handle,
7457 						data->regs_user.regs,
7458 						mask);
7459 		}
7460 	}
7461 
7462 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7463 		perf_output_sample_ustack(handle,
7464 					  data->stack_user_size,
7465 					  data->regs_user.regs);
7466 	}
7467 
7468 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7469 		perf_output_put(handle, data->weight.full);
7470 
7471 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7472 		perf_output_put(handle, data->data_src.val);
7473 
7474 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7475 		perf_output_put(handle, data->txn);
7476 
7477 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7478 		u64 abi = data->regs_intr.abi;
7479 		/*
7480 		 * If there are no regs to dump, notice it through
7481 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7482 		 */
7483 		perf_output_put(handle, abi);
7484 
7485 		if (abi) {
7486 			u64 mask = event->attr.sample_regs_intr;
7487 
7488 			perf_output_sample_regs(handle,
7489 						data->regs_intr.regs,
7490 						mask);
7491 		}
7492 	}
7493 
7494 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7495 		perf_output_put(handle, data->phys_addr);
7496 
7497 	if (sample_type & PERF_SAMPLE_CGROUP)
7498 		perf_output_put(handle, data->cgroup);
7499 
7500 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7501 		perf_output_put(handle, data->data_page_size);
7502 
7503 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7504 		perf_output_put(handle, data->code_page_size);
7505 
7506 	if (sample_type & PERF_SAMPLE_AUX) {
7507 		perf_output_put(handle, data->aux_size);
7508 
7509 		if (data->aux_size)
7510 			perf_aux_sample_output(event, handle, data);
7511 	}
7512 
7513 	if (!event->attr.watermark) {
7514 		int wakeup_events = event->attr.wakeup_events;
7515 
7516 		if (wakeup_events) {
7517 			struct perf_buffer *rb = handle->rb;
7518 			int events = local_inc_return(&rb->events);
7519 
7520 			if (events >= wakeup_events) {
7521 				local_sub(wakeup_events, &rb->events);
7522 				local_inc(&rb->wakeup);
7523 			}
7524 		}
7525 	}
7526 }
7527 
7528 static u64 perf_virt_to_phys(u64 virt)
7529 {
7530 	u64 phys_addr = 0;
7531 
7532 	if (!virt)
7533 		return 0;
7534 
7535 	if (virt >= TASK_SIZE) {
7536 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7537 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7538 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7539 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7540 	} else {
7541 		/*
7542 		 * Walking the pages tables for user address.
7543 		 * Interrupts are disabled, so it prevents any tear down
7544 		 * of the page tables.
7545 		 * Try IRQ-safe get_user_page_fast_only first.
7546 		 * If failed, leave phys_addr as 0.
7547 		 */
7548 		if (current->mm != NULL) {
7549 			struct page *p;
7550 
7551 			pagefault_disable();
7552 			if (get_user_page_fast_only(virt, 0, &p)) {
7553 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7554 				put_page(p);
7555 			}
7556 			pagefault_enable();
7557 		}
7558 	}
7559 
7560 	return phys_addr;
7561 }
7562 
7563 /*
7564  * Return the pagetable size of a given virtual address.
7565  */
7566 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7567 {
7568 	u64 size = 0;
7569 
7570 #ifdef CONFIG_HAVE_FAST_GUP
7571 	pgd_t *pgdp, pgd;
7572 	p4d_t *p4dp, p4d;
7573 	pud_t *pudp, pud;
7574 	pmd_t *pmdp, pmd;
7575 	pte_t *ptep, pte;
7576 
7577 	pgdp = pgd_offset(mm, addr);
7578 	pgd = READ_ONCE(*pgdp);
7579 	if (pgd_none(pgd))
7580 		return 0;
7581 
7582 	if (pgd_leaf(pgd))
7583 		return pgd_leaf_size(pgd);
7584 
7585 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7586 	p4d = READ_ONCE(*p4dp);
7587 	if (!p4d_present(p4d))
7588 		return 0;
7589 
7590 	if (p4d_leaf(p4d))
7591 		return p4d_leaf_size(p4d);
7592 
7593 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7594 	pud = READ_ONCE(*pudp);
7595 	if (!pud_present(pud))
7596 		return 0;
7597 
7598 	if (pud_leaf(pud))
7599 		return pud_leaf_size(pud);
7600 
7601 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7602 again:
7603 	pmd = pmdp_get_lockless(pmdp);
7604 	if (!pmd_present(pmd))
7605 		return 0;
7606 
7607 	if (pmd_leaf(pmd))
7608 		return pmd_leaf_size(pmd);
7609 
7610 	ptep = pte_offset_map(&pmd, addr);
7611 	if (!ptep)
7612 		goto again;
7613 
7614 	pte = ptep_get_lockless(ptep);
7615 	if (pte_present(pte))
7616 		size = pte_leaf_size(pte);
7617 	pte_unmap(ptep);
7618 #endif /* CONFIG_HAVE_FAST_GUP */
7619 
7620 	return size;
7621 }
7622 
7623 static u64 perf_get_page_size(unsigned long addr)
7624 {
7625 	struct mm_struct *mm;
7626 	unsigned long flags;
7627 	u64 size;
7628 
7629 	if (!addr)
7630 		return 0;
7631 
7632 	/*
7633 	 * Software page-table walkers must disable IRQs,
7634 	 * which prevents any tear down of the page tables.
7635 	 */
7636 	local_irq_save(flags);
7637 
7638 	mm = current->mm;
7639 	if (!mm) {
7640 		/*
7641 		 * For kernel threads and the like, use init_mm so that
7642 		 * we can find kernel memory.
7643 		 */
7644 		mm = &init_mm;
7645 	}
7646 
7647 	size = perf_get_pgtable_size(mm, addr);
7648 
7649 	local_irq_restore(flags);
7650 
7651 	return size;
7652 }
7653 
7654 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7655 
7656 struct perf_callchain_entry *
7657 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7658 {
7659 	bool kernel = !event->attr.exclude_callchain_kernel;
7660 	bool user   = !event->attr.exclude_callchain_user;
7661 	/* Disallow cross-task user callchains. */
7662 	bool crosstask = event->ctx->task && event->ctx->task != current;
7663 	const u32 max_stack = event->attr.sample_max_stack;
7664 	struct perf_callchain_entry *callchain;
7665 
7666 	if (!kernel && !user)
7667 		return &__empty_callchain;
7668 
7669 	callchain = get_perf_callchain(regs, 0, kernel, user,
7670 				       max_stack, crosstask, true);
7671 	return callchain ?: &__empty_callchain;
7672 }
7673 
7674 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7675 {
7676 	return d * !!(flags & s);
7677 }
7678 
7679 void perf_prepare_sample(struct perf_sample_data *data,
7680 			 struct perf_event *event,
7681 			 struct pt_regs *regs)
7682 {
7683 	u64 sample_type = event->attr.sample_type;
7684 	u64 filtered_sample_type;
7685 
7686 	/*
7687 	 * Add the sample flags that are dependent to others.  And clear the
7688 	 * sample flags that have already been done by the PMU driver.
7689 	 */
7690 	filtered_sample_type = sample_type;
7691 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7692 					   PERF_SAMPLE_IP);
7693 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7694 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7695 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7696 					   PERF_SAMPLE_REGS_USER);
7697 	filtered_sample_type &= ~data->sample_flags;
7698 
7699 	if (filtered_sample_type == 0) {
7700 		/* Make sure it has the correct data->type for output */
7701 		data->type = event->attr.sample_type;
7702 		return;
7703 	}
7704 
7705 	__perf_event_header__init_id(data, event, filtered_sample_type);
7706 
7707 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7708 		data->ip = perf_instruction_pointer(regs);
7709 		data->sample_flags |= PERF_SAMPLE_IP;
7710 	}
7711 
7712 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7713 		perf_sample_save_callchain(data, event, regs);
7714 
7715 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7716 		data->raw = NULL;
7717 		data->dyn_size += sizeof(u64);
7718 		data->sample_flags |= PERF_SAMPLE_RAW;
7719 	}
7720 
7721 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7722 		data->br_stack = NULL;
7723 		data->dyn_size += sizeof(u64);
7724 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7725 	}
7726 
7727 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7728 		perf_sample_regs_user(&data->regs_user, regs);
7729 
7730 	/*
7731 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7732 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7733 	 * the dyn_size if it's not requested by users.
7734 	 */
7735 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7736 		/* regs dump ABI info */
7737 		int size = sizeof(u64);
7738 
7739 		if (data->regs_user.regs) {
7740 			u64 mask = event->attr.sample_regs_user;
7741 			size += hweight64(mask) * sizeof(u64);
7742 		}
7743 
7744 		data->dyn_size += size;
7745 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7746 	}
7747 
7748 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7749 		/*
7750 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7751 		 * processed as the last one or have additional check added
7752 		 * in case new sample type is added, because we could eat
7753 		 * up the rest of the sample size.
7754 		 */
7755 		u16 stack_size = event->attr.sample_stack_user;
7756 		u16 header_size = perf_sample_data_size(data, event);
7757 		u16 size = sizeof(u64);
7758 
7759 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7760 						     data->regs_user.regs);
7761 
7762 		/*
7763 		 * If there is something to dump, add space for the dump
7764 		 * itself and for the field that tells the dynamic size,
7765 		 * which is how many have been actually dumped.
7766 		 */
7767 		if (stack_size)
7768 			size += sizeof(u64) + stack_size;
7769 
7770 		data->stack_user_size = stack_size;
7771 		data->dyn_size += size;
7772 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7773 	}
7774 
7775 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7776 		data->weight.full = 0;
7777 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7778 	}
7779 
7780 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7781 		data->data_src.val = PERF_MEM_NA;
7782 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7783 	}
7784 
7785 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7786 		data->txn = 0;
7787 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7788 	}
7789 
7790 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7791 		data->addr = 0;
7792 		data->sample_flags |= PERF_SAMPLE_ADDR;
7793 	}
7794 
7795 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7796 		/* regs dump ABI info */
7797 		int size = sizeof(u64);
7798 
7799 		perf_sample_regs_intr(&data->regs_intr, regs);
7800 
7801 		if (data->regs_intr.regs) {
7802 			u64 mask = event->attr.sample_regs_intr;
7803 
7804 			size += hweight64(mask) * sizeof(u64);
7805 		}
7806 
7807 		data->dyn_size += size;
7808 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7809 	}
7810 
7811 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7812 		data->phys_addr = perf_virt_to_phys(data->addr);
7813 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7814 	}
7815 
7816 #ifdef CONFIG_CGROUP_PERF
7817 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7818 		struct cgroup *cgrp;
7819 
7820 		/* protected by RCU */
7821 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7822 		data->cgroup = cgroup_id(cgrp);
7823 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7824 	}
7825 #endif
7826 
7827 	/*
7828 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7829 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7830 	 * but the value will not dump to the userspace.
7831 	 */
7832 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7833 		data->data_page_size = perf_get_page_size(data->addr);
7834 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7835 	}
7836 
7837 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7838 		data->code_page_size = perf_get_page_size(data->ip);
7839 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7840 	}
7841 
7842 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7843 		u64 size;
7844 		u16 header_size = perf_sample_data_size(data, event);
7845 
7846 		header_size += sizeof(u64); /* size */
7847 
7848 		/*
7849 		 * Given the 16bit nature of header::size, an AUX sample can
7850 		 * easily overflow it, what with all the preceding sample bits.
7851 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7852 		 * per sample in total (rounded down to 8 byte boundary).
7853 		 */
7854 		size = min_t(size_t, U16_MAX - header_size,
7855 			     event->attr.aux_sample_size);
7856 		size = rounddown(size, 8);
7857 		size = perf_prepare_sample_aux(event, data, size);
7858 
7859 		WARN_ON_ONCE(size + header_size > U16_MAX);
7860 		data->dyn_size += size + sizeof(u64); /* size above */
7861 		data->sample_flags |= PERF_SAMPLE_AUX;
7862 	}
7863 }
7864 
7865 void perf_prepare_header(struct perf_event_header *header,
7866 			 struct perf_sample_data *data,
7867 			 struct perf_event *event,
7868 			 struct pt_regs *regs)
7869 {
7870 	header->type = PERF_RECORD_SAMPLE;
7871 	header->size = perf_sample_data_size(data, event);
7872 	header->misc = perf_misc_flags(regs);
7873 
7874 	/*
7875 	 * If you're adding more sample types here, you likely need to do
7876 	 * something about the overflowing header::size, like repurpose the
7877 	 * lowest 3 bits of size, which should be always zero at the moment.
7878 	 * This raises a more important question, do we really need 512k sized
7879 	 * samples and why, so good argumentation is in order for whatever you
7880 	 * do here next.
7881 	 */
7882 	WARN_ON_ONCE(header->size & 7);
7883 }
7884 
7885 static __always_inline int
7886 __perf_event_output(struct perf_event *event,
7887 		    struct perf_sample_data *data,
7888 		    struct pt_regs *regs,
7889 		    int (*output_begin)(struct perf_output_handle *,
7890 					struct perf_sample_data *,
7891 					struct perf_event *,
7892 					unsigned int))
7893 {
7894 	struct perf_output_handle handle;
7895 	struct perf_event_header header;
7896 	int err;
7897 
7898 	/* protect the callchain buffers */
7899 	rcu_read_lock();
7900 
7901 	perf_prepare_sample(data, event, regs);
7902 	perf_prepare_header(&header, data, event, regs);
7903 
7904 	err = output_begin(&handle, data, event, header.size);
7905 	if (err)
7906 		goto exit;
7907 
7908 	perf_output_sample(&handle, &header, data, event);
7909 
7910 	perf_output_end(&handle);
7911 
7912 exit:
7913 	rcu_read_unlock();
7914 	return err;
7915 }
7916 
7917 void
7918 perf_event_output_forward(struct perf_event *event,
7919 			 struct perf_sample_data *data,
7920 			 struct pt_regs *regs)
7921 {
7922 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7923 }
7924 
7925 void
7926 perf_event_output_backward(struct perf_event *event,
7927 			   struct perf_sample_data *data,
7928 			   struct pt_regs *regs)
7929 {
7930 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7931 }
7932 
7933 int
7934 perf_event_output(struct perf_event *event,
7935 		  struct perf_sample_data *data,
7936 		  struct pt_regs *regs)
7937 {
7938 	return __perf_event_output(event, data, regs, perf_output_begin);
7939 }
7940 
7941 /*
7942  * read event_id
7943  */
7944 
7945 struct perf_read_event {
7946 	struct perf_event_header	header;
7947 
7948 	u32				pid;
7949 	u32				tid;
7950 };
7951 
7952 static void
7953 perf_event_read_event(struct perf_event *event,
7954 			struct task_struct *task)
7955 {
7956 	struct perf_output_handle handle;
7957 	struct perf_sample_data sample;
7958 	struct perf_read_event read_event = {
7959 		.header = {
7960 			.type = PERF_RECORD_READ,
7961 			.misc = 0,
7962 			.size = sizeof(read_event) + event->read_size,
7963 		},
7964 		.pid = perf_event_pid(event, task),
7965 		.tid = perf_event_tid(event, task),
7966 	};
7967 	int ret;
7968 
7969 	perf_event_header__init_id(&read_event.header, &sample, event);
7970 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7971 	if (ret)
7972 		return;
7973 
7974 	perf_output_put(&handle, read_event);
7975 	perf_output_read(&handle, event);
7976 	perf_event__output_id_sample(event, &handle, &sample);
7977 
7978 	perf_output_end(&handle);
7979 }
7980 
7981 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7982 
7983 static void
7984 perf_iterate_ctx(struct perf_event_context *ctx,
7985 		   perf_iterate_f output,
7986 		   void *data, bool all)
7987 {
7988 	struct perf_event *event;
7989 
7990 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7991 		if (!all) {
7992 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7993 				continue;
7994 			if (!event_filter_match(event))
7995 				continue;
7996 		}
7997 
7998 		output(event, data);
7999 	}
8000 }
8001 
8002 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8003 {
8004 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8005 	struct perf_event *event;
8006 
8007 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8008 		/*
8009 		 * Skip events that are not fully formed yet; ensure that
8010 		 * if we observe event->ctx, both event and ctx will be
8011 		 * complete enough. See perf_install_in_context().
8012 		 */
8013 		if (!smp_load_acquire(&event->ctx))
8014 			continue;
8015 
8016 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8017 			continue;
8018 		if (!event_filter_match(event))
8019 			continue;
8020 		output(event, data);
8021 	}
8022 }
8023 
8024 /*
8025  * Iterate all events that need to receive side-band events.
8026  *
8027  * For new callers; ensure that account_pmu_sb_event() includes
8028  * your event, otherwise it might not get delivered.
8029  */
8030 static void
8031 perf_iterate_sb(perf_iterate_f output, void *data,
8032 	       struct perf_event_context *task_ctx)
8033 {
8034 	struct perf_event_context *ctx;
8035 
8036 	rcu_read_lock();
8037 	preempt_disable();
8038 
8039 	/*
8040 	 * If we have task_ctx != NULL we only notify the task context itself.
8041 	 * The task_ctx is set only for EXIT events before releasing task
8042 	 * context.
8043 	 */
8044 	if (task_ctx) {
8045 		perf_iterate_ctx(task_ctx, output, data, false);
8046 		goto done;
8047 	}
8048 
8049 	perf_iterate_sb_cpu(output, data);
8050 
8051 	ctx = rcu_dereference(current->perf_event_ctxp);
8052 	if (ctx)
8053 		perf_iterate_ctx(ctx, output, data, false);
8054 done:
8055 	preempt_enable();
8056 	rcu_read_unlock();
8057 }
8058 
8059 /*
8060  * Clear all file-based filters at exec, they'll have to be
8061  * re-instated when/if these objects are mmapped again.
8062  */
8063 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8064 {
8065 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8066 	struct perf_addr_filter *filter;
8067 	unsigned int restart = 0, count = 0;
8068 	unsigned long flags;
8069 
8070 	if (!has_addr_filter(event))
8071 		return;
8072 
8073 	raw_spin_lock_irqsave(&ifh->lock, flags);
8074 	list_for_each_entry(filter, &ifh->list, entry) {
8075 		if (filter->path.dentry) {
8076 			event->addr_filter_ranges[count].start = 0;
8077 			event->addr_filter_ranges[count].size = 0;
8078 			restart++;
8079 		}
8080 
8081 		count++;
8082 	}
8083 
8084 	if (restart)
8085 		event->addr_filters_gen++;
8086 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8087 
8088 	if (restart)
8089 		perf_event_stop(event, 1);
8090 }
8091 
8092 void perf_event_exec(void)
8093 {
8094 	struct perf_event_context *ctx;
8095 
8096 	ctx = perf_pin_task_context(current);
8097 	if (!ctx)
8098 		return;
8099 
8100 	perf_event_enable_on_exec(ctx);
8101 	perf_event_remove_on_exec(ctx);
8102 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8103 
8104 	perf_unpin_context(ctx);
8105 	put_ctx(ctx);
8106 }
8107 
8108 struct remote_output {
8109 	struct perf_buffer	*rb;
8110 	int			err;
8111 };
8112 
8113 static void __perf_event_output_stop(struct perf_event *event, void *data)
8114 {
8115 	struct perf_event *parent = event->parent;
8116 	struct remote_output *ro = data;
8117 	struct perf_buffer *rb = ro->rb;
8118 	struct stop_event_data sd = {
8119 		.event	= event,
8120 	};
8121 
8122 	if (!has_aux(event))
8123 		return;
8124 
8125 	if (!parent)
8126 		parent = event;
8127 
8128 	/*
8129 	 * In case of inheritance, it will be the parent that links to the
8130 	 * ring-buffer, but it will be the child that's actually using it.
8131 	 *
8132 	 * We are using event::rb to determine if the event should be stopped,
8133 	 * however this may race with ring_buffer_attach() (through set_output),
8134 	 * which will make us skip the event that actually needs to be stopped.
8135 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8136 	 * its rb pointer.
8137 	 */
8138 	if (rcu_dereference(parent->rb) == rb)
8139 		ro->err = __perf_event_stop(&sd);
8140 }
8141 
8142 static int __perf_pmu_output_stop(void *info)
8143 {
8144 	struct perf_event *event = info;
8145 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8146 	struct remote_output ro = {
8147 		.rb	= event->rb,
8148 	};
8149 
8150 	rcu_read_lock();
8151 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8152 	if (cpuctx->task_ctx)
8153 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8154 				   &ro, false);
8155 	rcu_read_unlock();
8156 
8157 	return ro.err;
8158 }
8159 
8160 static void perf_pmu_output_stop(struct perf_event *event)
8161 {
8162 	struct perf_event *iter;
8163 	int err, cpu;
8164 
8165 restart:
8166 	rcu_read_lock();
8167 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8168 		/*
8169 		 * For per-CPU events, we need to make sure that neither they
8170 		 * nor their children are running; for cpu==-1 events it's
8171 		 * sufficient to stop the event itself if it's active, since
8172 		 * it can't have children.
