1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_advance(struct css_task_iter *it); 219 static int cgroup_destroy_locked(struct cgroup *cgrp); 220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 221 struct cgroup_subsys *ss); 222 static void css_release(struct percpu_ref *ref); 223 static void kill_css(struct cgroup_subsys_state *css); 224 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 225 struct cgroup *cgrp, struct cftype cfts[], 226 bool is_add); 227 228 /** 229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 230 * @ssid: subsys ID of interest 231 * 232 * cgroup_subsys_enabled() can only be used with literal subsys names which 233 * is fine for individual subsystems but unsuitable for cgroup core. This 234 * is slower static_key_enabled() based test indexed by @ssid. 235 */ 236 bool cgroup_ssid_enabled(int ssid) 237 { 238 if (CGROUP_SUBSYS_COUNT == 0) 239 return false; 240 241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 242 } 243 244 /** 245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 246 * @cgrp: the cgroup of interest 247 * 248 * The default hierarchy is the v2 interface of cgroup and this function 249 * can be used to test whether a cgroup is on the default hierarchy for 250 * cases where a subsystem should behave differnetly depending on the 251 * interface version. 252 * 253 * The set of behaviors which change on the default hierarchy are still 254 * being determined and the mount option is prefixed with __DEVEL__. 255 * 256 * List of changed behaviors: 257 * 258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 259 * and "name" are disallowed. 260 * 261 * - When mounting an existing superblock, mount options should match. 262 * 263 * - Remount is disallowed. 264 * 265 * - rename(2) is disallowed. 266 * 267 * - "tasks" is removed. Everything should be at process granularity. Use 268 * "cgroup.procs" instead. 269 * 270 * - "cgroup.procs" is not sorted. pids will be unique unless they got 271 * recycled inbetween reads. 272 * 273 * - "release_agent" and "notify_on_release" are removed. Replacement 274 * notification mechanism will be implemented. 275 * 276 * - "cgroup.clone_children" is removed. 277 * 278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 279 * and its descendants contain no task; otherwise, 1. The file also 280 * generates kernfs notification which can be monitored through poll and 281 * [di]notify when the value of the file changes. 282 * 283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 284 * take masks of ancestors with non-empty cpus/mems, instead of being 285 * moved to an ancestor. 286 * 287 * - cpuset: a task can be moved into an empty cpuset, and again it takes 288 * masks of ancestors. 289 * 290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 291 * is not created. 292 * 293 * - blkcg: blk-throttle becomes properly hierarchical. 294 * 295 * - debug: disallowed on the default hierarchy. 296 */ 297 bool cgroup_on_dfl(const struct cgroup *cgrp) 298 { 299 return cgrp->root == &cgrp_dfl_root; 300 } 301 302 /* IDR wrappers which synchronize using cgroup_idr_lock */ 303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 304 gfp_t gfp_mask) 305 { 306 int ret; 307 308 idr_preload(gfp_mask); 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 311 spin_unlock_bh(&cgroup_idr_lock); 312 idr_preload_end(); 313 return ret; 314 } 315 316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 317 { 318 void *ret; 319 320 spin_lock_bh(&cgroup_idr_lock); 321 ret = idr_replace(idr, ptr, id); 322 spin_unlock_bh(&cgroup_idr_lock); 323 return ret; 324 } 325 326 static void cgroup_idr_remove(struct idr *idr, int id) 327 { 328 spin_lock_bh(&cgroup_idr_lock); 329 idr_remove(idr, id); 330 spin_unlock_bh(&cgroup_idr_lock); 331 } 332 333 static bool cgroup_has_tasks(struct cgroup *cgrp) 334 { 335 return cgrp->nr_populated_csets; 336 } 337 338 bool cgroup_is_threaded(struct cgroup *cgrp) 339 { 340 return cgrp->dom_cgrp != cgrp; 341 } 342 343 /* can @cgrp host both domain and threaded children? */ 344 static bool cgroup_is_mixable(struct cgroup *cgrp) 345 { 346 /* 347 * Root isn't under domain level resource control exempting it from 348 * the no-internal-process constraint, so it can serve as a thread 349 * root and a parent of resource domains at the same time. 350 */ 351 return !cgroup_parent(cgrp); 352 } 353 354 /* can @cgrp become a thread root? should always be true for a thread root */ 355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 356 { 357 /* mixables don't care */ 358 if (cgroup_is_mixable(cgrp)) 359 return true; 360 361 /* domain roots can't be nested under threaded */ 362 if (cgroup_is_threaded(cgrp)) 363 return false; 364 365 /* can only have either domain or threaded children */ 366 if (cgrp->nr_populated_domain_children) 367 return false; 368 369 /* and no domain controllers can be enabled */ 370 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 371 return false; 372 373 return true; 374 } 375 376 /* is @cgrp root of a threaded subtree? */ 377 bool cgroup_is_thread_root(struct cgroup *cgrp) 378 { 379 /* thread root should be a domain */ 380 if (cgroup_is_threaded(cgrp)) 381 return false; 382 383 /* a domain w/ threaded children is a thread root */ 384 if (cgrp->nr_threaded_children) 385 return true; 386 387 /* 388 * A domain which has tasks and explicit threaded controllers 389 * enabled is a thread root. 390 */ 391 if (cgroup_has_tasks(cgrp) && 392 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 393 return true; 394 395 return false; 396 } 397 398 /* a domain which isn't connected to the root w/o brekage can't be used */ 399 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 400 { 401 /* the cgroup itself can be a thread root */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* but the ancestors can't be unless mixable */ 406 while ((cgrp = cgroup_parent(cgrp))) { 407 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 408 return false; 409 if (cgroup_is_threaded(cgrp)) 410 return false; 411 } 412 413 return true; 414 } 415 416 /* subsystems visibly enabled on a cgroup */ 417 static u16 cgroup_control(struct cgroup *cgrp) 418 { 419 struct cgroup *parent = cgroup_parent(cgrp); 420 u16 root_ss_mask = cgrp->root->subsys_mask; 421 422 if (parent) { 423 u16 ss_mask = parent->subtree_control; 424 425 /* threaded cgroups can only have threaded controllers */ 426 if (cgroup_is_threaded(cgrp)) 427 ss_mask &= cgrp_dfl_threaded_ss_mask; 428 return ss_mask; 429 } 430 431 if (cgroup_on_dfl(cgrp)) 432 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 433 cgrp_dfl_implicit_ss_mask); 434 return root_ss_mask; 435 } 436 437 /* subsystems enabled on a cgroup */ 438 static u16 cgroup_ss_mask(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_ss_mask; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 return cgrp->root->subsys_mask; 452 } 453 454 /** 455 * cgroup_css - obtain a cgroup's css for the specified subsystem 456 * @cgrp: the cgroup of interest 457 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 458 * 459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 460 * function must be called either under cgroup_mutex or rcu_read_lock() and 461 * the caller is responsible for pinning the returned css if it wants to 462 * keep accessing it outside the said locks. This function may return 463 * %NULL if @cgrp doesn't have @subsys_id enabled. 464 */ 465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 466 struct cgroup_subsys *ss) 467 { 468 if (ss) 469 return rcu_dereference_check(cgrp->subsys[ss->id], 470 lockdep_is_held(&cgroup_mutex)); 471 else 472 return &cgrp->self; 473 } 474 475 /** 476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest 479 * 480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 481 * or is offline, %NULL is returned. 482 */ 483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 484 struct cgroup_subsys *ss) 485 { 486 struct cgroup_subsys_state *css; 487 488 rcu_read_lock(); 489 css = cgroup_css(cgrp, ss); 490 if (!css || !css_tryget_online(css)) 491 css = NULL; 492 rcu_read_unlock(); 493 494 return css; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsiblity to tryget a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 do { 547 css = cgroup_css(cgrp, ss); 548 549 if (css) 550 return css; 551 cgrp = cgroup_parent(cgrp); 552 } while (cgrp); 553 554 return init_css_set.subsys[ss->id]; 555 } 556 557 /** 558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 559 * @cgrp: the cgroup of interest 560 * @ss: the subsystem of interest 561 * 562 * Find and get the effective css of @cgrp for @ss. The effective css is 563 * defined as the matching css of the nearest ancestor including self which 564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 565 * the root css is returned, so this function always returns a valid css. 566 * The returned css must be put using css_put(). 567 */ 568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 569 struct cgroup_subsys *ss) 570 { 571 struct cgroup_subsys_state *css; 572 573 rcu_read_lock(); 574 575 do { 576 css = cgroup_css(cgrp, ss); 577 578 if (css && css_tryget_online(css)) 579 goto out_unlock; 580 cgrp = cgroup_parent(cgrp); 581 } while (cgrp); 582 583 css = init_css_set.subsys[ss->id]; 584 css_get(css); 585 out_unlock: 586 rcu_read_unlock(); 587 return css; 588 } 589 590 static void cgroup_get_live(struct cgroup *cgrp) 591 { 592 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 593 css_get(&cgrp->self); 594 } 595 596 /** 597 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 598 * is responsible for taking the css_set_lock. 599 * @cgrp: the cgroup in question 600 */ 601 int __cgroup_task_count(const struct cgroup *cgrp) 602 { 603 int count = 0; 604 struct cgrp_cset_link *link; 605 606 lockdep_assert_held(&css_set_lock); 607 608 list_for_each_entry(link, &cgrp->cset_links, cset_link) 609 count += link->cset->nr_tasks; 610 611 return count; 612 } 613 614 /** 615 * cgroup_task_count - count the number of tasks in a cgroup. 616 * @cgrp: the cgroup in question 617 */ 618 int cgroup_task_count(const struct cgroup *cgrp) 619 { 620 int count; 621 622 spin_lock_irq(&css_set_lock); 623 count = __cgroup_task_count(cgrp); 624 spin_unlock_irq(&css_set_lock); 625 626 return count; 627 } 628 629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 630 { 631 struct cgroup *cgrp = of->kn->parent->priv; 632 struct cftype *cft = of_cft(of); 633 634 /* 635 * This is open and unprotected implementation of cgroup_css(). 636 * seq_css() is only called from a kernfs file operation which has 637 * an active reference on the file. Because all the subsystem 638 * files are drained before a css is disassociated with a cgroup, 639 * the matching css from the cgroup's subsys table is guaranteed to 640 * be and stay valid until the enclosing operation is complete. 641 */ 642 if (cft->ss) 643 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 644 else 645 return &cgrp->self; 646 } 647 EXPORT_SYMBOL_GPL(of_css); 648 649 /** 650 * for_each_css - iterate all css's of a cgroup 651 * @css: the iteration cursor 652 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 653 * @cgrp: the target cgroup to iterate css's of 654 * 655 * Should be called under cgroup_[tree_]mutex. 656 */ 657 #define for_each_css(css, ssid, cgrp) \ 658 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 659 if (!((css) = rcu_dereference_check( \ 660 (cgrp)->subsys[(ssid)], \ 661 lockdep_is_held(&cgroup_mutex)))) { } \ 662 else 663 664 /** 665 * for_each_e_css - iterate all effective css's of a cgroup 666 * @css: the iteration cursor 667 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 668 * @cgrp: the target cgroup to iterate css's of 669 * 670 * Should be called under cgroup_[tree_]mutex. 671 */ 672 #define for_each_e_css(css, ssid, cgrp) \ 673 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 674 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 675 cgroup_subsys[(ssid)]))) \ 676 ; \ 677 else 678 679 /** 680 * do_each_subsys_mask - filter for_each_subsys with a bitmask 681 * @ss: the iteration cursor 682 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 683 * @ss_mask: the bitmask 684 * 685 * The block will only run for cases where the ssid-th bit (1 << ssid) of 686 * @ss_mask is set. 687 */ 688 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 689 unsigned long __ss_mask = (ss_mask); \ 690 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 691 (ssid) = 0; \ 692 break; \ 693 } \ 694 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 695 (ss) = cgroup_subsys[ssid]; \ 696 { 697 698 #define while_each_subsys_mask() \ 699 } \ 700 } \ 701 } while (false) 702 703 /* iterate over child cgrps, lock should be held throughout iteration */ 704 #define cgroup_for_each_live_child(child, cgrp) \ 705 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 cgroup_is_dead(child); })) \ 708 ; \ 709 else 710 711 /* walk live descendants in preorder */ 712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 713 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 714 if (({ lockdep_assert_held(&cgroup_mutex); \ 715 (dsct) = (d_css)->cgroup; \ 716 cgroup_is_dead(dsct); })) \ 717 ; \ 718 else 719 720 /* walk live descendants in postorder */ 721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 722 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 723 if (({ lockdep_assert_held(&cgroup_mutex); \ 724 (dsct) = (d_css)->cgroup; \ 725 cgroup_is_dead(dsct); })) \ 726 ; \ 727 else 728 729 /* 730 * The default css_set - used by init and its children prior to any 731 * hierarchies being mounted. It contains a pointer to the root state 732 * for each subsystem. Also used to anchor the list of css_sets. Not 733 * reference-counted, to improve performance when child cgroups 734 * haven't been created. 735 */ 736 struct css_set init_css_set = { 737 .refcount = REFCOUNT_INIT(1), 738 .dom_cset = &init_css_set, 739 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 740 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 741 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 742 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 743 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 744 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 745 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 746 747 /* 748 * The following field is re-initialized when this cset gets linked 749 * in cgroup_init(). However, let's initialize the field 750 * statically too so that the default cgroup can be accessed safely 751 * early during boot. 752 */ 753 .dfl_cgrp = &cgrp_dfl_root.cgrp, 754 }; 755 756 static int css_set_count = 1; /* 1 for init_css_set */ 757 758 static bool css_set_threaded(struct css_set *cset) 759 { 760 return cset->dom_cset != cset; 761 } 762 763 /** 764 * css_set_populated - does a css_set contain any tasks? 765 * @cset: target css_set 766 * 767 * css_set_populated() should be the same as !!cset->nr_tasks at steady 768 * state. However, css_set_populated() can be called while a task is being 769 * added to or removed from the linked list before the nr_tasks is 770 * properly updated. Hence, we can't just look at ->nr_tasks here. 771 */ 772 static bool css_set_populated(struct css_set *cset) 773 { 774 lockdep_assert_held(&css_set_lock); 775 776 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 777 } 778 779 /** 780 * cgroup_update_populated - update the populated count of a cgroup 781 * @cgrp: the target cgroup 782 * @populated: inc or dec populated count 783 * 784 * One of the css_sets associated with @cgrp is either getting its first 785 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 786 * count is propagated towards root so that a given cgroup's 787 * nr_populated_children is zero iff none of its descendants contain any 788 * tasks. 789 * 790 * @cgrp's interface file "cgroup.populated" is zero if both 791 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 792 * 1 otherwise. When the sum changes from or to zero, userland is notified 793 * that the content of the interface file has changed. This can be used to 794 * detect when @cgrp and its descendants become populated or empty. 795 */ 796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 797 { 798 struct cgroup *child = NULL; 799 int adj = populated ? 1 : -1; 800 801 lockdep_assert_held(&css_set_lock); 802 803 do { 804 bool was_populated = cgroup_is_populated(cgrp); 805 806 if (!child) { 807 cgrp->nr_populated_csets += adj; 808 } else { 809 if (cgroup_is_threaded(child)) 810 cgrp->nr_populated_threaded_children += adj; 811 else 812 cgrp->nr_populated_domain_children += adj; 813 } 814 815 if (was_populated == cgroup_is_populated(cgrp)) 816 break; 817 818 cgroup1_check_for_release(cgrp); 819 cgroup_file_notify(&cgrp->events_file); 820 821 child = cgrp; 822 cgrp = cgroup_parent(cgrp); 823 } while (cgrp); 824 } 825 826 /** 827 * css_set_update_populated - update populated state of a css_set 828 * @cset: target css_set 829 * @populated: whether @cset is populated or depopulated 830 * 831 * @cset is either getting the first task or losing the last. Update the 832 * populated counters of all associated cgroups accordingly. 833 */ 834 static void css_set_update_populated(struct css_set *cset, bool populated) 835 { 836 struct cgrp_cset_link *link; 837 838 lockdep_assert_held(&css_set_lock); 839 840 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 841 cgroup_update_populated(link->cgrp, populated); 842 } 843 844 /** 845 * css_set_move_task - move a task from one css_set to another 846 * @task: task being moved 847 * @from_cset: css_set @task currently belongs to (may be NULL) 848 * @to_cset: new css_set @task is being moved to (may be NULL) 849 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 850 * 851 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 852 * css_set, @from_cset can be NULL. If @task is being disassociated 853 * instead of moved, @to_cset can be NULL. 854 * 855 * This function automatically handles populated counter updates and 856 * css_task_iter adjustments but the caller is responsible for managing 857 * @from_cset and @to_cset's reference counts. 858 */ 859 static void css_set_move_task(struct task_struct *task, 860 struct css_set *from_cset, struct css_set *to_cset, 861 bool use_mg_tasks) 862 { 863 lockdep_assert_held(&css_set_lock); 864 865 if (to_cset && !css_set_populated(to_cset)) 866 css_set_update_populated(to_cset, true); 867 868 if (from_cset) { 869 struct css_task_iter *it, *pos; 870 871 WARN_ON_ONCE(list_empty(&task->cg_list)); 872 873 /* 874 * @task is leaving, advance task iterators which are 875 * pointing to it so that they can resume at the next 876 * position. Advancing an iterator might remove it from 877 * the list, use safe walk. See css_task_iter_advance*() 878 * for details. 879 */ 880 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 881 iters_node) 882 if (it->task_pos == &task->cg_list) 883 css_task_iter_advance(it); 884 885 list_del_init(&task->cg_list); 886 if (!css_set_populated(from_cset)) 887 css_set_update_populated(from_cset, false); 888 } else { 889 WARN_ON_ONCE(!list_empty(&task->cg_list)); 890 } 891 892 if (to_cset) { 893 /* 894 * We are synchronized through cgroup_threadgroup_rwsem 895 * against PF_EXITING setting such that we can't race 896 * against cgroup_exit() changing the css_set to 897 * init_css_set and dropping the old one. 898 */ 899 WARN_ON_ONCE(task->flags & PF_EXITING); 900 901 cgroup_move_task(task, to_cset); 902 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 903 &to_cset->tasks); 904 } 905 } 906 907 /* 908 * hash table for cgroup groups. This improves the performance to find 909 * an existing css_set. This hash doesn't (currently) take into 910 * account cgroups in empty hierarchies. 911 */ 912 #define CSS_SET_HASH_BITS 7 913 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 914 915 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 916 { 917 unsigned long key = 0UL; 918 struct cgroup_subsys *ss; 919 int i; 920 921 for_each_subsys(ss, i) 922 key += (unsigned long)css[i]; 923 key = (key >> 16) ^ key; 924 925 return key; 926 } 927 928 void put_css_set_locked(struct css_set *cset) 929 { 930 struct cgrp_cset_link *link, *tmp_link; 931 struct cgroup_subsys *ss; 932 int ssid; 933 934 lockdep_assert_held(&css_set_lock); 935 936 if (!refcount_dec_and_test(&cset->refcount)) 937 return; 938 939 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 940 941 /* This css_set is dead. unlink it and release cgroup and css refs */ 942 for_each_subsys(ss, ssid) { 943 list_del(&cset->e_cset_node[ssid]); 944 css_put(cset->subsys[ssid]); 945 } 946 hash_del(&cset->hlist); 947 css_set_count--; 948 949 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 950 list_del(&link->cset_link); 951 list_del(&link->cgrp_link); 952 if (cgroup_parent(link->cgrp)) 953 cgroup_put(link->cgrp); 954 kfree(link); 955 } 956 957 if (css_set_threaded(cset)) { 958 list_del(&cset->threaded_csets_node); 959 put_css_set_locked(cset->dom_cset); 960 } 961 962 kfree_rcu(cset, rcu_head); 963 } 964 965 /** 966 * compare_css_sets - helper function for find_existing_css_set(). 967 * @cset: candidate css_set being tested 968 * @old_cset: existing css_set for a task 969 * @new_cgrp: cgroup that's being entered by the task 970 * @template: desired set of css pointers in css_set (pre-calculated) 971 * 972 * Returns true if "cset" matches "old_cset" except for the hierarchy 973 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 974 */ 975 static bool compare_css_sets(struct css_set *cset, 976 struct css_set *old_cset, 977 struct cgroup *new_cgrp, 978 struct cgroup_subsys_state *template[]) 979 { 980 struct cgroup *new_dfl_cgrp; 981 struct list_head *l1, *l2; 982 983 /* 984 * On the default hierarchy, there can be csets which are 985 * associated with the same set of cgroups but different csses. 986 * Let's first ensure that csses match. 