xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 76f969e8948d82e78e1bc4beb6b9465908e74873)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_advance(struct css_task_iter *it);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
221 					      struct cgroup_subsys *ss);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 			      struct cgroup *cgrp, struct cftype cfts[],
226 			      bool is_add);
227 
228 /**
229  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230  * @ssid: subsys ID of interest
231  *
232  * cgroup_subsys_enabled() can only be used with literal subsys names which
233  * is fine for individual subsystems but unsuitable for cgroup core.  This
234  * is slower static_key_enabled() based test indexed by @ssid.
235  */
236 bool cgroup_ssid_enabled(int ssid)
237 {
238 	if (CGROUP_SUBSYS_COUNT == 0)
239 		return false;
240 
241 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242 }
243 
244 /**
245  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246  * @cgrp: the cgroup of interest
247  *
248  * The default hierarchy is the v2 interface of cgroup and this function
249  * can be used to test whether a cgroup is on the default hierarchy for
250  * cases where a subsystem should behave differnetly depending on the
251  * interface version.
252  *
253  * The set of behaviors which change on the default hierarchy are still
254  * being determined and the mount option is prefixed with __DEVEL__.
255  *
256  * List of changed behaviors:
257  *
258  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259  *   and "name" are disallowed.
260  *
261  * - When mounting an existing superblock, mount options should match.
262  *
263  * - Remount is disallowed.
264  *
265  * - rename(2) is disallowed.
266  *
267  * - "tasks" is removed.  Everything should be at process granularity.  Use
268  *   "cgroup.procs" instead.
269  *
270  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
271  *   recycled inbetween reads.
272  *
273  * - "release_agent" and "notify_on_release" are removed.  Replacement
274  *   notification mechanism will be implemented.
275  *
276  * - "cgroup.clone_children" is removed.
277  *
278  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
279  *   and its descendants contain no task; otherwise, 1.  The file also
280  *   generates kernfs notification which can be monitored through poll and
281  *   [di]notify when the value of the file changes.
282  *
283  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284  *   take masks of ancestors with non-empty cpus/mems, instead of being
285  *   moved to an ancestor.
286  *
287  * - cpuset: a task can be moved into an empty cpuset, and again it takes
288  *   masks of ancestors.
289  *
290  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291  *   is not created.
292  *
293  * - blkcg: blk-throttle becomes properly hierarchical.
294  *
295  * - debug: disallowed on the default hierarchy.
296  */
297 bool cgroup_on_dfl(const struct cgroup *cgrp)
298 {
299 	return cgrp->root == &cgrp_dfl_root;
300 }
301 
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 			    gfp_t gfp_mask)
305 {
306 	int ret;
307 
308 	idr_preload(gfp_mask);
309 	spin_lock_bh(&cgroup_idr_lock);
310 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
311 	spin_unlock_bh(&cgroup_idr_lock);
312 	idr_preload_end();
313 	return ret;
314 }
315 
316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
317 {
318 	void *ret;
319 
320 	spin_lock_bh(&cgroup_idr_lock);
321 	ret = idr_replace(idr, ptr, id);
322 	spin_unlock_bh(&cgroup_idr_lock);
323 	return ret;
324 }
325 
326 static void cgroup_idr_remove(struct idr *idr, int id)
327 {
328 	spin_lock_bh(&cgroup_idr_lock);
329 	idr_remove(idr, id);
330 	spin_unlock_bh(&cgroup_idr_lock);
331 }
332 
333 static bool cgroup_has_tasks(struct cgroup *cgrp)
334 {
335 	return cgrp->nr_populated_csets;
336 }
337 
338 bool cgroup_is_threaded(struct cgroup *cgrp)
339 {
340 	return cgrp->dom_cgrp != cgrp;
341 }
342 
343 /* can @cgrp host both domain and threaded children? */
344 static bool cgroup_is_mixable(struct cgroup *cgrp)
345 {
346 	/*
347 	 * Root isn't under domain level resource control exempting it from
348 	 * the no-internal-process constraint, so it can serve as a thread
349 	 * root and a parent of resource domains at the same time.
350 	 */
351 	return !cgroup_parent(cgrp);
352 }
353 
354 /* can @cgrp become a thread root? should always be true for a thread root */
355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
356 {
357 	/* mixables don't care */
358 	if (cgroup_is_mixable(cgrp))
359 		return true;
360 
361 	/* domain roots can't be nested under threaded */
362 	if (cgroup_is_threaded(cgrp))
363 		return false;
364 
365 	/* can only have either domain or threaded children */
366 	if (cgrp->nr_populated_domain_children)
367 		return false;
368 
369 	/* and no domain controllers can be enabled */
370 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
371 		return false;
372 
373 	return true;
374 }
375 
376 /* is @cgrp root of a threaded subtree? */
377 bool cgroup_is_thread_root(struct cgroup *cgrp)
378 {
379 	/* thread root should be a domain */
380 	if (cgroup_is_threaded(cgrp))
381 		return false;
382 
383 	/* a domain w/ threaded children is a thread root */
384 	if (cgrp->nr_threaded_children)
385 		return true;
386 
387 	/*
388 	 * A domain which has tasks and explicit threaded controllers
389 	 * enabled is a thread root.
390 	 */
391 	if (cgroup_has_tasks(cgrp) &&
392 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
393 		return true;
394 
395 	return false;
396 }
397 
398 /* a domain which isn't connected to the root w/o brekage can't be used */
399 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
400 {
401 	/* the cgroup itself can be a thread root */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* but the ancestors can't be unless mixable */
406 	while ((cgrp = cgroup_parent(cgrp))) {
407 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
408 			return false;
409 		if (cgroup_is_threaded(cgrp))
410 			return false;
411 	}
412 
413 	return true;
414 }
415 
416 /* subsystems visibly enabled on a cgroup */
417 static u16 cgroup_control(struct cgroup *cgrp)
418 {
419 	struct cgroup *parent = cgroup_parent(cgrp);
420 	u16 root_ss_mask = cgrp->root->subsys_mask;
421 
422 	if (parent) {
423 		u16 ss_mask = parent->subtree_control;
424 
425 		/* threaded cgroups can only have threaded controllers */
426 		if (cgroup_is_threaded(cgrp))
427 			ss_mask &= cgrp_dfl_threaded_ss_mask;
428 		return ss_mask;
429 	}
430 
431 	if (cgroup_on_dfl(cgrp))
432 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
433 				  cgrp_dfl_implicit_ss_mask);
434 	return root_ss_mask;
435 }
436 
437 /* subsystems enabled on a cgroup */
438 static u16 cgroup_ss_mask(struct cgroup *cgrp)
439 {
440 	struct cgroup *parent = cgroup_parent(cgrp);
441 
442 	if (parent) {
443 		u16 ss_mask = parent->subtree_ss_mask;
444 
445 		/* threaded cgroups can only have threaded controllers */
446 		if (cgroup_is_threaded(cgrp))
447 			ss_mask &= cgrp_dfl_threaded_ss_mask;
448 		return ss_mask;
449 	}
450 
451 	return cgrp->root->subsys_mask;
452 }
453 
454 /**
455  * cgroup_css - obtain a cgroup's css for the specified subsystem
456  * @cgrp: the cgroup of interest
457  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
458  *
459  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
460  * function must be called either under cgroup_mutex or rcu_read_lock() and
461  * the caller is responsible for pinning the returned css if it wants to
462  * keep accessing it outside the said locks.  This function may return
463  * %NULL if @cgrp doesn't have @subsys_id enabled.
464  */
465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
466 					      struct cgroup_subsys *ss)
467 {
468 	if (ss)
469 		return rcu_dereference_check(cgrp->subsys[ss->id],
470 					lockdep_is_held(&cgroup_mutex));
471 	else
472 		return &cgrp->self;
473 }
474 
475 /**
476  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477  * @cgrp: the cgroup of interest
478  * @ss: the subsystem of interest
479  *
480  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
481  * or is offline, %NULL is returned.
482  */
483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
484 						     struct cgroup_subsys *ss)
485 {
486 	struct cgroup_subsys_state *css;
487 
488 	rcu_read_lock();
489 	css = cgroup_css(cgrp, ss);
490 	if (!css || !css_tryget_online(css))
491 		css = NULL;
492 	rcu_read_unlock();
493 
494 	return css;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsiblity to tryget a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	do {
547 		css = cgroup_css(cgrp, ss);
548 
549 		if (css)
550 			return css;
551 		cgrp = cgroup_parent(cgrp);
552 	} while (cgrp);
553 
554 	return init_css_set.subsys[ss->id];
555 }
556 
557 /**
558  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559  * @cgrp: the cgroup of interest
560  * @ss: the subsystem of interest
561  *
562  * Find and get the effective css of @cgrp for @ss.  The effective css is
563  * defined as the matching css of the nearest ancestor including self which
564  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
565  * the root css is returned, so this function always returns a valid css.
566  * The returned css must be put using css_put().
567  */
568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
569 					     struct cgroup_subsys *ss)
570 {
571 	struct cgroup_subsys_state *css;
572 
573 	rcu_read_lock();
574 
575 	do {
576 		css = cgroup_css(cgrp, ss);
577 
578 		if (css && css_tryget_online(css))
579 			goto out_unlock;
580 		cgrp = cgroup_parent(cgrp);
581 	} while (cgrp);
582 
583 	css = init_css_set.subsys[ss->id];
584 	css_get(css);
585 out_unlock:
586 	rcu_read_unlock();
587 	return css;
588 }
589 
590 static void cgroup_get_live(struct cgroup *cgrp)
591 {
592 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
593 	css_get(&cgrp->self);
594 }
595 
596 /**
597  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598  * is responsible for taking the css_set_lock.
599  * @cgrp: the cgroup in question
600  */
601 int __cgroup_task_count(const struct cgroup *cgrp)
602 {
603 	int count = 0;
604 	struct cgrp_cset_link *link;
605 
606 	lockdep_assert_held(&css_set_lock);
607 
608 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
609 		count += link->cset->nr_tasks;
610 
611 	return count;
612 }
613 
614 /**
615  * cgroup_task_count - count the number of tasks in a cgroup.
616  * @cgrp: the cgroup in question
617  */
618 int cgroup_task_count(const struct cgroup *cgrp)
619 {
620 	int count;
621 
622 	spin_lock_irq(&css_set_lock);
623 	count = __cgroup_task_count(cgrp);
624 	spin_unlock_irq(&css_set_lock);
625 
626 	return count;
627 }
628 
629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
630 {
631 	struct cgroup *cgrp = of->kn->parent->priv;
632 	struct cftype *cft = of_cft(of);
633 
634 	/*
635 	 * This is open and unprotected implementation of cgroup_css().
636 	 * seq_css() is only called from a kernfs file operation which has
637 	 * an active reference on the file.  Because all the subsystem
638 	 * files are drained before a css is disassociated with a cgroup,
639 	 * the matching css from the cgroup's subsys table is guaranteed to
640 	 * be and stay valid until the enclosing operation is complete.
641 	 */
642 	if (cft->ss)
643 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
644 	else
645 		return &cgrp->self;
646 }
647 EXPORT_SYMBOL_GPL(of_css);
648 
649 /**
650  * for_each_css - iterate all css's of a cgroup
651  * @css: the iteration cursor
652  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653  * @cgrp: the target cgroup to iterate css's of
654  *
655  * Should be called under cgroup_[tree_]mutex.
656  */
657 #define for_each_css(css, ssid, cgrp)					\
658 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
659 		if (!((css) = rcu_dereference_check(			\
660 				(cgrp)->subsys[(ssid)],			\
661 				lockdep_is_held(&cgroup_mutex)))) { }	\
662 		else
663 
664 /**
665  * for_each_e_css - iterate all effective css's of a cgroup
666  * @css: the iteration cursor
667  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668  * @cgrp: the target cgroup to iterate css's of
669  *
670  * Should be called under cgroup_[tree_]mutex.
671  */
672 #define for_each_e_css(css, ssid, cgrp)					    \
673 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
674 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
675 						   cgroup_subsys[(ssid)]))) \
676 			;						    \
677 		else
678 
679 /**
680  * do_each_subsys_mask - filter for_each_subsys with a bitmask
681  * @ss: the iteration cursor
682  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
683  * @ss_mask: the bitmask
684  *
685  * The block will only run for cases where the ssid-th bit (1 << ssid) of
686  * @ss_mask is set.
687  */
688 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
689 	unsigned long __ss_mask = (ss_mask);				\
690 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
691 		(ssid) = 0;						\
692 		break;							\
693 	}								\
694 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
695 		(ss) = cgroup_subsys[ssid];				\
696 		{
697 
698 #define while_each_subsys_mask()					\
699 		}							\
700 	}								\
701 } while (false)
702 
703 /* iterate over child cgrps, lock should be held throughout iteration */
704 #define cgroup_for_each_live_child(child, cgrp)				\
705 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       cgroup_is_dead(child); }))			\
708 			;						\
709 		else
710 
711 /* walk live descendants in preorder */
712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
713 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
714 		if (({ lockdep_assert_held(&cgroup_mutex);		\
715 		       (dsct) = (d_css)->cgroup;			\
716 		       cgroup_is_dead(dsct); }))			\
717 			;						\
718 		else
719 
720 /* walk live descendants in postorder */
721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
722 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
723 		if (({ lockdep_assert_held(&cgroup_mutex);		\
724 		       (dsct) = (d_css)->cgroup;			\
725 		       cgroup_is_dead(dsct); }))			\
726 			;						\
727 		else
728 
729 /*
730  * The default css_set - used by init and its children prior to any
731  * hierarchies being mounted. It contains a pointer to the root state
732  * for each subsystem. Also used to anchor the list of css_sets. Not
733  * reference-counted, to improve performance when child cgroups
734  * haven't been created.
735  */
736 struct css_set init_css_set = {
737 	.refcount		= REFCOUNT_INIT(1),
738 	.dom_cset		= &init_css_set,
739 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
740 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
741 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
742 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
743 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
744 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
745 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
746 
747 	/*
748 	 * The following field is re-initialized when this cset gets linked
749 	 * in cgroup_init().  However, let's initialize the field
750 	 * statically too so that the default cgroup can be accessed safely
751 	 * early during boot.
752 	 */
753 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
754 };
755 
756 static int css_set_count	= 1;	/* 1 for init_css_set */
757 
758 static bool css_set_threaded(struct css_set *cset)
759 {
760 	return cset->dom_cset != cset;
761 }
762 
763 /**
764  * css_set_populated - does a css_set contain any tasks?
765  * @cset: target css_set
766  *
767  * css_set_populated() should be the same as !!cset->nr_tasks at steady
768  * state. However, css_set_populated() can be called while a task is being
769  * added to or removed from the linked list before the nr_tasks is
770  * properly updated. Hence, we can't just look at ->nr_tasks here.
771  */
772 static bool css_set_populated(struct css_set *cset)
773 {
774 	lockdep_assert_held(&css_set_lock);
775 
776 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
777 }
778 
779 /**
780  * cgroup_update_populated - update the populated count of a cgroup
781  * @cgrp: the target cgroup
782  * @populated: inc or dec populated count
783  *
784  * One of the css_sets associated with @cgrp is either getting its first
785  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
786  * count is propagated towards root so that a given cgroup's
787  * nr_populated_children is zero iff none of its descendants contain any
788  * tasks.
789  *
790  * @cgrp's interface file "cgroup.populated" is zero if both
791  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792  * 1 otherwise.  When the sum changes from or to zero, userland is notified
793  * that the content of the interface file has changed.  This can be used to
794  * detect when @cgrp and its descendants become populated or empty.
795  */
796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
797 {
798 	struct cgroup *child = NULL;
799 	int adj = populated ? 1 : -1;
800 
801 	lockdep_assert_held(&css_set_lock);
802 
803 	do {
804 		bool was_populated = cgroup_is_populated(cgrp);
805 
806 		if (!child) {
807 			cgrp->nr_populated_csets += adj;
808 		} else {
809 			if (cgroup_is_threaded(child))
810 				cgrp->nr_populated_threaded_children += adj;
811 			else
812 				cgrp->nr_populated_domain_children += adj;
813 		}
814 
815 		if (was_populated == cgroup_is_populated(cgrp))
816 			break;
817 
818 		cgroup1_check_for_release(cgrp);
819 		cgroup_file_notify(&cgrp->events_file);
820 
821 		child = cgrp;
822 		cgrp = cgroup_parent(cgrp);
823 	} while (cgrp);
824 }
825 
826 /**
827  * css_set_update_populated - update populated state of a css_set
828  * @cset: target css_set
829  * @populated: whether @cset is populated or depopulated
830  *
831  * @cset is either getting the first task or losing the last.  Update the
832  * populated counters of all associated cgroups accordingly.
833  */
834 static void css_set_update_populated(struct css_set *cset, bool populated)
835 {
836 	struct cgrp_cset_link *link;
837 
838 	lockdep_assert_held(&css_set_lock);
839 
840 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
841 		cgroup_update_populated(link->cgrp, populated);
842 }
843 
844 /**
845  * css_set_move_task - move a task from one css_set to another
846  * @task: task being moved
847  * @from_cset: css_set @task currently belongs to (may be NULL)
848  * @to_cset: new css_set @task is being moved to (may be NULL)
849  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
850  *
851  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
852  * css_set, @from_cset can be NULL.  If @task is being disassociated
853  * instead of moved, @to_cset can be NULL.
854  *
855  * This function automatically handles populated counter updates and
856  * css_task_iter adjustments but the caller is responsible for managing
857  * @from_cset and @to_cset's reference counts.
858  */
859 static void css_set_move_task(struct task_struct *task,
860 			      struct css_set *from_cset, struct css_set *to_cset,
861 			      bool use_mg_tasks)
862 {
863 	lockdep_assert_held(&css_set_lock);
864 
865 	if (to_cset && !css_set_populated(to_cset))
866 		css_set_update_populated(to_cset, true);
867 
868 	if (from_cset) {
869 		struct css_task_iter *it, *pos;
870 
871 		WARN_ON_ONCE(list_empty(&task->cg_list));
872 
873 		/*
874 		 * @task is leaving, advance task iterators which are
875 		 * pointing to it so that they can resume at the next
876 		 * position.  Advancing an iterator might remove it from
877 		 * the list, use safe walk.  See css_task_iter_advance*()
878 		 * for details.
879 		 */
880 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
881 					 iters_node)
882 			if (it->task_pos == &task->cg_list)
883 				css_task_iter_advance(it);
884 
885 		list_del_init(&task->cg_list);
886 		if (!css_set_populated(from_cset))
887 			css_set_update_populated(from_cset, false);
888 	} else {
889 		WARN_ON_ONCE(!list_empty(&task->cg_list));
890 	}
891 
892 	if (to_cset) {
893 		/*
894 		 * We are synchronized through cgroup_threadgroup_rwsem
895 		 * against PF_EXITING setting such that we can't race
896 		 * against cgroup_exit() changing the css_set to
897 		 * init_css_set and dropping the old one.
898 		 */
899 		WARN_ON_ONCE(task->flags & PF_EXITING);
900 
901 		cgroup_move_task(task, to_cset);
902 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
903 							     &to_cset->tasks);
904 	}
905 }
906 
907 /*
908  * hash table for cgroup groups. This improves the performance to find
909  * an existing css_set. This hash doesn't (currently) take into
910  * account cgroups in empty hierarchies.
911  */
912 #define CSS_SET_HASH_BITS	7
913 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
914 
915 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
916 {
917 	unsigned long key = 0UL;
918 	struct cgroup_subsys *ss;
919 	int i;
920 
921 	for_each_subsys(ss, i)
922 		key += (unsigned long)css[i];
923 	key = (key >> 16) ^ key;
924 
925 	return key;
926 }
927 
928 void put_css_set_locked(struct css_set *cset)
929 {
930 	struct cgrp_cset_link *link, *tmp_link;
931 	struct cgroup_subsys *ss;
932 	int ssid;
933 
934 	lockdep_assert_held(&css_set_lock);
935 
936 	if (!refcount_dec_and_test(&cset->refcount))
937 		return;
938 
939 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
940 
941 	/* This css_set is dead. unlink it and release cgroup and css refs */
942 	for_each_subsys(ss, ssid) {
943 		list_del(&cset->e_cset_node[ssid]);
944 		css_put(cset->subsys[ssid]);
945 	}
946 	hash_del(&cset->hlist);
947 	css_set_count--;
948 
949 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
950 		list_del(&link->cset_link);
951 		list_del(&link->cgrp_link);
952 		if (cgroup_parent(link->cgrp))
953 			cgroup_put(link->cgrp);
954 		kfree(link);
955 	}
956 
957 	if (css_set_threaded(cset)) {
958 		list_del(&cset->threaded_csets_node);
959 		put_css_set_locked(cset->dom_cset);
960 	}
961 
962 	kfree_rcu(cset, rcu_head);
963 }
964 
965 /**
966  * compare_css_sets - helper function for find_existing_css_set().
967  * @cset: candidate css_set being tested
968  * @old_cset: existing css_set for a task
969  * @new_cgrp: cgroup that's being entered by the task
970  * @template: desired set of css pointers in css_set (pre-calculated)
971  *
972  * Returns true if "cset" matches "old_cset" except for the hierarchy
973  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
974  */
975 static bool compare_css_sets(struct css_set *cset,
976 			     struct css_set *old_cset,
977 			     struct cgroup *new_cgrp,
978 			     struct cgroup_subsys_state *template[])
979 {
980 	struct cgroup *new_dfl_cgrp;
981 	struct list_head *l1, *l2;
982 
983 	/*
984 	 * On the default hierarchy, there can be csets which are
985 	 * associated with the same set of cgroups but different csses.
986 	 * Let's first ensure that csses match.
987 	 */
988 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
989 		return false;
990 
991 
992 	/* @cset's domain should match the default cgroup's */
993 	if (cgroup_on_dfl(new_cgrp))
994 		new_dfl_cgrp = new_cgrp;
995 	else
996 		new_dfl_cgrp = old_cset->dfl_cgrp;
997 
998 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
999 		return false;
1000 
1001 	/*
1002 	 * Compare cgroup pointers in order to distinguish between
1003 	 * different cgroups in hierarchies.  As different cgroups may
1004 	 * share the same effective css, this comparison is always
1005 	 * necessary.
1006 	 */
1007 	l1 = &cset->cgrp_links;
1008 	l2 = &old_cset->cgrp_links;
1009 	while (1) {
1010 		struct cgrp_cset_link *link1, *link2;
1011 		struct cgroup *cgrp1, *cgrp2;
1012 
1013 		l1 = l1->next;
1014 		l2 = l2->next;
1015 		/* See if we reached the end - both lists are equal length. */
1016 		if (l1 == &cset->cgrp_links) {
1017 			BUG_ON(l2 != &old_cset->cgrp_links);
1018 			break;
1019 		} else {
1020 			BUG_ON(l2 == &old_cset->cgrp_links);
1021 		}
1022 		/* Locate the cgroups associated with these links. */
1023 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1024 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1025 		cgrp1 = link1->cgrp;
1026 		cgrp2 = link2->cgrp;
1027 		/* Hierarchies should be linked in the same order. */
1028 		BUG_ON(cgrp1->root != cgrp2->root);
1029 
1030 		/*
1031 		 * If this hierarchy is the hierarchy of the cgroup
1032 		 * that's changing, then we need to check that this
1033 		 * css_set points to the new cgroup; if it's any other
1034 		 * hierarchy, then this css_set should point to the
1035 		 * same cgroup as the old css_set.
