xref: /openbmc/linux/kernel/bpf/verifier.c (revision fd7c211d6875013f81acc09868effe199b5d2c0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int dynptr_id;
259 	int map_uid;
260 	int func_id;
261 	struct btf *btf;
262 	u32 btf_id;
263 	struct btf *ret_btf;
264 	u32 ret_btf_id;
265 	u32 subprogno;
266 	struct btf_field *kptr_field;
267 	u8 uninit_dynptr_regno;
268 };
269 
270 struct btf *btf_vmlinux;
271 
272 static DEFINE_MUTEX(bpf_verifier_lock);
273 
274 static const struct bpf_line_info *
275 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
276 {
277 	const struct bpf_line_info *linfo;
278 	const struct bpf_prog *prog;
279 	u32 i, nr_linfo;
280 
281 	prog = env->prog;
282 	nr_linfo = prog->aux->nr_linfo;
283 
284 	if (!nr_linfo || insn_off >= prog->len)
285 		return NULL;
286 
287 	linfo = prog->aux->linfo;
288 	for (i = 1; i < nr_linfo; i++)
289 		if (insn_off < linfo[i].insn_off)
290 			break;
291 
292 	return &linfo[i - 1];
293 }
294 
295 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
296 		       va_list args)
297 {
298 	unsigned int n;
299 
300 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
301 
302 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
303 		  "verifier log line truncated - local buffer too short\n");
304 
305 	if (log->level == BPF_LOG_KERNEL) {
306 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
307 
308 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
309 		return;
310 	}
311 
312 	n = min(log->len_total - log->len_used - 1, n);
313 	log->kbuf[n] = '\0';
314 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
315 		log->len_used += n;
316 	else
317 		log->ubuf = NULL;
318 }
319 
320 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
321 {
322 	char zero = 0;
323 
324 	if (!bpf_verifier_log_needed(log))
325 		return;
326 
327 	log->len_used = new_pos;
328 	if (put_user(zero, log->ubuf + new_pos))
329 		log->ubuf = NULL;
330 }
331 
332 /* log_level controls verbosity level of eBPF verifier.
333  * bpf_verifier_log_write() is used to dump the verification trace to the log,
334  * so the user can figure out what's wrong with the program
335  */
336 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
337 					   const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	if (!bpf_verifier_log_needed(&env->log))
342 		return;
343 
344 	va_start(args, fmt);
345 	bpf_verifier_vlog(&env->log, fmt, args);
346 	va_end(args);
347 }
348 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
349 
350 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
351 {
352 	struct bpf_verifier_env *env = private_data;
353 	va_list args;
354 
355 	if (!bpf_verifier_log_needed(&env->log))
356 		return;
357 
358 	va_start(args, fmt);
359 	bpf_verifier_vlog(&env->log, fmt, args);
360 	va_end(args);
361 }
362 
363 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
364 			    const char *fmt, ...)
365 {
366 	va_list args;
367 
368 	if (!bpf_verifier_log_needed(log))
369 		return;
370 
371 	va_start(args, fmt);
372 	bpf_verifier_vlog(log, fmt, args);
373 	va_end(args);
374 }
375 EXPORT_SYMBOL_GPL(bpf_log);
376 
377 static const char *ltrim(const char *s)
378 {
379 	while (isspace(*s))
380 		s++;
381 
382 	return s;
383 }
384 
385 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
386 					 u32 insn_off,
387 					 const char *prefix_fmt, ...)
388 {
389 	const struct bpf_line_info *linfo;
390 
391 	if (!bpf_verifier_log_needed(&env->log))
392 		return;
393 
394 	linfo = find_linfo(env, insn_off);
395 	if (!linfo || linfo == env->prev_linfo)
396 		return;
397 
398 	if (prefix_fmt) {
399 		va_list args;
400 
401 		va_start(args, prefix_fmt);
402 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
403 		va_end(args);
404 	}
405 
406 	verbose(env, "%s\n",
407 		ltrim(btf_name_by_offset(env->prog->aux->btf,
408 					 linfo->line_off)));
409 
410 	env->prev_linfo = linfo;
411 }
412 
413 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
414 				   struct bpf_reg_state *reg,
415 				   struct tnum *range, const char *ctx,
416 				   const char *reg_name)
417 {
418 	char tn_buf[48];
419 
420 	verbose(env, "At %s the register %s ", ctx, reg_name);
421 	if (!tnum_is_unknown(reg->var_off)) {
422 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
423 		verbose(env, "has value %s", tn_buf);
424 	} else {
425 		verbose(env, "has unknown scalar value");
426 	}
427 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
428 	verbose(env, " should have been in %s\n", tn_buf);
429 }
430 
431 static bool type_is_pkt_pointer(enum bpf_reg_type type)
432 {
433 	type = base_type(type);
434 	return type == PTR_TO_PACKET ||
435 	       type == PTR_TO_PACKET_META;
436 }
437 
438 static bool type_is_sk_pointer(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_SOCK_COMMON ||
442 		type == PTR_TO_TCP_SOCK ||
443 		type == PTR_TO_XDP_SOCK;
444 }
445 
446 static bool reg_type_not_null(enum bpf_reg_type type)
447 {
448 	return type == PTR_TO_SOCKET ||
449 		type == PTR_TO_TCP_SOCK ||
450 		type == PTR_TO_MAP_VALUE ||
451 		type == PTR_TO_MAP_KEY ||
452 		type == PTR_TO_SOCK_COMMON;
453 }
454 
455 static bool type_is_ptr_alloc_obj(u32 type)
456 {
457 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
458 }
459 
460 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
461 {
462 	struct btf_record *rec = NULL;
463 	struct btf_struct_meta *meta;
464 
465 	if (reg->type == PTR_TO_MAP_VALUE) {
466 		rec = reg->map_ptr->record;
467 	} else if (type_is_ptr_alloc_obj(reg->type)) {
468 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
469 		if (meta)
470 			rec = meta->record;
471 	}
472 	return rec;
473 }
474 
475 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