987 */ 988 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 989 return false; 990 991 992 /* @cset's domain should match the default cgroup's */ 993 if (cgroup_on_dfl(new_cgrp)) 994 new_dfl_cgrp = new_cgrp; 995 else 996 new_dfl_cgrp = old_cset->dfl_cgrp; 997 998 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 999 return false; 1000 1001 /* 1002 * Compare cgroup pointers in order to distinguish between 1003 * different cgroups in hierarchies. As different cgroups may 1004 * share the same effective css, this comparison is always 1005 * necessary. 1006 */ 1007 l1 = &cset->cgrp_links; 1008 l2 = &old_cset->cgrp_links; 1009 while (1) { 1010 struct cgrp_cset_link *link1, *link2; 1011 struct cgroup *cgrp1, *cgrp2; 1012 1013 l1 = l1->next; 1014 l2 = l2->next; 1015 /* See if we reached the end - both lists are equal length. */ 1016 if (l1 == &cset->cgrp_links) { 1017 BUG_ON(l2 != &old_cset->cgrp_links); 1018 break; 1019 } else { 1020 BUG_ON(l2 == &old_cset->cgrp_links); 1021 } 1022 /* Locate the cgroups associated with these links. */ 1023 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1024 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1025 cgrp1 = link1->cgrp; 1026 cgrp2 = link2->cgrp; 1027 /* Hierarchies should be linked in the same order. */ 1028 BUG_ON(cgrp1->root != cgrp2->root); 1029 1030 /* 1031 * If this hierarchy is the hierarchy of the cgroup 1032 * that's changing, then we need to check that this 1033 * css_set points to the new cgroup; if it's any other 1034 * hierarchy, then this css_set should point to the 1035 * same cgroup as the old css_set. 1036 */ 1037 if (cgrp1->root == new_cgrp->root) { 1038 if (cgrp1 != new_cgrp) 1039 return false; 1040 } else { 1041 if (cgrp1 != cgrp2) 1042 return false; 1043 } 1044 } 1045 return true; 1046 } 1047 1048 /** 1049 * find_existing_css_set - init css array and find the matching css_set 1050 * @old_cset: the css_set that we're using before the cgroup transition 1051 * @cgrp: the cgroup that we're moving into 1052 * @template: out param for the new set of csses, should be clear on entry 1053 */ 1054 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1055 struct cgroup *cgrp, 1056 struct cgroup_subsys_state *template[]) 1057 { 1058 struct cgroup_root *root = cgrp->root; 1059 struct cgroup_subsys *ss; 1060 struct css_set *cset; 1061 unsigned long key; 1062 int i; 1063 1064 /* 1065 * Build the set of subsystem state objects that we want to see in the 1066 * new css_set. while subsystems can change globally, the entries here 1067 * won't change, so no need for locking. 1068 */ 1069 for_each_subsys(ss, i) { 1070 if (root->subsys_mask & (1UL << i)) { 1071 /* 1072 * @ss is in this hierarchy, so we want the 1073 * effective css from @cgrp. 1074 */ 1075 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1076 } else { 1077 /* 1078 * @ss is not in this hierarchy, so we don't want 1079 * to change the css. 1080 */ 1081 template[i] = old_cset->subsys[i]; 1082 } 1083 } 1084 1085 key = css_set_hash(template); 1086 hash_for_each_possible(css_set_table, cset, hlist, key) { 1087 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1088 continue; 1089 1090 /* This css_set matches what we need */ 1091 return cset; 1092 } 1093 1094 /* No existing cgroup group matched */ 1095 return NULL; 1096 } 1097 1098 static void free_cgrp_cset_links(struct list_head *links_to_free) 1099 { 1100 struct cgrp_cset_link *link, *tmp_link; 1101 1102 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1103 list_del(&link->cset_link); 1104 kfree(link); 1105 } 1106 } 1107 1108 /** 1109 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1110 * @count: the number of links to allocate 1111 * @tmp_links: list_head the allocated links are put on 1112 * 1113 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1114 * through ->cset_link. Returns 0 on success or -errno. 1115 */ 1116 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1117 { 1118 struct cgrp_cset_link *link; 1119 int i; 1120 1121 INIT_LIST_HEAD(tmp_links); 1122 1123 for (i = 0; i < count; i++) { 1124 link = kzalloc(sizeof(*link), GFP_KERNEL); 1125 if (!link) { 1126 free_cgrp_cset_links(tmp_links); 1127 return -ENOMEM; 1128 } 1129 list_add(&link->cset_link, tmp_links); 1130 } 1131 return 0; 1132 } 1133 1134 /** 1135 * link_css_set - a helper function to link a css_set to a cgroup 1136 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1137 * @cset: the css_set to be linked 1138 * @cgrp: the destination cgroup 1139 */ 1140 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1141 struct cgroup *cgrp) 1142 { 1143 struct cgrp_cset_link *link; 1144 1145 BUG_ON(list_empty(tmp_links)); 1146 1147 if (cgroup_on_dfl(cgrp)) 1148 cset->dfl_cgrp = cgrp; 1149 1150 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1151 link->cset = cset; 1152 link->cgrp = cgrp; 1153 1154 /* 1155 * Always add links to the tail of the lists so that the lists are 1156 * in choronological order. 1157 */ 1158 list_move_tail(&link->cset_link, &cgrp->cset_links); 1159 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1160 1161 if (cgroup_parent(cgrp)) 1162 cgroup_get_live(cgrp); 1163 } 1164 1165 /** 1166 * find_css_set - return a new css_set with one cgroup updated 1167 * @old_cset: the baseline css_set 1168 * @cgrp: the cgroup to be updated 1169 * 1170 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1171 * substituted into the appropriate hierarchy. 1172 */ 1173 static struct css_set *find_css_set(struct css_set *old_cset, 1174 struct cgroup *cgrp) 1175 { 1176 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1177 struct css_set *cset; 1178 struct list_head tmp_links; 1179 struct cgrp_cset_link *link; 1180 struct cgroup_subsys *ss; 1181 unsigned long key; 1182 int ssid; 1183 1184 lockdep_assert_held(&cgroup_mutex); 1185 1186 /* First see if we already have a cgroup group that matches 1187 * the desired set */ 1188 spin_lock_irq(&css_set_lock); 1189 cset = find_existing_css_set(old_cset, cgrp, template); 1190 if (cset) 1191 get_css_set(cset); 1192 spin_unlock_irq(&css_set_lock); 1193 1194 if (cset) 1195 return cset; 1196 1197 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1198 if (!cset) 1199 return NULL; 1200 1201 /* Allocate all the cgrp_cset_link objects that we'll need */ 1202 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1203 kfree(cset); 1204 return NULL; 1205 } 1206 1207 refcount_set(&cset->refcount, 1); 1208 cset->dom_cset = cset; 1209 INIT_LIST_HEAD(&cset->tasks); 1210 INIT_LIST_HEAD(&cset->mg_tasks); 1211 INIT_LIST_HEAD(&cset->task_iters); 1212 INIT_LIST_HEAD(&cset->threaded_csets); 1213 INIT_HLIST_NODE(&cset->hlist); 1214 INIT_LIST_HEAD(&cset->cgrp_links); 1215 INIT_LIST_HEAD(&cset->mg_preload_node); 1216 INIT_LIST_HEAD(&cset->mg_node); 1217 1218 /* Copy the set of subsystem state objects generated in 1219 * find_existing_css_set() */ 1220 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1221 1222 spin_lock_irq(&css_set_lock); 1223 /* Add reference counts and links from the new css_set. */ 1224 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1225 struct cgroup *c = link->cgrp; 1226 1227 if (c->root == cgrp->root) 1228 c = cgrp; 1229 link_css_set(&tmp_links, cset, c); 1230 } 1231 1232 BUG_ON(!list_empty(&tmp_links)); 1233 1234 css_set_count++; 1235 1236 /* Add @cset to the hash table */ 1237 key = css_set_hash(cset->subsys); 1238 hash_add(css_set_table, &cset->hlist, key); 1239 1240 for_each_subsys(ss, ssid) { 1241 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1242 1243 list_add_tail(&cset->e_cset_node[ssid], 1244 &css->cgroup->e_csets[ssid]); 1245 css_get(css); 1246 } 1247 1248 spin_unlock_irq(&css_set_lock); 1249 1250 /* 1251 * If @cset should be threaded, look up the matching dom_cset and 1252 * link them up. We first fully initialize @cset then look for the 1253 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1254 * to stay empty until we return. 1255 */ 1256 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1257 struct css_set *dcset; 1258 1259 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1260 if (!dcset) { 1261 put_css_set(cset); 1262 return NULL; 1263 } 1264 1265 spin_lock_irq(&css_set_lock); 1266 cset->dom_cset = dcset; 1267 list_add_tail(&cset->threaded_csets_node, 1268 &dcset->threaded_csets); 1269 spin_unlock_irq(&css_set_lock); 1270 } 1271 1272 return cset; 1273 } 1274 1275 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1276 { 1277 struct cgroup *root_cgrp = kf_root->kn->priv; 1278 1279 return root_cgrp->root; 1280 } 1281 1282 static int cgroup_init_root_id(struct cgroup_root *root) 1283 { 1284 int id; 1285 1286 lockdep_assert_held(&cgroup_mutex); 1287 1288 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1289 if (id < 0) 1290 return id; 1291 1292 root->hierarchy_id = id; 1293 return 0; 1294 } 1295 1296 static void cgroup_exit_root_id(struct cgroup_root *root) 1297 { 1298 lockdep_assert_held(&cgroup_mutex); 1299 1300 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1301 } 1302 1303 void cgroup_free_root(struct cgroup_root *root) 1304 { 1305 if (root) { 1306 idr_destroy(&root->cgroup_idr); 1307 kfree(root); 1308 } 1309 } 1310 1311 static void cgroup_destroy_root(struct cgroup_root *root) 1312 { 1313 struct cgroup *cgrp = &root->cgrp; 1314 struct cgrp_cset_link *link, *tmp_link; 1315 1316 trace_cgroup_destroy_root(root); 1317 1318 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1319 1320 BUG_ON(atomic_read(&root->nr_cgrps)); 1321 BUG_ON(!list_empty(&cgrp->self.children)); 1322 1323 /* Rebind all subsystems back to the default hierarchy */ 1324 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1325 1326 /* 1327 * Release all the links from cset_links to this hierarchy's 1328 * root cgroup 1329 */ 1330 spin_lock_irq(&css_set_lock); 1331 1332 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1333 list_del(&link->cset_link); 1334 list_del(&link->cgrp_link); 1335 kfree(link); 1336 } 1337 1338 spin_unlock_irq(&css_set_lock); 1339 1340 if (!list_empty(&root->root_list)) { 1341 list_del(&root->root_list); 1342 cgroup_root_count--; 1343 } 1344 1345 cgroup_exit_root_id(root); 1346 1347 mutex_unlock(&cgroup_mutex); 1348 1349 kernfs_destroy_root(root->kf_root); 1350 cgroup_free_root(root); 1351 } 1352 1353 /* 1354 * look up cgroup associated with current task's cgroup namespace on the 1355 * specified hierarchy 1356 */ 1357 static struct cgroup * 1358 current_cgns_cgroup_from_root(struct cgroup_root *root) 1359 { 1360 struct cgroup *res = NULL; 1361 struct css_set *cset; 1362 1363 lockdep_assert_held(&css_set_lock); 1364 1365 rcu_read_lock(); 1366 1367 cset = current->nsproxy->cgroup_ns->root_cset; 1368 if (cset == &init_css_set) { 1369 res = &root->cgrp; 1370 } else { 1371 struct cgrp_cset_link *link; 1372 1373 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1374 struct cgroup *c = link->cgrp; 1375 1376 if (c->root == root) { 1377 res = c; 1378 break; 1379 } 1380 } 1381 } 1382 rcu_read_unlock(); 1383 1384 BUG_ON(!res); 1385 return res; 1386 } 1387 1388 /* look up cgroup associated with given css_set on the specified hierarchy */ 1389 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1390 struct cgroup_root *root) 1391 { 1392 struct cgroup *res = NULL; 1393 1394 lockdep_assert_held(&cgroup_mutex); 1395 lockdep_assert_held(&css_set_lock); 1396 1397 if (cset == &init_css_set) { 1398 res = &root->cgrp; 1399 } else if (root == &cgrp_dfl_root) { 1400 res = cset->dfl_cgrp; 1401 } else { 1402 struct cgrp_cset_link *link; 1403 1404 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1405 struct cgroup *c = link->cgrp; 1406 1407 if (c->root == root) { 1408 res = c; 1409 break; 1410 } 1411 } 1412 } 1413 1414 BUG_ON(!res); 1415 return res; 1416 } 1417 1418 /* 1419 * Return the cgroup for "task" from the given hierarchy. Must be 1420 * called with cgroup_mutex and css_set_lock held. 1421 */ 1422 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1423 struct cgroup_root *root) 1424 { 1425 /* 1426 * No need to lock the task - since we hold cgroup_mutex the 1427 * task can't change groups, so the only thing that can happen 1428 * is that it exits and its css is set back to init_css_set. 1429 */ 1430 return cset_cgroup_from_root(task_css_set(task), root); 1431 } 1432 1433 /* 1434 * A task must hold cgroup_mutex to modify cgroups. 1435 * 1436 * Any task can increment and decrement the count field without lock. 1437 * So in general, code holding cgroup_mutex can't rely on the count 1438 * field not changing. However, if the count goes to zero, then only 1439 * cgroup_attach_task() can increment it again. Because a count of zero 1440 * means that no tasks are currently attached, therefore there is no 1441 * way a task attached to that cgroup can fork (the other way to 1442 * increment the count). So code holding cgroup_mutex can safely 1443 * assume that if the count is zero, it will stay zero. Similarly, if 1444 * a task holds cgroup_mutex on a cgroup with zero count, it 1445 * knows that the cgroup won't be removed, as cgroup_rmdir() 1446 * needs that mutex. 1447 * 1448 * A cgroup can only be deleted if both its 'count' of using tasks 1449 * is zero, and its list of 'children' cgroups is empty. Since all 1450 * tasks in the system use _some_ cgroup, and since there is always at 1451 * least one task in the system (init, pid == 1), therefore, root cgroup 1452 * always has either children cgroups and/or using tasks. So we don't 1453 * need a special hack to ensure that root cgroup cannot be deleted. 1454 * 1455 * P.S. One more locking exception. RCU is used to guard the 1456 * update of a tasks cgroup pointer by cgroup_attach_task() 1457 */ 1458 1459 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1460 1461 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1462 char *buf) 1463 { 1464 struct cgroup_subsys *ss = cft->ss; 1465 1466 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1467 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1468 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1469 1470 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1471 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1472 cft->name); 1473 } else { 1474 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1475 } 1476 return buf; 1477 } 1478 1479 /** 1480 * cgroup_file_mode - deduce file mode of a control file 1481 * @cft: the control file in question 1482 * 1483 * S_IRUGO for read, S_IWUSR for write. 1484 */ 1485 static umode_t cgroup_file_mode(const struct cftype *cft) 1486 { 1487 umode_t mode = 0; 1488 1489 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1490 mode |= S_IRUGO; 1491 1492 if (cft->write_u64 || cft->write_s64 || cft->write) { 1493 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1494 mode |= S_IWUGO; 1495 else 1496 mode |= S_IWUSR; 1497 } 1498 1499 return mode; 1500 } 1501 1502 /** 1503 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1504 * @subtree_control: the new subtree_control mask to consider 1505 * @this_ss_mask: available subsystems 1506 * 1507 * On the default hierarchy, a subsystem may request other subsystems to be 1508 * enabled together through its ->depends_on mask. In such cases, more 1509 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1510 * 1511 * This function calculates which subsystems need to be enabled if 1512 * @subtree_control is to be applied while restricted to @this_ss_mask. 1513 */ 1514 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1515 { 1516 u16 cur_ss_mask = subtree_control; 1517 struct cgroup_subsys *ss; 1518 int ssid; 1519 1520 lockdep_assert_held(&cgroup_mutex); 1521 1522 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1523 1524 while (true) { 1525 u16 new_ss_mask = cur_ss_mask; 1526 1527 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1528 new_ss_mask |= ss->depends_on; 1529 } while_each_subsys_mask(); 1530 1531 /* 1532 * Mask out subsystems which aren't available. This can 1533 * happen only if some depended-upon subsystems were bound 1534 * to non-default hierarchies. 1535 */ 1536 new_ss_mask &= this_ss_mask; 1537 1538 if (new_ss_mask == cur_ss_mask) 1539 break; 1540 cur_ss_mask = new_ss_mask; 1541 } 1542 1543 return cur_ss_mask; 1544 } 1545 1546 /** 1547 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1548 * @kn: the kernfs_node being serviced 1549 * 1550 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1551 * the method finishes if locking succeeded. Note that once this function 1552 * returns the cgroup returned by cgroup_kn_lock_live() may become 1553 * inaccessible any time. If the caller intends to continue to access the 1554 * cgroup, it should pin it before invoking this function. 1555 */ 1556 void cgroup_kn_unlock(struct kernfs_node *kn) 1557 { 1558 struct cgroup *cgrp; 1559 1560 if (kernfs_type(kn) == KERNFS_DIR) 1561 cgrp = kn->priv; 1562 else 1563 cgrp = kn->parent->priv; 1564 1565 mutex_unlock(&cgroup_mutex); 1566 1567 kernfs_unbreak_active_protection(kn); 1568 cgroup_put(cgrp); 1569 } 1570 1571 /** 1572 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1573 * @kn: the kernfs_node being serviced 1574 * @drain_offline: perform offline draining on the cgroup 1575 * 1576 * This helper is to be used by a cgroup kernfs method currently servicing 1577 * @kn. It breaks the active protection, performs cgroup locking and 1578 * verifies that the associated cgroup is alive. Returns the cgroup if 1579 * alive; otherwise, %NULL. A successful return should be undone by a 1580 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1581 * cgroup is drained of offlining csses before return. 1582 * 1583 * Any cgroup kernfs method implementation which requires locking the 1584 * associated cgroup should use this helper. It avoids nesting cgroup 1585 * locking under kernfs active protection and allows all kernfs operations 1586 * including self-removal. 1587 */ 1588 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1589 { 1590 struct cgroup *cgrp; 1591 1592 if (kernfs_type(kn) == KERNFS_DIR) 1593 cgrp = kn->priv; 1594 else 1595 cgrp = kn->parent->priv; 1596 1597 /* 1598 * We're gonna grab cgroup_mutex which nests outside kernfs 1599 * active_ref. cgroup liveliness check alone provides enough 1600 * protection against removal. Ensure @cgrp stays accessible and 1601 * break the active_ref protection. 1602 */ 1603 if (!cgroup_tryget(cgrp)) 1604 return NULL; 1605 kernfs_break_active_protection(kn); 1606 1607 if (drain_offline) 1608 cgroup_lock_and_drain_offline(cgrp); 1609 else 1610 mutex_lock(&cgroup_mutex); 1611 1612 if (!cgroup_is_dead(cgrp)) 1613 return cgrp; 1614 1615 cgroup_kn_unlock(kn); 1616 return NULL; 1617 } 1618 1619 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1620 { 1621 char name[CGROUP_FILE_NAME_MAX]; 1622 1623 lockdep_assert_held(&cgroup_mutex); 1624 1625 if (cft->file_offset) { 1626 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1627 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1628 1629 spin_lock_irq(&cgroup_file_kn_lock); 1630 cfile->kn = NULL; 1631 spin_unlock_irq(&cgroup_file_kn_lock); 1632 1633 del_timer_sync(&cfile->notify_timer); 1634 } 1635 1636 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1637 } 1638 1639 /** 1640 * css_clear_dir - remove subsys files in a cgroup directory 1641 * @css: taget css 1642 */ 1643 static void css_clear_dir(struct cgroup_subsys_state *css) 1644 { 1645 struct cgroup *cgrp = css->cgroup; 1646 struct cftype *cfts; 1647 1648 if (!(css->flags & CSS_VISIBLE)) 1649 return; 1650 1651 css->flags &= ~CSS_VISIBLE; 1652 1653 if (!css->ss) { 1654 if (cgroup_on_dfl(cgrp)) 1655 cfts = cgroup_base_files; 1656 else 1657 cfts = cgroup1_base_files; 1658 1659 cgroup_addrm_files(css, cgrp, cfts, false); 1660 } else { 1661 list_for_each_entry(cfts, &css->ss->cfts, node) 1662 cgroup_addrm_files(css, cgrp, cfts, false); 1663 } 1664 } 1665 1666 /** 1667 * css_populate_dir - create subsys files in a cgroup directory 1668 * @css: target css 1669 * 1670 * On failure, no file is added. 1671 */ 1672 static int css_populate_dir(struct cgroup_subsys_state *css) 1673 { 1674 struct cgroup *cgrp = css->cgroup; 1675 struct cftype *cfts, *failed_cfts; 1676 int ret; 1677 1678 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1679 return 0; 1680 1681 if (!css->ss) { 1682 if (cgroup_on_dfl(cgrp)) 1683 cfts = cgroup_base_files; 1684 else 1685 cfts = cgroup1_base_files; 1686 1687 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1688 if (ret < 0) 1689 return ret; 1690 } else { 1691 list_for_each_entry(cfts, &css->ss->cfts, node) { 1692 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1693 if (ret < 0) { 1694 failed_cfts = cfts; 1695 goto err; 1696 } 1697 } 1698 } 1699 1700 css->flags |= CSS_VISIBLE; 1701 1702 return 0; 1703 err: 1704 list_for_each_entry(cfts, &css->ss->cfts, node) { 1705 if (cfts == failed_cfts) 1706 break; 1707 cgroup_addrm_files(css, cgrp, cfts, false); 1708 } 1709 return ret; 1710 } 1711 1712 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1713 { 1714 struct cgroup *dcgrp = &dst_root->cgrp; 1715 struct cgroup_subsys *ss; 1716 int ssid, i, ret; 1717 1718 lockdep_assert_held(&cgroup_mutex); 1719 1720 do_each_subsys_mask(ss, ssid, ss_mask) { 1721 /* 1722 * If @ss has non-root csses attached to it, can't move. 1723 * If @ss is an implicit controller, it is exempt from this 1724 * rule and can be stolen. 