8173 		 */
8174 		cpu = iter->cpu;
8175 		if (cpu == -1)
8176 			cpu = READ_ONCE(iter->oncpu);
8177 
8178 		if (cpu == -1)
8179 			continue;
8180 
8181 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8182 		if (err == -EAGAIN) {
8183 			rcu_read_unlock();
8184 			goto restart;
8185 		}
8186 	}
8187 	rcu_read_unlock();
8188 }
8189 
8190 /*
8191  * task tracking -- fork/exit
8192  *
8193  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8194  */
8195 
8196 struct perf_task_event {
8197 	struct task_struct		*task;
8198 	struct perf_event_context	*task_ctx;
8199 
8200 	struct {
8201 		struct perf_event_header	header;
8202 
8203 		u32				pid;
8204 		u32				ppid;
8205 		u32				tid;
8206 		u32				ptid;
8207 		u64				time;
8208 	} event_id;
8209 };
8210 
8211 static int perf_event_task_match(struct perf_event *event)
8212 {
8213 	return event->attr.comm  || event->attr.mmap ||
8214 	       event->attr.mmap2 || event->attr.mmap_data ||
8215 	       event->attr.task;
8216 }
8217 
8218 static void perf_event_task_output(struct perf_event *event,
8219 				   void *data)
8220 {
8221 	struct perf_task_event *task_event = data;
8222 	struct perf_output_handle handle;
8223 	struct perf_sample_data	sample;
8224 	struct task_struct *task = task_event->task;
8225 	int ret, size = task_event->event_id.header.size;
8226 
8227 	if (!perf_event_task_match(event))
8228 		return;
8229 
8230 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8231 
8232 	ret = perf_output_begin(&handle, &sample, event,
8233 				task_event->event_id.header.size);
8234 	if (ret)
8235 		goto out;
8236 
8237 	task_event->event_id.pid = perf_event_pid(event, task);
8238 	task_event->event_id.tid = perf_event_tid(event, task);
8239 
8240 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8241 		task_event->event_id.ppid = perf_event_pid(event,
8242 							task->real_parent);
8243 		task_event->event_id.ptid = perf_event_pid(event,
8244 							task->real_parent);
8245 	} else {  /* PERF_RECORD_FORK */
8246 		task_event->event_id.ppid = perf_event_pid(event, current);
8247 		task_event->event_id.ptid = perf_event_tid(event, current);
8248 	}
8249 
8250 	task_event->event_id.time = perf_event_clock(event);
8251 
8252 	perf_output_put(&handle, task_event->event_id);
8253 
8254 	perf_event__output_id_sample(event, &handle, &sample);
8255 
8256 	perf_output_end(&handle);
8257 out:
8258 	task_event->event_id.header.size = size;
8259 }
8260 
8261 static void perf_event_task(struct task_struct *task,
8262 			      struct perf_event_context *task_ctx,
8263 			      int new)
8264 {
8265 	struct perf_task_event task_event;
8266 
8267 	if (!atomic_read(&nr_comm_events) &&
8268 	    !atomic_read(&nr_mmap_events) &&
8269 	    !atomic_read(&nr_task_events))
8270 		return;
8271 
8272 	task_event = (struct perf_task_event){
8273 		.task	  = task,
8274 		.task_ctx = task_ctx,
8275 		.event_id    = {
8276 			.header = {
8277 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8278 				.misc = 0,
8279 				.size = sizeof(task_event.event_id),
8280 			},
8281 			/* .pid  */
8282 			/* .ppid */
8283 			/* .tid  */
8284 			/* .ptid */
8285 			/* .time */
8286 		},
8287 	};
8288 
8289 	perf_iterate_sb(perf_event_task_output,
8290 		       &task_event,
8291 		       task_ctx);
8292 }
8293 
8294 void perf_event_fork(struct task_struct *task)
8295 {
8296 	perf_event_task(task, NULL, 1);
8297 	perf_event_namespaces(task);
8298 }
8299 
8300 /*
8301  * comm tracking
8302  */
8303 
8304 struct perf_comm_event {
8305 	struct task_struct	*task;
8306 	char			*comm;
8307 	int			comm_size;
8308 
8309 	struct {
8310 		struct perf_event_header	header;
8311 
8312 		u32				pid;
8313 		u32				tid;
8314 	} event_id;
8315 };
8316 
8317 static int perf_event_comm_match(struct perf_event *event)
8318 {
8319 	return event->attr.comm;
8320 }
8321 
8322 static void perf_event_comm_output(struct perf_event *event,
8323 				   void *data)
8324 {
8325 	struct perf_comm_event *comm_event = data;
8326 	struct perf_output_handle handle;
8327 	struct perf_sample_data sample;
8328 	int size = comm_event->event_id.header.size;
8329 	int ret;
8330 
8331 	if (!perf_event_comm_match(event))
8332 		return;
8333 
8334 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8335 	ret = perf_output_begin(&handle, &sample, event,
8336 				comm_event->event_id.header.size);
8337 
8338 	if (ret)
8339 		goto out;
8340 
8341 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8342 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8343 
8344 	perf_output_put(&handle, comm_event->event_id);
8345 	__output_copy(&handle, comm_event->comm,
8346 				   comm_event->comm_size);
8347 
8348 	perf_event__output_id_sample(event, &handle, &sample);
8349 
8350 	perf_output_end(&handle);
8351 out:
8352 	comm_event->event_id.header.size = size;
8353 }
8354 
8355 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8356 {
8357 	char comm[TASK_COMM_LEN];
8358 	unsigned int size;
8359 
8360 	memset(comm, 0, sizeof(comm));
8361 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8362 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8363 
8364 	comm_event->comm = comm;
8365 	comm_event->comm_size = size;
8366 
8367 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8368 
8369 	perf_iterate_sb(perf_event_comm_output,
8370 		       comm_event,
8371 		       NULL);
8372 }
8373 
8374 void perf_event_comm(struct task_struct *task, bool exec)
8375 {
8376 	struct perf_comm_event comm_event;
8377 
8378 	if (!atomic_read(&nr_comm_events))
8379 		return;
8380 
8381 	comm_event = (struct perf_comm_event){
8382 		.task	= task,
8383 		/* .comm      */
8384 		/* .comm_size */
8385 		.event_id  = {
8386 			.header = {
8387 				.type = PERF_RECORD_COMM,
8388 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8389 				/* .size */
8390 			},
8391 			/* .pid */
8392 			/* .tid */
8393 		},
8394 	};
8395 
8396 	perf_event_comm_event(&comm_event);
8397 }
8398 
8399 /*
8400  * namespaces tracking
8401  */
8402 
8403 struct perf_namespaces_event {
8404 	struct task_struct		*task;
8405 
8406 	struct {
8407 		struct perf_event_header	header;
8408 
8409 		u32				pid;
8410 		u32				tid;
8411 		u64				nr_namespaces;
8412 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8413 	} event_id;
8414 };
8415 
8416 static int perf_event_namespaces_match(struct perf_event *event)
8417 {
8418 	return event->attr.namespaces;
8419 }
8420 
8421 static void perf_event_namespaces_output(struct perf_event *event,
8422 					 void *data)
8423 {
8424 	struct perf_namespaces_event *namespaces_event = data;
8425 	struct perf_output_handle handle;
8426 	struct perf_sample_data sample;
8427 	u16 header_size = namespaces_event->event_id.header.size;
8428 	int ret;
8429 
8430 	if (!perf_event_namespaces_match(event))
8431 		return;
8432 
8433 	perf_event_header__init_id(&namespaces_event->event_id.header,
8434 				   &sample, event);
8435 	ret = perf_output_begin(&handle, &sample, event,
8436 				namespaces_event->event_id.header.size);
8437 	if (ret)
8438 		goto out;
8439 
8440 	namespaces_event->event_id.pid = perf_event_pid(event,
8441 							namespaces_event->task);
8442 	namespaces_event->event_id.tid = perf_event_tid(event,
8443 							namespaces_event->task);
8444 
8445 	perf_output_put(&handle, namespaces_event->event_id);
8446 
8447 	perf_event__output_id_sample(event, &handle, &sample);
8448 
8449 	perf_output_end(&handle);
8450 out:
8451 	namespaces_event->event_id.header.size = header_size;
8452 }
8453 
8454 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8455 				   struct task_struct *task,
8456 				   const struct proc_ns_operations *ns_ops)
8457 {
8458 	struct path ns_path;
8459 	struct inode *ns_inode;
8460 	int error;
8461 
8462 	error = ns_get_path(&ns_path, task, ns_ops);
8463 	if (!error) {
8464 		ns_inode = ns_path.dentry->d_inode;
8465 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8466 		ns_link_info->ino = ns_inode->i_ino;
8467 		path_put(&ns_path);
8468 	}
8469 }
8470 
8471 void perf_event_namespaces(struct task_struct *task)
8472 {
8473 	struct perf_namespaces_event namespaces_event;
8474 	struct perf_ns_link_info *ns_link_info;
8475 
8476 	if (!atomic_read(&nr_namespaces_events))
8477 		return;
8478 
8479 	namespaces_event = (struct perf_namespaces_event){
8480 		.task	= task,
8481 		.event_id  = {
8482 			.header = {
8483 				.type = PERF_RECORD_NAMESPACES,
8484 				.misc = 0,
8485 				.size = sizeof(namespaces_event.event_id),
8486 			},
8487 			/* .pid */
8488 			/* .tid */
8489 			.nr_namespaces = NR_NAMESPACES,
8490 			/* .link_info[NR_NAMESPACES] */
8491 		},
8492 	};
8493 
8494 	ns_link_info = namespaces_event.event_id.link_info;
8495 
8496 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8497 			       task, &mntns_operations);
8498 
8499 #ifdef CONFIG_USER_NS
8500 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8501 			       task, &userns_operations);
8502 #endif
8503 #ifdef CONFIG_NET_NS
8504 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8505 			       task, &netns_operations);
8506 #endif
8507 #ifdef CONFIG_UTS_NS
8508 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8509 			       task, &utsns_operations);
8510 #endif
8511 #ifdef CONFIG_IPC_NS
8512 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8513 			       task, &ipcns_operations);
8514 #endif
8515 #ifdef CONFIG_PID_NS
8516 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8517 			       task, &pidns_operations);
8518 #endif
8519 #ifdef CONFIG_CGROUPS
8520 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8521 			       task, &cgroupns_operations);
8522 #endif
8523 
8524 	perf_iterate_sb(perf_event_namespaces_output,
8525 			&namespaces_event,
8526 			NULL);
8527 }
8528 
8529 /*
8530  * cgroup tracking
8531  */
8532 #ifdef CONFIG_CGROUP_PERF
8533 
8534 struct perf_cgroup_event {
8535 	char				*path;
8536 	int				path_size;
8537 	struct {
8538 		struct perf_event_header	header;
8539 		u64				id;
8540 		char				path[];
8541 	} event_id;
8542 };
8543 
8544 static int perf_event_cgroup_match(struct perf_event *event)
8545 {
8546 	return event->attr.cgroup;
8547 }
8548 
8549 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8550 {
8551 	struct perf_cgroup_event *cgroup_event = data;
8552 	struct perf_output_handle handle;
8553 	struct perf_sample_data sample;
8554 	u16 header_size = cgroup_event->event_id.header.size;
8555 	int ret;
8556 
8557 	if (!perf_event_cgroup_match(event))
8558 		return;
8559 
8560 	perf_event_header__init_id(&cgroup_event->event_id.header,
8561 				   &sample, event);
8562 	ret = perf_output_begin(&handle, &sample, event,
8563 				cgroup_event->event_id.header.size);
8564 	if (ret)
8565 		goto out;
8566 
8567 	perf_output_put(&handle, cgroup_event->event_id);
8568 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8569 
8570 	perf_event__output_id_sample(event, &handle, &sample);
8571 
8572 	perf_output_end(&handle);
8573 out:
8574 	cgroup_event->event_id.header.size = header_size;
8575 }
8576 
8577 static void perf_event_cgroup(struct cgroup *cgrp)
8578 {
8579 	struct perf_cgroup_event cgroup_event;
8580 	char path_enomem[16] = "//enomem";
8581 	char *pathname;
8582 	size_t size;
8583 
8584 	if (!atomic_read(&nr_cgroup_events))
8585 		return;
8586 
8587 	cgroup_event = (struct perf_cgroup_event){
8588 		.event_id  = {
8589 			.header = {
8590 				.type = PERF_RECORD_CGROUP,
8591 				.misc = 0,
8592 				.size = sizeof(cgroup_event.event_id),
8593 			},
8594 			.id = cgroup_id(cgrp),
8595 		},
8596 	};
8597 
8598 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8599 	if (pathname == NULL) {
8600 		cgroup_event.path = path_enomem;
8601 	} else {
8602 		/* just to be sure to have enough space for alignment */
8603 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8604 		cgroup_event.path = pathname;
8605 	}
8606 
8607 	/*
8608 	 * Since our buffer works in 8 byte units we need to align our string
8609 	 * size to a multiple of 8. However, we must guarantee the tail end is
8610 	 * zero'd out to avoid leaking random bits to userspace.
8611 	 */
8612 	size = strlen(cgroup_event.path) + 1;
8613 	while (!IS_ALIGNED(size, sizeof(u64)))
8614 		cgroup_event.path[size++] = '\0';
8615 
8616 	cgroup_event.event_id.header.size += size;
8617 	cgroup_event.path_size = size;
8618 
8619 	perf_iterate_sb(perf_event_cgroup_output,
8620 			&cgroup_event,
8621 			NULL);
8622 
8623 	kfree(pathname);
8624 }
8625 
8626 #endif
8627 
8628 /*
8629  * mmap tracking
8630  */
8631 
8632 struct perf_mmap_event {
8633 	struct vm_area_struct	*vma;
8634 
8635 	const char		*file_name;
8636 	int			file_size;
8637 	int			maj, min;
8638 	u64			ino;
8639 	u64			ino_generation;
8640 	u32			prot, flags;
8641 	u8			build_id[BUILD_ID_SIZE_MAX];
8642 	u32			build_id_size;
8643 
8644 	struct {
8645 		struct perf_event_header	header;
8646 
8647 		u32				pid;
8648 		u32				tid;
8649 		u64				start;
8650 		u64				len;
8651 		u64				pgoff;
8652 	} event_id;
8653 };
8654 
8655 static int perf_event_mmap_match(struct perf_event *event,
8656 				 void *data)
8657 {
8658 	struct perf_mmap_event *mmap_event = data;
8659 	struct vm_area_struct *vma = mmap_event->vma;
8660 	int executable = vma->vm_flags & VM_EXEC;
8661 
8662 	return (!executable && event->attr.mmap_data) ||
8663 	       (executable && (event->attr.mmap || event->attr.mmap2));
8664 }
8665 
8666 static void perf_event_mmap_output(struct perf_event *event,
8667 				   void *data)
8668 {
8669 	struct perf_mmap_event *mmap_event = data;
8670 	struct perf_output_handle handle;
8671 	struct perf_sample_data sample;
8672 	int size = mmap_event->event_id.header.size;
8673 	u32 type = mmap_event->event_id.header.type;
8674 	bool use_build_id;
8675 	int ret;
8676 
8677 	if (!perf_event_mmap_match(event, data))
8678 		return;
8679 
8680 	if (event->attr.mmap2) {
8681 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8682 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8683 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8684 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8685 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8686 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8687 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8688 	}
8689 
8690 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8691 	ret = perf_output_begin(&handle, &sample, event,
8692 				mmap_event->event_id.header.size);
8693 	if (ret)
8694 		goto out;
8695 
8696 	mmap_event->event_id.pid = perf_event_pid(event, current);
8697 	mmap_event->event_id.tid = perf_event_tid(event, current);
8698 
8699 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8700 
8701 	if (event->attr.mmap2 && use_build_id)
8702 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8703 
8704 	perf_output_put(&handle, mmap_event->event_id);
8705 
8706 	if (event->attr.mmap2) {
8707 		if (use_build_id) {
8708 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8709 
8710 			__output_copy(&handle, size, 4);
8711 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8712 		} else {
8713 			perf_output_put(&handle, mmap_event->maj);
8714 			perf_output_put(&handle, mmap_event->min);
8715 			perf_output_put(&handle, mmap_event->ino);
8716 			perf_output_put(&handle, mmap_event->ino_generation);
8717 		}
8718 		perf_output_put(&handle, mmap_event->prot);
8719 		perf_output_put(&handle, mmap_event->flags);
8720 	}
8721 
8722 	__output_copy(&handle, mmap_event->file_name,
8723 				   mmap_event->file_size);
8724 
8725 	perf_event__output_id_sample(event, &handle, &sample);
8726 
8727 	perf_output_end(&handle);
8728 out:
8729 	mmap_event->event_id.header.size = size;
8730 	mmap_event->event_id.header.type = type;
8731 }
8732 
8733 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8734 {
8735 	struct vm_area_struct *vma = mmap_event->vma;
8736 	struct file *file = vma->vm_file;
8737 	int maj = 0, min = 0;
8738 	u64 ino = 0, gen = 0;
8739 	u32 prot = 0, flags = 0;
8740 	unsigned int size;
8741 	char tmp[16];
8742 	char *buf = NULL;
8743 	char *name = NULL;
8744 
8745 	if (vma->vm_flags & VM_READ)
8746 		prot |= PROT_READ;
8747 	if (vma->vm_flags & VM_WRITE)
8748 		prot |= PROT_WRITE;
8749 	if (vma->vm_flags & VM_EXEC)
8750 		prot |= PROT_EXEC;
8751 
8752 	if (vma->vm_flags & VM_MAYSHARE)
8753 		flags = MAP_SHARED;
8754 	else
8755 		flags = MAP_PRIVATE;
8756 
8757 	if (vma->vm_flags & VM_LOCKED)
8758 		flags |= MAP_LOCKED;
8759 	if (is_vm_hugetlb_page(vma))
8760 		flags |= MAP_HUGETLB;
8761 
8762 	if (file) {
8763 		struct inode *inode;
8764 		dev_t dev;
8765 
8766 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8767 		if (!buf) {
8768 			name = "//enomem";
8769 			goto cpy_name;
8770 		}
8771 		/*
8772 		 * d_path() works from the end of the rb backwards, so we
8773 		 * need to add enough zero bytes after the string to handle
8774 		 * the 64bit alignment we do later.
8775 		 */
8776 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8777 		if (IS_ERR(name)) {
8778 			name = "//toolong";
8779 			goto cpy_name;
8780 		}
8781 		inode = file_inode(vma->vm_file);
8782 		dev = inode->i_sb->s_dev;
8783 		ino = inode->i_ino;
8784 		gen = inode->i_generation;
8785 		maj = MAJOR(dev);
8786 		min = MINOR(dev);
8787 
8788 		goto got_name;
8789 	} else {
8790 		if (vma->vm_ops && vma->vm_ops->name)
8791 			name = (char *) vma->vm_ops->name(vma);
8792 		if (!name)
8793 			name = (char *)arch_vma_name(vma);
8794 		if (!name) {
8795 			if (vma_is_initial_heap(vma))
8796 				name = "[heap]";
8797 			else if (vma_is_initial_stack(vma))
8798 				name = "[stack]";
8799 			else
8800 				name = "//anon";
8801 		}
8802 	}
8803 
8804 cpy_name:
8805 	strscpy(tmp, name, sizeof(tmp));
8806 	name = tmp;
8807 got_name:
8808 	/*
8809 	 * Since our buffer works in 8 byte units we need to align our string
8810 	 * size to a multiple of 8. However, we must guarantee the tail end is
8811 	 * zero'd out to avoid leaking random bits to userspace.
8812 	 */
8813 	size = strlen(name)+1;
8814 	while (!IS_ALIGNED(size, sizeof(u64)))
8815 		name[size++] = '\0';
8816 
8817 	mmap_event->file_name = name;
8818 	mmap_event->file_size = size;
8819 	mmap_event->maj = maj;
8820 	mmap_event->min = min;
8821 	mmap_event->ino = ino;
8822 	mmap_event->ino_generation = gen;
8823 	mmap_event->prot = prot;
8824 	mmap_event->flags = flags;
8825 
8826 	if (!(vma->vm_flags & VM_EXEC))
8827 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8828 
8829 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8830 
8831 	if (atomic_read(&nr_build_id_events))
8832 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8833 
8834 	perf_iterate_sb(perf_event_mmap_output,
8835 		       mmap_event,
8836 		       NULL);
8837 
8838 	kfree(buf);
8839 }
8840 
8841 /*
8842  * Check whether inode and address range match filter criteria.
