xref: /openbmc/linux/kernel/cgroup/cgroup-v1.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 
19 #include <trace/events/cgroup.h>
20 
21 /*
22  * pidlists linger the following amount before being destroyed.  The goal
23  * is avoiding frequent destruction in the middle of consecutive read calls
24  * Expiring in the middle is a performance problem not a correctness one.
25  * 1 sec should be enough.
26  */
27 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28 
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31 
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34 
35 /*
36  * pidlist destructions need to be flushed on cgroup destruction.  Use a
37  * separate workqueue as flush domain.
38  */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40 
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43 
44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 	return cgroup_no_v1_mask & (1 << ssid);
47 }
48 
49 /**
50  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51  * @from: attach to all cgroups of a given task
52  * @tsk: the task to be attached
53  *
54  * Return: %0 on success or a negative errno code on failure
55  */
56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57 {
58 	struct cgroup_root *root;
59 	int retval = 0;
60 
61 	mutex_lock(&cgroup_mutex);
62 	percpu_down_write(&cgroup_threadgroup_rwsem);
63 	for_each_root(root) {
64 		struct cgroup *from_cgrp;
65 
66 		if (root == &cgrp_dfl_root)
67 			continue;
68 
69 		spin_lock_irq(&css_set_lock);
70 		from_cgrp = task_cgroup_from_root(from, root);
71 		spin_unlock_irq(&css_set_lock);
72 
73 		retval = cgroup_attach_task(from_cgrp, tsk, false);
74 		if (retval)
75 			break;
76 	}
77 	percpu_up_write(&cgroup_threadgroup_rwsem);
78 	mutex_unlock(&cgroup_mutex);
79 
80 	return retval;
81 }
82 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
83 
84 /**
85  * cgroup_transfer_tasks - move tasks from one cgroup to another
86  * @to: cgroup to which the tasks will be moved
87  * @from: cgroup in which the tasks currently reside
88  *
89  * Locking rules between cgroup_post_fork() and the migration path
90  * guarantee that, if a task is forking while being migrated, the new child
91  * is guaranteed to be either visible in the source cgroup after the
92  * parent's migration is complete or put into the target cgroup.  No task
93  * can slip out of migration through forking.
94  *
95  * Return: %0 on success or a negative errno code on failure
96  */
97 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
98 {
99 	DEFINE_CGROUP_MGCTX(mgctx);
100 	struct cgrp_cset_link *link;
101 	struct css_task_iter it;
102 	struct task_struct *task;
103 	int ret;
104 
105 	if (cgroup_on_dfl(to))
106 		return -EINVAL;
107 
108 	ret = cgroup_migrate_vet_dst(to);
109 	if (ret)
110 		return ret;
111 
112 	mutex_lock(&cgroup_mutex);
113 
114 	percpu_down_write(&cgroup_threadgroup_rwsem);
115 
116 	/* all tasks in @from are being moved, all csets are source */
117 	spin_lock_irq(&css_set_lock);
118 	list_for_each_entry(link, &from->cset_links, cset_link)
119 		cgroup_migrate_add_src(link->cset, to, &mgctx);
120 	spin_unlock_irq(&css_set_lock);
121 
122 	ret = cgroup_migrate_prepare_dst(&mgctx);
123 	if (ret)
124 		goto out_err;
125 
126 	/*
127 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
128 	 * ->can_attach() fails.
129 	 */
130 	do {
131 		css_task_iter_start(&from->self, 0, &it);
132 
133 		do {
134 			task = css_task_iter_next(&it);
135 		} while (task && (task->flags & PF_EXITING));
136 
137 		if (task)
138 			get_task_struct(task);
139 		css_task_iter_end(&it);
140 
141 		if (task) {
142 			ret = cgroup_migrate(task, false, &mgctx);
143 			if (!ret)
144 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
145 			put_task_struct(task);
146 		}
147 	} while (task && !ret);
148 out_err:
149 	cgroup_migrate_finish(&mgctx);
150 	percpu_up_write(&cgroup_threadgroup_rwsem);
151 	mutex_unlock(&cgroup_mutex);
152 	return ret;
153 }
154 
155 /*
156  * Stuff for reading the 'tasks'/'procs' files.
157  *
158  * Reading this file can return large amounts of data if a cgroup has
159  * *lots* of attached tasks. So it may need several calls to read(),
160  * but we cannot guarantee that the information we produce is correct
161  * unless we produce it entirely atomically.
162  *
163  */
164 
165 /* which pidlist file are we talking about? */
166 enum cgroup_filetype {
167 	CGROUP_FILE_PROCS,
168 	CGROUP_FILE_TASKS,
169 };
170 
171 /*
172  * A pidlist is a list of pids that virtually represents the contents of one
173  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
174  * a pair (one each for procs, tasks) for each pid namespace that's relevant
175  * to the cgroup.
176  */
177 struct cgroup_pidlist {
178 	/*
179 	 * used to find which pidlist is wanted. doesn't change as long as
180 	 * this particular list stays in the list.