1725 */ 1726 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1727 !ss->implicit_on_dfl) 1728 return -EBUSY; 1729 1730 /* can't move between two non-dummy roots either */ 1731 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1732 return -EBUSY; 1733 } while_each_subsys_mask(); 1734 1735 do_each_subsys_mask(ss, ssid, ss_mask) { 1736 struct cgroup_root *src_root = ss->root; 1737 struct cgroup *scgrp = &src_root->cgrp; 1738 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1739 struct css_set *cset; 1740 1741 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1742 1743 /* disable from the source */ 1744 src_root->subsys_mask &= ~(1 << ssid); 1745 WARN_ON(cgroup_apply_control(scgrp)); 1746 cgroup_finalize_control(scgrp, 0); 1747 1748 /* rebind */ 1749 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1750 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1751 ss->root = dst_root; 1752 css->cgroup = dcgrp; 1753 1754 spin_lock_irq(&css_set_lock); 1755 hash_for_each(css_set_table, i, cset, hlist) 1756 list_move_tail(&cset->e_cset_node[ss->id], 1757 &dcgrp->e_csets[ss->id]); 1758 spin_unlock_irq(&css_set_lock); 1759 1760 /* default hierarchy doesn't enable controllers by default */ 1761 dst_root->subsys_mask |= 1 << ssid; 1762 if (dst_root == &cgrp_dfl_root) { 1763 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1764 } else { 1765 dcgrp->subtree_control |= 1 << ssid; 1766 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1767 } 1768 1769 ret = cgroup_apply_control(dcgrp); 1770 if (ret) 1771 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1772 ss->name, ret); 1773 1774 if (ss->bind) 1775 ss->bind(css); 1776 } while_each_subsys_mask(); 1777 1778 kernfs_activate(dcgrp->kn); 1779 return 0; 1780 } 1781 1782 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1783 struct kernfs_root *kf_root) 1784 { 1785 int len = 0; 1786 char *buf = NULL; 1787 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1788 struct cgroup *ns_cgroup; 1789 1790 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1791 if (!buf) 1792 return -ENOMEM; 1793 1794 spin_lock_irq(&css_set_lock); 1795 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1796 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1797 spin_unlock_irq(&css_set_lock); 1798 1799 if (len >= PATH_MAX) 1800 len = -ERANGE; 1801 else if (len > 0) { 1802 seq_escape(sf, buf, " \t\n\\"); 1803 len = 0; 1804 } 1805 kfree(buf); 1806 return len; 1807 } 1808 1809 enum cgroup2_param { 1810 Opt_nsdelegate, 1811 nr__cgroup2_params 1812 }; 1813 1814 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1815 fsparam_flag ("nsdelegate", Opt_nsdelegate), 1816 {} 1817 }; 1818 1819 static const struct fs_parameter_description cgroup2_fs_parameters = { 1820 .name = "cgroup2", 1821 .specs = cgroup2_param_specs, 1822 }; 1823 1824 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1825 { 1826 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1827 struct fs_parse_result result; 1828 int opt; 1829 1830 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1831 if (opt < 0) 1832 return opt; 1833 1834 switch (opt) { 1835 case Opt_nsdelegate: 1836 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1837 return 0; 1838 } 1839 return -EINVAL; 1840 } 1841 1842 static void apply_cgroup_root_flags(unsigned int root_flags) 1843 { 1844 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1845 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1846 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1847 else 1848 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1849 } 1850 } 1851 1852 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1853 { 1854 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1855 seq_puts(seq, ",nsdelegate"); 1856 return 0; 1857 } 1858 1859 static int cgroup_reconfigure(struct fs_context *fc) 1860 { 1861 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1862 1863 apply_cgroup_root_flags(ctx->flags); 1864 return 0; 1865 } 1866 1867 /* 1868 * To reduce the fork() overhead for systems that are not actually using 1869 * their cgroups capability, we don't maintain the lists running through 1870 * each css_set to its tasks until we see the list actually used - in other 1871 * words after the first mount. 1872 */ 1873 static bool use_task_css_set_links __read_mostly; 1874 1875 static void cgroup_enable_task_cg_lists(void) 1876 { 1877 struct task_struct *p, *g; 1878 1879 /* 1880 * We need tasklist_lock because RCU is not safe against 1881 * while_each_thread(). Besides, a forking task that has passed 1882 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1883 * is not guaranteed to have its child immediately visible in the 1884 * tasklist if we walk through it with RCU. 1885 */ 1886 read_lock(&tasklist_lock); 1887 spin_lock_irq(&css_set_lock); 1888 1889 if (use_task_css_set_links) 1890 goto out_unlock; 1891 1892 use_task_css_set_links = true; 1893 1894 do_each_thread(g, p) { 1895 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1896 task_css_set(p) != &init_css_set); 1897 1898 /* 1899 * We should check if the process is exiting, otherwise 1900 * it will race with cgroup_exit() in that the list 1901 * entry won't be deleted though the process has exited. 1902 * Do it while holding siglock so that we don't end up 1903 * racing against cgroup_exit(). 1904 * 1905 * Interrupts were already disabled while acquiring 1906 * the css_set_lock, so we do not need to disable it 1907 * again when acquiring the sighand->siglock here. 1908 */ 1909 spin_lock(&p->sighand->siglock); 1910 if (!(p->flags & PF_EXITING)) { 1911 struct css_set *cset = task_css_set(p); 1912 1913 if (!css_set_populated(cset)) 1914 css_set_update_populated(cset, true); 1915 list_add_tail(&p->cg_list, &cset->tasks); 1916 get_css_set(cset); 1917 cset->nr_tasks++; 1918 } 1919 spin_unlock(&p->sighand->siglock); 1920 } while_each_thread(g, p); 1921 out_unlock: 1922 spin_unlock_irq(&css_set_lock); 1923 read_unlock(&tasklist_lock); 1924 } 1925 1926 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1927 { 1928 struct cgroup_subsys *ss; 1929 int ssid; 1930 1931 INIT_LIST_HEAD(&cgrp->self.sibling); 1932 INIT_LIST_HEAD(&cgrp->self.children); 1933 INIT_LIST_HEAD(&cgrp->cset_links); 1934 INIT_LIST_HEAD(&cgrp->pidlists); 1935 mutex_init(&cgrp->pidlist_mutex); 1936 cgrp->self.cgroup = cgrp; 1937 cgrp->self.flags |= CSS_ONLINE; 1938 cgrp->dom_cgrp = cgrp; 1939 cgrp->max_descendants = INT_MAX; 1940 cgrp->max_depth = INT_MAX; 1941 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1942 prev_cputime_init(&cgrp->prev_cputime); 1943 1944 for_each_subsys(ss, ssid) 1945 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1946 1947 init_waitqueue_head(&cgrp->offline_waitq); 1948 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1949 } 1950 1951 void init_cgroup_root(struct cgroup_fs_context *ctx) 1952 { 1953 struct cgroup_root *root = ctx->root; 1954 struct cgroup *cgrp = &root->cgrp; 1955 1956 INIT_LIST_HEAD(&root->root_list); 1957 atomic_set(&root->nr_cgrps, 1); 1958 cgrp->root = root; 1959 init_cgroup_housekeeping(cgrp); 1960 idr_init(&root->cgroup_idr); 1961 1962 root->flags = ctx->flags; 1963 if (ctx->release_agent) 1964 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1965 if (ctx->name) 1966 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1967 if (ctx->cpuset_clone_children) 1968 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1969 } 1970 1971 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1972 { 1973 LIST_HEAD(tmp_links); 1974 struct cgroup *root_cgrp = &root->cgrp; 1975 struct kernfs_syscall_ops *kf_sops; 1976 struct css_set *cset; 1977 int i, ret; 1978 1979 lockdep_assert_held(&cgroup_mutex); 1980 1981 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1982 if (ret < 0) 1983 goto out; 1984 root_cgrp->id = ret; 1985 root_cgrp->ancestor_ids[0] = ret; 1986 1987 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1988 0, GFP_KERNEL); 1989 if (ret) 1990 goto out; 1991 1992 /* 1993 * We're accessing css_set_count without locking css_set_lock here, 1994 * but that's OK - it can only be increased by someone holding 1995 * cgroup_lock, and that's us. Later rebinding may disable 1996 * controllers on the default hierarchy and thus create new csets, 1997 * which can't be more than the existing ones. Allocate 2x. 1998 */ 1999 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2000 if (ret) 2001 goto cancel_ref; 2002 2003 ret = cgroup_init_root_id(root); 2004 if (ret) 2005 goto cancel_ref; 2006 2007 kf_sops = root == &cgrp_dfl_root ? 2008 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2009 2010 root->kf_root = kernfs_create_root(kf_sops, 2011 KERNFS_ROOT_CREATE_DEACTIVATED | 2012 KERNFS_ROOT_SUPPORT_EXPORTOP, 2013 root_cgrp); 2014 if (IS_ERR(root->kf_root)) { 2015 ret = PTR_ERR(root->kf_root); 2016 goto exit_root_id; 2017 } 2018 root_cgrp->kn = root->kf_root->kn; 2019 2020 ret = css_populate_dir(&root_cgrp->self); 2021 if (ret) 2022 goto destroy_root; 2023 2024 ret = rebind_subsystems(root, ss_mask); 2025 if (ret) 2026 goto destroy_root; 2027 2028 ret = cgroup_bpf_inherit(root_cgrp); 2029 WARN_ON_ONCE(ret); 2030 2031 trace_cgroup_setup_root(root); 2032 2033 /* 2034 * There must be no failure case after here, since rebinding takes 2035 * care of subsystems' refcounts, which are explicitly dropped in 2036 * the failure exit path. 2037 */ 2038 list_add(&root->root_list, &cgroup_roots); 2039 cgroup_root_count++; 2040 2041 /* 2042 * Link the root cgroup in this hierarchy into all the css_set 2043 * objects. 2044 */ 2045 spin_lock_irq(&css_set_lock); 2046 hash_for_each(css_set_table, i, cset, hlist) { 2047 link_css_set(&tmp_links, cset, root_cgrp); 2048 if (css_set_populated(cset)) 2049 cgroup_update_populated(root_cgrp, true); 2050 } 2051 spin_unlock_irq(&css_set_lock); 2052 2053 BUG_ON(!list_empty(&root_cgrp->self.children)); 2054 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2055 2056 kernfs_activate(root_cgrp->kn); 2057 ret = 0; 2058 goto out; 2059 2060 destroy_root: 2061 kernfs_destroy_root(root->kf_root); 2062 root->kf_root = NULL; 2063 exit_root_id: 2064 cgroup_exit_root_id(root); 2065 cancel_ref: 2066 percpu_ref_exit(&root_cgrp->self.refcnt); 2067 out: 2068 free_cgrp_cset_links(&tmp_links); 2069 return ret; 2070 } 2071 2072 int cgroup_do_get_tree(struct fs_context *fc) 2073 { 2074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2075 int ret; 2076 2077 ctx->kfc.root = ctx->root->kf_root; 2078 if (fc->fs_type == &cgroup2_fs_type) 2079 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2080 else 2081 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2082 ret = kernfs_get_tree(fc); 2083 2084 /* 2085 * In non-init cgroup namespace, instead of root cgroup's dentry, 2086 * we return the dentry corresponding to the cgroupns->root_cgrp. 2087 */ 2088 if (!ret && ctx->ns != &init_cgroup_ns) { 2089 struct dentry *nsdentry; 2090 struct super_block *sb = fc->root->d_sb; 2091 struct cgroup *cgrp; 2092 2093 mutex_lock(&cgroup_mutex); 2094 spin_lock_irq(&css_set_lock); 2095 2096 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2097 2098 spin_unlock_irq(&css_set_lock); 2099 mutex_unlock(&cgroup_mutex); 2100 2101 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2102 dput(fc->root); 2103 fc->root = nsdentry; 2104 if (IS_ERR(nsdentry)) { 2105 ret = PTR_ERR(nsdentry); 2106 deactivate_locked_super(sb); 2107 } 2108 } 2109 2110 if (!ctx->kfc.new_sb_created) 2111 cgroup_put(&ctx->root->cgrp); 2112 2113 return ret; 2114 } 2115 2116 /* 2117 * Destroy a cgroup filesystem context. 2118 */ 2119 static void cgroup_fs_context_free(struct fs_context *fc) 2120 { 2121 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2122 2123 kfree(ctx->name); 2124 kfree(ctx->release_agent); 2125 put_cgroup_ns(ctx->ns); 2126 kernfs_free_fs_context(fc); 2127 kfree(ctx); 2128 } 2129 2130 static int cgroup_get_tree(struct fs_context *fc) 2131 { 2132 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2133 int ret; 2134 2135 cgrp_dfl_visible = true; 2136 cgroup_get_live(&cgrp_dfl_root.cgrp); 2137 ctx->root = &cgrp_dfl_root; 2138 2139 ret = cgroup_do_get_tree(fc); 2140 if (!ret) 2141 apply_cgroup_root_flags(ctx->flags); 2142 return ret; 2143 } 2144 2145 static const struct fs_context_operations cgroup_fs_context_ops = { 2146 .free = cgroup_fs_context_free, 2147 .parse_param = cgroup2_parse_param, 2148 .get_tree = cgroup_get_tree, 2149 .reconfigure = cgroup_reconfigure, 2150 }; 2151 2152 static const struct fs_context_operations cgroup1_fs_context_ops = { 2153 .free = cgroup_fs_context_free, 2154 .parse_param = cgroup1_parse_param, 2155 .get_tree = cgroup1_get_tree, 2156 .reconfigure = cgroup1_reconfigure, 2157 }; 2158 2159 /* 2160 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2161 * we select the namespace we're going to use. 2162 */ 2163 static int cgroup_init_fs_context(struct fs_context *fc) 2164 { 2165 struct cgroup_fs_context *ctx; 2166 2167 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2168 if (!ctx) 2169 return -ENOMEM; 2170 2171 /* 2172 * The first time anyone tries to mount a cgroup, enable the list 2173 * linking each css_set to its tasks and fix up all existing tasks. 2174 */ 2175 if (!use_task_css_set_links) 2176 cgroup_enable_task_cg_lists(); 2177 2178 ctx->ns = current->nsproxy->cgroup_ns; 2179 get_cgroup_ns(ctx->ns); 2180 fc->fs_private = &ctx->kfc; 2181 if (fc->fs_type == &cgroup2_fs_type) 2182 fc->ops = &cgroup_fs_context_ops; 2183 else 2184 fc->ops = &cgroup1_fs_context_ops; 2185 if (fc->user_ns) 2186 put_user_ns(fc->user_ns); 2187 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2188 fc->global = true; 2189 return 0; 2190 } 2191 2192 static void cgroup_kill_sb(struct super_block *sb) 2193 { 2194 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2195 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2196 2197 /* 2198 * If @root doesn't have any children, start killing it. 2199 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2200 * cgroup_mount() may wait for @root's release. 2201 * 2202 * And don't kill the default root. 2203 */ 2204 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2205 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2206 percpu_ref_kill(&root->cgrp.self.refcnt); 2207 cgroup_put(&root->cgrp); 2208 kernfs_kill_sb(sb); 2209 } 2210 2211 struct file_system_type cgroup_fs_type = { 2212 .name = "cgroup", 2213 .init_fs_context = cgroup_init_fs_context, 2214 .parameters = &cgroup1_fs_parameters, 2215 .kill_sb = cgroup_kill_sb, 2216 .fs_flags = FS_USERNS_MOUNT, 2217 }; 2218 2219 static struct file_system_type cgroup2_fs_type = { 2220 .name = "cgroup2", 2221 .init_fs_context = cgroup_init_fs_context, 2222 .parameters = &cgroup2_fs_parameters, 2223 .kill_sb = cgroup_kill_sb, 2224 .fs_flags = FS_USERNS_MOUNT, 2225 }; 2226 2227 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2228 struct cgroup_namespace *ns) 2229 { 2230 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2231 2232 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2233 } 2234 2235 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2236 struct cgroup_namespace *ns) 2237 { 2238 int ret; 2239 2240 mutex_lock(&cgroup_mutex); 2241 spin_lock_irq(&css_set_lock); 2242 2243 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2244 2245 spin_unlock_irq(&css_set_lock); 2246 mutex_unlock(&cgroup_mutex); 2247 2248 return ret; 2249 } 2250 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2251 2252 /** 2253 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2254 * @task: target task 2255 * @buf: the buffer to write the path into 2256 * @buflen: the length of the buffer 2257 * 2258 * Determine @task's cgroup on the first (the one with the lowest non-zero 2259 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2260 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2261 * cgroup controller callbacks. 2262 * 2263 * Return value is the same as kernfs_path(). 2264 */ 2265 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2266 { 2267 struct cgroup_root *root; 2268 struct cgroup *cgrp; 2269 int hierarchy_id = 1; 2270 int ret; 2271 2272 mutex_lock(&cgroup_mutex); 2273 spin_lock_irq(&css_set_lock); 2274 2275 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2276 2277 if (root) { 2278 cgrp = task_cgroup_from_root(task, root); 2279 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2280 } else { 2281 /* if no hierarchy exists, everyone is in "/" */ 2282 ret = strlcpy(buf, "/", buflen); 2283 } 2284 2285 spin_unlock_irq(&css_set_lock); 2286 mutex_unlock(&cgroup_mutex); 2287 return ret; 2288 } 2289 EXPORT_SYMBOL_GPL(task_cgroup_path); 2290 2291 /** 2292 * cgroup_migrate_add_task - add a migration target task to a migration context 2293 * @task: target task 2294 * @mgctx: target migration context 2295 * 2296 * Add @task, which is a migration target, to @mgctx->tset. This function 2297 * becomes noop if @task doesn't need to be migrated. @task's css_set 2298 * should have been added as a migration source and @task->cg_list will be 2299 * moved from the css_set's tasks list to mg_tasks one. 2300 */ 2301 static void cgroup_migrate_add_task(struct task_struct *task, 2302 struct cgroup_mgctx *mgctx) 2303 { 2304 struct css_set *cset; 2305 2306 lockdep_assert_held(&css_set_lock); 2307 2308 /* @task either already exited or can't exit until the end */ 2309 if (task->flags & PF_EXITING) 2310 return; 2311 2312 /* leave @task alone if post_fork() hasn't linked it yet */ 2313 if (list_empty(&task->cg_list)) 2314 return; 2315 2316 cset = task_css_set(task); 2317 if (!cset->mg_src_cgrp) 2318 return; 2319 2320 mgctx->tset.nr_tasks++; 2321 2322 list_move_tail(&task->cg_list, &cset->mg_tasks); 2323 if (list_empty(&cset->mg_node)) 2324 list_add_tail(&cset->mg_node, 2325 &mgctx->tset.src_csets); 2326 if (list_empty(&cset->mg_dst_cset->mg_node)) 2327 list_add_tail(&cset->mg_dst_cset->mg_node, 2328 &mgctx->tset.dst_csets); 2329 } 2330 2331 /** 2332 * cgroup_taskset_first - reset taskset and return the first task 2333 * @tset: taskset of interest 2334 * @dst_cssp: output variable for the destination css 2335 * 2336 * @tset iteration is initialized and the first task is returned. 2337 */ 2338 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2339 struct cgroup_subsys_state **dst_cssp) 2340 { 2341 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2342 tset->cur_task = NULL; 2343 2344 return cgroup_taskset_next(tset, dst_cssp); 2345 } 2346 2347 /** 2348 * cgroup_taskset_next - iterate to the next task in taskset 2349 * @tset: taskset of interest 2350 * @dst_cssp: output variable for the destination css 2351 * 2352 * Return the next task in @tset. Iteration must have been initialized 2353 * with cgroup_taskset_first(). 2354 */ 2355 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2356 struct cgroup_subsys_state **dst_cssp) 2357 { 2358 struct css_set *cset = tset->cur_cset; 2359 struct task_struct *task = tset->cur_task; 2360 2361 while (&cset->mg_node != tset->csets) { 2362 if (!task) 2363 task = list_first_entry(&cset->mg_tasks, 2364 struct task_struct, cg_list); 2365 else 2366 task = list_next_entry(task, cg_list); 2367 2368 if (&task->cg_list != &cset->mg_tasks) { 2369 tset->cur_cset = cset; 2370 tset->cur_task = task; 2371 2372 /* 2373 * This function may be called both before and 2374 * after cgroup_taskset_migrate(). The two cases 2375 * can be distinguished by looking at whether @cset 2376 * has its ->mg_dst_cset set. 2377 */ 2378 if (cset->mg_dst_cset) 2379 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2380 else 2381 *dst_cssp = cset->subsys[tset->ssid]; 2382 2383 return task; 2384 } 2385 2386 cset = list_next_entry(cset, mg_node); 2387 task = NULL; 2388 } 2389 2390 return NULL; 2391 } 2392 2393 /** 2394 * cgroup_taskset_migrate - migrate a taskset 2395 * @mgctx: migration context 2396 * 2397 * Migrate tasks in @mgctx as setup by migration preparation functions. 2398 * This function fails iff one of the ->can_attach callbacks fails and 2399 * guarantees that either all or none of the tasks in @mgctx are migrated. 2400 * @mgctx is consumed regardless of success. 2401 */ 2402 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2403 { 2404 struct cgroup_taskset *tset = &mgctx->tset; 2405 struct cgroup_subsys *ss; 2406 struct task_struct *task, *tmp_task; 2407 struct css_set *cset, *tmp_cset; 2408 int ssid, failed_ssid, ret; 2409 2410 /* check that we can legitimately attach to the cgroup */ 2411 if (tset->nr_tasks) { 2412 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2413 if (ss->can_attach) { 2414 tset->ssid = ssid; 2415 ret = ss->can_attach(tset); 2416 if (ret) { 2417 failed_ssid = ssid; 2418 goto out_cancel_attach; 2419 } 2420 } 2421 } while_each_subsys_mask(); 2422 } 2423 2424 /* 2425 * Now that we're guaranteed success, proceed to move all tasks to 2426 * the new cgroup. There are no failure cases after here, so this 2427 * is the commit point. 2428 */ 2429 spin_lock_irq(&css_set_lock); 2430 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2431 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2432 struct css_set *from_cset = task_css_set(task); 2433 struct css_set *to_cset = cset->mg_dst_cset; 2434 2435 get_css_set(to_cset); 2436 to_cset->nr_tasks++; 2437 css_set_move_task(task, from_cset, to_cset, true); 2438 from_cset->nr_tasks--; 2439 /* 2440 * If the source or destination cgroup is frozen, 2441 * the task might require to change its state. 2442 */ 2443 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2444 to_cset->dfl_cgrp); 2445 put_css_set_locked(from_cset); 2446 2447 } 2448 } 2449 spin_unlock_irq(&css_set_lock); 2450 2451 /* 2452 * Migration is committed, all target tasks are now on dst_csets. 2453 * Nothing is sensitive to fork() after this point. Notify 2454 * controllers that migration is complete. 2455 */ 2456 tset->csets = &tset->dst_csets; 2457 2458 if (tset->nr_tasks) { 2459 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2460 if (ss->attach) { 2461 tset->ssid = ssid; 2462 ss->attach(tset); 2463 } 2464 } while_each_subsys_mask(); 2465 } 2466 2467 ret = 0; 2468 goto out_release_tset; 2469 2470 out_cancel_attach: 2471 if (tset->nr_tasks) { 2472 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2473 if (ssid == failed_ssid) 2474 break; 2475 if (ss->cancel_attach) { 2476 tset->ssid = ssid; 2477 ss->cancel_attach(tset); 2478 } 2479 } while_each_subsys_mask(); 2480 } 2481 out_release_tset: 2482 spin_lock_irq(&css_set_lock); 2483 list_splice_init(&tset->dst_csets, &tset->src_csets); 2484 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2485 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2486 list_del_init(&cset->mg_node); 2487 } 2488 spin_unlock_irq(&css_set_lock); 2489 2490 /* 2491 * Re-initialize the cgroup_taskset structure in case it is reused 2492 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2493 * iteration. 