xref: /openbmc/linux/kernel/debug/debug_core.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel Debug Core
4  *
5  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6  *
7  * Copyright (C) 2000-2001 VERITAS Software Corporation.
8  * Copyright (C) 2002-2004 Timesys Corporation
9  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
10  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
11  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
12  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
13  * Copyright (C) 2005-2009 Wind River Systems, Inc.
14  * Copyright (C) 2007 MontaVista Software, Inc.
15  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16  *
17  * Contributors at various stages not listed above:
18  *  Jason Wessel ( jason.wessel@windriver.com )
19  *  George Anzinger <george@mvista.com>
20  *  Anurekh Saxena (anurekh.saxena@timesys.com)
21  *  Lake Stevens Instrument Division (Glenn Engel)
22  *  Jim Kingdon, Cygnus Support.
23  *
24  * Original KGDB stub: David Grothe <dave@gcom.com>,
25  * Tigran Aivazian <tigran@sco.com>
26  */
27 
28 #define pr_fmt(fmt) "KGDB: " fmt
29 
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/serial_core.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/console.h>
36 #include <linux/threads.h>
37 #include <linux/uaccess.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/ptrace.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/reboot.h>
46 #include <linux/init.h>
47 #include <linux/kgdb.h>
48 #include <linux/kdb.h>
49 #include <linux/nmi.h>
50 #include <linux/pid.h>
51 #include <linux/smp.h>
52 #include <linux/mm.h>
53 #include <linux/vmacache.h>
54 #include <linux/rcupdate.h>
55 #include <linux/irq.h>
56 #include <linux/security.h>
57 
58 #include <asm/cacheflush.h>
59 #include <asm/byteorder.h>
60 #include <linux/atomic.h>
61 
62 #include "debug_core.h"
63 
64 static int kgdb_break_asap;
65 
66 struct debuggerinfo_struct kgdb_info[NR_CPUS];
67 
68 /* kgdb_connected - Is a host GDB connected to us? */
69 int				kgdb_connected;
70 EXPORT_SYMBOL_GPL(kgdb_connected);
71 
72 /* All the KGDB handlers are installed */
73 int			kgdb_io_module_registered;
74 
75 /* Guard for recursive entry */
76 static int			exception_level;
77 
78 struct kgdb_io		*dbg_io_ops;
79 static DEFINE_SPINLOCK(kgdb_registration_lock);
80 
81 /* Action for the reboot notifier, a global allow kdb to change it */
82 static int kgdbreboot;
83 /* kgdb console driver is loaded */
84 static int kgdb_con_registered;
85 /* determine if kgdb console output should be used */
86 static int kgdb_use_con;
87 /* Flag for alternate operations for early debugging */
88 bool dbg_is_early = true;
89 /* Next cpu to become the master debug core */
90 int dbg_switch_cpu;
91 
92 /* Use kdb or gdbserver mode */
93 int dbg_kdb_mode = 1;
94 
95 module_param(kgdb_use_con, int, 0644);
96 module_param(kgdbreboot, int, 0644);
97 
98 /*
99  * Holds information about breakpoints in a kernel. These breakpoints are
100  * added and removed by gdb.
101  */
102 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
103 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
104 };
105 
106 /*
107  * The CPU# of the active CPU, or -1 if none:
108  */
109 atomic_t			kgdb_active = ATOMIC_INIT(-1);
110 EXPORT_SYMBOL_GPL(kgdb_active);
111 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
112 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
113 
114 /*
115  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
116  * bootup code (which might not have percpu set up yet):
117  */
118 static atomic_t			masters_in_kgdb;
119 static atomic_t			slaves_in_kgdb;
120 atomic_t			kgdb_setting_breakpoint;
121 
122 struct task_struct		*kgdb_usethread;
123 struct task_struct		*kgdb_contthread;
124 
125 int				kgdb_single_step;
126 static pid_t			kgdb_sstep_pid;
127 
128 /* to keep track of the CPU which is doing the single stepping*/
129 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
130 
131 /*
132  * If you are debugging a problem where roundup (the collection of
133  * all other CPUs) is a problem [this should be extremely rare],
134  * then use the nokgdbroundup option to avoid roundup. In that case
135  * the other CPUs might interfere with your debugging context, so
136  * use this with care:
137  */
138 static int kgdb_do_roundup = 1;
139 
140 static int __init opt_nokgdbroundup(char *str)
141 {
142 	kgdb_do_roundup = 0;
143 
144 	return 0;
145 }
146 
147 early_param("nokgdbroundup", opt_nokgdbroundup);
148 
149 /*
150  * Finally, some KGDB code :-)
151  */
152 
153 /*
154  * Weak aliases for breakpoint management,
155  * can be overridden by architectures when needed:
156  */
157 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
158 {
159 	int err;
160 
161 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
162 				BREAK_INSTR_SIZE);
163 	if (err)
164 		return err;
165 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
166 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
167 	return err;
168 }
169 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
170 
171 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
172 {
173 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
174 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
175 }
176 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
177 
178 int __weak kgdb_validate_break_address(unsigned long addr)
179 {
180 	struct kgdb_bkpt tmp;
181 	int err;
182 
183 	if (kgdb_within_blocklist(addr))
184 		return -EINVAL;
185 
186 	/* Validate setting the breakpoint and then removing it.  If the
187 	 * remove fails, the kernel needs to emit a bad message because we
188 	 * are deep trouble not being able to put things back the way we
189 	 * found them.