181 	*/
182 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
183 	/* array of xids */
184 	pid_t *list;
185 	/* how many elements the above list has */
186 	int length;
187 	/* each of these stored in a list by its cgroup */
188 	struct list_head links;
189 	/* pointer to the cgroup we belong to, for list removal purposes */
190 	struct cgroup *owner;
191 	/* for delayed destruction */
192 	struct delayed_work destroy_dwork;
193 };
194 
195 /*
196  * Used to destroy all pidlists lingering waiting for destroy timer.  None
197  * should be left afterwards.
198  */
199 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
200 {
201 	struct cgroup_pidlist *l, *tmp_l;
202 
203 	mutex_lock(&cgrp->pidlist_mutex);
204 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
205 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
206 	mutex_unlock(&cgrp->pidlist_mutex);
207 
208 	flush_workqueue(cgroup_pidlist_destroy_wq);
209 	BUG_ON(!list_empty(&cgrp->pidlists));
210 }
211 
212 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
213 {
214 	struct delayed_work *dwork = to_delayed_work(work);
215 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
216 						destroy_dwork);
217 	struct cgroup_pidlist *tofree = NULL;
218 
219 	mutex_lock(&l->owner->pidlist_mutex);
220 
221 	/*
222 	 * Destroy iff we didn't get queued again.  The state won't change
223 	 * as destroy_dwork can only be queued while locked.
224 	 */
225 	if (!delayed_work_pending(dwork)) {
226 		list_del(&l->links);
227 		kvfree(l->list);
228 		put_pid_ns(l->key.ns);
229 		tofree = l;
230 	}
231 
232 	mutex_unlock(&l->owner->pidlist_mutex);
233 	kfree(tofree);
234 }
235 
236 /*
237  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
238  * Returns the number of unique elements.
239  */
240 static int pidlist_uniq(pid_t *list, int length)
241 {
242 	int src, dest = 1;
243 
244 	/*
245 	 * we presume the 0th element is unique, so i starts at 1. trivial
246 	 * edge cases first; no work needs to be done for either
247 	 */
248 	if (length == 0 || length == 1)
249 		return length;
250 	/* src and dest walk down the list; dest counts unique elements */
251 	for (src = 1; src < length; src++) {
252 		/* find next unique element */
253 		while (list[src] == list[src-1]) {
254 			src++;
255 			if (src == length)
256 				goto after;
257 		}
258 		/* dest always points to where the next unique element goes */
259 		list[dest] = list[src];
260 		dest++;
261 	}
262 after:
263 	return dest;
264 }
265 
266 /*
267  * The two pid files - task and cgroup.procs - guaranteed that the result
268  * is sorted, which forced this whole pidlist fiasco.  As pid order is
269  * different per namespace, each namespace needs differently sorted list,
270  * making it impossible to use, for example, single rbtree of member tasks
271  * sorted by task pointer.  As pidlists can be fairly large, allocating one
272  * per open file is dangerous, so cgroup had to implement shared pool of
273  * pidlists keyed by cgroup and namespace.
274  */
275 static int cmppid(const void *a, const void *b)
276 {
277 	return *(pid_t *)a - *(pid_t *)b;
278 }
279 
280 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
281 						  enum cgroup_filetype type)
282 {
283 	struct cgroup_pidlist *l;
284 	/* don't need task_nsproxy() if we're looking at ourself */
285 	struct pid_namespace *ns = task_active_pid_ns(current);
286 
287 	lockdep_assert_held(&cgrp->pidlist_mutex);
288 
289 	list_for_each_entry(l, &cgrp->pidlists, links)
290 		if (l->key.type == type && l->key.ns == ns)
291 			return l;
292 	return NULL;
293 }
294 
295 /*
296  * find the appropriate pidlist for our purpose (given procs vs tasks)
297  * returns with the lock on that pidlist already held, and takes care
298  * of the use count, or returns NULL with no locks held if we're out of
299  * memory.
300  */
301 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
302 						enum cgroup_filetype type)
303 {
304 	struct cgroup_pidlist *l;
305 
306 	lockdep_assert_held(&cgrp->pidlist_mutex);
307 
308 	l = cgroup_pidlist_find(cgrp, type);
309 	if (l)
310 		return l;
311 
312 	/* entry not found; create a new one */
313 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
314 	if (!l)
315 		return l;
316 
317 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
318 	l->key.type = type;
319 	/* don't need task_nsproxy() if we're looking at ourself */
320 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
321 	l->owner = cgrp;
322 	list_add(&l->links, &cgrp->pidlists);
323 	return l;
324 }
325 
326 /*
327  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
328  */
329 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
330 			      struct cgroup_pidlist **lp)
331 {
332 	pid_t *array;
333 	int length;
334 	int pid, n = 0; /* used for populating the array */
335 	struct css_task_iter it;
336 	struct task_struct *tsk;
337 	struct cgroup_pidlist *l;
338 
339 	lockdep_assert_held(&cgrp->pidlist_mutex);
340 
341 	/*
342 	 * If cgroup gets more users after we read count, we won't have
343 	 * enough space - tough.  This race is indistinguishable to the
344 	 * caller from the case that the additional cgroup users didn't
345 	 * show up until sometime later on.
