xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision f9a25f776d780bfa3279f0b6e5f5cf3224997976)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierachy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	nodemask_t mems_allowed;
109 
110 	/* effective CPUs and Memory Nodes allow to tasks */
111 	cpumask_var_t effective_cpus;
112 	nodemask_t effective_mems;
113 
114 	/*
115 	 * CPUs allocated to child sub-partitions (default hierarchy only)
116 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 	 * - effective_cpus and subparts_cpus are mutually exclusive.
118 	 *
119 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 	 * may have offlined ones.
121 	 */
122 	cpumask_var_t subparts_cpus;
123 
124 	/*
125 	 * This is old Memory Nodes tasks took on.
126 	 *
127 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 	 * - A new cpuset's old_mems_allowed is initialized when some
129 	 *   task is moved into it.
130 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
132 	 *   then old_mems_allowed is updated to mems_allowed.
133 	 */
134 	nodemask_t old_mems_allowed;
135 
136 	struct fmeter fmeter;		/* memory_pressure filter */
137 
138 	/*
139 	 * Tasks are being attached to this cpuset.  Used to prevent
140 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 	 */
142 	int attach_in_progress;
143 
144 	/* partition number for rebuild_sched_domains() */
145 	int pn;
146 
147 	/* for custom sched domain */
148 	int relax_domain_level;
149 
150 	/* number of CPUs in subparts_cpus */
151 	int nr_subparts_cpus;
152 
153 	/* partition root state */
154 	int partition_root_state;
155 
156 	/*
157 	 * Default hierarchy only:
158 	 * use_parent_ecpus - set if using parent's effective_cpus
159 	 * child_ecpus_count - # of children with use_parent_ecpus set
160 	 */
161 	int use_parent_ecpus;
162 	int child_ecpus_count;
163 };
164 
165 /*
166  * Partition root states:
167  *
168  *   0 - not a partition root
169  *
170  *   1 - partition root
171  *
172  *  -1 - invalid partition root
173  *       None of the cpus in cpus_allowed can be put into the parent's
174  *       subparts_cpus. In this case, the cpuset is not a real partition
175  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
176  *       and the cpuset can be restored back to a partition root if the
177  *       parent cpuset can give more CPUs back to this child cpuset.
178  */
179 #define PRS_DISABLED		0
180 #define PRS_ENABLED		1
181 #define PRS_ERROR		-1
182 
183 /*
184  * Temporary cpumasks for working with partitions that are passed among
185  * functions to avoid memory allocation in inner functions.
186  */
187 struct tmpmasks {
188 	cpumask_var_t addmask, delmask;	/* For partition root */
189 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
190 };
191 
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 	return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196 
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 	return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202 
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 	return css_cs(cs->css.parent);
206 }
207 
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 	CS_ONLINE,
211 	CS_CPU_EXCLUSIVE,
212 	CS_MEM_EXCLUSIVE,
213 	CS_MEM_HARDWALL,
214 	CS_MEMORY_MIGRATE,
215 	CS_SCHED_LOAD_BALANCE,
216 	CS_SPREAD_PAGE,
217 	CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219 
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225 
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230 
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235 
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240 
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245 
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250 
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255 
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260 
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 	return cs->partition_root_state > 0;
264 }
265 
266 static struct cpuset top_cpuset = {
267 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 		  (1 << CS_MEM_EXCLUSIVE)),
269 	.partition_root_state = PRS_ENABLED,
270 };
271 
272 /**
273  * cpuset_for_each_child - traverse online children of a cpuset
274  * @child_cs: loop cursor pointing to the current child
275  * @pos_css: used for iteration
276  * @parent_cs: target cpuset to walk children of
277  *
278  * Walk @child_cs through the online children of @parent_cs.  Must be used
279  * with RCU read locked.
280  */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
282 	css_for_each_child((pos_css), &(parent_cs)->css)		\
283 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284 
285 /**
286  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287  * @des_cs: loop cursor pointing to the current descendant
288  * @pos_css: used for iteration
289  * @root_cs: target cpuset to walk ancestor of
290  *
291  * Walk @des_cs through the online descendants of @root_cs.  Must be used
292  * with RCU read locked.  The caller may modify @pos_css by calling
293  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
294  * iteration and the first node to be visited.
295  */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
297 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
298 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299 
300 /*
301  * There are two global locks guarding cpuset structures - cpuset_mutex and
302  * callback_lock. We also require taking task_lock() when dereferencing a
303  * task's cpuset pointer. See "The task_lock() exception", at the end of this
304  * comment.
305  *
306  * A task must hold both locks to modify cpusets.  If a task holds
307  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308  * is the only task able to also acquire callback_lock and be able to
309  * modify cpusets.  It can perform various checks on the cpuset structure
310  * first, knowing nothing will change.  It can also allocate memory while
311  * just holding cpuset_mutex.  While it is performing these checks, various
312  * callback routines can briefly acquire callback_lock to query cpusets.
313  * Once it is ready to make the changes, it takes callback_lock, blocking
314  * everyone else.
315  *
316  * Calls to the kernel memory allocator can not be made while holding
317  * callback_lock, as that would risk double tripping on callback_lock
318  * from one of the callbacks into the cpuset code from within
319  * __alloc_pages().
320  *
321  * If a task is only holding callback_lock, then it has read-only
322  * access to cpusets.
323  *
324  * Now, the task_struct fields mems_allowed and mempolicy may be changed
325  * by other task, we use alloc_lock in the task_struct fields to protect
326  * them.
327  *
328  * The cpuset_common_file_read() handlers only hold callback_lock across
329  * small pieces of code, such as when reading out possibly multi-word
330  * cpumasks and nodemasks.
331  *
332  * Accessing a task's cpuset should be done in accordance with the
333  * guidelines for accessing subsystem state in kernel/cgroup.c
334  */
335 
336 static DEFINE_MUTEX(cpuset_mutex);
337 static DEFINE_SPINLOCK(callback_lock);
338 
339 static struct workqueue_struct *cpuset_migrate_mm_wq;
340 
341 /*
342  * CPU / memory hotplug is handled asynchronously.
343  */
344 static void cpuset_hotplug_workfn(struct work_struct *work);
345 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
346 
347 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
348 
349 /*
350  * Cgroup v2 behavior is used when on default hierarchy or the
351  * cgroup_v2_mode flag is set.
352  */
353 static inline bool is_in_v2_mode(void)
354 {
355 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
356 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
357 }
358 
359 /*
360  * Return in pmask the portion of a cpusets's cpus_allowed that
361  * are online.  If none are online, walk up the cpuset hierarchy
362  * until we find one that does have some online cpus.
363  *
364  * One way or another, we guarantee to return some non-empty subset
365  * of cpu_online_mask.
366  *
367  * Call with callback_lock or cpuset_mutex held.
368  */
369 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
370 {
371 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
372 		cs = parent_cs(cs);
373 		if (unlikely(!cs)) {
374 			/*
375 			 * The top cpuset doesn't have any online cpu as a
376 			 * consequence of a race between cpuset_hotplug_work
377 			 * and cpu hotplug notifier.  But we know the top
378 			 * cpuset's effective_cpus is on its way to to be
379 			 * identical to cpu_online_mask.
380 			 */
381 			cpumask_copy(pmask, cpu_online_mask);
382 			return;
383 		}
384 	}
385 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
386 }
387 
388 /*
389  * Return in *pmask the portion of a cpusets's mems_allowed that
390  * are online, with memory.  If none are online with memory, walk
391  * up the cpuset hierarchy until we find one that does have some
392  * online mems.  The top cpuset always has some mems online.
393  *
394  * One way or another, we guarantee to return some non-empty subset
395  * of node_states[N_MEMORY].
396  *
397  * Call with callback_lock or cpuset_mutex held.
398  */
399 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
400 {
401 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
402 		cs = parent_cs(cs);
403 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
404 }
405 
406 /*
407  * update task's spread flag if cpuset's page/slab spread flag is set
408  *
409  * Call with callback_lock or cpuset_mutex held.
410  */
411 static void cpuset_update_task_spread_flag(struct cpuset *cs,
412 					struct task_struct *tsk)
413 {
414 	if (is_spread_page(cs))
415 		task_set_spread_page(tsk);
416 	else
417 		task_clear_spread_page(tsk);
418 
419 	if (is_spread_slab(cs))
420 		task_set_spread_slab(tsk);
421 	else
422 		task_clear_spread_slab(tsk);
423 }
424 
425 /*
426  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
427  *
428  * One cpuset is a subset of another if all its allowed CPUs and
429  * Memory Nodes are a subset of the other, and its exclusive flags
430  * are only set if the other's are set.  Call holding cpuset_mutex.
431  */
432 
433 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
434 {
435 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
436 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
437 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
438 		is_mem_exclusive(p) <= is_mem_exclusive(q);
439 }
440 
441 /**
442  * alloc_cpumasks - allocate three cpumasks for cpuset
443  * @cs:  the cpuset that have cpumasks to be allocated.
444  * @tmp: the tmpmasks structure pointer
445  * Return: 0 if successful, -ENOMEM otherwise.
446  *
447  * Only one of the two input arguments should be non-NULL.
448  */
449 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
450 {
451 	cpumask_var_t *pmask1, *pmask2, *pmask3;
452 
453 	if (cs) {
454 		pmask1 = &cs->cpus_allowed;
455 		pmask2 = &cs->effective_cpus;
456 		pmask3 = &cs->subparts_cpus;
457 	} else {
458 		pmask1 = &tmp->new_cpus;
459 		pmask2 = &tmp->addmask;
460 		pmask3 = &tmp->delmask;
461 	}
462 
463 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
464 		return -ENOMEM;
465 
466 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
467 		goto free_one;
468 
469 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
470 		goto free_two;
471 
472 	return 0;
473 
474 free_two:
475 	free_cpumask_var(*pmask2);
476 free_one:
477 	free_cpumask_var(*pmask1);
478 	return -ENOMEM;
479 }
480 
481 /**
482  * free_cpumasks - free cpumasks in a tmpmasks structure
483  * @cs:  the cpuset that have cpumasks to be free.
484  * @tmp: the tmpmasks structure pointer
485  */
486 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
487 {
488 	if (cs) {
489 		free_cpumask_var(cs->cpus_allowed);
490 		free_cpumask_var(cs->effective_cpus);
491 		free_cpumask_var(cs->subparts_cpus);
492 	}
493 	if (tmp) {
494 		free_cpumask_var(tmp->new_cpus);
495 		free_cpumask_var(tmp->addmask);
496 		free_cpumask_var(tmp->delmask);
497 	}
498 }
499 
500 /**
501  * alloc_trial_cpuset - allocate a trial cpuset
502  * @cs: the cpuset that the trial cpuset duplicates
503  */
504 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
505 {
506 	struct cpuset *trial;
507 
508 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
509 	if (!trial)
510 		return NULL;
511 
512 	if (alloc_cpumasks(trial, NULL)) {
513 		kfree(trial);
514 		return NULL;
515 	}
516 
517 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
518 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
519 	return trial;
520 }
521 
522 /**
523  * free_cpuset - free the cpuset
524  * @cs: the cpuset to be freed
525  */
526 static inline void free_cpuset(struct cpuset *cs)
527 {
528 	free_cpumasks(cs, NULL);
529 	kfree(cs);
530 }
531 
532 /*
533  * validate_change() - Used to validate that any proposed cpuset change
534  *		       follows the structural rules for cpusets.
535  *
536  * If we replaced the flag and mask values of the current cpuset
537  * (cur) with those values in the trial cpuset (trial), would
538  * our various subset and exclusive rules still be valid?  Presumes
539  * cpuset_mutex held.
540  *
541  * 'cur' is the address of an actual, in-use cpuset.  Operations
542  * such as list traversal that depend on the actual address of the
543  * cpuset in the list must use cur below, not trial.
544  *
545  * 'trial' is the address of bulk structure copy of cur, with
546  * perhaps one or more of the fields cpus_allowed, mems_allowed,
547  * or flags changed to new, trial values.
548  *
549  * Return 0 if valid, -errno if not.
550  */
551 
552 static int validate_change(struct cpuset *cur, struct cpuset *trial)
553 {
554 	struct cgroup_subsys_state *css;
555 	struct cpuset *c, *par;
556 	int ret;
557 
558 	rcu_read_lock();
559 
560 	/* Each of our child cpusets must be a subset of us */
561 	ret = -EBUSY;
562 	cpuset_for_each_child(c, css, cur)
563 		if (!is_cpuset_subset(c, trial))
564 			goto out;
565 
566 	/* Remaining checks don't apply to root cpuset */
567 	ret = 0;
568 	if (cur == &top_cpuset)
569 		goto out;
570 
571 	par = parent_cs(cur);
572 
573 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
574 	ret = -EACCES;
575 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
576 		goto out;
577 
578 	/*
579 	 * If either I or some sibling (!= me) is exclusive, we can't
580 	 * overlap
581 	 */
582 	ret = -EINVAL;
583 	cpuset_for_each_child(c, css, par) {
584 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
585 		    c != cur &&
586 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
587 			goto out;
588 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
589 		    c != cur &&
590 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
591 			goto out;
592 	}
593 
594 	/*
595 	 * Cpusets with tasks - existing or newly being attached - can't
596 	 * be changed to have empty cpus_allowed or mems_allowed.
597 	 */
598 	ret = -ENOSPC;
599 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
600 		if (!cpumask_empty(cur->cpus_allowed) &&
601 		    cpumask_empty(trial->cpus_allowed))
602 			goto out;
603 		if (!nodes_empty(cur->mems_allowed) &&
604 		    nodes_empty(trial->mems_allowed))
605 			goto out;
606 	}
607 
608 	/*
609 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
610 	 * tasks.