1036 		 */
1037 		if (cgrp1->root == new_cgrp->root) {
1038 			if (cgrp1 != new_cgrp)
1039 				return false;
1040 		} else {
1041 			if (cgrp1 != cgrp2)
1042 				return false;
1043 		}
1044 	}
1045 	return true;
1046 }
1047 
1048 /**
1049  * find_existing_css_set - init css array and find the matching css_set
1050  * @old_cset: the css_set that we're using before the cgroup transition
1051  * @cgrp: the cgroup that we're moving into
1052  * @template: out param for the new set of csses, should be clear on entry
1053  */
1054 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1055 					struct cgroup *cgrp,
1056 					struct cgroup_subsys_state *template[])
1057 {
1058 	struct cgroup_root *root = cgrp->root;
1059 	struct cgroup_subsys *ss;
1060 	struct css_set *cset;
1061 	unsigned long key;
1062 	int i;
1063 
1064 	/*
1065 	 * Build the set of subsystem state objects that we want to see in the
1066 	 * new css_set. while subsystems can change globally, the entries here
1067 	 * won't change, so no need for locking.
1068 	 */
1069 	for_each_subsys(ss, i) {
1070 		if (root->subsys_mask & (1UL << i)) {
1071 			/*
1072 			 * @ss is in this hierarchy, so we want the
1073 			 * effective css from @cgrp.
1074 			 */
1075 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1076 		} else {
1077 			/*
1078 			 * @ss is not in this hierarchy, so we don't want
1079 			 * to change the css.
1080 			 */
1081 			template[i] = old_cset->subsys[i];
1082 		}
1083 	}
1084 
1085 	key = css_set_hash(template);
1086 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1087 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1088 			continue;
1089 
1090 		/* This css_set matches what we need */
1091 		return cset;
1092 	}
1093 
1094 	/* No existing cgroup group matched */
1095 	return NULL;
1096 }
1097 
1098 static void free_cgrp_cset_links(struct list_head *links_to_free)
1099 {
1100 	struct cgrp_cset_link *link, *tmp_link;
1101 
1102 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1103 		list_del(&link->cset_link);
1104 		kfree(link);
1105 	}
1106 }
1107 
1108 /**
1109  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1110  * @count: the number of links to allocate
1111  * @tmp_links: list_head the allocated links are put on
1112  *
1113  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1114  * through ->cset_link.  Returns 0 on success or -errno.
1115  */
1116 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1117 {
1118 	struct cgrp_cset_link *link;
1119 	int i;
1120 
1121 	INIT_LIST_HEAD(tmp_links);
1122 
1123 	for (i = 0; i < count; i++) {
1124 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1125 		if (!link) {
1126 			free_cgrp_cset_links(tmp_links);
1127 			return -ENOMEM;
1128 		}
1129 		list_add(&link->cset_link, tmp_links);
1130 	}
1131 	return 0;
1132 }
1133 
1134 /**
1135  * link_css_set - a helper function to link a css_set to a cgroup
1136  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1137  * @cset: the css_set to be linked
1138  * @cgrp: the destination cgroup
1139  */
1140 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1141 			 struct cgroup *cgrp)
1142 {
1143 	struct cgrp_cset_link *link;
1144 
1145 	BUG_ON(list_empty(tmp_links));
1146 
1147 	if (cgroup_on_dfl(cgrp))
1148 		cset->dfl_cgrp = cgrp;
1149 
1150 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1151 	link->cset = cset;
1152 	link->cgrp = cgrp;
1153 
1154 	/*
1155 	 * Always add links to the tail of the lists so that the lists are
1156 	 * in choronological order.
1157 	 */
1158 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1159 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1160 
1161 	if (cgroup_parent(cgrp))
1162 		cgroup_get_live(cgrp);
1163 }
1164 
1165 /**
1166  * find_css_set - return a new css_set with one cgroup updated
1167  * @old_cset: the baseline css_set
1168  * @cgrp: the cgroup to be updated
1169  *
1170  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1171  * substituted into the appropriate hierarchy.
1172  */
1173 static struct css_set *find_css_set(struct css_set *old_cset,
1174 				    struct cgroup *cgrp)
1175 {
1176 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1177 	struct css_set *cset;
1178 	struct list_head tmp_links;
1179 	struct cgrp_cset_link *link;
1180 	struct cgroup_subsys *ss;
1181 	unsigned long key;
1182 	int ssid;
1183 
1184 	lockdep_assert_held(&cgroup_mutex);
1185 
1186 	/* First see if we already have a cgroup group that matches
1187 	 * the desired set */
1188 	spin_lock_irq(&css_set_lock);
1189 	cset = find_existing_css_set(old_cset, cgrp, template);
1190 	if (cset)
1191 		get_css_set(cset);
1192 	spin_unlock_irq(&css_set_lock);
1193 
1194 	if (cset)
1195 		return cset;
1196 
1197 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1198 	if (!cset)
1199 		return NULL;
1200 
1201 	/* Allocate all the cgrp_cset_link objects that we'll need */
1202 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1203 		kfree(cset);
1204 		return NULL;
1205 	}
1206 
1207 	refcount_set(&cset->refcount, 1);
1208 	cset->dom_cset = cset;
1209 	INIT_LIST_HEAD(&cset->tasks);
1210 	INIT_LIST_HEAD(&cset->mg_tasks);
1211 	INIT_LIST_HEAD(&cset->task_iters);
1212 	INIT_LIST_HEAD(&cset->threaded_csets);
1213 	INIT_HLIST_NODE(&cset->hlist);
1214 	INIT_LIST_HEAD(&cset->cgrp_links);
1215 	INIT_LIST_HEAD(&cset->mg_preload_node);
1216 	INIT_LIST_HEAD(&cset->mg_node);
1217 
1218 	/* Copy the set of subsystem state objects generated in
1219 	 * find_existing_css_set() */
1220 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1221 
1222 	spin_lock_irq(&css_set_lock);
1223 	/* Add reference counts and links from the new css_set. */
1224 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1225 		struct cgroup *c = link->cgrp;
1226 
1227 		if (c->root == cgrp->root)
1228 			c = cgrp;
1229 		link_css_set(&tmp_links, cset, c);
1230 	}
1231 
1232 	BUG_ON(!list_empty(&tmp_links));
1233 
1234 	css_set_count++;
1235 
1236 	/* Add @cset to the hash table */
1237 	key = css_set_hash(cset->subsys);
1238 	hash_add(css_set_table, &cset->hlist, key);
1239 
1240 	for_each_subsys(ss, ssid) {
1241 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1242 
1243 		list_add_tail(&cset->e_cset_node[ssid],
1244 			      &css->cgroup->e_csets[ssid]);
1245 		css_get(css);
1246 	}
1247 
1248 	spin_unlock_irq(&css_set_lock);
1249 
1250 	/*
1251 	 * If @cset should be threaded, look up the matching dom_cset and
1252 	 * link them up.  We first fully initialize @cset then look for the
1253 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1254 	 * to stay empty until we return.
1255 	 */
1256 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1257 		struct css_set *dcset;
1258 
1259 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1260 		if (!dcset) {
1261 			put_css_set(cset);
1262 			return NULL;
1263 		}
1264 
1265 		spin_lock_irq(&css_set_lock);
1266 		cset->dom_cset = dcset;
1267 		list_add_tail(&cset->threaded_csets_node,
1268 			      &dcset->threaded_csets);
1269 		spin_unlock_irq(&css_set_lock);
1270 	}
1271 
1272 	return cset;
1273 }
1274 
1275 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1276 {
1277 	struct cgroup *root_cgrp = kf_root->kn->priv;
1278 
1279 	return root_cgrp->root;
1280 }
1281 
1282 static int cgroup_init_root_id(struct cgroup_root *root)
1283 {
1284 	int id;
1285 
1286 	lockdep_assert_held(&cgroup_mutex);
1287 
1288 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1289 	if (id < 0)
1290 		return id;
1291 
1292 	root->hierarchy_id = id;
1293 	return 0;
1294 }
1295 
1296 static void cgroup_exit_root_id(struct cgroup_root *root)
1297 {
1298 	lockdep_assert_held(&cgroup_mutex);
1299 
1300 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1301 }
1302 
1303 void cgroup_free_root(struct cgroup_root *root)
1304 {
1305 	if (root) {
1306 		idr_destroy(&root->cgroup_idr);
1307 		kfree(root);
1308 	}
1309 }
1310 
1311 static void cgroup_destroy_root(struct cgroup_root *root)
1312 {
1313 	struct cgroup *cgrp = &root->cgrp;
1314 	struct cgrp_cset_link *link, *tmp_link;
1315 
1316 	trace_cgroup_destroy_root(root);
1317 
1318 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1319 
1320 	BUG_ON(atomic_read(&root->nr_cgrps));
1321 	BUG_ON(!list_empty(&cgrp->self.children));
1322 
1323 	/* Rebind all subsystems back to the default hierarchy */
1324 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1325 
1326 	/*
1327 	 * Release all the links from cset_links to this hierarchy's
1328 	 * root cgroup
1329 	 */
1330 	spin_lock_irq(&css_set_lock);
1331 
1332 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1333 		list_del(&link->cset_link);
1334 		list_del(&link->cgrp_link);
1335 		kfree(link);
1336 	}
1337 
1338 	spin_unlock_irq(&css_set_lock);
1339 
1340 	if (!list_empty(&root->root_list)) {
1341 		list_del(&root->root_list);
1342 		cgroup_root_count--;
1343 	}
1344 
1345 	cgroup_exit_root_id(root);
1346 
1347 	mutex_unlock(&cgroup_mutex);
1348 
1349 	kernfs_destroy_root(root->kf_root);
1350 	cgroup_free_root(root);
1351 }
1352 
1353 /*
1354  * look up cgroup associated with current task's cgroup namespace on the
1355  * specified hierarchy
1356  */
1357 static struct cgroup *
1358 current_cgns_cgroup_from_root(struct cgroup_root *root)
1359 {
1360 	struct cgroup *res = NULL;
1361 	struct css_set *cset;
1362 
1363 	lockdep_assert_held(&css_set_lock);
1364 
1365 	rcu_read_lock();
1366 
1367 	cset = current->nsproxy->cgroup_ns->root_cset;
1368 	if (cset == &init_css_set) {
1369 		res = &root->cgrp;
1370 	} else {
1371 		struct cgrp_cset_link *link;
1372 
1373 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1374 			struct cgroup *c = link->cgrp;
1375 
1376 			if (c->root == root) {
1377 				res = c;
1378 				break;
1379 			}
1380 		}
1381 	}
1382 	rcu_read_unlock();
1383 
1384 	BUG_ON(!res);
1385 	return res;
1386 }
1387 
1388 /* look up cgroup associated with given css_set on the specified hierarchy */
1389 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1390 					    struct cgroup_root *root)
1391 {
1392 	struct cgroup *res = NULL;
1393 
1394 	lockdep_assert_held(&cgroup_mutex);
1395 	lockdep_assert_held(&css_set_lock);
1396 
1397 	if (cset == &init_css_set) {
1398 		res = &root->cgrp;
1399 	} else if (root == &cgrp_dfl_root) {
1400 		res = cset->dfl_cgrp;
1401 	} else {
1402 		struct cgrp_cset_link *link;
1403 
1404 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1405 			struct cgroup *c = link->cgrp;
1406 
1407 			if (c->root == root) {
1408 				res = c;
1409 				break;
1410 			}
1411 		}
1412 	}
1413 
1414 	BUG_ON(!res);
1415 	return res;
1416 }
1417 
1418 /*
1419  * Return the cgroup for "task" from the given hierarchy. Must be
1420  * called with cgroup_mutex and css_set_lock held.
1421  */
1422 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1423 				     struct cgroup_root *root)
1424 {
1425 	/*
1426 	 * No need to lock the task - since we hold cgroup_mutex the
1427 	 * task can't change groups, so the only thing that can happen
1428 	 * is that it exits and its css is set back to init_css_set.
1429 	 */
1430 	return cset_cgroup_from_root(task_css_set(task), root);
1431 }
1432 
1433 /*
1434  * A task must hold cgroup_mutex to modify cgroups.
1435  *
1436  * Any task can increment and decrement the count field without lock.
1437  * So in general, code holding cgroup_mutex can't rely on the count
1438  * field not changing.  However, if the count goes to zero, then only
1439  * cgroup_attach_task() can increment it again.  Because a count of zero
1440  * means that no tasks are currently attached, therefore there is no
1441  * way a task attached to that cgroup can fork (the other way to
1442  * increment the count).  So code holding cgroup_mutex can safely
1443  * assume that if the count is zero, it will stay zero. Similarly, if
1444  * a task holds cgroup_mutex on a cgroup with zero count, it
1445  * knows that the cgroup won't be removed, as cgroup_rmdir()
1446  * needs that mutex.
1447  *
1448  * A cgroup can only be deleted if both its 'count' of using tasks
1449  * is zero, and its list of 'children' cgroups is empty.  Since all
1450  * tasks in the system use _some_ cgroup, and since there is always at
1451  * least one task in the system (init, pid == 1), therefore, root cgroup
1452  * always has either children cgroups and/or using tasks.  So we don't
1453  * need a special hack to ensure that root cgroup cannot be deleted.
1454  *
1455  * P.S.  One more locking exception.  RCU is used to guard the
1456  * update of a tasks cgroup pointer by cgroup_attach_task()
1457  */
1458 
1459 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1460 
1461 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1462 			      char *buf)
1463 {
1464 	struct cgroup_subsys *ss = cft->ss;
1465 
1466 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1467 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1468 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1469 
1470 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1471 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1472 			 cft->name);
1473 	} else {
1474 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1475 	}
1476 	return buf;
1477 }
1478 
1479 /**
1480  * cgroup_file_mode - deduce file mode of a control file
1481  * @cft: the control file in question
1482  *
1483  * S_IRUGO for read, S_IWUSR for write.
1484  */
1485 static umode_t cgroup_file_mode(const struct cftype *cft)
1486 {
1487 	umode_t mode = 0;
1488 
1489 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1490 		mode |= S_IRUGO;
1491 
1492 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1493 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1494 			mode |= S_IWUGO;
1495 		else
1496 			mode |= S_IWUSR;
1497 	}
1498 
1499 	return mode;
1500 }
1501 
1502 /**
1503  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1504  * @subtree_control: the new subtree_control mask to consider
1505  * @this_ss_mask: available subsystems
1506  *
1507  * On the default hierarchy, a subsystem may request other subsystems to be
1508  * enabled together through its ->depends_on mask.  In such cases, more
1509  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1510  *
1511  * This function calculates which subsystems need to be enabled if
1512  * @subtree_control is to be applied while restricted to @this_ss_mask.
1513  */
1514 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1515 {
1516 	u16 cur_ss_mask = subtree_control;
1517 	struct cgroup_subsys *ss;
1518 	int ssid;
1519 
1520 	lockdep_assert_held(&cgroup_mutex);
1521 
1522 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1523 
1524 	while (true) {
1525 		u16 new_ss_mask = cur_ss_mask;
1526 
1527 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1528 			new_ss_mask |= ss->depends_on;
1529 		} while_each_subsys_mask();
1530 
1531 		/*
1532 		 * Mask out subsystems which aren't available.  This can
1533 		 * happen only if some depended-upon subsystems were bound
1534 		 * to non-default hierarchies.
1535 		 */
1536 		new_ss_mask &= this_ss_mask;
1537 
1538 		if (new_ss_mask == cur_ss_mask)
1539 			break;
1540 		cur_ss_mask = new_ss_mask;
1541 	}
1542 
1543 	return cur_ss_mask;
1544 }
1545 
1546 /**
1547  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1548  * @kn: the kernfs_node being serviced
1549  *
1550  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1551  * the method finishes if locking succeeded.  Note that once this function
1552  * returns the cgroup returned by cgroup_kn_lock_live() may become
1553  * inaccessible any time.  If the caller intends to continue to access the
1554  * cgroup, it should pin it before invoking this function.
1555  */
1556 void cgroup_kn_unlock(struct kernfs_node *kn)
1557 {
1558 	struct cgroup *cgrp;
1559 
1560 	if (kernfs_type(kn) == KERNFS_DIR)
1561 		cgrp = kn->priv;
1562 	else
1563 		cgrp = kn->parent->priv;
1564 
1565 	mutex_unlock(&cgroup_mutex);
1566 
1567 	kernfs_unbreak_active_protection(kn);
1568 	cgroup_put(cgrp);
1569 }
1570 
1571 /**
1572  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1573  * @kn: the kernfs_node being serviced
1574  * @drain_offline: perform offline draining on the cgroup
1575  *
1576  * This helper is to be used by a cgroup kernfs method currently servicing
1577  * @kn.  It breaks the active protection, performs cgroup locking and
1578  * verifies that the associated cgroup is alive.  Returns the cgroup if
1579  * alive; otherwise, %NULL.  A successful return should be undone by a
1580  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1581  * cgroup is drained of offlining csses before return.
1582  *
1583  * Any cgroup kernfs method implementation which requires locking the
1584  * associated cgroup should use this helper.  It avoids nesting cgroup
1585  * locking under kernfs active protection and allows all kernfs operations
1586  * including self-removal.
1587  */
1588 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1589 {
1590 	struct cgroup *cgrp;
1591 
1592 	if (kernfs_type(kn) == KERNFS_DIR)
1593 		cgrp = kn->priv;
1594 	else
1595 		cgrp = kn->parent->priv;
1596 
1597 	/*
1598 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1599 	 * active_ref.  cgroup liveliness check alone provides enough
1600 	 * protection against removal.  Ensure @cgrp stays accessible and
1601 	 * break the active_ref protection.
1602 	 */
1603 	if (!cgroup_tryget(cgrp))
1604 		return NULL;
1605 	kernfs_break_active_protection(kn);
1606 
1607 	if (drain_offline)
1608 		cgroup_lock_and_drain_offline(cgrp);
1609 	else
1610 		mutex_lock(&cgroup_mutex);
1611 
1612 	if (!cgroup_is_dead(cgrp))
1613 		return cgrp;
1614 
1615 	cgroup_kn_unlock(kn);
1616 	return NULL;
1617 }
1618 
1619 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1620 {
1621 	char name[CGROUP_FILE_NAME_MAX];
1622 
1623 	lockdep_assert_held(&cgroup_mutex);
1624 
1625 	if (cft->file_offset) {
1626 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1627 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1628 
1629 		spin_lock_irq(&cgroup_file_kn_lock);
1630 		cfile->kn = NULL;
1631 		spin_unlock_irq(&cgroup_file_kn_lock);
1632 
1633 		del_timer_sync(&cfile->notify_timer);
1634 	}
1635 
1636 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1637 }
1638 
1639 /**
1640  * css_clear_dir - remove subsys files in a cgroup directory
1641  * @css: taget css
1642  */
1643 static void css_clear_dir(struct cgroup_subsys_state *css)
1644 {
1645 	struct cgroup *cgrp = css->cgroup;
1646 	struct cftype *cfts;
1647 
1648 	if (!(css->flags & CSS_VISIBLE))
1649 		return;
1650 
1651 	css->flags &= ~CSS_VISIBLE;
1652 
1653 	if (!css->ss) {
1654 		if (cgroup_on_dfl(cgrp))
1655 			cfts = cgroup_base_files;
1656 		else
1657 			cfts = cgroup1_base_files;
1658 
1659 		cgroup_addrm_files(css, cgrp, cfts, false);
1660 	} else {
1661 		list_for_each_entry(cfts, &css->ss->cfts, node)
1662 			cgroup_addrm_files(css, cgrp, cfts, false);
1663 	}
1664 }
1665 
1666 /**
1667  * css_populate_dir - create subsys files in a cgroup directory
1668  * @css: target css
1669  *
1670  * On failure, no file is added.
1671  */
1672 static int css_populate_dir(struct cgroup_subsys_state *css)
1673 {
1674 	struct cgroup *cgrp = css->cgroup;
1675 	struct cftype *cfts, *failed_cfts;
1676 	int ret;
1677 
1678 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1679 		return 0;
1680 
1681 	if (!css->ss) {
1682 		if (cgroup_on_dfl(cgrp))
1683 			cfts = cgroup_base_files;
1684 		else
1685 			cfts = cgroup1_base_files;
1686 
1687 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1688 		if (ret < 0)
1689 			return ret;
1690 	} else {
1691 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1692 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1693 			if (ret < 0) {
1694 				failed_cfts = cfts;
1695 				goto err;
1696 			}
1697 		}
1698 	}
1699 
1700 	css->flags |= CSS_VISIBLE;
1701 
1702 	return 0;
1703 err:
1704 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1705 		if (cfts == failed_cfts)
1706 			break;
1707 		cgroup_addrm_files(css, cgrp, cfts, false);
1708 	}
1709 	return ret;
1710 }
1711 
1712 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1713 {
1714 	struct cgroup *dcgrp = &dst_root->cgrp;
1715 	struct cgroup_subsys *ss;
1716 	int ssid, i, ret;
1717 
1718 	lockdep_assert_held(&cgroup_mutex);
1719 
1720 	do_each_subsys_mask(ss, ssid, ss_mask) {
1721 		/*
1722 		 * If @ss has non-root csses attached to it, can't move.
1723 		 * If @ss is an implicit controller, it is exempt from this
1724 		 * rule and can be stolen.