346 	 */
347 	length = cgroup_task_count(cgrp);
348 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
349 	if (!array)
350 		return -ENOMEM;
351 	/* now, populate the array */
352 	css_task_iter_start(&cgrp->self, 0, &it);
353 	while ((tsk = css_task_iter_next(&it))) {
354 		if (unlikely(n == length))
355 			break;
356 		/* get tgid or pid for procs or tasks file respectively */
357 		if (type == CGROUP_FILE_PROCS)
358 			pid = task_tgid_vnr(tsk);
359 		else
360 			pid = task_pid_vnr(tsk);
361 		if (pid > 0) /* make sure to only use valid results */
362 			array[n++] = pid;
363 	}
364 	css_task_iter_end(&it);
365 	length = n;
366 	/* now sort & (if procs) strip out duplicates */
367 	sort(array, length, sizeof(pid_t), cmppid, NULL);
368 	if (type == CGROUP_FILE_PROCS)
369 		length = pidlist_uniq(array, length);
370 
371 	l = cgroup_pidlist_find_create(cgrp, type);
372 	if (!l) {
373 		kvfree(array);
374 		return -ENOMEM;
375 	}
376 
377 	/* store array, freeing old if necessary */
378 	kvfree(l->list);
379 	l->list = array;
380 	l->length = length;
381 	*lp = l;
382 	return 0;
383 }
384 
385 /*
386  * seq_file methods for the tasks/procs files. The seq_file position is the
387  * next pid to display; the seq_file iterator is a pointer to the pid
388  * in the cgroup->l->list array.
389  */
390 
391 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
392 {
393 	/*
394 	 * Initially we receive a position value that corresponds to
395 	 * one more than the last pid shown (or 0 on the first call or
396 	 * after a seek to the start). Use a binary-search to find the
397 	 * next pid to display, if any
398 	 */
399 	struct kernfs_open_file *of = s->private;
400 	struct cgroup *cgrp = seq_css(s)->cgroup;
401 	struct cgroup_pidlist *l;
402 	enum cgroup_filetype type = seq_cft(s)->private;
403 	int index = 0, pid = *pos;
404 	int *iter, ret;
405 
406 	mutex_lock(&cgrp->pidlist_mutex);
407 
408 	/*
409 	 * !NULL @of->priv indicates that this isn't the first start()
410 	 * after open.  If the matching pidlist is around, we can use that.
411 	 * Look for it.  Note that @of->priv can't be used directly.  It
412 	 * could already have been destroyed.
413 	 */
414 	if (of->priv)
415 		of->priv = cgroup_pidlist_find(cgrp, type);
416 
417 	/*
418 	 * Either this is the first start() after open or the matching
419 	 * pidlist has been destroyed inbetween.  Create a new one.
420 	 */
421 	if (!of->priv) {
422 		ret = pidlist_array_load(cgrp, type,
423 					 (struct cgroup_pidlist **)&of->priv);
424 		if (ret)
425 			return ERR_PTR(ret);
426 	}
427 	l = of->priv;
428 
429 	if (pid) {
430 		int end = l->length;
431 
432 		while (index < end) {
433 			int mid = (index + end) / 2;
434 			if (l->list[mid] == pid) {
435 				index = mid;
436 				break;
437 			} else if (l->list[mid] <= pid)
438 				index = mid + 1;
439 			else
440 				end = mid;
441 		}
442 	}
443 	/* If we're off the end of the array, we're done */
444 	if (index >= l->length)
445 		return NULL;
446 	/* Update the abstract position to be the actual pid that we found */
447 	iter = l->list + index;
448 	*pos = *iter;
449 	return iter;
450 }
451 
452 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
453 {
454 	struct kernfs_open_file *of = s->private;
455 	struct cgroup_pidlist *l = of->priv;
456 
457 	if (l)
458 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
459 				 CGROUP_PIDLIST_DESTROY_DELAY);
460 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
461 }
462 
463 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
464 {
465 	struct kernfs_open_file *of = s->private;
466 	struct cgroup_pidlist *l = of->priv;
467 	pid_t *p = v;
468 	pid_t *end = l->list + l->length;
469 	/*
470 	 * Advance to the next pid in the array. If this goes off the
471 	 * end, we're done
472 	 */
473 	p++;
474 	if (p >= end) {
475 		(*pos)++;
476 		return NULL;
477 	} else {
478 		*pos = *p;
479 		return p;
480 	}
481 }
482 
483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 	seq_printf(s, "%d\n", *(int *)v);
486 
487 	return 0;
488 }
489 
490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 				     char *buf, size_t nbytes, loff_t off,
492 				     bool threadgroup)
493 {
494 	struct cgroup *cgrp;
495 	struct task_struct *task;
496 	const struct cred *cred, *tcred;
497 	ssize_t ret;
498 	bool locked;
499 
500 	cgrp = cgroup_kn_lock_live(of->kn, false);
501 	if (!cgrp)
502 		return -ENODEV;
503 
504 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
505 	ret = PTR_ERR_OR_ZERO(task);
506 	if (ret)
507 		goto out_unlock;
508 
509 	/*
510 	 * Even if we're attaching all tasks in the thread group, we only
511 	 * need to check permissions on one of them.