476 {
477 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
478 }
479 
480 static bool type_is_rdonly_mem(u32 type)
481 {
482 	return type & MEM_RDONLY;
483 }
484 
485 static bool type_may_be_null(u32 type)
486 {
487 	return type & PTR_MAYBE_NULL;
488 }
489 
490 static bool is_acquire_function(enum bpf_func_id func_id,
491 				const struct bpf_map *map)
492 {
493 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
494 
495 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
496 	    func_id == BPF_FUNC_sk_lookup_udp ||
497 	    func_id == BPF_FUNC_skc_lookup_tcp ||
498 	    func_id == BPF_FUNC_ringbuf_reserve ||
499 	    func_id == BPF_FUNC_kptr_xchg)
500 		return true;
501 
502 	if (func_id == BPF_FUNC_map_lookup_elem &&
503 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
504 	     map_type == BPF_MAP_TYPE_SOCKHASH))
505 		return true;
506 
507 	return false;
508 }
509 
510 static bool is_ptr_cast_function(enum bpf_func_id func_id)
511 {
512 	return func_id == BPF_FUNC_tcp_sock ||
513 		func_id == BPF_FUNC_sk_fullsock ||
514 		func_id == BPF_FUNC_skc_to_tcp_sock ||
515 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
516 		func_id == BPF_FUNC_skc_to_udp6_sock ||
517 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
519 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
520 }
521 
522 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
523 {
524 	return func_id == BPF_FUNC_dynptr_data;
525 }
526 
527 static bool is_callback_calling_function(enum bpf_func_id func_id)
528 {
529 	return func_id == BPF_FUNC_for_each_map_elem ||
530 	       func_id == BPF_FUNC_timer_set_callback ||
531 	       func_id == BPF_FUNC_find_vma ||
532 	       func_id == BPF_FUNC_loop ||
533 	       func_id == BPF_FUNC_user_ringbuf_drain;
534 }
535 
536 static bool is_storage_get_function(enum bpf_func_id func_id)
537 {
538 	return func_id == BPF_FUNC_sk_storage_get ||
539 	       func_id == BPF_FUNC_inode_storage_get ||
540 	       func_id == BPF_FUNC_task_storage_get ||
541 	       func_id == BPF_FUNC_cgrp_storage_get;
542 }
543 
544 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
545 					const struct bpf_map *map)
546 {
547 	int ref_obj_uses = 0;
548 
549 	if (is_ptr_cast_function(func_id))
550 		ref_obj_uses++;
551 	if (is_acquire_function(func_id, map))
552 		ref_obj_uses++;
553 	if (is_dynptr_ref_function(func_id))
554 		ref_obj_uses++;
555 
556 	return ref_obj_uses > 1;
557 }
558 
559 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
560 {
561 	return BPF_CLASS(insn->code) == BPF_STX &&
562 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
563 	       insn->imm == BPF_CMPXCHG;
564 }
565 
566 /* string representation of 'enum bpf_reg_type'
567  *
568  * Note that reg_type_str() can not appear more than once in a single verbose()
569  * statement.
570  */
571 static const char *reg_type_str(struct bpf_verifier_env *env,
572 				enum bpf_reg_type type)
573 {
574 	char postfix[16] = {0}, prefix[64] = {0};
575 	static const char * const str[] = {
576 		[NOT_INIT]		= "?",
577 		[SCALAR_VALUE]		= "scalar",
578 		[PTR_TO_CTX]		= "ctx",
579 		[CONST_PTR_TO_MAP]	= "map_ptr",
580 		[PTR_TO_MAP_VALUE]	= "map_value",
581 		[PTR_TO_STACK]		= "fp",
582 		[PTR_TO_PACKET]		= "pkt",
583 		[PTR_TO_PACKET_META]	= "pkt_meta",
584 		[PTR_TO_PACKET_END]	= "pkt_end",
585 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
586 		[PTR_TO_SOCKET]		= "sock",
587 		[PTR_TO_SOCK_COMMON]	= "sock_common",
588 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
589 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
590 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
591 		[PTR_TO_BTF_ID]		= "ptr_",
592 		[PTR_TO_MEM]		= "mem",
593 		[PTR_TO_BUF]		= "buf",
594 		[PTR_TO_FUNC]		= "func",
595 		[PTR_TO_MAP_KEY]	= "map_key",
596 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
597 	};
598 
599 	if (type & PTR_MAYBE_NULL) {
600 		if (base_type(type) == PTR_TO_BTF_ID)
601 			strncpy(postfix, "or_null_", 16);
602 		else
603 			strncpy(postfix, "_or_null", 16);
604 	}
605 
606 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
607 		 type & MEM_RDONLY ? "rdonly_" : "",
608 		 type & MEM_RINGBUF ? "ringbuf_" : "",
609 		 type & MEM_USER ? "user_" : "",
610 		 type & MEM_PERCPU ? "percpu_" : "",
611 		 type & MEM_RCU ? "rcu_" : "",
612 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
613 		 type & PTR_TRUSTED ? "trusted_" : ""
614 	);
615 
616 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
617 		 prefix, str[base_type(type)], postfix);
618 	return env->type_str_buf;
619 }
620 
621 static char slot_type_char[] = {
622 	[STACK_INVALID]	= '?',
623 	[STACK_SPILL]	= 'r',
624 	[STACK_MISC]	= 'm',
625 	[STACK_ZERO]	= '0',
626 	[STACK_DYNPTR]	= 'd',
627 };
628 
629 static void print_liveness(struct bpf_verifier_env *env,
630 			   enum bpf_reg_liveness live)
631 {
632 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
633 	    verbose(env, "_");
634 	if (live & REG_LIVE_READ)
635 		verbose(env, "r");
636 	if (live & REG_LIVE_WRITTEN)
637 		verbose(env, "w");
638 	if (live & REG_LIVE_DONE)
639 		verbose(env, "D");
640 }
641 
642 static int __get_spi(s32 off)
643 {
644 	return (-off - 1) / BPF_REG_SIZE;
645 }
646 
647 static struct bpf_func_state *func(struct bpf_verifier_env *env,
648 				   const struct bpf_reg_state *reg)
649 {
650 	struct bpf_verifier_state *cur = env->cur_state;
651 
652 	return cur->frame[reg->frameno];
653 }
654 
655 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
656 {
657        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
658 
659        /* We need to check that slots between [spi - nr_slots + 1, spi] are
660 	* within [0, allocated_stack).