2494 */ 2495 tset->nr_tasks = 0; 2496 tset->csets = &tset->src_csets; 2497 return ret; 2498 } 2499 2500 /** 2501 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2502 * @dst_cgrp: destination cgroup to test 2503 * 2504 * On the default hierarchy, except for the mixable, (possible) thread root 2505 * and threaded cgroups, subtree_control must be zero for migration 2506 * destination cgroups with tasks so that child cgroups don't compete 2507 * against tasks. 2508 */ 2509 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2510 { 2511 /* v1 doesn't have any restriction */ 2512 if (!cgroup_on_dfl(dst_cgrp)) 2513 return 0; 2514 2515 /* verify @dst_cgrp can host resources */ 2516 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2517 return -EOPNOTSUPP; 2518 2519 /* mixables don't care */ 2520 if (cgroup_is_mixable(dst_cgrp)) 2521 return 0; 2522 2523 /* 2524 * If @dst_cgrp is already or can become a thread root or is 2525 * threaded, it doesn't matter. 2526 */ 2527 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2528 return 0; 2529 2530 /* apply no-internal-process constraint */ 2531 if (dst_cgrp->subtree_control) 2532 return -EBUSY; 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * cgroup_migrate_finish - cleanup after attach 2539 * @mgctx: migration context 2540 * 2541 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2542 * those functions for details. 2543 */ 2544 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2545 { 2546 LIST_HEAD(preloaded); 2547 struct css_set *cset, *tmp_cset; 2548 2549 lockdep_assert_held(&cgroup_mutex); 2550 2551 spin_lock_irq(&css_set_lock); 2552 2553 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2554 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2555 2556 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2557 cset->mg_src_cgrp = NULL; 2558 cset->mg_dst_cgrp = NULL; 2559 cset->mg_dst_cset = NULL; 2560 list_del_init(&cset->mg_preload_node); 2561 put_css_set_locked(cset); 2562 } 2563 2564 spin_unlock_irq(&css_set_lock); 2565 } 2566 2567 /** 2568 * cgroup_migrate_add_src - add a migration source css_set 2569 * @src_cset: the source css_set to add 2570 * @dst_cgrp: the destination cgroup 2571 * @mgctx: migration context 2572 * 2573 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2574 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2575 * up by cgroup_migrate_finish(). 2576 * 2577 * This function may be called without holding cgroup_threadgroup_rwsem 2578 * even if the target is a process. Threads may be created and destroyed 2579 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2580 * into play and the preloaded css_sets are guaranteed to cover all 2581 * migrations. 2582 */ 2583 void cgroup_migrate_add_src(struct css_set *src_cset, 2584 struct cgroup *dst_cgrp, 2585 struct cgroup_mgctx *mgctx) 2586 { 2587 struct cgroup *src_cgrp; 2588 2589 lockdep_assert_held(&cgroup_mutex); 2590 lockdep_assert_held(&css_set_lock); 2591 2592 /* 2593 * If ->dead, @src_set is associated with one or more dead cgroups 2594 * and doesn't contain any migratable tasks. Ignore it early so 2595 * that the rest of migration path doesn't get confused by it. 2596 */ 2597 if (src_cset->dead) 2598 return; 2599 2600 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2601 2602 if (!list_empty(&src_cset->mg_preload_node)) 2603 return; 2604 2605 WARN_ON(src_cset->mg_src_cgrp); 2606 WARN_ON(src_cset->mg_dst_cgrp); 2607 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2608 WARN_ON(!list_empty(&src_cset->mg_node)); 2609 2610 src_cset->mg_src_cgrp = src_cgrp; 2611 src_cset->mg_dst_cgrp = dst_cgrp; 2612 get_css_set(src_cset); 2613 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2614 } 2615 2616 /** 2617 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2618 * @mgctx: migration context 2619 * 2620 * Tasks are about to be moved and all the source css_sets have been 2621 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2622 * pins all destination css_sets, links each to its source, and append them 2623 * to @mgctx->preloaded_dst_csets. 2624 * 2625 * This function must be called after cgroup_migrate_add_src() has been 2626 * called on each migration source css_set. After migration is performed 2627 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2628 * @mgctx. 2629 */ 2630 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2631 { 2632 struct css_set *src_cset, *tmp_cset; 2633 2634 lockdep_assert_held(&cgroup_mutex); 2635 2636 /* look up the dst cset for each src cset and link it to src */ 2637 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2638 mg_preload_node) { 2639 struct css_set *dst_cset; 2640 struct cgroup_subsys *ss; 2641 int ssid; 2642 2643 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2644 if (!dst_cset) 2645 return -ENOMEM; 2646 2647 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2648 2649 /* 2650 * If src cset equals dst, it's noop. Drop the src. 2651 * cgroup_migrate() will skip the cset too. Note that we 2652 * can't handle src == dst as some nodes are used by both. 2653 */ 2654 if (src_cset == dst_cset) { 2655 src_cset->mg_src_cgrp = NULL; 2656 src_cset->mg_dst_cgrp = NULL; 2657 list_del_init(&src_cset->mg_preload_node); 2658 put_css_set(src_cset); 2659 put_css_set(dst_cset); 2660 continue; 2661 } 2662 2663 src_cset->mg_dst_cset = dst_cset; 2664 2665 if (list_empty(&dst_cset->mg_preload_node)) 2666 list_add_tail(&dst_cset->mg_preload_node, 2667 &mgctx->preloaded_dst_csets); 2668 else 2669 put_css_set(dst_cset); 2670 2671 for_each_subsys(ss, ssid) 2672 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2673 mgctx->ss_mask |= 1 << ssid; 2674 } 2675 2676 return 0; 2677 } 2678 2679 /** 2680 * cgroup_migrate - migrate a process or task to a cgroup 2681 * @leader: the leader of the process or the task to migrate 2682 * @threadgroup: whether @leader points to the whole process or a single task 2683 * @mgctx: migration context 2684 * 2685 * Migrate a process or task denoted by @leader. If migrating a process, 2686 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2687 * responsible for invoking cgroup_migrate_add_src() and 2688 * cgroup_migrate_prepare_dst() on the targets before invoking this 2689 * function and following up with cgroup_migrate_finish(). 2690 * 2691 * As long as a controller's ->can_attach() doesn't fail, this function is 2692 * guaranteed to succeed. This means that, excluding ->can_attach() 2693 * failure, when migrating multiple targets, the success or failure can be 2694 * decided for all targets by invoking group_migrate_prepare_dst() before 2695 * actually starting migrating. 2696 */ 2697 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2698 struct cgroup_mgctx *mgctx) 2699 { 2700 struct task_struct *task; 2701 2702 /* 2703 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2704 * already PF_EXITING could be freed from underneath us unless we 2705 * take an rcu_read_lock. 2706 */ 2707 spin_lock_irq(&css_set_lock); 2708 rcu_read_lock(); 2709 task = leader; 2710 do { 2711 cgroup_migrate_add_task(task, mgctx); 2712 if (!threadgroup) 2713 break; 2714 } while_each_thread(leader, task); 2715 rcu_read_unlock(); 2716 spin_unlock_irq(&css_set_lock); 2717 2718 return cgroup_migrate_execute(mgctx); 2719 } 2720 2721 /** 2722 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2723 * @dst_cgrp: the cgroup to attach to 2724 * @leader: the task or the leader of the threadgroup to be attached 2725 * @threadgroup: attach the whole threadgroup? 2726 * 2727 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2728 */ 2729 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2730 bool threadgroup) 2731 { 2732 DEFINE_CGROUP_MGCTX(mgctx); 2733 struct task_struct *task; 2734 int ret; 2735 2736 ret = cgroup_migrate_vet_dst(dst_cgrp); 2737 if (ret) 2738 return ret; 2739 2740 /* look up all src csets */ 2741 spin_lock_irq(&css_set_lock); 2742 rcu_read_lock(); 2743 task = leader; 2744 do { 2745 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2746 if (!threadgroup) 2747 break; 2748 } while_each_thread(leader, task); 2749 rcu_read_unlock(); 2750 spin_unlock_irq(&css_set_lock); 2751 2752 /* prepare dst csets and commit */ 2753 ret = cgroup_migrate_prepare_dst(&mgctx); 2754 if (!ret) 2755 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2756 2757 cgroup_migrate_finish(&mgctx); 2758 2759 if (!ret) 2760 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2761 2762 return ret; 2763 } 2764 2765 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2766 __acquires(&cgroup_threadgroup_rwsem) 2767 { 2768 struct task_struct *tsk; 2769 pid_t pid; 2770 2771 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2772 return ERR_PTR(-EINVAL); 2773 2774 percpu_down_write(&cgroup_threadgroup_rwsem); 2775 2776 rcu_read_lock(); 2777 if (pid) { 2778 tsk = find_task_by_vpid(pid); 2779 if (!tsk) { 2780 tsk = ERR_PTR(-ESRCH); 2781 goto out_unlock_threadgroup; 2782 } 2783 } else { 2784 tsk = current; 2785 } 2786 2787 if (threadgroup) 2788 tsk = tsk->group_leader; 2789 2790 /* 2791 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2792 * If userland migrates such a kthread to a non-root cgroup, it can 2793 * become trapped in a cpuset, or RT kthread may be born in a 2794 * cgroup with no rt_runtime allocated. Just say no. 2795 */ 2796 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2797 tsk = ERR_PTR(-EINVAL); 2798 goto out_unlock_threadgroup; 2799 } 2800 2801 get_task_struct(tsk); 2802 goto out_unlock_rcu; 2803 2804 out_unlock_threadgroup: 2805 percpu_up_write(&cgroup_threadgroup_rwsem); 2806 out_unlock_rcu: 2807 rcu_read_unlock(); 2808 return tsk; 2809 } 2810 2811 void cgroup_procs_write_finish(struct task_struct *task) 2812 __releases(&cgroup_threadgroup_rwsem) 2813 { 2814 struct cgroup_subsys *ss; 2815 int ssid; 2816 2817 /* release reference from cgroup_procs_write_start() */ 2818 put_task_struct(task); 2819 2820 percpu_up_write(&cgroup_threadgroup_rwsem); 2821 for_each_subsys(ss, ssid) 2822 if (ss->post_attach) 2823 ss->post_attach(); 2824 } 2825 2826 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2827 { 2828 struct cgroup_subsys *ss; 2829 bool printed = false; 2830 int ssid; 2831 2832 do_each_subsys_mask(ss, ssid, ss_mask) { 2833 if (printed) 2834 seq_putc(seq, ' '); 2835 seq_printf(seq, "%s", ss->name); 2836 printed = true; 2837 } while_each_subsys_mask(); 2838 if (printed) 2839 seq_putc(seq, '\n'); 2840 } 2841 2842 /* show controllers which are enabled from the parent */ 2843 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2844 { 2845 struct cgroup *cgrp = seq_css(seq)->cgroup; 2846 2847 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2848 return 0; 2849 } 2850 2851 /* show controllers which are enabled for a given cgroup's children */ 2852 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2853 { 2854 struct cgroup *cgrp = seq_css(seq)->cgroup; 2855 2856 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2857 return 0; 2858 } 2859 2860 /** 2861 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2862 * @cgrp: root of the subtree to update csses for 2863 * 2864 * @cgrp's control masks have changed and its subtree's css associations 2865 * need to be updated accordingly. This function looks up all css_sets 2866 * which are attached to the subtree, creates the matching updated css_sets 2867 * and migrates the tasks to the new ones. 2868 */ 2869 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2870 { 2871 DEFINE_CGROUP_MGCTX(mgctx); 2872 struct cgroup_subsys_state *d_css; 2873 struct cgroup *dsct; 2874 struct css_set *src_cset; 2875 int ret; 2876 2877 lockdep_assert_held(&cgroup_mutex); 2878 2879 percpu_down_write(&cgroup_threadgroup_rwsem); 2880 2881 /* look up all csses currently attached to @cgrp's subtree */ 2882 spin_lock_irq(&css_set_lock); 2883 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2884 struct cgrp_cset_link *link; 2885 2886 list_for_each_entry(link, &dsct->cset_links, cset_link) 2887 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2888 } 2889 spin_unlock_irq(&css_set_lock); 2890 2891 /* NULL dst indicates self on default hierarchy */ 2892 ret = cgroup_migrate_prepare_dst(&mgctx); 2893 if (ret) 2894 goto out_finish; 2895 2896 spin_lock_irq(&css_set_lock); 2897 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2898 struct task_struct *task, *ntask; 2899 2900 /* all tasks in src_csets need to be migrated */ 2901 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2902 cgroup_migrate_add_task(task, &mgctx); 2903 } 2904 spin_unlock_irq(&css_set_lock); 2905 2906 ret = cgroup_migrate_execute(&mgctx); 2907 out_finish: 2908 cgroup_migrate_finish(&mgctx); 2909 percpu_up_write(&cgroup_threadgroup_rwsem); 2910 return ret; 2911 } 2912 2913 /** 2914 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2915 * @cgrp: root of the target subtree 2916 * 2917 * Because css offlining is asynchronous, userland may try to re-enable a 2918 * controller while the previous css is still around. This function grabs 2919 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2920 */ 2921 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2922 __acquires(&cgroup_mutex) 2923 { 2924 struct cgroup *dsct; 2925 struct cgroup_subsys_state *d_css; 2926 struct cgroup_subsys *ss; 2927 int ssid; 2928 2929 restart: 2930 mutex_lock(&cgroup_mutex); 2931 2932 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2933 for_each_subsys(ss, ssid) { 2934 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2935 DEFINE_WAIT(wait); 2936 2937 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2938 continue; 2939 2940 cgroup_get_live(dsct); 2941 prepare_to_wait(&dsct->offline_waitq, &wait, 2942 TASK_UNINTERRUPTIBLE); 2943 2944 mutex_unlock(&cgroup_mutex); 2945 schedule(); 2946 finish_wait(&dsct->offline_waitq, &wait); 2947 2948 cgroup_put(dsct); 2949 goto restart; 2950 } 2951 } 2952 } 2953 2954 /** 2955 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2956 * @cgrp: root of the target subtree 2957 * 2958 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2959 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2960 * itself. 2961 */ 2962 static void cgroup_save_control(struct cgroup *cgrp) 2963 { 2964 struct cgroup *dsct; 2965 struct cgroup_subsys_state *d_css; 2966 2967 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2968 dsct->old_subtree_control = dsct->subtree_control; 2969 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2970 dsct->old_dom_cgrp = dsct->dom_cgrp; 2971 } 2972 } 2973 2974 /** 2975 * cgroup_propagate_control - refresh control masks of a subtree 2976 * @cgrp: root of the target subtree 2977 * 2978 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2979 * ->subtree_control and propagate controller availability through the 2980 * subtree so that descendants don't have unavailable controllers enabled. 2981 */ 2982 static void cgroup_propagate_control(struct cgroup *cgrp) 2983 { 2984 struct cgroup *dsct; 2985 struct cgroup_subsys_state *d_css; 2986 2987 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2988 dsct->subtree_control &= cgroup_control(dsct); 2989 dsct->subtree_ss_mask = 2990 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2991 cgroup_ss_mask(dsct)); 2992 } 2993 } 2994 2995 /** 2996 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2997 * @cgrp: root of the target subtree 2998 * 2999 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3000 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3001 * itself. 3002 */ 3003 static void cgroup_restore_control(struct cgroup *cgrp) 3004 { 3005 struct cgroup *dsct; 3006 struct cgroup_subsys_state *d_css; 3007 3008 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3009 dsct->subtree_control = dsct->old_subtree_control; 3010 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3011 dsct->dom_cgrp = dsct->old_dom_cgrp; 3012 } 3013 } 3014 3015 static bool css_visible(struct cgroup_subsys_state *css) 3016 { 3017 struct cgroup_subsys *ss = css->ss; 3018 struct cgroup *cgrp = css->cgroup; 3019 3020 if (cgroup_control(cgrp) & (1 << ss->id)) 3021 return true; 3022 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3023 return false; 3024 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3025 } 3026 3027 /** 3028 * cgroup_apply_control_enable - enable or show csses according to control 3029 * @cgrp: root of the target subtree 3030 * 3031 * Walk @cgrp's subtree and create new csses or make the existing ones 3032 * visible. A css is created invisible if it's being implicitly enabled 3033 * through dependency. An invisible css is made visible when the userland 3034 * explicitly enables it. 3035 * 3036 * Returns 0 on success, -errno on failure. On failure, csses which have 3037 * been processed already aren't cleaned up. The caller is responsible for 3038 * cleaning up with cgroup_apply_control_disable(). 3039 */ 3040 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3041 { 3042 struct cgroup *dsct; 3043 struct cgroup_subsys_state *d_css; 3044 struct cgroup_subsys *ss; 3045 int ssid, ret; 3046 3047 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3048 for_each_subsys(ss, ssid) { 3049 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3050 3051 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3052 3053 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3054 continue; 3055 3056 if (!css) { 3057 css = css_create(dsct, ss); 3058 if (IS_ERR(css)) 3059 return PTR_ERR(css); 3060 } 3061 3062 if (css_visible(css)) { 3063 ret = css_populate_dir(css); 3064 if (ret) 3065 return ret; 3066 } 3067 } 3068 } 3069 3070 return 0; 3071 } 3072 3073 /** 3074 * cgroup_apply_control_disable - kill or hide csses according to control 3075 * @cgrp: root of the target subtree 3076 * 3077 * Walk @cgrp's subtree and kill and hide csses so that they match 3078 * cgroup_ss_mask() and cgroup_visible_mask(). 3079 * 3080 * A css is hidden when the userland requests it to be disabled while other 3081 * subsystems are still depending on it. The css must not actively control 3082 * resources and be in the vanilla state if it's made visible again later. 3083 * Controllers which may be depended upon should provide ->css_reset() for 3084 * this purpose. 3085 */ 3086 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3087 { 3088 struct cgroup *dsct; 3089 struct cgroup_subsys_state *d_css; 3090 struct cgroup_subsys *ss; 3091 int ssid; 3092 3093 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3094 for_each_subsys(ss, ssid) { 3095 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3096 3097 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3098 3099 if (!css) 3100 continue; 3101 3102 if (css->parent && 3103 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3104 kill_css(css); 3105 } else if (!css_visible(css)) { 3106 css_clear_dir(css); 3107 if (ss->css_reset) 3108 ss->css_reset(css); 3109 } 3110 } 3111 } 3112 } 3113 3114 /** 3115 * cgroup_apply_control - apply control mask updates to the subtree 3116 * @cgrp: root of the target subtree 3117 * 3118 * subsystems can be enabled and disabled in a subtree using the following 3119 * steps. 3120 * 3121 * 1. Call cgroup_save_control() to stash the current state. 3122 * 2. Update ->subtree_control masks in the subtree as desired. 3123 * 3. Call cgroup_apply_control() to apply the changes. 3124 * 4. Optionally perform other related operations. 3125 * 5. Call cgroup_finalize_control() to finish up. 3126 * 3127 * This function implements step 3 and propagates the mask changes 3128 * throughout @cgrp's subtree, updates csses accordingly and perform 3129 * process migrations. 3130 */ 3131 static int cgroup_apply_control(struct cgroup *cgrp) 3132 { 3133 int ret; 3134 3135 cgroup_propagate_control(cgrp); 3136 3137 ret = cgroup_apply_control_enable(cgrp); 3138 if (ret) 3139 return ret; 3140 3141 /* 3142 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3143 * making the following cgroup_update_dfl_csses() properly update 3144 * css associations of all tasks in the subtree. 3145 */ 3146 ret = cgroup_update_dfl_csses(cgrp); 3147 if (ret) 3148 return ret; 3149 3150 return 0; 3151 } 3152 3153 /** 3154 * cgroup_finalize_control - finalize control mask update 3155 * @cgrp: root of the target subtree 3156 * @ret: the result of the update 3157 * 3158 * Finalize control mask update. See cgroup_apply_control() for more info. 3159 */ 3160 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3161 { 3162 if (ret) { 3163 cgroup_restore_control(cgrp); 3164 cgroup_propagate_control(cgrp); 3165 } 3166 3167 cgroup_apply_control_disable(cgrp); 3168 } 3169 3170 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3171 { 3172 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3173 3174 /* if nothing is getting enabled, nothing to worry about */ 3175 if (!enable) 3176 return 0; 3177 3178 /* can @cgrp host any resources? */ 3179 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3180 return -EOPNOTSUPP; 3181 3182 /* mixables don't care */ 3183 if (cgroup_is_mixable(cgrp)) 3184 return 0; 3185 3186 if (domain_enable) { 3187 /* can't enable domain controllers inside a thread subtree */ 3188 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3189 return -EOPNOTSUPP; 3190 } else { 3191 /* 3192 * Threaded controllers can handle internal competitions 3193 * and are always allowed inside a (prospective) thread 3194 * subtree. 3195 */ 3196 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3197 return 0; 3198 } 3199 3200 /* 3201 * Controllers can't be enabled for a cgroup with tasks to avoid 3202 * child cgroups competing against tasks. 3203 */ 3204 if (cgroup_has_tasks(cgrp)) 3205 return -EBUSY; 3206 3207 return 0; 3208 } 3209 3210 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3211 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3212 char *buf, size_t nbytes, 3213 loff_t off) 3214 { 3215 u16 enable = 0, disable = 0; 3216 struct cgroup *cgrp, *child; 3217 struct cgroup_subsys *ss; 3218 char *tok; 3219 int ssid, ret; 3220 3221 /* 3222 * Parse input - space separated list of subsystem names prefixed 3223 * with either + or -. 