512 	 */
513 	cred = current_cred();
514 	tcred = get_task_cred(task);
515 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 	    !uid_eq(cred->euid, tcred->uid) &&
517 	    !uid_eq(cred->euid, tcred->suid))
518 		ret = -EACCES;
519 	put_cred(tcred);
520 	if (ret)
521 		goto out_finish;
522 
523 	ret = cgroup_attach_task(cgrp, task, threadgroup);
524 
525 out_finish:
526 	cgroup_procs_write_finish(task, locked);
527 out_unlock:
528 	cgroup_kn_unlock(of->kn);
529 
530 	return ret ?: nbytes;
531 }
532 
533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 				   char *buf, size_t nbytes, loff_t off)
535 {
536 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
537 }
538 
539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 				   char *buf, size_t nbytes, loff_t off)
541 {
542 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
543 }
544 
545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 					  char *buf, size_t nbytes, loff_t off)
547 {
548 	struct cgroup *cgrp;
549 
550 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551 
552 	cgrp = cgroup_kn_lock_live(of->kn, false);
553 	if (!cgrp)
554 		return -ENODEV;
555 	spin_lock(&release_agent_path_lock);
556 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
557 		sizeof(cgrp->root->release_agent_path));
558 	spin_unlock(&release_agent_path_lock);
559 	cgroup_kn_unlock(of->kn);
560 	return nbytes;
561 }
562 
563 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
564 {
565 	struct cgroup *cgrp = seq_css(seq)->cgroup;
566 
567 	spin_lock(&release_agent_path_lock);
568 	seq_puts(seq, cgrp->root->release_agent_path);
569 	spin_unlock(&release_agent_path_lock);
570 	seq_putc(seq, '\n');
571 	return 0;
572 }
573 
574 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
575 {
576 	seq_puts(seq, "0\n");
577 	return 0;
578 }
579 
580 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
581 					 struct cftype *cft)
582 {
583 	return notify_on_release(css->cgroup);
584 }
585 
586 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
587 					  struct cftype *cft, u64 val)
588 {
589 	if (val)
590 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
591 	else
592 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
593 	return 0;
594 }
595 
596 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
597 				      struct cftype *cft)
598 {
599 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
600 }
601 
602 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
603 				       struct cftype *cft, u64 val)
604 {
605 	if (val)
606 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
607 	else
608 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
609 	return 0;
610 }
611 
612 /* cgroup core interface files for the legacy hierarchies */
613 struct cftype cgroup1_base_files[] = {
614 	{
615 		.name = "cgroup.procs",
616 		.seq_start = cgroup_pidlist_start,
617 		.seq_next = cgroup_pidlist_next,
618 		.seq_stop = cgroup_pidlist_stop,
619 		.seq_show = cgroup_pidlist_show,
620 		.private = CGROUP_FILE_PROCS,
621 		.write = cgroup1_procs_write,
622 	},
623 	{
624 		.name = "cgroup.clone_children",
625 		.read_u64 = cgroup_clone_children_read,
626 		.write_u64 = cgroup_clone_children_write,
627 	},
628 	{
629 		.name = "cgroup.sane_behavior",
630 		.flags = CFTYPE_ONLY_ON_ROOT,
631 		.seq_show = cgroup_sane_behavior_show,
632 	},
633 	{
634 		.name = "tasks",
635 		.seq_start = cgroup_pidlist_start,
636 		.seq_next = cgroup_pidlist_next,
637 		.seq_stop = cgroup_pidlist_stop,
638 		.seq_show = cgroup_pidlist_show,
639 		.private = CGROUP_FILE_TASKS,
640 		.write = cgroup1_tasks_write,
641 	},
642 	{
643 		.name = "notify_on_release",
644 		.read_u64 = cgroup_read_notify_on_release,
645 		.write_u64 = cgroup_write_notify_on_release,
646 	},
647 	{
648 		.name = "release_agent",
649 		.flags = CFTYPE_ONLY_ON_ROOT,
650 		.seq_show = cgroup_release_agent_show,
651 		.write = cgroup_release_agent_write,
652 		.max_write_len = PATH_MAX - 1,
653 	},
654 	{ }	/* terminate */
655 };
656 
657 /* Display information about each subsystem and each hierarchy */
658 int proc_cgroupstats_show(struct seq_file *m, void *v)
659 {
660 	struct cgroup_subsys *ss;
661 	int i;
662 
663 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
664 	/*
665 	 * ideally we don't want subsystems moving around while we do this.