190 	 */
191 	tmp.bpt_addr = addr;
192 	err = kgdb_arch_set_breakpoint(&tmp);
193 	if (err)
194 		return err;
195 	err = kgdb_arch_remove_breakpoint(&tmp);
196 	if (err)
197 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
198 		       addr);
199 	return err;
200 }
201 
202 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
203 {
204 	return instruction_pointer(regs);
205 }
206 NOKPROBE_SYMBOL(kgdb_arch_pc);
207 
208 int __weak kgdb_arch_init(void)
209 {
210 	return 0;
211 }
212 
213 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
214 {
215 	return 0;
216 }
217 NOKPROBE_SYMBOL(kgdb_skipexception);
218 
219 #ifdef CONFIG_SMP
220 
221 /*
222  * Default (weak) implementation for kgdb_roundup_cpus
223  */
224 
225 void __weak kgdb_call_nmi_hook(void *ignored)
226 {
227 	/*
228 	 * NOTE: get_irq_regs() is supposed to get the registers from
229 	 * before the IPI interrupt happened and so is supposed to
230 	 * show where the processor was.  In some situations it's
231 	 * possible we might be called without an IPI, so it might be
232 	 * safer to figure out how to make kgdb_breakpoint() work
233 	 * properly here.
234 	 */
235 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
236 }
237 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
238 
239 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
240 	CSD_INIT(kgdb_call_nmi_hook, NULL);
241 
242 void __weak kgdb_roundup_cpus(void)
243 {
244 	call_single_data_t *csd;
245 	int this_cpu = raw_smp_processor_id();
246 	int cpu;
247 	int ret;
248 
249 	for_each_online_cpu(cpu) {
250 		/* No need to roundup ourselves */
251 		if (cpu == this_cpu)
252 			continue;
253 
254 		csd = &per_cpu(kgdb_roundup_csd, cpu);
255 
256 		/*
257 		 * If it didn't round up last time, don't try again
258 		 * since smp_call_function_single_async() will block.
259 		 *
260 		 * If rounding_up is false then we know that the
261 		 * previous call must have at least started and that
262 		 * means smp_call_function_single_async() won't block.
263 		 */
264 		if (kgdb_info[cpu].rounding_up)
265 			continue;
266 		kgdb_info[cpu].rounding_up = true;
267 
268 		ret = smp_call_function_single_async(cpu, csd);
269 		if (ret)
270 			kgdb_info[cpu].rounding_up = false;
271 	}
272 }
273 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
274 
275 #endif
276 
277 /*
278  * Some architectures need cache flushes when we set/clear a
279  * breakpoint:
280  */
281 static void kgdb_flush_swbreak_addr(unsigned long addr)
282 {
283 	if (!CACHE_FLUSH_IS_SAFE)
284 		return;
285 
286 	if (current->mm) {
287 		int i;
288 
289 		for (i = 0; i < VMACACHE_SIZE; i++) {
290 			if (!current->vmacache.vmas[i])
291 				continue;
292 			flush_cache_range(current->vmacache.vmas[i],
293 					  addr, addr + BREAK_INSTR_SIZE);
294 		}
295 	}
296 
297 	/* Force flush instruction cache if it was outside the mm */
298 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
299 }
300 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
301 
302 /*
303  * SW breakpoint management:
304  */
305 int dbg_activate_sw_breakpoints(void)
306 {
307 	int error;
308 	int ret = 0;
309 	int i;
310 
311 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 		if (kgdb_break[i].state != BP_SET)
313 			continue;
314 
315 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 		if (error) {
317 			ret = error;
318 			pr_info("BP install failed: %lx\n",
319 				kgdb_break[i].bpt_addr);
320 			continue;
321 		}
322 
323 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 		kgdb_break[i].state = BP_ACTIVE;
325 	}
326 	return ret;
327 }
328 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
329 
330 int dbg_set_sw_break(unsigned long addr)
331 {
332 	int err = kgdb_validate_break_address(addr);
333 	int breakno = -1;
334 	int i;
335 
336 	if (err)
337 		return err;
338 
339 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
340 		if ((kgdb_break[i].state == BP_SET) &&
341 					(kgdb_break[i].bpt_addr == addr))
342 			return -EEXIST;
343 	}
344 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
345 		if (kgdb_break[i].state == BP_REMOVED &&
346 					kgdb_break[i].bpt_addr == addr) {
347 			breakno = i;
348 			break;