611 	 */
612 	ret = -EBUSY;
613 	if (is_cpu_exclusive(cur) &&
614 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
615 				       trial->cpus_allowed))
616 		goto out;
617 
618 	ret = 0;
619 out:
620 	rcu_read_unlock();
621 	return ret;
622 }
623 
624 #ifdef CONFIG_SMP
625 /*
626  * Helper routine for generate_sched_domains().
627  * Do cpusets a, b have overlapping effective cpus_allowed masks?
628  */
629 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
630 {
631 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
632 }
633 
634 static void
635 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
636 {
637 	if (dattr->relax_domain_level < c->relax_domain_level)
638 		dattr->relax_domain_level = c->relax_domain_level;
639 	return;
640 }
641 
642 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
643 				    struct cpuset *root_cs)
644 {
645 	struct cpuset *cp;
646 	struct cgroup_subsys_state *pos_css;
647 
648 	rcu_read_lock();
649 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
650 		/* skip the whole subtree if @cp doesn't have any CPU */
651 		if (cpumask_empty(cp->cpus_allowed)) {
652 			pos_css = css_rightmost_descendant(pos_css);
653 			continue;
654 		}
655 
656 		if (is_sched_load_balance(cp))
657 			update_domain_attr(dattr, cp);
658 	}
659 	rcu_read_unlock();
660 }
661 
662 /* Must be called with cpuset_mutex held.  */
663 static inline int nr_cpusets(void)
664 {
665 	/* jump label reference count + the top-level cpuset */
666 	return static_key_count(&cpusets_enabled_key.key) + 1;
667 }
668 
669 /*
670  * generate_sched_domains()
671  *
672  * This function builds a partial partition of the systems CPUs
673  * A 'partial partition' is a set of non-overlapping subsets whose
674  * union is a subset of that set.
675  * The output of this function needs to be passed to kernel/sched/core.c
676  * partition_sched_domains() routine, which will rebuild the scheduler's
677  * load balancing domains (sched domains) as specified by that partial
678  * partition.
679  *
680  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
681  * for a background explanation of this.
682  *
683  * Does not return errors, on the theory that the callers of this
684  * routine would rather not worry about failures to rebuild sched
685  * domains when operating in the severe memory shortage situations
686  * that could cause allocation failures below.
687  *
688  * Must be called with cpuset_mutex held.
689  *
690  * The three key local variables below are:
691  *    cp - cpuset pointer, used (together with pos_css) to perform a
692  *	   top-down scan of all cpusets. For our purposes, rebuilding
693  *	   the schedulers sched domains, we can ignore !is_sched_load_
694  *	   balance cpusets.
695  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
696  *	   that need to be load balanced, for convenient iterative
697  *	   access by the subsequent code that finds the best partition,
698  *	   i.e the set of domains (subsets) of CPUs such that the
699  *	   cpus_allowed of every cpuset marked is_sched_load_balance
700  *	   is a subset of one of these domains, while there are as
701  *	   many such domains as possible, each as small as possible.
702  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
703  *	   the kernel/sched/core.c routine partition_sched_domains() in a
704  *	   convenient format, that can be easily compared to the prior
705  *	   value to determine what partition elements (sched domains)
706  *	   were changed (added or removed.)
707  *
708  * Finding the best partition (set of domains):
709  *	The triple nested loops below over i, j, k scan over the
710  *	load balanced cpusets (using the array of cpuset pointers in
711  *	csa[]) looking for pairs of cpusets that have overlapping
712  *	cpus_allowed, but which don't have the same 'pn' partition
713  *	number and gives them in the same partition number.  It keeps
714  *	looping on the 'restart' label until it can no longer find
715  *	any such pairs.
716  *
717  *	The union of the cpus_allowed masks from the set of
718  *	all cpusets having the same 'pn' value then form the one
719  *	element of the partition (one sched domain) to be passed to
720  *	partition_sched_domains().
721  */
722 static int generate_sched_domains(cpumask_var_t **domains,
723 			struct sched_domain_attr **attributes)
724 {
725 	struct cpuset *cp;	/* top-down scan of cpusets */
726 	struct cpuset **csa;	/* array of all cpuset ptrs */
727 	int csn;		/* how many cpuset ptrs in csa so far */
728 	int i, j, k;		/* indices for partition finding loops */
729 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
730 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
731 	int ndoms = 0;		/* number of sched domains in result */
732 	int nslot;		/* next empty doms[] struct cpumask slot */
733 	struct cgroup_subsys_state *pos_css;
734 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
735 
736 	doms = NULL;
737 	dattr = NULL;
738 	csa = NULL;
739 
740 	/* Special case for the 99% of systems with one, full, sched domain */
741 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
742 		ndoms = 1;
743 		doms = alloc_sched_domains(ndoms);
744 		if (!doms)
745 			goto done;
746 
747 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
748 		if (dattr) {
749 			*dattr = SD_ATTR_INIT;
750 			update_domain_attr_tree(dattr, &top_cpuset);
751 		}
752 		cpumask_and(doms[0], top_cpuset.effective_cpus,
753 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
754 
755 		goto done;
756 	}
757 
758 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
759 	if (!csa)
760 		goto done;
761 	csn = 0;
762 
763 	rcu_read_lock();
764 	if (root_load_balance)
765 		csa[csn++] = &top_cpuset;
766 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
767 		if (cp == &top_cpuset)
768 			continue;
769 		/*
770 		 * Continue traversing beyond @cp iff @cp has some CPUs and
771 		 * isn't load balancing.  The former is obvious.  The
772 		 * latter: All child cpusets contain a subset of the
773 		 * parent's cpus, so just skip them, and then we call
774 		 * update_domain_attr_tree() to calc relax_domain_level of
775 		 * the corresponding sched domain.
776 		 *
777 		 * If root is load-balancing, we can skip @cp if it
778 		 * is a subset of the root's effective_cpus.
779 		 */
780 		if (!cpumask_empty(cp->cpus_allowed) &&
781 		    !(is_sched_load_balance(cp) &&
782 		      cpumask_intersects(cp->cpus_allowed,
783 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
784 			continue;
785 
786 		if (root_load_balance &&
787 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
788 			continue;
789 
790 		if (is_sched_load_balance(cp))
791 			csa[csn++] = cp;
792 
793 		/* skip @cp's subtree if not a partition root */
794 		if (!is_partition_root(cp))
795 			pos_css = css_rightmost_descendant(pos_css);
796 	}
797 	rcu_read_unlock();
798 
799 	for (i = 0; i < csn; i++)
800 		csa[i]->pn = i;
801 	ndoms = csn;
802 
803 restart:
804 	/* Find the best partition (set of sched domains) */
805 	for (i = 0; i < csn; i++) {
806 		struct cpuset *a = csa[i];
807 		int apn = a->pn;
808 
809 		for (j = 0; j < csn; j++) {
810 			struct cpuset *b = csa[j];
811 			int bpn = b->pn;
812 
813 			if (apn != bpn && cpusets_overlap(a, b)) {
814 				for (k = 0; k < csn; k++) {
815 					struct cpuset *c = csa[k];
816 
817 					if (c->pn == bpn)
818 						c->pn = apn;
819 				}
820 				ndoms--;	/* one less element */
821 				goto restart;
822 			}
823 		}
824 	}
825 
826 	/*
827 	 * Now we know how many domains to create.
828 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
829 	 */
830 	doms = alloc_sched_domains(ndoms);
831 	if (!doms)
832 		goto done;
833 
834 	/*
835 	 * The rest of the code, including the scheduler, can deal with
836 	 * dattr==NULL case. No need to abort if alloc fails.
837 	 */
838 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
839 			      GFP_KERNEL);
840 
841 	for (nslot = 0, i = 0; i < csn; i++) {
842 		struct cpuset *a = csa[i];
843 		struct cpumask *dp;
844 		int apn = a->pn;
845 
846 		if (apn < 0) {
847 			/* Skip completed partitions */
848 			continue;
849 		}
850 
851 		dp = doms[nslot];
852 
853 		if (nslot == ndoms) {
854 			static int warnings = 10;
855 			if (warnings) {
856 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
857 					nslot, ndoms, csn, i, apn);
858 				warnings--;
859 			}
860 			continue;
861 		}
862 
863 		cpumask_clear(dp);
864 		if (dattr)
865 			*(dattr + nslot) = SD_ATTR_INIT;
866 		for (j = i; j < csn; j++) {
867 			struct cpuset *b = csa[j];
868 
869 			if (apn == b->pn) {
870 				cpumask_or(dp, dp, b->effective_cpus);
871 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
872 				if (dattr)
873 					update_domain_attr_tree(dattr + nslot, b);
874 
875 				/* Done with this partition */
876 				b->pn = -1;
877 			}
878 		}
879 		nslot++;
880 	}
881 	BUG_ON(nslot != ndoms);
882 
883 done:
884 	kfree(csa);
885 
886 	/*
887 	 * Fallback to the default domain if kmalloc() failed.
888 	 * See comments in partition_sched_domains().
889 	 */
890 	if (doms == NULL)
891 		ndoms = 1;
892 
893 	*domains    = doms;
894 	*attributes = dattr;
895 	return ndoms;
896 }
897 
898 static void update_tasks_root_domain(struct cpuset *cs)
899 {
900 	struct css_task_iter it;
901 	struct task_struct *task;
902 
903 	css_task_iter_start(&cs->css, 0, &it);
904 
905 	while ((task = css_task_iter_next(&it)))
906 		dl_add_task_root_domain(task);
907 
908 	css_task_iter_end(&it);
909 }
910 
911 static void rebuild_root_domains(void)
912 {
913 	struct cpuset *cs = NULL;
914 	struct cgroup_subsys_state *pos_css;
915 
916 	lockdep_assert_held(&cpuset_mutex);
917 	lockdep_assert_cpus_held();
918 	lockdep_assert_held(&sched_domains_mutex);
919 
920 	cgroup_enable_task_cg_lists();
921 
922 	rcu_read_lock();
923 
924 	/*
925 	 * Clear default root domain DL accounting, it will be computed again
926 	 * if a task belongs to it.
927 	 */
928 	dl_clear_root_domain(&def_root_domain);
929 
930 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
931 
932 		if (cpumask_empty(cs->effective_cpus)) {
933 			pos_css = css_rightmost_descendant(pos_css);
934 			continue;
935 		}
936 
937 		css_get(&cs->css);
938 
939 		rcu_read_unlock();
940 
941 		update_tasks_root_domain(cs);
942 
943 		rcu_read_lock();
944 		css_put(&cs->css);
945 	}
946 	rcu_read_unlock();
947 }
948 
949 static void
950 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
951 				    struct sched_domain_attr *dattr_new)
952 {
953 	mutex_lock(&sched_domains_mutex);
954 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
955 	rebuild_root_domains();
956 	mutex_unlock(&sched_domains_mutex);
957 }
958 
959 /*
960  * Rebuild scheduler domains.
961  *
962  * If the flag 'sched_load_balance' of any cpuset with non-empty
963  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
964  * which has that flag enabled, or if any cpuset with a non-empty
965  * 'cpus' is removed, then call this routine to rebuild the
966  * scheduler's dynamic sched domains.
967  *
968  * Call with cpuset_mutex held.  Takes get_online_cpus().
969  */
970 static void rebuild_sched_domains_locked(void)
971 {
972 	struct sched_domain_attr *attr;
973 	cpumask_var_t *doms;
974 	int ndoms;
975 
976 	lockdep_assert_held(&cpuset_mutex);
977 	get_online_cpus();
978 
979 	/*
980 	 * We have raced with CPU hotplug. Don't do anything to avoid
981 	 * passing doms with offlined cpu to partition_sched_domains().
982 	 * Anyways, hotplug work item will rebuild sched domains.
983 	 */
984 	if (!top_cpuset.nr_subparts_cpus &&
985 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
986 		goto out;
987 
988 	if (top_cpuset.nr_subparts_cpus &&
989 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
990 		goto out;
991 
992 	/* Generate domain masks and attrs */
993 	ndoms = generate_sched_domains(&doms, &attr);
994 
995 	/* Have scheduler rebuild the domains */
996 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
997 out:
998 	put_online_cpus();
999 }
1000 #else /* !CONFIG_SMP */
1001 static void rebuild_sched_domains_locked(void)
1002 {
1003 }
1004 #endif /* CONFIG_SMP */
1005 
1006 void rebuild_sched_domains(void)
1007 {
1008 	mutex_lock(&cpuset_mutex);
1009 	rebuild_sched_domains_locked();
1010 	mutex_unlock(&cpuset_mutex);
1011 }
1012 
1013 /**
1014  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1015  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1016  *
1017  * Iterate through each task of @cs updating its cpus_allowed to the
1018  * effective cpuset's.  As this function is called with cpuset_mutex held,
1019  * cpuset membership stays stable.
1020  */
1021 static void update_tasks_cpumask(struct cpuset *cs)
1022 {
1023 	struct css_task_iter it;
1024 	struct task_struct *task;
1025 
1026 	css_task_iter_start(&cs->css, 0, &it);
1027 	while ((task = css_task_iter_next(&it)))
1028 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1029 	css_task_iter_end(&it);
1030 }
1031 
1032 /**
1033  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1034  * @new_cpus: the temp variable for the new effective_cpus mask
1035  * @cs: the cpuset the need to recompute the new effective_cpus mask
1036  * @parent: the parent cpuset
1037  *
1038  * If the parent has subpartition CPUs, include them in the list of
1039  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1040  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1041  * to mask those out.