666 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
667 	 * subsys/hierarchy state.
668 	 */
669 	mutex_lock(&cgroup_mutex);
670 
671 	for_each_subsys(ss, i)
672 		seq_printf(m, "%s\t%d\t%d\t%d\n",
673 			   ss->legacy_name, ss->root->hierarchy_id,
674 			   atomic_read(&ss->root->nr_cgrps),
675 			   cgroup_ssid_enabled(i));
676 
677 	mutex_unlock(&cgroup_mutex);
678 	return 0;
679 }
680 
681 /**
682  * cgroupstats_build - build and fill cgroupstats
683  * @stats: cgroupstats to fill information into
684  * @dentry: A dentry entry belonging to the cgroup for which stats have
685  * been requested.
686  *
687  * Build and fill cgroupstats so that taskstats can export it to user
688  * space.
689  *
690  * Return: %0 on success or a negative errno code on failure
691  */
692 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
693 {
694 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
695 	struct cgroup *cgrp;
696 	struct css_task_iter it;
697 	struct task_struct *tsk;
698 
699 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
700 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
701 	    kernfs_type(kn) != KERNFS_DIR)
702 		return -EINVAL;
703 
704 	mutex_lock(&cgroup_mutex);
705 
706 	/*
707 	 * We aren't being called from kernfs and there's no guarantee on
708 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
709 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
710 	 */
711 	rcu_read_lock();
712 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
713 	if (!cgrp || cgroup_is_dead(cgrp)) {
714 		rcu_read_unlock();
715 		mutex_unlock(&cgroup_mutex);
716 		return -ENOENT;
717 	}
718 	rcu_read_unlock();
719 
720 	css_task_iter_start(&cgrp->self, 0, &it);
721 	while ((tsk = css_task_iter_next(&it))) {
722 		switch (READ_ONCE(tsk->__state)) {
723 		case TASK_RUNNING:
724 			stats->nr_running++;
725 			break;
726 		case TASK_INTERRUPTIBLE:
727 			stats->nr_sleeping++;
728 			break;
729 		case TASK_UNINTERRUPTIBLE:
730 			stats->nr_uninterruptible++;
731 			break;
732 		case TASK_STOPPED:
733 			stats->nr_stopped++;
734 			break;
735 		default:
736 			if (tsk->in_iowait)
737 				stats->nr_io_wait++;
738 			break;
739 		}
740 	}
741 	css_task_iter_end(&it);
742 
743 	mutex_unlock(&cgroup_mutex);
744 	return 0;
745 }
746 
747 void cgroup1_check_for_release(struct cgroup *cgrp)
748 {
749 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
750 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
751 		schedule_work(&cgrp->release_agent_work);
752 }
753 
754 /*
755  * Notify userspace when a cgroup is released, by running the
756  * configured release agent with the name of the cgroup (path
757  * relative to the root of cgroup file system) as the argument.
758  *
759  * Most likely, this user command will try to rmdir this cgroup.
760  *
761  * This races with the possibility that some other task will be
762  * attached to this cgroup before it is removed, or that some other
763  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
764  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
765  * unused, and this cgroup will be reprieved from its death sentence,
766  * to continue to serve a useful existence.  Next time it's released,
767  * we will get notified again, if it still has 'notify_on_release' set.
768  *
769  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
770  * means only wait until the task is successfully execve()'d.  The
771  * separate release agent task is forked by call_usermodehelper(),
772  * then control in this thread returns here, without waiting for the
773  * release agent task.  We don't bother to wait because the caller of
774  * this routine has no use for the exit status of the release agent
775  * task, so no sense holding our caller up for that.
776  */
777 void cgroup1_release_agent(struct work_struct *work)
778 {
779 	struct cgroup *cgrp =
780 		container_of(work, struct cgroup, release_agent_work);
781 	char *pathbuf, *agentbuf;
782 	char *argv[3], *envp[3];
783 	int ret;
784 
785 	/* snoop agent path and exit early if empty */
786 	if (!cgrp->root->release_agent_path[0])
787 		return;
788 
789 	/* prepare argument buffers */
790 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
791 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
792 	if (!pathbuf || !agentbuf)
793 		goto out_free;
794 
795 	spin_lock(&release_agent_path_lock);
796 	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
797 	spin_unlock(&release_agent_path_lock);
798 	if (!agentbuf[0])
799 		goto out_free;
800 
801 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
802 	if (ret < 0 || ret >= PATH_MAX)
803 		goto out_free;
804 
805 	argv[0] = agentbuf;
806 	argv[1] = pathbuf;
807 	argv[2] = NULL;
808 
809 	/* minimal command environment */
810 	envp[0] = "HOME=/";
811 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
812 	envp[2] = NULL;
813 
814 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
815 out_free:
816 	kfree(agentbuf);
817 	kfree(pathbuf);
818 }
819 
820 /*
821  * cgroup_rename - Only allow simple rename of directories in place.