349 		}
350 	}
351 
352 	if (breakno == -1) {
353 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
354 			if (kgdb_break[i].state == BP_UNDEFINED) {
355 				breakno = i;
356 				break;
357 			}
358 		}
359 	}
360 
361 	if (breakno == -1)
362 		return -E2BIG;
363 
364 	kgdb_break[breakno].state = BP_SET;
365 	kgdb_break[breakno].type = BP_BREAKPOINT;
366 	kgdb_break[breakno].bpt_addr = addr;
367 
368 	return 0;
369 }
370 
371 int dbg_deactivate_sw_breakpoints(void)
372 {
373 	int error;
374 	int ret = 0;
375 	int i;
376 
377 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
378 		if (kgdb_break[i].state != BP_ACTIVE)
379 			continue;
380 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
381 		if (error) {
382 			pr_info("BP remove failed: %lx\n",
383 				kgdb_break[i].bpt_addr);
384 			ret = error;
385 		}
386 
387 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
388 		kgdb_break[i].state = BP_SET;
389 	}
390 	return ret;
391 }
392 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
393 
394 int dbg_remove_sw_break(unsigned long addr)
395 {
396 	int i;
397 
398 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
399 		if ((kgdb_break[i].state == BP_SET) &&
400 				(kgdb_break[i].bpt_addr == addr)) {
401 			kgdb_break[i].state = BP_REMOVED;
402 			return 0;
403 		}
404 	}
405 	return -ENOENT;
406 }
407 
408 int kgdb_isremovedbreak(unsigned long addr)
409 {
410 	int i;
411 
412 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
413 		if ((kgdb_break[i].state == BP_REMOVED) &&
414 					(kgdb_break[i].bpt_addr == addr))
415 			return 1;
416 	}
417 	return 0;
418 }
419 
420 int kgdb_has_hit_break(unsigned long addr)
421 {
422 	int i;
423 
424 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
425 		if (kgdb_break[i].state == BP_ACTIVE &&
426 		    kgdb_break[i].bpt_addr == addr)
427 			return 1;
428 	}
429 	return 0;
430 }
431 
432 int dbg_remove_all_break(void)
433 {
434 	int error;
435 	int i;
436 
437 	/* Clear memory breakpoints. */
438 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
439 		if (kgdb_break[i].state != BP_ACTIVE)
440 			goto setundefined;
441 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
442 		if (error)
443 			pr_err("breakpoint remove failed: %lx\n",
444 			       kgdb_break[i].bpt_addr);
445 setundefined:
446 		kgdb_break[i].state = BP_UNDEFINED;
447 	}
448 
449 	/* Clear hardware breakpoints. */
450 	if (arch_kgdb_ops.remove_all_hw_break)
451 		arch_kgdb_ops.remove_all_hw_break();
452 
453 	return 0;
454 }
455 
456 void kgdb_free_init_mem(void)
457 {
458 	int i;
459 
460 	/* Clear init memory breakpoints. */
461 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
462 		if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
463 			kgdb_break[i].state = BP_UNDEFINED;
464 	}
465 }
466 
467 #ifdef CONFIG_KGDB_KDB
468 void kdb_dump_stack_on_cpu(int cpu)
469 {
470 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
471 		dump_stack();
472 		return;
473 	}
474 
475 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
476 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
477 			   cpu);
478 		return;
479 	}
480 
481 	/*
482 	 * In general, architectures don't support dumping the stack of a
483 	 * "running" process that's not the current one.  From the point of
484 	 * view of the Linux, kernel processes that are looping in the kgdb
485 	 * slave loop are still "running".  There's also no API (that actually
486 	 * works across all architectures) that can do a stack crawl based
487 	 * on registers passed as a parameter.
488 	 *
489 	 * Solve this conundrum by asking slave CPUs to do the backtrace
490 	 * themselves.
491 	 */
492 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
493 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
494 		cpu_relax();
495 }
496 #endif
497 
498 /*
499  * Return true if there is a valid kgdb I/O module.  Also if no
500  * debugger is attached a message can be printed to the console about
501  * waiting for the debugger to attach.
502  *
503  * The print_wait argument is only to be true when called from inside
504  * the core kgdb_handle_exception, because it will wait for the
505  * debugger to attach.