1725 		 */
1726 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1727 		    !ss->implicit_on_dfl)
1728 			return -EBUSY;
1729 
1730 		/* can't move between two non-dummy roots either */
1731 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1732 			return -EBUSY;
1733 	} while_each_subsys_mask();
1734 
1735 	do_each_subsys_mask(ss, ssid, ss_mask) {
1736 		struct cgroup_root *src_root = ss->root;
1737 		struct cgroup *scgrp = &src_root->cgrp;
1738 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1739 		struct css_set *cset;
1740 
1741 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1742 
1743 		/* disable from the source */
1744 		src_root->subsys_mask &= ~(1 << ssid);
1745 		WARN_ON(cgroup_apply_control(scgrp));
1746 		cgroup_finalize_control(scgrp, 0);
1747 
1748 		/* rebind */
1749 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1750 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1751 		ss->root = dst_root;
1752 		css->cgroup = dcgrp;
1753 
1754 		spin_lock_irq(&css_set_lock);
1755 		hash_for_each(css_set_table, i, cset, hlist)
1756 			list_move_tail(&cset->e_cset_node[ss->id],
1757 				       &dcgrp->e_csets[ss->id]);
1758 		spin_unlock_irq(&css_set_lock);
1759 
1760 		/* default hierarchy doesn't enable controllers by default */
1761 		dst_root->subsys_mask |= 1 << ssid;
1762 		if (dst_root == &cgrp_dfl_root) {
1763 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1764 		} else {
1765 			dcgrp->subtree_control |= 1 << ssid;
1766 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1767 		}
1768 
1769 		ret = cgroup_apply_control(dcgrp);
1770 		if (ret)
1771 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1772 				ss->name, ret);
1773 
1774 		if (ss->bind)
1775 			ss->bind(css);
1776 	} while_each_subsys_mask();
1777 
1778 	kernfs_activate(dcgrp->kn);
1779 	return 0;
1780 }
1781 
1782 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1783 		     struct kernfs_root *kf_root)
1784 {
1785 	int len = 0;
1786 	char *buf = NULL;
1787 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1788 	struct cgroup *ns_cgroup;
1789 
1790 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1791 	if (!buf)
1792 		return -ENOMEM;
1793 
1794 	spin_lock_irq(&css_set_lock);
1795 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1796 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1797 	spin_unlock_irq(&css_set_lock);
1798 
1799 	if (len >= PATH_MAX)
1800 		len = -ERANGE;
1801 	else if (len > 0) {
1802 		seq_escape(sf, buf, " \t\n\\");
1803 		len = 0;
1804 	}
1805 	kfree(buf);
1806 	return len;
1807 }
1808 
1809 enum cgroup2_param {
1810 	Opt_nsdelegate,
1811 	nr__cgroup2_params
1812 };
1813 
1814 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1815 	fsparam_flag  ("nsdelegate",		Opt_nsdelegate),
1816 	{}
1817 };
1818 
1819 static const struct fs_parameter_description cgroup2_fs_parameters = {
1820 	.name		= "cgroup2",
1821 	.specs		= cgroup2_param_specs,
1822 };
1823 
1824 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1825 {
1826 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1827 	struct fs_parse_result result;
1828 	int opt;
1829 
1830 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1831 	if (opt < 0)
1832 		return opt;
1833 
1834 	switch (opt) {
1835 	case Opt_nsdelegate:
1836 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1837 		return 0;
1838 	}
1839 	return -EINVAL;
1840 }
1841 
1842 static void apply_cgroup_root_flags(unsigned int root_flags)
1843 {
1844 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1845 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1846 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1847 		else
1848 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1849 	}
1850 }
1851 
1852 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1853 {
1854 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1855 		seq_puts(seq, ",nsdelegate");
1856 	return 0;
1857 }
1858 
1859 static int cgroup_reconfigure(struct fs_context *fc)
1860 {
1861 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1862 
1863 	apply_cgroup_root_flags(ctx->flags);
1864 	return 0;
1865 }
1866 
1867 /*
1868  * To reduce the fork() overhead for systems that are not actually using
1869  * their cgroups capability, we don't maintain the lists running through
1870  * each css_set to its tasks until we see the list actually used - in other
1871  * words after the first mount.
1872  */
1873 static bool use_task_css_set_links __read_mostly;
1874 
1875 static void cgroup_enable_task_cg_lists(void)
1876 {
1877 	struct task_struct *p, *g;
1878 
1879 	/*
1880 	 * We need tasklist_lock because RCU is not safe against
1881 	 * while_each_thread(). Besides, a forking task that has passed
1882 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1883 	 * is not guaranteed to have its child immediately visible in the
1884 	 * tasklist if we walk through it with RCU.
1885 	 */
1886 	read_lock(&tasklist_lock);
1887 	spin_lock_irq(&css_set_lock);
1888 
1889 	if (use_task_css_set_links)
1890 		goto out_unlock;
1891 
1892 	use_task_css_set_links = true;
1893 
1894 	do_each_thread(g, p) {
1895 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1896 			     task_css_set(p) != &init_css_set);
1897 
1898 		/*
1899 		 * We should check if the process is exiting, otherwise
1900 		 * it will race with cgroup_exit() in that the list
1901 		 * entry won't be deleted though the process has exited.
1902 		 * Do it while holding siglock so that we don't end up
1903 		 * racing against cgroup_exit().
1904 		 *
1905 		 * Interrupts were already disabled while acquiring
1906 		 * the css_set_lock, so we do not need to disable it
1907 		 * again when acquiring the sighand->siglock here.
1908 		 */
1909 		spin_lock(&p->sighand->siglock);
1910 		if (!(p->flags & PF_EXITING)) {
1911 			struct css_set *cset = task_css_set(p);
1912 
1913 			if (!css_set_populated(cset))
1914 				css_set_update_populated(cset, true);
1915 			list_add_tail(&p->cg_list, &cset->tasks);
1916 			get_css_set(cset);
1917 			cset->nr_tasks++;
1918 		}
1919 		spin_unlock(&p->sighand->siglock);
1920 	} while_each_thread(g, p);
1921 out_unlock:
1922 	spin_unlock_irq(&css_set_lock);
1923 	read_unlock(&tasklist_lock);
1924 }
1925 
1926 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1927 {
1928 	struct cgroup_subsys *ss;
1929 	int ssid;
1930 
1931 	INIT_LIST_HEAD(&cgrp->self.sibling);
1932 	INIT_LIST_HEAD(&cgrp->self.children);
1933 	INIT_LIST_HEAD(&cgrp->cset_links);
1934 	INIT_LIST_HEAD(&cgrp->pidlists);
1935 	mutex_init(&cgrp->pidlist_mutex);
1936 	cgrp->self.cgroup = cgrp;
1937 	cgrp->self.flags |= CSS_ONLINE;
1938 	cgrp->dom_cgrp = cgrp;
1939 	cgrp->max_descendants = INT_MAX;
1940 	cgrp->max_depth = INT_MAX;
1941 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1942 	prev_cputime_init(&cgrp->prev_cputime);
1943 
1944 	for_each_subsys(ss, ssid)
1945 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1946 
1947 	init_waitqueue_head(&cgrp->offline_waitq);
1948 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1949 }
1950 
1951 void init_cgroup_root(struct cgroup_fs_context *ctx)
1952 {
1953 	struct cgroup_root *root = ctx->root;
1954 	struct cgroup *cgrp = &root->cgrp;
1955 
1956 	INIT_LIST_HEAD(&root->root_list);
1957 	atomic_set(&root->nr_cgrps, 1);
1958 	cgrp->root = root;
1959 	init_cgroup_housekeeping(cgrp);
1960 	idr_init(&root->cgroup_idr);
1961 
1962 	root->flags = ctx->flags;
1963 	if (ctx->release_agent)
1964 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1965 	if (ctx->name)
1966 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1967 	if (ctx->cpuset_clone_children)
1968 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1969 }
1970 
1971 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1972 {
1973 	LIST_HEAD(tmp_links);
1974 	struct cgroup *root_cgrp = &root->cgrp;
1975 	struct kernfs_syscall_ops *kf_sops;
1976 	struct css_set *cset;
1977 	int i, ret;
1978 
1979 	lockdep_assert_held(&cgroup_mutex);
1980 
1981 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1982 	if (ret < 0)
1983 		goto out;
1984 	root_cgrp->id = ret;
1985 	root_cgrp->ancestor_ids[0] = ret;
1986 
1987 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1988 			      0, GFP_KERNEL);
1989 	if (ret)
1990 		goto out;
1991 
1992 	/*
1993 	 * We're accessing css_set_count without locking css_set_lock here,
1994 	 * but that's OK - it can only be increased by someone holding
1995 	 * cgroup_lock, and that's us.  Later rebinding may disable
1996 	 * controllers on the default hierarchy and thus create new csets,
1997 	 * which can't be more than the existing ones.  Allocate 2x.
1998 	 */
1999 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2000 	if (ret)
2001 		goto cancel_ref;
2002 
2003 	ret = cgroup_init_root_id(root);
2004 	if (ret)
2005 		goto cancel_ref;
2006 
2007 	kf_sops = root == &cgrp_dfl_root ?
2008 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2009 
2010 	root->kf_root = kernfs_create_root(kf_sops,
2011 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2012 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2013 					   root_cgrp);
2014 	if (IS_ERR(root->kf_root)) {
2015 		ret = PTR_ERR(root->kf_root);
2016 		goto exit_root_id;
2017 	}
2018 	root_cgrp->kn = root->kf_root->kn;
2019 
2020 	ret = css_populate_dir(&root_cgrp->self);
2021 	if (ret)
2022 		goto destroy_root;
2023 
2024 	ret = rebind_subsystems(root, ss_mask);
2025 	if (ret)
2026 		goto destroy_root;
2027 
2028 	ret = cgroup_bpf_inherit(root_cgrp);
2029 	WARN_ON_ONCE(ret);
2030 
2031 	trace_cgroup_setup_root(root);
2032 
2033 	/*
2034 	 * There must be no failure case after here, since rebinding takes
2035 	 * care of subsystems' refcounts, which are explicitly dropped in
2036 	 * the failure exit path.
2037 	 */
2038 	list_add(&root->root_list, &cgroup_roots);
2039 	cgroup_root_count++;
2040 
2041 	/*
2042 	 * Link the root cgroup in this hierarchy into all the css_set
2043 	 * objects.
2044 	 */
2045 	spin_lock_irq(&css_set_lock);
2046 	hash_for_each(css_set_table, i, cset, hlist) {
2047 		link_css_set(&tmp_links, cset, root_cgrp);
2048 		if (css_set_populated(cset))
2049 			cgroup_update_populated(root_cgrp, true);
2050 	}
2051 	spin_unlock_irq(&css_set_lock);
2052 
2053 	BUG_ON(!list_empty(&root_cgrp->self.children));
2054 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2055 
2056 	kernfs_activate(root_cgrp->kn);
2057 	ret = 0;
2058 	goto out;
2059 
2060 destroy_root:
2061 	kernfs_destroy_root(root->kf_root);
2062 	root->kf_root = NULL;
2063 exit_root_id:
2064 	cgroup_exit_root_id(root);
2065 cancel_ref:
2066 	percpu_ref_exit(&root_cgrp->self.refcnt);
2067 out:
2068 	free_cgrp_cset_links(&tmp_links);
2069 	return ret;
2070 }
2071 
2072 int cgroup_do_get_tree(struct fs_context *fc)
2073 {
2074 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075 	int ret;
2076 
2077 	ctx->kfc.root = ctx->root->kf_root;
2078 	if (fc->fs_type == &cgroup2_fs_type)
2079 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2080 	else
2081 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2082 	ret = kernfs_get_tree(fc);
2083 
2084 	/*
2085 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2086 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2087 	 */
2088 	if (!ret && ctx->ns != &init_cgroup_ns) {
2089 		struct dentry *nsdentry;
2090 		struct super_block *sb = fc->root->d_sb;
2091 		struct cgroup *cgrp;
2092 
2093 		mutex_lock(&cgroup_mutex);
2094 		spin_lock_irq(&css_set_lock);
2095 
2096 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2097 
2098 		spin_unlock_irq(&css_set_lock);
2099 		mutex_unlock(&cgroup_mutex);
2100 
2101 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2102 		dput(fc->root);
2103 		fc->root = nsdentry;
2104 		if (IS_ERR(nsdentry)) {
2105 			ret = PTR_ERR(nsdentry);
2106 			deactivate_locked_super(sb);
2107 		}
2108 	}
2109 
2110 	if (!ctx->kfc.new_sb_created)
2111 		cgroup_put(&ctx->root->cgrp);
2112 
2113 	return ret;
2114 }
2115 
2116 /*
2117  * Destroy a cgroup filesystem context.
2118  */
2119 static void cgroup_fs_context_free(struct fs_context *fc)
2120 {
2121 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2122 
2123 	kfree(ctx->name);
2124 	kfree(ctx->release_agent);
2125 	put_cgroup_ns(ctx->ns);
2126 	kernfs_free_fs_context(fc);
2127 	kfree(ctx);
2128 }
2129 
2130 static int cgroup_get_tree(struct fs_context *fc)
2131 {
2132 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2133 	int ret;
2134 
2135 	cgrp_dfl_visible = true;
2136 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2137 	ctx->root = &cgrp_dfl_root;
2138 
2139 	ret = cgroup_do_get_tree(fc);
2140 	if (!ret)
2141 		apply_cgroup_root_flags(ctx->flags);
2142 	return ret;
2143 }
2144 
2145 static const struct fs_context_operations cgroup_fs_context_ops = {
2146 	.free		= cgroup_fs_context_free,
2147 	.parse_param	= cgroup2_parse_param,
2148 	.get_tree	= cgroup_get_tree,
2149 	.reconfigure	= cgroup_reconfigure,
2150 };
2151 
2152 static const struct fs_context_operations cgroup1_fs_context_ops = {
2153 	.free		= cgroup_fs_context_free,
2154 	.parse_param	= cgroup1_parse_param,
2155 	.get_tree	= cgroup1_get_tree,
2156 	.reconfigure	= cgroup1_reconfigure,
2157 };
2158 
2159 /*
2160  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2161  * we select the namespace we're going to use.
2162  */
2163 static int cgroup_init_fs_context(struct fs_context *fc)
2164 {
2165 	struct cgroup_fs_context *ctx;
2166 
2167 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2168 	if (!ctx)
2169 		return -ENOMEM;
2170 
2171 	/*
2172 	 * The first time anyone tries to mount a cgroup, enable the list
2173 	 * linking each css_set to its tasks and fix up all existing tasks.
2174 	 */
2175 	if (!use_task_css_set_links)
2176 		cgroup_enable_task_cg_lists();
2177 
2178 	ctx->ns = current->nsproxy->cgroup_ns;
2179 	get_cgroup_ns(ctx->ns);
2180 	fc->fs_private = &ctx->kfc;
2181 	if (fc->fs_type == &cgroup2_fs_type)
2182 		fc->ops = &cgroup_fs_context_ops;
2183 	else
2184 		fc->ops = &cgroup1_fs_context_ops;
2185 	if (fc->user_ns)
2186 		put_user_ns(fc->user_ns);
2187 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2188 	fc->global = true;
2189 	return 0;
2190 }
2191 
2192 static void cgroup_kill_sb(struct super_block *sb)
2193 {
2194 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2195 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2196 
2197 	/*
2198 	 * If @root doesn't have any children, start killing it.
2199 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2200 	 * cgroup_mount() may wait for @root's release.
2201 	 *
2202 	 * And don't kill the default root.
2203 	 */
2204 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2205 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2206 		percpu_ref_kill(&root->cgrp.self.refcnt);
2207 	cgroup_put(&root->cgrp);
2208 	kernfs_kill_sb(sb);
2209 }
2210 
2211 struct file_system_type cgroup_fs_type = {
2212 	.name			= "cgroup",
2213 	.init_fs_context	= cgroup_init_fs_context,
2214 	.parameters		= &cgroup1_fs_parameters,
2215 	.kill_sb		= cgroup_kill_sb,
2216 	.fs_flags		= FS_USERNS_MOUNT,
2217 };
2218 
2219 static struct file_system_type cgroup2_fs_type = {
2220 	.name			= "cgroup2",
2221 	.init_fs_context	= cgroup_init_fs_context,
2222 	.parameters		= &cgroup2_fs_parameters,
2223 	.kill_sb		= cgroup_kill_sb,
2224 	.fs_flags		= FS_USERNS_MOUNT,
2225 };
2226 
2227 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2228 			  struct cgroup_namespace *ns)
2229 {
2230 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2231 
2232 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2233 }
2234 
2235 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2236 		   struct cgroup_namespace *ns)
2237 {
2238 	int ret;
2239 
2240 	mutex_lock(&cgroup_mutex);
2241 	spin_lock_irq(&css_set_lock);
2242 
2243 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2244 
2245 	spin_unlock_irq(&css_set_lock);
2246 	mutex_unlock(&cgroup_mutex);
2247 
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2251 
2252 /**
2253  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2254  * @task: target task
2255  * @buf: the buffer to write the path into
2256  * @buflen: the length of the buffer
2257  *
2258  * Determine @task's cgroup on the first (the one with the lowest non-zero
2259  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2260  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2261  * cgroup controller callbacks.
2262  *
2263  * Return value is the same as kernfs_path().
2264  */
2265 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2266 {
2267 	struct cgroup_root *root;
2268 	struct cgroup *cgrp;
2269 	int hierarchy_id = 1;
2270 	int ret;
2271 
2272 	mutex_lock(&cgroup_mutex);
2273 	spin_lock_irq(&css_set_lock);
2274 
2275 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2276 
2277 	if (root) {
2278 		cgrp = task_cgroup_from_root(task, root);
2279 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2280 	} else {
2281 		/* if no hierarchy exists, everyone is in "/" */
2282 		ret = strlcpy(buf, "/", buflen);
2283 	}
2284 
2285 	spin_unlock_irq(&css_set_lock);
2286 	mutex_unlock(&cgroup_mutex);
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(task_cgroup_path);
2290 
2291 /**
2292  * cgroup_migrate_add_task - add a migration target task to a migration context
2293  * @task: target task
2294  * @mgctx: target migration context
2295  *
2296  * Add @task, which is a migration target, to @mgctx->tset.  This function
2297  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2298  * should have been added as a migration source and @task->cg_list will be
2299  * moved from the css_set's tasks list to mg_tasks one.
2300  */
2301 static void cgroup_migrate_add_task(struct task_struct *task,
2302 				    struct cgroup_mgctx *mgctx)
2303 {
2304 	struct css_set *cset;
2305 
2306 	lockdep_assert_held(&css_set_lock);
2307 
2308 	/* @task either already exited or can't exit until the end */
2309 	if (task->flags & PF_EXITING)
2310 		return;
2311 
2312 	/* leave @task alone if post_fork() hasn't linked it yet */
2313 	if (list_empty(&task->cg_list))
2314 		return;
2315 
2316 	cset = task_css_set(task);
2317 	if (!cset->mg_src_cgrp)
2318 		return;
2319 
2320 	mgctx->tset.nr_tasks++;
2321 
2322 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2323 	if (list_empty(&cset->mg_node))
2324 		list_add_tail(&cset->mg_node,
2325 			      &mgctx->tset.src_csets);
2326 	if (list_empty(&cset->mg_dst_cset->mg_node))
2327 		list_add_tail(&cset->mg_dst_cset->mg_node,
2328 			      &mgctx->tset.dst_csets);
2329 }
2330 
2331 /**
2332  * cgroup_taskset_first - reset taskset and return the first task
2333  * @tset: taskset of interest
2334  * @dst_cssp: output variable for the destination css
2335  *
2336  * @tset iteration is initialized and the first task is returned.
2337  */
2338 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2339 					 struct cgroup_subsys_state **dst_cssp)
2340 {
2341 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2342 	tset->cur_task = NULL;
2343 
2344 	return cgroup_taskset_next(tset, dst_cssp);
2345 }
2346 
2347 /**
2348  * cgroup_taskset_next - iterate to the next task in taskset
2349  * @tset: taskset of interest
2350  * @dst_cssp: output variable for the destination css
2351  *
2352  * Return the next task in @tset.  Iteration must have been initialized
2353  * with cgroup_taskset_first().
2354  */
2355 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2356 					struct cgroup_subsys_state **dst_cssp)
2357 {
2358 	struct css_set *cset = tset->cur_cset;
2359 	struct task_struct *task = tset->cur_task;
2360 
2361 	while (&cset->mg_node != tset->csets) {
2362 		if (!task)
2363 			task = list_first_entry(&cset->mg_tasks,
2364 						struct task_struct, cg_list);
2365 		else
2366 			task = list_next_entry(task, cg_list);
2367 
2368 		if (&task->cg_list != &cset->mg_tasks) {
2369 			tset->cur_cset = cset;
2370 			tset->cur_task = task;
2371 
2372 			/*
2373 			 * This function may be called both before and
2374 			 * after cgroup_taskset_migrate().  The two cases
2375 			 * can be distinguished by looking at whether @cset
2376 			 * has its ->mg_dst_cset set.
2377 			 */
2378 			if (cset->mg_dst_cset)
2379 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2380 			else
2381 				*dst_cssp = cset->subsys[tset->ssid];
2382 
2383 			return task;
2384 		}
2385 
2386 		cset = list_next_entry(cset, mg_node);
2387 		task = NULL;
2388 	}
2389 
2390 	return NULL;
2391 }
2392 
2393 /**
2394  * cgroup_taskset_migrate - migrate a taskset
2395  * @mgctx: migration context
2396  *
2397  * Migrate tasks in @mgctx as setup by migration preparation functions.
2398  * This function fails iff one of the ->can_attach callbacks fails and
2399  * guarantees that either all or none of the tasks in @mgctx are migrated.
2400  * @mgctx is consumed regardless of success.
2401  */
2402 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2403 {
2404 	struct cgroup_taskset *tset = &mgctx->tset;
2405 	struct cgroup_subsys *ss;
2406 	struct task_struct *task, *tmp_task;
2407 	struct css_set *cset, *tmp_cset;
2408 	int ssid, failed_ssid, ret;
2409 
2410 	/* check that we can legitimately attach to the cgroup */
2411 	if (tset->nr_tasks) {
2412 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2413 			if (ss->can_attach) {
2414 				tset->ssid = ssid;
2415 				ret = ss->can_attach(tset);
2416 				if (ret) {
2417 					failed_ssid = ssid;
2418 					goto out_cancel_attach;
2419 				}
2420 			}
2421 		} while_each_subsys_mask();
2422 	}
2423 
2424 	/*
2425 	 * Now that we're guaranteed success, proceed to move all tasks to
2426 	 * the new cgroup.  There are no failure cases after here, so this
2427 	 * is the commit point.
2428 	 */
2429 	spin_lock_irq(&css_set_lock);
2430 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2431 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2432 			struct css_set *from_cset = task_css_set(task);
2433 			struct css_set *to_cset = cset->mg_dst_cset;
2434 
2435 			get_css_set(to_cset);
2436 			to_cset->nr_tasks++;
2437 			css_set_move_task(task, from_cset, to_cset, true);
2438 			from_cset->nr_tasks--;
2439 			/*
2440 			 * If the source or destination cgroup is frozen,
2441 			 * the task might require to change its state.
2442 			 */
2443 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2444 						    to_cset->dfl_cgrp);
2445 			put_css_set_locked(from_cset);
2446 
2447 		}
2448 	}
2449 	spin_unlock_irq(&css_set_lock);
2450 
2451 	/*
2452 	 * Migration is committed, all target tasks are now on dst_csets.
2453 	 * Nothing is sensitive to fork() after this point.  Notify
2454 	 * controllers that migration is complete.
2455 	 */
2456 	tset->csets = &tset->dst_csets;
2457 
2458 	if (tset->nr_tasks) {
2459 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2460 			if (ss->attach) {
2461 				tset->ssid = ssid;
2462 				ss->attach(tset);
2463 			}
2464 		} while_each_subsys_mask();
2465 	}
2466 
2467 	ret = 0;
2468 	goto out_release_tset;
2469 
2470 out_cancel_attach:
2471 	if (tset->nr_tasks) {
2472 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2473 			if (ssid == failed_ssid)
2474 				break;
2475 			if (ss->cancel_attach) {
2476 				tset->ssid = ssid;
2477 				ss->cancel_attach(tset);
2478 			}
2479 		} while_each_subsys_mask();
2480 	}
2481 out_release_tset:
2482 	spin_lock_irq(&css_set_lock);
2483 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2484 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2485 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2486 		list_del_init(&cset->mg_node);
2487 	}
2488 	spin_unlock_irq(&css_set_lock);
2489 
2490 	/*
2491 	 * Re-initialize the cgroup_taskset structure in case it is reused
2492 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2493 	 * iteration.
2494 	 */
2495 	tset->nr_tasks = 0;
2496 	tset->csets    = &tset->src_csets;
2497 	return ret;
2498 }
2499 
2500 /**
2501  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2502  * @dst_cgrp: destination cgroup to test
2503  *
2504  * On the default hierarchy, except for the mixable, (possible) thread root
2505  * and threaded cgroups, subtree_control must be zero for migration
2506  * destination cgroups with tasks so that child cgroups don't compete
2507  * against tasks.