822  */
823 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
824 			  const char *new_name_str)
825 {
826 	struct cgroup *cgrp = kn->priv;
827 	int ret;
828 
829 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
830 	if (strchr(new_name_str, '\n'))
831 		return -EINVAL;
832 
833 	if (kernfs_type(kn) != KERNFS_DIR)
834 		return -ENOTDIR;
835 	if (kn->parent != new_parent)
836 		return -EIO;
837 
838 	/*
839 	 * We're gonna grab cgroup_mutex which nests outside kernfs
840 	 * active_ref.  kernfs_rename() doesn't require active_ref
841 	 * protection.  Break them before grabbing cgroup_mutex.
842 	 */
843 	kernfs_break_active_protection(new_parent);
844 	kernfs_break_active_protection(kn);
845 
846 	mutex_lock(&cgroup_mutex);
847 
848 	ret = kernfs_rename(kn, new_parent, new_name_str);
849 	if (!ret)
850 		TRACE_CGROUP_PATH(rename, cgrp);
851 
852 	mutex_unlock(&cgroup_mutex);
853 
854 	kernfs_unbreak_active_protection(kn);
855 	kernfs_unbreak_active_protection(new_parent);
856 	return ret;
857 }
858 
859 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
860 {
861 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
862 	struct cgroup_subsys *ss;
863 	int ssid;
864 
865 	for_each_subsys(ss, ssid)
866 		if (root->subsys_mask & (1 << ssid))
867 			seq_show_option(seq, ss->legacy_name, NULL);
868 	if (root->flags & CGRP_ROOT_NOPREFIX)
869 		seq_puts(seq, ",noprefix");
870 	if (root->flags & CGRP_ROOT_XATTR)
871 		seq_puts(seq, ",xattr");
872 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
873 		seq_puts(seq, ",cpuset_v2_mode");
874 
875 	spin_lock(&release_agent_path_lock);
876 	if (strlen(root->release_agent_path))
877 		seq_show_option(seq, "release_agent",
878 				root->release_agent_path);
879 	spin_unlock(&release_agent_path_lock);
880 
881 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
882 		seq_puts(seq, ",clone_children");
883 	if (strlen(root->name))
884 		seq_show_option(seq, "name", root->name);
885 	return 0;
886 }
887 
888 enum cgroup1_param {
889 	Opt_all,
890 	Opt_clone_children,
891 	Opt_cpuset_v2_mode,
892 	Opt_name,
893 	Opt_none,
894 	Opt_noprefix,
895 	Opt_release_agent,
896 	Opt_xattr,
897 };
898 
899 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
900 	fsparam_flag  ("all",		Opt_all),
901 	fsparam_flag  ("clone_children", Opt_clone_children),
902 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
903 	fsparam_string("name",		Opt_name),
904 	fsparam_flag  ("none",		Opt_none),
905 	fsparam_flag  ("noprefix",	Opt_noprefix),
906 	fsparam_string("release_agent",	Opt_release_agent),
907 	fsparam_flag  ("xattr",		Opt_xattr),
908 	{}
909 };
910 
911 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
912 {
913 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
914 	struct cgroup_subsys *ss;
915 	struct fs_parse_result result;
916 	int opt, i;
917 
918 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
919 	if (opt == -ENOPARAM) {
920 		int ret;
921 
922 		ret = vfs_parse_fs_param_source(fc, param);
923 		if (ret != -ENOPARAM)
924 			return ret;
925 		for_each_subsys(ss, i) {
926 			if (strcmp(param->key, ss->legacy_name))
927 				continue;
928 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
929 				return invalfc(fc, "Disabled controller '%s'",
930 					       param->key);
931 			ctx->subsys_mask |= (1 << i);
932 			return 0;
933 		}
934 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
935 	}
936 	if (opt < 0)
937 		return opt;
938 
939 	switch (opt) {
940 	case Opt_none:
941 		/* Explicitly have no subsystems */
942 		ctx->none = true;
943 		break;
944 	case Opt_all:
945 		ctx->all_ss = true;
946 		break;
947 	case Opt_noprefix:
948 		ctx->flags |= CGRP_ROOT_NOPREFIX;
949 		break;
950 	case Opt_clone_children:
951 		ctx->cpuset_clone_children = true;
952 		break;
953 	case Opt_cpuset_v2_mode:
954 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
955 		break;
956 	case Opt_xattr:
957 		ctx->flags |= CGRP_ROOT_XATTR;
958 		break;
959 	case Opt_release_agent:
960 		/* Specifying two release agents is forbidden */
961 		if (ctx->release_agent)
962 			return invalfc(fc, "release_agent respecified");
963 		ctx->release_agent = param->string;
964 		param->string = NULL;
965 		break;
966 	case Opt_name:
967 		/* blocked by boot param? */
968 		if (cgroup_no_v1_named)
969 			return -ENOENT;
970 		/* Can't specify an empty name */
971 		if (!param->size)
972 			return invalfc(fc, "Empty name");
973 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
974 			return invalfc(fc, "Name too long");
975 		/* Must match [\w.-]+ */
976 		for (i = 0; i < param->size; i++) {
977 			char c = param->string[i];
978 			if (isalnum(c))
979 				continue;
980 			if ((c == '.') || (c == '-') || (c == '_'))
981 				continue;
982 			return invalfc(fc, "Invalid name");
983 		}
984 		/* Specifying two names is forbidden */
985 		if (ctx->name)
986 			return invalfc(fc, "name respecified");
987 		ctx->name = param->string;
988 		param->string = NULL;
989 		break;
990 	}
991 	return 0;
992 }
993 
994 static int check_cgroupfs_options(struct fs_context *fc)
995 {
996 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
997 	u16 mask = U16_MAX;
998 	u16 enabled = 0;
999 	struct cgroup_subsys *ss;
1000 	int i;
1001 
1002 #ifdef CONFIG_CPUSETS
1003 	mask = ~((u16)1 << cpuset_cgrp_id);
1004 #endif
1005 	for_each_subsys(ss, i)
1006 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1007 			enabled |= 1 << i;
1008 
1009 	ctx->subsys_mask &= enabled;
1010 
1011 	/*
1012 	 * In absence of 'none', 'name=' and subsystem name options,
1013 	 * let's default to 'all'.