661 	*
662 	* Please note that the spi grows downwards. For example, a dynptr
663 	* takes the size of two stack slots; the first slot will be at
664 	* spi and the second slot will be at spi - 1.
665 	*/
666        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
667 }
668 
669 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
670 {
671 	int off, spi;
672 
673 	if (!tnum_is_const(reg->var_off)) {
674 		verbose(env, "dynptr has to be at a constant offset\n");
675 		return -EINVAL;
676 	}
677 
678 	off = reg->off + reg->var_off.value;
679 	if (off % BPF_REG_SIZE) {
680 		verbose(env, "cannot pass in dynptr at an offset=%d\n", off);
681 		return -EINVAL;
682 	}
683 
684 	spi = __get_spi(off);
685 	if (spi < 1) {
686 		verbose(env, "cannot pass in dynptr at an offset=%d\n", off);
687 		return -EINVAL;
688 	}
689 
690 	if (!is_spi_bounds_valid(func(env, reg), spi, BPF_DYNPTR_NR_SLOTS))
691 		return -ERANGE;
692 	return spi;
693 }
694 
695 static const char *kernel_type_name(const struct btf* btf, u32 id)
696 {
697 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
698 }
699 
700 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
701 {
702 	env->scratched_regs |= 1U << regno;
703 }
704 
705 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
706 {
707 	env->scratched_stack_slots |= 1ULL << spi;
708 }
709 
710 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
711 {
712 	return (env->scratched_regs >> regno) & 1;
713 }
714 
715 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
716 {
717 	return (env->scratched_stack_slots >> regno) & 1;
718 }
719 
720 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
721 {
722 	return env->scratched_regs || env->scratched_stack_slots;
723 }
724 
725 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
726 {
727 	env->scratched_regs = 0U;
728 	env->scratched_stack_slots = 0ULL;
729 }
730 
731 /* Used for printing the entire verifier state. */
732 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
733 {
734 	env->scratched_regs = ~0U;
735 	env->scratched_stack_slots = ~0ULL;
736 }
737 
738 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
739 {
740 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
741 	case DYNPTR_TYPE_LOCAL:
742 		return BPF_DYNPTR_TYPE_LOCAL;
743 	case DYNPTR_TYPE_RINGBUF:
744 		return BPF_DYNPTR_TYPE_RINGBUF;
745 	default:
746 		return BPF_DYNPTR_TYPE_INVALID;
747 	}
748 }
749 
750 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
751 {
752 	return type == BPF_DYNPTR_TYPE_RINGBUF;
753 }
754 
755 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
756 			      enum bpf_dynptr_type type,
757 			      bool first_slot, int dynptr_id);
758 
759 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
760 				struct bpf_reg_state *reg);
761 
762 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
763 				   struct bpf_reg_state *sreg1,
764 				   struct bpf_reg_state *sreg2,
765 				   enum bpf_dynptr_type type)
766 {
767 	int id = ++env->id_gen;
768 
769 	__mark_dynptr_reg(sreg1, type, true, id);
770 	__mark_dynptr_reg(sreg2, type, false, id);
771 }
772 
773 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
774 			       struct bpf_reg_state *reg,
775 			       enum bpf_dynptr_type type)
776 {
777 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
778 }
779 
780 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
781 				        struct bpf_func_state *state, int spi);
782 
783 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
784 				   enum bpf_arg_type arg_type, int insn_idx)
785 {
786 	struct bpf_func_state *state = func(env, reg);
787 	enum bpf_dynptr_type type;
788 	int spi, i, id, err;
789 
790 	spi = dynptr_get_spi(env, reg);
791 	if (spi < 0)
792 		return spi;
793 
794 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
795 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
796 	 * to ensure that for the following example:
797 	 *	[d1][d1][d2][d2]
798 	 * spi    3   2   1   0
799 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
800 	 * case they do belong to same dynptr, second call won't see slot_type
801 	 * as STACK_DYNPTR and will simply skip destruction.