506  */
507 static int kgdb_io_ready(int print_wait)
508 {
509 	if (!dbg_io_ops)
510 		return 0;
511 	if (kgdb_connected)
512 		return 1;
513 	if (atomic_read(&kgdb_setting_breakpoint))
514 		return 1;
515 	if (print_wait) {
516 #ifdef CONFIG_KGDB_KDB
517 		if (!dbg_kdb_mode)
518 			pr_crit("waiting... or $3#33 for KDB\n");
519 #else
520 		pr_crit("Waiting for remote debugger\n");
521 #endif
522 	}
523 	return 1;
524 }
525 NOKPROBE_SYMBOL(kgdb_io_ready);
526 
527 static int kgdb_reenter_check(struct kgdb_state *ks)
528 {
529 	unsigned long addr;
530 
531 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
532 		return 0;
533 
534 	/* Panic on recursive debugger calls: */
535 	exception_level++;
536 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
537 	dbg_deactivate_sw_breakpoints();
538 
539 	/*
540 	 * If the break point removed ok at the place exception
541 	 * occurred, try to recover and print a warning to the end
542 	 * user because the user planted a breakpoint in a place that
543 	 * KGDB needs in order to function.
544 	 */
545 	if (dbg_remove_sw_break(addr) == 0) {
546 		exception_level = 0;
547 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
548 		dbg_activate_sw_breakpoints();
549 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
550 		WARN_ON_ONCE(1);
551 
552 		return 1;
553 	}
554 	dbg_remove_all_break();
555 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
556 
557 	if (exception_level > 1) {
558 		dump_stack();
559 		kgdb_io_module_registered = false;
560 		panic("Recursive entry to debugger");
561 	}
562 
563 	pr_crit("re-enter exception: ALL breakpoints killed\n");
564 #ifdef CONFIG_KGDB_KDB
565 	/* Allow kdb to debug itself one level */
566 	return 0;
567 #endif
568 	dump_stack();
569 	panic("Recursive entry to debugger");
570 
571 	return 1;
572 }
573 NOKPROBE_SYMBOL(kgdb_reenter_check);
574 
575 static void dbg_touch_watchdogs(void)
576 {
577 	touch_softlockup_watchdog_sync();
578 	clocksource_touch_watchdog();
579 	rcu_cpu_stall_reset();
580 }
581 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
582 
583 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
584 		int exception_state)
585 {
586 	unsigned long flags;
587 	int sstep_tries = 100;
588 	int error;
589 	int cpu;
590 	int trace_on = 0;
591 	int online_cpus = num_online_cpus();
592 	u64 time_left;
593 
594 	kgdb_info[ks->cpu].enter_kgdb++;
595 	kgdb_info[ks->cpu].exception_state |= exception_state;
596 
597 	if (exception_state == DCPU_WANT_MASTER)
598 		atomic_inc(&masters_in_kgdb);
599 	else
600 		atomic_inc(&slaves_in_kgdb);
601 
602 	if (arch_kgdb_ops.disable_hw_break)
603 		arch_kgdb_ops.disable_hw_break(regs);
604 
605 acquirelock:
606 	rcu_read_lock();
607 	/*
608 	 * Interrupts will be restored by the 'trap return' code, except when
609 	 * single stepping.
610 	 */
611 	local_irq_save(flags);
612 
613 	cpu = ks->cpu;
614 	kgdb_info[cpu].debuggerinfo = regs;
615 	kgdb_info[cpu].task = current;
616 	kgdb_info[cpu].ret_state = 0;
617 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
618 
619 	/* Make sure the above info reaches the primary CPU */
620 	smp_mb();
621 
622 	if (exception_level == 1) {
623 		if (raw_spin_trylock(&dbg_master_lock))
624 			atomic_xchg(&kgdb_active, cpu);
625 		goto cpu_master_loop;
626 	}
627 
628 	/*
629 	 * CPU will loop if it is a slave or request to become a kgdb
630 	 * master cpu and acquire the kgdb_active lock:
631 	 */
632 	while (1) {
633 cpu_loop:
634 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
635 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
636 			goto cpu_master_loop;
637 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
638 			if (raw_spin_trylock(&dbg_master_lock)) {
639 				atomic_xchg(&kgdb_active, cpu);
640 				break;
641 			}
642 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
643 			dump_stack();
644 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
645 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
646 			if (!raw_spin_is_locked(&dbg_slave_lock))
647 				goto return_normal;
648 		} else {
649 return_normal:
650 			/* Return to normal operation by executing any
651 			 * hw breakpoint fixup.
652 			 */
653 			if (arch_kgdb_ops.correct_hw_break)
654 				arch_kgdb_ops.correct_hw_break();
655 			if (trace_on)
656 				tracing_on();
657 			kgdb_info[cpu].debuggerinfo = NULL;
658 			kgdb_info[cpu].task = NULL;
659 			kgdb_info[cpu].exception_state &=
660 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
661 			kgdb_info[cpu].enter_kgdb--;
662 			smp_mb__before_atomic();
663 			atomic_dec(&slaves_in_kgdb);
664 			dbg_touch_watchdogs();
665 			local_irq_restore(flags);
666 			rcu_read_unlock();
667 			return 0;
668 		}
669 		cpu_relax();
670 	}
671 
672 	/*
673 	 * For single stepping, try to only enter on the processor
674 	 * that was single stepping.  To guard against a deadlock, the
675 	 * kernel will only try for the value of sstep_tries before
676 	 * giving up and continuing on.