1042  */
1043 static void compute_effective_cpumask(struct cpumask *new_cpus,
1044 				      struct cpuset *cs, struct cpuset *parent)
1045 {
1046 	if (parent->nr_subparts_cpus) {
1047 		cpumask_or(new_cpus, parent->effective_cpus,
1048 			   parent->subparts_cpus);
1049 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1050 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1051 	} else {
1052 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1053 	}
1054 }
1055 
1056 /*
1057  * Commands for update_parent_subparts_cpumask
1058  */
1059 enum subparts_cmd {
1060 	partcmd_enable,		/* Enable partition root	 */
1061 	partcmd_disable,	/* Disable partition root	 */
1062 	partcmd_update,		/* Update parent's subparts_cpus */
1063 };
1064 
1065 /**
1066  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1067  * @cpuset:  The cpuset that requests change in partition root state
1068  * @cmd:     Partition root state change command
1069  * @newmask: Optional new cpumask for partcmd_update
1070  * @tmp:     Temporary addmask and delmask
1071  * Return:   0, 1 or an error code
1072  *
1073  * For partcmd_enable, the cpuset is being transformed from a non-partition
1074  * root to a partition root. The cpus_allowed mask of the given cpuset will
1075  * be put into parent's subparts_cpus and taken away from parent's
1076  * effective_cpus. The function will return 0 if all the CPUs listed in
1077  * cpus_allowed can be granted or an error code will be returned.
1078  *
1079  * For partcmd_disable, the cpuset is being transofrmed from a partition
1080  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1081  * parent's subparts_cpus will be taken away from that cpumask and put back
1082  * into parent's effective_cpus. 0 should always be returned.
1083  *
1084  * For partcmd_update, if the optional newmask is specified, the cpu
1085  * list is to be changed from cpus_allowed to newmask. Otherwise,
1086  * cpus_allowed is assumed to remain the same. The cpuset should either
1087  * be a partition root or an invalid partition root. The partition root
1088  * state may change if newmask is NULL and none of the requested CPUs can
1089  * be granted by the parent. The function will return 1 if changes to
1090  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1091  * Error code should only be returned when newmask is non-NULL.
1092  *
1093  * The partcmd_enable and partcmd_disable commands are used by
1094  * update_prstate(). The partcmd_update command is used by
1095  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1096  * newmask set.
1097  *
1098  * The checking is more strict when enabling partition root than the
1099  * other two commands.
1100  *
1101  * Because of the implicit cpu exclusive nature of a partition root,
1102  * cpumask changes that violates the cpu exclusivity rule will not be
1103  * permitted when checked by validate_change(). The validate_change()
1104  * function will also prevent any changes to the cpu list if it is not
1105  * a superset of children's cpu lists.
1106  */
1107 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1108 					  struct cpumask *newmask,
1109 					  struct tmpmasks *tmp)
1110 {
1111 	struct cpuset *parent = parent_cs(cpuset);
1112 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1113 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1114 	bool part_error = false;	/* Partition error? */
1115 
1116 	lockdep_assert_held(&cpuset_mutex);
1117 
1118 	/*
1119 	 * The parent must be a partition root.
1120 	 * The new cpumask, if present, or the current cpus_allowed must
1121 	 * not be empty.
1122 	 */
1123 	if (!is_partition_root(parent) ||
1124 	   (newmask && cpumask_empty(newmask)) ||
1125 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1126 		return -EINVAL;
1127 
1128 	/*
1129 	 * Enabling/disabling partition root is not allowed if there are
1130 	 * online children.
1131 	 */
1132 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1133 		return -EBUSY;
1134 
1135 	/*
1136 	 * Enabling partition root is not allowed if not all the CPUs
1137 	 * can be granted from parent's effective_cpus or at least one
1138 	 * CPU will be left after that.
1139 	 */
1140 	if ((cmd == partcmd_enable) &&
1141 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1142 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1143 		return -EINVAL;
1144 
1145 	/*
1146 	 * A cpumask update cannot make parent's effective_cpus become empty.
1147 	 */
1148 	adding = deleting = false;
1149 	if (cmd == partcmd_enable) {
1150 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1151 		adding = true;
1152 	} else if (cmd == partcmd_disable) {
1153 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1154 				       parent->subparts_cpus);
1155 	} else if (newmask) {
1156 		/*
1157 		 * partcmd_update with newmask:
1158 		 *
1159 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1160 		 * addmask = newmask & parent->effective_cpus
1161 		 *		     & ~parent->subparts_cpus
1162 		 */
1163 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1164 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1165 				       parent->subparts_cpus);
1166 
1167 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1168 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1169 					parent->subparts_cpus);
1170 		/*
1171 		 * Return error if the new effective_cpus could become empty.
1172 		 */
1173 		if (adding &&
1174 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1175 			if (!deleting)
1176 				return -EINVAL;
1177 			/*
1178 			 * As some of the CPUs in subparts_cpus might have
1179 			 * been offlined, we need to compute the real delmask
1180 			 * to confirm that.
1181 			 */
1182 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1183 					 cpu_active_mask))
1184 				return -EINVAL;
1185 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1186 		}
1187 	} else {
1188 		/*
1189 		 * partcmd_update w/o newmask:
1190 		 *
1191 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1192 		 *
1193 		 * Note that parent's subparts_cpus may have been
1194 		 * pre-shrunk in case there is a change in the cpu list.
1195 		 * So no deletion is needed.
1196 		 */
1197 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1198 				     parent->effective_cpus);
1199 		part_error = cpumask_equal(tmp->addmask,
1200 					   parent->effective_cpus);
1201 	}
1202 
1203 	if (cmd == partcmd_update) {
1204 		int prev_prs = cpuset->partition_root_state;
1205 
1206 		/*
1207 		 * Check for possible transition between PRS_ENABLED
1208 		 * and PRS_ERROR.
1209 		 */
1210 		switch (cpuset->partition_root_state) {
1211 		case PRS_ENABLED:
1212 			if (part_error)
1213 				cpuset->partition_root_state = PRS_ERROR;
1214 			break;
1215 		case PRS_ERROR:
1216 			if (!part_error)
1217 				cpuset->partition_root_state = PRS_ENABLED;
1218 			break;
1219 		}
1220 		/*
1221 		 * Set part_error if previously in invalid state.
1222 		 */
1223 		part_error = (prev_prs == PRS_ERROR);
1224 	}
1225 
1226 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1227 		return 0;	/* Nothing need to be done */
1228 
1229 	if (cpuset->partition_root_state == PRS_ERROR) {
1230 		/*
1231 		 * Remove all its cpus from parent's subparts_cpus.
1232 		 */
1233 		adding = false;
1234 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1235 				       parent->subparts_cpus);
1236 	}
1237 
1238 	if (!adding && !deleting)
1239 		return 0;
1240 
1241 	/*
1242 	 * Change the parent's subparts_cpus.
1243 	 * Newly added CPUs will be removed from effective_cpus and
1244 	 * newly deleted ones will be added back to effective_cpus.
1245 	 */
1246 	spin_lock_irq(&callback_lock);
1247 	if (adding) {
1248 		cpumask_or(parent->subparts_cpus,
1249 			   parent->subparts_cpus, tmp->addmask);
1250 		cpumask_andnot(parent->effective_cpus,
1251 			       parent->effective_cpus, tmp->addmask);
1252 	}
1253 	if (deleting) {
1254 		cpumask_andnot(parent->subparts_cpus,
1255 			       parent->subparts_cpus, tmp->delmask);
1256 		/*
1257 		 * Some of the CPUs in subparts_cpus might have been offlined.
1258 		 */
1259 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1260 		cpumask_or(parent->effective_cpus,
1261 			   parent->effective_cpus, tmp->delmask);
1262 	}
1263 
1264 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1265 	spin_unlock_irq(&callback_lock);
1266 
1267 	return cmd == partcmd_update;
1268 }
1269 
1270 /*
1271  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1272  * @cs:  the cpuset to consider
1273  * @tmp: temp variables for calculating effective_cpus & partition setup
1274  *
1275  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1276  * and all its descendants need to be updated.
1277  *
1278  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1279  *
1280  * Called with cpuset_mutex held
1281  */
1282 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1283 {
1284 	struct cpuset *cp;
1285 	struct cgroup_subsys_state *pos_css;
1286 	bool need_rebuild_sched_domains = false;
1287 
1288 	rcu_read_lock();
1289 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1290 		struct cpuset *parent = parent_cs(cp);
1291 
1292 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1293 
1294 		/*
1295 		 * If it becomes empty, inherit the effective mask of the
1296 		 * parent, which is guaranteed to have some CPUs.
1297 		 */
1298 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1299 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1300 			if (!cp->use_parent_ecpus) {
1301 				cp->use_parent_ecpus = true;
1302 				parent->child_ecpus_count++;
1303 			}
1304 		} else if (cp->use_parent_ecpus) {
1305 			cp->use_parent_ecpus = false;
1306 			WARN_ON_ONCE(!parent->child_ecpus_count);
1307 			parent->child_ecpus_count--;
1308 		}
1309 
1310 		/*
1311 		 * Skip the whole subtree if the cpumask remains the same
1312 		 * and has no partition root state.
1313 		 */
1314 		if (!cp->partition_root_state &&
1315 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1316 			pos_css = css_rightmost_descendant(pos_css);
1317 			continue;
1318 		}
1319 
1320 		/*
1321 		 * update_parent_subparts_cpumask() should have been called
1322 		 * for cs already in update_cpumask(). We should also call
1323 		 * update_tasks_cpumask() again for tasks in the parent
1324 		 * cpuset if the parent's subparts_cpus changes.
1325 		 */
1326 		if ((cp != cs) && cp->partition_root_state) {
1327 			switch (parent->partition_root_state) {
1328 			case PRS_DISABLED:
1329 				/*
1330 				 * If parent is not a partition root or an
1331 				 * invalid partition root, clear the state
1332 				 * state and the CS_CPU_EXCLUSIVE flag.
1333 				 */
1334 				WARN_ON_ONCE(cp->partition_root_state
1335 					     != PRS_ERROR);
1336 				cp->partition_root_state = 0;
1337 
1338 				/*
1339 				 * clear_bit() is an atomic operation and
1340 				 * readers aren't interested in the state
1341 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1342 				 * just update the flag without holding
1343 				 * the callback_lock.
1344 				 */
1345 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1346 				break;
1347 
1348 			case PRS_ENABLED:
1349 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1350 					update_tasks_cpumask(parent);
1351 				break;
1352 
1353 			case PRS_ERROR:
1354 				/*
1355 				 * When parent is invalid, it has to be too.
1356 				 */
1357 				cp->partition_root_state = PRS_ERROR;
1358 				if (cp->nr_subparts_cpus) {
1359 					cp->nr_subparts_cpus = 0;
1360 					cpumask_clear(cp->subparts_cpus);
1361 				}
1362 				break;
1363 			}
1364 		}
1365 
1366 		if (!css_tryget_online(&cp->css))
1367 			continue;
1368 		rcu_read_unlock();
1369 
1370 		spin_lock_irq(&callback_lock);
1371 
1372 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1373 		if (cp->nr_subparts_cpus &&
1374 		   (cp->partition_root_state != PRS_ENABLED)) {
1375 			cp->nr_subparts_cpus = 0;
1376 			cpumask_clear(cp->subparts_cpus);
1377 		} else if (cp->nr_subparts_cpus) {
1378 			/*
1379 			 * Make sure that effective_cpus & subparts_cpus
1380 			 * are mutually exclusive.
1381 			 *
1382 			 * In the unlikely event that effective_cpus
1383 			 * becomes empty. we clear cp->nr_subparts_cpus and
1384 			 * let its child partition roots to compete for
1385 			 * CPUs again.
1386 			 */
1387 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1388 				       cp->subparts_cpus);
1389 			if (cpumask_empty(cp->effective_cpus)) {
1390 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1391 				cpumask_clear(cp->subparts_cpus);
1392 				cp->nr_subparts_cpus = 0;
1393 			} else if (!cpumask_subset(cp->subparts_cpus,
1394 						   tmp->new_cpus)) {
1395 				cpumask_andnot(cp->subparts_cpus,
1396 					cp->subparts_cpus, tmp->new_cpus);
1397 				cp->nr_subparts_cpus
1398 					= cpumask_weight(cp->subparts_cpus);
1399 			}
1400 		}
1401 		spin_unlock_irq(&callback_lock);
1402 
1403 		WARN_ON(!is_in_v2_mode() &&
1404 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1405 
1406 		update_tasks_cpumask(cp);
1407 
1408 		/*
1409 		 * On legacy hierarchy, if the effective cpumask of any non-
1410 		 * empty cpuset is changed, we need to rebuild sched domains.
1411 		 * On default hierarchy, the cpuset needs to be a partition
1412 		 * root as well.
1413 		 */
1414 		if (!cpumask_empty(cp->cpus_allowed) &&
1415 		    is_sched_load_balance(cp) &&
1416 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1417 		    is_partition_root(cp)))
1418 			need_rebuild_sched_domains = true;
1419 
1420 		rcu_read_lock();
1421 		css_put(&cp->css);
1422 	}
1423 	rcu_read_unlock();
1424 
1425 	if (need_rebuild_sched_domains)
1426 		rebuild_sched_domains_locked();
1427 }
1428 
1429 /**
1430  * update_sibling_cpumasks - Update siblings cpumasks
1431  * @parent:  Parent cpuset
1432  * @cs:      Current cpuset
1433  * @tmp:     Temp variables
1434  */
1435 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1436 				    struct tmpmasks *tmp)
1437 {
1438 	struct cpuset *sibling;
1439 	struct cgroup_subsys_state *pos_css;
1440 
1441 	/*
1442 	 * Check all its siblings and call update_cpumasks_hier()
1443 	 * if their use_parent_ecpus flag is set in order for them
1444 	 * to use the right effective_cpus value.