802 	 */
803 	err = destroy_if_dynptr_stack_slot(env, state, spi);
804 	if (err)
805 		return err;
806 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
807 	if (err)
808 		return err;
809 
810 	for (i = 0; i < BPF_REG_SIZE; i++) {
811 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
812 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
813 	}
814 
815 	type = arg_to_dynptr_type(arg_type);
816 	if (type == BPF_DYNPTR_TYPE_INVALID)
817 		return -EINVAL;
818 
819 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
820 			       &state->stack[spi - 1].spilled_ptr, type);
821 
822 	if (dynptr_type_refcounted(type)) {
823 		/* The id is used to track proper releasing */
824 		id = acquire_reference_state(env, insn_idx);
825 		if (id < 0)
826 			return id;
827 
828 		state->stack[spi].spilled_ptr.ref_obj_id = id;
829 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
830 	}
831 
832 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
833 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
834 
835 	return 0;
836 }
837 
838 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
839 {
840 	struct bpf_func_state *state = func(env, reg);
841 	int spi, i;
842 
843 	spi = dynptr_get_spi(env, reg);
844 	if (spi < 0)
845 		return spi;
846 
847 	for (i = 0; i < BPF_REG_SIZE; i++) {
848 		state->stack[spi].slot_type[i] = STACK_INVALID;
849 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
850 	}
851 
852 	/* Invalidate any slices associated with this dynptr */
853 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
854 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
855 
856 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
857 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
858 
859 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
860 	 *
861 	 * While we don't allow reading STACK_INVALID, it is still possible to
862 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
863 	 * helpers or insns can do partial read of that part without failing,
864 	 * but check_stack_range_initialized, check_stack_read_var_off, and
865 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
866 	 * the slot conservatively. Hence we need to prevent those liveness
867 	 * marking walks.
868 	 *
869 	 * This was not a problem before because STACK_INVALID is only set by
870 	 * default (where the default reg state has its reg->parent as NULL), or
871 	 * in clean_live_states after REG_LIVE_DONE (at which point
872 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
873 	 * verifier state exploration (like we did above). Hence, for our case
874 	 * parentage chain will still be live (i.e. reg->parent may be
875 	 * non-NULL), while earlier reg->parent was NULL, so we need
876 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
877 	 * done later on reads or by mark_dynptr_read as well to unnecessary
878 	 * mark registers in verifier state.
879 	 */
880 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
881 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
882 
883 	return 0;
884 }
885 
886 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
887 			       struct bpf_reg_state *reg);
888 
889 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
890 				        struct bpf_func_state *state, int spi)
891 {
892 	struct bpf_func_state *fstate;
893 	struct bpf_reg_state *dreg;
894 	int i, dynptr_id;
895 
896 	/* We always ensure that STACK_DYNPTR is never set partially,
897 	 * hence just checking for slot_type[0] is enough. This is
898 	 * different for STACK_SPILL, where it may be only set for
899 	 * 1 byte, so code has to use is_spilled_reg.
900 	 */
901 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
902 		return 0;
903 
904 	/* Reposition spi to first slot */
905 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
906 		spi = spi + 1;
907 
908 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
909 		verbose(env, "cannot overwrite referenced dynptr\n");
910 		return -EINVAL;
911 	}
912 
913 	mark_stack_slot_scratched(env, spi);
914 	mark_stack_slot_scratched(env, spi - 1);
915 
916 	/* Writing partially to one dynptr stack slot destroys both. */
917 	for (i = 0; i < BPF_REG_SIZE; i++) {
918 		state->stack[spi].slot_type[i] = STACK_INVALID;
919 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
920 	}
921 
922 	dynptr_id = state->stack[spi].spilled_ptr.id;
923 	/* Invalidate any slices associated with this dynptr */
924 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
925 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
926 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
927 			continue;
928 		if (dreg->dynptr_id == dynptr_id) {
929 			if (!env->allow_ptr_leaks)
930 				__mark_reg_not_init(env, dreg);
931 			else
932 				__mark_reg_unknown(env, dreg);
933 		}
934 	}));
935 
936 	/* Do not release reference state, we are destroying dynptr on stack,
937 	 * not using some helper to release it. Just reset register.
938 	 */
939 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
940 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
941 
942 	/* Same reason as unmark_stack_slots_dynptr above */
943 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
944 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
945 
946 	return 0;
947 }
948 
949 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
950 				       int spi)
951 {
952 	if (reg->type == CONST_PTR_TO_DYNPTR)
953 		return false;
954 
955 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
956 	 * will do check_mem_access to check and update stack bounds later, so
957 	 * return true for that case.
958 	 */
959 	if (spi < 0)
960 		return spi == -ERANGE;
961 	/* We allow overwriting existing unreferenced STACK_DYNPTR slots, see
962 	 * mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to
963 	 * ensure dynptr objects at the slots we are touching are completely
964 	 * destructed before we reinitialize them for a new one. For referenced
965 	 * ones, destroy_if_dynptr_stack_slot returns an error early instead of
966 	 * delaying it until the end where the user will get "Unreleased
967 	 * reference" error.
968 	 */
969 	return true;
970 }
971 
972 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
973 				     int spi)
974 {
975 	struct bpf_func_state *state = func(env, reg);
976 	int i;
977 
978 	/* This already represents first slot of initialized bpf_dynptr */
979 	if (reg->type == CONST_PTR_TO_DYNPTR)
980 		return true;
981 
982 	if (spi < 0)
983 		return false;
984 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
985 		return false;
986 
987 	for (i = 0; i < BPF_REG_SIZE; i++) {
988 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
989 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
990 			return false;
991 	}
992 
993 	return true;
994 }
995 
996 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
997 				    enum bpf_arg_type arg_type)
998 {
999 	struct bpf_func_state *state = func(env, reg);
1000 	enum bpf_dynptr_type dynptr_type;
1001 	int spi;
1002 
1003 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1004 	if (arg_type == ARG_PTR_TO_DYNPTR)
1005 		return true;
1006 
1007 	dynptr_type = arg_to_dynptr_type(arg_type);
1008 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1009 		return reg->dynptr.type == dynptr_type;
1010 	} else {
1011 		spi = dynptr_get_spi(env, reg);
1012 		if (spi < 0)
1013 			return false;
1014 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1015 	}
1016 }
1017 
1018 /* The reg state of a pointer or a bounded scalar was saved when
1019  * it was spilled to the stack.