2508  */
2509 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2510 {
2511 	/* v1 doesn't have any restriction */
2512 	if (!cgroup_on_dfl(dst_cgrp))
2513 		return 0;
2514 
2515 	/* verify @dst_cgrp can host resources */
2516 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2517 		return -EOPNOTSUPP;
2518 
2519 	/* mixables don't care */
2520 	if (cgroup_is_mixable(dst_cgrp))
2521 		return 0;
2522 
2523 	/*
2524 	 * If @dst_cgrp is already or can become a thread root or is
2525 	 * threaded, it doesn't matter.
2526 	 */
2527 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2528 		return 0;
2529 
2530 	/* apply no-internal-process constraint */
2531 	if (dst_cgrp->subtree_control)
2532 		return -EBUSY;
2533 
2534 	return 0;
2535 }
2536 
2537 /**
2538  * cgroup_migrate_finish - cleanup after attach
2539  * @mgctx: migration context
2540  *
2541  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2542  * those functions for details.
2543  */
2544 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2545 {
2546 	LIST_HEAD(preloaded);
2547 	struct css_set *cset, *tmp_cset;
2548 
2549 	lockdep_assert_held(&cgroup_mutex);
2550 
2551 	spin_lock_irq(&css_set_lock);
2552 
2553 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2554 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2555 
2556 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2557 		cset->mg_src_cgrp = NULL;
2558 		cset->mg_dst_cgrp = NULL;
2559 		cset->mg_dst_cset = NULL;
2560 		list_del_init(&cset->mg_preload_node);
2561 		put_css_set_locked(cset);
2562 	}
2563 
2564 	spin_unlock_irq(&css_set_lock);
2565 }
2566 
2567 /**
2568  * cgroup_migrate_add_src - add a migration source css_set
2569  * @src_cset: the source css_set to add
2570  * @dst_cgrp: the destination cgroup
2571  * @mgctx: migration context
2572  *
2573  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2574  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2575  * up by cgroup_migrate_finish().
2576  *
2577  * This function may be called without holding cgroup_threadgroup_rwsem
2578  * even if the target is a process.  Threads may be created and destroyed
2579  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2580  * into play and the preloaded css_sets are guaranteed to cover all
2581  * migrations.
2582  */
2583 void cgroup_migrate_add_src(struct css_set *src_cset,
2584 			    struct cgroup *dst_cgrp,
2585 			    struct cgroup_mgctx *mgctx)
2586 {
2587 	struct cgroup *src_cgrp;
2588 
2589 	lockdep_assert_held(&cgroup_mutex);
2590 	lockdep_assert_held(&css_set_lock);
2591 
2592 	/*
2593 	 * If ->dead, @src_set is associated with one or more dead cgroups
2594 	 * and doesn't contain any migratable tasks.  Ignore it early so
2595 	 * that the rest of migration path doesn't get confused by it.
2596 	 */
2597 	if (src_cset->dead)
2598 		return;
2599 
2600 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2601 
2602 	if (!list_empty(&src_cset->mg_preload_node))
2603 		return;
2604 
2605 	WARN_ON(src_cset->mg_src_cgrp);
2606 	WARN_ON(src_cset->mg_dst_cgrp);
2607 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2608 	WARN_ON(!list_empty(&src_cset->mg_node));
2609 
2610 	src_cset->mg_src_cgrp = src_cgrp;
2611 	src_cset->mg_dst_cgrp = dst_cgrp;
2612 	get_css_set(src_cset);
2613 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2614 }
2615 
2616 /**
2617  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2618  * @mgctx: migration context
2619  *
2620  * Tasks are about to be moved and all the source css_sets have been
2621  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2622  * pins all destination css_sets, links each to its source, and append them
2623  * to @mgctx->preloaded_dst_csets.
2624  *
2625  * This function must be called after cgroup_migrate_add_src() has been
2626  * called on each migration source css_set.  After migration is performed
2627  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2628  * @mgctx.
2629  */
2630 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2631 {
2632 	struct css_set *src_cset, *tmp_cset;
2633 
2634 	lockdep_assert_held(&cgroup_mutex);
2635 
2636 	/* look up the dst cset for each src cset and link it to src */
2637 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2638 				 mg_preload_node) {
2639 		struct css_set *dst_cset;
2640 		struct cgroup_subsys *ss;
2641 		int ssid;
2642 
2643 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2644 		if (!dst_cset)
2645 			return -ENOMEM;
2646 
2647 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2648 
2649 		/*
2650 		 * If src cset equals dst, it's noop.  Drop the src.
2651 		 * cgroup_migrate() will skip the cset too.  Note that we
2652 		 * can't handle src == dst as some nodes are used by both.
2653 		 */
2654 		if (src_cset == dst_cset) {
2655 			src_cset->mg_src_cgrp = NULL;
2656 			src_cset->mg_dst_cgrp = NULL;
2657 			list_del_init(&src_cset->mg_preload_node);
2658 			put_css_set(src_cset);
2659 			put_css_set(dst_cset);
2660 			continue;
2661 		}
2662 
2663 		src_cset->mg_dst_cset = dst_cset;
2664 
2665 		if (list_empty(&dst_cset->mg_preload_node))
2666 			list_add_tail(&dst_cset->mg_preload_node,
2667 				      &mgctx->preloaded_dst_csets);
2668 		else
2669 			put_css_set(dst_cset);
2670 
2671 		for_each_subsys(ss, ssid)
2672 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2673 				mgctx->ss_mask |= 1 << ssid;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 /**
2680  * cgroup_migrate - migrate a process or task to a cgroup
2681  * @leader: the leader of the process or the task to migrate
2682  * @threadgroup: whether @leader points to the whole process or a single task
2683  * @mgctx: migration context
2684  *
2685  * Migrate a process or task denoted by @leader.  If migrating a process,
2686  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2687  * responsible for invoking cgroup_migrate_add_src() and
2688  * cgroup_migrate_prepare_dst() on the targets before invoking this
2689  * function and following up with cgroup_migrate_finish().
2690  *
2691  * As long as a controller's ->can_attach() doesn't fail, this function is
2692  * guaranteed to succeed.  This means that, excluding ->can_attach()
2693  * failure, when migrating multiple targets, the success or failure can be
2694  * decided for all targets by invoking group_migrate_prepare_dst() before
2695  * actually starting migrating.
2696  */
2697 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2698 		   struct cgroup_mgctx *mgctx)
2699 {
2700 	struct task_struct *task;
2701 
2702 	/*
2703 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2704 	 * already PF_EXITING could be freed from underneath us unless we
2705 	 * take an rcu_read_lock.
2706 	 */
2707 	spin_lock_irq(&css_set_lock);
2708 	rcu_read_lock();
2709 	task = leader;
2710 	do {
2711 		cgroup_migrate_add_task(task, mgctx);
2712 		if (!threadgroup)
2713 			break;
2714 	} while_each_thread(leader, task);
2715 	rcu_read_unlock();
2716 	spin_unlock_irq(&css_set_lock);
2717 
2718 	return cgroup_migrate_execute(mgctx);
2719 }
2720 
2721 /**
2722  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2723  * @dst_cgrp: the cgroup to attach to
2724  * @leader: the task or the leader of the threadgroup to be attached
2725  * @threadgroup: attach the whole threadgroup?
2726  *
2727  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2728  */
2729 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2730 		       bool threadgroup)
2731 {
2732 	DEFINE_CGROUP_MGCTX(mgctx);
2733 	struct task_struct *task;
2734 	int ret;
2735 
2736 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2737 	if (ret)
2738 		return ret;
2739 
2740 	/* look up all src csets */
2741 	spin_lock_irq(&css_set_lock);
2742 	rcu_read_lock();
2743 	task = leader;
2744 	do {
2745 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2746 		if (!threadgroup)
2747 			break;
2748 	} while_each_thread(leader, task);
2749 	rcu_read_unlock();
2750 	spin_unlock_irq(&css_set_lock);
2751 
2752 	/* prepare dst csets and commit */
2753 	ret = cgroup_migrate_prepare_dst(&mgctx);
2754 	if (!ret)
2755 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2756 
2757 	cgroup_migrate_finish(&mgctx);
2758 
2759 	if (!ret)
2760 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2761 
2762 	return ret;
2763 }
2764 
2765 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2766 	__acquires(&cgroup_threadgroup_rwsem)
2767 {
2768 	struct task_struct *tsk;
2769 	pid_t pid;
2770 
2771 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2772 		return ERR_PTR(-EINVAL);
2773 
2774 	percpu_down_write(&cgroup_threadgroup_rwsem);
2775 
2776 	rcu_read_lock();
2777 	if (pid) {
2778 		tsk = find_task_by_vpid(pid);
2779 		if (!tsk) {
2780 			tsk = ERR_PTR(-ESRCH);
2781 			goto out_unlock_threadgroup;
2782 		}
2783 	} else {
2784 		tsk = current;
2785 	}
2786 
2787 	if (threadgroup)
2788 		tsk = tsk->group_leader;
2789 
2790 	/*
2791 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2792 	 * If userland migrates such a kthread to a non-root cgroup, it can
2793 	 * become trapped in a cpuset, or RT kthread may be born in a
2794 	 * cgroup with no rt_runtime allocated.  Just say no.
2795 	 */
2796 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2797 		tsk = ERR_PTR(-EINVAL);
2798 		goto out_unlock_threadgroup;
2799 	}
2800 
2801 	get_task_struct(tsk);
2802 	goto out_unlock_rcu;
2803 
2804 out_unlock_threadgroup:
2805 	percpu_up_write(&cgroup_threadgroup_rwsem);
2806 out_unlock_rcu:
2807 	rcu_read_unlock();
2808 	return tsk;
2809 }
2810 
2811 void cgroup_procs_write_finish(struct task_struct *task)
2812 	__releases(&cgroup_threadgroup_rwsem)
2813 {
2814 	struct cgroup_subsys *ss;
2815 	int ssid;
2816 
2817 	/* release reference from cgroup_procs_write_start() */
2818 	put_task_struct(task);
2819 
2820 	percpu_up_write(&cgroup_threadgroup_rwsem);
2821 	for_each_subsys(ss, ssid)
2822 		if (ss->post_attach)
2823 			ss->post_attach();
2824 }
2825 
2826 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2827 {
2828 	struct cgroup_subsys *ss;
2829 	bool printed = false;
2830 	int ssid;
2831 
2832 	do_each_subsys_mask(ss, ssid, ss_mask) {
2833 		if (printed)
2834 			seq_putc(seq, ' ');
2835 		seq_printf(seq, "%s", ss->name);
2836 		printed = true;
2837 	} while_each_subsys_mask();
2838 	if (printed)
2839 		seq_putc(seq, '\n');
2840 }
2841 
2842 /* show controllers which are enabled from the parent */
2843 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2844 {
2845 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2846 
2847 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2848 	return 0;
2849 }
2850 
2851 /* show controllers which are enabled for a given cgroup's children */
2852 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2853 {
2854 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2855 
2856 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2857 	return 0;
2858 }
2859 
2860 /**
2861  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2862  * @cgrp: root of the subtree to update csses for
2863  *
2864  * @cgrp's control masks have changed and its subtree's css associations
2865  * need to be updated accordingly.  This function looks up all css_sets
2866  * which are attached to the subtree, creates the matching updated css_sets
2867  * and migrates the tasks to the new ones.
2868  */
2869 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2870 {
2871 	DEFINE_CGROUP_MGCTX(mgctx);
2872 	struct cgroup_subsys_state *d_css;
2873 	struct cgroup *dsct;
2874 	struct css_set *src_cset;
2875 	int ret;
2876 
2877 	lockdep_assert_held(&cgroup_mutex);
2878 
2879 	percpu_down_write(&cgroup_threadgroup_rwsem);
2880 
2881 	/* look up all csses currently attached to @cgrp's subtree */
2882 	spin_lock_irq(&css_set_lock);
2883 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2884 		struct cgrp_cset_link *link;
2885 
2886 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2887 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2888 	}
2889 	spin_unlock_irq(&css_set_lock);
2890 
2891 	/* NULL dst indicates self on default hierarchy */
2892 	ret = cgroup_migrate_prepare_dst(&mgctx);
2893 	if (ret)
2894 		goto out_finish;
2895 
2896 	spin_lock_irq(&css_set_lock);
2897 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2898 		struct task_struct *task, *ntask;
2899 
2900 		/* all tasks in src_csets need to be migrated */
2901 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2902 			cgroup_migrate_add_task(task, &mgctx);
2903 	}
2904 	spin_unlock_irq(&css_set_lock);
2905 
2906 	ret = cgroup_migrate_execute(&mgctx);
2907 out_finish:
2908 	cgroup_migrate_finish(&mgctx);
2909 	percpu_up_write(&cgroup_threadgroup_rwsem);
2910 	return ret;
2911 }
2912 
2913 /**
2914  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2915  * @cgrp: root of the target subtree
2916  *
2917  * Because css offlining is asynchronous, userland may try to re-enable a
2918  * controller while the previous css is still around.  This function grabs
2919  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2920  */
2921 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2922 	__acquires(&cgroup_mutex)
2923 {
2924 	struct cgroup *dsct;
2925 	struct cgroup_subsys_state *d_css;
2926 	struct cgroup_subsys *ss;
2927 	int ssid;
2928 
2929 restart:
2930 	mutex_lock(&cgroup_mutex);
2931 
2932 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2933 		for_each_subsys(ss, ssid) {
2934 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2935 			DEFINE_WAIT(wait);
2936 
2937 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2938 				continue;
2939 
2940 			cgroup_get_live(dsct);
2941 			prepare_to_wait(&dsct->offline_waitq, &wait,
2942 					TASK_UNINTERRUPTIBLE);
2943 
2944 			mutex_unlock(&cgroup_mutex);
2945 			schedule();
2946 			finish_wait(&dsct->offline_waitq, &wait);
2947 
2948 			cgroup_put(dsct);
2949 			goto restart;
2950 		}
2951 	}
2952 }
2953 
2954 /**
2955  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2956  * @cgrp: root of the target subtree
2957  *
2958  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2959  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2960  * itself.
2961  */
2962 static void cgroup_save_control(struct cgroup *cgrp)
2963 {
2964 	struct cgroup *dsct;
2965 	struct cgroup_subsys_state *d_css;
2966 
2967 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2968 		dsct->old_subtree_control = dsct->subtree_control;
2969 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2970 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2971 	}
2972 }
2973 
2974 /**
2975  * cgroup_propagate_control - refresh control masks of a subtree
2976  * @cgrp: root of the target subtree
2977  *
2978  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2979  * ->subtree_control and propagate controller availability through the
2980  * subtree so that descendants don't have unavailable controllers enabled.
2981  */
2982 static void cgroup_propagate_control(struct cgroup *cgrp)
2983 {
2984 	struct cgroup *dsct;
2985 	struct cgroup_subsys_state *d_css;
2986 
2987 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2988 		dsct->subtree_control &= cgroup_control(dsct);
2989 		dsct->subtree_ss_mask =
2990 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2991 						    cgroup_ss_mask(dsct));
2992 	}
2993 }
2994 
2995 /**
2996  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2997  * @cgrp: root of the target subtree
2998  *
2999  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3000  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3001  * itself.
3002  */
3003 static void cgroup_restore_control(struct cgroup *cgrp)
3004 {
3005 	struct cgroup *dsct;
3006 	struct cgroup_subsys_state *d_css;
3007 
3008 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3009 		dsct->subtree_control = dsct->old_subtree_control;
3010 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3011 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3012 	}
3013 }
3014 
3015 static bool css_visible(struct cgroup_subsys_state *css)
3016 {
3017 	struct cgroup_subsys *ss = css->ss;
3018 	struct cgroup *cgrp = css->cgroup;
3019 
3020 	if (cgroup_control(cgrp) & (1 << ss->id))
3021 		return true;
3022 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3023 		return false;
3024 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3025 }
3026 
3027 /**
3028  * cgroup_apply_control_enable - enable or show csses according to control
3029  * @cgrp: root of the target subtree
3030  *
3031  * Walk @cgrp's subtree and create new csses or make the existing ones
3032  * visible.  A css is created invisible if it's being implicitly enabled
3033  * through dependency.  An invisible css is made visible when the userland
3034  * explicitly enables it.
3035  *
3036  * Returns 0 on success, -errno on failure.  On failure, csses which have
3037  * been processed already aren't cleaned up.  The caller is responsible for
3038  * cleaning up with cgroup_apply_control_disable().
3039  */
3040 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3041 {
3042 	struct cgroup *dsct;
3043 	struct cgroup_subsys_state *d_css;
3044 	struct cgroup_subsys *ss;
3045 	int ssid, ret;
3046 
3047 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3048 		for_each_subsys(ss, ssid) {
3049 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3050 
3051 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3052 
3053 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3054 				continue;
3055 
3056 			if (!css) {
3057 				css = css_create(dsct, ss);
3058 				if (IS_ERR(css))
3059 					return PTR_ERR(css);
3060 			}
3061 
3062 			if (css_visible(css)) {
3063 				ret = css_populate_dir(css);
3064 				if (ret)
3065 					return ret;
3066 			}
3067 		}
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  * cgroup_apply_control_disable - kill or hide csses according to control
3075  * @cgrp: root of the target subtree
3076  *
3077  * Walk @cgrp's subtree and kill and hide csses so that they match
3078  * cgroup_ss_mask() and cgroup_visible_mask().
3079  *
3080  * A css is hidden when the userland requests it to be disabled while other
3081  * subsystems are still depending on it.  The css must not actively control
3082  * resources and be in the vanilla state if it's made visible again later.
3083  * Controllers which may be depended upon should provide ->css_reset() for
3084  * this purpose.
3085  */
3086 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3087 {
3088 	struct cgroup *dsct;
3089 	struct cgroup_subsys_state *d_css;
3090 	struct cgroup_subsys *ss;
3091 	int ssid;
3092 
3093 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3094 		for_each_subsys(ss, ssid) {
3095 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3096 
3097 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3098 
3099 			if (!css)
3100 				continue;
3101 
3102 			if (css->parent &&
3103 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3104 				kill_css(css);
3105 			} else if (!css_visible(css)) {
3106 				css_clear_dir(css);
3107 				if (ss->css_reset)
3108 					ss->css_reset(css);
3109 			}
3110 		}
3111 	}
3112 }
3113 
3114 /**
3115  * cgroup_apply_control - apply control mask updates to the subtree
3116  * @cgrp: root of the target subtree
3117  *
3118  * subsystems can be enabled and disabled in a subtree using the following
3119  * steps.
3120  *
3121  * 1. Call cgroup_save_control() to stash the current state.
3122  * 2. Update ->subtree_control masks in the subtree as desired.
3123  * 3. Call cgroup_apply_control() to apply the changes.
3124  * 4. Optionally perform other related operations.
3125  * 5. Call cgroup_finalize_control() to finish up.
3126  *
3127  * This function implements step 3 and propagates the mask changes
3128  * throughout @cgrp's subtree, updates csses accordingly and perform
3129  * process migrations.
3130  */
3131 static int cgroup_apply_control(struct cgroup *cgrp)
3132 {
3133 	int ret;
3134 
3135 	cgroup_propagate_control(cgrp);
3136 
3137 	ret = cgroup_apply_control_enable(cgrp);
3138 	if (ret)
3139 		return ret;
3140 
3141 	/*
3142 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3143 	 * making the following cgroup_update_dfl_csses() properly update
3144 	 * css associations of all tasks in the subtree.
3145 	 */
3146 	ret = cgroup_update_dfl_csses(cgrp);
3147 	if (ret)
3148 		return ret;
3149 
3150 	return 0;
3151 }
3152 
3153 /**
3154  * cgroup_finalize_control - finalize control mask update
3155  * @cgrp: root of the target subtree
3156  * @ret: the result of the update
3157  *
3158  * Finalize control mask update.  See cgroup_apply_control() for more info.
3159  */
3160 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3161 {
3162 	if (ret) {
3163 		cgroup_restore_control(cgrp);
3164 		cgroup_propagate_control(cgrp);
3165 	}
3166 
3167 	cgroup_apply_control_disable(cgrp);
3168 }
3169 
3170 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3171 {
3172 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3173 
3174 	/* if nothing is getting enabled, nothing to worry about */
3175 	if (!enable)
3176 		return 0;
3177 
3178 	/* can @cgrp host any resources? */
3179 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3180 		return -EOPNOTSUPP;
3181 
3182 	/* mixables don't care */
3183 	if (cgroup_is_mixable(cgrp))
3184 		return 0;
3185 
3186 	if (domain_enable) {
3187 		/* can't enable domain controllers inside a thread subtree */
3188 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3189 			return -EOPNOTSUPP;
3190 	} else {
3191 		/*
3192 		 * Threaded controllers can handle internal competitions
3193 		 * and are always allowed inside a (prospective) thread
3194 		 * subtree.
3195 		 */
3196 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3197 			return 0;
3198 	}
3199 
3200 	/*
3201 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3202 	 * child cgroups competing against tasks.
3203 	 */
3204 	if (cgroup_has_tasks(cgrp))
3205 		return -EBUSY;
3206 
3207 	return 0;
3208 }
3209 
3210 /* change the enabled child controllers for a cgroup in the default hierarchy */
3211 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3212 					    char *buf, size_t nbytes,
3213 					    loff_t off)
3214 {
3215 	u16 enable = 0, disable = 0;
3216 	struct cgroup *cgrp, *child;
3217 	struct cgroup_subsys *ss;
3218 	char *tok;
3219 	int ssid, ret;
3220 
3221 	/*
3222 	 * Parse input - space separated list of subsystem names prefixed
3223 	 * with either + or -.
3224 	 */
3225 	buf = strstrip(buf);
3226 	while ((tok = strsep(&buf, " "))) {
3227 		if (tok[0] == '\0')
3228 			continue;
3229 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3230 			if (!cgroup_ssid_enabled(ssid) ||
3231 			    strcmp(tok + 1, ss->name))
3232 				continue;
3233 
3234 			if (*tok == '+') {
3235 				enable |= 1 << ssid;
3236 				disable &= ~(1 << ssid);
3237 			} else if (*tok == '-') {
3238 				disable |= 1 << ssid;
3239 				enable &= ~(1 << ssid);
3240 			} else {
3241 				return -EINVAL;
3242 			}
3243 			break;
3244 		} while_each_subsys_mask();
3245 		if (ssid == CGROUP_SUBSYS_COUNT)
3246 			return -EINVAL;
3247 	}
3248 
3249 	cgrp = cgroup_kn_lock_live(of->kn, true);
3250 	if (!cgrp)
3251 		return -ENODEV;
3252 
3253 	for_each_subsys(ss, ssid) {
3254 		if (enable & (1 << ssid)) {
3255 			if (cgrp->subtree_control & (1 << ssid)) {
3256 				enable &= ~(1 << ssid);
3257 				continue;
3258 			}
3259 
3260 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3261 				ret = -ENOENT;
3262 				goto out_unlock;
3263 			}
3264 		} else if (disable & (1 << ssid)) {
3265 			if (!(cgrp->subtree_control & (1 << ssid))) {
3266 				disable &= ~(1 << ssid);
3267 				continue;
3268 			}
3269 
3270 			/* a child has it enabled? */
3271 			cgroup_for_each_live_child(child, cgrp) {
3272 				if (child->subtree_control & (1 << ssid)) {
3273 					ret = -EBUSY;
3274 					goto out_unlock;
3275 				}
3276 			}
3277 		}
3278 	}
3279 
3280 	if (!enable && !disable) {
3281 		ret = 0;
3282 		goto out_unlock;
3283 	}
3284 
3285 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3286 	if (ret)
3287 		goto out_unlock;
3288 
3289 	/* save and update control masks and prepare csses */
3290 	cgroup_save_control(cgrp);
3291 
3292 	cgrp->subtree_control |= enable;
3293 	cgrp->subtree_control &= ~disable;
3294 
3295 	ret = cgroup_apply_control(cgrp);
3296 	cgroup_finalize_control(cgrp, ret);
3297 	if (ret)
3298 		goto out_unlock;
3299 
3300 	kernfs_activate(cgrp->kn);
3301 out_unlock:
3302 	cgroup_kn_unlock(of->kn);
3303 	return ret ?: nbytes;
3304 }
3305 
3306 /**
3307  * cgroup_enable_threaded - make @cgrp threaded
3308  * @cgrp: the target cgroup
3309  *
3310  * Called when "threaded" is written to the cgroup.type interface file and
3311  * tries to make @cgrp threaded and join the parent's resource domain.