1445 	 */
1446 	rcu_read_lock();
1447 	cpuset_for_each_child(sibling, pos_css, parent) {
1448 		if (sibling == cs)
1449 			continue;
1450 		if (!sibling->use_parent_ecpus)
1451 			continue;
1452 
1453 		update_cpumasks_hier(sibling, tmp);
1454 	}
1455 	rcu_read_unlock();
1456 }
1457 
1458 /**
1459  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1460  * @cs: the cpuset to consider
1461  * @trialcs: trial cpuset
1462  * @buf: buffer of cpu numbers written to this cpuset
1463  */
1464 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1465 			  const char *buf)
1466 {
1467 	int retval;
1468 	struct tmpmasks tmp;
1469 
1470 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1471 	if (cs == &top_cpuset)
1472 		return -EACCES;
1473 
1474 	/*
1475 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1476 	 * Since cpulist_parse() fails on an empty mask, we special case
1477 	 * that parsing.  The validate_change() call ensures that cpusets
1478 	 * with tasks have cpus.
1479 	 */
1480 	if (!*buf) {
1481 		cpumask_clear(trialcs->cpus_allowed);
1482 	} else {
1483 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1484 		if (retval < 0)
1485 			return retval;
1486 
1487 		if (!cpumask_subset(trialcs->cpus_allowed,
1488 				    top_cpuset.cpus_allowed))
1489 			return -EINVAL;
1490 	}
1491 
1492 	/* Nothing to do if the cpus didn't change */
1493 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1494 		return 0;
1495 
1496 	retval = validate_change(cs, trialcs);
1497 	if (retval < 0)
1498 		return retval;
1499 
1500 #ifdef CONFIG_CPUMASK_OFFSTACK
1501 	/*
1502 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1503 	 * to allocated cpumasks.
1504 	 */
1505 	tmp.addmask  = trialcs->subparts_cpus;
1506 	tmp.delmask  = trialcs->effective_cpus;
1507 	tmp.new_cpus = trialcs->cpus_allowed;
1508 #endif
1509 
1510 	if (cs->partition_root_state) {
1511 		/* Cpumask of a partition root cannot be empty */
1512 		if (cpumask_empty(trialcs->cpus_allowed))
1513 			return -EINVAL;
1514 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1515 					trialcs->cpus_allowed, &tmp) < 0)
1516 			return -EINVAL;
1517 	}
1518 
1519 	spin_lock_irq(&callback_lock);
1520 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1521 
1522 	/*
1523 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1524 	 */
1525 	if (cs->nr_subparts_cpus) {
1526 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1527 			       cs->cpus_allowed);
1528 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1529 	}
1530 	spin_unlock_irq(&callback_lock);
1531 
1532 	update_cpumasks_hier(cs, &tmp);
1533 
1534 	if (cs->partition_root_state) {
1535 		struct cpuset *parent = parent_cs(cs);
1536 
1537 		/*
1538 		 * For partition root, update the cpumasks of sibling
1539 		 * cpusets if they use parent's effective_cpus.
1540 		 */
1541 		if (parent->child_ecpus_count)
1542 			update_sibling_cpumasks(parent, cs, &tmp);
1543 	}
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Migrate memory region from one set of nodes to another.  This is
1549  * performed asynchronously as it can be called from process migration path
1550  * holding locks involved in process management.  All mm migrations are
1551  * performed in the queued order and can be waited for by flushing
1552  * cpuset_migrate_mm_wq.
1553  */
1554 
1555 struct cpuset_migrate_mm_work {
1556 	struct work_struct	work;
1557 	struct mm_struct	*mm;
1558 	nodemask_t		from;
1559 	nodemask_t		to;
1560 };
1561 
1562 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1563 {
1564 	struct cpuset_migrate_mm_work *mwork =
1565 		container_of(work, struct cpuset_migrate_mm_work, work);
1566 
1567 	/* on a wq worker, no need to worry about %current's mems_allowed */
1568 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1569 	mmput(mwork->mm);
1570 	kfree(mwork);
1571 }
1572 
1573 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1574 							const nodemask_t *to)
1575 {
1576 	struct cpuset_migrate_mm_work *mwork;
1577 
1578 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1579 	if (mwork) {
1580 		mwork->mm = mm;
1581 		mwork->from = *from;
1582 		mwork->to = *to;
1583 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1584 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1585 	} else {
1586 		mmput(mm);
1587 	}
1588 }
1589 
1590 static void cpuset_post_attach(void)
1591 {
1592 	flush_workqueue(cpuset_migrate_mm_wq);
1593 }
1594 
1595 /*
1596  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1597  * @tsk: the task to change
1598  * @newmems: new nodes that the task will be set
1599  *
1600  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1601  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1602  * parallel, it might temporarily see an empty intersection, which results in
1603  * a seqlock check and retry before OOM or allocation failure.
1604  */
1605 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1606 					nodemask_t *newmems)
1607 {
1608 	task_lock(tsk);
1609 
1610 	local_irq_disable();
1611 	write_seqcount_begin(&tsk->mems_allowed_seq);
1612 
1613 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1614 	mpol_rebind_task(tsk, newmems);
1615 	tsk->mems_allowed = *newmems;
1616 
1617 	write_seqcount_end(&tsk->mems_allowed_seq);
1618 	local_irq_enable();
1619 
1620 	task_unlock(tsk);
1621 }
1622 
1623 static void *cpuset_being_rebound;
1624 
1625 /**
1626  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1627  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1628  *
1629  * Iterate through each task of @cs updating its mems_allowed to the
1630  * effective cpuset's.  As this function is called with cpuset_mutex held,
1631  * cpuset membership stays stable.
1632  */
1633 static void update_tasks_nodemask(struct cpuset *cs)
1634 {
1635 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1636 	struct css_task_iter it;
1637 	struct task_struct *task;
1638 
1639 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1640 
1641 	guarantee_online_mems(cs, &newmems);
1642 
1643 	/*
1644 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1645 	 * take while holding tasklist_lock.  Forks can happen - the
1646 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1647 	 * and rebind their vma mempolicies too.  Because we still hold
1648 	 * the global cpuset_mutex, we know that no other rebind effort
1649 	 * will be contending for the global variable cpuset_being_rebound.
1650 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1651 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1652 	 */
1653 	css_task_iter_start(&cs->css, 0, &it);
1654 	while ((task = css_task_iter_next(&it))) {
1655 		struct mm_struct *mm;
1656 		bool migrate;
1657 
1658 		cpuset_change_task_nodemask(task, &newmems);
1659 
1660 		mm = get_task_mm(task);
1661 		if (!mm)
1662 			continue;
1663 
1664 		migrate = is_memory_migrate(cs);
1665 
1666 		mpol_rebind_mm(mm, &cs->mems_allowed);
1667 		if (migrate)
1668 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1669 		else
1670 			mmput(mm);
1671 	}
1672 	css_task_iter_end(&it);
1673 
1674 	/*
1675 	 * All the tasks' nodemasks have been updated, update
1676 	 * cs->old_mems_allowed.
1677 	 */
1678 	cs->old_mems_allowed = newmems;
1679 
1680 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1681 	cpuset_being_rebound = NULL;
1682 }
1683 
1684 /*
1685  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1686  * @cs: the cpuset to consider
1687  * @new_mems: a temp variable for calculating new effective_mems
1688  *
1689  * When configured nodemask is changed, the effective nodemasks of this cpuset
1690  * and all its descendants need to be updated.
1691  *
1692  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1693  *
1694  * Called with cpuset_mutex held
1695  */
1696 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1697 {
1698 	struct cpuset *cp;
1699 	struct cgroup_subsys_state *pos_css;
1700 
1701 	rcu_read_lock();
1702 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1703 		struct cpuset *parent = parent_cs(cp);
1704 
1705 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1706 
1707 		/*
1708 		 * If it becomes empty, inherit the effective mask of the
1709 		 * parent, which is guaranteed to have some MEMs.
1710 		 */
1711 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1712 			*new_mems = parent->effective_mems;
1713 
1714 		/* Skip the whole subtree if the nodemask remains the same. */
1715 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1716 			pos_css = css_rightmost_descendant(pos_css);
1717 			continue;
1718 		}
1719 
1720 		if (!css_tryget_online(&cp->css))
1721 			continue;
1722 		rcu_read_unlock();
1723 
1724 		spin_lock_irq(&callback_lock);
1725 		cp->effective_mems = *new_mems;
1726 		spin_unlock_irq(&callback_lock);
1727 
1728 		WARN_ON(!is_in_v2_mode() &&
1729 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1730 
1731 		update_tasks_nodemask(cp);
1732 
1733 		rcu_read_lock();
1734 		css_put(&cp->css);
1735 	}
1736 	rcu_read_unlock();
1737 }
1738 
1739 /*
1740  * Handle user request to change the 'mems' memory placement
1741  * of a cpuset.  Needs to validate the request, update the
1742  * cpusets mems_allowed, and for each task in the cpuset,
1743  * update mems_allowed and rebind task's mempolicy and any vma
1744  * mempolicies and if the cpuset is marked 'memory_migrate',
1745  * migrate the tasks pages to the new memory.
1746  *
1747  * Call with cpuset_mutex held. May take callback_lock during call.
1748  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1749  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1750  * their mempolicies to the cpusets new mems_allowed.
1751  */
1752 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1753 			   const char *buf)
1754 {
1755 	int retval;
1756 
1757 	/*
1758 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1759 	 * it's read-only
1760 	 */
1761 	if (cs == &top_cpuset) {
1762 		retval = -EACCES;
1763 		goto done;
1764 	}
1765 
1766 	/*
1767 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1768 	 * Since nodelist_parse() fails on an empty mask, we special case
1769 	 * that parsing.  The validate_change() call ensures that cpusets
1770 	 * with tasks have memory.
1771 	 */
1772 	if (!*buf) {
1773 		nodes_clear(trialcs->mems_allowed);
1774 	} else {
1775 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1776 		if (retval < 0)
1777 			goto done;
1778 
1779 		if (!nodes_subset(trialcs->mems_allowed,
1780 				  top_cpuset.mems_allowed)) {
1781 			retval = -EINVAL;
1782 			goto done;
1783 		}
1784 	}
1785 
1786 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1787 		retval = 0;		/* Too easy - nothing to do */
1788 		goto done;
1789 	}
1790 	retval = validate_change(cs, trialcs);
1791 	if (retval < 0)
1792 		goto done;
1793 
1794 	spin_lock_irq(&callback_lock);
1795 	cs->mems_allowed = trialcs->mems_allowed;
1796 	spin_unlock_irq(&callback_lock);
1797 
1798 	/* use trialcs->mems_allowed as a temp variable */
1799 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1800 done:
1801 	return retval;
1802 }
1803 
1804 bool current_cpuset_is_being_rebound(void)
1805 {
1806 	bool ret;
1807 
1808 	rcu_read_lock();
1809 	ret = task_cs(current) == cpuset_being_rebound;
1810 	rcu_read_unlock();
1811 
1812 	return ret;
1813 }
1814 
1815 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1816 {
1817 #ifdef CONFIG_SMP
1818 	if (val < -1 || val >= sched_domain_level_max)
1819 		return -EINVAL;
1820 #endif
1821 
1822 	if (val != cs->relax_domain_level) {
1823 		cs->relax_domain_level = val;
1824 		if (!cpumask_empty(cs->cpus_allowed) &&
1825 		    is_sched_load_balance(cs))
1826 			rebuild_sched_domains_locked();
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1834  * @cs: the cpuset in which each task's spread flags needs to be changed
1835  *
1836  * Iterate through each task of @cs updating its spread flags.  As this
1837  * function is called with cpuset_mutex held, cpuset membership stays
1838  * stable.
1839  */
1840 static void update_tasks_flags(struct cpuset *cs)
1841 {
1842 	struct css_task_iter it;
1843 	struct task_struct *task;
1844 
1845 	css_task_iter_start(&cs->css, 0, &it);
1846 	while ((task = css_task_iter_next(&it)))
1847 		cpuset_update_task_spread_flag(cs, task);
1848 	css_task_iter_end(&it);
1849 }
1850 
1851 /*
1852  * update_flag - read a 0 or a 1 in a file and update associated flag
1853  * bit:		the bit to update (see cpuset_flagbits_t)
1854  * cs:		the cpuset to update
1855  * turning_on: 	whether the flag is being set or cleared
1856  *
1857  * Call with cpuset_mutex held.
1858  */
1859 
1860 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1861 		       int turning_on)
1862 {
1863 	struct cpuset *trialcs;
1864 	int balance_flag_changed;
1865 	int spread_flag_changed;
1866 	int err;
1867 
1868 	trialcs = alloc_trial_cpuset(cs);
1869 	if (!trialcs)
1870 		return -ENOMEM;
1871 
1872 	if (turning_on)
1873 		set_bit(bit, &trialcs->flags);
1874 	else
1875 		clear_bit(bit, &trialcs->flags);
1876 
1877 	err = validate_change(cs, trialcs);
1878 	if (err < 0)
1879 		goto out;
1880 
1881 	balance_flag_changed = (is_sched_load_balance(cs) !=
1882 				is_sched_load_balance(trialcs));
1883 
1884 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1885 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1886 
1887 	spin_lock_irq(&callback_lock);
1888 	cs->flags = trialcs->flags;
1889 	spin_unlock_irq(&callback_lock);
1890 
1891 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1892 		rebuild_sched_domains_locked();
1893 
1894 	if (spread_flag_changed)
1895 		update_tasks_flags(cs);
1896 out:
1897 	free_cpuset(trialcs);
1898 	return err;
1899 }
1900 
1901 /*
1902  * update_prstate - update partititon_root_state
1903  * cs:	the cpuset to update
1904  * val: 0 - disabled, 1 - enabled
1905  *
1906  * Call with cpuset_mutex held.
