xref: /openbmc/linux/kernel/events/callchain.c (revision cfbcf468454ab4b20f0b4b62da51920b99fdb19e)
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15 
16 struct callchain_cpus_entries {
17 	struct rcu_head			rcu_head;
18 	struct perf_callchain_entry	*cpu_entries[0];
19 };
20 
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22 
23 static inline size_t perf_callchain_entry__sizeof(void)
24 {
25 	return (sizeof(struct perf_callchain_entry) +
26 		sizeof(__u64) * sysctl_perf_event_max_stack);
27 }
28 
29 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
30 static atomic_t nr_callchain_events;
31 static DEFINE_MUTEX(callchain_mutex);
32 static struct callchain_cpus_entries *callchain_cpus_entries;
33 
34 
35 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
36 				  struct pt_regs *regs)
37 {
38 }
39 
40 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
41 				struct pt_regs *regs)
42 {
43 }
44 
45 static void release_callchain_buffers_rcu(struct rcu_head *head)
46 {
47 	struct callchain_cpus_entries *entries;
48 	int cpu;
49 
50 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
51 
52 	for_each_possible_cpu(cpu)
53 		kfree(entries->cpu_entries[cpu]);
54 
55 	kfree(entries);
56 }
57 
58 static void release_callchain_buffers(void)
59 {
60 	struct callchain_cpus_entries *entries;
61 
62 	entries = callchain_cpus_entries;
63 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
64 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
65 }
66 
67 static int alloc_callchain_buffers(void)
68 {
69 	int cpu;
70 	int size;
71 	struct callchain_cpus_entries *entries;
72 
73 	/*
74 	 * We can't use the percpu allocation API for data that can be
75 	 * accessed from NMI. Use a temporary manual per cpu allocation
76 	 * until that gets sorted out.
77 	 */
78 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
79 
80 	entries = kzalloc(size, GFP_KERNEL);
81 	if (!entries)
82 		return -ENOMEM;
83 
84 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
85 
86 	for_each_possible_cpu(cpu) {
87 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
88 							 cpu_to_node(cpu));
89 		if (!entries->cpu_entries[cpu])
90 			goto fail;
91 	}
92 
93 	rcu_assign_pointer(callchain_cpus_entries, entries);
94 
95 	return 0;
96 
97 fail:
98 	for_each_possible_cpu(cpu)
99 		kfree(entries->cpu_entries[cpu]);
100 	kfree(entries);
101 
102 	return -ENOMEM;
103 }
104 
105 int get_callchain_buffers(void)
106 {
107 	int err = 0;
108 	int count;
109 
110 	mutex_lock(&callchain_mutex);
111 
112 	count = atomic_inc_return(&nr_callchain_events);
113 	if (WARN_ON_ONCE(count < 1)) {
114 		err = -EINVAL;
115 		goto exit;
116 	}
117 
118 	if (count > 1) {
119 		/* If the allocation failed, give up */
120 		if (!callchain_cpus_entries)
121 			err = -ENOMEM;
122 		goto exit;
123 	}
124 
125 	err = alloc_callchain_buffers();
126 exit:
127 	if (err)
128 		atomic_dec(&nr_callchain_events);
129 
130 	mutex_unlock(&callchain_mutex);
131 
132 	return err;
133 }
134 
135 void put_callchain_buffers(void)
136 {
137 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
138 		release_callchain_buffers();
139 		mutex_unlock(&callchain_mutex);
140 	}
141 }
142 
143 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
144 {
145 	int cpu;
146 	struct callchain_cpus_entries *entries;
147 
148 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
149 	if (*rctx == -1)
150 		return NULL;
151 
152 	entries = rcu_dereference(callchain_cpus_entries);
153 	if (!entries)
154 		return NULL;
155 
156 	cpu = smp_processor_id();
157 
158 	return (((void *)entries->cpu_entries[cpu]) +
159 		(*rctx * perf_callchain_entry__sizeof()));
160 }
161 
162 static void
163 put_callchain_entry(int rctx)
164 {
165 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
166 }
167 
168 struct perf_callchain_entry *
169 perf_callchain(struct perf_event *event, struct pt_regs *regs)
170 {
171 	bool kernel = !event->attr.exclude_callchain_kernel;
172 	bool user   = !event->attr.exclude_callchain_user;
173 	/* Disallow cross-task user callchains. */
174 	bool crosstask = event->ctx->task && event->ctx->task != current;
175 
176 	if (!kernel && !user)
177 		return NULL;
178 
179 	return get_perf_callchain(regs, 0, kernel, user, sysctl_perf_event_max_stack, crosstask, true);
180 }
181 
182 struct perf_callchain_entry *
183 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
184 		   u32 max_stack, bool crosstask, bool add_mark)
185 {
186 	struct perf_callchain_entry *entry;
187 	struct perf_callchain_entry_ctx ctx;
188 	int rctx;
189 
190 	entry = get_callchain_entry(&rctx);
191 	if (rctx == -1)
192 		return NULL;
193 
194 	if (!entry)
195 		goto exit_put;
196 
197 	ctx.entry     = entry;
198 	ctx.max_stack = max_stack;
199 
200 	entry->nr = init_nr;
201 
202 	if (kernel && !user_mode(regs)) {
203 		if (add_mark)
204 			perf_callchain_store(&ctx, PERF_CONTEXT_KERNEL);
205 		perf_callchain_kernel(&ctx, regs);
206 	}
207 
208 	if (user) {
209 		if (!user_mode(regs)) {
210 			if  (current->mm)
211 				regs = task_pt_regs(current);
212 			else
213 				regs = NULL;
214 		}
215 
216 		if (regs) {
217 			if (crosstask)
218 				goto exit_put;
219 
220 			if (add_mark)
221 				perf_callchain_store(&ctx, PERF_CONTEXT_USER);
222 			perf_callchain_user(&ctx, regs);
223 		}
224 	}
225 
226 exit_put:
227 	put_callchain_entry(rctx);
228 
229 	return entry;
230 }
231 
232 int perf_event_max_stack_handler(struct ctl_table *table, int write,
233 				 void __user *buffer, size_t *lenp, loff_t *ppos)
234 {
235 	int *value = table->data;
236 	int new_value = *value, ret;
237 	struct ctl_table new_table = *table;
238 
239 	new_table.data = &new_value;
240 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
241 	if (ret || !write)
242 		return ret;
243 
244 	mutex_lock(&callchain_mutex);
245 	if (atomic_read(&nr_callchain_events))
246 		ret = -EBUSY;
247 	else
248 		*value = new_value;
249 
250 	mutex_unlock(&callchain_mutex);
251 
252 	return ret;
253 }
254