1014 	 */
1015 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1016 		ctx->all_ss = true;
1017 
1018 	if (ctx->all_ss) {
1019 		/* Mutually exclusive option 'all' + subsystem name */
1020 		if (ctx->subsys_mask)
1021 			return invalfc(fc, "subsys name conflicts with all");
1022 		/* 'all' => select all the subsystems */
1023 		ctx->subsys_mask = enabled;
1024 	}
1025 
1026 	/*
1027 	 * We either have to specify by name or by subsystems. (So all
1028 	 * empty hierarchies must have a name).
1029 	 */
1030 	if (!ctx->subsys_mask && !ctx->name)
1031 		return invalfc(fc, "Need name or subsystem set");
1032 
1033 	/*
1034 	 * Option noprefix was introduced just for backward compatibility
1035 	 * with the old cpuset, so we allow noprefix only if mounting just
1036 	 * the cpuset subsystem.
1037 	 */
1038 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1039 		return invalfc(fc, "noprefix used incorrectly");
1040 
1041 	/* Can't specify "none" and some subsystems */
1042 	if (ctx->subsys_mask && ctx->none)
1043 		return invalfc(fc, "none used incorrectly");
1044 
1045 	return 0;
1046 }
1047 
1048 int cgroup1_reconfigure(struct fs_context *fc)
1049 {
1050 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1051 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1052 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1053 	int ret = 0;
1054 	u16 added_mask, removed_mask;
1055 
1056 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1057 
1058 	/* See what subsystems are wanted */
1059 	ret = check_cgroupfs_options(fc);
1060 	if (ret)
1061 		goto out_unlock;
1062 
1063 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1064 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1065 			task_tgid_nr(current), current->comm);
1066 
1067 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1068 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1069 
1070 	/* Don't allow flags or name to change at remount */
1071 	if ((ctx->flags ^ root->flags) ||
1072 	    (ctx->name && strcmp(ctx->name, root->name))) {
1073 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1074 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1075 		ret = -EINVAL;
1076 		goto out_unlock;
1077 	}
1078 
1079 	/* remounting is not allowed for populated hierarchies */
1080 	if (!list_empty(&root->cgrp.self.children)) {
1081 		ret = -EBUSY;
1082 		goto out_unlock;
1083 	}
1084 
1085 	ret = rebind_subsystems(root, added_mask);
1086 	if (ret)
1087 		goto out_unlock;
1088 
1089 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1090 
1091 	if (ctx->release_agent) {
1092 		spin_lock(&release_agent_path_lock);
1093 		strcpy(root->release_agent_path, ctx->release_agent);
1094 		spin_unlock(&release_agent_path_lock);
1095 	}
1096 
1097 	trace_cgroup_remount(root);
1098 
1099  out_unlock:
1100 	mutex_unlock(&cgroup_mutex);
1101 	return ret;
1102 }
1103 
1104 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1105 	.rename			= cgroup1_rename,
1106 	.show_options		= cgroup1_show_options,
1107 	.mkdir			= cgroup_mkdir,
1108 	.rmdir			= cgroup_rmdir,
1109 	.show_path		= cgroup_show_path,
1110 };
1111 
1112 /*
1113  * The guts of cgroup1 mount - find or create cgroup_root to use.
1114  * Called with cgroup_mutex held; returns 0 on success, -E... on
1115  * error and positive - in case when the candidate is busy dying.
1116  * On success it stashes a reference to cgroup_root into given
1117  * cgroup_fs_context; that reference is *NOT* counting towards the
1118  * cgroup_root refcount.