677 	 */
678 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
679 	    (kgdb_info[cpu].task &&
680 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
681 		atomic_set(&kgdb_active, -1);
682 		raw_spin_unlock(&dbg_master_lock);
683 		dbg_touch_watchdogs();
684 		local_irq_restore(flags);
685 		rcu_read_unlock();
686 
687 		goto acquirelock;
688 	}
689 
690 	if (!kgdb_io_ready(1)) {
691 		kgdb_info[cpu].ret_state = 1;
692 		goto kgdb_restore; /* No I/O connection, resume the system */
693 	}
694 
695 	/*
696 	 * Don't enter if we have hit a removed breakpoint.
697 	 */
698 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
699 		goto kgdb_restore;
700 
701 	atomic_inc(&ignore_console_lock_warning);
702 
703 	/* Call the I/O driver's pre_exception routine */
704 	if (dbg_io_ops->pre_exception)
705 		dbg_io_ops->pre_exception();
706 
707 	/*
708 	 * Get the passive CPU lock which will hold all the non-primary
709 	 * CPU in a spin state while the debugger is active
710 	 */
711 	if (!kgdb_single_step)
712 		raw_spin_lock(&dbg_slave_lock);
713 
714 #ifdef CONFIG_SMP
715 	/* If send_ready set, slaves are already waiting */
716 	if (ks->send_ready)
717 		atomic_set(ks->send_ready, 1);
718 
719 	/* Signal the other CPUs to enter kgdb_wait() */
720 	else if ((!kgdb_single_step) && kgdb_do_roundup)
721 		kgdb_roundup_cpus();
722 #endif
723 
724 	/*
725 	 * Wait for the other CPUs to be notified and be waiting for us:
726 	 */
727 	time_left = MSEC_PER_SEC;
728 	while (kgdb_do_roundup && --time_left &&
729 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
730 		   online_cpus)
731 		udelay(1000);
732 	if (!time_left)
733 		pr_crit("Timed out waiting for secondary CPUs.\n");
734 
735 	/*
736 	 * At this point the primary processor is completely
737 	 * in the debugger and all secondary CPUs are quiescent
738 	 */
739 	dbg_deactivate_sw_breakpoints();
740 	kgdb_single_step = 0;
741 	kgdb_contthread = current;
742 	exception_level = 0;
743 	trace_on = tracing_is_on();
744 	if (trace_on)
745 		tracing_off();
746 
747 	while (1) {
748 cpu_master_loop:
749 		if (dbg_kdb_mode) {
750 			kgdb_connected = 1;
751 			error = kdb_stub(ks);
752 			if (error == -1)
753 				continue;
754 			kgdb_connected = 0;
755 		} else {
756 			/*
757 			 * This is a brutal way to interfere with the debugger
758 			 * and prevent gdb being used to poke at kernel memory.
759 			 * This could cause trouble if lockdown is applied when
760 			 * there is already an active gdb session. For now the
761 			 * answer is simply "don't do that". Typically lockdown
762 			 * *will* be applied before the debug core gets started
763 			 * so only developers using kgdb for fairly advanced
764 			 * early kernel debug can be biten by this. Hopefully
765 			 * they are sophisticated enough to take care of
766 			 * themselves, especially with help from the lockdown
767 			 * message printed on the console!