3312  * This function is never called on the root cgroup as cgroup.type doesn't
3313  * exist on it.
3314  */
3315 static int cgroup_enable_threaded(struct cgroup *cgrp)
3316 {
3317 	struct cgroup *parent = cgroup_parent(cgrp);
3318 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3319 	struct cgroup *dsct;
3320 	struct cgroup_subsys_state *d_css;
3321 	int ret;
3322 
3323 	lockdep_assert_held(&cgroup_mutex);
3324 
3325 	/* noop if already threaded */
3326 	if (cgroup_is_threaded(cgrp))
3327 		return 0;
3328 
3329 	/*
3330 	 * If @cgroup is populated or has domain controllers enabled, it
3331 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3332 	 * test can catch the same conditions, that's only when @parent is
3333 	 * not mixable, so let's check it explicitly.
3334 	 */
3335 	if (cgroup_is_populated(cgrp) ||
3336 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3337 		return -EOPNOTSUPP;
3338 
3339 	/* we're joining the parent's domain, ensure its validity */
3340 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3341 	    !cgroup_can_be_thread_root(dom_cgrp))
3342 		return -EOPNOTSUPP;
3343 
3344 	/*
3345 	 * The following shouldn't cause actual migrations and should
3346 	 * always succeed.
3347 	 */
3348 	cgroup_save_control(cgrp);
3349 
3350 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3351 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3352 			dsct->dom_cgrp = dom_cgrp;
3353 
3354 	ret = cgroup_apply_control(cgrp);
3355 	if (!ret)
3356 		parent->nr_threaded_children++;
3357 
3358 	cgroup_finalize_control(cgrp, ret);
3359 	return ret;
3360 }
3361 
3362 static int cgroup_type_show(struct seq_file *seq, void *v)
3363 {
3364 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3365 
3366 	if (cgroup_is_threaded(cgrp))
3367 		seq_puts(seq, "threaded\n");
3368 	else if (!cgroup_is_valid_domain(cgrp))
3369 		seq_puts(seq, "domain invalid\n");
3370 	else if (cgroup_is_thread_root(cgrp))
3371 		seq_puts(seq, "domain threaded\n");
3372 	else
3373 		seq_puts(seq, "domain\n");
3374 
3375 	return 0;
3376 }
3377 
3378 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3379 				 size_t nbytes, loff_t off)
3380 {
3381 	struct cgroup *cgrp;
3382 	int ret;
3383 
3384 	/* only switching to threaded mode is supported */
3385 	if (strcmp(strstrip(buf), "threaded"))
3386 		return -EINVAL;
3387 
3388 	cgrp = cgroup_kn_lock_live(of->kn, false);
3389 	if (!cgrp)
3390 		return -ENOENT;
3391 
3392 	/* threaded can only be enabled */
3393 	ret = cgroup_enable_threaded(cgrp);
3394 
3395 	cgroup_kn_unlock(of->kn);
3396 	return ret ?: nbytes;
3397 }
3398 
3399 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3400 {
3401 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3402 	int descendants = READ_ONCE(cgrp->max_descendants);
3403 
3404 	if (descendants == INT_MAX)
3405 		seq_puts(seq, "max\n");
3406 	else
3407 		seq_printf(seq, "%d\n", descendants);
3408 
3409 	return 0;
3410 }
3411 
3412 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3413 					   char *buf, size_t nbytes, loff_t off)
3414 {
3415 	struct cgroup *cgrp;
3416 	int descendants;
3417 	ssize_t ret;
3418 
3419 	buf = strstrip(buf);
3420 	if (!strcmp(buf, "max")) {
3421 		descendants = INT_MAX;
3422 	} else {
3423 		ret = kstrtoint(buf, 0, &descendants);
3424 		if (ret)
3425 			return ret;
3426 	}
3427 
3428 	if (descendants < 0)
3429 		return -ERANGE;
3430 
3431 	cgrp = cgroup_kn_lock_live(of->kn, false);
3432 	if (!cgrp)
3433 		return -ENOENT;
3434 
3435 	cgrp->max_descendants = descendants;
3436 
3437 	cgroup_kn_unlock(of->kn);
3438 
3439 	return nbytes;
3440 }
3441 
3442 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3443 {
3444 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3445 	int depth = READ_ONCE(cgrp->max_depth);
3446 
3447 	if (depth == INT_MAX)
3448 		seq_puts(seq, "max\n");
3449 	else
3450 		seq_printf(seq, "%d\n", depth);
3451 
3452 	return 0;
3453 }
3454 
3455 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3456 				      char *buf, size_t nbytes, loff_t off)
3457 {
3458 	struct cgroup *cgrp;
3459 	ssize_t ret;
3460 	int depth;
3461 
3462 	buf = strstrip(buf);
3463 	if (!strcmp(buf, "max")) {
3464 		depth = INT_MAX;
3465 	} else {
3466 		ret = kstrtoint(buf, 0, &depth);
3467 		if (ret)
3468 			return ret;
3469 	}
3470 
3471 	if (depth < 0)
3472 		return -ERANGE;
3473 
3474 	cgrp = cgroup_kn_lock_live(of->kn, false);
3475 	if (!cgrp)
3476 		return -ENOENT;
3477 
3478 	cgrp->max_depth = depth;
3479 
3480 	cgroup_kn_unlock(of->kn);
3481 
3482 	return nbytes;
3483 }
3484 
3485 static int cgroup_events_show(struct seq_file *seq, void *v)
3486 {
3487 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3488 
3489 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3490 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3491 
3492 	return 0;
3493 }
3494 
3495 static int cgroup_stat_show(struct seq_file *seq, void *v)
3496 {
3497 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3498 
3499 	seq_printf(seq, "nr_descendants %d\n",
3500 		   cgroup->nr_descendants);
3501 	seq_printf(seq, "nr_dying_descendants %d\n",
3502 		   cgroup->nr_dying_descendants);
3503 
3504 	return 0;
3505 }
3506 
3507 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3508 						 struct cgroup *cgrp, int ssid)
3509 {
3510 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3511 	struct cgroup_subsys_state *css;
3512 	int ret;
3513 
3514 	if (!ss->css_extra_stat_show)
3515 		return 0;
3516 
3517 	css = cgroup_tryget_css(cgrp, ss);
3518 	if (!css)
3519 		return 0;
3520 
3521 	ret = ss->css_extra_stat_show(seq, css);
3522 	css_put(css);
3523 	return ret;
3524 }
3525 
3526 static int cpu_stat_show(struct seq_file *seq, void *v)
3527 {
3528 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3529 	int ret = 0;
3530 
3531 	cgroup_base_stat_cputime_show(seq);
3532 #ifdef CONFIG_CGROUP_SCHED
3533 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3534 #endif
3535 	return ret;
3536 }
3537 
3538 #ifdef CONFIG_PSI
3539 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3540 {
3541 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3542 }
3543 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3544 {
3545 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3546 }
3547 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3548 {
3549 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3550 }
3551 #endif
3552 
3553 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3554 {
3555 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3556 
3557 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3558 
3559 	return 0;
3560 }
3561 
3562 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3563 				   char *buf, size_t nbytes, loff_t off)
3564 {
3565 	struct cgroup *cgrp;
3566 	ssize_t ret;
3567 	int freeze;
3568 
3569 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3570 	if (ret)
3571 		return ret;
3572 
3573 	if (freeze < 0 || freeze > 1)
3574 		return -ERANGE;
3575 
3576 	cgrp = cgroup_kn_lock_live(of->kn, false);
3577 	if (!cgrp)
3578 		return -ENOENT;
3579 
3580 	cgroup_freeze(cgrp, freeze);
3581 
3582 	cgroup_kn_unlock(of->kn);
3583 
3584 	return nbytes;
3585 }
3586 
3587 static int cgroup_file_open(struct kernfs_open_file *of)
3588 {
3589 	struct cftype *cft = of->kn->priv;
3590 
3591 	if (cft->open)
3592 		return cft->open(of);
3593 	return 0;
3594 }
3595 
3596 static void cgroup_file_release(struct kernfs_open_file *of)
3597 {
3598 	struct cftype *cft = of->kn->priv;
3599 
3600 	if (cft->release)
3601 		cft->release(of);
3602 }
3603 
3604 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3605 				 size_t nbytes, loff_t off)
3606 {
3607 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3608 	struct cgroup *cgrp = of->kn->parent->priv;
3609 	struct cftype *cft = of->kn->priv;
3610 	struct cgroup_subsys_state *css;
3611 	int ret;
3612 
3613 	/*
3614 	 * If namespaces are delegation boundaries, disallow writes to
3615 	 * files in an non-init namespace root from inside the namespace
3616 	 * except for the files explicitly marked delegatable -
3617 	 * cgroup.procs and cgroup.subtree_control.
3618 	 */
3619 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3620 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3621 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3622 		return -EPERM;
3623 
3624 	if (cft->write)
3625 		return cft->write(of, buf, nbytes, off);
3626 
3627 	/*
3628 	 * kernfs guarantees that a file isn't deleted with operations in
3629 	 * flight, which means that the matching css is and stays alive and
3630 	 * doesn't need to be pinned.  The RCU locking is not necessary
3631 	 * either.  It's just for the convenience of using cgroup_css().
3632 	 */
3633 	rcu_read_lock();
3634 	css = cgroup_css(cgrp, cft->ss);
3635 	rcu_read_unlock();
3636 
3637 	if (cft->write_u64) {
3638 		unsigned long long v;
3639 		ret = kstrtoull(buf, 0, &v);
3640 		if (!ret)
3641 			ret = cft->write_u64(css, cft, v);
3642 	} else if (cft->write_s64) {
3643 		long long v;
3644 		ret = kstrtoll(buf, 0, &v);
3645 		if (!ret)
3646 			ret = cft->write_s64(css, cft, v);
3647 	} else {
3648 		ret = -EINVAL;
3649 	}
3650 
3651 	return ret ?: nbytes;
3652 }
3653 
3654 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3655 {
3656 	struct cftype *cft = of->kn->priv;
3657 
3658 	if (cft->poll)
3659 		return cft->poll(of, pt);
3660 
3661 	return kernfs_generic_poll(of, pt);
3662 }
3663 
3664 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3665 {
3666 	return seq_cft(seq)->seq_start(seq, ppos);
3667 }
3668 
3669 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3670 {
3671 	return seq_cft(seq)->seq_next(seq, v, ppos);
3672 }
3673 
3674 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3675 {
3676 	if (seq_cft(seq)->seq_stop)
3677 		seq_cft(seq)->seq_stop(seq, v);
3678 }
3679 
3680 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3681 {
3682 	struct cftype *cft = seq_cft(m);
3683 	struct cgroup_subsys_state *css = seq_css(m);
3684 
3685 	if (cft->seq_show)
3686 		return cft->seq_show(m, arg);
3687 
3688 	if (cft->read_u64)
3689 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3690 	else if (cft->read_s64)
3691 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3692 	else
3693 		return -EINVAL;
3694 	return 0;
3695 }
3696 
3697 static struct kernfs_ops cgroup_kf_single_ops = {
3698 	.atomic_write_len	= PAGE_SIZE,
3699 	.open			= cgroup_file_open,
3700 	.release		= cgroup_file_release,
3701 	.write			= cgroup_file_write,
3702 	.poll			= cgroup_file_poll,
3703 	.seq_show		= cgroup_seqfile_show,
3704 };
3705 
3706 static struct kernfs_ops cgroup_kf_ops = {
3707 	.atomic_write_len	= PAGE_SIZE,
3708 	.open			= cgroup_file_open,
3709 	.release		= cgroup_file_release,
3710 	.write			= cgroup_file_write,
3711 	.poll			= cgroup_file_poll,
3712 	.seq_start		= cgroup_seqfile_start,
3713 	.seq_next		= cgroup_seqfile_next,
3714 	.seq_stop		= cgroup_seqfile_stop,
3715 	.seq_show		= cgroup_seqfile_show,
3716 };
3717 
3718 /* set uid and gid of cgroup dirs and files to that of the creator */
3719 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3720 {
3721 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3722 			       .ia_uid = current_fsuid(),
3723 			       .ia_gid = current_fsgid(), };
3724 
3725 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3726 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3727 		return 0;
3728 
3729 	return kernfs_setattr(kn, &iattr);
3730 }
3731 
3732 static void cgroup_file_notify_timer(struct timer_list *timer)
3733 {
3734 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3735 					notify_timer));
3736 }
3737 
3738 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3739 			   struct cftype *cft)
3740 {
3741 	char name[CGROUP_FILE_NAME_MAX];
3742 	struct kernfs_node *kn;
3743 	struct lock_class_key *key = NULL;
3744 	int ret;
3745 
3746 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3747 	key = &cft->lockdep_key;
3748 #endif
3749 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3750 				  cgroup_file_mode(cft),
3751 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3752 				  0, cft->kf_ops, cft,
3753 				  NULL, key);
3754 	if (IS_ERR(kn))
3755 		return PTR_ERR(kn);
3756 
3757 	ret = cgroup_kn_set_ugid(kn);
3758 	if (ret) {
3759 		kernfs_remove(kn);
3760 		return ret;
3761 	}
3762 
3763 	if (cft->file_offset) {
3764 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3765 
3766 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3767 
3768 		spin_lock_irq(&cgroup_file_kn_lock);
3769 		cfile->kn = kn;
3770 		spin_unlock_irq(&cgroup_file_kn_lock);
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 /**
3777  * cgroup_addrm_files - add or remove files to a cgroup directory
3778  * @css: the target css
3779  * @cgrp: the target cgroup (usually css->cgroup)
3780  * @cfts: array of cftypes to be added
3781  * @is_add: whether to add or remove
3782  *
3783  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3784  * For removals, this function never fails.
3785  */
3786 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3787 			      struct cgroup *cgrp, struct cftype cfts[],
3788 			      bool is_add)
3789 {
3790 	struct cftype *cft, *cft_end = NULL;
3791 	int ret = 0;
3792 
3793 	lockdep_assert_held(&cgroup_mutex);
3794 
3795 restart:
3796 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3797 		/* does cft->flags tell us to skip this file on @cgrp? */
3798 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3799 			continue;
3800 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3801 			continue;
3802 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3803 			continue;
3804 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3805 			continue;
3806 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3807 			continue;
3808 		if (is_add) {
3809 			ret = cgroup_add_file(css, cgrp, cft);
3810 			if (ret) {
3811 				pr_warn("%s: failed to add %s, err=%d\n",
3812 					__func__, cft->name, ret);
3813 				cft_end = cft;
3814 				is_add = false;
3815 				goto restart;
3816 			}
3817 		} else {
3818 			cgroup_rm_file(cgrp, cft);
3819 		}
3820 	}
3821 	return ret;
3822 }
3823 
3824 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3825 {
3826 	struct cgroup_subsys *ss = cfts[0].ss;
3827 	struct cgroup *root = &ss->root->cgrp;
3828 	struct cgroup_subsys_state *css;
3829 	int ret = 0;
3830 
3831 	lockdep_assert_held(&cgroup_mutex);
3832 
3833 	/* add/rm files for all cgroups created before */
3834 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3835 		struct cgroup *cgrp = css->cgroup;
3836 
3837 		if (!(css->flags & CSS_VISIBLE))
3838 			continue;
3839 
3840 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3841 		if (ret)
3842 			break;
3843 	}
3844 
3845 	if (is_add && !ret)
3846 		kernfs_activate(root->kn);
3847 	return ret;
3848 }
3849 
3850 static void cgroup_exit_cftypes(struct cftype *cfts)
3851 {
3852 	struct cftype *cft;
3853 
3854 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3855 		/* free copy for custom atomic_write_len, see init_cftypes() */
3856 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3857 			kfree(cft->kf_ops);
3858 		cft->kf_ops = NULL;
3859 		cft->ss = NULL;
3860 
3861 		/* revert flags set by cgroup core while adding @cfts */
3862 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3863 	}
3864 }
3865 
3866 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3867 {
3868 	struct cftype *cft;
3869 
3870 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3871 		struct kernfs_ops *kf_ops;
3872 
3873 		WARN_ON(cft->ss || cft->kf_ops);
3874 
3875 		if (cft->seq_start)
3876 			kf_ops = &cgroup_kf_ops;
3877 		else
3878 			kf_ops = &cgroup_kf_single_ops;
3879 
3880 		/*
3881 		 * Ugh... if @cft wants a custom max_write_len, we need to
3882 		 * make a copy of kf_ops to set its atomic_write_len.
3883 		 */
3884 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3885 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3886 			if (!kf_ops) {
3887 				cgroup_exit_cftypes(cfts);
3888 				return -ENOMEM;
3889 			}
3890 			kf_ops->atomic_write_len = cft->max_write_len;
3891 		}
3892 
3893 		cft->kf_ops = kf_ops;
3894 		cft->ss = ss;
3895 	}
3896 
3897 	return 0;
3898 }
3899 
3900 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3901 {
3902 	lockdep_assert_held(&cgroup_mutex);
3903 
3904 	if (!cfts || !cfts[0].ss)
3905 		return -ENOENT;
3906 
3907 	list_del(&cfts->node);
3908 	cgroup_apply_cftypes(cfts, false);
3909 	cgroup_exit_cftypes(cfts);
3910 	return 0;
3911 }
3912 
3913 /**
3914  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3915  * @cfts: zero-length name terminated array of cftypes
3916  *
3917  * Unregister @cfts.  Files described by @cfts are removed from all
3918  * existing cgroups and all future cgroups won't have them either.  This
3919  * function can be called anytime whether @cfts' subsys is attached or not.
3920  *
3921  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3922  * registered.
3923  */
3924 int cgroup_rm_cftypes(struct cftype *cfts)
3925 {
3926 	int ret;
3927 
3928 	mutex_lock(&cgroup_mutex);
3929 	ret = cgroup_rm_cftypes_locked(cfts);
3930 	mutex_unlock(&cgroup_mutex);
3931 	return ret;
3932 }
3933 
3934 /**
3935  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3936  * @ss: target cgroup subsystem
3937  * @cfts: zero-length name terminated array of cftypes
3938  *
3939  * Register @cfts to @ss.  Files described by @cfts are created for all
3940  * existing cgroups to which @ss is attached and all future cgroups will
3941  * have them too.  This function can be called anytime whether @ss is
3942  * attached or not.
3943  *
3944  * Returns 0 on successful registration, -errno on failure.  Note that this
3945  * function currently returns 0 as long as @cfts registration is successful
3946  * even if some file creation attempts on existing cgroups fail.
3947  */
3948 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3949 {
3950 	int ret;
3951 
3952 	if (!cgroup_ssid_enabled(ss->id))
3953 		return 0;
3954 
3955 	if (!cfts || cfts[0].name[0] == '\0')
3956 		return 0;
3957 
3958 	ret = cgroup_init_cftypes(ss, cfts);
3959 	if (ret)
3960 		return ret;
3961 
3962 	mutex_lock(&cgroup_mutex);
3963 
3964 	list_add_tail(&cfts->node, &ss->cfts);
3965 	ret = cgroup_apply_cftypes(cfts, true);
3966 	if (ret)
3967 		cgroup_rm_cftypes_locked(cfts);
3968 
3969 	mutex_unlock(&cgroup_mutex);
3970 	return ret;
3971 }
3972 
3973 /**
3974  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3975  * @ss: target cgroup subsystem
3976  * @cfts: zero-length name terminated array of cftypes
3977  *
3978  * Similar to cgroup_add_cftypes() but the added files are only used for
3979  * the default hierarchy.
3980  */
3981 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3982 {
3983 	struct cftype *cft;
3984 
3985 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3986 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3987 	return cgroup_add_cftypes(ss, cfts);
3988 }
3989 
3990 /**
3991  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3992  * @ss: target cgroup subsystem
3993  * @cfts: zero-length name terminated array of cftypes
3994  *
3995  * Similar to cgroup_add_cftypes() but the added files are only used for
3996  * the legacy hierarchies.
3997  */
3998 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3999 {
4000 	struct cftype *cft;
4001 
4002 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4003 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4004 	return cgroup_add_cftypes(ss, cfts);
4005 }
4006 
4007 /**
4008  * cgroup_file_notify - generate a file modified event for a cgroup_file
4009  * @cfile: target cgroup_file
4010  *
4011  * @cfile must have been obtained by setting cftype->file_offset.
4012  */
4013 void cgroup_file_notify(struct cgroup_file *cfile)
4014 {
4015 	unsigned long flags;
4016 
4017 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4018 	if (cfile->kn) {
4019 		unsigned long last = cfile->notified_at;
4020 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4021 
4022 		if (time_in_range(jiffies, last, next)) {
4023 			timer_reduce(&cfile->notify_timer, next);
4024 		} else {
4025 			kernfs_notify(cfile->kn);
4026 			cfile->notified_at = jiffies;
4027 		}
4028 	}
4029 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4030 }
4031 
4032 /**
4033  * css_next_child - find the next child of a given css
4034  * @pos: the current position (%NULL to initiate traversal)
4035  * @parent: css whose children to walk
4036  *
4037  * This function returns the next child of @parent and should be called
4038  * under either cgroup_mutex or RCU read lock.  The only requirement is
4039  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4040  * be returned regardless of their states.
4041  *
4042  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4043  * css which finished ->css_online() is guaranteed to be visible in the
4044  * future iterations and will stay visible until the last reference is put.
4045  * A css which hasn't finished ->css_online() or already finished
4046  * ->css_offline() may show up during traversal.  It's each subsystem's
4047  * responsibility to synchronize against on/offlining.
4048  */
4049 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4050 					   struct cgroup_subsys_state *parent)
4051 {
4052 	struct cgroup_subsys_state *next;
4053 
4054 	cgroup_assert_mutex_or_rcu_locked();
4055 
4056 	/*
4057 	 * @pos could already have been unlinked from the sibling list.
4058 	 * Once a cgroup is removed, its ->sibling.next is no longer
4059 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4060 	 * @pos is taken off list, at which time its next pointer is valid,
4061 	 * and, as releases are serialized, the one pointed to by the next
4062 	 * pointer is guaranteed to not have started release yet.  This
4063 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4064 	 * critical section, the one pointed to by its next pointer is
4065 	 * guaranteed to not have finished its RCU grace period even if we
4066 	 * have dropped rcu_read_lock() inbetween iterations.