8843  */
8844 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8845 				     struct file *file, unsigned long offset,
8846 				     unsigned long size)
8847 {
8848 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8849 	if (!filter->path.dentry)
8850 		return false;
8851 
8852 	if (d_inode(filter->path.dentry) != file_inode(file))
8853 		return false;
8854 
8855 	if (filter->offset > offset + size)
8856 		return false;
8857 
8858 	if (filter->offset + filter->size < offset)
8859 		return false;
8860 
8861 	return true;
8862 }
8863 
8864 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8865 					struct vm_area_struct *vma,
8866 					struct perf_addr_filter_range *fr)
8867 {
8868 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8869 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8870 	struct file *file = vma->vm_file;
8871 
8872 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8873 		return false;
8874 
8875 	if (filter->offset < off) {
8876 		fr->start = vma->vm_start;
8877 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8878 	} else {
8879 		fr->start = vma->vm_start + filter->offset - off;
8880 		fr->size = min(vma->vm_end - fr->start, filter->size);
8881 	}
8882 
8883 	return true;
8884 }
8885 
8886 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8887 {
8888 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8889 	struct vm_area_struct *vma = data;
8890 	struct perf_addr_filter *filter;
8891 	unsigned int restart = 0, count = 0;
8892 	unsigned long flags;
8893 
8894 	if (!has_addr_filter(event))
8895 		return;
8896 
8897 	if (!vma->vm_file)
8898 		return;
8899 
8900 	raw_spin_lock_irqsave(&ifh->lock, flags);
8901 	list_for_each_entry(filter, &ifh->list, entry) {
8902 		if (perf_addr_filter_vma_adjust(filter, vma,
8903 						&event->addr_filter_ranges[count]))
8904 			restart++;
8905 
8906 		count++;
8907 	}
8908 
8909 	if (restart)
8910 		event->addr_filters_gen++;
8911 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8912 
8913 	if (restart)
8914 		perf_event_stop(event, 1);
8915 }
8916 
8917 /*
8918  * Adjust all task's events' filters to the new vma
8919  */
8920 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8921 {
8922 	struct perf_event_context *ctx;
8923 
8924 	/*
8925 	 * Data tracing isn't supported yet and as such there is no need
8926 	 * to keep track of anything that isn't related to executable code:
8927 	 */
8928 	if (!(vma->vm_flags & VM_EXEC))
8929 		return;
8930 
8931 	rcu_read_lock();
8932 	ctx = rcu_dereference(current->perf_event_ctxp);
8933 	if (ctx)
8934 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8935 	rcu_read_unlock();
8936 }
8937 
8938 void perf_event_mmap(struct vm_area_struct *vma)
8939 {
8940 	struct perf_mmap_event mmap_event;
8941 
8942 	if (!atomic_read(&nr_mmap_events))
8943 		return;
8944 
8945 	mmap_event = (struct perf_mmap_event){
8946 		.vma	= vma,
8947 		/* .file_name */
8948 		/* .file_size */
8949 		.event_id  = {
8950 			.header = {
8951 				.type = PERF_RECORD_MMAP,
8952 				.misc = PERF_RECORD_MISC_USER,
8953 				/* .size */
8954 			},
8955 			/* .pid */
8956 			/* .tid */
8957 			.start  = vma->vm_start,
8958 			.len    = vma->vm_end - vma->vm_start,
8959 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8960 		},
8961 		/* .maj (attr_mmap2 only) */
8962 		/* .min (attr_mmap2 only) */
8963 		/* .ino (attr_mmap2 only) */
8964 		/* .ino_generation (attr_mmap2 only) */
8965 		/* .prot (attr_mmap2 only) */
8966 		/* .flags (attr_mmap2 only) */
8967 	};
8968 
8969 	perf_addr_filters_adjust(vma);
8970 	perf_event_mmap_event(&mmap_event);
8971 }
8972 
8973 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8974 			  unsigned long size, u64 flags)
8975 {
8976 	struct perf_output_handle handle;
8977 	struct perf_sample_data sample;
8978 	struct perf_aux_event {
8979 		struct perf_event_header	header;
8980 		u64				offset;
8981 		u64				size;
8982 		u64				flags;
8983 	} rec = {
8984 		.header = {
8985 			.type = PERF_RECORD_AUX,
8986 			.misc = 0,
8987 			.size = sizeof(rec),
8988 		},
8989 		.offset		= head,
8990 		.size		= size,
8991 		.flags		= flags,
8992 	};
8993 	int ret;
8994 
8995 	perf_event_header__init_id(&rec.header, &sample, event);
8996 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8997 
8998 	if (ret)
8999 		return;
9000 
9001 	perf_output_put(&handle, rec);
9002 	perf_event__output_id_sample(event, &handle, &sample);
9003 
9004 	perf_output_end(&handle);
9005 }
9006 
9007 /*
9008  * Lost/dropped samples logging
9009  */
9010 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9011 {
9012 	struct perf_output_handle handle;
9013 	struct perf_sample_data sample;
9014 	int ret;
9015 
9016 	struct {
9017 		struct perf_event_header	header;
9018 		u64				lost;
9019 	} lost_samples_event = {
9020 		.header = {
9021 			.type = PERF_RECORD_LOST_SAMPLES,
9022 			.misc = 0,
9023 			.size = sizeof(lost_samples_event),
9024 		},
9025 		.lost		= lost,
9026 	};
9027 
9028 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9029 
9030 	ret = perf_output_begin(&handle, &sample, event,
9031 				lost_samples_event.header.size);
9032 	if (ret)
9033 		return;
9034 
9035 	perf_output_put(&handle, lost_samples_event);
9036 	perf_event__output_id_sample(event, &handle, &sample);
9037 	perf_output_end(&handle);
9038 }
9039 
9040 /*
9041  * context_switch tracking
9042  */
9043 
9044 struct perf_switch_event {
9045 	struct task_struct	*task;
9046 	struct task_struct	*next_prev;
9047 
9048 	struct {
9049 		struct perf_event_header	header;
9050 		u32				next_prev_pid;
9051 		u32				next_prev_tid;
9052 	} event_id;
9053 };
9054 
9055 static int perf_event_switch_match(struct perf_event *event)
9056 {
9057 	return event->attr.context_switch;
9058 }
9059 
9060 static void perf_event_switch_output(struct perf_event *event, void *data)
9061 {
9062 	struct perf_switch_event *se = data;
9063 	struct perf_output_handle handle;
9064 	struct perf_sample_data sample;
9065 	int ret;
9066 
9067 	if (!perf_event_switch_match(event))
9068 		return;
9069 
9070 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9071 	if (event->ctx->task) {
9072 		se->event_id.header.type = PERF_RECORD_SWITCH;
9073 		se->event_id.header.size = sizeof(se->event_id.header);
9074 	} else {
9075 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9076 		se->event_id.header.size = sizeof(se->event_id);
9077 		se->event_id.next_prev_pid =
9078 					perf_event_pid(event, se->next_prev);
9079 		se->event_id.next_prev_tid =
9080 					perf_event_tid(event, se->next_prev);
9081 	}
9082 
9083 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9084 
9085 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9086 	if (ret)
9087 		return;
9088 
9089 	if (event->ctx->task)
9090 		perf_output_put(&handle, se->event_id.header);
9091 	else
9092 		perf_output_put(&handle, se->event_id);
9093 
9094 	perf_event__output_id_sample(event, &handle, &sample);
9095 
9096 	perf_output_end(&handle);
9097 }
9098 
9099 static void perf_event_switch(struct task_struct *task,
9100 			      struct task_struct *next_prev, bool sched_in)
9101 {
9102 	struct perf_switch_event switch_event;
9103 
9104 	/* N.B. caller checks nr_switch_events != 0 */
9105 
9106 	switch_event = (struct perf_switch_event){
9107 		.task		= task,
9108 		.next_prev	= next_prev,
9109 		.event_id	= {
9110 			.header = {
9111 				/* .type */
9112 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9113 				/* .size */
9114 			},
9115 			/* .next_prev_pid */
9116 			/* .next_prev_tid */
9117 		},
9118 	};
9119 
9120 	if (!sched_in && task->on_rq) {
9121 		switch_event.event_id.header.misc |=
9122 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9123 	}
9124 
9125 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9126 }
9127 
9128 /*
9129  * IRQ throttle logging
9130  */
9131 
9132 static void perf_log_throttle(struct perf_event *event, int enable)
9133 {
9134 	struct perf_output_handle handle;
9135 	struct perf_sample_data sample;
9136 	int ret;
9137 
9138 	struct {
9139 		struct perf_event_header	header;
9140 		u64				time;
9141 		u64				id;
9142 		u64				stream_id;
9143 	} throttle_event = {
9144 		.header = {
9145 			.type = PERF_RECORD_THROTTLE,
9146 			.misc = 0,
9147 			.size = sizeof(throttle_event),
9148 		},
9149 		.time		= perf_event_clock(event),
9150 		.id		= primary_event_id(event),
9151 		.stream_id	= event->id,
9152 	};
9153 
9154 	if (enable)
9155 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9156 
9157 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9158 
9159 	ret = perf_output_begin(&handle, &sample, event,
9160 				throttle_event.header.size);
9161 	if (ret)
9162 		return;
9163 
9164 	perf_output_put(&handle, throttle_event);
9165 	perf_event__output_id_sample(event, &handle, &sample);
9166 	perf_output_end(&handle);
9167 }
9168 
9169 /*
9170  * ksymbol register/unregister tracking
9171  */
9172 
9173 struct perf_ksymbol_event {
9174 	const char	*name;
9175 	int		name_len;
9176 	struct {
9177 		struct perf_event_header        header;
9178 		u64				addr;
9179 		u32				len;
9180 		u16				ksym_type;
9181 		u16				flags;
9182 	} event_id;
9183 };
9184 
9185 static int perf_event_ksymbol_match(struct perf_event *event)
9186 {
9187 	return event->attr.ksymbol;
9188 }
9189 
9190 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9191 {
9192 	struct perf_ksymbol_event *ksymbol_event = data;
9193 	struct perf_output_handle handle;
9194 	struct perf_sample_data sample;
9195 	int ret;
9196 
9197 	if (!perf_event_ksymbol_match(event))
9198 		return;
9199 
9200 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9201 				   &sample, event);
9202 	ret = perf_output_begin(&handle, &sample, event,
9203 				ksymbol_event->event_id.header.size);
9204 	if (ret)
9205 		return;
9206 
9207 	perf_output_put(&handle, ksymbol_event->event_id);
9208 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9209 	perf_event__output_id_sample(event, &handle, &sample);
9210 
9211 	perf_output_end(&handle);
9212 }
9213 
9214 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9215 			const char *sym)
9216 {
9217 	struct perf_ksymbol_event ksymbol_event;
9218 	char name[KSYM_NAME_LEN];
9219 	u16 flags = 0;
9220 	int name_len;
9221 
9222 	if (!atomic_read(&nr_ksymbol_events))
9223 		return;
9224 
9225 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9226 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9227 		goto err;
9228 
9229 	strscpy(name, sym, KSYM_NAME_LEN);
9230 	name_len = strlen(name) + 1;
9231 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9232 		name[name_len++] = '\0';
9233 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9234 
9235 	if (unregister)
9236 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9237 
9238 	ksymbol_event = (struct perf_ksymbol_event){
9239 		.name = name,
9240 		.name_len = name_len,
9241 		.event_id = {
9242 			.header = {
9243 				.type = PERF_RECORD_KSYMBOL,
9244 				.size = sizeof(ksymbol_event.event_id) +
9245 					name_len,
9246 			},
9247 			.addr = addr,
9248 			.len = len,
9249 			.ksym_type = ksym_type,
9250 			.flags = flags,
9251 		},
9252 	};
9253 
9254 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9255 	return;
9256 err:
9257 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9258 }
9259 
9260 /*
9261  * bpf program load/unload tracking
9262  */
9263 
9264 struct perf_bpf_event {
9265 	struct bpf_prog	*prog;
9266 	struct {
9267 		struct perf_event_header        header;
9268 		u16				type;
9269 		u16				flags;
9270 		u32				id;
9271 		u8				tag[BPF_TAG_SIZE];
9272 	} event_id;
9273 };
9274 
9275 static int perf_event_bpf_match(struct perf_event *event)
9276 {
9277 	return event->attr.bpf_event;
9278 }
9279 
9280 static void perf_event_bpf_output(struct perf_event *event, void *data)
9281 {
9282 	struct perf_bpf_event *bpf_event = data;
9283 	struct perf_output_handle handle;
9284 	struct perf_sample_data sample;
9285 	int ret;
9286 
9287 	if (!perf_event_bpf_match(event))
9288 		return;
9289 
9290 	perf_event_header__init_id(&bpf_event->event_id.header,
9291 				   &sample, event);
9292 	ret = perf_output_begin(&handle, &sample, event,
9293 				bpf_event->event_id.header.size);
9294 	if (ret)
9295 		return;
9296 
9297 	perf_output_put(&handle, bpf_event->event_id);
9298 	perf_event__output_id_sample(event, &handle, &sample);
9299 
9300 	perf_output_end(&handle);
9301 }
9302 
9303 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9304 					 enum perf_bpf_event_type type)
9305 {
9306 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9307 	int i;
9308 
9309 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9310 			   (u64)(unsigned long)prog->bpf_func,
9311 			   prog->jited_len, unregister,
9312 			   prog->aux->ksym.name);
9313 
9314 	for (i = 1; i < prog->aux->func_cnt; i++) {
9315 		struct bpf_prog *subprog = prog->aux->func[i];
9316 
9317 		perf_event_ksymbol(
9318 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9319 			(u64)(unsigned long)subprog->bpf_func,
9320 			subprog->jited_len, unregister,
9321 			subprog->aux->ksym.name);
9322 	}
9323 }
9324 
9325 void perf_event_bpf_event(struct bpf_prog *prog,
9326 			  enum perf_bpf_event_type type,
9327 			  u16 flags)
9328 {
9329 	struct perf_bpf_event bpf_event;
9330 
9331 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9332 	    type >= PERF_BPF_EVENT_MAX)
9333 		return;
9334 
9335 	switch (type) {
9336 	case PERF_BPF_EVENT_PROG_LOAD:
9337 	case PERF_BPF_EVENT_PROG_UNLOAD:
9338 		if (atomic_read(&nr_ksymbol_events))
9339 			perf_event_bpf_emit_ksymbols(prog, type);
9340 		break;
9341 	default:
9342 		break;
9343 	}
9344 
9345 	if (!atomic_read(&nr_bpf_events))
9346 		return;
9347 
9348 	bpf_event = (struct perf_bpf_event){
9349 		.prog = prog,
9350 		.event_id = {
9351 			.header = {
9352 				.type = PERF_RECORD_BPF_EVENT,
9353 				.size = sizeof(bpf_event.event_id),
9354 			},
9355 			.type = type,
9356 			.flags = flags,
9357 			.id = prog->aux->id,
9358 		},
9359 	};
9360 
9361 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9362 
9363 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9364 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9365 }
9366 
9367 struct perf_text_poke_event {
9368 	const void		*old_bytes;
9369 	const void		*new_bytes;
9370 	size_t			pad;
9371 	u16			old_len;
9372 	u16			new_len;
9373 
9374 	struct {
9375 		struct perf_event_header	header;
9376 
9377 		u64				addr;
9378 	} event_id;
9379 };
9380 
9381 static int perf_event_text_poke_match(struct perf_event *event)
9382 {
9383 	return event->attr.text_poke;
9384 }
9385 
9386 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9387 {
9388 	struct perf_text_poke_event *text_poke_event = data;
9389 	struct perf_output_handle handle;
9390 	struct perf_sample_data sample;
9391 	u64 padding = 0;
9392 	int ret;
9393 
9394 	if (!perf_event_text_poke_match(event))
9395 		return;
9396 
9397 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9398 
9399 	ret = perf_output_begin(&handle, &sample, event,
9400 				text_poke_event->event_id.header.size);
9401 	if (ret)
9402 		return;
9403 
9404 	perf_output_put(&handle, text_poke_event->event_id);
9405 	perf_output_put(&handle, text_poke_event->old_len);
9406 	perf_output_put(&handle, text_poke_event->new_len);
9407 
9408 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9409 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9410 
9411 	if (text_poke_event->pad)
9412 		__output_copy(&handle, &padding, text_poke_event->pad);
9413 
9414 	perf_event__output_id_sample(event, &handle, &sample);
9415 
9416 	perf_output_end(&handle);
9417 }
9418 
9419 void perf_event_text_poke(const void *addr, const void *old_bytes,
9420 			  size_t old_len, const void *new_bytes, size_t new_len)
9421 {
9422 	struct perf_text_poke_event text_poke_event;
9423 	size_t tot, pad;
9424 
9425 	if (!atomic_read(&nr_text_poke_events))
9426 		return;
9427 
9428 	tot  = sizeof(text_poke_event.old_len) + old_len;
9429 	tot += sizeof(text_poke_event.new_len) + new_len;
9430 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9431 
9432 	text_poke_event = (struct perf_text_poke_event){
9433 		.old_bytes    = old_bytes,
9434 		.new_bytes    = new_bytes,
9435 		.pad          = pad,
9436 		.old_len      = old_len,
9437 		.new_len      = new_len,
9438 		.event_id  = {
9439 			.header = {
9440 				.type = PERF_RECORD_TEXT_POKE,
9441 				.misc = PERF_RECORD_MISC_KERNEL,
9442 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9443 			},
9444 			.addr = (unsigned long)addr,
9445 		},
9446 	};
9447 
9448 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9449 }
9450 
9451 void perf_event_itrace_started(struct perf_event *event)
9452 {
9453 	event->attach_state |= PERF_ATTACH_ITRACE;
9454 }
9455 
9456 static void perf_log_itrace_start(struct perf_event *event)
9457 {
9458 	struct perf_output_handle handle;
9459 	struct perf_sample_data sample;
9460 	struct perf_aux_event {
9461 		struct perf_event_header        header;
9462 		u32				pid;
9463 		u32				tid;
9464 	} rec;
9465 	int ret;
9466 
9467 	if (event->parent)
9468 		event = event->parent;
9469 
9470 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9471 	    event->attach_state & PERF_ATTACH_ITRACE)
9472 		return;
9473 
9474 	rec.header.type	= PERF_RECORD_ITRACE_START;
9475 	rec.header.misc	= 0;
9476 	rec.header.size	= sizeof(rec);
9477 	rec.pid	= perf_event_pid(event, current);
9478 	rec.tid	= perf_event_tid(event, current);
9479 
9480 	perf_event_header__init_id(&rec.header, &sample, event);
9481 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9482 
9483 	if (ret)
9484 		return;
9485 
9486 	perf_output_put(&handle, rec);
9487 	perf_event__output_id_sample(event, &handle, &sample);
9488 
9489 	perf_output_end(&handle);
9490 }
9491 
9492 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9493 {
9494 	struct perf_output_handle handle;
9495 	struct perf_sample_data sample;
9496 	struct perf_aux_event {
9497 		struct perf_event_header        header;
9498 		u64				hw_id;
9499 	} rec;
9500 	int ret;
9501 
9502 	if (event->parent)
9503 		event = event->parent;
9504 
9505 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9506 	rec.header.misc	= 0;
9507 	rec.header.size	= sizeof(rec);
9508 	rec.hw_id	= hw_id;
9509 
9510 	perf_event_header__init_id(&rec.header, &sample, event);
9511 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9512 
9513 	if (ret)
9514 		return;
9515 
9516 	perf_output_put(&handle, rec);
9517 	perf_event__output_id_sample(event, &handle, &sample);
9518 
9519 	perf_output_end(&handle);
9520 }
9521 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9522 
9523 static int
9524 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9525 {
9526 	struct hw_perf_event *hwc = &event->hw;
9527 	int ret = 0;
9528 	u64 seq;
9529 
9530 	seq = __this_cpu_read(perf_throttled_seq);
9531 	if (seq != hwc->interrupts_seq) {
9532 		hwc->interrupts_seq = seq;
9533 		hwc->interrupts = 1;
9534 	} else {
9535 		hwc->interrupts++;
9536 		if (unlikely(throttle &&
9537 			     hwc->interrupts > max_samples_per_tick)) {
9538 			__this_cpu_inc(perf_throttled_count);
9539 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9540 			hwc->interrupts = MAX_INTERRUPTS;
9541 			perf_log_throttle(event, 0);
9542 			ret = 1;
9543 		}
9544 	}
9545 
9546 	if (event->attr.freq) {
9547 		u64 now = perf_clock();
9548 		s64 delta = now - hwc->freq_time_stamp;
9549 
9550 		hwc->freq_time_stamp = now;
9551 
9552 		if (delta > 0 && delta < 2*TICK_NSEC)
9553 			perf_adjust_period(event, delta, hwc->last_period, true);
9554 	}
9555 
9556 	return ret;
9557 }
9558 
9559 int perf_event_account_interrupt(struct perf_event *event)
9560 {
9561 	return __perf_event_account_interrupt(event, 1);
9562 }
9563 
9564 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9565 {
9566 	/*
9567 	 * Due to interrupt latency (AKA "skid"), we may enter the
9568 	 * kernel before taking an overflow, even if the PMU is only
9569 	 * counting user events.
9570 	 */
9571 	if (event->attr.exclude_kernel && !user_mode(regs))
9572 		return false;
9573 
9574 	return true;
9575 }
9576 
9577 /*
9578  * Generic event overflow handling, sampling.
9579  */
9580 
9581 static int __perf_event_overflow(struct perf_event *event,
9582 				 int throttle, struct perf_sample_data *data,
9583 				 struct pt_regs *regs)
9584 {
9585 	int events = atomic_read(&event->event_limit);
9586 	int ret = 0;
9587 
9588 	/*
9589 	 * Non-sampling counters might still use the PMI to fold short
9590 	 * hardware counters, ignore those.
9591 	 */
9592 	if (unlikely(!is_sampling_event(event)))
9593 		return 0;
9594 
9595 	ret = __perf_event_account_interrupt(event, throttle);
9596 
9597 	/*
9598 	 * XXX event_limit might not quite work as expected on inherited
9599 	 * events
9600 	 */
9601 
9602 	event->pending_kill = POLL_IN;
9603 	if (events && atomic_dec_and_test(&event->event_limit)) {
9604 		ret = 1;
9605 		event->pending_kill = POLL_HUP;
9606 		perf_event_disable_inatomic(event);
9607 	}
9608 
9609 	if (event->attr.sigtrap) {
9610 		/*
9611 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9612 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9613 		 * it is the first event, on the other hand, we should also not
9614 		 * trigger the WARN or override the data address.
9615 		 */
9616 		bool valid_sample = sample_is_allowed(event, regs);
9617 		unsigned int pending_id = 1;
9618 
9619 		if (regs)
9620 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9621 		if (!event->pending_sigtrap) {
9622 			event->pending_sigtrap = pending_id;
9623 			local_inc(&event->ctx->nr_pending);
9624 		} else if (event->attr.exclude_kernel && valid_sample) {
9625 			/*
9626 			 * Should not be able to return to user space without
9627 			 * consuming pending_sigtrap; with exceptions:
9628 			 *
9629 			 *  1. Where !exclude_kernel, events can overflow again
9630 			 *     in the kernel without returning to user space.
9631 			 *
9632 			 *  2. Events that can overflow again before the IRQ-
9633 			 *     work without user space progress (e.g. hrtimer).
9634 			 *     To approximate progress (with false negatives),
9635 			 *     check 32-bit hash of the current IP.
9636 			 */
9637 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9638 		}
9639 
9640 		event->pending_addr = 0;
9641 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9642 			event->pending_addr = data->addr;
9643 		irq_work_queue(&event->pending_irq);
9644 	}
9645 
9646 	READ_ONCE(event->overflow_handler)(event, data, regs);
9647 
9648 	if (*perf_event_fasync(event) && event->pending_kill) {
9649 		event->pending_wakeup = 1;
9650 		irq_work_queue(&event->pending_irq);
9651 	}
9652 
9653 	return ret;
9654 }
9655 
9656 int perf_event_overflow(struct perf_event *event,
9657 			struct perf_sample_data *data,
9658 			struct pt_regs *regs)
9659 {
9660 	return __perf_event_overflow(event, 1, data, regs);
9661 }
9662 
9663 /*
9664  * Generic software event infrastructure
9665  */
9666 
9667 struct swevent_htable {
9668 	struct swevent_hlist		*swevent_hlist;
9669 	struct mutex			hlist_mutex;
9670 	int				hlist_refcount;
9671 
9672 	/* Recursion avoidance in each contexts */
9673 	int				recursion[PERF_NR_CONTEXTS];
9674 };
9675 
9676 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9677 
9678 /*
9679  * We directly increment event->count and keep a second value in
9680  * event->hw.period_left to count intervals. This period event
9681  * is kept in the range [-sample_period, 0] so that we can use the
9682  * sign as trigger.
9683  */
9684 
9685 u64 perf_swevent_set_period(struct perf_event *event)
9686 {
9687 	struct hw_perf_event *hwc = &event->hw;
9688 	u64 period = hwc->last_period;
9689 	u64 nr, offset;
9690 	s64 old, val;
9691 
9692 	hwc->last_period = hwc->sample_period;
9693 
9694 	old = local64_read(&hwc->period_left);
9695 	do {
9696 		val = old;
9697 		if (val < 0)
9698 			return 0;
9699 
9700 		nr = div64_u64(period + val, period);
9701 		offset = nr * period;
9702 		val -= offset;
9703 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9704 
9705 	return nr;
9706 }
9707 
9708 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9709 				    struct perf_sample_data *data,
9710 				    struct pt_regs *regs)
9711 {
9712 	struct hw_perf_event *hwc = &event->hw;
9713 	int throttle = 0;
9714 
9715 	if (!overflow)
9716 		overflow = perf_swevent_set_period(event);
9717 
9718 	if (hwc->interrupts == MAX_INTERRUPTS)
9719 		return;
9720 
9721 	for (; overflow; overflow--) {
9722 		if (__perf_event_overflow(event, throttle,
9723 					    data, regs)) {
9724 			/*
9725 			 * We inhibit the overflow from happening when
9726 			 * hwc->interrupts == MAX_INTERRUPTS.
9727 			 */
9728 			break;
9729 		}
9730 		throttle = 1;
9731 	}
9732 }
9733 
9734 static void perf_swevent_event(struct perf_event *event, u64 nr,
9735 			       struct perf_sample_data *data,
9736 			       struct pt_regs *regs)
9737 {
9738 	struct hw_perf_event *hwc = &event->hw;
9739 
9740 	local64_add(nr, &event->count);
9741 
9742 	if (!regs)
9743 		return;
9744 
9745 	if (!is_sampling_event(event))
9746 		return;
9747 
9748 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9749 		data->period = nr;
9750 		return perf_swevent_overflow(event, 1, data, regs);
9751 	} else
9752 		data->period = event->hw.last_period;
9753 
9754 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9755 		return perf_swevent_overflow(event, 1, data, regs);
9756 
9757 	if (local64_add_negative(nr, &hwc->period_left))
9758 		return;
9759 
9760 	perf_swevent_overflow(event, 0, data, regs);
9761 }
9762 
9763 static int perf_exclude_event(struct perf_event *event,
9764 			      struct pt_regs *regs)
9765 {
9766 	if (event->hw.state & PERF_HES_STOPPED)
9767 		return 1;
9768 
9769 	if (regs) {
9770 		if (event->attr.exclude_user && user_mode(regs))
9771 			return 1;
9772 
9773 		if (event->attr.exclude_kernel && !user_mode(regs))
9774 			return 1;
9775 	}
9776 
9777 	return 0;
9778 }
9779 
9780 static int perf_swevent_match(struct perf_event *event,
9781 				enum perf_type_id type,
9782 				u32 event_id,
9783 				struct perf_sample_data *data,
9784 				struct pt_regs *regs)
9785 {
9786 	if (event->attr.type != type)
9787 		return 0;
9788 
9789 	if (event->attr.config != event_id)
9790 		return 0;
9791 
9792 	if (perf_exclude_event(event, regs))
9793 		return 0;
9794 
9795 	return 1;
9796 }
9797 
9798 static inline u64 swevent_hash(u64 type, u32 event_id)
9799 {
9800 	u64 val = event_id | (type << 32);
9801 
9802 	return hash_64(val, SWEVENT_HLIST_BITS);
9803 }
9804 
9805 static inline struct hlist_head *
9806 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9807 {
9808 	u64 hash = swevent_hash(type, event_id);
9809 
9810 	return &hlist->heads[hash];
9811 }
9812 
9813 /* For the read side: events when they trigger */
9814 static inline struct hlist_head *
9815 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9816 {
9817 	struct swevent_hlist *hlist;
9818 
9819 	hlist = rcu_dereference(swhash->swevent_hlist);
9820 	if (!hlist)
9821 		return NULL;
9822 
9823 	return __find_swevent_head(hlist, type, event_id);
9824 }
9825 
9826 /* For the event head insertion and removal in the hlist */
9827 static inline struct hlist_head *
9828 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9829 {
9830 	struct swevent_hlist *hlist;
9831 	u32 event_id = event->attr.config;
9832 	u64 type = event->attr.type;
9833 
9834 	/*
9835 	 * Event scheduling is always serialized against hlist allocation
9836 	 * and release. Which makes the protected version suitable here.
9837 	 * The context lock guarantees that.