3224 */ 3225 buf = strstrip(buf); 3226 while ((tok = strsep(&buf, " "))) { 3227 if (tok[0] == '\0') 3228 continue; 3229 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3230 if (!cgroup_ssid_enabled(ssid) || 3231 strcmp(tok + 1, ss->name)) 3232 continue; 3233 3234 if (*tok == '+') { 3235 enable |= 1 << ssid; 3236 disable &= ~(1 << ssid); 3237 } else if (*tok == '-') { 3238 disable |= 1 << ssid; 3239 enable &= ~(1 << ssid); 3240 } else { 3241 return -EINVAL; 3242 } 3243 break; 3244 } while_each_subsys_mask(); 3245 if (ssid == CGROUP_SUBSYS_COUNT) 3246 return -EINVAL; 3247 } 3248 3249 cgrp = cgroup_kn_lock_live(of->kn, true); 3250 if (!cgrp) 3251 return -ENODEV; 3252 3253 for_each_subsys(ss, ssid) { 3254 if (enable & (1 << ssid)) { 3255 if (cgrp->subtree_control & (1 << ssid)) { 3256 enable &= ~(1 << ssid); 3257 continue; 3258 } 3259 3260 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3261 ret = -ENOENT; 3262 goto out_unlock; 3263 } 3264 } else if (disable & (1 << ssid)) { 3265 if (!(cgrp->subtree_control & (1 << ssid))) { 3266 disable &= ~(1 << ssid); 3267 continue; 3268 } 3269 3270 /* a child has it enabled? */ 3271 cgroup_for_each_live_child(child, cgrp) { 3272 if (child->subtree_control & (1 << ssid)) { 3273 ret = -EBUSY; 3274 goto out_unlock; 3275 } 3276 } 3277 } 3278 } 3279 3280 if (!enable && !disable) { 3281 ret = 0; 3282 goto out_unlock; 3283 } 3284 3285 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3286 if (ret) 3287 goto out_unlock; 3288 3289 /* save and update control masks and prepare csses */ 3290 cgroup_save_control(cgrp); 3291 3292 cgrp->subtree_control |= enable; 3293 cgrp->subtree_control &= ~disable; 3294 3295 ret = cgroup_apply_control(cgrp); 3296 cgroup_finalize_control(cgrp, ret); 3297 if (ret) 3298 goto out_unlock; 3299 3300 kernfs_activate(cgrp->kn); 3301 out_unlock: 3302 cgroup_kn_unlock(of->kn); 3303 return ret ?: nbytes; 3304 } 3305 3306 /** 3307 * cgroup_enable_threaded - make @cgrp threaded 3308 * @cgrp: the target cgroup 3309 * 3310 * Called when "threaded" is written to the cgroup.type interface file and 3311 * tries to make @cgrp threaded and join the parent's resource domain. 3312 * This function is never called on the root cgroup as cgroup.type doesn't 3313 * exist on it. 3314 */ 3315 static int cgroup_enable_threaded(struct cgroup *cgrp) 3316 { 3317 struct cgroup *parent = cgroup_parent(cgrp); 3318 struct cgroup *dom_cgrp = parent->dom_cgrp; 3319 struct cgroup *dsct; 3320 struct cgroup_subsys_state *d_css; 3321 int ret; 3322 3323 lockdep_assert_held(&cgroup_mutex); 3324 3325 /* noop if already threaded */ 3326 if (cgroup_is_threaded(cgrp)) 3327 return 0; 3328 3329 /* 3330 * If @cgroup is populated or has domain controllers enabled, it 3331 * can't be switched. While the below cgroup_can_be_thread_root() 3332 * test can catch the same conditions, that's only when @parent is 3333 * not mixable, so let's check it explicitly. 3334 */ 3335 if (cgroup_is_populated(cgrp) || 3336 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3337 return -EOPNOTSUPP; 3338 3339 /* we're joining the parent's domain, ensure its validity */ 3340 if (!cgroup_is_valid_domain(dom_cgrp) || 3341 !cgroup_can_be_thread_root(dom_cgrp)) 3342 return -EOPNOTSUPP; 3343 3344 /* 3345 * The following shouldn't cause actual migrations and should 3346 * always succeed. 3347 */ 3348 cgroup_save_control(cgrp); 3349 3350 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3351 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3352 dsct->dom_cgrp = dom_cgrp; 3353 3354 ret = cgroup_apply_control(cgrp); 3355 if (!ret) 3356 parent->nr_threaded_children++; 3357 3358 cgroup_finalize_control(cgrp, ret); 3359 return ret; 3360 } 3361 3362 static int cgroup_type_show(struct seq_file *seq, void *v) 3363 { 3364 struct cgroup *cgrp = seq_css(seq)->cgroup; 3365 3366 if (cgroup_is_threaded(cgrp)) 3367 seq_puts(seq, "threaded\n"); 3368 else if (!cgroup_is_valid_domain(cgrp)) 3369 seq_puts(seq, "domain invalid\n"); 3370 else if (cgroup_is_thread_root(cgrp)) 3371 seq_puts(seq, "domain threaded\n"); 3372 else 3373 seq_puts(seq, "domain\n"); 3374 3375 return 0; 3376 } 3377 3378 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3379 size_t nbytes, loff_t off) 3380 { 3381 struct cgroup *cgrp; 3382 int ret; 3383 3384 /* only switching to threaded mode is supported */ 3385 if (strcmp(strstrip(buf), "threaded")) 3386 return -EINVAL; 3387 3388 cgrp = cgroup_kn_lock_live(of->kn, false); 3389 if (!cgrp) 3390 return -ENOENT; 3391 3392 /* threaded can only be enabled */ 3393 ret = cgroup_enable_threaded(cgrp); 3394 3395 cgroup_kn_unlock(of->kn); 3396 return ret ?: nbytes; 3397 } 3398 3399 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3400 { 3401 struct cgroup *cgrp = seq_css(seq)->cgroup; 3402 int descendants = READ_ONCE(cgrp->max_descendants); 3403 3404 if (descendants == INT_MAX) 3405 seq_puts(seq, "max\n"); 3406 else 3407 seq_printf(seq, "%d\n", descendants); 3408 3409 return 0; 3410 } 3411 3412 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3413 char *buf, size_t nbytes, loff_t off) 3414 { 3415 struct cgroup *cgrp; 3416 int descendants; 3417 ssize_t ret; 3418 3419 buf = strstrip(buf); 3420 if (!strcmp(buf, "max")) { 3421 descendants = INT_MAX; 3422 } else { 3423 ret = kstrtoint(buf, 0, &descendants); 3424 if (ret) 3425 return ret; 3426 } 3427 3428 if (descendants < 0) 3429 return -ERANGE; 3430 3431 cgrp = cgroup_kn_lock_live(of->kn, false); 3432 if (!cgrp) 3433 return -ENOENT; 3434 3435 cgrp->max_descendants = descendants; 3436 3437 cgroup_kn_unlock(of->kn); 3438 3439 return nbytes; 3440 } 3441 3442 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3443 { 3444 struct cgroup *cgrp = seq_css(seq)->cgroup; 3445 int depth = READ_ONCE(cgrp->max_depth); 3446 3447 if (depth == INT_MAX) 3448 seq_puts(seq, "max\n"); 3449 else 3450 seq_printf(seq, "%d\n", depth); 3451 3452 return 0; 3453 } 3454 3455 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3456 char *buf, size_t nbytes, loff_t off) 3457 { 3458 struct cgroup *cgrp; 3459 ssize_t ret; 3460 int depth; 3461 3462 buf = strstrip(buf); 3463 if (!strcmp(buf, "max")) { 3464 depth = INT_MAX; 3465 } else { 3466 ret = kstrtoint(buf, 0, &depth); 3467 if (ret) 3468 return ret; 3469 } 3470 3471 if (depth < 0) 3472 return -ERANGE; 3473 3474 cgrp = cgroup_kn_lock_live(of->kn, false); 3475 if (!cgrp) 3476 return -ENOENT; 3477 3478 cgrp->max_depth = depth; 3479 3480 cgroup_kn_unlock(of->kn); 3481 3482 return nbytes; 3483 } 3484 3485 static int cgroup_events_show(struct seq_file *seq, void *v) 3486 { 3487 struct cgroup *cgrp = seq_css(seq)->cgroup; 3488 3489 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3490 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3491 3492 return 0; 3493 } 3494 3495 static int cgroup_stat_show(struct seq_file *seq, void *v) 3496 { 3497 struct cgroup *cgroup = seq_css(seq)->cgroup; 3498 3499 seq_printf(seq, "nr_descendants %d\n", 3500 cgroup->nr_descendants); 3501 seq_printf(seq, "nr_dying_descendants %d\n", 3502 cgroup->nr_dying_descendants); 3503 3504 return 0; 3505 } 3506 3507 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3508 struct cgroup *cgrp, int ssid) 3509 { 3510 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3511 struct cgroup_subsys_state *css; 3512 int ret; 3513 3514 if (!ss->css_extra_stat_show) 3515 return 0; 3516 3517 css = cgroup_tryget_css(cgrp, ss); 3518 if (!css) 3519 return 0; 3520 3521 ret = ss->css_extra_stat_show(seq, css); 3522 css_put(css); 3523 return ret; 3524 } 3525 3526 static int cpu_stat_show(struct seq_file *seq, void *v) 3527 { 3528 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3529 int ret = 0; 3530 3531 cgroup_base_stat_cputime_show(seq); 3532 #ifdef CONFIG_CGROUP_SCHED 3533 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3534 #endif 3535 return ret; 3536 } 3537 3538 #ifdef CONFIG_PSI 3539 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3540 { 3541 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO); 3542 } 3543 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3544 { 3545 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM); 3546 } 3547 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3548 { 3549 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU); 3550 } 3551 #endif 3552 3553 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3554 { 3555 struct cgroup *cgrp = seq_css(seq)->cgroup; 3556 3557 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3558 3559 return 0; 3560 } 3561 3562 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3563 char *buf, size_t nbytes, loff_t off) 3564 { 3565 struct cgroup *cgrp; 3566 ssize_t ret; 3567 int freeze; 3568 3569 ret = kstrtoint(strstrip(buf), 0, &freeze); 3570 if (ret) 3571 return ret; 3572 3573 if (freeze < 0 || freeze > 1) 3574 return -ERANGE; 3575 3576 cgrp = cgroup_kn_lock_live(of->kn, false); 3577 if (!cgrp) 3578 return -ENOENT; 3579 3580 cgroup_freeze(cgrp, freeze); 3581 3582 cgroup_kn_unlock(of->kn); 3583 3584 return nbytes; 3585 } 3586 3587 static int cgroup_file_open(struct kernfs_open_file *of) 3588 { 3589 struct cftype *cft = of->kn->priv; 3590 3591 if (cft->open) 3592 return cft->open(of); 3593 return 0; 3594 } 3595 3596 static void cgroup_file_release(struct kernfs_open_file *of) 3597 { 3598 struct cftype *cft = of->kn->priv; 3599 3600 if (cft->release) 3601 cft->release(of); 3602 } 3603 3604 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3605 size_t nbytes, loff_t off) 3606 { 3607 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3608 struct cgroup *cgrp = of->kn->parent->priv; 3609 struct cftype *cft = of->kn->priv; 3610 struct cgroup_subsys_state *css; 3611 int ret; 3612 3613 /* 3614 * If namespaces are delegation boundaries, disallow writes to 3615 * files in an non-init namespace root from inside the namespace 3616 * except for the files explicitly marked delegatable - 3617 * cgroup.procs and cgroup.subtree_control. 3618 */ 3619 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3620 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3621 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3622 return -EPERM; 3623 3624 if (cft->write) 3625 return cft->write(of, buf, nbytes, off); 3626 3627 /* 3628 * kernfs guarantees that a file isn't deleted with operations in 3629 * flight, which means that the matching css is and stays alive and 3630 * doesn't need to be pinned. The RCU locking is not necessary 3631 * either. It's just for the convenience of using cgroup_css(). 3632 */ 3633 rcu_read_lock(); 3634 css = cgroup_css(cgrp, cft->ss); 3635 rcu_read_unlock(); 3636 3637 if (cft->write_u64) { 3638 unsigned long long v; 3639 ret = kstrtoull(buf, 0, &v); 3640 if (!ret) 3641 ret = cft->write_u64(css, cft, v); 3642 } else if (cft->write_s64) { 3643 long long v; 3644 ret = kstrtoll(buf, 0, &v); 3645 if (!ret) 3646 ret = cft->write_s64(css, cft, v); 3647 } else { 3648 ret = -EINVAL; 3649 } 3650 3651 return ret ?: nbytes; 3652 } 3653 3654 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3655 { 3656 struct cftype *cft = of->kn->priv; 3657 3658 if (cft->poll) 3659 return cft->poll(of, pt); 3660 3661 return kernfs_generic_poll(of, pt); 3662 } 3663 3664 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3665 { 3666 return seq_cft(seq)->seq_start(seq, ppos); 3667 } 3668 3669 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3670 { 3671 return seq_cft(seq)->seq_next(seq, v, ppos); 3672 } 3673 3674 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3675 { 3676 if (seq_cft(seq)->seq_stop) 3677 seq_cft(seq)->seq_stop(seq, v); 3678 } 3679 3680 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3681 { 3682 struct cftype *cft = seq_cft(m); 3683 struct cgroup_subsys_state *css = seq_css(m); 3684 3685 if (cft->seq_show) 3686 return cft->seq_show(m, arg); 3687 3688 if (cft->read_u64) 3689 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3690 else if (cft->read_s64) 3691 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3692 else 3693 return -EINVAL; 3694 return 0; 3695 } 3696 3697 static struct kernfs_ops cgroup_kf_single_ops = { 3698 .atomic_write_len = PAGE_SIZE, 3699 .open = cgroup_file_open, 3700 .release = cgroup_file_release, 3701 .write = cgroup_file_write, 3702 .poll = cgroup_file_poll, 3703 .seq_show = cgroup_seqfile_show, 3704 }; 3705 3706 static struct kernfs_ops cgroup_kf_ops = { 3707 .atomic_write_len = PAGE_SIZE, 3708 .open = cgroup_file_open, 3709 .release = cgroup_file_release, 3710 .write = cgroup_file_write, 3711 .poll = cgroup_file_poll, 3712 .seq_start = cgroup_seqfile_start, 3713 .seq_next = cgroup_seqfile_next, 3714 .seq_stop = cgroup_seqfile_stop, 3715 .seq_show = cgroup_seqfile_show, 3716 }; 3717 3718 /* set uid and gid of cgroup dirs and files to that of the creator */ 3719 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3720 { 3721 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3722 .ia_uid = current_fsuid(), 3723 .ia_gid = current_fsgid(), }; 3724 3725 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3726 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3727 return 0; 3728 3729 return kernfs_setattr(kn, &iattr); 3730 } 3731 3732 static void cgroup_file_notify_timer(struct timer_list *timer) 3733 { 3734 cgroup_file_notify(container_of(timer, struct cgroup_file, 3735 notify_timer)); 3736 } 3737 3738 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3739 struct cftype *cft) 3740 { 3741 char name[CGROUP_FILE_NAME_MAX]; 3742 struct kernfs_node *kn; 3743 struct lock_class_key *key = NULL; 3744 int ret; 3745 3746 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3747 key = &cft->lockdep_key; 3748 #endif 3749 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3750 cgroup_file_mode(cft), 3751 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3752 0, cft->kf_ops, cft, 3753 NULL, key); 3754 if (IS_ERR(kn)) 3755 return PTR_ERR(kn); 3756 3757 ret = cgroup_kn_set_ugid(kn); 3758 if (ret) { 3759 kernfs_remove(kn); 3760 return ret; 3761 } 3762 3763 if (cft->file_offset) { 3764 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3765 3766 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3767 3768 spin_lock_irq(&cgroup_file_kn_lock); 3769 cfile->kn = kn; 3770 spin_unlock_irq(&cgroup_file_kn_lock); 3771 } 3772 3773 return 0; 3774 } 3775 3776 /** 3777 * cgroup_addrm_files - add or remove files to a cgroup directory 3778 * @css: the target css 3779 * @cgrp: the target cgroup (usually css->cgroup) 3780 * @cfts: array of cftypes to be added 3781 * @is_add: whether to add or remove 3782 * 3783 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3784 * For removals, this function never fails. 3785 */ 3786 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3787 struct cgroup *cgrp, struct cftype cfts[], 3788 bool is_add) 3789 { 3790 struct cftype *cft, *cft_end = NULL; 3791 int ret = 0; 3792 3793 lockdep_assert_held(&cgroup_mutex); 3794 3795 restart: 3796 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3797 /* does cft->flags tell us to skip this file on @cgrp? */ 3798 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3799 continue; 3800 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3801 continue; 3802 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3803 continue; 3804 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3805 continue; 3806 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3807 continue; 3808 if (is_add) { 3809 ret = cgroup_add_file(css, cgrp, cft); 3810 if (ret) { 3811 pr_warn("%s: failed to add %s, err=%d\n", 3812 __func__, cft->name, ret); 3813 cft_end = cft; 3814 is_add = false; 3815 goto restart; 3816 } 3817 } else { 3818 cgroup_rm_file(cgrp, cft); 3819 } 3820 } 3821 return ret; 3822 } 3823 3824 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3825 { 3826 struct cgroup_subsys *ss = cfts[0].ss; 3827 struct cgroup *root = &ss->root->cgrp; 3828 struct cgroup_subsys_state *css; 3829 int ret = 0; 3830 3831 lockdep_assert_held(&cgroup_mutex); 3832 3833 /* add/rm files for all cgroups created before */ 3834 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3835 struct cgroup *cgrp = css->cgroup; 3836 3837 if (!(css->flags & CSS_VISIBLE)) 3838 continue; 3839 3840 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3841 if (ret) 3842 break; 3843 } 3844 3845 if (is_add && !ret) 3846 kernfs_activate(root->kn); 3847 return ret; 3848 } 3849 3850 static void cgroup_exit_cftypes(struct cftype *cfts) 3851 { 3852 struct cftype *cft; 3853 3854 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3855 /* free copy for custom atomic_write_len, see init_cftypes() */ 3856 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3857 kfree(cft->kf_ops); 3858 cft->kf_ops = NULL; 3859 cft->ss = NULL; 3860 3861 /* revert flags set by cgroup core while adding @cfts */ 3862 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3863 } 3864 } 3865 3866 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3867 { 3868 struct cftype *cft; 3869 3870 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3871 struct kernfs_ops *kf_ops; 3872 3873 WARN_ON(cft->ss || cft->kf_ops); 3874 3875 if (cft->seq_start) 3876 kf_ops = &cgroup_kf_ops; 3877 else 3878 kf_ops = &cgroup_kf_single_ops; 3879 3880 /* 3881 * Ugh... if @cft wants a custom max_write_len, we need to 3882 * make a copy of kf_ops to set its atomic_write_len. 3883 */ 3884 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3885 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3886 if (!kf_ops) { 3887 cgroup_exit_cftypes(cfts); 3888 return -ENOMEM; 3889 } 3890 kf_ops->atomic_write_len = cft->max_write_len; 3891 } 3892 3893 cft->kf_ops = kf_ops; 3894 cft->ss = ss; 3895 } 3896 3897 return 0; 3898 } 3899 3900 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3901 { 3902 lockdep_assert_held(&cgroup_mutex); 3903 3904 if (!cfts || !cfts[0].ss) 3905 return -ENOENT; 3906 3907 list_del(&cfts->node); 3908 cgroup_apply_cftypes(cfts, false); 3909 cgroup_exit_cftypes(cfts); 3910 return 0; 3911 } 3912 3913 /** 3914 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3915 * @cfts: zero-length name terminated array of cftypes 3916 * 3917 * Unregister @cfts. Files described by @cfts are removed from all 3918 * existing cgroups and all future cgroups won't have them either. This 3919 * function can be called anytime whether @cfts' subsys is attached or not. 3920 * 3921 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3922 * registered. 3923 */ 3924 int cgroup_rm_cftypes(struct cftype *cfts) 3925 { 3926 int ret; 3927 3928 mutex_lock(&cgroup_mutex); 3929 ret = cgroup_rm_cftypes_locked(cfts); 3930 mutex_unlock(&cgroup_mutex); 3931 return ret; 3932 } 3933 3934 /** 3935 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3936 * @ss: target cgroup subsystem 3937 * @cfts: zero-length name terminated array of cftypes 3938 * 3939 * Register @cfts to @ss. Files described by @cfts are created for all 3940 * existing cgroups to which @ss is attached and all future cgroups will 3941 * have them too. This function can be called anytime whether @ss is 3942 * attached or not. 3943 * 3944 * Returns 0 on successful registration, -errno on failure. Note that this 3945 * function currently returns 0 as long as @cfts registration is successful 3946 * even if some file creation attempts on existing cgroups fail. 3947 */ 3948 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3949 { 3950 int ret; 3951 3952 if (!cgroup_ssid_enabled(ss->id)) 3953 return 0; 3954 3955 if (!cfts || cfts[0].name[0] == '\0') 3956 return 0; 3957 3958 ret = cgroup_init_cftypes(ss, cfts); 3959 if (ret) 3960 return ret; 3961 3962 mutex_lock(&cgroup_mutex); 3963 3964 list_add_tail(&cfts->node, &ss->cfts); 3965 ret = cgroup_apply_cftypes(cfts, true); 3966 if (ret) 3967 cgroup_rm_cftypes_locked(cfts); 3968 3969 mutex_unlock(&cgroup_mutex); 3970 return ret; 3971 } 3972 3973 /** 3974 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3975 * @ss: target cgroup subsystem 3976 * @cfts: zero-length name terminated array of cftypes 3977 * 3978 * Similar to cgroup_add_cftypes() but the added files are only used for 3979 * the default hierarchy. 3980 */ 3981 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3982 { 3983 struct cftype *cft; 3984 3985 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3986 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3987 return cgroup_add_cftypes(ss, cfts); 3988 } 3989 3990 /** 3991 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3992 * @ss: target cgroup subsystem 3993 * @cfts: zero-length name terminated array of cftypes 3994 * 3995 * Similar to cgroup_add_cftypes() but the added files are only used for 3996 * the legacy hierarchies. 3997 */ 3998 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3999 { 4000 struct cftype *cft; 4001 4002 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4003 cft->flags |= __CFTYPE_NOT_ON_DFL; 4004 return cgroup_add_cftypes(ss, cfts); 4005 } 4006 4007 /** 4008 * cgroup_file_notify - generate a file modified event for a cgroup_file 4009 * @cfile: target cgroup_file 4010 * 4011 * @cfile must have been obtained by setting cftype->file_offset. 4012 */ 4013 void cgroup_file_notify(struct cgroup_file *cfile) 4014 { 4015 unsigned long flags; 4016 4017 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4018 if (cfile->kn) { 4019 unsigned long last = cfile->notified_at; 4020 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4021 4022 if (time_in_range(jiffies, last, next)) { 4023 timer_reduce(&cfile->notify_timer, next); 4024 } else { 4025 kernfs_notify(cfile->kn); 4026 cfile->notified_at = jiffies; 4027 } 4028 } 4029 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4030 } 4031 4032 /** 4033 * css_next_child - find the next child of a given css 4034 * @pos: the current position (%NULL to initiate traversal) 4035 * @parent: css whose children to walk 4036 * 4037 * This function returns the next child of @parent and should be called 4038 * under either cgroup_mutex or RCU read lock. The only requirement is 4039 * that @parent and @pos are accessible. The next sibling is guaranteed to 4040 * be returned regardless of their states. 