4067 	 *
4068 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4069 	 * dereferenced; however, as each css is given a monotonically
4070 	 * increasing unique serial number and always appended to the
4071 	 * sibling list, the next one can be found by walking the parent's
4072 	 * children until the first css with higher serial number than
4073 	 * @pos's.  While this path can be slower, it happens iff iteration
4074 	 * races against release and the race window is very small.
4075 	 */
4076 	if (!pos) {
4077 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4078 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4079 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4080 	} else {
4081 		list_for_each_entry_rcu(next, &parent->children, sibling)
4082 			if (next->serial_nr > pos->serial_nr)
4083 				break;
4084 	}
4085 
4086 	/*
4087 	 * @next, if not pointing to the head, can be dereferenced and is
4088 	 * the next sibling.
4089 	 */
4090 	if (&next->sibling != &parent->children)
4091 		return next;
4092 	return NULL;
4093 }
4094 
4095 /**
4096  * css_next_descendant_pre - find the next descendant for pre-order walk
4097  * @pos: the current position (%NULL to initiate traversal)
4098  * @root: css whose descendants to walk
4099  *
4100  * To be used by css_for_each_descendant_pre().  Find the next descendant
4101  * to visit for pre-order traversal of @root's descendants.  @root is
4102  * included in the iteration and the first node to be visited.
4103  *
4104  * While this function requires cgroup_mutex or RCU read locking, it
4105  * doesn't require the whole traversal to be contained in a single critical
4106  * section.  This function will return the correct next descendant as long
4107  * as both @pos and @root are accessible and @pos is a descendant of @root.
4108  *
4109  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4110  * css which finished ->css_online() is guaranteed to be visible in the
4111  * future iterations and will stay visible until the last reference is put.
4112  * A css which hasn't finished ->css_online() or already finished
4113  * ->css_offline() may show up during traversal.  It's each subsystem's
4114  * responsibility to synchronize against on/offlining.
4115  */
4116 struct cgroup_subsys_state *
4117 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4118 			struct cgroup_subsys_state *root)
4119 {
4120 	struct cgroup_subsys_state *next;
4121 
4122 	cgroup_assert_mutex_or_rcu_locked();
4123 
4124 	/* if first iteration, visit @root */
4125 	if (!pos)
4126 		return root;
4127 
4128 	/* visit the first child if exists */
4129 	next = css_next_child(NULL, pos);
4130 	if (next)
4131 		return next;
4132 
4133 	/* no child, visit my or the closest ancestor's next sibling */
4134 	while (pos != root) {
4135 		next = css_next_child(pos, pos->parent);
4136 		if (next)
4137 			return next;
4138 		pos = pos->parent;
4139 	}
4140 
4141 	return NULL;
4142 }
4143 
4144 /**
4145  * css_rightmost_descendant - return the rightmost descendant of a css
4146  * @pos: css of interest
4147  *
4148  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4149  * is returned.  This can be used during pre-order traversal to skip
4150  * subtree of @pos.
4151  *
4152  * While this function requires cgroup_mutex or RCU read locking, it
4153  * doesn't require the whole traversal to be contained in a single critical
4154  * section.  This function will return the correct rightmost descendant as
4155  * long as @pos is accessible.
4156  */
4157 struct cgroup_subsys_state *
4158 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4159 {
4160 	struct cgroup_subsys_state *last, *tmp;
4161 
4162 	cgroup_assert_mutex_or_rcu_locked();
4163 
4164 	do {
4165 		last = pos;
4166 		/* ->prev isn't RCU safe, walk ->next till the end */
4167 		pos = NULL;
4168 		css_for_each_child(tmp, last)
4169 			pos = tmp;
4170 	} while (pos);
4171 
4172 	return last;
4173 }
4174 
4175 static struct cgroup_subsys_state *
4176 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4177 {
4178 	struct cgroup_subsys_state *last;
4179 
4180 	do {
4181 		last = pos;
4182 		pos = css_next_child(NULL, pos);
4183 	} while (pos);
4184 
4185 	return last;
4186 }
4187 
4188 /**
4189  * css_next_descendant_post - find the next descendant for post-order walk
4190  * @pos: the current position (%NULL to initiate traversal)
4191  * @root: css whose descendants to walk
4192  *
4193  * To be used by css_for_each_descendant_post().  Find the next descendant
4194  * to visit for post-order traversal of @root's descendants.  @root is
4195  * included in the iteration and the last node to be visited.
4196  *
4197  * While this function requires cgroup_mutex or RCU read locking, it
4198  * doesn't require the whole traversal to be contained in a single critical
4199  * section.  This function will return the correct next descendant as long
4200  * as both @pos and @cgroup are accessible and @pos is a descendant of
4201  * @cgroup.
4202  *
4203  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4204  * css which finished ->css_online() is guaranteed to be visible in the
4205  * future iterations and will stay visible until the last reference is put.
4206  * A css which hasn't finished ->css_online() or already finished
4207  * ->css_offline() may show up during traversal.  It's each subsystem's
4208  * responsibility to synchronize against on/offlining.
4209  */
4210 struct cgroup_subsys_state *
4211 css_next_descendant_post(struct cgroup_subsys_state *pos,
4212 			 struct cgroup_subsys_state *root)
4213 {
4214 	struct cgroup_subsys_state *next;
4215 
4216 	cgroup_assert_mutex_or_rcu_locked();
4217 
4218 	/* if first iteration, visit leftmost descendant which may be @root */
4219 	if (!pos)
4220 		return css_leftmost_descendant(root);
4221 
4222 	/* if we visited @root, we're done */
4223 	if (pos == root)
4224 		return NULL;
4225 
4226 	/* if there's an unvisited sibling, visit its leftmost descendant */
4227 	next = css_next_child(pos, pos->parent);
4228 	if (next)
4229 		return css_leftmost_descendant(next);
4230 
4231 	/* no sibling left, visit parent */
4232 	return pos->parent;
4233 }
4234 
4235 /**
4236  * css_has_online_children - does a css have online children
4237  * @css: the target css
4238  *
4239  * Returns %true if @css has any online children; otherwise, %false.  This
4240  * function can be called from any context but the caller is responsible
4241  * for synchronizing against on/offlining as necessary.
4242  */
4243 bool css_has_online_children(struct cgroup_subsys_state *css)
4244 {
4245 	struct cgroup_subsys_state *child;
4246 	bool ret = false;
4247 
4248 	rcu_read_lock();
4249 	css_for_each_child(child, css) {
4250 		if (child->flags & CSS_ONLINE) {
4251 			ret = true;
4252 			break;
4253 		}
4254 	}
4255 	rcu_read_unlock();
4256 	return ret;
4257 }
4258 
4259 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4260 {
4261 	struct list_head *l;
4262 	struct cgrp_cset_link *link;
4263 	struct css_set *cset;
4264 
4265 	lockdep_assert_held(&css_set_lock);
4266 
4267 	/* find the next threaded cset */
4268 	if (it->tcset_pos) {
4269 		l = it->tcset_pos->next;
4270 
4271 		if (l != it->tcset_head) {
4272 			it->tcset_pos = l;
4273 			return container_of(l, struct css_set,
4274 					    threaded_csets_node);
4275 		}
4276 
4277 		it->tcset_pos = NULL;
4278 	}
4279 
4280 	/* find the next cset */
4281 	l = it->cset_pos;
4282 	l = l->next;
4283 	if (l == it->cset_head) {
4284 		it->cset_pos = NULL;
4285 		return NULL;
4286 	}
4287 
4288 	if (it->ss) {
4289 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4290 	} else {
4291 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4292 		cset = link->cset;
4293 	}
4294 
4295 	it->cset_pos = l;
4296 
4297 	/* initialize threaded css_set walking */
4298 	if (it->flags & CSS_TASK_ITER_THREADED) {
4299 		if (it->cur_dcset)
4300 			put_css_set_locked(it->cur_dcset);
4301 		it->cur_dcset = cset;
4302 		get_css_set(cset);
4303 
4304 		it->tcset_head = &cset->threaded_csets;
4305 		it->tcset_pos = &cset->threaded_csets;
4306 	}
4307 
4308 	return cset;
4309 }
4310 
4311 /**
4312  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4313  * @it: the iterator to advance
4314  *
4315  * Advance @it to the next css_set to walk.
4316  */
4317 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4318 {
4319 	struct css_set *cset;
4320 
4321 	lockdep_assert_held(&css_set_lock);
4322 
4323 	/* Advance to the next non-empty css_set */
4324 	do {
4325 		cset = css_task_iter_next_css_set(it);
4326 		if (!cset) {
4327 			it->task_pos = NULL;
4328 			return;
4329 		}
4330 	} while (!css_set_populated(cset));
4331 
4332 	if (!list_empty(&cset->tasks))
4333 		it->task_pos = cset->tasks.next;
4334 	else
4335 		it->task_pos = cset->mg_tasks.next;
4336 
4337 	it->tasks_head = &cset->tasks;
4338 	it->mg_tasks_head = &cset->mg_tasks;
4339 
4340 	/*
4341 	 * We don't keep css_sets locked across iteration steps and thus
4342 	 * need to take steps to ensure that iteration can be resumed after
4343 	 * the lock is re-acquired.  Iteration is performed at two levels -
4344 	 * css_sets and tasks in them.
4345 	 *
4346 	 * Once created, a css_set never leaves its cgroup lists, so a
4347 	 * pinned css_set is guaranteed to stay put and we can resume
4348 	 * iteration afterwards.
4349 	 *
4350 	 * Tasks may leave @cset across iteration steps.  This is resolved
4351 	 * by registering each iterator with the css_set currently being
4352 	 * walked and making css_set_move_task() advance iterators whose
4353 	 * next task is leaving.
4354 	 */
4355 	if (it->cur_cset) {
4356 		list_del(&it->iters_node);
4357 		put_css_set_locked(it->cur_cset);
4358 	}
4359 	get_css_set(cset);
4360 	it->cur_cset = cset;
4361 	list_add(&it->iters_node, &cset->task_iters);
4362 }
4363 
4364 static void css_task_iter_advance(struct css_task_iter *it)
4365 {
4366 	struct list_head *next;
4367 
4368 	lockdep_assert_held(&css_set_lock);
4369 repeat:
4370 	if (it->task_pos) {
4371 		/*
4372 		 * Advance iterator to find next entry.  cset->tasks is
4373 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4374 		 * we move onto the next cset.
4375 		 */
4376 		next = it->task_pos->next;
4377 
4378 		if (next == it->tasks_head)
4379 			next = it->mg_tasks_head->next;
4380 
4381 		if (next == it->mg_tasks_head)
4382 			css_task_iter_advance_css_set(it);
4383 		else
4384 			it->task_pos = next;
4385 	} else {
4386 		/* called from start, proceed to the first cset */
4387 		css_task_iter_advance_css_set(it);
4388 	}
4389 
4390 	/* if PROCS, skip over tasks which aren't group leaders */
4391 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4392 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4393 					    cg_list)))
4394 		goto repeat;
4395 }
4396 
4397 /**
4398  * css_task_iter_start - initiate task iteration
4399  * @css: the css to walk tasks of
4400  * @flags: CSS_TASK_ITER_* flags
4401  * @it: the task iterator to use
4402  *
4403  * Initiate iteration through the tasks of @css.  The caller can call
4404  * css_task_iter_next() to walk through the tasks until the function
4405  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4406  * called.
4407  */
4408 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4409 			 struct css_task_iter *it)
4410 {
4411 	/* no one should try to iterate before mounting cgroups */
4412 	WARN_ON_ONCE(!use_task_css_set_links);
4413 
4414 	memset(it, 0, sizeof(*it));
4415 
4416 	spin_lock_irq(&css_set_lock);
4417 
4418 	it->ss = css->ss;
4419 	it->flags = flags;
4420 
4421 	if (it->ss)
4422 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4423 	else
4424 		it->cset_pos = &css->cgroup->cset_links;
4425 
4426 	it->cset_head = it->cset_pos;
4427 
4428 	css_task_iter_advance(it);
4429 
4430 	spin_unlock_irq(&css_set_lock);
4431 }
4432 
4433 /**
4434  * css_task_iter_next - return the next task for the iterator
4435  * @it: the task iterator being iterated
4436  *
4437  * The "next" function for task iteration.  @it should have been
4438  * initialized via css_task_iter_start().  Returns NULL when the iteration
4439  * reaches the end.
4440  */
4441 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4442 {
4443 	if (it->cur_task) {
4444 		put_task_struct(it->cur_task);
4445 		it->cur_task = NULL;
4446 	}
4447 
4448 	spin_lock_irq(&css_set_lock);
4449 
4450 	if (it->task_pos) {
4451 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4452 					  cg_list);
4453 		get_task_struct(it->cur_task);
4454 		css_task_iter_advance(it);
4455 	}
4456 
4457 	spin_unlock_irq(&css_set_lock);
4458 
4459 	return it->cur_task;
4460 }
4461 
4462 /**
4463  * css_task_iter_end - finish task iteration
4464  * @it: the task iterator to finish
4465  *
4466  * Finish task iteration started by css_task_iter_start().
4467  */
4468 void css_task_iter_end(struct css_task_iter *it)
4469 {
4470 	if (it->cur_cset) {
4471 		spin_lock_irq(&css_set_lock);
4472 		list_del(&it->iters_node);
4473 		put_css_set_locked(it->cur_cset);
4474 		spin_unlock_irq(&css_set_lock);
4475 	}
4476 
4477 	if (it->cur_dcset)
4478 		put_css_set(it->cur_dcset);
4479 
4480 	if (it->cur_task)
4481 		put_task_struct(it->cur_task);
4482 }
4483 
4484 static void cgroup_procs_release(struct kernfs_open_file *of)
4485 {
4486 	if (of->priv) {
4487 		css_task_iter_end(of->priv);
4488 		kfree(of->priv);
4489 	}
4490 }
4491 
4492 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4493 {
4494 	struct kernfs_open_file *of = s->private;
4495 	struct css_task_iter *it = of->priv;
4496 
4497 	return css_task_iter_next(it);
4498 }
4499 
4500 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4501 				  unsigned int iter_flags)
4502 {
4503 	struct kernfs_open_file *of = s->private;
4504 	struct cgroup *cgrp = seq_css(s)->cgroup;
4505 	struct css_task_iter *it = of->priv;
4506 
4507 	/*
4508 	 * When a seq_file is seeked, it's always traversed sequentially
4509 	 * from position 0, so we can simply keep iterating on !0 *pos.
4510 	 */
4511 	if (!it) {
4512 		if (WARN_ON_ONCE((*pos)++))
4513 			return ERR_PTR(-EINVAL);
4514 
4515 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4516 		if (!it)
4517 			return ERR_PTR(-ENOMEM);
4518 		of->priv = it;
4519 		css_task_iter_start(&cgrp->self, iter_flags, it);
4520 	} else if (!(*pos)++) {
4521 		css_task_iter_end(it);
4522 		css_task_iter_start(&cgrp->self, iter_flags, it);
4523 	}
4524 
4525 	return cgroup_procs_next(s, NULL, NULL);
4526 }
4527 
4528 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4529 {
4530 	struct cgroup *cgrp = seq_css(s)->cgroup;
4531 
4532 	/*
4533 	 * All processes of a threaded subtree belong to the domain cgroup
4534 	 * of the subtree.  Only threads can be distributed across the
4535 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4536 	 * They're always empty anyway.
4537 	 */
4538 	if (cgroup_is_threaded(cgrp))
4539 		return ERR_PTR(-EOPNOTSUPP);
4540 
4541 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4542 					    CSS_TASK_ITER_THREADED);
4543 }
4544 
4545 static int cgroup_procs_show(struct seq_file *s, void *v)
4546 {
4547 	seq_printf(s, "%d\n", task_pid_vnr(v));
4548 	return 0;
4549 }
4550 
4551 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4552 					 struct cgroup *dst_cgrp,
4553 					 struct super_block *sb)
4554 {
4555 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4556 	struct cgroup *com_cgrp = src_cgrp;
4557 	struct inode *inode;
4558 	int ret;
4559 
4560 	lockdep_assert_held(&cgroup_mutex);
4561 
4562 	/* find the common ancestor */
4563 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4564 		com_cgrp = cgroup_parent(com_cgrp);
4565 
4566 	/* %current should be authorized to migrate to the common ancestor */
4567 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4568 	if (!inode)
4569 		return -ENOMEM;
4570 
4571 	ret = inode_permission(inode, MAY_WRITE);
4572 	iput(inode);
4573 	if (ret)
4574 		return ret;
4575 
4576 	/*
4577 	 * If namespaces are delegation boundaries, %current must be able
4578 	 * to see both source and destination cgroups from its namespace.
4579 	 */
4580 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4581 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4582 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4583 		return -ENOENT;
4584 
4585 	return 0;
4586 }
4587 
4588 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4589 				  char *buf, size_t nbytes, loff_t off)
4590 {
4591 	struct cgroup *src_cgrp, *dst_cgrp;
4592 	struct task_struct *task;
4593 	ssize_t ret;
4594 
4595 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4596 	if (!dst_cgrp)
4597 		return -ENODEV;
4598 
4599 	task = cgroup_procs_write_start(buf, true);
4600 	ret = PTR_ERR_OR_ZERO(task);
4601 	if (ret)
4602 		goto out_unlock;
4603 
4604 	/* find the source cgroup */
4605 	spin_lock_irq(&css_set_lock);
4606 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4607 	spin_unlock_irq(&css_set_lock);
4608 
4609 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4610 					    of->file->f_path.dentry->d_sb);
4611 	if (ret)
4612 		goto out_finish;
4613 
4614 	ret = cgroup_attach_task(dst_cgrp, task, true);
4615 
4616 out_finish:
4617 	cgroup_procs_write_finish(task);
4618 out_unlock:
4619 	cgroup_kn_unlock(of->kn);
4620 
4621 	return ret ?: nbytes;
4622 }
4623 
4624 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4625 {
4626 	return __cgroup_procs_start(s, pos, 0);
4627 }
4628 
4629 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4630 				    char *buf, size_t nbytes, loff_t off)
4631 {
4632 	struct cgroup *src_cgrp, *dst_cgrp;
4633 	struct task_struct *task;
4634 	ssize_t ret;
4635 
4636 	buf = strstrip(buf);
4637 
4638 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4639 	if (!dst_cgrp)
4640 		return -ENODEV;
4641 
4642 	task = cgroup_procs_write_start(buf, false);
4643 	ret = PTR_ERR_OR_ZERO(task);
4644 	if (ret)
4645 		goto out_unlock;
4646 
4647 	/* find the source cgroup */
4648 	spin_lock_irq(&css_set_lock);
4649 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4650 	spin_unlock_irq(&css_set_lock);
4651 
4652 	/* thread migrations follow the cgroup.procs delegation rule */
4653 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4654 					    of->file->f_path.dentry->d_sb);
4655 	if (ret)
4656 		goto out_finish;
4657 
4658 	/* and must be contained in the same domain */
4659 	ret = -EOPNOTSUPP;
4660 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4661 		goto out_finish;
4662 
4663 	ret = cgroup_attach_task(dst_cgrp, task, false);
4664 
4665 out_finish:
4666 	cgroup_procs_write_finish(task);
4667 out_unlock:
4668 	cgroup_kn_unlock(of->kn);
4669 
4670 	return ret ?: nbytes;
4671 }
4672 
4673 /* cgroup core interface files for the default hierarchy */
4674 static struct cftype cgroup_base_files[] = {
4675 	{
4676 		.name = "cgroup.type",
4677 		.flags = CFTYPE_NOT_ON_ROOT,
4678 		.seq_show = cgroup_type_show,
4679 		.write = cgroup_type_write,
4680 	},
4681 	{
4682 		.name = "cgroup.procs",
4683 		.flags = CFTYPE_NS_DELEGATABLE,
4684 		.file_offset = offsetof(struct cgroup, procs_file),
4685 		.release = cgroup_procs_release,
4686 		.seq_start = cgroup_procs_start,
4687 		.seq_next = cgroup_procs_next,
4688 		.seq_show = cgroup_procs_show,
4689 		.write = cgroup_procs_write,
4690 	},
4691 	{
4692 		.name = "cgroup.threads",
4693 		.flags = CFTYPE_NS_DELEGATABLE,
4694 		.release = cgroup_procs_release,
4695 		.seq_start = cgroup_threads_start,
4696 		.seq_next = cgroup_procs_next,
4697 		.seq_show = cgroup_procs_show,
4698 		.write = cgroup_threads_write,
4699 	},
4700 	{
4701 		.name = "cgroup.controllers",
4702 		.seq_show = cgroup_controllers_show,
4703 	},
4704 	{
4705 		.name = "cgroup.subtree_control",
4706 		.flags = CFTYPE_NS_DELEGATABLE,
4707 		.seq_show = cgroup_subtree_control_show,
4708 		.write = cgroup_subtree_control_write,
4709 	},
4710 	{
4711 		.name = "cgroup.events",
4712 		.flags = CFTYPE_NOT_ON_ROOT,
4713 		.file_offset = offsetof(struct cgroup, events_file),
4714 		.seq_show = cgroup_events_show,
4715 	},
4716 	{
4717 		.name = "cgroup.max.descendants",
4718 		.seq_show = cgroup_max_descendants_show,
4719 		.write = cgroup_max_descendants_write,
4720 	},
4721 	{
4722 		.name = "cgroup.max.depth",
4723 		.seq_show = cgroup_max_depth_show,
4724 		.write = cgroup_max_depth_write,
4725 	},
4726 	{
4727 		.name = "cgroup.stat",
4728 		.seq_show = cgroup_stat_show,
4729 	},
4730 	{
4731 		.name = "cgroup.freeze",
4732 		.flags = CFTYPE_NOT_ON_ROOT,
4733 		.seq_show = cgroup_freeze_show,
4734 		.write = cgroup_freeze_write,
4735 	},
4736 	{
4737 		.name = "cpu.stat",
4738 		.flags = CFTYPE_NOT_ON_ROOT,
4739 		.seq_show = cpu_stat_show,
4740 	},
4741 #ifdef CONFIG_PSI
4742 	{
4743 		.name = "io.pressure",
4744 		.flags = CFTYPE_NOT_ON_ROOT,
4745 		.seq_show = cgroup_io_pressure_show,
4746 	},
4747 	{
4748 		.name = "memory.pressure",
4749 		.flags = CFTYPE_NOT_ON_ROOT,
4750 		.seq_show = cgroup_memory_pressure_show,
4751 	},
4752 	{
4753 		.name = "cpu.pressure",
4754 		.flags = CFTYPE_NOT_ON_ROOT,
4755 		.seq_show = cgroup_cpu_pressure_show,
4756 	},
4757 #endif
4758 	{ }	/* terminate */
4759 };
4760 
4761 /*
4762  * css destruction is four-stage process.
4763  *
4764  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4765  *    Implemented in kill_css().
4766  *
4767  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4768  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4769  *    offlined by invoking offline_css().  After offlining, the base ref is
4770  *    put.  Implemented in css_killed_work_fn().
4771  *
4772  * 3. When the percpu_ref reaches zero, the only possible remaining
4773  *    accessors are inside RCU read sections.  css_release() schedules the
4774  *    RCU callback.
4775  *
4776  * 4. After the grace period, the css can be freed.  Implemented in
4777  *    css_free_work_fn().
4778  *
4779  * It is actually hairier because both step 2 and 4 require process context
4780  * and thus involve punting to css->destroy_work adding two additional
4781  * steps to the already complex sequence.