9838 	 */
9839 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9840 					  lockdep_is_held(&event->ctx->lock));
9841 	if (!hlist)
9842 		return NULL;
9843 
9844 	return __find_swevent_head(hlist, type, event_id);
9845 }
9846 
9847 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9848 				    u64 nr,
9849 				    struct perf_sample_data *data,
9850 				    struct pt_regs *regs)
9851 {
9852 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9853 	struct perf_event *event;
9854 	struct hlist_head *head;
9855 
9856 	rcu_read_lock();
9857 	head = find_swevent_head_rcu(swhash, type, event_id);
9858 	if (!head)
9859 		goto end;
9860 
9861 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9862 		if (perf_swevent_match(event, type, event_id, data, regs))
9863 			perf_swevent_event(event, nr, data, regs);
9864 	}
9865 end:
9866 	rcu_read_unlock();
9867 }
9868 
9869 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9870 
9871 int perf_swevent_get_recursion_context(void)
9872 {
9873 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9874 
9875 	return get_recursion_context(swhash->recursion);
9876 }
9877 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9878 
9879 void perf_swevent_put_recursion_context(int rctx)
9880 {
9881 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9882 
9883 	put_recursion_context(swhash->recursion, rctx);
9884 }
9885 
9886 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9887 {
9888 	struct perf_sample_data data;
9889 
9890 	if (WARN_ON_ONCE(!regs))
9891 		return;
9892 
9893 	perf_sample_data_init(&data, addr, 0);
9894 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9895 }
9896 
9897 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9898 {
9899 	int rctx;
9900 
9901 	preempt_disable_notrace();
9902 	rctx = perf_swevent_get_recursion_context();
9903 	if (unlikely(rctx < 0))
9904 		goto fail;
9905 
9906 	___perf_sw_event(event_id, nr, regs, addr);
9907 
9908 	perf_swevent_put_recursion_context(rctx);
9909 fail:
9910 	preempt_enable_notrace();
9911 }
9912 
9913 static void perf_swevent_read(struct perf_event *event)
9914 {
9915 }
9916 
9917 static int perf_swevent_add(struct perf_event *event, int flags)
9918 {
9919 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9920 	struct hw_perf_event *hwc = &event->hw;
9921 	struct hlist_head *head;
9922 
9923 	if (is_sampling_event(event)) {
9924 		hwc->last_period = hwc->sample_period;
9925 		perf_swevent_set_period(event);
9926 	}
9927 
9928 	hwc->state = !(flags & PERF_EF_START);
9929 
9930 	head = find_swevent_head(swhash, event);
9931 	if (WARN_ON_ONCE(!head))
9932 		return -EINVAL;
9933 
9934 	hlist_add_head_rcu(&event->hlist_entry, head);
9935 	perf_event_update_userpage(event);
9936 
9937 	return 0;
9938 }
9939 
9940 static void perf_swevent_del(struct perf_event *event, int flags)
9941 {
9942 	hlist_del_rcu(&event->hlist_entry);
9943 }
9944 
9945 static void perf_swevent_start(struct perf_event *event, int flags)
9946 {
9947 	event->hw.state = 0;
9948 }
9949 
9950 static void perf_swevent_stop(struct perf_event *event, int flags)
9951 {
9952 	event->hw.state = PERF_HES_STOPPED;
9953 }
9954 
9955 /* Deref the hlist from the update side */
9956 static inline struct swevent_hlist *
9957 swevent_hlist_deref(struct swevent_htable *swhash)
9958 {
9959 	return rcu_dereference_protected(swhash->swevent_hlist,
9960 					 lockdep_is_held(&swhash->hlist_mutex));
9961 }
9962 
9963 static void swevent_hlist_release(struct swevent_htable *swhash)
9964 {
9965 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9966 
9967 	if (!hlist)
9968 		return;
9969 
9970 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9971 	kfree_rcu(hlist, rcu_head);
9972 }
9973 
9974 static void swevent_hlist_put_cpu(int cpu)
9975 {
9976 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9977 
9978 	mutex_lock(&swhash->hlist_mutex);
9979 
9980 	if (!--swhash->hlist_refcount)
9981 		swevent_hlist_release(swhash);
9982 
9983 	mutex_unlock(&swhash->hlist_mutex);
9984 }
9985 
9986 static void swevent_hlist_put(void)
9987 {
9988 	int cpu;
9989 
9990 	for_each_possible_cpu(cpu)
9991 		swevent_hlist_put_cpu(cpu);
9992 }
9993 
9994 static int swevent_hlist_get_cpu(int cpu)
9995 {
9996 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9997 	int err = 0;
9998 
9999 	mutex_lock(&swhash->hlist_mutex);
10000 	if (!swevent_hlist_deref(swhash) &&
10001 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10002 		struct swevent_hlist *hlist;
10003 
10004 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10005 		if (!hlist) {
10006 			err = -ENOMEM;
10007 			goto exit;
10008 		}
10009 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10010 	}
10011 	swhash->hlist_refcount++;
10012 exit:
10013 	mutex_unlock(&swhash->hlist_mutex);
10014 
10015 	return err;
10016 }
10017 
10018 static int swevent_hlist_get(void)
10019 {
10020 	int err, cpu, failed_cpu;
10021 
10022 	mutex_lock(&pmus_lock);
10023 	for_each_possible_cpu(cpu) {
10024 		err = swevent_hlist_get_cpu(cpu);
10025 		if (err) {
10026 			failed_cpu = cpu;
10027 			goto fail;
10028 		}
10029 	}
10030 	mutex_unlock(&pmus_lock);
10031 	return 0;
10032 fail:
10033 	for_each_possible_cpu(cpu) {
10034 		if (cpu == failed_cpu)
10035 			break;
10036 		swevent_hlist_put_cpu(cpu);
10037 	}
10038 	mutex_unlock(&pmus_lock);
10039 	return err;
10040 }
10041 
10042 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10043 
10044 static void sw_perf_event_destroy(struct perf_event *event)
10045 {
10046 	u64 event_id = event->attr.config;
10047 
10048 	WARN_ON(event->parent);
10049 
10050 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10051 	swevent_hlist_put();
10052 }
10053 
10054 static struct pmu perf_cpu_clock; /* fwd declaration */
10055 static struct pmu perf_task_clock;
10056 
10057 static int perf_swevent_init(struct perf_event *event)
10058 {
10059 	u64 event_id = event->attr.config;
10060 
10061 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10062 		return -ENOENT;
10063 
10064 	/*
10065 	 * no branch sampling for software events
10066 	 */
10067 	if (has_branch_stack(event))
10068 		return -EOPNOTSUPP;
10069 
10070 	switch (event_id) {
10071 	case PERF_COUNT_SW_CPU_CLOCK:
10072 		event->attr.type = perf_cpu_clock.type;
10073 		return -ENOENT;
10074 	case PERF_COUNT_SW_TASK_CLOCK:
10075 		event->attr.type = perf_task_clock.type;
10076 		return -ENOENT;
10077 
10078 	default:
10079 		break;
10080 	}
10081 
10082 	if (event_id >= PERF_COUNT_SW_MAX)
10083 		return -ENOENT;
10084 
10085 	if (!event->parent) {
10086 		int err;
10087 
10088 		err = swevent_hlist_get();
10089 		if (err)
10090 			return err;
10091 
10092 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10093 		event->destroy = sw_perf_event_destroy;
10094 	}
10095 
10096 	return 0;
10097 }
10098 
10099 static struct pmu perf_swevent = {
10100 	.task_ctx_nr	= perf_sw_context,
10101 
10102 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10103 
10104 	.event_init	= perf_swevent_init,
10105 	.add		= perf_swevent_add,
10106 	.del		= perf_swevent_del,
10107 	.start		= perf_swevent_start,
10108 	.stop		= perf_swevent_stop,
10109 	.read		= perf_swevent_read,
10110 };
10111 
10112 #ifdef CONFIG_EVENT_TRACING
10113 
10114 static void tp_perf_event_destroy(struct perf_event *event)
10115 {
10116 	perf_trace_destroy(event);
10117 }
10118 
10119 static int perf_tp_event_init(struct perf_event *event)
10120 {
10121 	int err;
10122 
10123 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10124 		return -ENOENT;
10125 
10126 	/*
10127 	 * no branch sampling for tracepoint events
10128 	 */
10129 	if (has_branch_stack(event))
10130 		return -EOPNOTSUPP;
10131 
10132 	err = perf_trace_init(event);
10133 	if (err)
10134 		return err;
10135 
10136 	event->destroy = tp_perf_event_destroy;
10137 
10138 	return 0;
10139 }
10140 
10141 static struct pmu perf_tracepoint = {
10142 	.task_ctx_nr	= perf_sw_context,
10143 
10144 	.event_init	= perf_tp_event_init,
10145 	.add		= perf_trace_add,
10146 	.del		= perf_trace_del,
10147 	.start		= perf_swevent_start,
10148 	.stop		= perf_swevent_stop,
10149 	.read		= perf_swevent_read,
10150 };
10151 
10152 static int perf_tp_filter_match(struct perf_event *event,
10153 				struct perf_sample_data *data)
10154 {
10155 	void *record = data->raw->frag.data;
10156 
10157 	/* only top level events have filters set */
10158 	if (event->parent)
10159 		event = event->parent;
10160 
10161 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10162 		return 1;
10163 	return 0;
10164 }
10165 
10166 static int perf_tp_event_match(struct perf_event *event,
10167 				struct perf_sample_data *data,
10168 				struct pt_regs *regs)
10169 {
10170 	if (event->hw.state & PERF_HES_STOPPED)
10171 		return 0;
10172 	/*
10173 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10174 	 */
10175 	if (event->attr.exclude_kernel && !user_mode(regs))
10176 		return 0;
10177 
10178 	if (!perf_tp_filter_match(event, data))
10179 		return 0;
10180 
10181 	return 1;
10182 }
10183 
10184 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10185 			       struct trace_event_call *call, u64 count,
10186 			       struct pt_regs *regs, struct hlist_head *head,
10187 			       struct task_struct *task)
10188 {
10189 	if (bpf_prog_array_valid(call)) {
10190 		*(struct pt_regs **)raw_data = regs;
10191 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10192 			perf_swevent_put_recursion_context(rctx);
10193 			return;
10194 		}
10195 	}
10196 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10197 		      rctx, task);
10198 }
10199 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10200 
10201 static void __perf_tp_event_target_task(u64 count, void *record,
10202 					struct pt_regs *regs,
10203 					struct perf_sample_data *data,
10204 					struct perf_event *event)
10205 {
10206 	struct trace_entry *entry = record;
10207 
10208 	if (event->attr.config != entry->type)
10209 		return;
10210 	/* Cannot deliver synchronous signal to other task. */
10211 	if (event->attr.sigtrap)
10212 		return;
10213 	if (perf_tp_event_match(event, data, regs))
10214 		perf_swevent_event(event, count, data, regs);
10215 }
10216 
10217 static void perf_tp_event_target_task(u64 count, void *record,
10218 				      struct pt_regs *regs,
10219 				      struct perf_sample_data *data,
10220 				      struct perf_event_context *ctx)
10221 {
10222 	unsigned int cpu = smp_processor_id();
10223 	struct pmu *pmu = &perf_tracepoint;
10224 	struct perf_event *event, *sibling;
10225 
10226 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10227 		__perf_tp_event_target_task(count, record, regs, data, event);
10228 		for_each_sibling_event(sibling, event)
10229 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10230 	}
10231 
10232 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10233 		__perf_tp_event_target_task(count, record, regs, data, event);
10234 		for_each_sibling_event(sibling, event)
10235 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10236 	}
10237 }
10238 
10239 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10240 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10241 		   struct task_struct *task)
10242 {
10243 	struct perf_sample_data data;
10244 	struct perf_event *event;
10245 
10246 	struct perf_raw_record raw = {
10247 		.frag = {
10248 			.size = entry_size,
10249 			.data = record,
10250 		},
10251 	};
10252 
10253 	perf_sample_data_init(&data, 0, 0);
10254 	perf_sample_save_raw_data(&data, &raw);
10255 
10256 	perf_trace_buf_update(record, event_type);
10257 
10258 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10259 		if (perf_tp_event_match(event, &data, regs)) {
10260 			perf_swevent_event(event, count, &data, regs);
10261 
10262 			/*
10263 			 * Here use the same on-stack perf_sample_data,
10264 			 * some members in data are event-specific and
10265 			 * need to be re-computed for different sweveents.
10266 			 * Re-initialize data->sample_flags safely to avoid
10267 			 * the problem that next event skips preparing data
10268 			 * because data->sample_flags is set.
10269 			 */
10270 			perf_sample_data_init(&data, 0, 0);
10271 			perf_sample_save_raw_data(&data, &raw);
10272 		}
10273 	}
10274 
10275 	/*
10276 	 * If we got specified a target task, also iterate its context and
10277 	 * deliver this event there too.
10278 	 */
10279 	if (task && task != current) {
10280 		struct perf_event_context *ctx;
10281 
10282 		rcu_read_lock();
10283 		ctx = rcu_dereference(task->perf_event_ctxp);
10284 		if (!ctx)
10285 			goto unlock;
10286 
10287 		raw_spin_lock(&ctx->lock);
10288 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10289 		raw_spin_unlock(&ctx->lock);
10290 unlock:
10291 		rcu_read_unlock();
10292 	}
10293 
10294 	perf_swevent_put_recursion_context(rctx);
10295 }
10296 EXPORT_SYMBOL_GPL(perf_tp_event);
10297 
10298 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10299 /*
10300  * Flags in config, used by dynamic PMU kprobe and uprobe
10301  * The flags should match following PMU_FORMAT_ATTR().
10302  *
10303  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10304  *                               if not set, create kprobe/uprobe
10305  *
10306  * The following values specify a reference counter (or semaphore in the
10307  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10308  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10309  *
10310  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10311  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10312  */
10313 enum perf_probe_config {
10314 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10315 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10316 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10317 };
10318 
10319 PMU_FORMAT_ATTR(retprobe, "config:0");
10320 #endif
10321 
10322 #ifdef CONFIG_KPROBE_EVENTS
10323 static struct attribute *kprobe_attrs[] = {
10324 	&format_attr_retprobe.attr,
10325 	NULL,
10326 };
10327 
10328 static struct attribute_group kprobe_format_group = {
10329 	.name = "format",
10330 	.attrs = kprobe_attrs,
10331 };
10332 
10333 static const struct attribute_group *kprobe_attr_groups[] = {
10334 	&kprobe_format_group,
10335 	NULL,
10336 };
10337 
10338 static int perf_kprobe_event_init(struct perf_event *event);
10339 static struct pmu perf_kprobe = {
10340 	.task_ctx_nr	= perf_sw_context,
10341 	.event_init	= perf_kprobe_event_init,
10342 	.add		= perf_trace_add,
10343 	.del		= perf_trace_del,
10344 	.start		= perf_swevent_start,
10345 	.stop		= perf_swevent_stop,
10346 	.read		= perf_swevent_read,
10347 	.attr_groups	= kprobe_attr_groups,
10348 };
10349 
10350 static int perf_kprobe_event_init(struct perf_event *event)
10351 {
10352 	int err;
10353 	bool is_retprobe;
10354 
10355 	if (event->attr.type != perf_kprobe.type)
10356 		return -ENOENT;
10357 
10358 	if (!perfmon_capable())
10359 		return -EACCES;
10360 
10361 	/*
10362 	 * no branch sampling for probe events
10363 	 */
10364 	if (has_branch_stack(event))
10365 		return -EOPNOTSUPP;
10366 
10367 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10368 	err = perf_kprobe_init(event, is_retprobe);
10369 	if (err)
10370 		return err;
10371 
10372 	event->destroy = perf_kprobe_destroy;
10373 
10374 	return 0;
10375 }
10376 #endif /* CONFIG_KPROBE_EVENTS */
10377 
10378 #ifdef CONFIG_UPROBE_EVENTS
10379 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10380 
10381 static struct attribute *uprobe_attrs[] = {
10382 	&format_attr_retprobe.attr,
10383 	&format_attr_ref_ctr_offset.attr,
10384 	NULL,
10385 };
10386 
10387 static struct attribute_group uprobe_format_group = {
10388 	.name = "format",
10389 	.attrs = uprobe_attrs,
10390 };
10391 
10392 static const struct attribute_group *uprobe_attr_groups[] = {
10393 	&uprobe_format_group,
10394 	NULL,
10395 };
10396 
10397 static int perf_uprobe_event_init(struct perf_event *event);
10398 static struct pmu perf_uprobe = {
10399 	.task_ctx_nr	= perf_sw_context,
10400 	.event_init	= perf_uprobe_event_init,
10401 	.add		= perf_trace_add,
10402 	.del		= perf_trace_del,
10403 	.start		= perf_swevent_start,
10404 	.stop		= perf_swevent_stop,
10405 	.read		= perf_swevent_read,
10406 	.attr_groups	= uprobe_attr_groups,
10407 };
10408 
10409 static int perf_uprobe_event_init(struct perf_event *event)
10410 {
10411 	int err;
10412 	unsigned long ref_ctr_offset;
10413 	bool is_retprobe;
10414 
10415 	if (event->attr.type != perf_uprobe.type)
10416 		return -ENOENT;
10417 
10418 	if (!perfmon_capable())
10419 		return -EACCES;
10420 
10421 	/*
10422 	 * no branch sampling for probe events
10423 	 */
10424 	if (has_branch_stack(event))
10425 		return -EOPNOTSUPP;
10426 
10427 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10428 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10429 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10430 	if (err)
10431 		return err;
10432 
10433 	event->destroy = perf_uprobe_destroy;
10434 
10435 	return 0;
10436 }
10437 #endif /* CONFIG_UPROBE_EVENTS */
10438 
10439 static inline void perf_tp_register(void)
10440 {
10441 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10442 #ifdef CONFIG_KPROBE_EVENTS
10443 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10444 #endif
10445 #ifdef CONFIG_UPROBE_EVENTS
10446 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10447 #endif
10448 }
10449 
10450 static void perf_event_free_filter(struct perf_event *event)
10451 {
10452 	ftrace_profile_free_filter(event);
10453 }
10454 
10455 #ifdef CONFIG_BPF_SYSCALL
10456 static void bpf_overflow_handler(struct perf_event *event,
10457 				 struct perf_sample_data *data,
10458 				 struct pt_regs *regs)
10459 {
10460 	struct bpf_perf_event_data_kern ctx = {
10461 		.data = data,
10462 		.event = event,
10463 	};
10464 	struct bpf_prog *prog;
10465 	int ret = 0;
10466 
10467 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10468 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10469 		goto out;
10470 	rcu_read_lock();
10471 	prog = READ_ONCE(event->prog);
10472 	if (prog) {
10473 		perf_prepare_sample(data, event, regs);
10474 		ret = bpf_prog_run(prog, &ctx);
10475 	}
10476 	rcu_read_unlock();
10477 out:
10478 	__this_cpu_dec(bpf_prog_active);
10479 	if (!ret)
10480 		return;
10481 
10482 	event->orig_overflow_handler(event, data, regs);
10483 }
10484 
10485 static int perf_event_set_bpf_handler(struct perf_event *event,
10486 				      struct bpf_prog *prog,
10487 				      u64 bpf_cookie)
10488 {
10489 	if (event->overflow_handler_context)
10490 		/* hw breakpoint or kernel counter */
10491 		return -EINVAL;
10492 
10493 	if (event->prog)
10494 		return -EEXIST;
10495 
10496 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10497 		return -EINVAL;
10498 
10499 	if (event->attr.precise_ip &&
10500 	    prog->call_get_stack &&
10501 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10502 	     event->attr.exclude_callchain_kernel ||
10503 	     event->attr.exclude_callchain_user)) {
10504 		/*
10505 		 * On perf_event with precise_ip, calling bpf_get_stack()
10506 		 * may trigger unwinder warnings and occasional crashes.
10507 		 * bpf_get_[stack|stackid] works around this issue by using
10508 		 * callchain attached to perf_sample_data. If the
10509 		 * perf_event does not full (kernel and user) callchain
10510 		 * attached to perf_sample_data, do not allow attaching BPF
10511 		 * program that calls bpf_get_[stack|stackid].
10512 		 */
10513 		return -EPROTO;
10514 	}
10515 
10516 	event->prog = prog;
10517 	event->bpf_cookie = bpf_cookie;
10518 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10519 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10520 	return 0;
10521 }
10522 
10523 static void perf_event_free_bpf_handler(struct perf_event *event)
10524 {
10525 	struct bpf_prog *prog = event->prog;
10526 
10527 	if (!prog)
10528 		return;
10529 
10530 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10531 	event->prog = NULL;
10532 	bpf_prog_put(prog);
10533 }
10534 #else
10535 static int perf_event_set_bpf_handler(struct perf_event *event,
10536 				      struct bpf_prog *prog,
10537 				      u64 bpf_cookie)
10538 {
10539 	return -EOPNOTSUPP;
10540 }
10541 static void perf_event_free_bpf_handler(struct perf_event *event)
10542 {
10543 }
10544 #endif
10545 
10546 /*
10547  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10548  * with perf_event_open()
10549  */
10550 static inline bool perf_event_is_tracing(struct perf_event *event)
10551 {
10552 	if (event->pmu == &perf_tracepoint)
10553 		return true;
10554 #ifdef CONFIG_KPROBE_EVENTS
10555 	if (event->pmu == &perf_kprobe)
10556 		return true;
10557 #endif
10558 #ifdef CONFIG_UPROBE_EVENTS
10559 	if (event->pmu == &perf_uprobe)
10560 		return true;
10561 #endif
10562 	return false;
10563 }
10564 
10565 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10566 			    u64 bpf_cookie)
10567 {
10568 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10569 
10570 	if (!perf_event_is_tracing(event))
10571 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10572 
10573 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10574 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10575 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10576 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10577 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10578 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10579 		return -EINVAL;
10580 
10581 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10582 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10583 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10584 		return -EINVAL;
10585 
10586 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10587 		/* only uprobe programs are allowed to be sleepable */
10588 		return -EINVAL;
10589 
10590 	/* Kprobe override only works for kprobes, not uprobes. */
10591 	if (prog->kprobe_override && !is_kprobe)
10592 		return -EINVAL;
10593 
10594 	if (is_tracepoint || is_syscall_tp) {
10595 		int off = trace_event_get_offsets(event->tp_event);
10596 
10597 		if (prog->aux->max_ctx_offset > off)
10598 			return -EACCES;
10599 	}
10600 
10601 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10602 }
10603 
10604 void perf_event_free_bpf_prog(struct perf_event *event)
10605 {
10606 	if (!perf_event_is_tracing(event)) {
10607 		perf_event_free_bpf_handler(event);
10608 		return;
10609 	}
10610 	perf_event_detach_bpf_prog(event);
10611 }
10612 
10613 #else
10614 
10615 static inline void perf_tp_register(void)
10616 {
10617 }
10618 
10619 static void perf_event_free_filter(struct perf_event *event)
10620 {
10621 }
10622 
10623 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10624 			    u64 bpf_cookie)
10625 {
10626 	return -ENOENT;
10627 }
10628 
10629 void perf_event_free_bpf_prog(struct perf_event *event)
10630 {
10631 }
10632 #endif /* CONFIG_EVENT_TRACING */
10633 
10634 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10635 void perf_bp_event(struct perf_event *bp, void *data)
10636 {
10637 	struct perf_sample_data sample;
10638 	struct pt_regs *regs = data;
10639 
10640 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10641 
10642 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10643 		perf_swevent_event(bp, 1, &sample, regs);
10644 }
10645 #endif
10646 
10647 /*
10648  * Allocate a new address filter
10649  */
10650 static struct perf_addr_filter *
10651 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10652 {
10653 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10654 	struct perf_addr_filter *filter;
10655 
10656 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10657 	if (!filter)
10658 		return NULL;
10659 
10660 	INIT_LIST_HEAD(&filter->entry);
10661 	list_add_tail(&filter->entry, filters);
10662 
10663 	return filter;
10664 }
10665 
10666 static void free_filters_list(struct list_head *filters)
10667 {
10668 	struct perf_addr_filter *filter, *iter;
10669 
10670 	list_for_each_entry_safe(filter, iter, filters, entry) {
10671 		path_put(&filter->path);
10672 		list_del(&filter->entry);
10673 		kfree(filter);
10674 	}
10675 }
10676 
10677 /*
10678  * Free existing address filters and optionally install new ones
10679  */
10680 static void perf_addr_filters_splice(struct perf_event *event,
10681 				     struct list_head *head)
10682 {
10683 	unsigned long flags;
10684 	LIST_HEAD(list);
10685 
10686 	if (!has_addr_filter(event))
10687 		return;
10688 
10689 	/* don't bother with children, they don't have their own filters */
10690 	if (event->parent)
10691 		return;
10692 
10693 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10694 
10695 	list_splice_init(&event->addr_filters.list, &list);
10696 	if (head)
10697 		list_splice(head, &event->addr_filters.list);
10698 
10699 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10700 
10701 	free_filters_list(&list);
10702 }
10703 
10704 /*
10705  * Scan through mm's vmas and see if one of them matches the
10706  * @filter; if so, adjust filter's address range.
10707  * Called with mm::mmap_lock down for reading.
10708  */
10709 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10710 				   struct mm_struct *mm,
10711 				   struct perf_addr_filter_range *fr)
10712 {
10713 	struct vm_area_struct *vma;
10714 	VMA_ITERATOR(vmi, mm, 0);
10715 
10716 	for_each_vma(vmi, vma) {
10717 		if (!vma->vm_file)
10718 			continue;
10719 
10720 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10721 			return;
10722 	}
10723 }
10724 
10725 /*
10726  * Update event's address range filters based on the
10727  * task's existing mappings, if any.