4041 * 4042 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4043 * css which finished ->css_online() is guaranteed to be visible in the 4044 * future iterations and will stay visible until the last reference is put. 4045 * A css which hasn't finished ->css_online() or already finished 4046 * ->css_offline() may show up during traversal. It's each subsystem's 4047 * responsibility to synchronize against on/offlining. 4048 */ 4049 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4050 struct cgroup_subsys_state *parent) 4051 { 4052 struct cgroup_subsys_state *next; 4053 4054 cgroup_assert_mutex_or_rcu_locked(); 4055 4056 /* 4057 * @pos could already have been unlinked from the sibling list. 4058 * Once a cgroup is removed, its ->sibling.next is no longer 4059 * updated when its next sibling changes. CSS_RELEASED is set when 4060 * @pos is taken off list, at which time its next pointer is valid, 4061 * and, as releases are serialized, the one pointed to by the next 4062 * pointer is guaranteed to not have started release yet. This 4063 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4064 * critical section, the one pointed to by its next pointer is 4065 * guaranteed to not have finished its RCU grace period even if we 4066 * have dropped rcu_read_lock() inbetween iterations. 4067 * 4068 * If @pos has CSS_RELEASED set, its next pointer can't be 4069 * dereferenced; however, as each css is given a monotonically 4070 * increasing unique serial number and always appended to the 4071 * sibling list, the next one can be found by walking the parent's 4072 * children until the first css with higher serial number than 4073 * @pos's. While this path can be slower, it happens iff iteration 4074 * races against release and the race window is very small. 4075 */ 4076 if (!pos) { 4077 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4078 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4079 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4080 } else { 4081 list_for_each_entry_rcu(next, &parent->children, sibling) 4082 if (next->serial_nr > pos->serial_nr) 4083 break; 4084 } 4085 4086 /* 4087 * @next, if not pointing to the head, can be dereferenced and is 4088 * the next sibling. 4089 */ 4090 if (&next->sibling != &parent->children) 4091 return next; 4092 return NULL; 4093 } 4094 4095 /** 4096 * css_next_descendant_pre - find the next descendant for pre-order walk 4097 * @pos: the current position (%NULL to initiate traversal) 4098 * @root: css whose descendants to walk 4099 * 4100 * To be used by css_for_each_descendant_pre(). Find the next descendant 4101 * to visit for pre-order traversal of @root's descendants. @root is 4102 * included in the iteration and the first node to be visited. 4103 * 4104 * While this function requires cgroup_mutex or RCU read locking, it 4105 * doesn't require the whole traversal to be contained in a single critical 4106 * section. This function will return the correct next descendant as long 4107 * as both @pos and @root are accessible and @pos is a descendant of @root. 4108 * 4109 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4110 * css which finished ->css_online() is guaranteed to be visible in the 4111 * future iterations and will stay visible until the last reference is put. 4112 * A css which hasn't finished ->css_online() or already finished 4113 * ->css_offline() may show up during traversal. It's each subsystem's 4114 * responsibility to synchronize against on/offlining. 4115 */ 4116 struct cgroup_subsys_state * 4117 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4118 struct cgroup_subsys_state *root) 4119 { 4120 struct cgroup_subsys_state *next; 4121 4122 cgroup_assert_mutex_or_rcu_locked(); 4123 4124 /* if first iteration, visit @root */ 4125 if (!pos) 4126 return root; 4127 4128 /* visit the first child if exists */ 4129 next = css_next_child(NULL, pos); 4130 if (next) 4131 return next; 4132 4133 /* no child, visit my or the closest ancestor's next sibling */ 4134 while (pos != root) { 4135 next = css_next_child(pos, pos->parent); 4136 if (next) 4137 return next; 4138 pos = pos->parent; 4139 } 4140 4141 return NULL; 4142 } 4143 4144 /** 4145 * css_rightmost_descendant - return the rightmost descendant of a css 4146 * @pos: css of interest 4147 * 4148 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4149 * is returned. This can be used during pre-order traversal to skip 4150 * subtree of @pos. 4151 * 4152 * While this function requires cgroup_mutex or RCU read locking, it 4153 * doesn't require the whole traversal to be contained in a single critical 4154 * section. This function will return the correct rightmost descendant as 4155 * long as @pos is accessible. 4156 */ 4157 struct cgroup_subsys_state * 4158 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4159 { 4160 struct cgroup_subsys_state *last, *tmp; 4161 4162 cgroup_assert_mutex_or_rcu_locked(); 4163 4164 do { 4165 last = pos; 4166 /* ->prev isn't RCU safe, walk ->next till the end */ 4167 pos = NULL; 4168 css_for_each_child(tmp, last) 4169 pos = tmp; 4170 } while (pos); 4171 4172 return last; 4173 } 4174 4175 static struct cgroup_subsys_state * 4176 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4177 { 4178 struct cgroup_subsys_state *last; 4179 4180 do { 4181 last = pos; 4182 pos = css_next_child(NULL, pos); 4183 } while (pos); 4184 4185 return last; 4186 } 4187 4188 /** 4189 * css_next_descendant_post - find the next descendant for post-order walk 4190 * @pos: the current position (%NULL to initiate traversal) 4191 * @root: css whose descendants to walk 4192 * 4193 * To be used by css_for_each_descendant_post(). Find the next descendant 4194 * to visit for post-order traversal of @root's descendants. @root is 4195 * included in the iteration and the last node to be visited. 4196 * 4197 * While this function requires cgroup_mutex or RCU read locking, it 4198 * doesn't require the whole traversal to be contained in a single critical 4199 * section. This function will return the correct next descendant as long 4200 * as both @pos and @cgroup are accessible and @pos is a descendant of 4201 * @cgroup. 4202 * 4203 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4204 * css which finished ->css_online() is guaranteed to be visible in the 4205 * future iterations and will stay visible until the last reference is put. 4206 * A css which hasn't finished ->css_online() or already finished 4207 * ->css_offline() may show up during traversal. It's each subsystem's 4208 * responsibility to synchronize against on/offlining. 4209 */ 4210 struct cgroup_subsys_state * 4211 css_next_descendant_post(struct cgroup_subsys_state *pos, 4212 struct cgroup_subsys_state *root) 4213 { 4214 struct cgroup_subsys_state *next; 4215 4216 cgroup_assert_mutex_or_rcu_locked(); 4217 4218 /* if first iteration, visit leftmost descendant which may be @root */ 4219 if (!pos) 4220 return css_leftmost_descendant(root); 4221 4222 /* if we visited @root, we're done */ 4223 if (pos == root) 4224 return NULL; 4225 4226 /* if there's an unvisited sibling, visit its leftmost descendant */ 4227 next = css_next_child(pos, pos->parent); 4228 if (next) 4229 return css_leftmost_descendant(next); 4230 4231 /* no sibling left, visit parent */ 4232 return pos->parent; 4233 } 4234 4235 /** 4236 * css_has_online_children - does a css have online children 4237 * @css: the target css 4238 * 4239 * Returns %true if @css has any online children; otherwise, %false. This 4240 * function can be called from any context but the caller is responsible 4241 * for synchronizing against on/offlining as necessary. 4242 */ 4243 bool css_has_online_children(struct cgroup_subsys_state *css) 4244 { 4245 struct cgroup_subsys_state *child; 4246 bool ret = false; 4247 4248 rcu_read_lock(); 4249 css_for_each_child(child, css) { 4250 if (child->flags & CSS_ONLINE) { 4251 ret = true; 4252 break; 4253 } 4254 } 4255 rcu_read_unlock(); 4256 return ret; 4257 } 4258 4259 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4260 { 4261 struct list_head *l; 4262 struct cgrp_cset_link *link; 4263 struct css_set *cset; 4264 4265 lockdep_assert_held(&css_set_lock); 4266 4267 /* find the next threaded cset */ 4268 if (it->tcset_pos) { 4269 l = it->tcset_pos->next; 4270 4271 if (l != it->tcset_head) { 4272 it->tcset_pos = l; 4273 return container_of(l, struct css_set, 4274 threaded_csets_node); 4275 } 4276 4277 it->tcset_pos = NULL; 4278 } 4279 4280 /* find the next cset */ 4281 l = it->cset_pos; 4282 l = l->next; 4283 if (l == it->cset_head) { 4284 it->cset_pos = NULL; 4285 return NULL; 4286 } 4287 4288 if (it->ss) { 4289 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4290 } else { 4291 link = list_entry(l, struct cgrp_cset_link, cset_link); 4292 cset = link->cset; 4293 } 4294 4295 it->cset_pos = l; 4296 4297 /* initialize threaded css_set walking */ 4298 if (it->flags & CSS_TASK_ITER_THREADED) { 4299 if (it->cur_dcset) 4300 put_css_set_locked(it->cur_dcset); 4301 it->cur_dcset = cset; 4302 get_css_set(cset); 4303 4304 it->tcset_head = &cset->threaded_csets; 4305 it->tcset_pos = &cset->threaded_csets; 4306 } 4307 4308 return cset; 4309 } 4310 4311 /** 4312 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4313 * @it: the iterator to advance 4314 * 4315 * Advance @it to the next css_set to walk. 4316 */ 4317 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4318 { 4319 struct css_set *cset; 4320 4321 lockdep_assert_held(&css_set_lock); 4322 4323 /* Advance to the next non-empty css_set */ 4324 do { 4325 cset = css_task_iter_next_css_set(it); 4326 if (!cset) { 4327 it->task_pos = NULL; 4328 return; 4329 } 4330 } while (!css_set_populated(cset)); 4331 4332 if (!list_empty(&cset->tasks)) 4333 it->task_pos = cset->tasks.next; 4334 else 4335 it->task_pos = cset->mg_tasks.next; 4336 4337 it->tasks_head = &cset->tasks; 4338 it->mg_tasks_head = &cset->mg_tasks; 4339 4340 /* 4341 * We don't keep css_sets locked across iteration steps and thus 4342 * need to take steps to ensure that iteration can be resumed after 4343 * the lock is re-acquired. Iteration is performed at two levels - 4344 * css_sets and tasks in them. 4345 * 4346 * Once created, a css_set never leaves its cgroup lists, so a 4347 * pinned css_set is guaranteed to stay put and we can resume 4348 * iteration afterwards. 4349 * 4350 * Tasks may leave @cset across iteration steps. This is resolved 4351 * by registering each iterator with the css_set currently being 4352 * walked and making css_set_move_task() advance iterators whose 4353 * next task is leaving. 4354 */ 4355 if (it->cur_cset) { 4356 list_del(&it->iters_node); 4357 put_css_set_locked(it->cur_cset); 4358 } 4359 get_css_set(cset); 4360 it->cur_cset = cset; 4361 list_add(&it->iters_node, &cset->task_iters); 4362 } 4363 4364 static void css_task_iter_advance(struct css_task_iter *it) 4365 { 4366 struct list_head *next; 4367 4368 lockdep_assert_held(&css_set_lock); 4369 repeat: 4370 if (it->task_pos) { 4371 /* 4372 * Advance iterator to find next entry. cset->tasks is 4373 * consumed first and then ->mg_tasks. After ->mg_tasks, 4374 * we move onto the next cset. 4375 */ 4376 next = it->task_pos->next; 4377 4378 if (next == it->tasks_head) 4379 next = it->mg_tasks_head->next; 4380 4381 if (next == it->mg_tasks_head) 4382 css_task_iter_advance_css_set(it); 4383 else 4384 it->task_pos = next; 4385 } else { 4386 /* called from start, proceed to the first cset */ 4387 css_task_iter_advance_css_set(it); 4388 } 4389 4390 /* if PROCS, skip over tasks which aren't group leaders */ 4391 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4392 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4393 cg_list))) 4394 goto repeat; 4395 } 4396 4397 /** 4398 * css_task_iter_start - initiate task iteration 4399 * @css: the css to walk tasks of 4400 * @flags: CSS_TASK_ITER_* flags 4401 * @it: the task iterator to use 4402 * 4403 * Initiate iteration through the tasks of @css. The caller can call 4404 * css_task_iter_next() to walk through the tasks until the function 4405 * returns NULL. On completion of iteration, css_task_iter_end() must be 4406 * called. 4407 */ 4408 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4409 struct css_task_iter *it) 4410 { 4411 /* no one should try to iterate before mounting cgroups */ 4412 WARN_ON_ONCE(!use_task_css_set_links); 4413 4414 memset(it, 0, sizeof(*it)); 4415 4416 spin_lock_irq(&css_set_lock); 4417 4418 it->ss = css->ss; 4419 it->flags = flags; 4420 4421 if (it->ss) 4422 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4423 else 4424 it->cset_pos = &css->cgroup->cset_links; 4425 4426 it->cset_head = it->cset_pos; 4427 4428 css_task_iter_advance(it); 4429 4430 spin_unlock_irq(&css_set_lock); 4431 } 4432 4433 /** 4434 * css_task_iter_next - return the next task for the iterator 4435 * @it: the task iterator being iterated 4436 * 4437 * The "next" function for task iteration. @it should have been 4438 * initialized via css_task_iter_start(). Returns NULL when the iteration 4439 * reaches the end. 4440 */ 4441 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4442 { 4443 if (it->cur_task) { 4444 put_task_struct(it->cur_task); 4445 it->cur_task = NULL; 4446 } 4447 4448 spin_lock_irq(&css_set_lock); 4449 4450 if (it->task_pos) { 4451 it->cur_task = list_entry(it->task_pos, struct task_struct, 4452 cg_list); 4453 get_task_struct(it->cur_task); 4454 css_task_iter_advance(it); 4455 } 4456 4457 spin_unlock_irq(&css_set_lock); 4458 4459 return it->cur_task; 4460 } 4461 4462 /** 4463 * css_task_iter_end - finish task iteration 4464 * @it: the task iterator to finish 4465 * 4466 * Finish task iteration started by css_task_iter_start(). 4467 */ 4468 void css_task_iter_end(struct css_task_iter *it) 4469 { 4470 if (it->cur_cset) { 4471 spin_lock_irq(&css_set_lock); 4472 list_del(&it->iters_node); 4473 put_css_set_locked(it->cur_cset); 4474 spin_unlock_irq(&css_set_lock); 4475 } 4476 4477 if (it->cur_dcset) 4478 put_css_set(it->cur_dcset); 4479 4480 if (it->cur_task) 4481 put_task_struct(it->cur_task); 4482 } 4483 4484 static void cgroup_procs_release(struct kernfs_open_file *of) 4485 { 4486 if (of->priv) { 4487 css_task_iter_end(of->priv); 4488 kfree(of->priv); 4489 } 4490 } 4491 4492 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4493 { 4494 struct kernfs_open_file *of = s->private; 4495 struct css_task_iter *it = of->priv; 4496 4497 return css_task_iter_next(it); 4498 } 4499 4500 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4501 unsigned int iter_flags) 4502 { 4503 struct kernfs_open_file *of = s->private; 4504 struct cgroup *cgrp = seq_css(s)->cgroup; 4505 struct css_task_iter *it = of->priv; 4506 4507 /* 4508 * When a seq_file is seeked, it's always traversed sequentially 4509 * from position 0, so we can simply keep iterating on !0 *pos. 4510 */ 4511 if (!it) { 4512 if (WARN_ON_ONCE((*pos)++)) 4513 return ERR_PTR(-EINVAL); 4514 4515 it = kzalloc(sizeof(*it), GFP_KERNEL); 4516 if (!it) 4517 return ERR_PTR(-ENOMEM); 4518 of->priv = it; 4519 css_task_iter_start(&cgrp->self, iter_flags, it); 4520 } else if (!(*pos)++) { 4521 css_task_iter_end(it); 4522 css_task_iter_start(&cgrp->self, iter_flags, it); 4523 } 4524 4525 return cgroup_procs_next(s, NULL, NULL); 4526 } 4527 4528 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4529 { 4530 struct cgroup *cgrp = seq_css(s)->cgroup; 4531 4532 /* 4533 * All processes of a threaded subtree belong to the domain cgroup 4534 * of the subtree. Only threads can be distributed across the 4535 * subtree. Reject reads on cgroup.procs in the subtree proper. 4536 * They're always empty anyway. 4537 */ 4538 if (cgroup_is_threaded(cgrp)) 4539 return ERR_PTR(-EOPNOTSUPP); 4540 4541 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4542 CSS_TASK_ITER_THREADED); 4543 } 4544 4545 static int cgroup_procs_show(struct seq_file *s, void *v) 4546 { 4547 seq_printf(s, "%d\n", task_pid_vnr(v)); 4548 return 0; 4549 } 4550 4551 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4552 struct cgroup *dst_cgrp, 4553 struct super_block *sb) 4554 { 4555 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4556 struct cgroup *com_cgrp = src_cgrp; 4557 struct inode *inode; 4558 int ret; 4559 4560 lockdep_assert_held(&cgroup_mutex); 4561 4562 /* find the common ancestor */ 4563 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4564 com_cgrp = cgroup_parent(com_cgrp); 4565 4566 /* %current should be authorized to migrate to the common ancestor */ 4567 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4568 if (!inode) 4569 return -ENOMEM; 4570 4571 ret = inode_permission(inode, MAY_WRITE); 4572 iput(inode); 4573 if (ret) 4574 return ret; 4575 4576 /* 4577 * If namespaces are delegation boundaries, %current must be able 4578 * to see both source and destination cgroups from its namespace. 4579 */ 4580 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4581 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4582 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4583 return -ENOENT; 4584 4585 return 0; 4586 } 4587 4588 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4589 char *buf, size_t nbytes, loff_t off) 4590 { 4591 struct cgroup *src_cgrp, *dst_cgrp; 4592 struct task_struct *task; 4593 ssize_t ret; 4594 4595 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4596 if (!dst_cgrp) 4597 return -ENODEV; 4598 4599 task = cgroup_procs_write_start(buf, true); 4600 ret = PTR_ERR_OR_ZERO(task); 4601 if (ret) 4602 goto out_unlock; 4603 4604 /* find the source cgroup */ 4605 spin_lock_irq(&css_set_lock); 4606 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4607 spin_unlock_irq(&css_set_lock); 4608 4609 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4610 of->file->f_path.dentry->d_sb); 4611 if (ret) 4612 goto out_finish; 4613 4614 ret = cgroup_attach_task(dst_cgrp, task, true); 4615 4616 out_finish: 4617 cgroup_procs_write_finish(task); 4618 out_unlock: 4619 cgroup_kn_unlock(of->kn); 4620 4621 return ret ?: nbytes; 4622 } 4623 4624 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4625 { 4626 return __cgroup_procs_start(s, pos, 0); 4627 } 4628 4629 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4630 char *buf, size_t nbytes, loff_t off) 4631 { 4632 struct cgroup *src_cgrp, *dst_cgrp; 4633 struct task_struct *task; 4634 ssize_t ret; 4635 4636 buf = strstrip(buf); 4637 4638 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4639 if (!dst_cgrp) 4640 return -ENODEV; 4641 4642 task = cgroup_procs_write_start(buf, false); 4643 ret = PTR_ERR_OR_ZERO(task); 4644 if (ret) 4645 goto out_unlock; 4646 4647 /* find the source cgroup */ 4648 spin_lock_irq(&css_set_lock); 4649 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4650 spin_unlock_irq(&css_set_lock); 4651 4652 /* thread migrations follow the cgroup.procs delegation rule */ 4653 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4654 of->file->f_path.dentry->d_sb); 4655 if (ret) 4656 goto out_finish; 4657 4658 /* and must be contained in the same domain */ 4659 ret = -EOPNOTSUPP; 4660 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4661 goto out_finish; 4662 4663 ret = cgroup_attach_task(dst_cgrp, task, false); 4664 4665 out_finish: 4666 cgroup_procs_write_finish(task); 4667 out_unlock: 4668 cgroup_kn_unlock(of->kn); 4669 4670 return ret ?: nbytes; 4671 } 4672 4673 /* cgroup core interface files for the default hierarchy */ 4674 static struct cftype cgroup_base_files[] = { 4675 { 4676 .name = "cgroup.type", 4677 .flags = CFTYPE_NOT_ON_ROOT, 4678 .seq_show = cgroup_type_show, 4679 .write = cgroup_type_write, 4680 }, 4681 { 4682 .name = "cgroup.procs", 4683 .flags = CFTYPE_NS_DELEGATABLE, 4684 .file_offset = offsetof(struct cgroup, procs_file), 4685 .release = cgroup_procs_release, 4686 .seq_start = cgroup_procs_start, 4687 .seq_next = cgroup_procs_next, 4688 .seq_show = cgroup_procs_show, 4689 .write = cgroup_procs_write, 4690 }, 4691 { 4692 .name = "cgroup.threads", 4693 .flags = CFTYPE_NS_DELEGATABLE, 4694 .release = cgroup_procs_release, 4695 .seq_start = cgroup_threads_start, 4696 .seq_next = cgroup_procs_next, 4697 .seq_show = cgroup_procs_show, 4698 .write = cgroup_threads_write, 4699 }, 4700 { 4701 .name = "cgroup.controllers", 4702 .seq_show = cgroup_controllers_show, 4703 }, 4704 { 4705 .name = "cgroup.subtree_control", 4706 .flags = CFTYPE_NS_DELEGATABLE, 4707 .seq_show = cgroup_subtree_control_show, 4708 .write = cgroup_subtree_control_write, 4709 }, 4710 { 4711 .name = "cgroup.events", 4712 .flags = CFTYPE_NOT_ON_ROOT, 4713 .file_offset = offsetof(struct cgroup, events_file), 4714 .seq_show = cgroup_events_show, 4715 }, 4716 { 4717 .name = "cgroup.max.descendants", 4718 .seq_show = cgroup_max_descendants_show, 4719 .write = cgroup_max_descendants_write, 4720 }, 4721 { 4722 .name = "cgroup.max.depth", 4723 .seq_show = cgroup_max_depth_show, 4724 .write = cgroup_max_depth_write, 4725 }, 4726 { 4727 .name = "cgroup.stat", 4728 .seq_show = cgroup_stat_show, 4729 }, 4730 { 4731 .name = "cgroup.freeze", 4732 .flags = CFTYPE_NOT_ON_ROOT, 4733 .seq_show = cgroup_freeze_show, 4734 .write = cgroup_freeze_write, 4735 }, 4736 { 4737 .name = "cpu.stat", 4738 .flags = CFTYPE_NOT_ON_ROOT, 4739 .seq_show = cpu_stat_show, 4740 }, 4741 #ifdef CONFIG_PSI 4742 { 4743 .name = "io.pressure", 4744 .flags = CFTYPE_NOT_ON_ROOT, 4745 .seq_show = cgroup_io_pressure_show, 4746 }, 4747 { 4748 .name = "memory.pressure", 4749 .flags = CFTYPE_NOT_ON_ROOT, 4750 .seq_show = cgroup_memory_pressure_show, 4751 }, 4752 { 4753 .name = "cpu.pressure", 4754 .flags = CFTYPE_NOT_ON_ROOT, 4755 .seq_show = cgroup_cpu_pressure_show, 4756 }, 4757 #endif 4758 { } /* terminate */ 4759 }; 4760 4761 /* 4762 * css destruction is four-stage process. 4763 * 4764 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4765 * Implemented in kill_css(). 4766 * 4767 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4768 * and thus css_tryget_online() is guaranteed to fail, the css can be 4769 * offlined by invoking offline_css(). After offlining, the base ref is 4770 * put. Implemented in css_killed_work_fn(). 