768 			 */
769 			if (security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL)) {
770 				if (IS_ENABLED(CONFIG_KGDB_KDB)) {
771 					/* Switch back to kdb if possible... */
772 					dbg_kdb_mode = 1;
773 					continue;
774 				} else {
775 					/* ... otherwise just bail */
776 					break;
777 				}
778 			}
779 			error = gdb_serial_stub(ks);
780 		}
781 
782 		if (error == DBG_PASS_EVENT) {
783 			dbg_kdb_mode = !dbg_kdb_mode;
784 		} else if (error == DBG_SWITCH_CPU_EVENT) {
785 			kgdb_info[dbg_switch_cpu].exception_state |=
786 				DCPU_NEXT_MASTER;
787 			goto cpu_loop;
788 		} else {
789 			kgdb_info[cpu].ret_state = error;
790 			break;
791 		}
792 	}
793 
794 	dbg_activate_sw_breakpoints();
795 
796 	/* Call the I/O driver's post_exception routine */
797 	if (dbg_io_ops->post_exception)
798 		dbg_io_ops->post_exception();
799 
800 	atomic_dec(&ignore_console_lock_warning);
801 
802 	if (!kgdb_single_step) {
803 		raw_spin_unlock(&dbg_slave_lock);
804 		/* Wait till all the CPUs have quit from the debugger. */
805 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
806 			cpu_relax();
807 	}
808 
809 kgdb_restore:
810 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
811 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
812 		if (kgdb_info[sstep_cpu].task)
813 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
814 		else
815 			kgdb_sstep_pid = 0;
816 	}
817 	if (arch_kgdb_ops.correct_hw_break)
818 		arch_kgdb_ops.correct_hw_break();
819 	if (trace_on)
820 		tracing_on();
821 
822 	kgdb_info[cpu].debuggerinfo = NULL;
823 	kgdb_info[cpu].task = NULL;
824 	kgdb_info[cpu].exception_state &=
825 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
826 	kgdb_info[cpu].enter_kgdb--;
827 	smp_mb__before_atomic();
828 	atomic_dec(&masters_in_kgdb);
829 	/* Free kgdb_active */
830 	atomic_set(&kgdb_active, -1);
831 	raw_spin_unlock(&dbg_master_lock);
832 	dbg_touch_watchdogs();
833 	local_irq_restore(flags);
834 	rcu_read_unlock();
835 
836 	return kgdb_info[cpu].ret_state;
837 }
838 NOKPROBE_SYMBOL(kgdb_cpu_enter);
839 
840 /*
841  * kgdb_handle_exception() - main entry point from a kernel exception
842  *
843  * Locking hierarchy:
844  *	interface locks, if any (begin_session)
845  *	kgdb lock (kgdb_active)
846  */
847 int
848 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
849 {
850 	struct kgdb_state kgdb_var;
851 	struct kgdb_state *ks = &kgdb_var;
852 	int ret = 0;
853 
854 	if (arch_kgdb_ops.enable_nmi)
855 		arch_kgdb_ops.enable_nmi(0);
856 	/*
857 	 * Avoid entering the debugger if we were triggered due to an oops
858 	 * but panic_timeout indicates the system should automatically
859 	 * reboot on panic. We don't want to get stuck waiting for input
860 	 * on such systems, especially if its "just" an oops.
861 	 */
862 	if (signo != SIGTRAP && panic_timeout)
863 		return 1;
864 
865 	memset(ks, 0, sizeof(struct kgdb_state));
866 	ks->cpu			= raw_smp_processor_id();
867 	ks->ex_vector		= evector;
868 	ks->signo		= signo;
869 	ks->err_code		= ecode;
870 	ks->linux_regs		= regs;
871 
872 	if (kgdb_reenter_check(ks))
873 		goto out; /* Ouch, double exception ! */
874 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
875 		goto out;
876 
877 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
878 out:
879 	if (arch_kgdb_ops.enable_nmi)
880 		arch_kgdb_ops.enable_nmi(1);
881 	return ret;
882 }
883 NOKPROBE_SYMBOL(kgdb_handle_exception);
884 
885 /*
886  * GDB places a breakpoint at this function to know dynamically loaded objects.
887  */
888 static int module_event(struct notifier_block *self, unsigned long val,
889 	void *data)
890 {
891 	return 0;
892 }
893 
894 static struct notifier_block dbg_module_load_nb = {
895 	.notifier_call	= module_event,
896 };
897 
898 int kgdb_nmicallback(int cpu, void *regs)
899 {
900 #ifdef CONFIG_SMP
901 	struct kgdb_state kgdb_var;
902 	struct kgdb_state *ks = &kgdb_var;
903 
904 	kgdb_info[cpu].rounding_up = false;
905 
906 	memset(ks, 0, sizeof(struct kgdb_state));
907 	ks->cpu			= cpu;
908 	ks->linux_regs		= regs;
909 
910 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
911 			raw_spin_is_locked(&dbg_master_lock)) {
912 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
913 		return 0;
914 	}
915 #endif
916 	return 1;
917 }
918 NOKPROBE_SYMBOL(kgdb_nmicallback);
919 
920 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
921 							atomic_t *send_ready)
922 {
923 #ifdef CONFIG_SMP