4782  */
4783 static void css_free_rwork_fn(struct work_struct *work)
4784 {
4785 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4786 				struct cgroup_subsys_state, destroy_rwork);
4787 	struct cgroup_subsys *ss = css->ss;
4788 	struct cgroup *cgrp = css->cgroup;
4789 
4790 	percpu_ref_exit(&css->refcnt);
4791 
4792 	if (ss) {
4793 		/* css free path */
4794 		struct cgroup_subsys_state *parent = css->parent;
4795 		int id = css->id;
4796 
4797 		ss->css_free(css);
4798 		cgroup_idr_remove(&ss->css_idr, id);
4799 		cgroup_put(cgrp);
4800 
4801 		if (parent)
4802 			css_put(parent);
4803 	} else {
4804 		/* cgroup free path */
4805 		atomic_dec(&cgrp->root->nr_cgrps);
4806 		cgroup1_pidlist_destroy_all(cgrp);
4807 		cancel_work_sync(&cgrp->release_agent_work);
4808 
4809 		if (cgroup_parent(cgrp)) {
4810 			/*
4811 			 * We get a ref to the parent, and put the ref when
4812 			 * this cgroup is being freed, so it's guaranteed
4813 			 * that the parent won't be destroyed before its
4814 			 * children.
4815 			 */
4816 			cgroup_put(cgroup_parent(cgrp));
4817 			kernfs_put(cgrp->kn);
4818 			psi_cgroup_free(cgrp);
4819 			if (cgroup_on_dfl(cgrp))
4820 				cgroup_rstat_exit(cgrp);
4821 			kfree(cgrp);
4822 		} else {
4823 			/*
4824 			 * This is root cgroup's refcnt reaching zero,
4825 			 * which indicates that the root should be
4826 			 * released.
4827 			 */
4828 			cgroup_destroy_root(cgrp->root);
4829 		}
4830 	}
4831 }
4832 
4833 static void css_release_work_fn(struct work_struct *work)
4834 {
4835 	struct cgroup_subsys_state *css =
4836 		container_of(work, struct cgroup_subsys_state, destroy_work);
4837 	struct cgroup_subsys *ss = css->ss;
4838 	struct cgroup *cgrp = css->cgroup;
4839 
4840 	mutex_lock(&cgroup_mutex);
4841 
4842 	css->flags |= CSS_RELEASED;
4843 	list_del_rcu(&css->sibling);
4844 
4845 	if (ss) {
4846 		/* css release path */
4847 		if (!list_empty(&css->rstat_css_node)) {
4848 			cgroup_rstat_flush(cgrp);
4849 			list_del_rcu(&css->rstat_css_node);
4850 		}
4851 
4852 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4853 		if (ss->css_released)
4854 			ss->css_released(css);
4855 	} else {
4856 		struct cgroup *tcgrp;
4857 
4858 		/* cgroup release path */
4859 		TRACE_CGROUP_PATH(release, cgrp);
4860 
4861 		if (cgroup_on_dfl(cgrp))
4862 			cgroup_rstat_flush(cgrp);
4863 
4864 		spin_lock_irq(&css_set_lock);
4865 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4866 		     tcgrp = cgroup_parent(tcgrp))
4867 			tcgrp->nr_dying_descendants--;
4868 		spin_unlock_irq(&css_set_lock);
4869 
4870 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4871 		cgrp->id = -1;
4872 
4873 		/*
4874 		 * There are two control paths which try to determine
4875 		 * cgroup from dentry without going through kernfs -
4876 		 * cgroupstats_build() and css_tryget_online_from_dir().
4877 		 * Those are supported by RCU protecting clearing of
4878 		 * cgrp->kn->priv backpointer.
4879 		 */
4880 		if (cgrp->kn)
4881 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4882 					 NULL);
4883 
4884 		cgroup_bpf_put(cgrp);
4885 	}
4886 
4887 	mutex_unlock(&cgroup_mutex);
4888 
4889 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4890 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4891 }
4892 
4893 static void css_release(struct percpu_ref *ref)
4894 {
4895 	struct cgroup_subsys_state *css =
4896 		container_of(ref, struct cgroup_subsys_state, refcnt);
4897 
4898 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4899 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4900 }
4901 
4902 static void init_and_link_css(struct cgroup_subsys_state *css,
4903 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4904 {
4905 	lockdep_assert_held(&cgroup_mutex);
4906 
4907 	cgroup_get_live(cgrp);
4908 
4909 	memset(css, 0, sizeof(*css));
4910 	css->cgroup = cgrp;
4911 	css->ss = ss;
4912 	css->id = -1;
4913 	INIT_LIST_HEAD(&css->sibling);
4914 	INIT_LIST_HEAD(&css->children);
4915 	INIT_LIST_HEAD(&css->rstat_css_node);
4916 	css->serial_nr = css_serial_nr_next++;
4917 	atomic_set(&css->online_cnt, 0);
4918 
4919 	if (cgroup_parent(cgrp)) {
4920 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4921 		css_get(css->parent);
4922 	}
4923 
4924 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4925 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4926 
4927 	BUG_ON(cgroup_css(cgrp, ss));
4928 }
4929 
4930 /* invoke ->css_online() on a new CSS and mark it online if successful */
4931 static int online_css(struct cgroup_subsys_state *css)
4932 {
4933 	struct cgroup_subsys *ss = css->ss;
4934 	int ret = 0;
4935 
4936 	lockdep_assert_held(&cgroup_mutex);
4937 
4938 	if (ss->css_online)
4939 		ret = ss->css_online(css);
4940 	if (!ret) {
4941 		css->flags |= CSS_ONLINE;
4942 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4943 
4944 		atomic_inc(&css->online_cnt);
4945 		if (css->parent)
4946 			atomic_inc(&css->parent->online_cnt);
4947 	}
4948 	return ret;
4949 }
4950 
4951 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4952 static void offline_css(struct cgroup_subsys_state *css)
4953 {
4954 	struct cgroup_subsys *ss = css->ss;
4955 
4956 	lockdep_assert_held(&cgroup_mutex);
4957 
4958 	if (!(css->flags & CSS_ONLINE))
4959 		return;
4960 
4961 	if (ss->css_offline)
4962 		ss->css_offline(css);
4963 
4964 	css->flags &= ~CSS_ONLINE;
4965 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4966 
4967 	wake_up_all(&css->cgroup->offline_waitq);
4968 }
4969 
4970 /**
4971  * css_create - create a cgroup_subsys_state
4972  * @cgrp: the cgroup new css will be associated with
4973  * @ss: the subsys of new css
4974  *
4975  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4976  * css is online and installed in @cgrp.  This function doesn't create the
4977  * interface files.  Returns 0 on success, -errno on failure.
4978  */
4979 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4980 					      struct cgroup_subsys *ss)
4981 {
4982 	struct cgroup *parent = cgroup_parent(cgrp);
4983 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4984 	struct cgroup_subsys_state *css;
4985 	int err;
4986 
4987 	lockdep_assert_held(&cgroup_mutex);
4988 
4989 	css = ss->css_alloc(parent_css);
4990 	if (!css)
4991 		css = ERR_PTR(-ENOMEM);
4992 	if (IS_ERR(css))
4993 		return css;
4994 
4995 	init_and_link_css(css, ss, cgrp);
4996 
4997 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4998 	if (err)
4999 		goto err_free_css;
5000 
5001 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5002 	if (err < 0)
5003 		goto err_free_css;
5004 	css->id = err;
5005 
5006 	/* @css is ready to be brought online now, make it visible */
5007 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5008 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5009 
5010 	err = online_css(css);
5011 	if (err)
5012 		goto err_list_del;
5013 
5014 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5015 	    cgroup_parent(parent)) {
5016 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5017 			current->comm, current->pid, ss->name);
5018 		if (!strcmp(ss->name, "memory"))
5019 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5020 		ss->warned_broken_hierarchy = true;
5021 	}
5022 
5023 	return css;
5024 
5025 err_list_del:
5026 	list_del_rcu(&css->sibling);
5027 err_free_css:
5028 	list_del_rcu(&css->rstat_css_node);
5029 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5030 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5031 	return ERR_PTR(err);
5032 }
5033 
5034 /*
5035  * The returned cgroup is fully initialized including its control mask, but
5036  * it isn't associated with its kernfs_node and doesn't have the control
5037  * mask applied.
5038  */
5039 static struct cgroup *cgroup_create(struct cgroup *parent)
5040 {
5041 	struct cgroup_root *root = parent->root;
5042 	struct cgroup *cgrp, *tcgrp;
5043 	int level = parent->level + 1;
5044 	int ret;
5045 
5046 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5047 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5048 		       GFP_KERNEL);
5049 	if (!cgrp)
5050 		return ERR_PTR(-ENOMEM);
5051 
5052 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5053 	if (ret)
5054 		goto out_free_cgrp;
5055 
5056 	if (cgroup_on_dfl(parent)) {
5057 		ret = cgroup_rstat_init(cgrp);
5058 		if (ret)
5059 			goto out_cancel_ref;
5060 	}
5061 
5062 	/*
5063 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5064 	 * a half-baked cgroup.
5065 	 */
5066 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5067 	if (cgrp->id < 0) {
5068 		ret = -ENOMEM;
5069 		goto out_stat_exit;
5070 	}
5071 
5072 	init_cgroup_housekeeping(cgrp);
5073 
5074 	cgrp->self.parent = &parent->self;
5075 	cgrp->root = root;
5076 	cgrp->level = level;
5077 
5078 	ret = psi_cgroup_alloc(cgrp);
5079 	if (ret)
5080 		goto out_idr_free;
5081 
5082 	ret = cgroup_bpf_inherit(cgrp);
5083 	if (ret)
5084 		goto out_psi_free;
5085 
5086 	/*
5087 	 * New cgroup inherits effective freeze counter, and
5088 	 * if the parent has to be frozen, the child has too.
5089 	 */
5090 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5091 	if (cgrp->freezer.e_freeze)
5092 		set_bit(CGRP_FROZEN, &cgrp->flags);
5093 
5094 	spin_lock_irq(&css_set_lock);
5095 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5096 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5097 
5098 		if (tcgrp != cgrp) {
5099 			tcgrp->nr_descendants++;
5100 
5101 			/*
5102 			 * If the new cgroup is frozen, all ancestor cgroups
5103 			 * get a new frozen descendant, but their state can't
5104 			 * change because of this.
5105 			 */
5106 			if (cgrp->freezer.e_freeze)
5107 				tcgrp->freezer.nr_frozen_descendants++;
5108 		}
5109 	}
5110 	spin_unlock_irq(&css_set_lock);
5111 
5112 	if (notify_on_release(parent))
5113 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5114 
5115 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5116 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5117 
5118 	cgrp->self.serial_nr = css_serial_nr_next++;
5119 
5120 	/* allocation complete, commit to creation */
5121 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5122 	atomic_inc(&root->nr_cgrps);
5123 	cgroup_get_live(parent);
5124 
5125 	/*
5126 	 * @cgrp is now fully operational.  If something fails after this
5127 	 * point, it'll be released via the normal destruction path.
5128 	 */
5129 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5130 
5131 	/*
5132 	 * On the default hierarchy, a child doesn't automatically inherit
5133 	 * subtree_control from the parent.  Each is configured manually.
5134 	 */
5135 	if (!cgroup_on_dfl(cgrp))
5136 		cgrp->subtree_control = cgroup_control(cgrp);
5137 
5138 	cgroup_propagate_control(cgrp);
5139 
5140 	return cgrp;
5141 
5142 out_psi_free:
5143 	psi_cgroup_free(cgrp);
5144 out_idr_free:
5145 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5146 out_stat_exit:
5147 	if (cgroup_on_dfl(parent))
5148 		cgroup_rstat_exit(cgrp);
5149 out_cancel_ref:
5150 	percpu_ref_exit(&cgrp->self.refcnt);
5151 out_free_cgrp:
5152 	kfree(cgrp);
5153 	return ERR_PTR(ret);
5154 }
5155 
5156 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5157 {
5158 	struct cgroup *cgroup;
5159 	int ret = false;
5160 	int level = 1;
5161 
5162 	lockdep_assert_held(&cgroup_mutex);
5163 
5164 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5165 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5166 			goto fail;
5167 
5168 		if (level > cgroup->max_depth)
5169 			goto fail;
5170 
5171 		level++;
5172 	}
5173 
5174 	ret = true;
5175 fail:
5176 	return ret;
5177 }
5178 
5179 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5180 {
5181 	struct cgroup *parent, *cgrp;
5182 	struct kernfs_node *kn;
5183 	int ret;
5184 
5185 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5186 	if (strchr(name, '\n'))
5187 		return -EINVAL;
5188 
5189 	parent = cgroup_kn_lock_live(parent_kn, false);
5190 	if (!parent)
5191 		return -ENODEV;
5192 
5193 	if (!cgroup_check_hierarchy_limits(parent)) {
5194 		ret = -EAGAIN;
5195 		goto out_unlock;
5196 	}
5197 
5198 	cgrp = cgroup_create(parent);
5199 	if (IS_ERR(cgrp)) {
5200 		ret = PTR_ERR(cgrp);
5201 		goto out_unlock;
5202 	}
5203 
5204 	/* create the directory */
5205 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5206 	if (IS_ERR(kn)) {
5207 		ret = PTR_ERR(kn);
5208 		goto out_destroy;
5209 	}
5210 	cgrp->kn = kn;
5211 
5212 	/*
5213 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5214 	 * that @cgrp->kn is always accessible.
5215 	 */
5216 	kernfs_get(kn);
5217 
5218 	ret = cgroup_kn_set_ugid(kn);
5219 	if (ret)
5220 		goto out_destroy;
5221 
5222 	ret = css_populate_dir(&cgrp->self);
5223 	if (ret)
5224 		goto out_destroy;
5225 
5226 	ret = cgroup_apply_control_enable(cgrp);
5227 	if (ret)
5228 		goto out_destroy;
5229 
5230 	TRACE_CGROUP_PATH(mkdir, cgrp);
5231 
5232 	/* let's create and online css's */
5233 	kernfs_activate(kn);
5234 
5235 	ret = 0;
5236 	goto out_unlock;
5237 
5238 out_destroy:
5239 	cgroup_destroy_locked(cgrp);
5240 out_unlock:
5241 	cgroup_kn_unlock(parent_kn);
5242 	return ret;
5243 }
5244 
5245 /*
5246  * This is called when the refcnt of a css is confirmed to be killed.
5247  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5248  * initate destruction and put the css ref from kill_css().
5249  */
5250 static void css_killed_work_fn(struct work_struct *work)
5251 {
5252 	struct cgroup_subsys_state *css =
5253 		container_of(work, struct cgroup_subsys_state, destroy_work);
5254 
5255 	mutex_lock(&cgroup_mutex);
5256 
5257 	do {
5258 		offline_css(css);
5259 		css_put(css);
5260 		/* @css can't go away while we're holding cgroup_mutex */
5261 		css = css->parent;
5262 	} while (css && atomic_dec_and_test(&css->online_cnt));
5263 
5264 	mutex_unlock(&cgroup_mutex);
5265 }
5266 
5267 /* css kill confirmation processing requires process context, bounce */
5268 static void css_killed_ref_fn(struct percpu_ref *ref)
5269 {
5270 	struct cgroup_subsys_state *css =
5271 		container_of(ref, struct cgroup_subsys_state, refcnt);
5272 
5273 	if (atomic_dec_and_test(&css->online_cnt)) {
5274 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5275 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5276 	}
5277 }
5278 
5279 /**
5280  * kill_css - destroy a css
5281  * @css: css to destroy
5282  *
5283  * This function initiates destruction of @css by removing cgroup interface
5284  * files and putting its base reference.  ->css_offline() will be invoked
5285  * asynchronously once css_tryget_online() is guaranteed to fail and when
5286  * the reference count reaches zero, @css will be released.
5287  */
5288 static void kill_css(struct cgroup_subsys_state *css)
5289 {
5290 	lockdep_assert_held(&cgroup_mutex);
5291 
5292 	if (css->flags & CSS_DYING)
5293 		return;
5294 
5295 	css->flags |= CSS_DYING;
5296 
5297 	/*
5298 	 * This must happen before css is disassociated with its cgroup.
5299 	 * See seq_css() for details.
5300 	 */
5301 	css_clear_dir(css);
5302 
5303 	/*
5304 	 * Killing would put the base ref, but we need to keep it alive
5305 	 * until after ->css_offline().
5306 	 */
5307 	css_get(css);
5308 
5309 	/*
5310 	 * cgroup core guarantees that, by the time ->css_offline() is
5311 	 * invoked, no new css reference will be given out via
5312 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5313 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5314 	 * guarantee that the ref is seen as killed on all CPUs on return.
5315 	 *
5316 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5317 	 * css is confirmed to be seen as killed on all CPUs.
5318 	 */
5319 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5320 }
5321 
5322 /**
5323  * cgroup_destroy_locked - the first stage of cgroup destruction
5324  * @cgrp: cgroup to be destroyed
5325  *
5326  * css's make use of percpu refcnts whose killing latency shouldn't be
5327  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5328  * guarantee that css_tryget_online() won't succeed by the time
5329  * ->css_offline() is invoked.  To satisfy all the requirements,
5330  * destruction is implemented in the following two steps.
5331  *
5332  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5333  *     userland visible parts and start killing the percpu refcnts of
5334  *     css's.  Set up so that the next stage will be kicked off once all
5335  *     the percpu refcnts are confirmed to be killed.
5336  *
5337  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5338  *     rest of destruction.  Once all cgroup references are gone, the
5339  *     cgroup is RCU-freed.
5340  *
5341  * This function implements s1.  After this step, @cgrp is gone as far as
5342  * the userland is concerned and a new cgroup with the same name may be
5343  * created.  As cgroup doesn't care about the names internally, this
5344  * doesn't cause any problem.
5345  */
5346 static int cgroup_destroy_locked(struct cgroup *cgrp)
5347 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5348 {
5349 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5350 	struct cgroup_subsys_state *css;
5351 	struct cgrp_cset_link *link;
5352 	int ssid;
5353 
5354 	lockdep_assert_held(&cgroup_mutex);
5355 
5356 	/*
5357 	 * Only migration can raise populated from zero and we're already
5358 	 * holding cgroup_mutex.
5359 	 */
5360 	if (cgroup_is_populated(cgrp))
5361 		return -EBUSY;
5362 
5363 	/*
5364 	 * Make sure there's no live children.  We can't test emptiness of
5365 	 * ->self.children as dead children linger on it while being
5366 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5367 	 */
5368 	if (css_has_online_children(&cgrp->self))
5369 		return -EBUSY;
5370 
5371 	/*
5372 	 * Mark @cgrp and the associated csets dead.  The former prevents
5373 	 * further task migration and child creation by disabling
5374 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5375 	 * the migration path.
5376 	 */
5377 	cgrp->self.flags &= ~CSS_ONLINE;
5378 
5379 	spin_lock_irq(&css_set_lock);
5380 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5381 		link->cset->dead = true;
5382 	spin_unlock_irq(&css_set_lock);
5383 
5384 	/* initiate massacre of all css's */
5385 	for_each_css(css, ssid, cgrp)
5386 		kill_css(css);
5387 
5388 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5389 	css_clear_dir(&cgrp->self);
5390 	kernfs_remove(cgrp->kn);
5391 
5392 	if (parent && cgroup_is_threaded(cgrp))
5393 		parent->nr_threaded_children--;
5394 
5395 	spin_lock_irq(&css_set_lock);
5396 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5397 		tcgrp->nr_descendants--;
5398 		tcgrp->nr_dying_descendants++;
5399 		/*
5400 		 * If the dying cgroup is frozen, decrease frozen descendants
5401 		 * counters of ancestor cgroups.
5402 		 */
5403 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5404 			tcgrp->freezer.nr_frozen_descendants--;
5405 	}
5406 	spin_unlock_irq(&css_set_lock);
5407 
5408 	cgroup1_check_for_release(parent);
5409 
5410 	/* put the base reference */
5411 	percpu_ref_kill(&cgrp->self.refcnt);
5412 
5413 	return 0;
5414 };
5415 
5416 int cgroup_rmdir(struct kernfs_node *kn)
5417 {
5418 	struct cgroup *cgrp;
5419 	int ret = 0;
5420 
5421 	cgrp = cgroup_kn_lock_live(kn, false);
5422 	if (!cgrp)
5423 		return 0;
5424 
5425 	ret = cgroup_destroy_locked(cgrp);
5426 	if (!ret)
5427 		TRACE_CGROUP_PATH(rmdir, cgrp);
5428 
5429 	cgroup_kn_unlock(kn);
5430 	return ret;
5431 }
5432 
5433 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5434 	.show_options		= cgroup_show_options,
5435 	.mkdir			= cgroup_mkdir,
5436 	.rmdir			= cgroup_rmdir,
5437 	.show_path		= cgroup_show_path,
5438 };
5439 
5440 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5441 {
5442 	struct cgroup_subsys_state *css;
5443 
5444 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5445 
5446 	mutex_lock(&cgroup_mutex);
5447 
5448 	idr_init(&ss->css_idr);
5449 	INIT_LIST_HEAD(&ss->cfts);
5450 
5451 	/* Create the root cgroup state for this subsystem */
5452 	ss->root = &cgrp_dfl_root;
5453 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5454 	/* We don't handle early failures gracefully */
5455 	BUG_ON(IS_ERR(css));
5456 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5457 
5458 	/*
5459 	 * Root csses are never destroyed and we can't initialize
5460 	 * percpu_ref during early init.  Disable refcnting.
5461 	 */
5462 	css->flags |= CSS_NO_REF;
5463 
5464 	if (early) {
5465 		/* allocation can't be done safely during early init */
5466 		css->id = 1;
5467 	} else {
5468 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5469 		BUG_ON(css->id < 0);
5470 	}
5471 
5472 	/* Update the init_css_set to contain a subsys
5473 	 * pointer to this state - since the subsystem is
5474 	 * newly registered, all tasks and hence the
5475 	 * init_css_set is in the subsystem's root cgroup. */
5476 	init_css_set.subsys[ss->id] = css;
5477 
5478 	have_fork_callback |= (bool)ss->fork << ss->id;
5479 	have_exit_callback |= (bool)ss->exit << ss->id;
5480 	have_release_callback |= (bool)ss->release << ss->id;
5481 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5482 
5483 	/* At system boot, before all subsystems have been
5484 	 * registered, no tasks have been forked, so we don't
5485 	 * need to invoke fork callbacks here. */
5486 	BUG_ON(!list_empty(&init_task.tasks));
5487 
5488 	BUG_ON(online_css(css));
5489 
5490 	mutex_unlock(&cgroup_mutex);
5491 }
5492 
5493 /**
5494  * cgroup_init_early - cgroup initialization at system boot
5495  *
5496  * Initialize cgroups at system boot, and initialize any
5497  * subsystems that request early init.
5498  */
5499 int __init cgroup_init_early(void)
5500 {
5501 	static struct cgroup_fs_context __initdata ctx;
5502 	struct cgroup_subsys *ss;
5503 	int i;
5504 
5505 	ctx.root = &cgrp_dfl_root;
5506 	init_cgroup_root(&ctx);
5507 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5508 
5509 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5510 
5511 	for_each_subsys(ss, i) {
5512 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5513 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5514 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5515 		     ss->id, ss->name);
5516 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5517 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5518 
5519 		ss->id = i;
5520 		ss->name = cgroup_subsys_name[i];
5521 		if (!ss->legacy_name)
5522 			ss->legacy_name = cgroup_subsys_name[i];
5523 
5524 		if (ss->early_init)
5525 			cgroup_init_subsys(ss, true);
5526 	}
5527 	return 0;
5528 }
5529 
5530 static u16 cgroup_disable_mask __initdata;
5531 
5532 /**
5533  * cgroup_init - cgroup initialization
5534  *
5535  * Register cgroup filesystem and /proc file, and initialize
5536  * any subsystems that didn't request early init.