1907  */
1908 static int update_prstate(struct cpuset *cs, int val)
1909 {
1910 	int err;
1911 	struct cpuset *parent = parent_cs(cs);
1912 	struct tmpmasks tmp;
1913 
1914 	if ((val != 0) && (val != 1))
1915 		return -EINVAL;
1916 	if (val == cs->partition_root_state)
1917 		return 0;
1918 
1919 	/*
1920 	 * Cannot force a partial or invalid partition root to a full
1921 	 * partition root.
1922 	 */
1923 	if (val && cs->partition_root_state)
1924 		return -EINVAL;
1925 
1926 	if (alloc_cpumasks(NULL, &tmp))
1927 		return -ENOMEM;
1928 
1929 	err = -EINVAL;
1930 	if (!cs->partition_root_state) {
1931 		/*
1932 		 * Turning on partition root requires setting the
1933 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1934 		 * cannot be NULL.
1935 		 */
1936 		if (cpumask_empty(cs->cpus_allowed))
1937 			goto out;
1938 
1939 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1940 		if (err)
1941 			goto out;
1942 
1943 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1944 						     NULL, &tmp);
1945 		if (err) {
1946 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1947 			goto out;
1948 		}
1949 		cs->partition_root_state = PRS_ENABLED;
1950 	} else {
1951 		/*
1952 		 * Turning off partition root will clear the
1953 		 * CS_CPU_EXCLUSIVE bit.
1954 		 */
1955 		if (cs->partition_root_state == PRS_ERROR) {
1956 			cs->partition_root_state = 0;
1957 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1958 			err = 0;
1959 			goto out;
1960 		}
1961 
1962 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1963 						     NULL, &tmp);
1964 		if (err)
1965 			goto out;
1966 
1967 		cs->partition_root_state = 0;
1968 
1969 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1970 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1971 	}
1972 
1973 	/*
1974 	 * Update cpumask of parent's tasks except when it is the top
1975 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1976 	 */
1977 	if (parent != &top_cpuset)
1978 		update_tasks_cpumask(parent);
1979 
1980 	if (parent->child_ecpus_count)
1981 		update_sibling_cpumasks(parent, cs, &tmp);
1982 
1983 	rebuild_sched_domains_locked();
1984 out:
1985 	free_cpumasks(NULL, &tmp);
1986 	return err;
1987 }
1988 
1989 /*
1990  * Frequency meter - How fast is some event occurring?
1991  *
1992  * These routines manage a digitally filtered, constant time based,
1993  * event frequency meter.  There are four routines:
1994  *   fmeter_init() - initialize a frequency meter.
1995  *   fmeter_markevent() - called each time the event happens.
1996  *   fmeter_getrate() - returns the recent rate of such events.
1997  *   fmeter_update() - internal routine used to update fmeter.
1998  *
1999  * A common data structure is passed to each of these routines,
2000  * which is used to keep track of the state required to manage the
2001  * frequency meter and its digital filter.
2002  *
2003  * The filter works on the number of events marked per unit time.
2004  * The filter is single-pole low-pass recursive (IIR).  The time unit
2005  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2006  * simulate 3 decimal digits of precision (multiplied by 1000).
2007  *
2008  * With an FM_COEF of 933, and a time base of 1 second, the filter
2009  * has a half-life of 10 seconds, meaning that if the events quit
2010  * happening, then the rate returned from the fmeter_getrate()
2011  * will be cut in half each 10 seconds, until it converges to zero.
2012  *
2013  * It is not worth doing a real infinitely recursive filter.  If more
2014  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2015  * just compute FM_MAXTICKS ticks worth, by which point the level
2016  * will be stable.
2017  *
2018  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2019  * arithmetic overflow in the fmeter_update() routine.
2020  *
2021  * Given the simple 32 bit integer arithmetic used, this meter works
2022  * best for reporting rates between one per millisecond (msec) and
2023  * one per 32 (approx) seconds.  At constant rates faster than one
2024  * per msec it maxes out at values just under 1,000,000.  At constant
2025  * rates between one per msec, and one per second it will stabilize
2026  * to a value N*1000, where N is the rate of events per second.
2027  * At constant rates between one per second and one per 32 seconds,
2028  * it will be choppy, moving up on the seconds that have an event,
2029  * and then decaying until the next event.  At rates slower than
2030  * about one in 32 seconds, it decays all the way back to zero between
2031  * each event.
2032  */
2033 
2034 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2035 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2036 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2037 #define FM_SCALE 1000		/* faux fixed point scale */
2038 
2039 /* Initialize a frequency meter */
2040 static void fmeter_init(struct fmeter *fmp)
2041 {
2042 	fmp->cnt = 0;
2043 	fmp->val = 0;
2044 	fmp->time = 0;
2045 	spin_lock_init(&fmp->lock);
2046 }
2047 
2048 /* Internal meter update - process cnt events and update value */
2049 static void fmeter_update(struct fmeter *fmp)
2050 {
2051 	time64_t now;
2052 	u32 ticks;
2053 
2054 	now = ktime_get_seconds();
2055 	ticks = now - fmp->time;
2056 
2057 	if (ticks == 0)
2058 		return;
2059 
2060 	ticks = min(FM_MAXTICKS, ticks);
2061 	while (ticks-- > 0)
2062 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2063 	fmp->time = now;
2064 
2065 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2066 	fmp->cnt = 0;
2067 }
2068 
2069 /* Process any previous ticks, then bump cnt by one (times scale). */
2070 static void fmeter_markevent(struct fmeter *fmp)
2071 {
2072 	spin_lock(&fmp->lock);
2073 	fmeter_update(fmp);
2074 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2075 	spin_unlock(&fmp->lock);
2076 }
2077 
2078 /* Process any previous ticks, then return current value. */
2079 static int fmeter_getrate(struct fmeter *fmp)
2080 {
2081 	int val;
2082 
2083 	spin_lock(&fmp->lock);
2084 	fmeter_update(fmp);
2085 	val = fmp->val;
2086 	spin_unlock(&fmp->lock);
2087 	return val;
2088 }
2089 
2090 static struct cpuset *cpuset_attach_old_cs;
2091 
2092 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2093 static int cpuset_can_attach(struct cgroup_taskset *tset)
2094 {
2095 	struct cgroup_subsys_state *css;
2096 	struct cpuset *cs;
2097 	struct task_struct *task;
2098 	int ret;
2099 
2100 	/* used later by cpuset_attach() */
2101 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2102 	cs = css_cs(css);
2103 
2104 	mutex_lock(&cpuset_mutex);
2105 
2106 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2107 	ret = -ENOSPC;
2108 	if (!is_in_v2_mode() &&
2109 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2110 		goto out_unlock;
2111 
2112 	cgroup_taskset_for_each(task, css, tset) {
2113 		ret = task_can_attach(task, cs->cpus_allowed);
2114 		if (ret)
2115 			goto out_unlock;
2116 		ret = security_task_setscheduler(task);
2117 		if (ret)
2118 			goto out_unlock;
2119 	}
2120 
2121 	/*
2122 	 * Mark attach is in progress.  This makes validate_change() fail
2123 	 * changes which zero cpus/mems_allowed.
2124 	 */
2125 	cs->attach_in_progress++;
2126 	ret = 0;
2127 out_unlock:
2128 	mutex_unlock(&cpuset_mutex);
2129 	return ret;
2130 }
2131 
2132 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2133 {
2134 	struct cgroup_subsys_state *css;
2135 
2136 	cgroup_taskset_first(tset, &css);
2137 
2138 	mutex_lock(&cpuset_mutex);
2139 	css_cs(css)->attach_in_progress--;
2140 	mutex_unlock(&cpuset_mutex);
2141 }
2142 
2143 /*
2144  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2145  * but we can't allocate it dynamically there.  Define it global and
2146  * allocate from cpuset_init().
2147  */
2148 static cpumask_var_t cpus_attach;
2149 
2150 static void cpuset_attach(struct cgroup_taskset *tset)
2151 {
2152 	/* static buf protected by cpuset_mutex */
2153 	static nodemask_t cpuset_attach_nodemask_to;
2154 	struct task_struct *task;
2155 	struct task_struct *leader;
2156 	struct cgroup_subsys_state *css;
2157 	struct cpuset *cs;
2158 	struct cpuset *oldcs = cpuset_attach_old_cs;
2159 
2160 	cgroup_taskset_first(tset, &css);
2161 	cs = css_cs(css);
2162 
2163 	mutex_lock(&cpuset_mutex);
2164 
2165 	/* prepare for attach */
2166 	if (cs == &top_cpuset)
2167 		cpumask_copy(cpus_attach, cpu_possible_mask);
2168 	else
2169 		guarantee_online_cpus(cs, cpus_attach);
2170 
2171 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2172 
2173 	cgroup_taskset_for_each(task, css, tset) {
2174 		/*
2175 		 * can_attach beforehand should guarantee that this doesn't
2176 		 * fail.  TODO: have a better way to handle failure here
2177 		 */
2178 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2179 
2180 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2181 		cpuset_update_task_spread_flag(cs, task);
2182 	}
2183 
2184 	/*
2185 	 * Change mm for all threadgroup leaders. This is expensive and may
2186 	 * sleep and should be moved outside migration path proper.
2187 	 */
2188 	cpuset_attach_nodemask_to = cs->effective_mems;
2189 	cgroup_taskset_for_each_leader(leader, css, tset) {
2190 		struct mm_struct *mm = get_task_mm(leader);
2191 
2192 		if (mm) {
2193 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2194 
2195 			/*
2196 			 * old_mems_allowed is the same with mems_allowed
2197 			 * here, except if this task is being moved
2198 			 * automatically due to hotplug.  In that case
2199 			 * @mems_allowed has been updated and is empty, so
2200 			 * @old_mems_allowed is the right nodesets that we
2201 			 * migrate mm from.
2202 			 */
2203 			if (is_memory_migrate(cs))
2204 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2205 						  &cpuset_attach_nodemask_to);
2206 			else
2207 				mmput(mm);
2208 		}
2209 	}
2210 
2211 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2212 
2213 	cs->attach_in_progress--;
2214 	if (!cs->attach_in_progress)
2215 		wake_up(&cpuset_attach_wq);
2216 
2217 	mutex_unlock(&cpuset_mutex);
2218 }
2219 
2220 /* The various types of files and directories in a cpuset file system */
2221 
2222 typedef enum {
2223 	FILE_MEMORY_MIGRATE,
2224 	FILE_CPULIST,
2225 	FILE_MEMLIST,
2226 	FILE_EFFECTIVE_CPULIST,
2227 	FILE_EFFECTIVE_MEMLIST,
2228 	FILE_SUBPARTS_CPULIST,
2229 	FILE_CPU_EXCLUSIVE,
2230 	FILE_MEM_EXCLUSIVE,
2231 	FILE_MEM_HARDWALL,
2232 	FILE_SCHED_LOAD_BALANCE,
2233 	FILE_PARTITION_ROOT,
2234 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2235 	FILE_MEMORY_PRESSURE_ENABLED,
2236 	FILE_MEMORY_PRESSURE,
2237 	FILE_SPREAD_PAGE,
2238 	FILE_SPREAD_SLAB,
2239 } cpuset_filetype_t;
2240 
2241 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2242 			    u64 val)
2243 {
2244 	struct cpuset *cs = css_cs(css);
2245 	cpuset_filetype_t type = cft->private;
2246 	int retval = 0;
2247 
2248 	mutex_lock(&cpuset_mutex);
2249 	if (!is_cpuset_online(cs)) {
2250 		retval = -ENODEV;
2251 		goto out_unlock;
2252 	}
2253 
2254 	switch (type) {
2255 	case FILE_CPU_EXCLUSIVE:
2256 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2257 		break;
2258 	case FILE_MEM_EXCLUSIVE:
2259 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2260 		break;
2261 	case FILE_MEM_HARDWALL:
2262 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2263 		break;
2264 	case FILE_SCHED_LOAD_BALANCE:
2265 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2266 		break;
2267 	case FILE_MEMORY_MIGRATE:
2268 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2269 		break;
2270 	case FILE_MEMORY_PRESSURE_ENABLED:
2271 		cpuset_memory_pressure_enabled = !!val;
2272 		break;
2273 	case FILE_SPREAD_PAGE:
2274 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2275 		break;
2276 	case FILE_SPREAD_SLAB:
2277 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2278 		break;
2279 	default:
2280 		retval = -EINVAL;
2281 		break;
2282 	}
2283 out_unlock:
2284 	mutex_unlock(&cpuset_mutex);
2285 	return retval;
2286 }
2287 
2288 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2289 			    s64 val)
2290 {
2291 	struct cpuset *cs = css_cs(css);
2292 	cpuset_filetype_t type = cft->private;
2293 	int retval = -ENODEV;
2294 
2295 	mutex_lock(&cpuset_mutex);
2296 	if (!is_cpuset_online(cs))
2297 		goto out_unlock;
2298 
2299 	switch (type) {
2300 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2301 		retval = update_relax_domain_level(cs, val);
2302 		break;
2303 	default:
2304 		retval = -EINVAL;
2305 		break;
2306 	}
2307 out_unlock:
2308 	mutex_unlock(&cpuset_mutex);
2309 	return retval;
2310 }
2311 
2312 /*
2313  * Common handling for a write to a "cpus" or "mems" file.
2314  */
2315 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2316 				    char *buf, size_t nbytes, loff_t off)
2317 {
2318 	struct cpuset *cs = css_cs(of_css(of));
2319 	struct cpuset *trialcs;
2320 	int retval = -ENODEV;
2321 
2322 	buf = strstrip(buf);
2323 
2324 	/*
2325 	 * CPU or memory hotunplug may leave @cs w/o any execution
2326 	 * resources, in which case the hotplug code asynchronously updates
2327 	 * configuration and transfers all tasks to the nearest ancestor
2328 	 * which can execute.