1020  */
1021 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1022 {
1023 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1024 }
1025 
1026 static void scrub_spilled_slot(u8 *stype)
1027 {
1028 	if (*stype != STACK_INVALID)
1029 		*stype = STACK_MISC;
1030 }
1031 
1032 static void print_verifier_state(struct bpf_verifier_env *env,
1033 				 const struct bpf_func_state *state,
1034 				 bool print_all)
1035 {
1036 	const struct bpf_reg_state *reg;
1037 	enum bpf_reg_type t;
1038 	int i;
1039 
1040 	if (state->frameno)
1041 		verbose(env, " frame%d:", state->frameno);
1042 	for (i = 0; i < MAX_BPF_REG; i++) {
1043 		reg = &state->regs[i];
1044 		t = reg->type;
1045 		if (t == NOT_INIT)
1046 			continue;
1047 		if (!print_all && !reg_scratched(env, i))
1048 			continue;
1049 		verbose(env, " R%d", i);
1050 		print_liveness(env, reg->live);
1051 		verbose(env, "=");
1052 		if (t == SCALAR_VALUE && reg->precise)
1053 			verbose(env, "P");
1054 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1055 		    tnum_is_const(reg->var_off)) {
1056 			/* reg->off should be 0 for SCALAR_VALUE */
1057 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1058 			verbose(env, "%lld", reg->var_off.value + reg->off);
1059 		} else {
1060 			const char *sep = "";
1061 
1062 			verbose(env, "%s", reg_type_str(env, t));
1063 			if (base_type(t) == PTR_TO_BTF_ID)
1064 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
1065 			verbose(env, "(");
1066 /*
1067  * _a stands for append, was shortened to avoid multiline statements below.
1068  * This macro is used to output a comma separated list of attributes.
1069  */
1070 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1071 
1072 			if (reg->id)
1073 				verbose_a("id=%d", reg->id);
1074 			if (reg->ref_obj_id)
1075 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1076 			if (t != SCALAR_VALUE)
1077 				verbose_a("off=%d", reg->off);
1078 			if (type_is_pkt_pointer(t))
1079 				verbose_a("r=%d", reg->range);
1080 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1081 				 base_type(t) == PTR_TO_MAP_KEY ||
1082 				 base_type(t) == PTR_TO_MAP_VALUE)
1083 				verbose_a("ks=%d,vs=%d",
1084 					  reg->map_ptr->key_size,
1085 					  reg->map_ptr->value_size);
1086 			if (tnum_is_const(reg->var_off)) {
1087 				/* Typically an immediate SCALAR_VALUE, but
1088 				 * could be a pointer whose offset is too big
1089 				 * for reg->off
1090 				 */
1091 				verbose_a("imm=%llx", reg->var_off.value);
1092 			} else {
1093 				if (reg->smin_value != reg->umin_value &&
1094 				    reg->smin_value != S64_MIN)
1095 					verbose_a("smin=%lld", (long long)reg->smin_value);
1096 				if (reg->smax_value != reg->umax_value &&
1097 				    reg->smax_value != S64_MAX)
1098 					verbose_a("smax=%lld", (long long)reg->smax_value);
1099 				if (reg->umin_value != 0)
1100 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1101 				if (reg->umax_value != U64_MAX)
1102 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1103 				if (!tnum_is_unknown(reg->var_off)) {
1104 					char tn_buf[48];
1105 
1106 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1107 					verbose_a("var_off=%s", tn_buf);
1108 				}
1109 				if (reg->s32_min_value != reg->smin_value &&
1110 				    reg->s32_min_value != S32_MIN)
1111 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1112 				if (reg->s32_max_value != reg->smax_value &&
1113 				    reg->s32_max_value != S32_MAX)
1114 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1115 				if (reg->u32_min_value != reg->umin_value &&
1116 				    reg->u32_min_value != U32_MIN)
1117 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1118 				if (reg->u32_max_value != reg->umax_value &&
1119 				    reg->u32_max_value != U32_MAX)
1120 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1121 			}
1122 #undef verbose_a
1123 
1124 			verbose(env, ")");
1125 		}
1126 	}
1127 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1128 		char types_buf[BPF_REG_SIZE + 1];
1129 		bool valid = false;
1130 		int j;
1131 
1132 		for (j = 0; j < BPF_REG_SIZE; j++) {
1133 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1134 				valid = true;
1135 			types_buf[j] = slot_type_char[
1136 					state->stack[i].slot_type[j]];
1137 		}
1138 		types_buf[BPF_REG_SIZE] = 0;
1139 		if (!valid)
1140 			continue;
1141 		if (!print_all && !stack_slot_scratched(env, i))
1142 			continue;
1143 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1144 		print_liveness(env, state->stack[i].spilled_ptr.live);
1145 		if (is_spilled_reg(&state->stack[i])) {
1146 			reg = &state->stack[i].spilled_ptr;
1147 			t = reg->type;
1148 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1149 			if (t == SCALAR_VALUE && reg->precise)
1150 				verbose(env, "P");
1151 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1152 				verbose(env, "%lld", reg->var_off.value + reg->off);
1153 		} else {
1154 			verbose(env, "=%s", types_buf);
1155 		}
1156 	}
1157 	if (state->acquired_refs && state->refs[0].id) {
1158 		verbose(env, " refs=%d", state->refs[0].id);
1159 		for (i = 1; i < state->acquired_refs; i++)
1160 			if (state->refs[i].id)
1161 				verbose(env, ",%d", state->refs[i].id);
1162 	}
1163 	if (state->in_callback_fn)
1164 		verbose(env, " cb");
1165 	if (state->in_async_callback_fn)
1166 		verbose(env, " async_cb");
1167 	verbose(env, "\n");
1168 	mark_verifier_state_clean(env);
1169 }
1170 
1171 static inline u32 vlog_alignment(u32 pos)
1172 {
1173 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1174 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1175 }
1176 
1177 static void print_insn_state(struct bpf_verifier_env *env,
1178 			     const struct bpf_func_state *state)
1179 {
1180 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1181 		/* remove new line character */
1182 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1183 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1184 	} else {
1185 		verbose(env, "%d:", env->insn_idx);
1186 	}
1187 	print_verifier_state(env, state, false);
1188 }
1189 
1190 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1191  * small to hold src. This is different from krealloc since we don't want to preserve
1192  * the contents of dst.