10728  */
10729 static void perf_event_addr_filters_apply(struct perf_event *event)
10730 {
10731 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10732 	struct task_struct *task = READ_ONCE(event->ctx->task);
10733 	struct perf_addr_filter *filter;
10734 	struct mm_struct *mm = NULL;
10735 	unsigned int count = 0;
10736 	unsigned long flags;
10737 
10738 	/*
10739 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10740 	 * will stop on the parent's child_mutex that our caller is also holding
10741 	 */
10742 	if (task == TASK_TOMBSTONE)
10743 		return;
10744 
10745 	if (ifh->nr_file_filters) {
10746 		mm = get_task_mm(task);
10747 		if (!mm)
10748 			goto restart;
10749 
10750 		mmap_read_lock(mm);
10751 	}
10752 
10753 	raw_spin_lock_irqsave(&ifh->lock, flags);
10754 	list_for_each_entry(filter, &ifh->list, entry) {
10755 		if (filter->path.dentry) {
10756 			/*
10757 			 * Adjust base offset if the filter is associated to a
10758 			 * binary that needs to be mapped:
10759 			 */
10760 			event->addr_filter_ranges[count].start = 0;
10761 			event->addr_filter_ranges[count].size = 0;
10762 
10763 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10764 		} else {
10765 			event->addr_filter_ranges[count].start = filter->offset;
10766 			event->addr_filter_ranges[count].size  = filter->size;
10767 		}
10768 
10769 		count++;
10770 	}
10771 
10772 	event->addr_filters_gen++;
10773 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10774 
10775 	if (ifh->nr_file_filters) {
10776 		mmap_read_unlock(mm);
10777 
10778 		mmput(mm);
10779 	}
10780 
10781 restart:
10782 	perf_event_stop(event, 1);
10783 }
10784 
10785 /*
10786  * Address range filtering: limiting the data to certain
10787  * instruction address ranges. Filters are ioctl()ed to us from
10788  * userspace as ascii strings.
10789  *
10790  * Filter string format:
10791  *
10792  * ACTION RANGE_SPEC
10793  * where ACTION is one of the
10794  *  * "filter": limit the trace to this region
10795  *  * "start": start tracing from this address
10796  *  * "stop": stop tracing at this address/region;
10797  * RANGE_SPEC is
10798  *  * for kernel addresses: <start address>[/<size>]
10799  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10800  *
10801  * if <size> is not specified or is zero, the range is treated as a single
10802  * address; not valid for ACTION=="filter".
10803  */
10804 enum {
10805 	IF_ACT_NONE = -1,
10806 	IF_ACT_FILTER,
10807 	IF_ACT_START,
10808 	IF_ACT_STOP,
10809 	IF_SRC_FILE,
10810 	IF_SRC_KERNEL,
10811 	IF_SRC_FILEADDR,
10812 	IF_SRC_KERNELADDR,
10813 };
10814 
10815 enum {
10816 	IF_STATE_ACTION = 0,
10817 	IF_STATE_SOURCE,
10818 	IF_STATE_END,
10819 };
10820 
10821 static const match_table_t if_tokens = {
10822 	{ IF_ACT_FILTER,	"filter" },
10823 	{ IF_ACT_START,		"start" },
10824 	{ IF_ACT_STOP,		"stop" },
10825 	{ IF_SRC_FILE,		"%u/%u@%s" },
10826 	{ IF_SRC_KERNEL,	"%u/%u" },
10827 	{ IF_SRC_FILEADDR,	"%u@%s" },
10828 	{ IF_SRC_KERNELADDR,	"%u" },
10829 	{ IF_ACT_NONE,		NULL },
10830 };
10831 
10832 /*
10833  * Address filter string parser
10834  */
10835 static int
10836 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10837 			     struct list_head *filters)
10838 {
10839 	struct perf_addr_filter *filter = NULL;
10840 	char *start, *orig, *filename = NULL;
10841 	substring_t args[MAX_OPT_ARGS];
10842 	int state = IF_STATE_ACTION, token;
10843 	unsigned int kernel = 0;
10844 	int ret = -EINVAL;
10845 
10846 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10847 	if (!fstr)
10848 		return -ENOMEM;
10849 
10850 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10851 		static const enum perf_addr_filter_action_t actions[] = {
10852 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10853 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10854 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10855 		};
10856 		ret = -EINVAL;
10857 
10858 		if (!*start)
10859 			continue;
10860 
10861 		/* filter definition begins */
10862 		if (state == IF_STATE_ACTION) {
10863 			filter = perf_addr_filter_new(event, filters);
10864 			if (!filter)
10865 				goto fail;
10866 		}
10867 
10868 		token = match_token(start, if_tokens, args);
10869 		switch (token) {
10870 		case IF_ACT_FILTER:
10871 		case IF_ACT_START:
10872 		case IF_ACT_STOP:
10873 			if (state != IF_STATE_ACTION)
10874 				goto fail;
10875 
10876 			filter->action = actions[token];
10877 			state = IF_STATE_SOURCE;
10878 			break;
10879 
10880 		case IF_SRC_KERNELADDR:
10881 		case IF_SRC_KERNEL:
10882 			kernel = 1;
10883 			fallthrough;
10884 
10885 		case IF_SRC_FILEADDR:
10886 		case IF_SRC_FILE:
10887 			if (state != IF_STATE_SOURCE)
10888 				goto fail;
10889 
10890 			*args[0].to = 0;
10891 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10892 			if (ret)
10893 				goto fail;
10894 
10895 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10896 				*args[1].to = 0;
10897 				ret = kstrtoul(args[1].from, 0, &filter->size);
10898 				if (ret)
10899 					goto fail;
10900 			}
10901 
10902 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10903 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10904 
10905 				kfree(filename);
10906 				filename = match_strdup(&args[fpos]);
10907 				if (!filename) {
10908 					ret = -ENOMEM;
10909 					goto fail;
10910 				}
10911 			}
10912 
10913 			state = IF_STATE_END;
10914 			break;
10915 
10916 		default:
10917 			goto fail;
10918 		}
10919 
10920 		/*
10921 		 * Filter definition is fully parsed, validate and install it.
10922 		 * Make sure that it doesn't contradict itself or the event's
10923 		 * attribute.
10924 		 */
10925 		if (state == IF_STATE_END) {
10926 			ret = -EINVAL;
10927 
10928 			/*
10929 			 * ACTION "filter" must have a non-zero length region
10930 			 * specified.
10931 			 */
10932 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10933 			    !filter->size)
10934 				goto fail;
10935 
10936 			if (!kernel) {
10937 				if (!filename)
10938 					goto fail;
10939 
10940 				/*
10941 				 * For now, we only support file-based filters
10942 				 * in per-task events; doing so for CPU-wide
10943 				 * events requires additional context switching
10944 				 * trickery, since same object code will be
10945 				 * mapped at different virtual addresses in
10946 				 * different processes.
10947 				 */
10948 				ret = -EOPNOTSUPP;
10949 				if (!event->ctx->task)
10950 					goto fail;
10951 
10952 				/* look up the path and grab its inode */
10953 				ret = kern_path(filename, LOOKUP_FOLLOW,
10954 						&filter->path);
10955 				if (ret)
10956 					goto fail;
10957 
10958 				ret = -EINVAL;
10959 				if (!filter->path.dentry ||
10960 				    !S_ISREG(d_inode(filter->path.dentry)
10961 					     ->i_mode))
10962 					goto fail;
10963 
10964 				event->addr_filters.nr_file_filters++;
10965 			}
10966 
10967 			/* ready to consume more filters */
10968 			kfree(filename);
10969 			filename = NULL;
10970 			state = IF_STATE_ACTION;
10971 			filter = NULL;
10972 			kernel = 0;
10973 		}
10974 	}
10975 
10976 	if (state != IF_STATE_ACTION)
10977 		goto fail;
10978 
10979 	kfree(filename);
10980 	kfree(orig);
10981 
10982 	return 0;
10983 
10984 fail:
10985 	kfree(filename);
10986 	free_filters_list(filters);
10987 	kfree(orig);
10988 
10989 	return ret;
10990 }
10991 
10992 static int
10993 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10994 {
10995 	LIST_HEAD(filters);
10996 	int ret;
10997 
10998 	/*
10999 	 * Since this is called in perf_ioctl() path, we're already holding
11000 	 * ctx::mutex.
11001 	 */
11002 	lockdep_assert_held(&event->ctx->mutex);
11003 
11004 	if (WARN_ON_ONCE(event->parent))
11005 		return -EINVAL;
11006 
11007 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11008 	if (ret)
11009 		goto fail_clear_files;
11010 
11011 	ret = event->pmu->addr_filters_validate(&filters);
11012 	if (ret)
11013 		goto fail_free_filters;
11014 
11015 	/* remove existing filters, if any */
11016 	perf_addr_filters_splice(event, &filters);
11017 
11018 	/* install new filters */
11019 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11020 
11021 	return ret;
11022 
11023 fail_free_filters:
11024 	free_filters_list(&filters);
11025 
11026 fail_clear_files:
11027 	event->addr_filters.nr_file_filters = 0;
11028 
11029 	return ret;
11030 }
11031 
11032 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11033 {
11034 	int ret = -EINVAL;
11035 	char *filter_str;
11036 
11037 	filter_str = strndup_user(arg, PAGE_SIZE);
11038 	if (IS_ERR(filter_str))
11039 		return PTR_ERR(filter_str);
11040 
11041 #ifdef CONFIG_EVENT_TRACING
11042 	if (perf_event_is_tracing(event)) {
11043 		struct perf_event_context *ctx = event->ctx;
11044 
11045 		/*
11046 		 * Beware, here be dragons!!
11047 		 *
11048 		 * the tracepoint muck will deadlock against ctx->mutex, but
11049 		 * the tracepoint stuff does not actually need it. So
11050 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11051 		 * already have a reference on ctx.
11052 		 *
11053 		 * This can result in event getting moved to a different ctx,
11054 		 * but that does not affect the tracepoint state.
11055 		 */
11056 		mutex_unlock(&ctx->mutex);
11057 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11058 		mutex_lock(&ctx->mutex);
11059 	} else
11060 #endif
11061 	if (has_addr_filter(event))
11062 		ret = perf_event_set_addr_filter(event, filter_str);
11063 
11064 	kfree(filter_str);
11065 	return ret;
11066 }
11067 
11068 /*
11069  * hrtimer based swevent callback
11070  */
11071 
11072 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11073 {
11074 	enum hrtimer_restart ret = HRTIMER_RESTART;
11075 	struct perf_sample_data data;
11076 	struct pt_regs *regs;
11077 	struct perf_event *event;
11078 	u64 period;
11079 
11080 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11081 
11082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11083 		return HRTIMER_NORESTART;
11084 
11085 	event->pmu->read(event);
11086 
11087 	perf_sample_data_init(&data, 0, event->hw.last_period);
11088 	regs = get_irq_regs();
11089 
11090 	if (regs && !perf_exclude_event(event, regs)) {
11091 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11092 			if (__perf_event_overflow(event, 1, &data, regs))
11093 				ret = HRTIMER_NORESTART;
11094 	}
11095 
11096 	period = max_t(u64, 10000, event->hw.sample_period);
11097 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11098 
11099 	return ret;
11100 }
11101 
11102 static void perf_swevent_start_hrtimer(struct perf_event *event)
11103 {
11104 	struct hw_perf_event *hwc = &event->hw;
11105 	s64 period;
11106 
11107 	if (!is_sampling_event(event))
11108 		return;
11109 
11110 	period = local64_read(&hwc->period_left);
11111 	if (period) {
11112 		if (period < 0)
11113 			period = 10000;
11114 
11115 		local64_set(&hwc->period_left, 0);
11116 	} else {
11117 		period = max_t(u64, 10000, hwc->sample_period);
11118 	}
11119 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11120 		      HRTIMER_MODE_REL_PINNED_HARD);
11121 }
11122 
11123 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11124 {
11125 	struct hw_perf_event *hwc = &event->hw;
11126 
11127 	if (is_sampling_event(event)) {
11128 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11129 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11130 
11131 		hrtimer_cancel(&hwc->hrtimer);
11132 	}
11133 }
11134 
11135 static void perf_swevent_init_hrtimer(struct perf_event *event)
11136 {
11137 	struct hw_perf_event *hwc = &event->hw;
11138 
11139 	if (!is_sampling_event(event))
11140 		return;
11141 
11142 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11143 	hwc->hrtimer.function = perf_swevent_hrtimer;
11144 
11145 	/*
11146 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11147 	 * mapping and avoid the whole period adjust feedback stuff.
11148 	 */
11149 	if (event->attr.freq) {
11150 		long freq = event->attr.sample_freq;
11151 
11152 		event->attr.sample_period = NSEC_PER_SEC / freq;
11153 		hwc->sample_period = event->attr.sample_period;
11154 		local64_set(&hwc->period_left, hwc->sample_period);
11155 		hwc->last_period = hwc->sample_period;
11156 		event->attr.freq = 0;
11157 	}
11158 }
11159 
11160 /*
11161  * Software event: cpu wall time clock
11162  */
11163 
11164 static void cpu_clock_event_update(struct perf_event *event)
11165 {
11166 	s64 prev;
11167 	u64 now;
11168 
11169 	now = local_clock();
11170 	prev = local64_xchg(&event->hw.prev_count, now);
11171 	local64_add(now - prev, &event->count);
11172 }
11173 
11174 static void cpu_clock_event_start(struct perf_event *event, int flags)
11175 {
11176 	local64_set(&event->hw.prev_count, local_clock());
11177 	perf_swevent_start_hrtimer(event);
11178 }
11179 
11180 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11181 {
11182 	perf_swevent_cancel_hrtimer(event);
11183 	cpu_clock_event_update(event);
11184 }
11185 
11186 static int cpu_clock_event_add(struct perf_event *event, int flags)
11187 {
11188 	if (flags & PERF_EF_START)
11189 		cpu_clock_event_start(event, flags);
11190 	perf_event_update_userpage(event);
11191 
11192 	return 0;
11193 }
11194 
11195 static void cpu_clock_event_del(struct perf_event *event, int flags)
11196 {
11197 	cpu_clock_event_stop(event, flags);
11198 }
11199 
11200 static void cpu_clock_event_read(struct perf_event *event)
11201 {
11202 	cpu_clock_event_update(event);
11203 }
11204 
11205 static int cpu_clock_event_init(struct perf_event *event)
11206 {
11207 	if (event->attr.type != perf_cpu_clock.type)
11208 		return -ENOENT;
11209 
11210 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11211 		return -ENOENT;
11212 
11213 	/*
11214 	 * no branch sampling for software events
11215 	 */
11216 	if (has_branch_stack(event))
11217 		return -EOPNOTSUPP;
11218 
11219 	perf_swevent_init_hrtimer(event);
11220 
11221 	return 0;
11222 }
11223 
11224 static struct pmu perf_cpu_clock = {
11225 	.task_ctx_nr	= perf_sw_context,
11226 
11227 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11228 	.dev		= PMU_NULL_DEV,
11229 
11230 	.event_init	= cpu_clock_event_init,
11231 	.add		= cpu_clock_event_add,
11232 	.del		= cpu_clock_event_del,
11233 	.start		= cpu_clock_event_start,
11234 	.stop		= cpu_clock_event_stop,
11235 	.read		= cpu_clock_event_read,
11236 };
11237 
11238 /*
11239  * Software event: task time clock
11240  */
11241 
11242 static void task_clock_event_update(struct perf_event *event, u64 now)
11243 {
11244 	u64 prev;
11245 	s64 delta;
11246 
11247 	prev = local64_xchg(&event->hw.prev_count, now);
11248 	delta = now - prev;
11249 	local64_add(delta, &event->count);
11250 }
11251 
11252 static void task_clock_event_start(struct perf_event *event, int flags)
11253 {
11254 	local64_set(&event->hw.prev_count, event->ctx->time);
11255 	perf_swevent_start_hrtimer(event);
11256 }
11257 
11258 static void task_clock_event_stop(struct perf_event *event, int flags)
11259 {
11260 	perf_swevent_cancel_hrtimer(event);
11261 	task_clock_event_update(event, event->ctx->time);
11262 }
11263 
11264 static int task_clock_event_add(struct perf_event *event, int flags)
11265 {
11266 	if (flags & PERF_EF_START)
11267 		task_clock_event_start(event, flags);
11268 	perf_event_update_userpage(event);
11269 
11270 	return 0;
11271 }
11272 
11273 static void task_clock_event_del(struct perf_event *event, int flags)
11274 {
11275 	task_clock_event_stop(event, PERF_EF_UPDATE);
11276 }
11277 
11278 static void task_clock_event_read(struct perf_event *event)
11279 {
11280 	u64 now = perf_clock();
11281 	u64 delta = now - event->ctx->timestamp;
11282 	u64 time = event->ctx->time + delta;
11283 
11284 	task_clock_event_update(event, time);
11285 }
11286 
11287 static int task_clock_event_init(struct perf_event *event)
11288 {
11289 	if (event->attr.type != perf_task_clock.type)
11290 		return -ENOENT;
11291 
11292 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11293 		return -ENOENT;
11294 
11295 	/*
11296 	 * no branch sampling for software events
11297 	 */
11298 	if (has_branch_stack(event))
11299 		return -EOPNOTSUPP;
11300 
11301 	perf_swevent_init_hrtimer(event);
11302 
11303 	return 0;
11304 }
11305 
11306 static struct pmu perf_task_clock = {
11307 	.task_ctx_nr	= perf_sw_context,
11308 
11309 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11310 	.dev		= PMU_NULL_DEV,
11311 
11312 	.event_init	= task_clock_event_init,
11313 	.add		= task_clock_event_add,
11314 	.del		= task_clock_event_del,
11315 	.start		= task_clock_event_start,
11316 	.stop		= task_clock_event_stop,
11317 	.read		= task_clock_event_read,
11318 };
11319 
11320 static void perf_pmu_nop_void(struct pmu *pmu)
11321 {
11322 }
11323 
11324 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11325 {
11326 }
11327 
11328 static int perf_pmu_nop_int(struct pmu *pmu)
11329 {
11330 	return 0;
11331 }
11332 
11333 static int perf_event_nop_int(struct perf_event *event, u64 value)
11334 {
11335 	return 0;
11336 }
11337 
11338 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11339 
11340 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11341 {
11342 	__this_cpu_write(nop_txn_flags, flags);
11343 
11344 	if (flags & ~PERF_PMU_TXN_ADD)
11345 		return;
11346 
11347 	perf_pmu_disable(pmu);
11348 }
11349 
11350 static int perf_pmu_commit_txn(struct pmu *pmu)
11351 {
11352 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11353 
11354 	__this_cpu_write(nop_txn_flags, 0);
11355 
11356 	if (flags & ~PERF_PMU_TXN_ADD)
11357 		return 0;
11358 
11359 	perf_pmu_enable(pmu);
11360 	return 0;
11361 }
11362 
11363 static void perf_pmu_cancel_txn(struct pmu *pmu)
11364 {
11365 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11366 
11367 	__this_cpu_write(nop_txn_flags, 0);
11368 
11369 	if (flags & ~PERF_PMU_TXN_ADD)
11370 		return;
11371 
11372 	perf_pmu_enable(pmu);
11373 }
11374 
11375 static int perf_event_idx_default(struct perf_event *event)
11376 {
11377 	return 0;
11378 }
11379 
11380 static void free_pmu_context(struct pmu *pmu)
11381 {
11382 	free_percpu(pmu->cpu_pmu_context);
11383 }
11384 
11385 /*
11386  * Let userspace know that this PMU supports address range filtering:
11387  */
11388 static ssize_t nr_addr_filters_show(struct device *dev,
11389 				    struct device_attribute *attr,
11390 				    char *page)
11391 {
11392 	struct pmu *pmu = dev_get_drvdata(dev);
11393 
11394 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11395 }
11396 DEVICE_ATTR_RO(nr_addr_filters);
11397 
11398 static struct idr pmu_idr;
11399 
11400 static ssize_t
11401 type_show(struct device *dev, struct device_attribute *attr, char *page)
11402 {
11403 	struct pmu *pmu = dev_get_drvdata(dev);
11404 
11405 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11406 }
11407 static DEVICE_ATTR_RO(type);
11408 
11409 static ssize_t
11410 perf_event_mux_interval_ms_show(struct device *dev,
11411 				struct device_attribute *attr,
11412 				char *page)
11413 {
11414 	struct pmu *pmu = dev_get_drvdata(dev);
11415 
11416 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11417 }
11418 
11419 static DEFINE_MUTEX(mux_interval_mutex);
11420 
11421 static ssize_t
11422 perf_event_mux_interval_ms_store(struct device *dev,
11423 				 struct device_attribute *attr,
11424 				 const char *buf, size_t count)
11425 {
11426 	struct pmu *pmu = dev_get_drvdata(dev);
11427 	int timer, cpu, ret;
11428 
11429 	ret = kstrtoint(buf, 0, &timer);
11430 	if (ret)
11431 		return ret;
11432 
11433 	if (timer < 1)
11434 		return -EINVAL;
11435 
11436 	/* same value, noting to do */
11437 	if (timer == pmu->hrtimer_interval_ms)
11438 		return count;
11439 
11440 	mutex_lock(&mux_interval_mutex);
11441 	pmu->hrtimer_interval_ms = timer;
11442 
11443 	/* update all cpuctx for this PMU */
11444 	cpus_read_lock();
11445 	for_each_online_cpu(cpu) {
11446 		struct perf_cpu_pmu_context *cpc;
11447 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11448 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11449 
11450 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11451 	}
11452 	cpus_read_unlock();
11453 	mutex_unlock(&mux_interval_mutex);
11454 
11455 	return count;
11456 }
11457 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11458 
11459 static struct attribute *pmu_dev_attrs[] = {
11460 	&dev_attr_type.attr,
11461 	&dev_attr_perf_event_mux_interval_ms.attr,
11462 	&dev_attr_nr_addr_filters.attr,
11463 	NULL,
11464 };
11465 
11466 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11467 {
11468 	struct device *dev = kobj_to_dev(kobj);
11469 	struct pmu *pmu = dev_get_drvdata(dev);
11470 
11471 	if (n == 2 && !pmu->nr_addr_filters)
11472 		return 0;
11473 
11474 	return a->mode;
11475 }
11476 
11477 static struct attribute_group pmu_dev_attr_group = {
11478 	.is_visible = pmu_dev_is_visible,
11479 	.attrs = pmu_dev_attrs,
11480 };
11481 
11482 static const struct attribute_group *pmu_dev_groups[] = {
11483 	&pmu_dev_attr_group,
11484 	NULL,
11485 };
11486 
11487 static int pmu_bus_running;
11488 static struct bus_type pmu_bus = {
11489 	.name		= "event_source",
11490 	.dev_groups	= pmu_dev_groups,
11491 };
11492 
11493 static void pmu_dev_release(struct device *dev)
11494 {
11495 	kfree(dev);
11496 }
11497 
11498 static int pmu_dev_alloc(struct pmu *pmu)
11499 {
11500 	int ret = -ENOMEM;
11501 
11502 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11503 	if (!pmu->dev)
11504 		goto out;
11505 
11506 	pmu->dev->groups = pmu->attr_groups;
11507 	device_initialize(pmu->dev);
11508 
11509 	dev_set_drvdata(pmu->dev, pmu);
11510 	pmu->dev->bus = &pmu_bus;
11511 	pmu->dev->parent = pmu->parent;
11512 	pmu->dev->release = pmu_dev_release;
11513 
11514 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11515 	if (ret)
11516 		goto free_dev;
11517 
11518 	ret = device_add(pmu->dev);
11519 	if (ret)
11520 		goto free_dev;
11521 
11522 	if (pmu->attr_update) {
11523 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11524 		if (ret)
11525 			goto del_dev;
11526 	}
11527 
11528 out:
11529 	return ret;
11530 
11531 del_dev:
11532 	device_del(pmu->dev);
11533 
11534 free_dev:
11535 	put_device(pmu->dev);
11536 	goto out;
11537 }
11538 
11539 static struct lock_class_key cpuctx_mutex;
11540 static struct lock_class_key cpuctx_lock;
11541 
11542 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11543 {
11544 	int cpu, ret, max = PERF_TYPE_MAX;
11545 
11546 	mutex_lock(&pmus_lock);
11547 	ret = -ENOMEM;
11548 	pmu->pmu_disable_count = alloc_percpu(int);
11549 	if (!pmu->pmu_disable_count)
11550 		goto unlock;
11551 
11552 	pmu->type = -1;
11553 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11554 		ret = -EINVAL;
11555 		goto free_pdc;
11556 	}
11557 
11558 	pmu->name = name;
11559 
11560 	if (type >= 0)
11561 		max = type;
11562 
11563 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11564 	if (ret < 0)
11565 		goto free_pdc;
11566 
11567 	WARN_ON(type >= 0 && ret != type);
11568 
11569 	type = ret;
11570 	pmu->type = type;
11571 
11572 	if (pmu_bus_running && !pmu->dev) {
11573 		ret = pmu_dev_alloc(pmu);
11574 		if (ret)
11575 			goto free_idr;
11576 	}
11577 
11578 	ret = -ENOMEM;
11579 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11580 	if (!pmu->cpu_pmu_context)
11581 		goto free_dev;
11582 
11583 	for_each_possible_cpu(cpu) {
11584 		struct perf_cpu_pmu_context *cpc;
11585 
11586 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11587 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11588 		__perf_mux_hrtimer_init(cpc, cpu);
11589 	}
11590 
11591 	if (!pmu->start_txn) {
11592 		if (pmu->pmu_enable) {
11593 			/*
11594 			 * If we have pmu_enable/pmu_disable calls, install
11595 			 * transaction stubs that use that to try and batch
11596 			 * hardware accesses.