2329 	 *
2330 	 * As writes to "cpus" or "mems" may restore @cs's execution
2331 	 * resources, wait for the previously scheduled operations before
2332 	 * proceeding, so that we don't end up keep removing tasks added
2333 	 * after execution capability is restored.
2334 	 *
2335 	 * cpuset_hotplug_work calls back into cgroup core via
2336 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2337 	 * operation like this one can lead to a deadlock through kernfs
2338 	 * active_ref protection.  Let's break the protection.  Losing the
2339 	 * protection is okay as we check whether @cs is online after
2340 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2341 	 * hierarchies.
2342 	 */
2343 	css_get(&cs->css);
2344 	kernfs_break_active_protection(of->kn);
2345 	flush_work(&cpuset_hotplug_work);
2346 
2347 	mutex_lock(&cpuset_mutex);
2348 	if (!is_cpuset_online(cs))
2349 		goto out_unlock;
2350 
2351 	trialcs = alloc_trial_cpuset(cs);
2352 	if (!trialcs) {
2353 		retval = -ENOMEM;
2354 		goto out_unlock;
2355 	}
2356 
2357 	switch (of_cft(of)->private) {
2358 	case FILE_CPULIST:
2359 		retval = update_cpumask(cs, trialcs, buf);
2360 		break;
2361 	case FILE_MEMLIST:
2362 		retval = update_nodemask(cs, trialcs, buf);
2363 		break;
2364 	default:
2365 		retval = -EINVAL;
2366 		break;
2367 	}
2368 
2369 	free_cpuset(trialcs);
2370 out_unlock:
2371 	mutex_unlock(&cpuset_mutex);
2372 	kernfs_unbreak_active_protection(of->kn);
2373 	css_put(&cs->css);
2374 	flush_workqueue(cpuset_migrate_mm_wq);
2375 	return retval ?: nbytes;
2376 }
2377 
2378 /*
2379  * These ascii lists should be read in a single call, by using a user
2380  * buffer large enough to hold the entire map.  If read in smaller
2381  * chunks, there is no guarantee of atomicity.  Since the display format
2382  * used, list of ranges of sequential numbers, is variable length,
2383  * and since these maps can change value dynamically, one could read
2384  * gibberish by doing partial reads while a list was changing.
2385  */
2386 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2387 {
2388 	struct cpuset *cs = css_cs(seq_css(sf));
2389 	cpuset_filetype_t type = seq_cft(sf)->private;
2390 	int ret = 0;
2391 
2392 	spin_lock_irq(&callback_lock);
2393 
2394 	switch (type) {
2395 	case FILE_CPULIST:
2396 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2397 		break;
2398 	case FILE_MEMLIST:
2399 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2400 		break;
2401 	case FILE_EFFECTIVE_CPULIST:
2402 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2403 		break;
2404 	case FILE_EFFECTIVE_MEMLIST:
2405 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2406 		break;
2407 	case FILE_SUBPARTS_CPULIST:
2408 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2409 		break;
2410 	default:
2411 		ret = -EINVAL;
2412 	}
2413 
2414 	spin_unlock_irq(&callback_lock);
2415 	return ret;
2416 }
2417 
2418 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2419 {
2420 	struct cpuset *cs = css_cs(css);
2421 	cpuset_filetype_t type = cft->private;
2422 	switch (type) {
2423 	case FILE_CPU_EXCLUSIVE:
2424 		return is_cpu_exclusive(cs);
2425 	case FILE_MEM_EXCLUSIVE:
2426 		return is_mem_exclusive(cs);
2427 	case FILE_MEM_HARDWALL:
2428 		return is_mem_hardwall(cs);
2429 	case FILE_SCHED_LOAD_BALANCE:
2430 		return is_sched_load_balance(cs);
2431 	case FILE_MEMORY_MIGRATE:
2432 		return is_memory_migrate(cs);
2433 	case FILE_MEMORY_PRESSURE_ENABLED:
2434 		return cpuset_memory_pressure_enabled;
2435 	case FILE_MEMORY_PRESSURE:
2436 		return fmeter_getrate(&cs->fmeter);
2437 	case FILE_SPREAD_PAGE:
2438 		return is_spread_page(cs);
2439 	case FILE_SPREAD_SLAB:
2440 		return is_spread_slab(cs);
2441 	default:
2442 		BUG();
2443 	}
2444 
2445 	/* Unreachable but makes gcc happy */
2446 	return 0;
2447 }
2448 
2449 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2450 {
2451 	struct cpuset *cs = css_cs(css);
2452 	cpuset_filetype_t type = cft->private;
2453 	switch (type) {
2454 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2455 		return cs->relax_domain_level;
2456 	default:
2457 		BUG();
2458 	}
2459 
2460 	/* Unrechable but makes gcc happy */
2461 	return 0;
2462 }
2463 
2464 static int sched_partition_show(struct seq_file *seq, void *v)
2465 {
2466 	struct cpuset *cs = css_cs(seq_css(seq));
2467 
2468 	switch (cs->partition_root_state) {
2469 	case PRS_ENABLED:
2470 		seq_puts(seq, "root\n");
2471 		break;
2472 	case PRS_DISABLED:
2473 		seq_puts(seq, "member\n");
2474 		break;
2475 	case PRS_ERROR:
2476 		seq_puts(seq, "root invalid\n");
2477 		break;
2478 	}
2479 	return 0;
2480 }
2481 
2482 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2483 				     size_t nbytes, loff_t off)
2484 {
2485 	struct cpuset *cs = css_cs(of_css(of));
2486 	int val;
2487 	int retval = -ENODEV;
2488 
2489 	buf = strstrip(buf);
2490 
2491 	/*
2492 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2493 	 */
2494 	if (!strcmp(buf, "root"))
2495 		val = PRS_ENABLED;
2496 	else if (!strcmp(buf, "member"))
2497 		val = PRS_DISABLED;
2498 	else
2499 		return -EINVAL;
2500 
2501 	css_get(&cs->css);
2502 	mutex_lock(&cpuset_mutex);
2503 	if (!is_cpuset_online(cs))
2504 		goto out_unlock;
2505 
2506 	retval = update_prstate(cs, val);
2507 out_unlock:
2508 	mutex_unlock(&cpuset_mutex);
2509 	css_put(&cs->css);
2510 	return retval ?: nbytes;
2511 }
2512 
2513 /*
2514  * for the common functions, 'private' gives the type of file
2515  */
2516 
2517 static struct cftype legacy_files[] = {
2518 	{
2519 		.name = "cpus",
2520 		.seq_show = cpuset_common_seq_show,
2521 		.write = cpuset_write_resmask,
2522 		.max_write_len = (100U + 6 * NR_CPUS),
2523 		.private = FILE_CPULIST,
2524 	},
2525 
2526 	{
2527 		.name = "mems",
2528 		.seq_show = cpuset_common_seq_show,
2529 		.write = cpuset_write_resmask,
2530 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2531 		.private = FILE_MEMLIST,
2532 	},
2533 
2534 	{
2535 		.name = "effective_cpus",
2536 		.seq_show = cpuset_common_seq_show,
2537 		.private = FILE_EFFECTIVE_CPULIST,
2538 	},
2539 
2540 	{
2541 		.name = "effective_mems",
2542 		.seq_show = cpuset_common_seq_show,
2543 		.private = FILE_EFFECTIVE_MEMLIST,
2544 	},
2545 
2546 	{
2547 		.name = "cpu_exclusive",
2548 		.read_u64 = cpuset_read_u64,
2549 		.write_u64 = cpuset_write_u64,
2550 		.private = FILE_CPU_EXCLUSIVE,
2551 	},
2552 
2553 	{
2554 		.name = "mem_exclusive",
2555 		.read_u64 = cpuset_read_u64,
2556 		.write_u64 = cpuset_write_u64,
2557 		.private = FILE_MEM_EXCLUSIVE,
2558 	},
2559 
2560 	{
2561 		.name = "mem_hardwall",
2562 		.read_u64 = cpuset_read_u64,
2563 		.write_u64 = cpuset_write_u64,
2564 		.private = FILE_MEM_HARDWALL,
2565 	},
2566 
2567 	{
2568 		.name = "sched_load_balance",
2569 		.read_u64 = cpuset_read_u64,
2570 		.write_u64 = cpuset_write_u64,
2571 		.private = FILE_SCHED_LOAD_BALANCE,
2572 	},
2573 
2574 	{
2575 		.name = "sched_relax_domain_level",
2576 		.read_s64 = cpuset_read_s64,
2577 		.write_s64 = cpuset_write_s64,
2578 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2579 	},
2580 
2581 	{
2582 		.name = "memory_migrate",
2583 		.read_u64 = cpuset_read_u64,
2584 		.write_u64 = cpuset_write_u64,
2585 		.private = FILE_MEMORY_MIGRATE,
2586 	},
2587 
2588 	{
2589 		.name = "memory_pressure",
2590 		.read_u64 = cpuset_read_u64,
2591 		.private = FILE_MEMORY_PRESSURE,
2592 	},
2593 
2594 	{
2595 		.name = "memory_spread_page",
2596 		.read_u64 = cpuset_read_u64,
2597 		.write_u64 = cpuset_write_u64,
2598 		.private = FILE_SPREAD_PAGE,
2599 	},
2600 
2601 	{
2602 		.name = "memory_spread_slab",
2603 		.read_u64 = cpuset_read_u64,
2604 		.write_u64 = cpuset_write_u64,
2605 		.private = FILE_SPREAD_SLAB,
2606 	},
2607 
2608 	{
2609 		.name = "memory_pressure_enabled",
2610 		.flags = CFTYPE_ONLY_ON_ROOT,
2611 		.read_u64 = cpuset_read_u64,
2612 		.write_u64 = cpuset_write_u64,
2613 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2614 	},
2615 
2616 	{ }	/* terminate */
2617 };
2618 
2619 /*
2620  * This is currently a minimal set for the default hierarchy. It can be
2621  * expanded later on by migrating more features and control files from v1.
2622  */
2623 static struct cftype dfl_files[] = {
2624 	{
2625 		.name = "cpus",
2626 		.seq_show = cpuset_common_seq_show,
2627 		.write = cpuset_write_resmask,
2628 		.max_write_len = (100U + 6 * NR_CPUS),
2629 		.private = FILE_CPULIST,
2630 		.flags = CFTYPE_NOT_ON_ROOT,
2631 	},
2632 
2633 	{
2634 		.name = "mems",
2635 		.seq_show = cpuset_common_seq_show,
2636 		.write = cpuset_write_resmask,
2637 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2638 		.private = FILE_MEMLIST,
2639 		.flags = CFTYPE_NOT_ON_ROOT,
2640 	},
2641 
2642 	{
2643 		.name = "cpus.effective",
2644 		.seq_show = cpuset_common_seq_show,
2645 		.private = FILE_EFFECTIVE_CPULIST,
2646 	},
2647 
2648 	{
2649 		.name = "mems.effective",
2650 		.seq_show = cpuset_common_seq_show,
2651 		.private = FILE_EFFECTIVE_MEMLIST,
2652 	},
2653 
2654 	{
2655 		.name = "cpus.partition",
2656 		.seq_show = sched_partition_show,
2657 		.write = sched_partition_write,
2658 		.private = FILE_PARTITION_ROOT,
2659 		.flags = CFTYPE_NOT_ON_ROOT,
2660 	},
2661 
2662 	{
2663 		.name = "cpus.subpartitions",
2664 		.seq_show = cpuset_common_seq_show,
2665 		.private = FILE_SUBPARTS_CPULIST,
2666 		.flags = CFTYPE_DEBUG,
2667 	},
2668 
2669 	{ }	/* terminate */
2670 };
2671 
2672 
2673 /*
2674  *	cpuset_css_alloc - allocate a cpuset css
2675  *	cgrp:	control group that the new cpuset will be part of
2676  */
2677 
2678 static struct cgroup_subsys_state *
2679 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2680 {
2681 	struct cpuset *cs;
2682 
2683 	if (!parent_css)
2684 		return &top_cpuset.css;
2685 
2686 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2687 	if (!cs)
2688 		return ERR_PTR(-ENOMEM);
2689 
2690 	if (alloc_cpumasks(cs, NULL)) {
2691 		kfree(cs);
2692 		return ERR_PTR(-ENOMEM);
2693 	}
2694 
2695 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2696 	nodes_clear(cs->mems_allowed);
2697 	nodes_clear(cs->effective_mems);
2698 	fmeter_init(&cs->fmeter);
2699 	cs->relax_domain_level = -1;
2700 
2701 	return &cs->css;
2702 }
2703 
2704 static int cpuset_css_online(struct cgroup_subsys_state *css)
2705 {
2706 	struct cpuset *cs = css_cs(css);
2707 	struct cpuset *parent = parent_cs(cs);
2708 	struct cpuset *tmp_cs;
2709 	struct cgroup_subsys_state *pos_css;
2710 
2711 	if (!parent)
2712 		return 0;
2713 
2714 	mutex_lock(&cpuset_mutex);
2715 
2716 	set_bit(CS_ONLINE, &cs->flags);
2717 	if (is_spread_page(parent))
2718 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2719 	if (is_spread_slab(parent))
2720 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2721 
2722 	cpuset_inc();
2723 
2724 	spin_lock_irq(&callback_lock);
2725 	if (is_in_v2_mode()) {
2726 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2727 		cs->effective_mems = parent->effective_mems;
2728 		cs->use_parent_ecpus = true;
2729 		parent->child_ecpus_count++;
2730 	}
2731 	spin_unlock_irq(&callback_lock);
2732 
2733 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2734 		goto out_unlock;
2735 
2736 	/*
2737 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2738 	 * set.  This flag handling is implemented in cgroup core for
2739 	 * histrical reasons - the flag may be specified during mount.