4771 * 4772 * 3. When the percpu_ref reaches zero, the only possible remaining 4773 * accessors are inside RCU read sections. css_release() schedules the 4774 * RCU callback. 4775 * 4776 * 4. After the grace period, the css can be freed. Implemented in 4777 * css_free_work_fn(). 4778 * 4779 * It is actually hairier because both step 2 and 4 require process context 4780 * and thus involve punting to css->destroy_work adding two additional 4781 * steps to the already complex sequence. 4782 */ 4783 static void css_free_rwork_fn(struct work_struct *work) 4784 { 4785 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4786 struct cgroup_subsys_state, destroy_rwork); 4787 struct cgroup_subsys *ss = css->ss; 4788 struct cgroup *cgrp = css->cgroup; 4789 4790 percpu_ref_exit(&css->refcnt); 4791 4792 if (ss) { 4793 /* css free path */ 4794 struct cgroup_subsys_state *parent = css->parent; 4795 int id = css->id; 4796 4797 ss->css_free(css); 4798 cgroup_idr_remove(&ss->css_idr, id); 4799 cgroup_put(cgrp); 4800 4801 if (parent) 4802 css_put(parent); 4803 } else { 4804 /* cgroup free path */ 4805 atomic_dec(&cgrp->root->nr_cgrps); 4806 cgroup1_pidlist_destroy_all(cgrp); 4807 cancel_work_sync(&cgrp->release_agent_work); 4808 4809 if (cgroup_parent(cgrp)) { 4810 /* 4811 * We get a ref to the parent, and put the ref when 4812 * this cgroup is being freed, so it's guaranteed 4813 * that the parent won't be destroyed before its 4814 * children. 4815 */ 4816 cgroup_put(cgroup_parent(cgrp)); 4817 kernfs_put(cgrp->kn); 4818 psi_cgroup_free(cgrp); 4819 if (cgroup_on_dfl(cgrp)) 4820 cgroup_rstat_exit(cgrp); 4821 kfree(cgrp); 4822 } else { 4823 /* 4824 * This is root cgroup's refcnt reaching zero, 4825 * which indicates that the root should be 4826 * released. 4827 */ 4828 cgroup_destroy_root(cgrp->root); 4829 } 4830 } 4831 } 4832 4833 static void css_release_work_fn(struct work_struct *work) 4834 { 4835 struct cgroup_subsys_state *css = 4836 container_of(work, struct cgroup_subsys_state, destroy_work); 4837 struct cgroup_subsys *ss = css->ss; 4838 struct cgroup *cgrp = css->cgroup; 4839 4840 mutex_lock(&cgroup_mutex); 4841 4842 css->flags |= CSS_RELEASED; 4843 list_del_rcu(&css->sibling); 4844 4845 if (ss) { 4846 /* css release path */ 4847 if (!list_empty(&css->rstat_css_node)) { 4848 cgroup_rstat_flush(cgrp); 4849 list_del_rcu(&css->rstat_css_node); 4850 } 4851 4852 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4853 if (ss->css_released) 4854 ss->css_released(css); 4855 } else { 4856 struct cgroup *tcgrp; 4857 4858 /* cgroup release path */ 4859 TRACE_CGROUP_PATH(release, cgrp); 4860 4861 if (cgroup_on_dfl(cgrp)) 4862 cgroup_rstat_flush(cgrp); 4863 4864 spin_lock_irq(&css_set_lock); 4865 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4866 tcgrp = cgroup_parent(tcgrp)) 4867 tcgrp->nr_dying_descendants--; 4868 spin_unlock_irq(&css_set_lock); 4869 4870 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4871 cgrp->id = -1; 4872 4873 /* 4874 * There are two control paths which try to determine 4875 * cgroup from dentry without going through kernfs - 4876 * cgroupstats_build() and css_tryget_online_from_dir(). 4877 * Those are supported by RCU protecting clearing of 4878 * cgrp->kn->priv backpointer. 4879 */ 4880 if (cgrp->kn) 4881 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4882 NULL); 4883 4884 cgroup_bpf_put(cgrp); 4885 } 4886 4887 mutex_unlock(&cgroup_mutex); 4888 4889 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4890 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4891 } 4892 4893 static void css_release(struct percpu_ref *ref) 4894 { 4895 struct cgroup_subsys_state *css = 4896 container_of(ref, struct cgroup_subsys_state, refcnt); 4897 4898 INIT_WORK(&css->destroy_work, css_release_work_fn); 4899 queue_work(cgroup_destroy_wq, &css->destroy_work); 4900 } 4901 4902 static void init_and_link_css(struct cgroup_subsys_state *css, 4903 struct cgroup_subsys *ss, struct cgroup *cgrp) 4904 { 4905 lockdep_assert_held(&cgroup_mutex); 4906 4907 cgroup_get_live(cgrp); 4908 4909 memset(css, 0, sizeof(*css)); 4910 css->cgroup = cgrp; 4911 css->ss = ss; 4912 css->id = -1; 4913 INIT_LIST_HEAD(&css->sibling); 4914 INIT_LIST_HEAD(&css->children); 4915 INIT_LIST_HEAD(&css->rstat_css_node); 4916 css->serial_nr = css_serial_nr_next++; 4917 atomic_set(&css->online_cnt, 0); 4918 4919 if (cgroup_parent(cgrp)) { 4920 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4921 css_get(css->parent); 4922 } 4923 4924 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4925 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4926 4927 BUG_ON(cgroup_css(cgrp, ss)); 4928 } 4929 4930 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4931 static int online_css(struct cgroup_subsys_state *css) 4932 { 4933 struct cgroup_subsys *ss = css->ss; 4934 int ret = 0; 4935 4936 lockdep_assert_held(&cgroup_mutex); 4937 4938 if (ss->css_online) 4939 ret = ss->css_online(css); 4940 if (!ret) { 4941 css->flags |= CSS_ONLINE; 4942 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4943 4944 atomic_inc(&css->online_cnt); 4945 if (css->parent) 4946 atomic_inc(&css->parent->online_cnt); 4947 } 4948 return ret; 4949 } 4950 4951 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4952 static void offline_css(struct cgroup_subsys_state *css) 4953 { 4954 struct cgroup_subsys *ss = css->ss; 4955 4956 lockdep_assert_held(&cgroup_mutex); 4957 4958 if (!(css->flags & CSS_ONLINE)) 4959 return; 4960 4961 if (ss->css_offline) 4962 ss->css_offline(css); 4963 4964 css->flags &= ~CSS_ONLINE; 4965 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4966 4967 wake_up_all(&css->cgroup->offline_waitq); 4968 } 4969 4970 /** 4971 * css_create - create a cgroup_subsys_state 4972 * @cgrp: the cgroup new css will be associated with 4973 * @ss: the subsys of new css 4974 * 4975 * Create a new css associated with @cgrp - @ss pair. On success, the new 4976 * css is online and installed in @cgrp. This function doesn't create the 4977 * interface files. Returns 0 on success, -errno on failure. 4978 */ 4979 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4980 struct cgroup_subsys *ss) 4981 { 4982 struct cgroup *parent = cgroup_parent(cgrp); 4983 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4984 struct cgroup_subsys_state *css; 4985 int err; 4986 4987 lockdep_assert_held(&cgroup_mutex); 4988 4989 css = ss->css_alloc(parent_css); 4990 if (!css) 4991 css = ERR_PTR(-ENOMEM); 4992 if (IS_ERR(css)) 4993 return css; 4994 4995 init_and_link_css(css, ss, cgrp); 4996 4997 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4998 if (err) 4999 goto err_free_css; 5000 5001 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5002 if (err < 0) 5003 goto err_free_css; 5004 css->id = err; 5005 5006 /* @css is ready to be brought online now, make it visible */ 5007 list_add_tail_rcu(&css->sibling, &parent_css->children); 5008 cgroup_idr_replace(&ss->css_idr, css, css->id); 5009 5010 err = online_css(css); 5011 if (err) 5012 goto err_list_del; 5013 5014 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5015 cgroup_parent(parent)) { 5016 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5017 current->comm, current->pid, ss->name); 5018 if (!strcmp(ss->name, "memory")) 5019 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5020 ss->warned_broken_hierarchy = true; 5021 } 5022 5023 return css; 5024 5025 err_list_del: 5026 list_del_rcu(&css->sibling); 5027 err_free_css: 5028 list_del_rcu(&css->rstat_css_node); 5029 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5030 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5031 return ERR_PTR(err); 5032 } 5033 5034 /* 5035 * The returned cgroup is fully initialized including its control mask, but 5036 * it isn't associated with its kernfs_node and doesn't have the control 5037 * mask applied. 5038 */ 5039 static struct cgroup *cgroup_create(struct cgroup *parent) 5040 { 5041 struct cgroup_root *root = parent->root; 5042 struct cgroup *cgrp, *tcgrp; 5043 int level = parent->level + 1; 5044 int ret; 5045 5046 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5047 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5048 GFP_KERNEL); 5049 if (!cgrp) 5050 return ERR_PTR(-ENOMEM); 5051 5052 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5053 if (ret) 5054 goto out_free_cgrp; 5055 5056 if (cgroup_on_dfl(parent)) { 5057 ret = cgroup_rstat_init(cgrp); 5058 if (ret) 5059 goto out_cancel_ref; 5060 } 5061 5062 /* 5063 * Temporarily set the pointer to NULL, so idr_find() won't return 5064 * a half-baked cgroup. 5065 */ 5066 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 5067 if (cgrp->id < 0) { 5068 ret = -ENOMEM; 5069 goto out_stat_exit; 5070 } 5071 5072 init_cgroup_housekeeping(cgrp); 5073 5074 cgrp->self.parent = &parent->self; 5075 cgrp->root = root; 5076 cgrp->level = level; 5077 5078 ret = psi_cgroup_alloc(cgrp); 5079 if (ret) 5080 goto out_idr_free; 5081 5082 ret = cgroup_bpf_inherit(cgrp); 5083 if (ret) 5084 goto out_psi_free; 5085 5086 /* 5087 * New cgroup inherits effective freeze counter, and 5088 * if the parent has to be frozen, the child has too. 5089 */ 5090 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5091 if (cgrp->freezer.e_freeze) 5092 set_bit(CGRP_FROZEN, &cgrp->flags); 5093 5094 spin_lock_irq(&css_set_lock); 5095 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5096 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 5097 5098 if (tcgrp != cgrp) { 5099 tcgrp->nr_descendants++; 5100 5101 /* 5102 * If the new cgroup is frozen, all ancestor cgroups 5103 * get a new frozen descendant, but their state can't 5104 * change because of this. 5105 */ 5106 if (cgrp->freezer.e_freeze) 5107 tcgrp->freezer.nr_frozen_descendants++; 5108 } 5109 } 5110 spin_unlock_irq(&css_set_lock); 5111 5112 if (notify_on_release(parent)) 5113 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5114 5115 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5116 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5117 5118 cgrp->self.serial_nr = css_serial_nr_next++; 5119 5120 /* allocation complete, commit to creation */ 5121 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5122 atomic_inc(&root->nr_cgrps); 5123 cgroup_get_live(parent); 5124 5125 /* 5126 * @cgrp is now fully operational. If something fails after this 5127 * point, it'll be released via the normal destruction path. 5128 */ 5129 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 5130 5131 /* 5132 * On the default hierarchy, a child doesn't automatically inherit 5133 * subtree_control from the parent. Each is configured manually. 5134 */ 5135 if (!cgroup_on_dfl(cgrp)) 5136 cgrp->subtree_control = cgroup_control(cgrp); 5137 5138 cgroup_propagate_control(cgrp); 5139 5140 return cgrp; 5141 5142 out_psi_free: 5143 psi_cgroup_free(cgrp); 5144 out_idr_free: 5145 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 5146 out_stat_exit: 5147 if (cgroup_on_dfl(parent)) 5148 cgroup_rstat_exit(cgrp); 5149 out_cancel_ref: 5150 percpu_ref_exit(&cgrp->self.refcnt); 5151 out_free_cgrp: 5152 kfree(cgrp); 5153 return ERR_PTR(ret); 5154 } 5155 5156 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5157 { 5158 struct cgroup *cgroup; 5159 int ret = false; 5160 int level = 1; 5161 5162 lockdep_assert_held(&cgroup_mutex); 5163 5164 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5165 if (cgroup->nr_descendants >= cgroup->max_descendants) 5166 goto fail; 5167 5168 if (level > cgroup->max_depth) 5169 goto fail; 5170 5171 level++; 5172 } 5173 5174 ret = true; 5175 fail: 5176 return ret; 5177 } 5178 5179 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5180 { 5181 struct cgroup *parent, *cgrp; 5182 struct kernfs_node *kn; 5183 int ret; 5184 5185 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5186 if (strchr(name, '\n')) 5187 return -EINVAL; 5188 5189 parent = cgroup_kn_lock_live(parent_kn, false); 5190 if (!parent) 5191 return -ENODEV; 5192 5193 if (!cgroup_check_hierarchy_limits(parent)) { 5194 ret = -EAGAIN; 5195 goto out_unlock; 5196 } 5197 5198 cgrp = cgroup_create(parent); 5199 if (IS_ERR(cgrp)) { 5200 ret = PTR_ERR(cgrp); 5201 goto out_unlock; 5202 } 5203 5204 /* create the directory */ 5205 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5206 if (IS_ERR(kn)) { 5207 ret = PTR_ERR(kn); 5208 goto out_destroy; 5209 } 5210 cgrp->kn = kn; 5211 5212 /* 5213 * This extra ref will be put in cgroup_free_fn() and guarantees 5214 * that @cgrp->kn is always accessible. 5215 */ 5216 kernfs_get(kn); 5217 5218 ret = cgroup_kn_set_ugid(kn); 5219 if (ret) 5220 goto out_destroy; 5221 5222 ret = css_populate_dir(&cgrp->self); 5223 if (ret) 5224 goto out_destroy; 5225 5226 ret = cgroup_apply_control_enable(cgrp); 5227 if (ret) 5228 goto out_destroy; 5229 5230 TRACE_CGROUP_PATH(mkdir, cgrp); 5231 5232 /* let's create and online css's */ 5233 kernfs_activate(kn); 5234 5235 ret = 0; 5236 goto out_unlock; 5237 5238 out_destroy: 5239 cgroup_destroy_locked(cgrp); 5240 out_unlock: 5241 cgroup_kn_unlock(parent_kn); 5242 return ret; 5243 } 5244 5245 /* 5246 * This is called when the refcnt of a css is confirmed to be killed. 5247 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5248 * initate destruction and put the css ref from kill_css(). 5249 */ 5250 static void css_killed_work_fn(struct work_struct *work) 5251 { 5252 struct cgroup_subsys_state *css = 5253 container_of(work, struct cgroup_subsys_state, destroy_work); 5254 5255 mutex_lock(&cgroup_mutex); 5256 5257 do { 5258 offline_css(css); 5259 css_put(css); 5260 /* @css can't go away while we're holding cgroup_mutex */ 5261 css = css->parent; 5262 } while (css && atomic_dec_and_test(&css->online_cnt)); 5263 5264 mutex_unlock(&cgroup_mutex); 5265 } 5266 5267 /* css kill confirmation processing requires process context, bounce */ 5268 static void css_killed_ref_fn(struct percpu_ref *ref) 5269 { 5270 struct cgroup_subsys_state *css = 5271 container_of(ref, struct cgroup_subsys_state, refcnt); 5272 5273 if (atomic_dec_and_test(&css->online_cnt)) { 5274 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5275 queue_work(cgroup_destroy_wq, &css->destroy_work); 5276 } 5277 } 5278 5279 /** 5280 * kill_css - destroy a css 5281 * @css: css to destroy 5282 * 5283 * This function initiates destruction of @css by removing cgroup interface 5284 * files and putting its base reference. ->css_offline() will be invoked 5285 * asynchronously once css_tryget_online() is guaranteed to fail and when 5286 * the reference count reaches zero, @css will be released. 5287 */ 5288 static void kill_css(struct cgroup_subsys_state *css) 5289 { 5290 lockdep_assert_held(&cgroup_mutex); 5291 5292 if (css->flags & CSS_DYING) 5293 return; 5294 5295 css->flags |= CSS_DYING; 5296 5297 /* 5298 * This must happen before css is disassociated with its cgroup. 5299 * See seq_css() for details. 5300 */ 5301 css_clear_dir(css); 5302 5303 /* 5304 * Killing would put the base ref, but we need to keep it alive 5305 * until after ->css_offline(). 5306 */ 5307 css_get(css); 5308 5309 /* 5310 * cgroup core guarantees that, by the time ->css_offline() is 5311 * invoked, no new css reference will be given out via 5312 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5313 * proceed to offlining css's because percpu_ref_kill() doesn't 5314 * guarantee that the ref is seen as killed on all CPUs on return. 5315 * 5316 * Use percpu_ref_kill_and_confirm() to get notifications as each 5317 * css is confirmed to be seen as killed on all CPUs. 5318 */ 5319 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5320 } 5321 5322 /** 5323 * cgroup_destroy_locked - the first stage of cgroup destruction 5324 * @cgrp: cgroup to be destroyed 5325 * 5326 * css's make use of percpu refcnts whose killing latency shouldn't be 5327 * exposed to userland and are RCU protected. Also, cgroup core needs to 5328 * guarantee that css_tryget_online() won't succeed by the time 5329 * ->css_offline() is invoked. To satisfy all the requirements, 5330 * destruction is implemented in the following two steps. 5331 * 5332 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5333 * userland visible parts and start killing the percpu refcnts of 5334 * css's. Set up so that the next stage will be kicked off once all 5335 * the percpu refcnts are confirmed to be killed. 5336 * 5337 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5338 * rest of destruction. Once all cgroup references are gone, the 5339 * cgroup is RCU-freed. 5340 * 5341 * This function implements s1. After this step, @cgrp is gone as far as 5342 * the userland is concerned and a new cgroup with the same name may be 5343 * created. As cgroup doesn't care about the names internally, this 5344 * doesn't cause any problem. 5345 */ 5346 static int cgroup_destroy_locked(struct cgroup *cgrp) 5347 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5348 { 5349 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5350 struct cgroup_subsys_state *css; 5351 struct cgrp_cset_link *link; 5352 int ssid; 5353 5354 lockdep_assert_held(&cgroup_mutex); 5355 5356 /* 5357 * Only migration can raise populated from zero and we're already 5358 * holding cgroup_mutex. 5359 */ 5360 if (cgroup_is_populated(cgrp)) 5361 return -EBUSY; 5362 5363 /* 5364 * Make sure there's no live children. We can't test emptiness of 5365 * ->self.children as dead children linger on it while being 5366 * drained; otherwise, "rmdir parent/child parent" may fail. 5367 */ 5368 if (css_has_online_children(&cgrp->self)) 5369 return -EBUSY; 5370 5371 /* 5372 * Mark @cgrp and the associated csets dead. The former prevents 5373 * further task migration and child creation by disabling 5374 * cgroup_lock_live_group(). The latter makes the csets ignored by 5375 * the migration path. 5376 */ 5377 cgrp->self.flags &= ~CSS_ONLINE; 5378 5379 spin_lock_irq(&css_set_lock); 5380 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5381 link->cset->dead = true; 5382 spin_unlock_irq(&css_set_lock); 5383 5384 /* initiate massacre of all css's */ 5385 for_each_css(css, ssid, cgrp) 5386 kill_css(css); 5387 5388 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5389 css_clear_dir(&cgrp->self); 5390 kernfs_remove(cgrp->kn); 5391 5392 if (parent && cgroup_is_threaded(cgrp)) 5393 parent->nr_threaded_children--; 5394 5395 spin_lock_irq(&css_set_lock); 5396 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5397 tcgrp->nr_descendants--; 5398 tcgrp->nr_dying_descendants++; 5399 /* 5400 * If the dying cgroup is frozen, decrease frozen descendants 5401 * counters of ancestor cgroups. 5402 */ 5403 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5404 tcgrp->freezer.nr_frozen_descendants--; 5405 } 5406 spin_unlock_irq(&css_set_lock); 5407 5408 cgroup1_check_for_release(parent); 5409 5410 /* put the base reference */ 5411 percpu_ref_kill(&cgrp->self.refcnt); 5412 5413 return 0; 5414 }; 5415 5416 int cgroup_rmdir(struct kernfs_node *kn) 5417 { 5418 struct cgroup *cgrp; 5419 int ret = 0; 5420 5421 cgrp = cgroup_kn_lock_live(kn, false); 5422 if (!cgrp) 5423 return 0; 5424 5425 ret = cgroup_destroy_locked(cgrp); 5426 if (!ret) 5427 TRACE_CGROUP_PATH(rmdir, cgrp); 5428 5429 cgroup_kn_unlock(kn); 5430 return ret; 5431 } 5432 5433 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5434 .show_options = cgroup_show_options, 5435 .mkdir = cgroup_mkdir, 5436 .rmdir = cgroup_rmdir, 5437 .show_path = cgroup_show_path, 5438 }; 5439 5440 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5441 { 5442 struct cgroup_subsys_state *css; 5443 5444 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5445 5446 mutex_lock(&cgroup_mutex); 5447 5448 idr_init(&ss->css_idr); 5449 INIT_LIST_HEAD(&ss->cfts); 5450 5451 /* Create the root cgroup state for this subsystem */ 5452 ss->root = &cgrp_dfl_root; 5453 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5454 /* We don't handle early failures gracefully */ 5455 BUG_ON(IS_ERR(css)); 5456 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5457 5458 /* 5459 * Root csses are never destroyed and we can't initialize 5460 * percpu_ref during early init. Disable refcnting. 