924 	if (!kgdb_io_ready(0) || !send_ready)
925 		return 1;
926 
927 	if (kgdb_info[cpu].enter_kgdb == 0) {
928 		struct kgdb_state kgdb_var;
929 		struct kgdb_state *ks = &kgdb_var;
930 
931 		memset(ks, 0, sizeof(struct kgdb_state));
932 		ks->cpu			= cpu;
933 		ks->ex_vector		= trapnr;
934 		ks->signo		= SIGTRAP;
935 		ks->err_code		= err_code;
936 		ks->linux_regs		= regs;
937 		ks->send_ready		= send_ready;
938 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
939 		return 0;
940 	}
941 #endif
942 	return 1;
943 }
944 NOKPROBE_SYMBOL(kgdb_nmicallin);
945 
946 static void kgdb_console_write(struct console *co, const char *s,
947    unsigned count)
948 {
949 	unsigned long flags;
950 
951 	/* If we're debugging, or KGDB has not connected, don't try
952 	 * and print. */
953 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
954 		return;
955 
956 	local_irq_save(flags);
957 	gdbstub_msg_write(s, count);
958 	local_irq_restore(flags);
959 }
960 
961 static struct console kgdbcons = {
962 	.name		= "kgdb",
963 	.write		= kgdb_console_write,
964 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
965 	.index		= -1,
966 };
967 
968 static int __init opt_kgdb_con(char *str)
969 {
970 	kgdb_use_con = 1;
971 
972 	if (kgdb_io_module_registered && !kgdb_con_registered) {
973 		register_console(&kgdbcons);
974 		kgdb_con_registered = 1;
975 	}
976 
977 	return 0;
978 }
979 
980 early_param("kgdbcon", opt_kgdb_con);
981 
982 #ifdef CONFIG_MAGIC_SYSRQ
983 static void sysrq_handle_dbg(int key)
984 {
985 	if (!dbg_io_ops) {
986 		pr_crit("ERROR: No KGDB I/O module available\n");
987 		return;
988 	}
989 	if (!kgdb_connected) {
990 #ifdef CONFIG_KGDB_KDB
991 		if (!dbg_kdb_mode)
992 			pr_crit("KGDB or $3#33 for KDB\n");
993 #else
994 		pr_crit("Entering KGDB\n");
995 #endif
996 	}
997 
998 	kgdb_breakpoint();
999 }
1000 
1001 static const struct sysrq_key_op sysrq_dbg_op = {
1002 	.handler	= sysrq_handle_dbg,
1003 	.help_msg	= "debug(g)",
1004 	.action_msg	= "DEBUG",
1005 };
1006 #endif
1007 
1008 void kgdb_panic(const char *msg)
1009 {
1010 	if (!kgdb_io_module_registered)
1011 		return;
1012 
1013 	/*
1014 	 * We don't want to get stuck waiting for input from user if
1015 	 * "panic_timeout" indicates the system should automatically
1016 	 * reboot on panic.
1017 	 */
1018 	if (panic_timeout)
1019 		return;
1020 
1021 	if (dbg_kdb_mode)
1022 		kdb_printf("PANIC: %s\n", msg);
1023 
1024 	kgdb_breakpoint();
1025 }
1026 
1027 static void kgdb_initial_breakpoint(void)
1028 {
1029 	kgdb_break_asap = 0;
1030 
1031 	pr_crit("Waiting for connection from remote gdb...\n");
1032 	kgdb_breakpoint();
1033 }
1034 
1035 void __weak kgdb_arch_late(void)
1036 {
1037 }
1038 
1039 void __init dbg_late_init(void)
1040 {
1041 	dbg_is_early = false;
1042 	if (kgdb_io_module_registered)
1043 		kgdb_arch_late();
1044 	kdb_init(KDB_INIT_FULL);
1045 
1046 	if (kgdb_io_module_registered && kgdb_break_asap)
1047 		kgdb_initial_breakpoint();
1048 }
1049 
1050 static int
1051 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1052 {
1053 	/*
1054 	 * Take the following action on reboot notify depending on value:
1055 	 *    1 == Enter debugger
1056 	 *    0 == [the default] detach debug client
1057 	 *   -1 == Do nothing... and use this until the board resets
1058 	 */
1059 	switch (kgdbreboot) {
1060 	case 1:
1061 		kgdb_breakpoint();
1062 		goto done;
1063 	case -1:
1064 		goto done;
1065 	}
1066 	if (!dbg_kdb_mode)
1067 		gdbstub_exit(code);
1068 done:
1069 	return NOTIFY_DONE;
1070 }
1071 
1072 static struct notifier_block dbg_reboot_notifier = {
1073 	.notifier_call		= dbg_notify_reboot,
1074 	.next			= NULL,
1075 	.priority		= INT_MAX,
1076 };
1077 
1078 static void kgdb_register_callbacks(void)
1079 {
1080 	if (!kgdb_io_module_registered) {
1081 		kgdb_io_module_registered = 1;
1082 		kgdb_arch_init();
1083 		if (!dbg_is_early)
1084 			kgdb_arch_late();
1085 		register_module_notifier(&dbg_module_load_nb);
1086 		register_reboot_notifier(&dbg_reboot_notifier);
1087 #ifdef CONFIG_MAGIC_SYSRQ
1088 		register_sysrq_key('g', &sysrq_dbg_op);
1089 #endif
1090 		if (kgdb_use_con && !kgdb_con_registered) {
1091 			register_console(&kgdbcons);
1092 			kgdb_con_registered = 1;
1093 		}
1094 	}
1095 }
1096 
1097 static void kgdb_unregister_callbacks(void)
1098 {
1099 	/*
1100 	 * When this routine is called KGDB should unregister from
1101 	 * handlers and clean up, making sure it is not handling any
1102 	 * break exceptions at the time.