1193  *
1194  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1195  * not be allocated.
1196  */
1197 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1198 {
1199 	size_t alloc_bytes;
1200 	void *orig = dst;
1201 	size_t bytes;
1202 
1203 	if (ZERO_OR_NULL_PTR(src))
1204 		goto out;
1205 
1206 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1207 		return NULL;
1208 
1209 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1210 	dst = krealloc(orig, alloc_bytes, flags);
1211 	if (!dst) {
1212 		kfree(orig);
1213 		return NULL;
1214 	}
1215 
1216 	memcpy(dst, src, bytes);
1217 out:
1218 	return dst ? dst : ZERO_SIZE_PTR;
1219 }
1220 
1221 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1222  * small to hold new_n items. new items are zeroed out if the array grows.
1223  *
1224  * Contrary to krealloc_array, does not free arr if new_n is zero.
1225  */
1226 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1227 {
1228 	size_t alloc_size;
1229 	void *new_arr;
1230 
1231 	if (!new_n || old_n == new_n)
1232 		goto out;
1233 
1234 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1235 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1236 	if (!new_arr) {
1237 		kfree(arr);
1238 		return NULL;
1239 	}
1240 	arr = new_arr;
1241 
1242 	if (new_n > old_n)
1243 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1244 
1245 out:
1246 	return arr ? arr : ZERO_SIZE_PTR;
1247 }
1248 
1249 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1250 {
1251 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1252 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1253 	if (!dst->refs)
1254 		return -ENOMEM;
1255 
1256 	dst->acquired_refs = src->acquired_refs;
1257 	return 0;
1258 }
1259 
1260 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1261 {
1262 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1263 
1264 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1265 				GFP_KERNEL);
1266 	if (!dst->stack)
1267 		return -ENOMEM;
1268 
1269 	dst->allocated_stack = src->allocated_stack;
1270 	return 0;
1271 }
1272 
1273 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1274 {
1275 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1276 				    sizeof(struct bpf_reference_state));
1277 	if (!state->refs)
1278 		return -ENOMEM;
1279 
1280 	state->acquired_refs = n;
1281 	return 0;
1282 }
1283 
1284 static int grow_stack_state(struct bpf_func_state *state, int size)
1285 {
1286 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1287 
1288 	if (old_n >= n)
1289 		return 0;
1290 
1291 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1292 	if (!state->stack)
1293 		return -ENOMEM;
1294 
1295 	state->allocated_stack = size;
1296 	return 0;
1297 }
1298 
1299 /* Acquire a pointer id from the env and update the state->refs to include
1300  * this new pointer reference.
1301  * On success, returns a valid pointer id to associate with the register
1302  * On failure, returns a negative errno.
1303  */
1304 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1305 {
1306 	struct bpf_func_state *state = cur_func(env);
1307 	int new_ofs = state->acquired_refs;
1308 	int id, err;
1309 
1310 	err = resize_reference_state(state, state->acquired_refs + 1);
1311 	if (err)
1312 		return err;
1313 	id = ++env->id_gen;
1314 	state->refs[new_ofs].id = id;
1315 	state->refs[new_ofs].insn_idx = insn_idx;
1316 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1317 
1318 	return id;
1319 }
1320 
1321 /* release function corresponding to acquire_reference_state(). Idempotent. */
1322 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1323 {
1324 	int i, last_idx;
1325 
1326 	last_idx = state->acquired_refs - 1;
1327 	for (i = 0; i < state->acquired_refs; i++) {
1328 		if (state->refs[i].id == ptr_id) {
1329 			/* Cannot release caller references in callbacks */
1330 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1331 				return -EINVAL;
1332 			if (last_idx && i != last_idx)
1333 				memcpy(&state->refs[i], &state->refs[last_idx],
1334 				       sizeof(*state->refs));
1335 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1336 			state->acquired_refs--;
1337 			return 0;
1338 		}
1339 	}
1340 	return -EINVAL;
1341 }
1342 
1343 static void free_func_state(struct bpf_func_state *state)
1344 {
1345 	if (!state)
1346 		return;
1347 	kfree(state->refs);
1348 	kfree(state->stack);
1349 	kfree(state);
1350 }
1351 
1352 static void clear_jmp_history(struct bpf_verifier_state *state)
1353 {
1354 	kfree(state->jmp_history);
1355 	state->jmp_history = NULL;
1356 	state->jmp_history_cnt = 0;
1357 }
1358 
1359 static void free_verifier_state(struct bpf_verifier_state *state,
1360 				bool free_self)
1361 {