5537  */
5538 int __init cgroup_init(void)
5539 {
5540 	struct cgroup_subsys *ss;
5541 	int ssid;
5542 
5543 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5544 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5545 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5546 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5547 
5548 	cgroup_rstat_boot();
5549 
5550 	/*
5551 	 * The latency of the synchronize_rcu() is too high for cgroups,
5552 	 * avoid it at the cost of forcing all readers into the slow path.
5553 	 */
5554 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5555 
5556 	get_user_ns(init_cgroup_ns.user_ns);
5557 
5558 	mutex_lock(&cgroup_mutex);
5559 
5560 	/*
5561 	 * Add init_css_set to the hash table so that dfl_root can link to
5562 	 * it during init.
5563 	 */
5564 	hash_add(css_set_table, &init_css_set.hlist,
5565 		 css_set_hash(init_css_set.subsys));
5566 
5567 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5568 
5569 	mutex_unlock(&cgroup_mutex);
5570 
5571 	for_each_subsys(ss, ssid) {
5572 		if (ss->early_init) {
5573 			struct cgroup_subsys_state *css =
5574 				init_css_set.subsys[ss->id];
5575 
5576 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5577 						   GFP_KERNEL);
5578 			BUG_ON(css->id < 0);
5579 		} else {
5580 			cgroup_init_subsys(ss, false);
5581 		}
5582 
5583 		list_add_tail(&init_css_set.e_cset_node[ssid],
5584 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5585 
5586 		/*
5587 		 * Setting dfl_root subsys_mask needs to consider the
5588 		 * disabled flag and cftype registration needs kmalloc,
5589 		 * both of which aren't available during early_init.
5590 		 */
5591 		if (cgroup_disable_mask & (1 << ssid)) {
5592 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5593 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5594 			       ss->name);
5595 			continue;
5596 		}
5597 
5598 		if (cgroup1_ssid_disabled(ssid))
5599 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5600 			       ss->name);
5601 
5602 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5603 
5604 		/* implicit controllers must be threaded too */
5605 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5606 
5607 		if (ss->implicit_on_dfl)
5608 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5609 		else if (!ss->dfl_cftypes)
5610 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5611 
5612 		if (ss->threaded)
5613 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5614 
5615 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5616 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5617 		} else {
5618 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5619 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5620 		}
5621 
5622 		if (ss->bind)
5623 			ss->bind(init_css_set.subsys[ssid]);
5624 
5625 		mutex_lock(&cgroup_mutex);
5626 		css_populate_dir(init_css_set.subsys[ssid]);
5627 		mutex_unlock(&cgroup_mutex);
5628 	}
5629 
5630 	/* init_css_set.subsys[] has been updated, re-hash */
5631 	hash_del(&init_css_set.hlist);
5632 	hash_add(css_set_table, &init_css_set.hlist,
5633 		 css_set_hash(init_css_set.subsys));
5634 
5635 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5636 	WARN_ON(register_filesystem(&cgroup_fs_type));
5637 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5638 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5639 
5640 	return 0;
5641 }
5642 
5643 static int __init cgroup_wq_init(void)
5644 {
5645 	/*
5646 	 * There isn't much point in executing destruction path in
5647 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5648 	 * Use 1 for @max_active.
5649 	 *
5650 	 * We would prefer to do this in cgroup_init() above, but that
5651 	 * is called before init_workqueues(): so leave this until after.
5652 	 */
5653 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5654 	BUG_ON(!cgroup_destroy_wq);
5655 	return 0;
5656 }
5657 core_initcall(cgroup_wq_init);
5658 
5659 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5660 					char *buf, size_t buflen)
5661 {
5662 	struct kernfs_node *kn;
5663 
5664 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5665 	if (!kn)
5666 		return;
5667 	kernfs_path(kn, buf, buflen);
5668 	kernfs_put(kn);
5669 }
5670 
5671 /*
5672  * proc_cgroup_show()
5673  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5674  *  - Used for /proc/<pid>/cgroup.
5675  */
5676 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5677 		     struct pid *pid, struct task_struct *tsk)
5678 {
5679 	char *buf;
5680 	int retval;
5681 	struct cgroup_root *root;
5682 
5683 	retval = -ENOMEM;
5684 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5685 	if (!buf)
5686 		goto out;
5687 
5688 	mutex_lock(&cgroup_mutex);
5689 	spin_lock_irq(&css_set_lock);
5690 
5691 	for_each_root(root) {
5692 		struct cgroup_subsys *ss;
5693 		struct cgroup *cgrp;
5694 		int ssid, count = 0;
5695 
5696 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5697 			continue;
5698 
5699 		seq_printf(m, "%d:", root->hierarchy_id);
5700 		if (root != &cgrp_dfl_root)
5701 			for_each_subsys(ss, ssid)
5702 				if (root->subsys_mask & (1 << ssid))
5703 					seq_printf(m, "%s%s", count++ ? "," : "",
5704 						   ss->legacy_name);
5705 		if (strlen(root->name))
5706 			seq_printf(m, "%sname=%s", count ? "," : "",
5707 				   root->name);
5708 		seq_putc(m, ':');
5709 
5710 		cgrp = task_cgroup_from_root(tsk, root);
5711 
5712 		/*
5713 		 * On traditional hierarchies, all zombie tasks show up as
5714 		 * belonging to the root cgroup.  On the default hierarchy,
5715 		 * while a zombie doesn't show up in "cgroup.procs" and
5716 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5717 		 * reporting the cgroup it belonged to before exiting.  If
5718 		 * the cgroup is removed before the zombie is reaped,
5719 		 * " (deleted)" is appended to the cgroup path.
5720 		 */
5721 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5722 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5723 						current->nsproxy->cgroup_ns);
5724 			if (retval >= PATH_MAX)
5725 				retval = -ENAMETOOLONG;
5726 			if (retval < 0)
5727 				goto out_unlock;
5728 
5729 			seq_puts(m, buf);
5730 		} else {
5731 			seq_puts(m, "/");
5732 		}
5733 
5734 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5735 			seq_puts(m, " (deleted)\n");
5736 		else
5737 			seq_putc(m, '\n');
5738 	}
5739 
5740 	retval = 0;
5741 out_unlock:
5742 	spin_unlock_irq(&css_set_lock);
5743 	mutex_unlock(&cgroup_mutex);
5744 	kfree(buf);
5745 out:
5746 	return retval;
5747 }
5748 
5749 /**
5750  * cgroup_fork - initialize cgroup related fields during copy_process()
5751  * @child: pointer to task_struct of forking parent process.
5752  *
5753  * A task is associated with the init_css_set until cgroup_post_fork()
5754  * attaches it to the parent's css_set.  Empty cg_list indicates that
5755  * @child isn't holding reference to its css_set.
5756  */
5757 void cgroup_fork(struct task_struct *child)
5758 {
5759 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5760 	INIT_LIST_HEAD(&child->cg_list);
5761 }
5762 
5763 /**
5764  * cgroup_can_fork - called on a new task before the process is exposed
5765  * @child: the task in question.
5766  *
5767  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5768  * returns an error, the fork aborts with that error code. This allows for
5769  * a cgroup subsystem to conditionally allow or deny new forks.
5770  */
5771 int cgroup_can_fork(struct task_struct *child)
5772 {
5773 	struct cgroup_subsys *ss;
5774 	int i, j, ret;
5775 
5776 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5777 		ret = ss->can_fork(child);
5778 		if (ret)
5779 			goto out_revert;
5780 	} while_each_subsys_mask();
5781 
5782 	return 0;
5783 
5784 out_revert:
5785 	for_each_subsys(ss, j) {
5786 		if (j >= i)
5787 			break;
5788 		if (ss->cancel_fork)
5789 			ss->cancel_fork(child);
5790 	}
5791 
5792 	return ret;
5793 }
5794 
5795 /**
5796  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5797  * @child: the task in question
5798  *
5799  * This calls the cancel_fork() callbacks if a fork failed *after*
5800  * cgroup_can_fork() succeded.
5801  */
5802 void cgroup_cancel_fork(struct task_struct *child)
5803 {
5804 	struct cgroup_subsys *ss;
5805 	int i;
5806 
5807 	for_each_subsys(ss, i)
5808 		if (ss->cancel_fork)
5809 			ss->cancel_fork(child);
5810 }
5811 
5812 /**
5813  * cgroup_post_fork - called on a new task after adding it to the task list
5814  * @child: the task in question
5815  *
5816  * Adds the task to the list running through its css_set if necessary and
5817  * call the subsystem fork() callbacks.  Has to be after the task is
5818  * visible on the task list in case we race with the first call to
5819  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5820  * list.
5821  */
5822 void cgroup_post_fork(struct task_struct *child)
5823 {
5824 	struct cgroup_subsys *ss;
5825 	int i;
5826 
5827 	/*
5828 	 * This may race against cgroup_enable_task_cg_lists().  As that
5829 	 * function sets use_task_css_set_links before grabbing
5830 	 * tasklist_lock and we just went through tasklist_lock to add
5831 	 * @child, it's guaranteed that either we see the set
5832 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5833 	 * @child during its iteration.
5834 	 *
5835 	 * If we won the race, @child is associated with %current's
5836 	 * css_set.  Grabbing css_set_lock guarantees both that the
5837 	 * association is stable, and, on completion of the parent's
5838 	 * migration, @child is visible in the source of migration or
5839 	 * already in the destination cgroup.  This guarantee is necessary
5840 	 * when implementing operations which need to migrate all tasks of
5841 	 * a cgroup to another.
5842 	 *
5843 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5844 	 * will remain in init_css_set.  This is safe because all tasks are
5845 	 * in the init_css_set before cg_links is enabled and there's no
5846 	 * operation which transfers all tasks out of init_css_set.
5847 	 */
5848 	if (use_task_css_set_links) {
5849 		struct css_set *cset;
5850 
5851 		spin_lock_irq(&css_set_lock);
5852 		cset = task_css_set(current);
5853 		if (list_empty(&child->cg_list)) {
5854 			get_css_set(cset);
5855 			cset->nr_tasks++;
5856 			css_set_move_task(child, NULL, cset, false);
5857 		}
5858 
5859 		/*
5860 		 * If the cgroup has to be frozen, the new task has too.
5861 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5862 		 * the task into the frozen state.
5863 		 */
5864 		if (unlikely(cgroup_task_freeze(child))) {
5865 			struct cgroup *cgrp;
5866 
5867 			spin_lock(&child->sighand->siglock);
5868 			WARN_ON_ONCE(child->frozen);
5869 			cgrp = cset->dfl_cgrp;
5870 			child->jobctl |= JOBCTL_TRAP_FREEZE;
5871 			spin_unlock(&child->sighand->siglock);
5872 
5873 			/*
5874 			 * Calling cgroup_update_frozen() isn't required here,
5875 			 * because it will be called anyway a bit later
5876 			 * from do_freezer_trap(). So we avoid cgroup's
5877 			 * transient switch from the frozen state and back.
5878 			 */
5879 		}
5880 
5881 		spin_unlock_irq(&css_set_lock);
5882 	}
5883 
5884 	/*
5885 	 * Call ss->fork().  This must happen after @child is linked on
5886 	 * css_set; otherwise, @child might change state between ->fork()
5887 	 * and addition to css_set.
5888 	 */
5889 	do_each_subsys_mask(ss, i, have_fork_callback) {
5890 		ss->fork(child);
5891 	} while_each_subsys_mask();
5892 }
5893 
5894 /**
5895  * cgroup_exit - detach cgroup from exiting task
5896  * @tsk: pointer to task_struct of exiting process
5897  *
5898  * Description: Detach cgroup from @tsk and release it.
5899  *
5900  * Note that cgroups marked notify_on_release force every task in
5901  * them to take the global cgroup_mutex mutex when exiting.
5902  * This could impact scaling on very large systems.  Be reluctant to
5903  * use notify_on_release cgroups where very high task exit scaling
5904  * is required on large systems.
5905  *
5906  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5907  * call cgroup_exit() while the task is still competent to handle
5908  * notify_on_release(), then leave the task attached to the root cgroup in
5909  * each hierarchy for the remainder of its exit.  No need to bother with
5910  * init_css_set refcnting.  init_css_set never goes away and we can't race
5911  * with migration path - PF_EXITING is visible to migration path.
5912  */
5913 void cgroup_exit(struct task_struct *tsk)
5914 {
5915 	struct cgroup_subsys *ss;
5916 	struct css_set *cset;
5917 	int i;
5918 
5919 	/*
5920 	 * Unlink from @tsk from its css_set.  As migration path can't race
5921 	 * with us, we can check css_set and cg_list without synchronization.
5922 	 */
5923 	cset = task_css_set(tsk);
5924 
5925 	if (!list_empty(&tsk->cg_list)) {
5926 		spin_lock_irq(&css_set_lock);
5927 		css_set_move_task(tsk, cset, NULL, false);
5928 		cset->nr_tasks--;
5929 
5930 		if (unlikely(cgroup_task_frozen(tsk)))
5931 			cgroup_freezer_frozen_exit(tsk);
5932 		else if (unlikely(cgroup_task_freeze(tsk)))
5933 			cgroup_update_frozen(task_dfl_cgroup(tsk));
5934 
5935 		spin_unlock_irq(&css_set_lock);
5936 	} else {
5937 		get_css_set(cset);
5938 	}
5939 
5940 	/* see cgroup_post_fork() for details */
5941 	do_each_subsys_mask(ss, i, have_exit_callback) {
5942 		ss->exit(tsk);
5943 	} while_each_subsys_mask();
5944 }
5945 
5946 void cgroup_release(struct task_struct *task)
5947 {
5948 	struct cgroup_subsys *ss;
5949 	int ssid;
5950 
5951 	do_each_subsys_mask(ss, ssid, have_release_callback) {
5952 		ss->release(task);
5953 	} while_each_subsys_mask();
5954 }
5955 
5956 void cgroup_free(struct task_struct *task)
5957 {
5958 	struct css_set *cset = task_css_set(task);
5959 	put_css_set(cset);
5960 }
5961 
5962 static int __init cgroup_disable(char *str)
5963 {
5964 	struct cgroup_subsys *ss;
5965 	char *token;
5966 	int i;
5967 
5968 	while ((token = strsep(&str, ",")) != NULL) {
5969 		if (!*token)
5970 			continue;
5971 
5972 		for_each_subsys(ss, i) {
5973 			if (strcmp(token, ss->name) &&
5974 			    strcmp(token, ss->legacy_name))
5975 				continue;
5976 			cgroup_disable_mask |= 1 << i;
5977 		}
5978 	}
5979 	return 1;
5980 }
5981 __setup("cgroup_disable=", cgroup_disable);
5982 
5983 void __init __weak enable_debug_cgroup(void) { }
5984 
5985 static int __init enable_cgroup_debug(char *str)
5986 {
5987 	cgroup_debug = true;
5988 	enable_debug_cgroup();
5989 	return 1;
5990 }
5991 __setup("cgroup_debug", enable_cgroup_debug);
5992 
5993 /**
5994  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5995  * @dentry: directory dentry of interest
5996  * @ss: subsystem of interest
5997  *
5998  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5999  * to get the corresponding css and return it.  If such css doesn't exist
6000  * or can't be pinned, an ERR_PTR value is returned.
6001  */
6002 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6003 						       struct cgroup_subsys *ss)
6004 {
6005 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6006 	struct file_system_type *s_type = dentry->d_sb->s_type;
6007 	struct cgroup_subsys_state *css = NULL;
6008 	struct cgroup *cgrp;
6009 
6010 	/* is @dentry a cgroup dir? */
6011 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6012 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6013 		return ERR_PTR(-EBADF);
6014 
6015 	rcu_read_lock();
6016 
6017 	/*
6018 	 * This path doesn't originate from kernfs and @kn could already
6019 	 * have been or be removed at any point.  @kn->priv is RCU
6020 	 * protected for this access.  See css_release_work_fn() for details.
6021 	 */
6022 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6023 	if (cgrp)
6024 		css = cgroup_css(cgrp, ss);
6025 
6026 	if (!css || !css_tryget_online(css))
6027 		css = ERR_PTR(-ENOENT);
6028 
6029 	rcu_read_unlock();
6030 	return css;
6031 }
6032 
6033 /**
6034  * css_from_id - lookup css by id
6035  * @id: the cgroup id
6036  * @ss: cgroup subsys to be looked into
6037  *
6038  * Returns the css if there's valid one with @id, otherwise returns NULL.
6039  * Should be called under rcu_read_lock().
6040  */
6041 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6042 {
6043 	WARN_ON_ONCE(!rcu_read_lock_held());
6044 	return idr_find(&ss->css_idr, id);
6045 }
6046 
6047 /**
6048  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6049  * @path: path on the default hierarchy
6050  *
6051  * Find the cgroup at @path on the default hierarchy, increment its
6052  * reference count and return it.  Returns pointer to the found cgroup on
6053  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6054  * if @path points to a non-directory.
6055  */
6056 struct cgroup *cgroup_get_from_path(const char *path)
6057 {
6058 	struct kernfs_node *kn;
6059 	struct cgroup *cgrp;
6060 
6061 	mutex_lock(&cgroup_mutex);
6062 
6063 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6064 	if (kn) {
6065 		if (kernfs_type(kn) == KERNFS_DIR) {
6066 			cgrp = kn->priv;
6067 			cgroup_get_live(cgrp);
6068 		} else {
6069 			cgrp = ERR_PTR(-ENOTDIR);
6070 		}
6071 		kernfs_put(kn);
6072 	} else {
6073 		cgrp = ERR_PTR(-ENOENT);
6074 	}
6075 
6076 	mutex_unlock(&cgroup_mutex);
6077 	return cgrp;
6078 }
6079 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6080 
6081 /**
6082  * cgroup_get_from_fd - get a cgroup pointer from a fd
6083  * @fd: fd obtained by open(cgroup2_dir)
6084  *
6085  * Find the cgroup from a fd which should be obtained
6086  * by opening a cgroup directory.  Returns a pointer to the
6087  * cgroup on success. ERR_PTR is returned if the cgroup
6088  * cannot be found.
6089  */
6090 struct cgroup *cgroup_get_from_fd(int fd)
6091 {
6092 	struct cgroup_subsys_state *css;
6093 	struct cgroup *cgrp;
6094 	struct file *f;
6095 
6096 	f = fget_raw(fd);
6097 	if (!f)
6098 		return ERR_PTR(-EBADF);
6099 
6100 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6101 	fput(f);
6102 	if (IS_ERR(css))
6103 		return ERR_CAST(css);
6104 
6105 	cgrp = css->cgroup;
6106 	if (!cgroup_on_dfl(cgrp)) {
6107 		cgroup_put(cgrp);
6108 		return ERR_PTR(-EBADF);
6109 	}
6110 
6111 	return cgrp;
6112 }
6113 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6114 
6115 /*
6116  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6117  * definition in cgroup-defs.h.
6118  */
6119 #ifdef CONFIG_SOCK_CGROUP_DATA
6120 
6121 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6122 
6123 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6124 static bool cgroup_sk_alloc_disabled __read_mostly;
6125 
6126 void cgroup_sk_alloc_disable(void)
6127 {
6128 	if (cgroup_sk_alloc_disabled)
6129 		return;
6130 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6131 	cgroup_sk_alloc_disabled = true;
6132 }
6133 
6134 #else
6135 
6136 #define cgroup_sk_alloc_disabled	false
6137 
6138 #endif
6139 
6140 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6141 {
6142 	if (cgroup_sk_alloc_disabled)
6143 		return;
6144 
6145 	/* Socket clone path */
6146 	if (skcd->val) {
6147 		/*
6148 		 * We might be cloning a socket which is left in an empty
6149 		 * cgroup and the cgroup might have already been rmdir'd.
6150 		 * Don't use cgroup_get_live().
6151 		 */
6152 		cgroup_get(sock_cgroup_ptr(skcd));
6153 		return;
6154 	}
6155 
6156 	rcu_read_lock();
6157 
6158 	while (true) {
6159 		struct css_set *cset;
6160 
6161 		cset = task_css_set(current);
6162 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6163 			skcd->val = (unsigned long)cset->dfl_cgrp;
6164 			break;
6165 		}
6166 		cpu_relax();
6167 	}
6168 
6169 	rcu_read_unlock();
6170 }
6171 
6172 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6173 {
6174 	cgroup_put(sock_cgroup_ptr(skcd));
6175 }
6176 
6177 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6178 
6179 #ifdef CONFIG_CGROUP_BPF
6180 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6181 		      enum bpf_attach_type type, u32 flags)
6182 {
6183 	int ret;
6184 
6185 	mutex_lock(&cgroup_mutex);
6186 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6187 	mutex_unlock(&cgroup_mutex);
6188 	return ret;
6189 }
6190 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6191 		      enum bpf_attach_type type, u32 flags)
6192 {
6193 	int ret;
6194 
6195 	mutex_lock(&cgroup_mutex);
6196 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6197 	mutex_unlock(&cgroup_mutex);
6198 	return ret;
6199 }
6200 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6201 		     union bpf_attr __user *uattr)
6202 {
6203 	int ret;
6204 
6205 	mutex_lock(&cgroup_mutex);
6206 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6207 	mutex_unlock(&cgroup_mutex);
6208 	return ret;
6209 }
6210 #endif /* CONFIG_CGROUP_BPF */
6211 
6212 #ifdef CONFIG_SYSFS
6213 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6214 				      ssize_t size, const char *prefix)
6215 {
6216 	struct cftype *cft;
6217 	ssize_t ret = 0;
6218 
6219 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6220 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6221 			continue;
6222 
6223 		if (prefix)
6224 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6225 
6226 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6227 
6228 		if (WARN_ON(ret >= size))
6229 			break;
6230 	}
6231 
6232 	return ret;
6233 }
6234 
6235 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6236 			      char *buf)
6237 {
6238 	struct cgroup_subsys *ss;
6239 	int ssid;
6240 	ssize_t ret = 0;
6241 
6242 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6243 				     NULL);
6244 
6245 	for_each_subsys(ss, ssid)
6246 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6247 					      PAGE_SIZE - ret,
6248 					      cgroup_subsys_name[ssid]);
6249 
6250 	return ret;
6251 }
6252 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6253 
6254 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6255 			     char *buf)
6256 {
6257 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6258 }
6259 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6260 
6261 static struct attribute *cgroup_sysfs_attrs[] = {
6262 	&cgroup_delegate_attr.attr,
6263 	&cgroup_features_attr.attr,
6264 	NULL,
6265 };
6266 
6267 static const struct attribute_group cgroup_sysfs_attr_group = {
6268 	.attrs = cgroup_sysfs_attrs,
6269 	.name = "cgroup",
6270 };
6271 
6272 static int __init cgroup_sysfs_init(void)
6273 {
6274 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6275 }
6276 subsys_initcall(cgroup_sysfs_init);
6277 #endif /* CONFIG_SYSFS */
6278