11597 			 */
11598 			pmu->start_txn  = perf_pmu_start_txn;
11599 			pmu->commit_txn = perf_pmu_commit_txn;
11600 			pmu->cancel_txn = perf_pmu_cancel_txn;
11601 		} else {
11602 			pmu->start_txn  = perf_pmu_nop_txn;
11603 			pmu->commit_txn = perf_pmu_nop_int;
11604 			pmu->cancel_txn = perf_pmu_nop_void;
11605 		}
11606 	}
11607 
11608 	if (!pmu->pmu_enable) {
11609 		pmu->pmu_enable  = perf_pmu_nop_void;
11610 		pmu->pmu_disable = perf_pmu_nop_void;
11611 	}
11612 
11613 	if (!pmu->check_period)
11614 		pmu->check_period = perf_event_nop_int;
11615 
11616 	if (!pmu->event_idx)
11617 		pmu->event_idx = perf_event_idx_default;
11618 
11619 	list_add_rcu(&pmu->entry, &pmus);
11620 	atomic_set(&pmu->exclusive_cnt, 0);
11621 	ret = 0;
11622 unlock:
11623 	mutex_unlock(&pmus_lock);
11624 
11625 	return ret;
11626 
11627 free_dev:
11628 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11629 		device_del(pmu->dev);
11630 		put_device(pmu->dev);
11631 	}
11632 
11633 free_idr:
11634 	idr_remove(&pmu_idr, pmu->type);
11635 
11636 free_pdc:
11637 	free_percpu(pmu->pmu_disable_count);
11638 	goto unlock;
11639 }
11640 EXPORT_SYMBOL_GPL(perf_pmu_register);
11641 
11642 void perf_pmu_unregister(struct pmu *pmu)
11643 {
11644 	mutex_lock(&pmus_lock);
11645 	list_del_rcu(&pmu->entry);
11646 
11647 	/*
11648 	 * We dereference the pmu list under both SRCU and regular RCU, so
11649 	 * synchronize against both of those.
11650 	 */
11651 	synchronize_srcu(&pmus_srcu);
11652 	synchronize_rcu();
11653 
11654 	free_percpu(pmu->pmu_disable_count);
11655 	idr_remove(&pmu_idr, pmu->type);
11656 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11657 		if (pmu->nr_addr_filters)
11658 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11659 		device_del(pmu->dev);
11660 		put_device(pmu->dev);
11661 	}
11662 	free_pmu_context(pmu);
11663 	mutex_unlock(&pmus_lock);
11664 }
11665 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11666 
11667 static inline bool has_extended_regs(struct perf_event *event)
11668 {
11669 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11670 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11671 }
11672 
11673 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11674 {
11675 	struct perf_event_context *ctx = NULL;
11676 	int ret;
11677 
11678 	if (!try_module_get(pmu->module))
11679 		return -ENODEV;
11680 
11681 	/*
11682 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11683 	 * for example, validate if the group fits on the PMU. Therefore,
11684 	 * if this is a sibling event, acquire the ctx->mutex to protect
11685 	 * the sibling_list.
11686 	 */
11687 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11688 		/*
11689 		 * This ctx->mutex can nest when we're called through
11690 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11691 		 */
11692 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11693 						 SINGLE_DEPTH_NESTING);
11694 		BUG_ON(!ctx);
11695 	}
11696 
11697 	event->pmu = pmu;
11698 	ret = pmu->event_init(event);
11699 
11700 	if (ctx)
11701 		perf_event_ctx_unlock(event->group_leader, ctx);
11702 
11703 	if (!ret) {
11704 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11705 		    has_extended_regs(event))
11706 			ret = -EOPNOTSUPP;
11707 
11708 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11709 		    event_has_any_exclude_flag(event))
11710 			ret = -EINVAL;
11711 
11712 		if (ret && event->destroy)
11713 			event->destroy(event);
11714 	}
11715 
11716 	if (ret)
11717 		module_put(pmu->module);
11718 
11719 	return ret;
11720 }
11721 
11722 static struct pmu *perf_init_event(struct perf_event *event)
11723 {
11724 	bool extended_type = false;
11725 	int idx, type, ret;
11726 	struct pmu *pmu;
11727 
11728 	idx = srcu_read_lock(&pmus_srcu);
11729 
11730 	/*
11731 	 * Save original type before calling pmu->event_init() since certain
11732 	 * pmus overwrites event->attr.type to forward event to another pmu.
11733 	 */
11734 	event->orig_type = event->attr.type;
11735 
11736 	/* Try parent's PMU first: */
11737 	if (event->parent && event->parent->pmu) {
11738 		pmu = event->parent->pmu;
11739 		ret = perf_try_init_event(pmu, event);
11740 		if (!ret)
11741 			goto unlock;
11742 	}
11743 
11744 	/*
11745 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11746 	 * are often aliases for PERF_TYPE_RAW.
11747 	 */
11748 	type = event->attr.type;
11749 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11750 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11751 		if (!type) {
11752 			type = PERF_TYPE_RAW;
11753 		} else {
11754 			extended_type = true;
11755 			event->attr.config &= PERF_HW_EVENT_MASK;
11756 		}
11757 	}
11758 
11759 again:
11760 	rcu_read_lock();
11761 	pmu = idr_find(&pmu_idr, type);
11762 	rcu_read_unlock();
11763 	if (pmu) {
11764 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11765 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11766 			goto fail;
11767 
11768 		ret = perf_try_init_event(pmu, event);
11769 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11770 			type = event->attr.type;
11771 			goto again;
11772 		}
11773 
11774 		if (ret)
11775 			pmu = ERR_PTR(ret);
11776 
11777 		goto unlock;
11778 	}
11779 
11780 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11781 		ret = perf_try_init_event(pmu, event);
11782 		if (!ret)
11783 			goto unlock;
11784 
11785 		if (ret != -ENOENT) {
11786 			pmu = ERR_PTR(ret);
11787 			goto unlock;
11788 		}
11789 	}
11790 fail:
11791 	pmu = ERR_PTR(-ENOENT);
11792 unlock:
11793 	srcu_read_unlock(&pmus_srcu, idx);
11794 
11795 	return pmu;
11796 }
11797 
11798 static void attach_sb_event(struct perf_event *event)
11799 {
11800 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11801 
11802 	raw_spin_lock(&pel->lock);
11803 	list_add_rcu(&event->sb_list, &pel->list);
11804 	raw_spin_unlock(&pel->lock);
11805 }
11806 
11807 /*
11808  * We keep a list of all !task (and therefore per-cpu) events
11809  * that need to receive side-band records.
11810  *
11811  * This avoids having to scan all the various PMU per-cpu contexts
11812  * looking for them.
11813  */
11814 static void account_pmu_sb_event(struct perf_event *event)
11815 {
11816 	if (is_sb_event(event))
11817 		attach_sb_event(event);
11818 }
11819 
11820 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11821 static void account_freq_event_nohz(void)
11822 {
11823 #ifdef CONFIG_NO_HZ_FULL
11824 	/* Lock so we don't race with concurrent unaccount */
11825 	spin_lock(&nr_freq_lock);
11826 	if (atomic_inc_return(&nr_freq_events) == 1)
11827 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11828 	spin_unlock(&nr_freq_lock);
11829 #endif
11830 }
11831 
11832 static void account_freq_event(void)
11833 {
11834 	if (tick_nohz_full_enabled())
11835 		account_freq_event_nohz();
11836 	else
11837 		atomic_inc(&nr_freq_events);
11838 }
11839 
11840 
11841 static void account_event(struct perf_event *event)
11842 {
11843 	bool inc = false;
11844 
11845 	if (event->parent)
11846 		return;
11847 
11848 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11849 		inc = true;
11850 	if (event->attr.mmap || event->attr.mmap_data)
11851 		atomic_inc(&nr_mmap_events);
11852 	if (event->attr.build_id)
11853 		atomic_inc(&nr_build_id_events);
11854 	if (event->attr.comm)
11855 		atomic_inc(&nr_comm_events);
11856 	if (event->attr.namespaces)
11857 		atomic_inc(&nr_namespaces_events);
11858 	if (event->attr.cgroup)
11859 		atomic_inc(&nr_cgroup_events);
11860 	if (event->attr.task)
11861 		atomic_inc(&nr_task_events);
11862 	if (event->attr.freq)
11863 		account_freq_event();
11864 	if (event->attr.context_switch) {
11865 		atomic_inc(&nr_switch_events);
11866 		inc = true;
11867 	}
11868 	if (has_branch_stack(event))
11869 		inc = true;
11870 	if (is_cgroup_event(event))
11871 		inc = true;
11872 	if (event->attr.ksymbol)
11873 		atomic_inc(&nr_ksymbol_events);
11874 	if (event->attr.bpf_event)
11875 		atomic_inc(&nr_bpf_events);
11876 	if (event->attr.text_poke)
11877 		atomic_inc(&nr_text_poke_events);
11878 
11879 	if (inc) {
11880 		/*
11881 		 * We need the mutex here because static_branch_enable()
11882 		 * must complete *before* the perf_sched_count increment
11883 		 * becomes visible.
11884 		 */
11885 		if (atomic_inc_not_zero(&perf_sched_count))
11886 			goto enabled;
11887 
11888 		mutex_lock(&perf_sched_mutex);
11889 		if (!atomic_read(&perf_sched_count)) {
11890 			static_branch_enable(&perf_sched_events);
11891 			/*
11892 			 * Guarantee that all CPUs observe they key change and
11893 			 * call the perf scheduling hooks before proceeding to
11894 			 * install events that need them.
11895 			 */
11896 			synchronize_rcu();
11897 		}
11898 		/*
11899 		 * Now that we have waited for the sync_sched(), allow further
11900 		 * increments to by-pass the mutex.
11901 		 */
11902 		atomic_inc(&perf_sched_count);
11903 		mutex_unlock(&perf_sched_mutex);
11904 	}
11905 enabled:
11906 
11907 	account_pmu_sb_event(event);
11908 }
11909 
11910 /*
11911  * Allocate and initialize an event structure
11912  */
11913 static struct perf_event *
11914 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11915 		 struct task_struct *task,
11916 		 struct perf_event *group_leader,
11917 		 struct perf_event *parent_event,
11918 		 perf_overflow_handler_t overflow_handler,
11919 		 void *context, int cgroup_fd)
11920 {
11921 	struct pmu *pmu;
11922 	struct perf_event *event;
11923 	struct hw_perf_event *hwc;
11924 	long err = -EINVAL;
11925 	int node;
11926 
11927 	if ((unsigned)cpu >= nr_cpu_ids) {
11928 		if (!task || cpu != -1)
11929 			return ERR_PTR(-EINVAL);
11930 	}
11931 	if (attr->sigtrap && !task) {
11932 		/* Requires a task: avoid signalling random tasks. */
11933 		return ERR_PTR(-EINVAL);
11934 	}
11935 
11936 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11937 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11938 				      node);
11939 	if (!event)
11940 		return ERR_PTR(-ENOMEM);
11941 
11942 	/*
11943 	 * Single events are their own group leaders, with an
11944 	 * empty sibling list:
11945 	 */
11946 	if (!group_leader)
11947 		group_leader = event;
11948 
11949 	mutex_init(&event->child_mutex);
11950 	INIT_LIST_HEAD(&event->child_list);
11951 
11952 	INIT_LIST_HEAD(&event->event_entry);
11953 	INIT_LIST_HEAD(&event->sibling_list);
11954 	INIT_LIST_HEAD(&event->active_list);
11955 	init_event_group(event);
11956 	INIT_LIST_HEAD(&event->rb_entry);
11957 	INIT_LIST_HEAD(&event->active_entry);
11958 	INIT_LIST_HEAD(&event->addr_filters.list);
11959 	INIT_HLIST_NODE(&event->hlist_entry);
11960 
11961 
11962 	init_waitqueue_head(&event->waitq);
11963 	init_irq_work(&event->pending_irq, perf_pending_irq);
11964 	init_task_work(&event->pending_task, perf_pending_task);
11965 	rcuwait_init(&event->pending_work_wait);
11966 
11967 	mutex_init(&event->mmap_mutex);
11968 	raw_spin_lock_init(&event->addr_filters.lock);
11969 
11970 	atomic_long_set(&event->refcount, 1);
11971 	event->cpu		= cpu;
11972 	event->attr		= *attr;
11973 	event->group_leader	= group_leader;
11974 	event->pmu		= NULL;
11975 	event->oncpu		= -1;
11976 
11977 	event->parent		= parent_event;
11978 
11979 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11980 	event->id		= atomic64_inc_return(&perf_event_id);
11981 
11982 	event->state		= PERF_EVENT_STATE_INACTIVE;
11983 
11984 	if (parent_event)
11985 		event->event_caps = parent_event->event_caps;
11986 
11987 	if (task) {
11988 		event->attach_state = PERF_ATTACH_TASK;
11989 		/*
11990 		 * XXX pmu::event_init needs to know what task to account to
11991 		 * and we cannot use the ctx information because we need the
11992 		 * pmu before we get a ctx.
11993 		 */
11994 		event->hw.target = get_task_struct(task);
11995 	}
11996 
11997 	event->clock = &local_clock;
11998 	if (parent_event)
11999 		event->clock = parent_event->clock;
12000 
12001 	if (!overflow_handler && parent_event) {
12002 		overflow_handler = parent_event->overflow_handler;
12003 		context = parent_event->overflow_handler_context;
12004 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12005 		if (overflow_handler == bpf_overflow_handler) {
12006 			struct bpf_prog *prog = parent_event->prog;
12007 
12008 			bpf_prog_inc(prog);
12009 			event->prog = prog;
12010 			event->orig_overflow_handler =
12011 				parent_event->orig_overflow_handler;
12012 		}
12013 #endif
12014 	}
12015 
12016 	if (overflow_handler) {
12017 		event->overflow_handler	= overflow_handler;
12018 		event->overflow_handler_context = context;
12019 	} else if (is_write_backward(event)){
12020 		event->overflow_handler = perf_event_output_backward;
12021 		event->overflow_handler_context = NULL;
12022 	} else {
12023 		event->overflow_handler = perf_event_output_forward;
12024 		event->overflow_handler_context = NULL;
12025 	}
12026 
12027 	perf_event__state_init(event);
12028 
12029 	pmu = NULL;
12030 
12031 	hwc = &event->hw;
12032 	hwc->sample_period = attr->sample_period;
12033 	if (attr->freq && attr->sample_freq)
12034 		hwc->sample_period = 1;
12035 	hwc->last_period = hwc->sample_period;
12036 
12037 	local64_set(&hwc->period_left, hwc->sample_period);
12038 
12039 	/*
12040 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12041 	 * See perf_output_read().
12042 	 */
12043 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12044 		goto err_ns;
12045 
12046 	if (!has_branch_stack(event))
12047 		event->attr.branch_sample_type = 0;
12048 
12049 	pmu = perf_init_event(event);
12050 	if (IS_ERR(pmu)) {
12051 		err = PTR_ERR(pmu);
12052 		goto err_ns;
12053 	}
12054 
12055 	/*
12056 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12057 	 * events (they don't make sense as the cgroup will be different
12058 	 * on other CPUs in the uncore mask).
12059 	 */
12060 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12061 		err = -EINVAL;
12062 		goto err_pmu;
12063 	}
12064 
12065 	if (event->attr.aux_output &&
12066 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12067 		err = -EOPNOTSUPP;
12068 		goto err_pmu;
12069 	}
12070 
12071 	if (cgroup_fd != -1) {
12072 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12073 		if (err)
12074 			goto err_pmu;
12075 	}
12076 
12077 	err = exclusive_event_init(event);
12078 	if (err)
12079 		goto err_pmu;
12080 
12081 	if (has_addr_filter(event)) {
12082 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12083 						    sizeof(struct perf_addr_filter_range),
12084 						    GFP_KERNEL);
12085 		if (!event->addr_filter_ranges) {
12086 			err = -ENOMEM;
12087 			goto err_per_task;
12088 		}
12089 
12090 		/*
12091 		 * Clone the parent's vma offsets: they are valid until exec()
12092 		 * even if the mm is not shared with the parent.
12093 		 */
12094 		if (event->parent) {
12095 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12096 
12097 			raw_spin_lock_irq(&ifh->lock);
12098 			memcpy(event->addr_filter_ranges,
12099 			       event->parent->addr_filter_ranges,
12100 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12101 			raw_spin_unlock_irq(&ifh->lock);
12102 		}
12103 
12104 		/* force hw sync on the address filters */
12105 		event->addr_filters_gen = 1;
12106 	}
12107 
12108 	if (!event->parent) {
12109 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12110 			err = get_callchain_buffers(attr->sample_max_stack);
12111 			if (err)
12112 				goto err_addr_filters;
12113 		}
12114 	}
12115 
12116 	err = security_perf_event_alloc(event);
12117 	if (err)
12118 		goto err_callchain_buffer;
12119 
12120 	/* symmetric to unaccount_event() in _free_event() */
12121 	account_event(event);
12122 
12123 	return event;
12124 
12125 err_callchain_buffer:
12126 	if (!event->parent) {
12127 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12128 			put_callchain_buffers();
12129 	}
12130 err_addr_filters:
12131 	kfree(event->addr_filter_ranges);
12132 
12133 err_per_task:
12134 	exclusive_event_destroy(event);
12135 
12136 err_pmu:
12137 	if (is_cgroup_event(event))
12138 		perf_detach_cgroup(event);
12139 	if (event->destroy)
12140 		event->destroy(event);
12141 	module_put(pmu->module);
12142 err_ns:
12143 	if (event->hw.target)
12144 		put_task_struct(event->hw.target);
12145 	call_rcu(&event->rcu_head, free_event_rcu);
12146 
12147 	return ERR_PTR(err);
12148 }
12149 
12150 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12151 			  struct perf_event_attr *attr)
12152 {
12153 	u32 size;
12154 	int ret;
12155 
12156 	/* Zero the full structure, so that a short copy will be nice. */
12157 	memset(attr, 0, sizeof(*attr));
12158 
12159 	ret = get_user(size, &uattr->size);
12160 	if (ret)
12161 		return ret;
12162 
12163 	/* ABI compatibility quirk: */
12164 	if (!size)
12165 		size = PERF_ATTR_SIZE_VER0;
12166 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12167 		goto err_size;
12168 
12169 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12170 	if (ret) {
12171 		if (ret == -E2BIG)
12172 			goto err_size;
12173 		return ret;
12174 	}
12175 
12176 	attr->size = size;
12177 
12178 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12179 		return -EINVAL;
12180 
12181 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12182 		return -EINVAL;
12183 
12184 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12185 		return -EINVAL;
12186 
12187 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12188 		u64 mask = attr->branch_sample_type;
12189 
12190 		/* only using defined bits */
12191 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12192 			return -EINVAL;
12193 
12194 		/* at least one branch bit must be set */
12195 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12196 			return -EINVAL;
12197 
12198 		/* propagate priv level, when not set for branch */
12199 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12200 
12201 			/* exclude_kernel checked on syscall entry */
12202 			if (!attr->exclude_kernel)
12203 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12204 
12205 			if (!attr->exclude_user)
12206 				mask |= PERF_SAMPLE_BRANCH_USER;
12207 
12208 			if (!attr->exclude_hv)
12209 				mask |= PERF_SAMPLE_BRANCH_HV;
12210 			/*
12211 			 * adjust user setting (for HW filter setup)
12212 			 */
12213 			attr->branch_sample_type = mask;
12214 		}
12215 		/* privileged levels capture (kernel, hv): check permissions */
12216 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12217 			ret = perf_allow_kernel(attr);
12218 			if (ret)
12219 				return ret;
12220 		}
12221 	}
12222 
12223 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12224 		ret = perf_reg_validate(attr->sample_regs_user);
12225 		if (ret)
12226 			return ret;
12227 	}
12228 
12229 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12230 		if (!arch_perf_have_user_stack_dump())
12231 			return -ENOSYS;
12232 
12233 		/*
12234 		 * We have __u32 type for the size, but so far
12235 		 * we can only use __u16 as maximum due to the
12236 		 * __u16 sample size limit.
12237 		 */
12238 		if (attr->sample_stack_user >= USHRT_MAX)
12239 			return -EINVAL;
12240 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12241 			return -EINVAL;
12242 	}
12243 
12244 	if (!attr->sample_max_stack)
12245 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12246 
12247 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12248 		ret = perf_reg_validate(attr->sample_regs_intr);
12249 
12250 #ifndef CONFIG_CGROUP_PERF
12251 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12252 		return -EINVAL;
12253 #endif
12254 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12255 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12256 		return -EINVAL;
12257 
12258 	if (!attr->inherit && attr->inherit_thread)
12259 		return -EINVAL;
12260 
12261 	if (attr->remove_on_exec && attr->enable_on_exec)
12262 		return -EINVAL;
12263 
12264 	if (attr->sigtrap && !attr->remove_on_exec)
12265 		return -EINVAL;
12266 
12267 out:
12268 	return ret;
12269 
12270 err_size:
12271 	put_user(sizeof(*attr), &uattr->size);
12272 	ret = -E2BIG;
12273 	goto out;
12274 }
12275 
12276 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12277 {
12278 	if (b < a)
12279 		swap(a, b);
12280 
12281 	mutex_lock(a);
12282 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12283 }
12284 
12285 static int
12286 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12287 {
12288 	struct perf_buffer *rb = NULL;
12289 	int ret = -EINVAL;
12290 
12291 	if (!output_event) {
12292 		mutex_lock(&event->mmap_mutex);
12293 		goto set;
12294 	}
12295 
12296 	/* don't allow circular references */
12297 	if (event == output_event)
12298 		goto out;
12299 
12300 	/*
12301 	 * Don't allow cross-cpu buffers
12302 	 */
12303 	if (output_event->cpu != event->cpu)
12304 		goto out;
12305 
12306 	/*
12307 	 * If its not a per-cpu rb, it must be the same task.
12308 	 */
12309 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12310 		goto out;
12311 
12312 	/*
12313 	 * Mixing clocks in the same buffer is trouble you don't need.
12314 	 */
12315 	if (output_event->clock != event->clock)
12316 		goto out;
12317 
12318 	/*
12319 	 * Either writing ring buffer from beginning or from end.
12320 	 * Mixing is not allowed.
12321 	 */
12322 	if (is_write_backward(output_event) != is_write_backward(event))
12323 		goto out;
12324 
12325 	/*
12326 	 * If both events generate aux data, they must be on the same PMU
12327 	 */
12328 	if (has_aux(event) && has_aux(output_event) &&
12329 	    event->pmu != output_event->pmu)
12330 		goto out;
12331 
12332 	/*
12333 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12334 	 * output_event is already on rb->event_list, and the list iteration
12335 	 * restarts after every removal, it is guaranteed this new event is
12336 	 * observed *OR* if output_event is already removed, it's guaranteed we
12337 	 * observe !rb->mmap_count.
