xref: /openbmc/linux/kernel/dma/mapping.c (revision 62fcee9a3bd73e279d3052245a652a918d0c51da)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page;
116 	int ret;
117 
118 	if (!dev_is_dma_coherent(dev)) {
119 		unsigned long pfn;
120 
121 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 			return -ENXIO;
123 
124 		/* If the PFN is not valid, we do not have a struct page */
125 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 		if (!pfn_valid(pfn))
127 			return -ENXIO;
128 		page = pfn_to_page(pfn);
129 	} else {
130 		page = virt_to_page(cpu_addr);
131 	}
132 
133 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 	if (!ret)
135 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 	return ret;
137 }
138 
139 /*
140  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141  * that the intention is to allow exporting memory allocated via the
142  * coherent DMA APIs through the dma_buf API, which only accepts a
143  * scattertable.  This presents a couple of problems:
144  * 1. Not all memory allocated via the coherent DMA APIs is backed by
145  *    a struct page
146  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147  *    as we will try to flush the memory through a different alias to that
148  *    actually being used (and the flushes are redundant.)
149  */
150 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
152 		unsigned long attrs)
153 {
154 	const struct dma_map_ops *ops = get_dma_ops(dev);
155 
156 	if (dma_is_direct(ops))
157 		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158 				size, attrs);
159 	if (!ops->get_sgtable)
160 		return -ENXIO;
161 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162 }
163 EXPORT_SYMBOL(dma_get_sgtable_attrs);
164 
165 #ifdef CONFIG_MMU
166 /*
167  * Return the page attributes used for mapping dma_alloc_* memory, either in
168  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169  */
170 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171 {
172 	if (dev_is_dma_coherent(dev) ||
173 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174              (attrs & DMA_ATTR_NON_CONSISTENT)))
175 		return prot;
176 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177 	if (attrs & DMA_ATTR_WRITE_COMBINE)
178 		return pgprot_writecombine(prot);
179 #endif
180 	return pgprot_dmacoherent(prot);
181 }
182 #endif /* CONFIG_MMU */
183 
184 /*
185  * Create userspace mapping for the DMA-coherent memory.
186  */
187 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
189 		unsigned long attrs)
190 {
191 #ifdef CONFIG_MMU
192 	unsigned long user_count = vma_pages(vma);
193 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194 	unsigned long off = vma->vm_pgoff;
195 	unsigned long pfn;
196 	int ret = -ENXIO;
197 
198 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199 
200 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201 		return ret;
202 
203 	if (off >= count || user_count > count - off)
204 		return -ENXIO;
205 
206 	if (!dev_is_dma_coherent(dev)) {
207 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208 			return -ENXIO;
209 
210 		/* If the PFN is not valid, we do not have a struct page */
211 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212 		if (!pfn_valid(pfn))
213 			return -ENXIO;
214 	} else {
215 		pfn = page_to_pfn(virt_to_page(cpu_addr));
216 	}
217 
218 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219 			user_count << PAGE_SHIFT, vma->vm_page_prot);
220 #else
221 	return -ENXIO;
222 #endif /* CONFIG_MMU */
223 }
224 
225 /**
226  * dma_can_mmap - check if a given device supports dma_mmap_*
227  * @dev: device to check
228  *
229  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230  * map DMA allocations to userspace.
231  */
232 bool dma_can_mmap(struct device *dev)
233 {
234 	const struct dma_map_ops *ops = get_dma_ops(dev);
235 
236 	if (dma_is_direct(ops)) {
237 		return IS_ENABLED(CONFIG_MMU) &&
238 		       (dev_is_dma_coherent(dev) ||
239 			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240 	}
241 
242 	return ops->mmap != NULL;
243 }
244 EXPORT_SYMBOL_GPL(dma_can_mmap);
245 
246 /**
247  * dma_mmap_attrs - map a coherent DMA allocation into user space
248  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249  * @vma: vm_area_struct describing requested user mapping
250  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251  * @dma_addr: device-view address returned from dma_alloc_attrs
252  * @size: size of memory originally requested in dma_alloc_attrs
253  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254  *
255  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256  * space.  The coherent DMA buffer must not be freed by the driver until the
257  * user space mapping has been released.