5461 */ 5462 css->flags |= CSS_NO_REF; 5463 5464 if (early) { 5465 /* allocation can't be done safely during early init */ 5466 css->id = 1; 5467 } else { 5468 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5469 BUG_ON(css->id < 0); 5470 } 5471 5472 /* Update the init_css_set to contain a subsys 5473 * pointer to this state - since the subsystem is 5474 * newly registered, all tasks and hence the 5475 * init_css_set is in the subsystem's root cgroup. */ 5476 init_css_set.subsys[ss->id] = css; 5477 5478 have_fork_callback |= (bool)ss->fork << ss->id; 5479 have_exit_callback |= (bool)ss->exit << ss->id; 5480 have_release_callback |= (bool)ss->release << ss->id; 5481 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5482 5483 /* At system boot, before all subsystems have been 5484 * registered, no tasks have been forked, so we don't 5485 * need to invoke fork callbacks here. */ 5486 BUG_ON(!list_empty(&init_task.tasks)); 5487 5488 BUG_ON(online_css(css)); 5489 5490 mutex_unlock(&cgroup_mutex); 5491 } 5492 5493 /** 5494 * cgroup_init_early - cgroup initialization at system boot 5495 * 5496 * Initialize cgroups at system boot, and initialize any 5497 * subsystems that request early init. 5498 */ 5499 int __init cgroup_init_early(void) 5500 { 5501 static struct cgroup_fs_context __initdata ctx; 5502 struct cgroup_subsys *ss; 5503 int i; 5504 5505 ctx.root = &cgrp_dfl_root; 5506 init_cgroup_root(&ctx); 5507 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5508 5509 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5510 5511 for_each_subsys(ss, i) { 5512 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5513 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5514 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5515 ss->id, ss->name); 5516 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5517 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5518 5519 ss->id = i; 5520 ss->name = cgroup_subsys_name[i]; 5521 if (!ss->legacy_name) 5522 ss->legacy_name = cgroup_subsys_name[i]; 5523 5524 if (ss->early_init) 5525 cgroup_init_subsys(ss, true); 5526 } 5527 return 0; 5528 } 5529 5530 static u16 cgroup_disable_mask __initdata; 5531 5532 /** 5533 * cgroup_init - cgroup initialization 5534 * 5535 * Register cgroup filesystem and /proc file, and initialize 5536 * any subsystems that didn't request early init. 5537 */ 5538 int __init cgroup_init(void) 5539 { 5540 struct cgroup_subsys *ss; 5541 int ssid; 5542 5543 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5544 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5545 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5546 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5547 5548 cgroup_rstat_boot(); 5549 5550 /* 5551 * The latency of the synchronize_rcu() is too high for cgroups, 5552 * avoid it at the cost of forcing all readers into the slow path. 5553 */ 5554 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5555 5556 get_user_ns(init_cgroup_ns.user_ns); 5557 5558 mutex_lock(&cgroup_mutex); 5559 5560 /* 5561 * Add init_css_set to the hash table so that dfl_root can link to 5562 * it during init. 5563 */ 5564 hash_add(css_set_table, &init_css_set.hlist, 5565 css_set_hash(init_css_set.subsys)); 5566 5567 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5568 5569 mutex_unlock(&cgroup_mutex); 5570 5571 for_each_subsys(ss, ssid) { 5572 if (ss->early_init) { 5573 struct cgroup_subsys_state *css = 5574 init_css_set.subsys[ss->id]; 5575 5576 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5577 GFP_KERNEL); 5578 BUG_ON(css->id < 0); 5579 } else { 5580 cgroup_init_subsys(ss, false); 5581 } 5582 5583 list_add_tail(&init_css_set.e_cset_node[ssid], 5584 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5585 5586 /* 5587 * Setting dfl_root subsys_mask needs to consider the 5588 * disabled flag and cftype registration needs kmalloc, 5589 * both of which aren't available during early_init. 5590 */ 5591 if (cgroup_disable_mask & (1 << ssid)) { 5592 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5593 printk(KERN_INFO "Disabling %s control group subsystem\n", 5594 ss->name); 5595 continue; 5596 } 5597 5598 if (cgroup1_ssid_disabled(ssid)) 5599 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5600 ss->name); 5601 5602 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5603 5604 /* implicit controllers must be threaded too */ 5605 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5606 5607 if (ss->implicit_on_dfl) 5608 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5609 else if (!ss->dfl_cftypes) 5610 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5611 5612 if (ss->threaded) 5613 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5614 5615 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5616 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5617 } else { 5618 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5619 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5620 } 5621 5622 if (ss->bind) 5623 ss->bind(init_css_set.subsys[ssid]); 5624 5625 mutex_lock(&cgroup_mutex); 5626 css_populate_dir(init_css_set.subsys[ssid]); 5627 mutex_unlock(&cgroup_mutex); 5628 } 5629 5630 /* init_css_set.subsys[] has been updated, re-hash */ 5631 hash_del(&init_css_set.hlist); 5632 hash_add(css_set_table, &init_css_set.hlist, 5633 css_set_hash(init_css_set.subsys)); 5634 5635 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5636 WARN_ON(register_filesystem(&cgroup_fs_type)); 5637 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5638 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5639 5640 return 0; 5641 } 5642 5643 static int __init cgroup_wq_init(void) 5644 { 5645 /* 5646 * There isn't much point in executing destruction path in 5647 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5648 * Use 1 for @max_active. 5649 * 5650 * We would prefer to do this in cgroup_init() above, but that 5651 * is called before init_workqueues(): so leave this until after. 5652 */ 5653 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5654 BUG_ON(!cgroup_destroy_wq); 5655 return 0; 5656 } 5657 core_initcall(cgroup_wq_init); 5658 5659 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5660 char *buf, size_t buflen) 5661 { 5662 struct kernfs_node *kn; 5663 5664 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5665 if (!kn) 5666 return; 5667 kernfs_path(kn, buf, buflen); 5668 kernfs_put(kn); 5669 } 5670 5671 /* 5672 * proc_cgroup_show() 5673 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5674 * - Used for /proc/<pid>/cgroup. 5675 */ 5676 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5677 struct pid *pid, struct task_struct *tsk) 5678 { 5679 char *buf; 5680 int retval; 5681 struct cgroup_root *root; 5682 5683 retval = -ENOMEM; 5684 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5685 if (!buf) 5686 goto out; 5687 5688 mutex_lock(&cgroup_mutex); 5689 spin_lock_irq(&css_set_lock); 5690 5691 for_each_root(root) { 5692 struct cgroup_subsys *ss; 5693 struct cgroup *cgrp; 5694 int ssid, count = 0; 5695 5696 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5697 continue; 5698 5699 seq_printf(m, "%d:", root->hierarchy_id); 5700 if (root != &cgrp_dfl_root) 5701 for_each_subsys(ss, ssid) 5702 if (root->subsys_mask & (1 << ssid)) 5703 seq_printf(m, "%s%s", count++ ? "," : "", 5704 ss->legacy_name); 5705 if (strlen(root->name)) 5706 seq_printf(m, "%sname=%s", count ? "," : "", 5707 root->name); 5708 seq_putc(m, ':'); 5709 5710 cgrp = task_cgroup_from_root(tsk, root); 5711 5712 /* 5713 * On traditional hierarchies, all zombie tasks show up as 5714 * belonging to the root cgroup. On the default hierarchy, 5715 * while a zombie doesn't show up in "cgroup.procs" and 5716 * thus can't be migrated, its /proc/PID/cgroup keeps 5717 * reporting the cgroup it belonged to before exiting. If 5718 * the cgroup is removed before the zombie is reaped, 5719 * " (deleted)" is appended to the cgroup path. 5720 */ 5721 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5722 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5723 current->nsproxy->cgroup_ns); 5724 if (retval >= PATH_MAX) 5725 retval = -ENAMETOOLONG; 5726 if (retval < 0) 5727 goto out_unlock; 5728 5729 seq_puts(m, buf); 5730 } else { 5731 seq_puts(m, "/"); 5732 } 5733 5734 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5735 seq_puts(m, " (deleted)\n"); 5736 else 5737 seq_putc(m, '\n'); 5738 } 5739 5740 retval = 0; 5741 out_unlock: 5742 spin_unlock_irq(&css_set_lock); 5743 mutex_unlock(&cgroup_mutex); 5744 kfree(buf); 5745 out: 5746 return retval; 5747 } 5748 5749 /** 5750 * cgroup_fork - initialize cgroup related fields during copy_process() 5751 * @child: pointer to task_struct of forking parent process. 5752 * 5753 * A task is associated with the init_css_set until cgroup_post_fork() 5754 * attaches it to the parent's css_set. Empty cg_list indicates that 5755 * @child isn't holding reference to its css_set. 5756 */ 5757 void cgroup_fork(struct task_struct *child) 5758 { 5759 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5760 INIT_LIST_HEAD(&child->cg_list); 5761 } 5762 5763 /** 5764 * cgroup_can_fork - called on a new task before the process is exposed 5765 * @child: the task in question. 5766 * 5767 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5768 * returns an error, the fork aborts with that error code. This allows for 5769 * a cgroup subsystem to conditionally allow or deny new forks. 5770 */ 5771 int cgroup_can_fork(struct task_struct *child) 5772 { 5773 struct cgroup_subsys *ss; 5774 int i, j, ret; 5775 5776 do_each_subsys_mask(ss, i, have_canfork_callback) { 5777 ret = ss->can_fork(child); 5778 if (ret) 5779 goto out_revert; 5780 } while_each_subsys_mask(); 5781 5782 return 0; 5783 5784 out_revert: 5785 for_each_subsys(ss, j) { 5786 if (j >= i) 5787 break; 5788 if (ss->cancel_fork) 5789 ss->cancel_fork(child); 5790 } 5791 5792 return ret; 5793 } 5794 5795 /** 5796 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5797 * @child: the task in question 5798 * 5799 * This calls the cancel_fork() callbacks if a fork failed *after* 5800 * cgroup_can_fork() succeded. 5801 */ 5802 void cgroup_cancel_fork(struct task_struct *child) 5803 { 5804 struct cgroup_subsys *ss; 5805 int i; 5806 5807 for_each_subsys(ss, i) 5808 if (ss->cancel_fork) 5809 ss->cancel_fork(child); 5810 } 5811 5812 /** 5813 * cgroup_post_fork - called on a new task after adding it to the task list 5814 * @child: the task in question 5815 * 5816 * Adds the task to the list running through its css_set if necessary and 5817 * call the subsystem fork() callbacks. Has to be after the task is 5818 * visible on the task list in case we race with the first call to 5819 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5820 * list. 5821 */ 5822 void cgroup_post_fork(struct task_struct *child) 5823 { 5824 struct cgroup_subsys *ss; 5825 int i; 5826 5827 /* 5828 * This may race against cgroup_enable_task_cg_lists(). As that 5829 * function sets use_task_css_set_links before grabbing 5830 * tasklist_lock and we just went through tasklist_lock to add 5831 * @child, it's guaranteed that either we see the set 5832 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5833 * @child during its iteration. 5834 * 5835 * If we won the race, @child is associated with %current's 5836 * css_set. Grabbing css_set_lock guarantees both that the 5837 * association is stable, and, on completion of the parent's 5838 * migration, @child is visible in the source of migration or 5839 * already in the destination cgroup. This guarantee is necessary 5840 * when implementing operations which need to migrate all tasks of 5841 * a cgroup to another. 5842 * 5843 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5844 * will remain in init_css_set. This is safe because all tasks are 5845 * in the init_css_set before cg_links is enabled and there's no 5846 * operation which transfers all tasks out of init_css_set. 5847 */ 5848 if (use_task_css_set_links) { 5849 struct css_set *cset; 5850 5851 spin_lock_irq(&css_set_lock); 5852 cset = task_css_set(current); 5853 if (list_empty(&child->cg_list)) { 5854 get_css_set(cset); 5855 cset->nr_tasks++; 5856 css_set_move_task(child, NULL, cset, false); 5857 } 5858 5859 /* 5860 * If the cgroup has to be frozen, the new task has too. 5861 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get 5862 * the task into the frozen state. 5863 */ 5864 if (unlikely(cgroup_task_freeze(child))) { 5865 struct cgroup *cgrp; 5866 5867 spin_lock(&child->sighand->siglock); 5868 WARN_ON_ONCE(child->frozen); 5869 cgrp = cset->dfl_cgrp; 5870 child->jobctl |= JOBCTL_TRAP_FREEZE; 5871 spin_unlock(&child->sighand->siglock); 5872 5873 /* 5874 * Calling cgroup_update_frozen() isn't required here, 5875 * because it will be called anyway a bit later 5876 * from do_freezer_trap(). So we avoid cgroup's 5877 * transient switch from the frozen state and back. 5878 */ 5879 } 5880 5881 spin_unlock_irq(&css_set_lock); 5882 } 5883 5884 /* 5885 * Call ss->fork(). This must happen after @child is linked on 5886 * css_set; otherwise, @child might change state between ->fork() 5887 * and addition to css_set. 5888 */ 5889 do_each_subsys_mask(ss, i, have_fork_callback) { 5890 ss->fork(child); 5891 } while_each_subsys_mask(); 5892 } 5893 5894 /** 5895 * cgroup_exit - detach cgroup from exiting task 5896 * @tsk: pointer to task_struct of exiting process 5897 * 5898 * Description: Detach cgroup from @tsk and release it. 5899 * 5900 * Note that cgroups marked notify_on_release force every task in 5901 * them to take the global cgroup_mutex mutex when exiting. 5902 * This could impact scaling on very large systems. Be reluctant to 5903 * use notify_on_release cgroups where very high task exit scaling 5904 * is required on large systems. 5905 * 5906 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5907 * call cgroup_exit() while the task is still competent to handle 5908 * notify_on_release(), then leave the task attached to the root cgroup in 5909 * each hierarchy for the remainder of its exit. No need to bother with 5910 * init_css_set refcnting. init_css_set never goes away and we can't race 5911 * with migration path - PF_EXITING is visible to migration path. 5912 */ 5913 void cgroup_exit(struct task_struct *tsk) 5914 { 5915 struct cgroup_subsys *ss; 5916 struct css_set *cset; 5917 int i; 5918 5919 /* 5920 * Unlink from @tsk from its css_set. As migration path can't race 5921 * with us, we can check css_set and cg_list without synchronization. 5922 */ 5923 cset = task_css_set(tsk); 5924 5925 if (!list_empty(&tsk->cg_list)) { 5926 spin_lock_irq(&css_set_lock); 5927 css_set_move_task(tsk, cset, NULL, false); 5928 cset->nr_tasks--; 5929 5930 if (unlikely(cgroup_task_frozen(tsk))) 5931 cgroup_freezer_frozen_exit(tsk); 5932 else if (unlikely(cgroup_task_freeze(tsk))) 5933 cgroup_update_frozen(task_dfl_cgroup(tsk)); 5934 5935 spin_unlock_irq(&css_set_lock); 5936 } else { 5937 get_css_set(cset); 5938 } 5939 5940 /* see cgroup_post_fork() for details */ 5941 do_each_subsys_mask(ss, i, have_exit_callback) { 5942 ss->exit(tsk); 5943 } while_each_subsys_mask(); 5944 } 5945 5946 void cgroup_release(struct task_struct *task) 5947 { 5948 struct cgroup_subsys *ss; 5949 int ssid; 5950 5951 do_each_subsys_mask(ss, ssid, have_release_callback) { 5952 ss->release(task); 5953 } while_each_subsys_mask(); 5954 } 5955 5956 void cgroup_free(struct task_struct *task) 5957 { 5958 struct css_set *cset = task_css_set(task); 5959 put_css_set(cset); 5960 } 5961 5962 static int __init cgroup_disable(char *str) 5963 { 5964 struct cgroup_subsys *ss; 5965 char *token; 5966 int i; 5967 5968 while ((token = strsep(&str, ",")) != NULL) { 5969 if (!*token) 5970 continue; 5971 5972 for_each_subsys(ss, i) { 5973 if (strcmp(token, ss->name) && 5974 strcmp(token, ss->legacy_name)) 5975 continue; 5976 cgroup_disable_mask |= 1 << i; 5977 } 5978 } 5979 return 1; 5980 } 5981 __setup("cgroup_disable=", cgroup_disable); 5982 5983 void __init __weak enable_debug_cgroup(void) { } 5984 5985 static int __init enable_cgroup_debug(char *str) 5986 { 5987 cgroup_debug = true; 5988 enable_debug_cgroup(); 5989 return 1; 5990 } 5991 __setup("cgroup_debug", enable_cgroup_debug); 5992 5993 /** 5994 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5995 * @dentry: directory dentry of interest 5996 * @ss: subsystem of interest 5997 * 5998 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5999 * to get the corresponding css and return it. If such css doesn't exist 6000 * or can't be pinned, an ERR_PTR value is returned. 6001 */ 6002 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6003 struct cgroup_subsys *ss) 6004 { 6005 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6006 struct file_system_type *s_type = dentry->d_sb->s_type; 6007 struct cgroup_subsys_state *css = NULL; 6008 struct cgroup *cgrp; 6009 6010 /* is @dentry a cgroup dir? */ 6011 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6012 !kn || kernfs_type(kn) != KERNFS_DIR) 6013 return ERR_PTR(-EBADF); 6014 6015 rcu_read_lock(); 6016 6017 /* 6018 * This path doesn't originate from kernfs and @kn could already 6019 * have been or be removed at any point. @kn->priv is RCU 6020 * protected for this access. See css_release_work_fn() for details. 6021 */ 6022 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6023 if (cgrp) 6024 css = cgroup_css(cgrp, ss); 6025 6026 if (!css || !css_tryget_online(css)) 6027 css = ERR_PTR(-ENOENT); 6028 6029 rcu_read_unlock(); 6030 return css; 6031 } 6032 6033 /** 6034 * css_from_id - lookup css by id 6035 * @id: the cgroup id 6036 * @ss: cgroup subsys to be looked into 6037 * 6038 * Returns the css if there's valid one with @id, otherwise returns NULL. 6039 * Should be called under rcu_read_lock(). 6040 */ 6041 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6042 { 6043 WARN_ON_ONCE(!rcu_read_lock_held()); 6044 return idr_find(&ss->css_idr, id); 6045 } 6046 6047 /** 6048 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6049 * @path: path on the default hierarchy 6050 * 6051 * Find the cgroup at @path on the default hierarchy, increment its 6052 * reference count and return it. Returns pointer to the found cgroup on 6053 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6054 * if @path points to a non-directory. 6055 */ 6056 struct cgroup *cgroup_get_from_path(const char *path) 6057 { 6058 struct kernfs_node *kn; 6059 struct cgroup *cgrp; 6060 6061 mutex_lock(&cgroup_mutex); 6062 6063 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6064 if (kn) { 6065 if (kernfs_type(kn) == KERNFS_DIR) { 6066 cgrp = kn->priv; 6067 cgroup_get_live(cgrp); 6068 } else { 6069 cgrp = ERR_PTR(-ENOTDIR); 6070 } 6071 kernfs_put(kn); 6072 } else { 6073 cgrp = ERR_PTR(-ENOENT); 6074 } 6075 6076 mutex_unlock(&cgroup_mutex); 6077 return cgrp; 6078 } 6079 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6080 6081 /** 6082 * cgroup_get_from_fd - get a cgroup pointer from a fd 6083 * @fd: fd obtained by open(cgroup2_dir) 6084 * 6085 * Find the cgroup from a fd which should be obtained 6086 * by opening a cgroup directory. Returns a pointer to the 6087 * cgroup on success. ERR_PTR is returned if the cgroup 6088 * cannot be found. 6089 */ 6090 struct cgroup *cgroup_get_from_fd(int fd) 6091 { 6092 struct cgroup_subsys_state *css; 6093 struct cgroup *cgrp; 6094 struct file *f; 6095 6096 f = fget_raw(fd); 6097 if (!f) 6098 return ERR_PTR(-EBADF); 6099 6100 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6101 fput(f); 6102 if (IS_ERR(css)) 6103 return ERR_CAST(css); 6104 6105 cgrp = css->cgroup; 6106 if (!cgroup_on_dfl(cgrp)) { 6107 cgroup_put(cgrp); 6108 return ERR_PTR(-EBADF); 6109 } 6110 6111 return cgrp; 6112 } 6113 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6114 6115 /* 6116 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6117 * definition in cgroup-defs.h. 6118 */ 6119 #ifdef CONFIG_SOCK_CGROUP_DATA 6120 6121 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6122 6123 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6124 static bool cgroup_sk_alloc_disabled __read_mostly; 6125 6126 void cgroup_sk_alloc_disable(void) 6127 { 6128 if (cgroup_sk_alloc_disabled) 6129 return; 6130 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6131 cgroup_sk_alloc_disabled = true; 6132 } 6133 6134 #else 6135 6136 #define cgroup_sk_alloc_disabled false 6137 6138 #endif 6139 6140 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6141 { 6142 if (cgroup_sk_alloc_disabled) 6143 return; 6144 6145 /* Socket clone path */ 6146 if (skcd->val) { 6147 /* 6148 * We might be cloning a socket which is left in an empty 6149 * cgroup and the cgroup might have already been rmdir'd. 6150 * Don't use cgroup_get_live(). 6151 */ 6152 cgroup_get(sock_cgroup_ptr(skcd)); 6153 return; 6154 } 6155 6156 rcu_read_lock(); 6157 6158 while (true) { 6159 struct css_set *cset; 6160 6161 cset = task_css_set(current); 6162 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6163 skcd->val = (unsigned long)cset->dfl_cgrp; 6164 break; 6165 } 6166 cpu_relax(); 6167 } 6168 6169 rcu_read_unlock(); 6170 } 6171 6172 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6173 { 6174 cgroup_put(sock_cgroup_ptr(skcd)); 6175 } 6176 6177 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6178 6179 #ifdef CONFIG_CGROUP_BPF 6180 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6181 enum bpf_attach_type type, u32 flags) 6182 { 6183 int ret; 6184 6185 mutex_lock(&cgroup_mutex); 6186 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 6187 mutex_unlock(&cgroup_mutex); 6188 return ret; 6189 } 6190 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6191 enum bpf_attach_type type, u32 flags) 6192 { 6193 int ret; 6194 6195 mutex_lock(&cgroup_mutex); 6196 ret = __cgroup_bpf_detach(cgrp, prog, type); 6197 mutex_unlock(&cgroup_mutex); 6198 return ret; 6199 } 6200 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6201 union bpf_attr __user *uattr) 6202 { 6203 int ret; 6204 6205 mutex_lock(&cgroup_mutex); 6206 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6207 mutex_unlock(&cgroup_mutex); 6208 return ret; 6209 } 6210 #endif /* CONFIG_CGROUP_BPF */ 6211 6212 #ifdef CONFIG_SYSFS 6213 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6214 ssize_t size, const char *prefix) 6215 { 6216 struct cftype *cft; 6217 ssize_t ret = 0; 6218 6219 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6220 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6221 continue; 6222 6223 if (prefix) 6224 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6225 6226 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6227 6228 if (WARN_ON(ret >= size)) 6229 break; 6230 } 6231 6232 return ret; 6233 } 6234 6235 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6236 char *buf) 6237 { 6238 struct cgroup_subsys *ss; 6239 int ssid; 6240 ssize_t ret = 0; 6241 6242 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6243 NULL); 6244 6245 for_each_subsys(ss, ssid) 6246 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6247 PAGE_SIZE - ret, 6248 cgroup_subsys_name[ssid]); 6249 6250 return ret; 6251 } 6252 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6253 6254 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6255 char *buf) 6256 { 6257 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 6258 } 6259 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6260 6261 static struct attribute *cgroup_sysfs_attrs[] = { 6262 &cgroup_delegate_attr.attr, 6263 &cgroup_features_attr.attr, 6264 NULL, 6265 }; 6266 6267 static const struct attribute_group cgroup_sysfs_attr_group = { 6268 .attrs = cgroup_sysfs_attrs, 6269 .name = "cgroup", 6270 }; 6271 6272 static int __init cgroup_sysfs_init(void) 6273 { 6274 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6275 } 6276 subsys_initcall(cgroup_sysfs_init); 6277 #endif /* CONFIG_SYSFS */ 6278