1103 	 */
1104 	if (kgdb_io_module_registered) {
1105 		kgdb_io_module_registered = 0;
1106 		unregister_reboot_notifier(&dbg_reboot_notifier);
1107 		unregister_module_notifier(&dbg_module_load_nb);
1108 		kgdb_arch_exit();
1109 #ifdef CONFIG_MAGIC_SYSRQ
1110 		unregister_sysrq_key('g', &sysrq_dbg_op);
1111 #endif
1112 		if (kgdb_con_registered) {
1113 			unregister_console(&kgdbcons);
1114 			kgdb_con_registered = 0;
1115 		}
1116 	}
1117 }
1118 
1119 /**
1120  *	kgdb_register_io_module - register KGDB IO module
1121  *	@new_dbg_io_ops: the io ops vector
1122  *
1123  *	Register it with the KGDB core.
1124  */
1125 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1126 {
1127 	struct kgdb_io *old_dbg_io_ops;
1128 	int err;
1129 
1130 	spin_lock(&kgdb_registration_lock);
1131 
1132 	old_dbg_io_ops = dbg_io_ops;
1133 	if (old_dbg_io_ops) {
1134 		if (!old_dbg_io_ops->deinit) {
1135 			spin_unlock(&kgdb_registration_lock);
1136 
1137 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1138 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1139 			return -EBUSY;
1140 		}
1141 		pr_info("Replacing I/O driver %s with %s\n",
1142 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1143 	}
1144 
1145 	if (new_dbg_io_ops->init) {
1146 		err = new_dbg_io_ops->init();
1147 		if (err) {
1148 			spin_unlock(&kgdb_registration_lock);
1149 			return err;
1150 		}
1151 	}
1152 
1153 	dbg_io_ops = new_dbg_io_ops;
1154 
1155 	spin_unlock(&kgdb_registration_lock);
1156 
1157 	if (old_dbg_io_ops) {
1158 		old_dbg_io_ops->deinit();
1159 		return 0;
1160 	}
1161 
1162 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1163 
1164 	/* Arm KGDB now. */
1165 	kgdb_register_callbacks();
1166 
1167 	if (kgdb_break_asap &&
1168 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1169 		kgdb_initial_breakpoint();
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1174 
1175 /**
1176  *	kgdb_unregister_io_module - unregister KGDB IO module
1177  *	@old_dbg_io_ops: the io ops vector
1178  *
1179  *	Unregister it with the KGDB core.
1180  */
1181 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1182 {
1183 	BUG_ON(kgdb_connected);
1184 
1185 	/*
1186 	 * KGDB is no longer able to communicate out, so
1187 	 * unregister our callbacks and reset state.
1188 	 */
1189 	kgdb_unregister_callbacks();
1190 
1191 	spin_lock(&kgdb_registration_lock);
1192 
1193 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1194 	dbg_io_ops = NULL;
1195 
1196 	spin_unlock(&kgdb_registration_lock);
1197 
1198 	if (old_dbg_io_ops->deinit)
1199 		old_dbg_io_ops->deinit();
1200 
1201 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1202 		old_dbg_io_ops->name);
1203 }
1204 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1205 
1206 int dbg_io_get_char(void)
1207 {
1208 	int ret = dbg_io_ops->read_char();
1209 	if (ret == NO_POLL_CHAR)
1210 		return -1;
1211 	if (!dbg_kdb_mode)
1212 		return ret;
1213 	if (ret == 127)
1214 		return 8;
1215 	return ret;
1216 }
1217 
1218 /**
1219  * kgdb_breakpoint - generate breakpoint exception
1220  *
1221  * This function will generate a breakpoint exception.  It is used at the
1222  * beginning of a program to sync up with a debugger and can be used
1223  * otherwise as a quick means to stop program execution and "break" into
1224  * the debugger.
1225  */
1226 noinline void kgdb_breakpoint(void)
1227 {
1228 	atomic_inc(&kgdb_setting_breakpoint);
1229 	wmb(); /* Sync point before breakpoint */
1230 	arch_kgdb_breakpoint();
1231 	wmb(); /* Sync point after breakpoint */
1232 	atomic_dec(&kgdb_setting_breakpoint);
1233 }
1234 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1235 
1236 static int __init opt_kgdb_wait(char *str)
1237 {
1238 	kgdb_break_asap = 1;
1239 
1240 	kdb_init(KDB_INIT_EARLY);
1241 	if (kgdb_io_module_registered &&
1242 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1243 		kgdb_initial_breakpoint();
1244 
1245 	return 0;
1246 }
1247 
1248 early_param("kgdbwait", opt_kgdb_wait);
1249