258  */
259 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
261 		unsigned long attrs)
262 {
263 	const struct dma_map_ops *ops = get_dma_ops(dev);
264 
265 	if (dma_is_direct(ops))
266 		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267 				attrs);
268 	if (!ops->mmap)
269 		return -ENXIO;
270 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271 }
272 EXPORT_SYMBOL(dma_mmap_attrs);
273 
274 static u64 dma_default_get_required_mask(struct device *dev)
275 {
276 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
277 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
278 	u64 mask;
279 
280 	if (!high_totalram) {
281 		/* convert to mask just covering totalram */
282 		low_totalram = (1 << (fls(low_totalram) - 1));
283 		low_totalram += low_totalram - 1;
284 		mask = low_totalram;
285 	} else {
286 		high_totalram = (1 << (fls(high_totalram) - 1));
287 		high_totalram += high_totalram - 1;
288 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
289 	}
290 	return mask;
291 }
292 
293 u64 dma_get_required_mask(struct device *dev)
294 {
295 	const struct dma_map_ops *ops = get_dma_ops(dev);
296 
297 	if (dma_is_direct(ops))
298 		return dma_direct_get_required_mask(dev);
299 	if (ops->get_required_mask)
300 		return ops->get_required_mask(dev);
301 	return dma_default_get_required_mask(dev);
302 }
303 EXPORT_SYMBOL_GPL(dma_get_required_mask);
304 
305 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
306 		gfp_t flag, unsigned long attrs)
307 {
308 	const struct dma_map_ops *ops = get_dma_ops(dev);
309 	void *cpu_addr;
310 
311 	WARN_ON_ONCE(!dev->coherent_dma_mask);
312 
313 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
314 		return cpu_addr;
315 
316 	/* let the implementation decide on the zone to allocate from: */
317 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
318 
319 	if (dma_is_direct(ops))
320 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
321 	else if (ops->alloc)
322 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
323 	else
324 		return NULL;
325 
326 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
327 	return cpu_addr;
328 }
329 EXPORT_SYMBOL(dma_alloc_attrs);
330 
331 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
332 		dma_addr_t dma_handle, unsigned long attrs)
333 {
334 	const struct dma_map_ops *ops = get_dma_ops(dev);
335 
336 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
337 		return;
338 	/*
339 	 * On non-coherent platforms which implement DMA-coherent buffers via
340 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
341 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
342 	 * sleep on some machines, and b) an indication that the driver is
343 	 * probably misusing the coherent API anyway.
344 	 */
345 	WARN_ON(irqs_disabled());
346 
347 	if (!cpu_addr)
348 		return;
349 
350 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
351 	if (dma_is_direct(ops))
352 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
353 	else if (ops->free)
354 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
355 }
356 EXPORT_SYMBOL(dma_free_attrs);
357 
358 static inline void dma_check_mask(struct device *dev, u64 mask)
359 {
360 	if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
361 		dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
362 }
363 
364 int dma_supported(struct device *dev, u64 mask)
365 {
366 	const struct dma_map_ops *ops = get_dma_ops(dev);
367 
368 	if (dma_is_direct(ops))
369 		return dma_direct_supported(dev, mask);
370 	if (!ops->dma_supported)
371 		return 1;
372 	return ops->dma_supported(dev, mask);
373 }
374 EXPORT_SYMBOL(dma_supported);
375 
376 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
377 void arch_dma_set_mask(struct device *dev, u64 mask);
378 #else
379 #define arch_dma_set_mask(dev, mask)	do { } while (0)
380 #endif
381 
382 int dma_set_mask(struct device *dev, u64 mask)
383 {
384 	/*
385 	 * Truncate the mask to the actually supported dma_addr_t width to
386 	 * avoid generating unsupportable addresses.
387 	 */
388 	mask = (dma_addr_t)mask;
389 
390 	if (!dev->dma_mask || !dma_supported(dev, mask))
391 		return -EIO;
392 
393 	arch_dma_set_mask(dev, mask);
394 	dma_check_mask(dev, mask);
395 	*dev->dma_mask = mask;
396 	return 0;
397 }
398 EXPORT_SYMBOL(dma_set_mask);
399 
400 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
401 int dma_set_coherent_mask(struct device *dev, u64 mask)
402 {
403 	/*
404 	 * Truncate the mask to the actually supported dma_addr_t width to
405 	 * avoid generating unsupportable addresses.
406 	 */
407 	mask = (dma_addr_t)mask;
408 
409 	if (!dma_supported(dev, mask))
410 		return -EIO;
411 
412 	dma_check_mask(dev, mask);
413 	dev->coherent_dma_mask = mask;
414 	return 0;
415 }
416 EXPORT_SYMBOL(dma_set_coherent_mask);
417 #endif
418 
419 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
420 		enum dma_data_direction dir)
421 {
422 	const struct dma_map_ops *ops = get_dma_ops(dev);
423 
424 	BUG_ON(!valid_dma_direction(dir));
425 
426 	if (dma_is_direct(ops))
427 		arch_dma_cache_sync(dev, vaddr, size, dir);
428 	else if (ops->cache_sync)
429 		ops->cache_sync(dev, vaddr, size, dir);
430 }
431 EXPORT_SYMBOL(dma_cache_sync);
432 
433 size_t dma_max_mapping_size(struct device *dev)
434 {
435 	const struct dma_map_ops *ops = get_dma_ops(dev);
436 	size_t size = SIZE_MAX;
437 
438 	if (dma_is_direct(ops))
439 		size = dma_direct_max_mapping_size(dev);
440 	else if (ops && ops->max_mapping_size)
441 		size = ops->max_mapping_size(dev);
442 
443 	return size;
444 }
445 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
446 
447 unsigned long dma_get_merge_boundary(struct device *dev)
448 {
449 	const struct dma_map_ops *ops = get_dma_ops(dev);
450 
451 	if (!ops || !ops->get_merge_boundary)
452 		return 0;	/* can't merge */
453 
454 	return ops->get_merge_boundary(dev);
455 }
456 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
457