12338 	 */
12339 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12340 set:
12341 	/* Can't redirect output if we've got an active mmap() */
12342 	if (atomic_read(&event->mmap_count))
12343 		goto unlock;
12344 
12345 	if (output_event) {
12346 		/* get the rb we want to redirect to */
12347 		rb = ring_buffer_get(output_event);
12348 		if (!rb)
12349 			goto unlock;
12350 
12351 		/* did we race against perf_mmap_close() */
12352 		if (!atomic_read(&rb->mmap_count)) {
12353 			ring_buffer_put(rb);
12354 			goto unlock;
12355 		}
12356 	}
12357 
12358 	ring_buffer_attach(event, rb);
12359 
12360 	ret = 0;
12361 unlock:
12362 	mutex_unlock(&event->mmap_mutex);
12363 	if (output_event)
12364 		mutex_unlock(&output_event->mmap_mutex);
12365 
12366 out:
12367 	return ret;
12368 }
12369 
12370 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12371 {
12372 	bool nmi_safe = false;
12373 
12374 	switch (clk_id) {
12375 	case CLOCK_MONOTONIC:
12376 		event->clock = &ktime_get_mono_fast_ns;
12377 		nmi_safe = true;
12378 		break;
12379 
12380 	case CLOCK_MONOTONIC_RAW:
12381 		event->clock = &ktime_get_raw_fast_ns;
12382 		nmi_safe = true;
12383 		break;
12384 
12385 	case CLOCK_REALTIME:
12386 		event->clock = &ktime_get_real_ns;
12387 		break;
12388 
12389 	case CLOCK_BOOTTIME:
12390 		event->clock = &ktime_get_boottime_ns;
12391 		break;
12392 
12393 	case CLOCK_TAI:
12394 		event->clock = &ktime_get_clocktai_ns;
12395 		break;
12396 
12397 	default:
12398 		return -EINVAL;
12399 	}
12400 
12401 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12402 		return -EINVAL;
12403 
12404 	return 0;
12405 }
12406 
12407 static bool
12408 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12409 {
12410 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12411 	bool is_capable = perfmon_capable();
12412 
12413 	if (attr->sigtrap) {
12414 		/*
12415 		 * perf_event_attr::sigtrap sends signals to the other task.
12416 		 * Require the current task to also have CAP_KILL.
12417 		 */
12418 		rcu_read_lock();
12419 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12420 		rcu_read_unlock();
12421 
12422 		/*
12423 		 * If the required capabilities aren't available, checks for
12424 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12425 		 * can effectively change the target task.
12426 		 */
12427 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12428 	}
12429 
12430 	/*
12431 	 * Preserve ptrace permission check for backwards compatibility. The
12432 	 * ptrace check also includes checks that the current task and other
12433 	 * task have matching uids, and is therefore not done here explicitly.
12434 	 */
12435 	return is_capable || ptrace_may_access(task, ptrace_mode);
12436 }
12437 
12438 /**
12439  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12440  *
12441  * @attr_uptr:	event_id type attributes for monitoring/sampling
12442  * @pid:		target pid
12443  * @cpu:		target cpu
12444  * @group_fd:		group leader event fd
12445  * @flags:		perf event open flags
12446  */
12447 SYSCALL_DEFINE5(perf_event_open,
12448 		struct perf_event_attr __user *, attr_uptr,
12449 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12450 {
12451 	struct perf_event *group_leader = NULL, *output_event = NULL;
12452 	struct perf_event_pmu_context *pmu_ctx;
12453 	struct perf_event *event, *sibling;
12454 	struct perf_event_attr attr;
12455 	struct perf_event_context *ctx;
12456 	struct file *event_file = NULL;
12457 	struct fd group = {NULL, 0};
12458 	struct task_struct *task = NULL;
12459 	struct pmu *pmu;
12460 	int event_fd;
12461 	int move_group = 0;
12462 	int err;
12463 	int f_flags = O_RDWR;
12464 	int cgroup_fd = -1;
12465 
12466 	/* for future expandability... */
12467 	if (flags & ~PERF_FLAG_ALL)
12468 		return -EINVAL;
12469 
12470 	err = perf_copy_attr(attr_uptr, &attr);
12471 	if (err)
12472 		return err;
12473 
12474 	/* Do we allow access to perf_event_open(2) ? */
12475 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12476 	if (err)
12477 		return err;
12478 
12479 	if (!attr.exclude_kernel) {
12480 		err = perf_allow_kernel(&attr);
12481 		if (err)
12482 			return err;
12483 	}
12484 
12485 	if (attr.namespaces) {
12486 		if (!perfmon_capable())
12487 			return -EACCES;
12488 	}
12489 
12490 	if (attr.freq) {
12491 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12492 			return -EINVAL;
12493 	} else {
12494 		if (attr.sample_period & (1ULL << 63))
12495 			return -EINVAL;
12496 	}
12497 
12498 	/* Only privileged users can get physical addresses */
12499 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12500 		err = perf_allow_kernel(&attr);
12501 		if (err)
12502 			return err;
12503 	}
12504 
12505 	/* REGS_INTR can leak data, lockdown must prevent this */
12506 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12507 		err = security_locked_down(LOCKDOWN_PERF);
12508 		if (err)
12509 			return err;
12510 	}
12511 
12512 	/*
12513 	 * In cgroup mode, the pid argument is used to pass the fd
12514 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12515 	 * designates the cpu on which to monitor threads from that
12516 	 * cgroup.
12517 	 */
12518 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12519 		return -EINVAL;
12520 
12521 	if (flags & PERF_FLAG_FD_CLOEXEC)
12522 		f_flags |= O_CLOEXEC;
12523 
12524 	event_fd = get_unused_fd_flags(f_flags);
12525 	if (event_fd < 0)
12526 		return event_fd;
12527 
12528 	if (group_fd != -1) {
12529 		err = perf_fget_light(group_fd, &group);
12530 		if (err)
12531 			goto err_fd;
12532 		group_leader = group.file->private_data;
12533 		if (flags & PERF_FLAG_FD_OUTPUT)
12534 			output_event = group_leader;
12535 		if (flags & PERF_FLAG_FD_NO_GROUP)
12536 			group_leader = NULL;
12537 	}
12538 
12539 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12540 		task = find_lively_task_by_vpid(pid);
12541 		if (IS_ERR(task)) {
12542 			err = PTR_ERR(task);
12543 			goto err_group_fd;
12544 		}
12545 	}
12546 
12547 	if (task && group_leader &&
12548 	    group_leader->attr.inherit != attr.inherit) {
12549 		err = -EINVAL;
12550 		goto err_task;
12551 	}
12552 
12553 	if (flags & PERF_FLAG_PID_CGROUP)
12554 		cgroup_fd = pid;
12555 
12556 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12557 				 NULL, NULL, cgroup_fd);
12558 	if (IS_ERR(event)) {
12559 		err = PTR_ERR(event);
12560 		goto err_task;
12561 	}
12562 
12563 	if (is_sampling_event(event)) {
12564 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12565 			err = -EOPNOTSUPP;
12566 			goto err_alloc;
12567 		}
12568 	}
12569 
12570 	/*
12571 	 * Special case software events and allow them to be part of
12572 	 * any hardware group.
12573 	 */
12574 	pmu = event->pmu;
12575 
12576 	if (attr.use_clockid) {
12577 		err = perf_event_set_clock(event, attr.clockid);
12578 		if (err)
12579 			goto err_alloc;
12580 	}
12581 
12582 	if (pmu->task_ctx_nr == perf_sw_context)
12583 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12584 
12585 	if (task) {
12586 		err = down_read_interruptible(&task->signal->exec_update_lock);
12587 		if (err)
12588 			goto err_alloc;
12589 
12590 		/*
12591 		 * We must hold exec_update_lock across this and any potential
12592 		 * perf_install_in_context() call for this new event to
12593 		 * serialize against exec() altering our credentials (and the
12594 		 * perf_event_exit_task() that could imply).
12595 		 */
12596 		err = -EACCES;
12597 		if (!perf_check_permission(&attr, task))
12598 			goto err_cred;
12599 	}
12600 
12601 	/*
12602 	 * Get the target context (task or percpu):
12603 	 */
12604 	ctx = find_get_context(task, event);
12605 	if (IS_ERR(ctx)) {
12606 		err = PTR_ERR(ctx);
12607 		goto err_cred;
12608 	}
12609 
12610 	mutex_lock(&ctx->mutex);
12611 
12612 	if (ctx->task == TASK_TOMBSTONE) {
12613 		err = -ESRCH;
12614 		goto err_locked;
12615 	}
12616 
12617 	if (!task) {
12618 		/*
12619 		 * Check if the @cpu we're creating an event for is online.
12620 		 *
12621 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12622 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12623 		 */
12624 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12625 
12626 		if (!cpuctx->online) {
12627 			err = -ENODEV;
12628 			goto err_locked;
12629 		}
12630 	}
12631 
12632 	if (group_leader) {
12633 		err = -EINVAL;
12634 
12635 		/*
12636 		 * Do not allow a recursive hierarchy (this new sibling
12637 		 * becoming part of another group-sibling):
12638 		 */
12639 		if (group_leader->group_leader != group_leader)
12640 			goto err_locked;
12641 
12642 		/* All events in a group should have the same clock */
12643 		if (group_leader->clock != event->clock)
12644 			goto err_locked;
12645 
12646 		/*
12647 		 * Make sure we're both events for the same CPU;
12648 		 * grouping events for different CPUs is broken; since
12649 		 * you can never concurrently schedule them anyhow.
12650 		 */
12651 		if (group_leader->cpu != event->cpu)
12652 			goto err_locked;
12653 
12654 		/*
12655 		 * Make sure we're both on the same context; either task or cpu.
12656 		 */
12657 		if (group_leader->ctx != ctx)
12658 			goto err_locked;
12659 
12660 		/*
12661 		 * Only a group leader can be exclusive or pinned
12662 		 */
12663 		if (attr.exclusive || attr.pinned)
12664 			goto err_locked;
12665 
12666 		if (is_software_event(event) &&
12667 		    !in_software_context(group_leader)) {
12668 			/*
12669 			 * If the event is a sw event, but the group_leader
12670 			 * is on hw context.
12671 			 *
12672 			 * Allow the addition of software events to hw
12673 			 * groups, this is safe because software events
12674 			 * never fail to schedule.
12675 			 *
12676 			 * Note the comment that goes with struct
12677 			 * perf_event_pmu_context.
12678 			 */
12679 			pmu = group_leader->pmu_ctx->pmu;
12680 		} else if (!is_software_event(event)) {
12681 			if (is_software_event(group_leader) &&
12682 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12683 				/*
12684 				 * In case the group is a pure software group, and we
12685 				 * try to add a hardware event, move the whole group to
12686 				 * the hardware context.
12687 				 */
12688 				move_group = 1;
12689 			}
12690 
12691 			/* Don't allow group of multiple hw events from different pmus */
12692 			if (!in_software_context(group_leader) &&
12693 			    group_leader->pmu_ctx->pmu != pmu)
12694 				goto err_locked;
12695 		}
12696 	}
12697 
12698 	/*
12699 	 * Now that we're certain of the pmu; find the pmu_ctx.
12700 	 */
12701 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12702 	if (IS_ERR(pmu_ctx)) {
12703 		err = PTR_ERR(pmu_ctx);
12704 		goto err_locked;
12705 	}
12706 	event->pmu_ctx = pmu_ctx;
12707 
12708 	if (output_event) {
12709 		err = perf_event_set_output(event, output_event);
12710 		if (err)
12711 			goto err_context;
12712 	}
12713 
12714 	if (!perf_event_validate_size(event)) {
12715 		err = -E2BIG;
12716 		goto err_context;
12717 	}
12718 
12719 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12720 		err = -EINVAL;
12721 		goto err_context;
12722 	}
12723 
12724 	/*
12725 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12726 	 * because we need to serialize with concurrent event creation.
12727 	 */
12728 	if (!exclusive_event_installable(event, ctx)) {
12729 		err = -EBUSY;
12730 		goto err_context;
12731 	}
12732 
12733 	WARN_ON_ONCE(ctx->parent_ctx);
12734 
12735 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12736 	if (IS_ERR(event_file)) {
12737 		err = PTR_ERR(event_file);
12738 		event_file = NULL;
12739 		goto err_context;
12740 	}
12741 
12742 	/*
12743 	 * This is the point on no return; we cannot fail hereafter. This is
12744 	 * where we start modifying current state.
12745 	 */
12746 
12747 	if (move_group) {
12748 		perf_remove_from_context(group_leader, 0);
12749 		put_pmu_ctx(group_leader->pmu_ctx);
12750 
12751 		for_each_sibling_event(sibling, group_leader) {
12752 			perf_remove_from_context(sibling, 0);
12753 			put_pmu_ctx(sibling->pmu_ctx);
12754 		}
12755 
12756 		/*
12757 		 * Install the group siblings before the group leader.
12758 		 *
12759 		 * Because a group leader will try and install the entire group
12760 		 * (through the sibling list, which is still in-tact), we can
12761 		 * end up with siblings installed in the wrong context.
12762 		 *
12763 		 * By installing siblings first we NO-OP because they're not
12764 		 * reachable through the group lists.
12765 		 */
12766 		for_each_sibling_event(sibling, group_leader) {
12767 			sibling->pmu_ctx = pmu_ctx;
12768 			get_pmu_ctx(pmu_ctx);
12769 			perf_event__state_init(sibling);
12770 			perf_install_in_context(ctx, sibling, sibling->cpu);
12771 		}
12772 
12773 		/*
12774 		 * Removing from the context ends up with disabled
12775 		 * event. What we want here is event in the initial
12776 		 * startup state, ready to be add into new context.
12777 		 */
12778 		group_leader->pmu_ctx = pmu_ctx;
12779 		get_pmu_ctx(pmu_ctx);
12780 		perf_event__state_init(group_leader);
12781 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12782 	}
12783 
12784 	/*
12785 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12786 	 * that we're serialized against further additions and before
12787 	 * perf_install_in_context() which is the point the event is active and
12788 	 * can use these values.
12789 	 */
12790 	perf_event__header_size(event);
12791 	perf_event__id_header_size(event);
12792 
12793 	event->owner = current;
12794 
12795 	perf_install_in_context(ctx, event, event->cpu);
12796 	perf_unpin_context(ctx);
12797 
12798 	mutex_unlock(&ctx->mutex);
12799 
12800 	if (task) {
12801 		up_read(&task->signal->exec_update_lock);
12802 		put_task_struct(task);
12803 	}
12804 
12805 	mutex_lock(&current->perf_event_mutex);
12806 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12807 	mutex_unlock(&current->perf_event_mutex);
12808 
12809 	/*
12810 	 * Drop the reference on the group_event after placing the
12811 	 * new event on the sibling_list. This ensures destruction
12812 	 * of the group leader will find the pointer to itself in
12813 	 * perf_group_detach().
12814 	 */
12815 	fdput(group);
12816 	fd_install(event_fd, event_file);
12817 	return event_fd;
12818 
12819 err_context:
12820 	put_pmu_ctx(event->pmu_ctx);
12821 	event->pmu_ctx = NULL; /* _free_event() */
12822 err_locked:
12823 	mutex_unlock(&ctx->mutex);
12824 	perf_unpin_context(ctx);
12825 	put_ctx(ctx);
12826 err_cred:
12827 	if (task)
12828 		up_read(&task->signal->exec_update_lock);
12829 err_alloc:
12830 	free_event(event);
12831 err_task:
12832 	if (task)
12833 		put_task_struct(task);
12834 err_group_fd:
12835 	fdput(group);
12836 err_fd:
12837 	put_unused_fd(event_fd);
12838 	return err;
12839 }
12840 
12841 /**
12842  * perf_event_create_kernel_counter
12843  *
12844  * @attr: attributes of the counter to create
12845  * @cpu: cpu in which the counter is bound
12846  * @task: task to profile (NULL for percpu)
12847  * @overflow_handler: callback to trigger when we hit the event
12848  * @context: context data could be used in overflow_handler callback
12849  */
12850 struct perf_event *
12851 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12852 				 struct task_struct *task,
12853 				 perf_overflow_handler_t overflow_handler,
12854 				 void *context)
12855 {
12856 	struct perf_event_pmu_context *pmu_ctx;
12857 	struct perf_event_context *ctx;
12858 	struct perf_event *event;
12859 	struct pmu *pmu;
12860 	int err;
12861 
12862 	/*
12863 	 * Grouping is not supported for kernel events, neither is 'AUX',
12864 	 * make sure the caller's intentions are adjusted.
12865 	 */
12866 	if (attr->aux_output)
12867 		return ERR_PTR(-EINVAL);
12868 
12869 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12870 				 overflow_handler, context, -1);
12871 	if (IS_ERR(event)) {
12872 		err = PTR_ERR(event);
12873 		goto err;
12874 	}
12875 
12876 	/* Mark owner so we could distinguish it from user events. */
12877 	event->owner = TASK_TOMBSTONE;
12878 	pmu = event->pmu;
12879 
12880 	if (pmu->task_ctx_nr == perf_sw_context)
12881 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12882 
12883 	/*
12884 	 * Get the target context (task or percpu):
12885 	 */
12886 	ctx = find_get_context(task, event);
12887 	if (IS_ERR(ctx)) {
12888 		err = PTR_ERR(ctx);
12889 		goto err_alloc;
12890 	}
12891 
12892 	WARN_ON_ONCE(ctx->parent_ctx);
12893 	mutex_lock(&ctx->mutex);
12894 	if (ctx->task == TASK_TOMBSTONE) {
12895 		err = -ESRCH;
12896 		goto err_unlock;
12897 	}
12898 
12899 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12900 	if (IS_ERR(pmu_ctx)) {
12901 		err = PTR_ERR(pmu_ctx);
12902 		goto err_unlock;
12903 	}
12904 	event->pmu_ctx = pmu_ctx;
12905 
12906 	if (!task) {
12907 		/*
12908 		 * Check if the @cpu we're creating an event for is online.
12909 		 *
12910 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12911 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12912 		 */
12913 		struct perf_cpu_context *cpuctx =
12914 			container_of(ctx, struct perf_cpu_context, ctx);
12915 		if (!cpuctx->online) {
12916 			err = -ENODEV;
12917 			goto err_pmu_ctx;
12918 		}
12919 	}
12920 
12921 	if (!exclusive_event_installable(event, ctx)) {
12922 		err = -EBUSY;
12923 		goto err_pmu_ctx;
12924 	}
12925 
12926 	perf_install_in_context(ctx, event, event->cpu);
12927 	perf_unpin_context(ctx);
12928 	mutex_unlock(&ctx->mutex);
12929 
12930 	return event;
12931 
12932 err_pmu_ctx:
12933 	put_pmu_ctx(pmu_ctx);
12934 	event->pmu_ctx = NULL; /* _free_event() */
12935 err_unlock:
12936 	mutex_unlock(&ctx->mutex);
12937 	perf_unpin_context(ctx);
12938 	put_ctx(ctx);
12939 err_alloc:
12940 	free_event(event);
12941 err:
12942 	return ERR_PTR(err);
12943 }
12944 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12945 
12946 static void __perf_pmu_remove(struct perf_event_context *ctx,
12947 			      int cpu, struct pmu *pmu,
12948 			      struct perf_event_groups *groups,
12949 			      struct list_head *events)
12950 {
12951 	struct perf_event *event, *sibling;
12952 
12953 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12954 		perf_remove_from_context(event, 0);
12955 		put_pmu_ctx(event->pmu_ctx);
12956 		list_add(&event->migrate_entry, events);
12957 
12958 		for_each_sibling_event(sibling, event) {
12959 			perf_remove_from_context(sibling, 0);
12960 			put_pmu_ctx(sibling->pmu_ctx);
12961 			list_add(&sibling->migrate_entry, events);
12962 		}
12963 	}
12964 }
12965 
12966 static void __perf_pmu_install_event(struct pmu *pmu,
12967 				     struct perf_event_context *ctx,
12968 				     int cpu, struct perf_event *event)
12969 {
12970 	struct perf_event_pmu_context *epc;
12971 	struct perf_event_context *old_ctx = event->ctx;
12972 
12973 	get_ctx(ctx); /* normally find_get_context() */
12974 
12975 	event->cpu = cpu;
12976 	epc = find_get_pmu_context(pmu, ctx, event);
12977 	event->pmu_ctx = epc;
12978 
12979 	if (event->state >= PERF_EVENT_STATE_OFF)
12980 		event->state = PERF_EVENT_STATE_INACTIVE;
12981 	perf_install_in_context(ctx, event, cpu);
12982 
12983 	/*
12984 	 * Now that event->ctx is updated and visible, put the old ctx.
12985 	 */
12986 	put_ctx(old_ctx);
12987 }
12988 
12989 static void __perf_pmu_install(struct perf_event_context *ctx,
12990 			       int cpu, struct pmu *pmu, struct list_head *events)
12991 {
12992 	struct perf_event *event, *tmp;
12993 
12994 	/*
12995 	 * Re-instate events in 2 passes.
12996 	 *
12997 	 * Skip over group leaders and only install siblings on this first
12998 	 * pass, siblings will not get enabled without a leader, however a
12999 	 * leader will enable its siblings, even if those are still on the old
13000 	 * context.
13001 	 */
13002 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13003 		if (event->group_leader == event)
13004 			continue;
13005 
13006 		list_del(&event->migrate_entry);
13007 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13008 	}
13009 
13010 	/*
13011 	 * Once all the siblings are setup properly, install the group leaders
13012 	 * to make it go.
13013 	 */
13014 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13015 		list_del(&event->migrate_entry);
13016 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13017 	}
13018 }
13019 
13020 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13021 {
13022 	struct perf_event_context *src_ctx, *dst_ctx;
13023 	LIST_HEAD(events);
13024 
13025 	/*
13026 	 * Since per-cpu context is persistent, no need to grab an extra
13027 	 * reference.
13028 	 */
13029 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13030 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13031 
13032 	/*
13033 	 * See perf_event_ctx_lock() for comments on the details
13034 	 * of swizzling perf_event::ctx.
13035 	 */
13036 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13037 
13038 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13039 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13040 
13041 	if (!list_empty(&events)) {
13042 		/*
13043 		 * Wait for the events to quiesce before re-instating them.
13044 		 */
13045 		synchronize_rcu();
13046 
13047 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13048 	}
13049 
13050 	mutex_unlock(&dst_ctx->mutex);
13051 	mutex_unlock(&src_ctx->mutex);
13052 }
13053 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13054 
13055 static void sync_child_event(struct perf_event *child_event)
13056 {
13057 	struct perf_event *parent_event = child_event->parent;
13058 	u64 child_val;
13059 
13060 	if (child_event->attr.inherit_stat) {
13061 		struct task_struct *task = child_event->ctx->task;
13062 
13063 		if (task && task != TASK_TOMBSTONE)
13064 			perf_event_read_event(child_event, task);
13065 	}
13066 
13067 	child_val = perf_event_count(child_event);
13068 
13069 	/*
13070 	 * Add back the child's count to the parent's count:
13071 	 */
13072 	atomic64_add(child_val, &parent_event->child_count);
13073 	atomic64_add(child_event->total_time_enabled,
13074 		     &parent_event->child_total_time_enabled);
13075 	atomic64_add(child_event->total_time_running,
13076 		     &parent_event->child_total_time_running);
13077 }
13078 
13079 static void
13080 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13081 {
13082 	struct perf_event *parent_event = event->parent;
13083 	unsigned long detach_flags = 0;
13084 
13085 	if (parent_event) {
13086 		/*
13087 		 * Do not destroy the 'original' grouping; because of the
13088 		 * context switch optimization the original events could've
13089 		 * ended up in a random child task.
13090 		 *
13091 		 * If we were to destroy the original group, all group related
13092 		 * operations would cease to function properly after this
13093 		 * random child dies.
13094 		 *
13095 		 * Do destroy all inherited groups, we don't care about those
13096 		 * and being thorough is better.
13097 		 */
13098 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13099 		mutex_lock(&parent_event->child_mutex);
13100 	}
13101 
13102 	perf_remove_from_context(event, detach_flags);
13103 
13104 	raw_spin_lock_irq(&ctx->lock);
13105 	if (event->state > PERF_EVENT_STATE_EXIT)
13106 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13107 	raw_spin_unlock_irq(&ctx->lock);
13108 
13109 	/*
13110 	 * Child events can be freed.
13111 	 */
13112 	if (parent_event) {
13113 		mutex_unlock(&parent_event->child_mutex);
13114 		/*
13115 		 * Kick perf_poll() for is_event_hup();
13116 		 */
13117 		perf_event_wakeup(parent_event);
13118 		free_event(event);
13119 		put_event(parent_event);
13120 		return;
13121 	}
13122 
13123 	/*
13124 	 * Parent events are governed by their filedesc, retain them.
13125 	 */
13126 	perf_event_wakeup(event);
13127 }
13128 
13129 static void perf_event_exit_task_context(struct task_struct *child)
13130 {
13131 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13132 	struct perf_event *child_event, *next;
13133 
13134 	WARN_ON_ONCE(child != current);
13135 
13136 	child_ctx = perf_pin_task_context(child);
13137 	if (!child_ctx)
13138 		return;
13139 
13140 	/*
13141 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13142 	 * ctx::mutex over the entire thing. This serializes against almost
13143 	 * everything that wants to access the ctx.