2740 	 *
2741 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2742 	 * refuse to clone the configuration - thereby refusing the task to
2743 	 * be entered, and as a result refusing the sys_unshare() or
2744 	 * clone() which initiated it.  If this becomes a problem for some
2745 	 * users who wish to allow that scenario, then this could be
2746 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2747 	 * (and likewise for mems) to the new cgroup.
2748 	 */
2749 	rcu_read_lock();
2750 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2751 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2752 			rcu_read_unlock();
2753 			goto out_unlock;
2754 		}
2755 	}
2756 	rcu_read_unlock();
2757 
2758 	spin_lock_irq(&callback_lock);
2759 	cs->mems_allowed = parent->mems_allowed;
2760 	cs->effective_mems = parent->mems_allowed;
2761 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2762 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2763 	spin_unlock_irq(&callback_lock);
2764 out_unlock:
2765 	mutex_unlock(&cpuset_mutex);
2766 	return 0;
2767 }
2768 
2769 /*
2770  * If the cpuset being removed has its flag 'sched_load_balance'
2771  * enabled, then simulate turning sched_load_balance off, which
2772  * will call rebuild_sched_domains_locked(). That is not needed
2773  * in the default hierarchy where only changes in partition
2774  * will cause repartitioning.
2775  *
2776  * If the cpuset has the 'sched.partition' flag enabled, simulate
2777  * turning 'sched.partition" off.
2778  */
2779 
2780 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2781 {
2782 	struct cpuset *cs = css_cs(css);
2783 
2784 	mutex_lock(&cpuset_mutex);
2785 
2786 	if (is_partition_root(cs))
2787 		update_prstate(cs, 0);
2788 
2789 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2790 	    is_sched_load_balance(cs))
2791 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2792 
2793 	if (cs->use_parent_ecpus) {
2794 		struct cpuset *parent = parent_cs(cs);
2795 
2796 		cs->use_parent_ecpus = false;
2797 		parent->child_ecpus_count--;
2798 	}
2799 
2800 	cpuset_dec();
2801 	clear_bit(CS_ONLINE, &cs->flags);
2802 
2803 	mutex_unlock(&cpuset_mutex);
2804 }
2805 
2806 static void cpuset_css_free(struct cgroup_subsys_state *css)
2807 {
2808 	struct cpuset *cs = css_cs(css);
2809 
2810 	free_cpuset(cs);
2811 }
2812 
2813 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2814 {
2815 	mutex_lock(&cpuset_mutex);
2816 	spin_lock_irq(&callback_lock);
2817 
2818 	if (is_in_v2_mode()) {
2819 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2820 		top_cpuset.mems_allowed = node_possible_map;
2821 	} else {
2822 		cpumask_copy(top_cpuset.cpus_allowed,
2823 			     top_cpuset.effective_cpus);
2824 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2825 	}
2826 
2827 	spin_unlock_irq(&callback_lock);
2828 	mutex_unlock(&cpuset_mutex);
2829 }
2830 
2831 /*
2832  * Make sure the new task conform to the current state of its parent,
2833  * which could have been changed by cpuset just after it inherits the
2834  * state from the parent and before it sits on the cgroup's task list.
2835  */
2836 static void cpuset_fork(struct task_struct *task)
2837 {
2838 	if (task_css_is_root(task, cpuset_cgrp_id))
2839 		return;
2840 
2841 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2842 	task->mems_allowed = current->mems_allowed;
2843 }
2844 
2845 struct cgroup_subsys cpuset_cgrp_subsys = {
2846 	.css_alloc	= cpuset_css_alloc,
2847 	.css_online	= cpuset_css_online,
2848 	.css_offline	= cpuset_css_offline,
2849 	.css_free	= cpuset_css_free,
2850 	.can_attach	= cpuset_can_attach,
2851 	.cancel_attach	= cpuset_cancel_attach,
2852 	.attach		= cpuset_attach,
2853 	.post_attach	= cpuset_post_attach,
2854 	.bind		= cpuset_bind,
2855 	.fork		= cpuset_fork,
2856 	.legacy_cftypes	= legacy_files,
2857 	.dfl_cftypes	= dfl_files,
2858 	.early_init	= true,
2859 	.threaded	= true,
2860 };
2861 
2862 /**
2863  * cpuset_init - initialize cpusets at system boot
2864  *
2865  * Description: Initialize top_cpuset
2866  **/
2867 
2868 int __init cpuset_init(void)
2869 {
2870 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2871 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2872 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2873 
2874 	cpumask_setall(top_cpuset.cpus_allowed);
2875 	nodes_setall(top_cpuset.mems_allowed);
2876 	cpumask_setall(top_cpuset.effective_cpus);
2877 	nodes_setall(top_cpuset.effective_mems);
2878 
2879 	fmeter_init(&top_cpuset.fmeter);
2880 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2881 	top_cpuset.relax_domain_level = -1;
2882 
2883 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2884 
2885 	return 0;
2886 }
2887 
2888 /*
2889  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2890  * or memory nodes, we need to walk over the cpuset hierarchy,
2891  * removing that CPU or node from all cpusets.  If this removes the
2892  * last CPU or node from a cpuset, then move the tasks in the empty
2893  * cpuset to its next-highest non-empty parent.
2894  */
2895 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2896 {
2897 	struct cpuset *parent;
2898 
2899 	/*
2900 	 * Find its next-highest non-empty parent, (top cpuset
2901 	 * has online cpus, so can't be empty).
2902 	 */
2903 	parent = parent_cs(cs);
2904 	while (cpumask_empty(parent->cpus_allowed) ||
2905 			nodes_empty(parent->mems_allowed))
2906 		parent = parent_cs(parent);
2907 
2908 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2909 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2910 		pr_cont_cgroup_name(cs->css.cgroup);
2911 		pr_cont("\n");
2912 	}
2913 }
2914 
2915 static void
2916 hotplug_update_tasks_legacy(struct cpuset *cs,
2917 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2918 			    bool cpus_updated, bool mems_updated)
2919 {
2920 	bool is_empty;
2921 
2922 	spin_lock_irq(&callback_lock);
2923 	cpumask_copy(cs->cpus_allowed, new_cpus);
2924 	cpumask_copy(cs->effective_cpus, new_cpus);
2925 	cs->mems_allowed = *new_mems;
2926 	cs->effective_mems = *new_mems;
2927 	spin_unlock_irq(&callback_lock);
2928 
2929 	/*
2930 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2931 	 * as the tasks will be migratecd to an ancestor.
2932 	 */
2933 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2934 		update_tasks_cpumask(cs);
2935 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2936 		update_tasks_nodemask(cs);
2937 
2938 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2939 		   nodes_empty(cs->mems_allowed);
2940 
2941 	mutex_unlock(&cpuset_mutex);
2942 
2943 	/*
2944 	 * Move tasks to the nearest ancestor with execution resources,
2945 	 * This is full cgroup operation which will also call back into
2946 	 * cpuset. Should be done outside any lock.
2947 	 */
2948 	if (is_empty)
2949 		remove_tasks_in_empty_cpuset(cs);
2950 
2951 	mutex_lock(&cpuset_mutex);
2952 }
2953 
2954 static void
2955 hotplug_update_tasks(struct cpuset *cs,
2956 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2957 		     bool cpus_updated, bool mems_updated)
2958 {
2959 	if (cpumask_empty(new_cpus))
2960 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2961 	if (nodes_empty(*new_mems))
2962 		*new_mems = parent_cs(cs)->effective_mems;
2963 
2964 	spin_lock_irq(&callback_lock);
2965 	cpumask_copy(cs->effective_cpus, new_cpus);
2966 	cs->effective_mems = *new_mems;
2967 	spin_unlock_irq(&callback_lock);
2968 
2969 	if (cpus_updated)
2970 		update_tasks_cpumask(cs);
2971 	if (mems_updated)
2972 		update_tasks_nodemask(cs);
2973 }
2974 
2975 static bool force_rebuild;
2976 
2977 void cpuset_force_rebuild(void)
2978 {
2979 	force_rebuild = true;
2980 }
2981 
2982 /**
2983  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2984  * @cs: cpuset in interest
2985  * @tmp: the tmpmasks structure pointer
2986  *
2987  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2988  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2989  * all its tasks are moved to the nearest ancestor with both resources.
2990  */
2991 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2992 {
2993 	static cpumask_t new_cpus;
2994 	static nodemask_t new_mems;
2995 	bool cpus_updated;
2996 	bool mems_updated;
2997 	struct cpuset *parent;
2998 retry:
2999 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3000 
3001 	mutex_lock(&cpuset_mutex);
3002 
3003 	/*
3004 	 * We have raced with task attaching. We wait until attaching
3005 	 * is finished, so we won't attach a task to an empty cpuset.
3006 	 */
3007 	if (cs->attach_in_progress) {
3008 		mutex_unlock(&cpuset_mutex);
3009 		goto retry;
3010 	}
3011 
3012 	parent =  parent_cs(cs);
3013 	compute_effective_cpumask(&new_cpus, cs, parent);
3014 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3015 
3016 	if (cs->nr_subparts_cpus)
3017 		/*
3018 		 * Make sure that CPUs allocated to child partitions
3019 		 * do not show up in effective_cpus.
3020 		 */
3021 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3022 
3023 	if (!tmp || !cs->partition_root_state)
3024 		goto update_tasks;
3025 
3026 	/*
3027 	 * In the unlikely event that a partition root has empty
3028 	 * effective_cpus or its parent becomes erroneous, we have to
3029 	 * transition it to the erroneous state.
3030 	 */
3031 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3032 	   (parent->partition_root_state == PRS_ERROR))) {
3033 		if (cs->nr_subparts_cpus) {
3034 			cs->nr_subparts_cpus = 0;
3035 			cpumask_clear(cs->subparts_cpus);
3036 			compute_effective_cpumask(&new_cpus, cs, parent);
3037 		}
3038 
3039 		/*
3040 		 * If the effective_cpus is empty because the child
3041 		 * partitions take away all the CPUs, we can keep
3042 		 * the current partition and let the child partitions
3043 		 * fight for available CPUs.
3044 		 */
3045 		if ((parent->partition_root_state == PRS_ERROR) ||
3046 		     cpumask_empty(&new_cpus)) {
3047 			update_parent_subparts_cpumask(cs, partcmd_disable,
3048 						       NULL, tmp);
3049 			cs->partition_root_state = PRS_ERROR;
3050 		}
3051 		cpuset_force_rebuild();
3052 	}
3053 
3054 	/*
3055 	 * On the other hand, an erroneous partition root may be transitioned
3056 	 * back to a regular one or a partition root with no CPU allocated
3057 	 * from the parent may change to erroneous.
3058 	 */
3059 	if (is_partition_root(parent) &&
3060 	   ((cs->partition_root_state == PRS_ERROR) ||
3061 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3062 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3063 		cpuset_force_rebuild();
3064 
3065 update_tasks:
3066 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3067 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3068 
3069 	if (is_in_v2_mode())
3070 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3071 				     cpus_updated, mems_updated);
3072 	else
3073 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3074 					    cpus_updated, mems_updated);
3075 
3076 	mutex_unlock(&cpuset_mutex);
3077 }
3078 
3079 /**
3080  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3081  *
3082  * This function is called after either CPU or memory configuration has
3083  * changed and updates cpuset accordingly.  The top_cpuset is always
3084  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3085  * order to make cpusets transparent (of no affect) on systems that are
3086  * actively using CPU hotplug but making no active use of cpusets.
3087  *
3088  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3089  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3090  * all descendants.
3091  *
3092  * Note that CPU offlining during suspend is ignored.  We don't modify
3093  * cpusets across suspend/resume cycles at all.
3094  */
3095 static void cpuset_hotplug_workfn(struct work_struct *work)
3096 {
3097 	static cpumask_t new_cpus;
3098 	static nodemask_t new_mems;
3099 	bool cpus_updated, mems_updated;
3100 	bool on_dfl = is_in_v2_mode();
3101 	struct tmpmasks tmp, *ptmp = NULL;
3102 
3103 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3104 		ptmp = &tmp;
3105 
3106 	mutex_lock(&cpuset_mutex);
3107 
3108 	/* fetch the available cpus/mems and find out which changed how */
3109 	cpumask_copy(&new_cpus, cpu_active_mask);
3110 	new_mems = node_states[N_MEMORY];
3111 
3112 	/*
3113 	 * If subparts_cpus is populated, it is likely that the check below
3114 	 * will produce a false positive on cpus_updated when the cpu list
3115 	 * isn't changed. It is extra work, but it is better to be safe.
3116 	 */
3117 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3118 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3119 
3120 	/* synchronize cpus_allowed to cpu_active_mask */
3121 	if (cpus_updated) {
3122 		spin_lock_irq(&callback_lock);
3123 		if (!on_dfl)
3124 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3125 		/*
3126 		 * Make sure that CPUs allocated to child partitions
3127 		 * do not show up in effective_cpus. If no CPU is left,
3128 		 * we clear the subparts_cpus & let the child partitions
3129 		 * fight for the CPUs again.