1119  */
1120 static int cgroup1_root_to_use(struct fs_context *fc)
1121 {
1122 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1123 	struct cgroup_root *root;
1124 	struct cgroup_subsys *ss;
1125 	int i, ret;
1126 
1127 	/* First find the desired set of subsystems */
1128 	ret = check_cgroupfs_options(fc);
1129 	if (ret)
1130 		return ret;
1131 
1132 	/*
1133 	 * Destruction of cgroup root is asynchronous, so subsystems may
1134 	 * still be dying after the previous unmount.  Let's drain the
1135 	 * dying subsystems.  We just need to ensure that the ones
1136 	 * unmounted previously finish dying and don't care about new ones
1137 	 * starting.  Testing ref liveliness is good enough.
1138 	 */
1139 	for_each_subsys(ss, i) {
1140 		if (!(ctx->subsys_mask & (1 << i)) ||
1141 		    ss->root == &cgrp_dfl_root)
1142 			continue;
1143 
1144 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1145 			return 1;	/* restart */
1146 		cgroup_put(&ss->root->cgrp);
1147 	}
1148 
1149 	for_each_root(root) {
1150 		bool name_match = false;
1151 
1152 		if (root == &cgrp_dfl_root)
1153 			continue;
1154 
1155 		/*
1156 		 * If we asked for a name then it must match.  Also, if
1157 		 * name matches but sybsys_mask doesn't, we should fail.
1158 		 * Remember whether name matched.
1159 		 */
1160 		if (ctx->name) {
1161 			if (strcmp(ctx->name, root->name))
1162 				continue;
1163 			name_match = true;
1164 		}
1165 
1166 		/*
1167 		 * If we asked for subsystems (or explicitly for no
1168 		 * subsystems) then they must match.
1169 		 */
1170 		if ((ctx->subsys_mask || ctx->none) &&
1171 		    (ctx->subsys_mask != root->subsys_mask)) {
1172 			if (!name_match)
1173 				continue;
1174 			return -EBUSY;
1175 		}
1176 
1177 		if (root->flags ^ ctx->flags)
1178 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1179 
1180 		ctx->root = root;
1181 		return 0;
1182 	}
1183 
1184 	/*
1185 	 * No such thing, create a new one.  name= matching without subsys
1186 	 * specification is allowed for already existing hierarchies but we
1187 	 * can't create new one without subsys specification.
1188 	 */
1189 	if (!ctx->subsys_mask && !ctx->none)
1190 		return invalfc(fc, "No subsys list or none specified");
1191 
1192 	/* Hierarchies may only be created in the initial cgroup namespace. */
1193 	if (ctx->ns != &init_cgroup_ns)
1194 		return -EPERM;
1195 
1196 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1197 	if (!root)
1198 		return -ENOMEM;
1199 
1200 	ctx->root = root;
1201 	init_cgroup_root(ctx);
1202 
1203 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1204 	if (ret)
1205 		cgroup_free_root(root);
1206 	return ret;
1207 }
1208 
1209 int cgroup1_get_tree(struct fs_context *fc)
1210 {
1211 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1212 	int ret;
1213 
1214 	/* Check if the caller has permission to mount. */
1215 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1216 		return -EPERM;
1217 
1218 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1219 
1220 	ret = cgroup1_root_to_use(fc);
1221 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1222 		ret = 1;	/* restart */
1223 
1224 	mutex_unlock(&cgroup_mutex);
1225 
1226 	if (!ret)
1227 		ret = cgroup_do_get_tree(fc);
1228 
1229 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1230 		fc_drop_locked(fc);
1231 		ret = 1;
1232 	}
1233 
1234 	if (unlikely(ret > 0)) {
1235 		msleep(10);
1236 		return restart_syscall();
1237 	}
1238 	return ret;
1239 }
1240 
1241 static int __init cgroup1_wq_init(void)
1242 {
1243 	/*
1244 	 * Used to destroy pidlists and separate to serve as flush domain.
1245 	 * Cap @max_active to 1 too.
1246 	 */
1247 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1248 						    0, 1);
1249 	BUG_ON(!cgroup_pidlist_destroy_wq);
1250 	return 0;
1251 }
1252 core_initcall(cgroup1_wq_init);
1253 
1254 static int __init cgroup_no_v1(char *str)
1255 {
1256 	struct cgroup_subsys *ss;
1257 	char *token;
1258 	int i;
1259 
1260 	while ((token = strsep(&str, ",")) != NULL) {
1261 		if (!*token)
1262 			continue;
1263 
1264 		if (!strcmp(token, "all")) {
1265 			cgroup_no_v1_mask = U16_MAX;
1266 			continue;
1267 		}
1268 
1269 		if (!strcmp(token, "named")) {
1270 			cgroup_no_v1_named = true;
1271 			continue;
1272 		}
1273 
1274 		for_each_subsys(ss, i) {
1275 			if (strcmp(token, ss->name) &&
1276 			    strcmp(token, ss->legacy_name))
1277 				continue;
1278 
1279 			cgroup_no_v1_mask |= 1 << i;
1280 		}
1281 	}
1282 	return 1;
1283 }
1284 __setup("cgroup_no_v1=", cgroup_no_v1);
1285