1362 	int i;
1363 
1364 	for (i = 0; i <= state->curframe; i++) {
1365 		free_func_state(state->frame[i]);
1366 		state->frame[i] = NULL;
1367 	}
1368 	clear_jmp_history(state);
1369 	if (free_self)
1370 		kfree(state);
1371 }
1372 
1373 /* copy verifier state from src to dst growing dst stack space
1374  * when necessary to accommodate larger src stack
1375  */
1376 static int copy_func_state(struct bpf_func_state *dst,
1377 			   const struct bpf_func_state *src)
1378 {
1379 	int err;
1380 
1381 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1382 	err = copy_reference_state(dst, src);
1383 	if (err)
1384 		return err;
1385 	return copy_stack_state(dst, src);
1386 }
1387 
1388 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1389 			       const struct bpf_verifier_state *src)
1390 {
1391 	struct bpf_func_state *dst;
1392 	int i, err;
1393 
1394 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1395 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1396 					    GFP_USER);
1397 	if (!dst_state->jmp_history)
1398 		return -ENOMEM;
1399 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1400 
1401 	/* if dst has more stack frames then src frame, free them */
1402 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1403 		free_func_state(dst_state->frame[i]);
1404 		dst_state->frame[i] = NULL;
1405 	}
1406 	dst_state->speculative = src->speculative;
1407 	dst_state->active_rcu_lock = src->active_rcu_lock;
1408 	dst_state->curframe = src->curframe;
1409 	dst_state->active_lock.ptr = src->active_lock.ptr;
1410 	dst_state->active_lock.id = src->active_lock.id;
1411 	dst_state->branches = src->branches;
1412 	dst_state->parent = src->parent;
1413 	dst_state->first_insn_idx = src->first_insn_idx;
1414 	dst_state->last_insn_idx = src->last_insn_idx;
1415 	for (i = 0; i <= src->curframe; i++) {
1416 		dst = dst_state->frame[i];
1417 		if (!dst) {
1418 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1419 			if (!dst)
1420 				return -ENOMEM;
1421 			dst_state->frame[i] = dst;
1422 		}
1423 		err = copy_func_state(dst, src->frame[i]);
1424 		if (err)
1425 			return err;
1426 	}
1427 	return 0;
1428 }
1429 
1430 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1431 {
1432 	while (st) {
1433 		u32 br = --st->branches;
1434 
1435 		/* WARN_ON(br > 1) technically makes sense here,
1436 		 * but see comment in push_stack(), hence:
1437 		 */
1438 		WARN_ONCE((int)br < 0,
1439 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1440 			  br);
1441 		if (br)
1442 			break;
1443 		st = st->parent;
1444 	}
1445 }
1446 
1447 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1448 		     int *insn_idx, bool pop_log)
1449 {
1450 	struct bpf_verifier_state *cur = env->cur_state;
1451 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1452 	int err;
1453 
1454 	if (env->head == NULL)
1455 		return -ENOENT;
1456 
1457 	if (cur) {
1458 		err = copy_verifier_state(cur, &head->st);
1459 		if (err)
1460 			return err;
1461 	}
1462 	if (pop_log)
1463 		bpf_vlog_reset(&env->log, head->log_pos);
1464 	if (insn_idx)
1465 		*insn_idx = head->insn_idx;
1466 	if (prev_insn_idx)
1467 		*prev_insn_idx = head->prev_insn_idx;
1468 	elem = head->next;
1469 	free_verifier_state(&head->st, false);
1470 	kfree(head);
1471 	env->head = elem;
1472 	env->stack_size--;
1473 	return 0;
1474 }
1475 
1476 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1477 					     int insn_idx, int prev_insn_idx,
1478 					     bool speculative)
1479 {
1480 	struct bpf_verifier_state *cur = env->cur_state;
1481 	struct bpf_verifier_stack_elem *elem;
1482 	int err;
1483 
1484 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1485 	if (!elem)
1486 		goto err;
1487 
1488 	elem->insn_idx = insn_idx;
1489 	elem->prev_insn_idx = prev_insn_idx;
1490 	elem->next = env->head;
1491 	elem->log_pos = env->log.len_used;
1492 	env->head = elem;
1493 	env->stack_size++;
1494 	err = copy_verifier_state(&elem->st, cur);
1495 	if (err)
1496 		goto err;
1497 	elem->st.speculative |= speculative;
1498 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1499 		verbose(env, "The sequence of %d jumps is too complex.\n",
1500 			env->stack_size);
1501 		goto err;
1502 	}
1503 	if (elem->st.parent) {
1504 		++elem->st.parent->branches;
1505 		/* WARN_ON(branches > 2) technically makes sense here,
1506 		 * but
1507 		 * 1. speculative states will bump 'branches' for non-branch
1508 		 * instructions
1509 		 * 2. is_state_visited() heuristics may decide not to create
1510 		 * a new state for a sequence of branches and all such current
1511 		 * and cloned states will be pointing to a single parent state
1512 		 * which might have large 'branches' count.