3130 		 */
3131 		if (top_cpuset.nr_subparts_cpus) {
3132 			if (cpumask_subset(&new_cpus,
3133 					   top_cpuset.subparts_cpus)) {
3134 				top_cpuset.nr_subparts_cpus = 0;
3135 				cpumask_clear(top_cpuset.subparts_cpus);
3136 			} else {
3137 				cpumask_andnot(&new_cpus, &new_cpus,
3138 					       top_cpuset.subparts_cpus);
3139 			}
3140 		}
3141 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3142 		spin_unlock_irq(&callback_lock);
3143 		/* we don't mess with cpumasks of tasks in top_cpuset */
3144 	}
3145 
3146 	/* synchronize mems_allowed to N_MEMORY */
3147 	if (mems_updated) {
3148 		spin_lock_irq(&callback_lock);
3149 		if (!on_dfl)
3150 			top_cpuset.mems_allowed = new_mems;
3151 		top_cpuset.effective_mems = new_mems;
3152 		spin_unlock_irq(&callback_lock);
3153 		update_tasks_nodemask(&top_cpuset);
3154 	}
3155 
3156 	mutex_unlock(&cpuset_mutex);
3157 
3158 	/* if cpus or mems changed, we need to propagate to descendants */
3159 	if (cpus_updated || mems_updated) {
3160 		struct cpuset *cs;
3161 		struct cgroup_subsys_state *pos_css;
3162 
3163 		rcu_read_lock();
3164 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3165 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3166 				continue;
3167 			rcu_read_unlock();
3168 
3169 			cpuset_hotplug_update_tasks(cs, ptmp);
3170 
3171 			rcu_read_lock();
3172 			css_put(&cs->css);
3173 		}
3174 		rcu_read_unlock();
3175 	}
3176 
3177 	/* rebuild sched domains if cpus_allowed has changed */
3178 	if (cpus_updated || force_rebuild) {
3179 		force_rebuild = false;
3180 		rebuild_sched_domains();
3181 	}
3182 
3183 	free_cpumasks(NULL, ptmp);
3184 }
3185 
3186 void cpuset_update_active_cpus(void)
3187 {
3188 	/*
3189 	 * We're inside cpu hotplug critical region which usually nests
3190 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3191 	 * to a work item to avoid reverse locking order.
3192 	 */
3193 	schedule_work(&cpuset_hotplug_work);
3194 }
3195 
3196 void cpuset_wait_for_hotplug(void)
3197 {
3198 	flush_work(&cpuset_hotplug_work);
3199 }
3200 
3201 /*
3202  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3203  * Call this routine anytime after node_states[N_MEMORY] changes.
3204  * See cpuset_update_active_cpus() for CPU hotplug handling.
3205  */
3206 static int cpuset_track_online_nodes(struct notifier_block *self,
3207 				unsigned long action, void *arg)
3208 {
3209 	schedule_work(&cpuset_hotplug_work);
3210 	return NOTIFY_OK;
3211 }
3212 
3213 static struct notifier_block cpuset_track_online_nodes_nb = {
3214 	.notifier_call = cpuset_track_online_nodes,
3215 	.priority = 10,		/* ??! */
3216 };
3217 
3218 /**
3219  * cpuset_init_smp - initialize cpus_allowed
3220  *
3221  * Description: Finish top cpuset after cpu, node maps are initialized
3222  */
3223 void __init cpuset_init_smp(void)
3224 {
3225 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3226 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3227 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3228 
3229 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3230 	top_cpuset.effective_mems = node_states[N_MEMORY];
3231 
3232 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3233 
3234 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3235 	BUG_ON(!cpuset_migrate_mm_wq);
3236 }
3237 
3238 /**
3239  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3240  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3241  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3242  *
3243  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3244  * attached to the specified @tsk.  Guaranteed to return some non-empty
3245  * subset of cpu_online_mask, even if this means going outside the
3246  * tasks cpuset.
3247  **/
3248 
3249 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3250 {
3251 	unsigned long flags;
3252 
3253 	spin_lock_irqsave(&callback_lock, flags);
3254 	rcu_read_lock();
3255 	guarantee_online_cpus(task_cs(tsk), pmask);
3256 	rcu_read_unlock();
3257 	spin_unlock_irqrestore(&callback_lock, flags);
3258 }
3259 
3260 /**
3261  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3262  * @tsk: pointer to task_struct with which the scheduler is struggling
3263  *
3264  * Description: In the case that the scheduler cannot find an allowed cpu in
3265  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3266  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3267  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3268  * This is the absolute last resort for the scheduler and it is only used if
3269  * _every_ other avenue has been traveled.
3270  **/
3271 
3272 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3273 {
3274 	rcu_read_lock();
3275 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3276 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3277 	rcu_read_unlock();
3278 
3279 	/*
3280 	 * We own tsk->cpus_allowed, nobody can change it under us.
3281 	 *
3282 	 * But we used cs && cs->cpus_allowed lockless and thus can
3283 	 * race with cgroup_attach_task() or update_cpumask() and get
3284 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3285 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3286 	 * which takes task_rq_lock().
3287 	 *
3288 	 * If we are called after it dropped the lock we must see all
3289 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3290 	 * set any mask even if it is not right from task_cs() pov,
3291 	 * the pending set_cpus_allowed_ptr() will fix things.
3292 	 *
3293 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3294 	 * if required.
3295 	 */
3296 }
3297 
3298 void __init cpuset_init_current_mems_allowed(void)
3299 {
3300 	nodes_setall(current->mems_allowed);
3301 }
3302 
3303 /**
3304  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3305  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3306  *
3307  * Description: Returns the nodemask_t mems_allowed of the cpuset
3308  * attached to the specified @tsk.  Guaranteed to return some non-empty
3309  * subset of node_states[N_MEMORY], even if this means going outside the
3310  * tasks cpuset.
3311  **/
3312 
3313 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3314 {
3315 	nodemask_t mask;
3316 	unsigned long flags;
3317 
3318 	spin_lock_irqsave(&callback_lock, flags);
3319 	rcu_read_lock();
3320 	guarantee_online_mems(task_cs(tsk), &mask);
3321 	rcu_read_unlock();
3322 	spin_unlock_irqrestore(&callback_lock, flags);
3323 
3324 	return mask;
3325 }
3326 
3327 /**
3328  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3329  * @nodemask: the nodemask to be checked
3330  *
3331  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3332  */
3333 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3334 {
3335 	return nodes_intersects(*nodemask, current->mems_allowed);
3336 }
3337 
3338 /*
3339  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3340  * mem_hardwall ancestor to the specified cpuset.  Call holding
3341  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3342  * (an unusual configuration), then returns the root cpuset.
3343  */
3344 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3345 {
3346 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3347 		cs = parent_cs(cs);
3348 	return cs;
3349 }
3350 
3351 /**
3352  * cpuset_node_allowed - Can we allocate on a memory node?
3353  * @node: is this an allowed node?
3354  * @gfp_mask: memory allocation flags
3355  *
3356  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3357  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3358  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3359  * yes.  If current has access to memory reserves as an oom victim, yes.
3360  * Otherwise, no.
3361  *
3362  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3363  * and do not allow allocations outside the current tasks cpuset
3364  * unless the task has been OOM killed.
3365  * GFP_KERNEL allocations are not so marked, so can escape to the
3366  * nearest enclosing hardwalled ancestor cpuset.
3367  *
3368  * Scanning up parent cpusets requires callback_lock.  The
3369  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3370  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3371  * current tasks mems_allowed came up empty on the first pass over
3372  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3373  * cpuset are short of memory, might require taking the callback_lock.
3374  *
3375  * The first call here from mm/page_alloc:get_page_from_freelist()
3376  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3377  * so no allocation on a node outside the cpuset is allowed (unless
3378  * in interrupt, of course).
3379  *
3380  * The second pass through get_page_from_freelist() doesn't even call
3381  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3382  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3383  * in alloc_flags.  That logic and the checks below have the combined
3384  * affect that:
3385  *	in_interrupt - any node ok (current task context irrelevant)
3386  *	GFP_ATOMIC   - any node ok
3387  *	tsk_is_oom_victim   - any node ok
3388  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3389  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3390  */
3391 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3392 {
3393 	struct cpuset *cs;		/* current cpuset ancestors */
3394 	int allowed;			/* is allocation in zone z allowed? */
3395 	unsigned long flags;
3396 
3397 	if (in_interrupt())
3398 		return true;
3399 	if (node_isset(node, current->mems_allowed))
3400 		return true;
3401 	/*
3402 	 * Allow tasks that have access to memory reserves because they have
3403 	 * been OOM killed to get memory anywhere.
3404 	 */
3405 	if (unlikely(tsk_is_oom_victim(current)))
3406 		return true;
3407 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3408 		return false;
3409 
3410 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3411 		return true;
3412 
3413 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3414 	spin_lock_irqsave(&callback_lock, flags);
3415 
3416 	rcu_read_lock();
3417 	cs = nearest_hardwall_ancestor(task_cs(current));
3418 	allowed = node_isset(node, cs->mems_allowed);
3419 	rcu_read_unlock();
3420 
3421 	spin_unlock_irqrestore(&callback_lock, flags);
3422 	return allowed;
3423 }
3424 
3425 /**
3426  * cpuset_mem_spread_node() - On which node to begin search for a file page
3427  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3428  *
3429  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3430  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3431  * and if the memory allocation used cpuset_mem_spread_node()
3432  * to determine on which node to start looking, as it will for
3433  * certain page cache or slab cache pages such as used for file
3434  * system buffers and inode caches, then instead of starting on the
3435  * local node to look for a free page, rather spread the starting
3436  * node around the tasks mems_allowed nodes.
3437  *
3438  * We don't have to worry about the returned node being offline
3439  * because "it can't happen", and even if it did, it would be ok.
3440  *
3441  * The routines calling guarantee_online_mems() are careful to
3442  * only set nodes in task->mems_allowed that are online.  So it
3443  * should not be possible for the following code to return an
3444  * offline node.  But if it did, that would be ok, as this routine
3445  * is not returning the node where the allocation must be, only
3446  * the node where the search should start.  The zonelist passed to
3447  * __alloc_pages() will include all nodes.  If the slab allocator
3448  * is passed an offline node, it will fall back to the local node.
3449  * See kmem_cache_alloc_node().
3450  */
3451 
3452 static int cpuset_spread_node(int *rotor)
3453 {
3454 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3455 }
3456 
3457 int cpuset_mem_spread_node(void)
3458 {
3459 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3460 		current->cpuset_mem_spread_rotor =
3461 			node_random(&current->mems_allowed);
3462 
3463 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3464 }
3465 
3466 int cpuset_slab_spread_node(void)
3467 {
3468 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3469 		current->cpuset_slab_spread_rotor =
3470 			node_random(&current->mems_allowed);
3471 
3472 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3473 }
3474 
3475 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3476 
3477 /**
3478  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3479  * @tsk1: pointer to task_struct of some task.
3480  * @tsk2: pointer to task_struct of some other task.
3481  *
3482  * Description: Return true if @tsk1's mems_allowed intersects the
3483  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3484  * one of the task's memory usage might impact the memory available
3485  * to the other.
3486  **/
3487 
3488 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3489 				   const struct task_struct *tsk2)
3490 {
3491 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3492 }
3493 
3494 /**
3495  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3496  *
3497  * Description: Prints current's name, cpuset name, and cached copy of its
3498  * mems_allowed to the kernel log.
3499  */
3500 void cpuset_print_current_mems_allowed(void)
3501 {
3502 	struct cgroup *cgrp;
3503 
3504 	rcu_read_lock();
3505 
3506 	cgrp = task_cs(current)->css.cgroup;
3507 	pr_cont(",cpuset=");
3508 	pr_cont_cgroup_name(cgrp);
3509 	pr_cont(",mems_allowed=%*pbl",
3510 		nodemask_pr_args(&current->mems_allowed));
3511 
3512 	rcu_read_unlock();
3513 }
3514 
3515 /*
3516  * Collection of memory_pressure is suppressed unless
3517  * this flag is enabled by writing "1" to the special
3518  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3519  */
3520 
3521 int cpuset_memory_pressure_enabled __read_mostly;
3522 
3523 /**
3524  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3525  *
3526  * Keep a running average of the rate of synchronous (direct)
3527  * page reclaim efforts initiated by tasks in each cpuset.
3528  *
3529  * This represents the rate at which some task in the cpuset
3530  * ran low on memory on all nodes it was allowed to use, and
3531  * had to enter the kernels page reclaim code in an effort to
3532  * create more free memory by tossing clean pages or swapping
3533  * or writing dirty pages.
3534  *
3535  * Display to user space in the per-cpuset read-only file
3536  * "memory_pressure".  Value displayed is an integer
3537  * representing the recent rate of entry into the synchronous
3538  * (direct) page reclaim by any task attached to the cpuset.
3539  **/
3540 
3541 void __cpuset_memory_pressure_bump(void)
3542 {
3543 	rcu_read_lock();
3544 	fmeter_markevent(&task_cs(current)->fmeter);
3545 	rcu_read_unlock();
3546 }
3547 
3548 #ifdef CONFIG_PROC_PID_CPUSET
3549 /*
3550  * proc_cpuset_show()
3551  *  - Print tasks cpuset path into seq_file.
3552  *  - Used for /proc/<pid>/cpuset.
3553  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3554  *    doesn't really matter if tsk->cpuset changes after we read it,
3555  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3556  *    anyway.
3557  */
3558 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3559 		     struct pid *pid, struct task_struct *tsk)
3560 {
3561 	char *buf;
3562 	struct cgroup_subsys_state *css;
3563 	int retval;
3564 
3565 	retval = -ENOMEM;
3566 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3567 	if (!buf)
3568 		goto out;
3569 
3570 	css = task_get_css(tsk, cpuset_cgrp_id);
3571 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3572 				current->nsproxy->cgroup_ns);
3573 	css_put(css);
3574 	if (retval >= PATH_MAX)
3575 		retval = -ENAMETOOLONG;
3576 	if (retval < 0)
3577 		goto out_free;
3578 	seq_puts(m, buf);
3579 	seq_putc(m, '\n');
3580 	retval = 0;
3581 out_free:
3582 	kfree(buf);
3583 out:
3584 	return retval;
3585 }
3586 #endif /* CONFIG_PROC_PID_CPUSET */
3587 
3588 /* Display task mems_allowed in /proc/<pid>/status file. */
3589 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3590 {
3591 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3592 		   nodemask_pr_args(&task->mems_allowed));
3593 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3594 		   nodemask_pr_args(&task->mems_allowed));
3595 }
3596