13144 	 *
13145 	 * The exception is sys_perf_event_open() /
13146 	 * perf_event_create_kernel_count() which does find_get_context()
13147 	 * without ctx::mutex (it cannot because of the move_group double mutex
13148 	 * lock thing). See the comments in perf_install_in_context().
13149 	 */
13150 	mutex_lock(&child_ctx->mutex);
13151 
13152 	/*
13153 	 * In a single ctx::lock section, de-schedule the events and detach the
13154 	 * context from the task such that we cannot ever get it scheduled back
13155 	 * in.
13156 	 */
13157 	raw_spin_lock_irq(&child_ctx->lock);
13158 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13159 
13160 	/*
13161 	 * Now that the context is inactive, destroy the task <-> ctx relation
13162 	 * and mark the context dead.
13163 	 */
13164 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13165 	put_ctx(child_ctx); /* cannot be last */
13166 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13167 	put_task_struct(current); /* cannot be last */
13168 
13169 	clone_ctx = unclone_ctx(child_ctx);
13170 	raw_spin_unlock_irq(&child_ctx->lock);
13171 
13172 	if (clone_ctx)
13173 		put_ctx(clone_ctx);
13174 
13175 	/*
13176 	 * Report the task dead after unscheduling the events so that we
13177 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13178 	 * get a few PERF_RECORD_READ events.
13179 	 */
13180 	perf_event_task(child, child_ctx, 0);
13181 
13182 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13183 		perf_event_exit_event(child_event, child_ctx);
13184 
13185 	mutex_unlock(&child_ctx->mutex);
13186 
13187 	put_ctx(child_ctx);
13188 }
13189 
13190 /*
13191  * When a child task exits, feed back event values to parent events.
13192  *
13193  * Can be called with exec_update_lock held when called from
13194  * setup_new_exec().
13195  */
13196 void perf_event_exit_task(struct task_struct *child)
13197 {
13198 	struct perf_event *event, *tmp;
13199 
13200 	mutex_lock(&child->perf_event_mutex);
13201 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13202 				 owner_entry) {
13203 		list_del_init(&event->owner_entry);
13204 
13205 		/*
13206 		 * Ensure the list deletion is visible before we clear
13207 		 * the owner, closes a race against perf_release() where
13208 		 * we need to serialize on the owner->perf_event_mutex.
13209 		 */
13210 		smp_store_release(&event->owner, NULL);
13211 	}
13212 	mutex_unlock(&child->perf_event_mutex);
13213 
13214 	perf_event_exit_task_context(child);
13215 
13216 	/*
13217 	 * The perf_event_exit_task_context calls perf_event_task
13218 	 * with child's task_ctx, which generates EXIT events for
13219 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13220 	 * At this point we need to send EXIT events to cpu contexts.
13221 	 */
13222 	perf_event_task(child, NULL, 0);
13223 }
13224 
13225 static void perf_free_event(struct perf_event *event,
13226 			    struct perf_event_context *ctx)
13227 {
13228 	struct perf_event *parent = event->parent;
13229 
13230 	if (WARN_ON_ONCE(!parent))
13231 		return;
13232 
13233 	mutex_lock(&parent->child_mutex);
13234 	list_del_init(&event->child_list);
13235 	mutex_unlock(&parent->child_mutex);
13236 
13237 	put_event(parent);
13238 
13239 	raw_spin_lock_irq(&ctx->lock);
13240 	perf_group_detach(event);
13241 	list_del_event(event, ctx);
13242 	raw_spin_unlock_irq(&ctx->lock);
13243 	free_event(event);
13244 }
13245 
13246 /*
13247  * Free a context as created by inheritance by perf_event_init_task() below,
13248  * used by fork() in case of fail.
13249  *
13250  * Even though the task has never lived, the context and events have been
13251  * exposed through the child_list, so we must take care tearing it all down.
13252  */
13253 void perf_event_free_task(struct task_struct *task)
13254 {
13255 	struct perf_event_context *ctx;
13256 	struct perf_event *event, *tmp;
13257 
13258 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13259 	if (!ctx)
13260 		return;
13261 
13262 	mutex_lock(&ctx->mutex);
13263 	raw_spin_lock_irq(&ctx->lock);
13264 	/*
13265 	 * Destroy the task <-> ctx relation and mark the context dead.
13266 	 *
13267 	 * This is important because even though the task hasn't been
13268 	 * exposed yet the context has been (through child_list).
13269 	 */
13270 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13271 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13272 	put_task_struct(task); /* cannot be last */
13273 	raw_spin_unlock_irq(&ctx->lock);
13274 
13275 
13276 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13277 		perf_free_event(event, ctx);
13278 
13279 	mutex_unlock(&ctx->mutex);
13280 
13281 	/*
13282 	 * perf_event_release_kernel() could've stolen some of our
13283 	 * child events and still have them on its free_list. In that
13284 	 * case we must wait for these events to have been freed (in
13285 	 * particular all their references to this task must've been
13286 	 * dropped).
13287 	 *
13288 	 * Without this copy_process() will unconditionally free this
13289 	 * task (irrespective of its reference count) and
13290 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13291 	 * use-after-free.
13292 	 *
13293 	 * Wait for all events to drop their context reference.
13294 	 */
13295 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13296 	put_ctx(ctx); /* must be last */
13297 }
13298 
13299 void perf_event_delayed_put(struct task_struct *task)
13300 {
13301 	WARN_ON_ONCE(task->perf_event_ctxp);
13302 }
13303 
13304 struct file *perf_event_get(unsigned int fd)
13305 {
13306 	struct file *file = fget(fd);
13307 	if (!file)
13308 		return ERR_PTR(-EBADF);
13309 
13310 	if (file->f_op != &perf_fops) {
13311 		fput(file);
13312 		return ERR_PTR(-EBADF);
13313 	}
13314 
13315 	return file;
13316 }
13317 
13318 const struct perf_event *perf_get_event(struct file *file)
13319 {
13320 	if (file->f_op != &perf_fops)
13321 		return ERR_PTR(-EINVAL);
13322 
13323 	return file->private_data;
13324 }
13325 
13326 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13327 {
13328 	if (!event)
13329 		return ERR_PTR(-EINVAL);
13330 
13331 	return &event->attr;
13332 }
13333 
13334 int perf_allow_kernel(struct perf_event_attr *attr)
13335 {
13336 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13337 		return -EACCES;
13338 
13339 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13340 }
13341 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13342 
13343 /*
13344  * Inherit an event from parent task to child task.
13345  *
13346  * Returns:
13347  *  - valid pointer on success
13348  *  - NULL for orphaned events
13349  *  - IS_ERR() on error
13350  */
13351 static struct perf_event *
13352 inherit_event(struct perf_event *parent_event,
13353 	      struct task_struct *parent,
13354 	      struct perf_event_context *parent_ctx,
13355 	      struct task_struct *child,
13356 	      struct perf_event *group_leader,
13357 	      struct perf_event_context *child_ctx)
13358 {
13359 	enum perf_event_state parent_state = parent_event->state;
13360 	struct perf_event_pmu_context *pmu_ctx;
13361 	struct perf_event *child_event;
13362 	unsigned long flags;
13363 
13364 	/*
13365 	 * Instead of creating recursive hierarchies of events,
13366 	 * we link inherited events back to the original parent,
13367 	 * which has a filp for sure, which we use as the reference
13368 	 * count:
13369 	 */
13370 	if (parent_event->parent)
13371 		parent_event = parent_event->parent;
13372 
13373 	child_event = perf_event_alloc(&parent_event->attr,
13374 					   parent_event->cpu,
13375 					   child,
13376 					   group_leader, parent_event,
13377 					   NULL, NULL, -1);
13378 	if (IS_ERR(child_event))
13379 		return child_event;
13380 
13381 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13382 	if (IS_ERR(pmu_ctx)) {
13383 		free_event(child_event);
13384 		return ERR_CAST(pmu_ctx);
13385 	}
13386 	child_event->pmu_ctx = pmu_ctx;
13387 
13388 	/*
13389 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13390 	 * must be under the same lock in order to serialize against
13391 	 * perf_event_release_kernel(), such that either we must observe
13392 	 * is_orphaned_event() or they will observe us on the child_list.
13393 	 */
13394 	mutex_lock(&parent_event->child_mutex);
13395 	if (is_orphaned_event(parent_event) ||
13396 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13397 		mutex_unlock(&parent_event->child_mutex);
13398 		/* task_ctx_data is freed with child_ctx */
13399 		free_event(child_event);
13400 		return NULL;
13401 	}
13402 
13403 	get_ctx(child_ctx);
13404 
13405 	/*
13406 	 * Make the child state follow the state of the parent event,
13407 	 * not its attr.disabled bit.  We hold the parent's mutex,
13408 	 * so we won't race with perf_event_{en, dis}able_family.
13409 	 */
13410 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13411 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13412 	else
13413 		child_event->state = PERF_EVENT_STATE_OFF;
13414 
13415 	if (parent_event->attr.freq) {
13416 		u64 sample_period = parent_event->hw.sample_period;
13417 		struct hw_perf_event *hwc = &child_event->hw;
13418 
13419 		hwc->sample_period = sample_period;
13420 		hwc->last_period   = sample_period;
13421 
13422 		local64_set(&hwc->period_left, sample_period);
13423 	}
13424 
13425 	child_event->ctx = child_ctx;
13426 	child_event->overflow_handler = parent_event->overflow_handler;
13427 	child_event->overflow_handler_context
13428 		= parent_event->overflow_handler_context;
13429 
13430 	/*
13431 	 * Precalculate sample_data sizes
13432 	 */
13433 	perf_event__header_size(child_event);
13434 	perf_event__id_header_size(child_event);
13435 
13436 	/*
13437 	 * Link it up in the child's context:
13438 	 */
13439 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13440 	add_event_to_ctx(child_event, child_ctx);
13441 	child_event->attach_state |= PERF_ATTACH_CHILD;
13442 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13443 
13444 	/*
13445 	 * Link this into the parent event's child list
13446 	 */
13447 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13448 	mutex_unlock(&parent_event->child_mutex);
13449 
13450 	return child_event;
13451 }
13452 
13453 /*
13454  * Inherits an event group.
13455  *
13456  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13457  * This matches with perf_event_release_kernel() removing all child events.
13458  *
13459  * Returns:
13460  *  - 0 on success
13461  *  - <0 on error
13462  */
13463 static int inherit_group(struct perf_event *parent_event,
13464 	      struct task_struct *parent,
13465 	      struct perf_event_context *parent_ctx,
13466 	      struct task_struct *child,
13467 	      struct perf_event_context *child_ctx)
13468 {
13469 	struct perf_event *leader;
13470 	struct perf_event *sub;
13471 	struct perf_event *child_ctr;
13472 
13473 	leader = inherit_event(parent_event, parent, parent_ctx,
13474 				 child, NULL, child_ctx);
13475 	if (IS_ERR(leader))
13476 		return PTR_ERR(leader);
13477 	/*
13478 	 * @leader can be NULL here because of is_orphaned_event(). In this
13479 	 * case inherit_event() will create individual events, similar to what
13480 	 * perf_group_detach() would do anyway.
13481 	 */
13482 	for_each_sibling_event(sub, parent_event) {
13483 		child_ctr = inherit_event(sub, parent, parent_ctx,
13484 					    child, leader, child_ctx);
13485 		if (IS_ERR(child_ctr))
13486 			return PTR_ERR(child_ctr);
13487 
13488 		if (sub->aux_event == parent_event && child_ctr &&
13489 		    !perf_get_aux_event(child_ctr, leader))
13490 			return -EINVAL;
13491 	}
13492 	if (leader)
13493 		leader->group_generation = parent_event->group_generation;
13494 	return 0;
13495 }
13496 
13497 /*
13498  * Creates the child task context and tries to inherit the event-group.
13499  *
13500  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13501  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13502  * consistent with perf_event_release_kernel() removing all child events.
13503  *
13504  * Returns:
13505  *  - 0 on success
13506  *  - <0 on error
13507  */
13508 static int
13509 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13510 		   struct perf_event_context *parent_ctx,
13511 		   struct task_struct *child,
13512 		   u64 clone_flags, int *inherited_all)
13513 {
13514 	struct perf_event_context *child_ctx;
13515 	int ret;
13516 
13517 	if (!event->attr.inherit ||
13518 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13519 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13520 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13521 		*inherited_all = 0;
13522 		return 0;
13523 	}
13524 
13525 	child_ctx = child->perf_event_ctxp;
13526 	if (!child_ctx) {
13527 		/*
13528 		 * This is executed from the parent task context, so
13529 		 * inherit events that have been marked for cloning.
13530 		 * First allocate and initialize a context for the
13531 		 * child.
13532 		 */
13533 		child_ctx = alloc_perf_context(child);
13534 		if (!child_ctx)
13535 			return -ENOMEM;
13536 
13537 		child->perf_event_ctxp = child_ctx;
13538 	}
13539 
13540 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13541 	if (ret)
13542 		*inherited_all = 0;
13543 
13544 	return ret;
13545 }
13546 
13547 /*
13548  * Initialize the perf_event context in task_struct
13549  */
13550 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13551 {
13552 	struct perf_event_context *child_ctx, *parent_ctx;
13553 	struct perf_event_context *cloned_ctx;
13554 	struct perf_event *event;
13555 	struct task_struct *parent = current;
13556 	int inherited_all = 1;
13557 	unsigned long flags;
13558 	int ret = 0;
13559 
13560 	if (likely(!parent->perf_event_ctxp))
13561 		return 0;
13562 
13563 	/*
13564 	 * If the parent's context is a clone, pin it so it won't get
13565 	 * swapped under us.
13566 	 */
13567 	parent_ctx = perf_pin_task_context(parent);
13568 	if (!parent_ctx)
13569 		return 0;
13570 
13571 	/*
13572 	 * No need to check if parent_ctx != NULL here; since we saw
13573 	 * it non-NULL earlier, the only reason for it to become NULL
13574 	 * is if we exit, and since we're currently in the middle of
13575 	 * a fork we can't be exiting at the same time.
13576 	 */
13577 
13578 	/*
13579 	 * Lock the parent list. No need to lock the child - not PID
13580 	 * hashed yet and not running, so nobody can access it.
13581 	 */
13582 	mutex_lock(&parent_ctx->mutex);
13583 
13584 	/*
13585 	 * We dont have to disable NMIs - we are only looking at
13586 	 * the list, not manipulating it:
13587 	 */
13588 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13589 		ret = inherit_task_group(event, parent, parent_ctx,
13590 					 child, clone_flags, &inherited_all);
13591 		if (ret)
13592 			goto out_unlock;
13593 	}
13594 
13595 	/*
13596 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13597 	 * to allocations, but we need to prevent rotation because
13598 	 * rotate_ctx() will change the list from interrupt context.
13599 	 */
13600 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13601 	parent_ctx->rotate_disable = 1;
13602 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13603 
13604 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13605 		ret = inherit_task_group(event, parent, parent_ctx,
13606 					 child, clone_flags, &inherited_all);
13607 		if (ret)
13608 			goto out_unlock;
13609 	}
13610 
13611 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13612 	parent_ctx->rotate_disable = 0;
13613 
13614 	child_ctx = child->perf_event_ctxp;
13615 
13616 	if (child_ctx && inherited_all) {
13617 		/*
13618 		 * Mark the child context as a clone of the parent
13619 		 * context, or of whatever the parent is a clone of.
13620 		 *
13621 		 * Note that if the parent is a clone, the holding of
13622 		 * parent_ctx->lock avoids it from being uncloned.
13623 		 */
13624 		cloned_ctx = parent_ctx->parent_ctx;
13625 		if (cloned_ctx) {
13626 			child_ctx->parent_ctx = cloned_ctx;
13627 			child_ctx->parent_gen = parent_ctx->parent_gen;
13628 		} else {
13629 			child_ctx->parent_ctx = parent_ctx;
13630 			child_ctx->parent_gen = parent_ctx->generation;
13631 		}
13632 		get_ctx(child_ctx->parent_ctx);
13633 	}
13634 
13635 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13636 out_unlock:
13637 	mutex_unlock(&parent_ctx->mutex);
13638 
13639 	perf_unpin_context(parent_ctx);
13640 	put_ctx(parent_ctx);
13641 
13642 	return ret;
13643 }
13644 
13645 /*
13646  * Initialize the perf_event context in task_struct
13647  */
13648 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13649 {
13650 	int ret;
13651 
13652 	child->perf_event_ctxp = NULL;
13653 	mutex_init(&child->perf_event_mutex);
13654 	INIT_LIST_HEAD(&child->perf_event_list);
13655 
13656 	ret = perf_event_init_context(child, clone_flags);
13657 	if (ret) {
13658 		perf_event_free_task(child);
13659 		return ret;
13660 	}
13661 
13662 	return 0;
13663 }
13664 
13665 static void __init perf_event_init_all_cpus(void)
13666 {
13667 	struct swevent_htable *swhash;
13668 	struct perf_cpu_context *cpuctx;
13669 	int cpu;
13670 
13671 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13672 
13673 	for_each_possible_cpu(cpu) {
13674 		swhash = &per_cpu(swevent_htable, cpu);
13675 		mutex_init(&swhash->hlist_mutex);
13676 
13677 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13678 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13679 
13680 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13681 
13682 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13683 		__perf_event_init_context(&cpuctx->ctx);
13684 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13685 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13686 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13687 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13688 		cpuctx->heap = cpuctx->heap_default;
13689 	}
13690 }
13691 
13692 static void perf_swevent_init_cpu(unsigned int cpu)
13693 {
13694 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13695 
13696 	mutex_lock(&swhash->hlist_mutex);
13697 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13698 		struct swevent_hlist *hlist;
13699 
13700 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13701 		WARN_ON(!hlist);
13702 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13703 	}
13704 	mutex_unlock(&swhash->hlist_mutex);
13705 }
13706 
13707 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13708 static void __perf_event_exit_context(void *__info)
13709 {
13710 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13711 	struct perf_event_context *ctx = __info;
13712 	struct perf_event *event;
13713 
13714 	raw_spin_lock(&ctx->lock);
13715 	ctx_sched_out(ctx, EVENT_TIME);
13716 	list_for_each_entry(event, &ctx->event_list, event_entry)
13717 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13718 	raw_spin_unlock(&ctx->lock);
13719 }
13720 
13721 static void perf_event_exit_cpu_context(int cpu)
13722 {
13723 	struct perf_cpu_context *cpuctx;
13724 	struct perf_event_context *ctx;
13725 
13726 	// XXX simplify cpuctx->online
13727 	mutex_lock(&pmus_lock);
13728 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13729 	ctx = &cpuctx->ctx;
13730 
13731 	mutex_lock(&ctx->mutex);
13732 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13733 	cpuctx->online = 0;
13734 	mutex_unlock(&ctx->mutex);
13735 	cpumask_clear_cpu(cpu, perf_online_mask);
13736 	mutex_unlock(&pmus_lock);
13737 }
13738 #else
13739 
13740 static void perf_event_exit_cpu_context(int cpu) { }
13741 
13742 #endif
13743 
13744 int perf_event_init_cpu(unsigned int cpu)
13745 {
13746 	struct perf_cpu_context *cpuctx;
13747 	struct perf_event_context *ctx;
13748 
13749 	perf_swevent_init_cpu(cpu);
13750 
13751 	mutex_lock(&pmus_lock);
13752 	cpumask_set_cpu(cpu, perf_online_mask);
13753 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13754 	ctx = &cpuctx->ctx;
13755 
13756 	mutex_lock(&ctx->mutex);
13757 	cpuctx->online = 1;
13758 	mutex_unlock(&ctx->mutex);
13759 	mutex_unlock(&pmus_lock);
13760 
13761 	return 0;
13762 }
13763 
13764 int perf_event_exit_cpu(unsigned int cpu)
13765 {
13766 	perf_event_exit_cpu_context(cpu);
13767 	return 0;
13768 }
13769 
13770 static int
13771 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13772 {
13773 	int cpu;
13774 
13775 	for_each_online_cpu(cpu)
13776 		perf_event_exit_cpu(cpu);
13777 
13778 	return NOTIFY_OK;
13779 }
13780 
13781 /*
13782  * Run the perf reboot notifier at the very last possible moment so that
13783  * the generic watchdog code runs as long as possible.
13784  */
13785 static struct notifier_block perf_reboot_notifier = {
13786 	.notifier_call = perf_reboot,
13787 	.priority = INT_MIN,
13788 };
13789 
13790 void __init perf_event_init(void)
13791 {
13792 	int ret;
13793 
13794 	idr_init(&pmu_idr);
13795 
13796 	perf_event_init_all_cpus();
13797 	init_srcu_struct(&pmus_srcu);
13798 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13799 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13800 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13801 	perf_tp_register();
13802 	perf_event_init_cpu(smp_processor_id());
13803 	register_reboot_notifier(&perf_reboot_notifier);
13804 
13805 	ret = init_hw_breakpoint();
13806 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13807 
13808 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13809 
13810 	/*
13811 	 * Build time assertion that we keep the data_head at the intended
13812 	 * location.  IOW, validation we got the __reserved[] size right.
13813 	 */
13814 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13815 		     != 1024);
13816 }
13817 
13818 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13819 			      char *page)
13820 {
13821 	struct perf_pmu_events_attr *pmu_attr =
13822 		container_of(attr, struct perf_pmu_events_attr, attr);
13823 
13824 	if (pmu_attr->event_str)
13825 		return sprintf(page, "%s\n", pmu_attr->event_str);
13826 
13827 	return 0;
13828 }
13829 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13830 
13831 static int __init perf_event_sysfs_init(void)
13832 {
13833 	struct pmu *pmu;
13834 	int ret;
13835 
13836 	mutex_lock(&pmus_lock);
13837 
13838 	ret = bus_register(&pmu_bus);
13839 	if (ret)
13840 		goto unlock;
13841 
13842 	list_for_each_entry(pmu, &pmus, entry) {
13843 		if (pmu->dev)
13844 			continue;
13845 
13846 		ret = pmu_dev_alloc(pmu);
13847 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13848 	}
13849 	pmu_bus_running = 1;
13850 	ret = 0;
13851 
13852 unlock:
13853 	mutex_unlock(&pmus_lock);
13854 
13855 	return ret;
13856 }
13857 device_initcall(perf_event_sysfs_init);
13858 
13859 #ifdef CONFIG_CGROUP_PERF
13860 static struct cgroup_subsys_state *
13861 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13862 {
13863 	struct perf_cgroup *jc;
13864 
13865 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13866 	if (!jc)
13867 		return ERR_PTR(-ENOMEM);
13868 
13869 	jc->info = alloc_percpu(struct perf_cgroup_info);
13870 	if (!jc->info) {
13871 		kfree(jc);
13872 		return ERR_PTR(-ENOMEM);
13873 	}
13874 
13875 	return &jc->css;
13876 }
13877 
13878 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13879 {
13880 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13881 
13882 	free_percpu(jc->info);
13883 	kfree(jc);
13884 }
13885 
13886 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13887 {
13888 	perf_event_cgroup(css->cgroup);
13889 	return 0;
13890 }
13891 
13892 static int __perf_cgroup_move(void *info)
13893 {
13894 	struct task_struct *task = info;
13895 
13896 	preempt_disable();
13897 	perf_cgroup_switch(task);
13898 	preempt_enable();
13899 
13900 	return 0;
13901 }
13902 
13903 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13904 {
13905 	struct task_struct *task;
13906 	struct cgroup_subsys_state *css;
13907 
13908 	cgroup_taskset_for_each(task, css, tset)
13909 		task_function_call(task, __perf_cgroup_move, task);
13910 }
13911 
13912 struct cgroup_subsys perf_event_cgrp_subsys = {
13913 	.css_alloc	= perf_cgroup_css_alloc,
13914 	.css_free	= perf_cgroup_css_free,
13915 	.css_online	= perf_cgroup_css_online,
13916 	.attach		= perf_cgroup_attach,
13917 	/*
13918 	 * Implicitly enable on dfl hierarchy so that perf events can
13919 	 * always be filtered by cgroup2 path as long as perf_event
13920 	 * controller is not mounted on a legacy hierarchy.
13921 	 */
13922 	.implicit_on_dfl = true,
13923 	.threaded	= true,
13924 };
13925 #endif /* CONFIG_CGROUP_PERF */
13926 
13927 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13928