1513 		 */
1514 	}
1515 	return &elem->st;
1516 err:
1517 	free_verifier_state(env->cur_state, true);
1518 	env->cur_state = NULL;
1519 	/* pop all elements and return */
1520 	while (!pop_stack(env, NULL, NULL, false));
1521 	return NULL;
1522 }
1523 
1524 #define CALLER_SAVED_REGS 6
1525 static const int caller_saved[CALLER_SAVED_REGS] = {
1526 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1527 };
1528 
1529 /* This helper doesn't clear reg->id */
1530 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1531 {
1532 	reg->var_off = tnum_const(imm);
1533 	reg->smin_value = (s64)imm;
1534 	reg->smax_value = (s64)imm;
1535 	reg->umin_value = imm;
1536 	reg->umax_value = imm;
1537 
1538 	reg->s32_min_value = (s32)imm;
1539 	reg->s32_max_value = (s32)imm;
1540 	reg->u32_min_value = (u32)imm;
1541 	reg->u32_max_value = (u32)imm;
1542 }
1543 
1544 /* Mark the unknown part of a register (variable offset or scalar value) as
1545  * known to have the value @imm.
1546  */
1547 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1548 {
1549 	/* Clear off and union(map_ptr, range) */
1550 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1551 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1552 	reg->id = 0;
1553 	reg->ref_obj_id = 0;
1554 	___mark_reg_known(reg, imm);
1555 }
1556 
1557 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1558 {
1559 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1560 	reg->s32_min_value = (s32)imm;
1561 	reg->s32_max_value = (s32)imm;
1562 	reg->u32_min_value = (u32)imm;
1563 	reg->u32_max_value = (u32)imm;
1564 }
1565 
1566 /* Mark the 'variable offset' part of a register as zero.  This should be
1567  * used only on registers holding a pointer type.
1568  */
1569 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1570 {
1571 	__mark_reg_known(reg, 0);
1572 }
1573 
1574 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1575 {
1576 	__mark_reg_known(reg, 0);
1577 	reg->type = SCALAR_VALUE;
1578 }
1579 
1580 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1581 				struct bpf_reg_state *regs, u32 regno)
1582 {
1583 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1584 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1585 		/* Something bad happened, let's kill all regs */
1586 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1587 			__mark_reg_not_init(env, regs + regno);
1588 		return;
1589 	}
1590 	__mark_reg_known_zero(regs + regno);
1591 }
1592 
1593 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1594 			      bool first_slot, int dynptr_id)
1595 {
1596 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1597 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1598 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1599 	 */
1600 	__mark_reg_known_zero(reg);
1601 	reg->type = CONST_PTR_TO_DYNPTR;
1602 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1603 	reg->id = dynptr_id;
1604 	reg->dynptr.type = type;
1605 	reg->dynptr.first_slot = first_slot;
1606 }
1607 
1608 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1609 {
1610 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1611 		const struct bpf_map *map = reg->map_ptr;
1612 
1613 		if (map->inner_map_meta) {
1614 			reg->type = CONST_PTR_TO_MAP;
1615 			reg->map_ptr = map->inner_map_meta;
1616 			/* transfer reg's id which is unique for every map_lookup_elem
1617 			 * as UID of the inner map.
1618 			 */
1619 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1620 				reg->map_uid = reg->id;
1621 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1622 			reg->type = PTR_TO_XDP_SOCK;
1623 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1624 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1625 			reg->type = PTR_TO_SOCKET;
1626 		} else {
1627 			reg->type = PTR_TO_MAP_VALUE;
1628 		}
1629 		return;
1630 	}
1631 
1632 	reg->type &= ~PTR_MAYBE_NULL;
1633 }
1634 
1635 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1636 {
1637 	return type_is_pkt_pointer(reg->type);
1638 }
1639 
1640 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1641 {
1642 	return reg_is_pkt_pointer(reg) ||
1643 	       reg->type == PTR_TO_PACKET_END;
1644 }
1645 
1646 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1647 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1648 				    enum bpf_reg_type which)
1649 {
1650 	/* The register can already have a range from prior markings.
1651 	 * This is fine as long as it hasn't been advanced from its
1652 	 * origin.
1653 	 */
1654 	return reg->type == which &&
1655 	       reg->id == 0 &&
1656 	       reg->off == 0 &&
1657 	       tnum_equals_const(reg->var_off, 0);
1658 }
1659 
1660 /* Reset the min/max bounds of a register */
1661 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1662 {
1663 	reg->smin_value = S64_MIN;
1664 	reg->smax_value = S64_MAX;
1665 	reg->umin_value = 0;
1666 	reg->umax_value = U64_MAX;
1667 
1668 	reg->s32_min_value = S32_MIN;
1669 	reg->s32_max_value = S32_MAX;
1670 	reg->u32_min_value = 0;
1671 	reg->u32_max_value = U32_MAX;
1672 }
1673 
1674 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1675 {
1676 	reg->smin_value = S64_MIN;
1677 	reg->smax_value = S64_MAX;
1678 	reg->umin_value = 0;
1679 	reg->umax_value = U64_MAX;
1680 }
1681 
1682 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1683 {
1684 	reg->s32_min_value = S32_MIN;
1685 	reg->s32_max_value = S32_MAX;
1686 	reg->u32_min_value = 0;
1687 	reg->u32_max_value = U32_MAX;
1688 }
1689 
1690 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1691 {
1692 	struct tnum var32_off = tnum_subreg(reg->var_off);
1693 
1694 	/* min signed is max(sign bit) | min(other bits) */
1695 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1696 			var32_off.value | (var32_off.mask & S32_MIN));
1697 	/* max signed is min(sign bit) | max(other bits) */
1698 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1699 			var32_off.value | (var32_off.mask & S32_MAX));
1700 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1701 	reg->u32_max_value = min(reg->u32_max_value,
1702 				 (u32)(var32_off.value | var32_off.mask));
1703 }
1704 
1705 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1706 {
1707 	/* min signed is max(sign bit) | min(other bits) */
1708 	reg->smin_value = max_t(s64, reg->smin_value,
1709 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1710 	/* max signed is min(sign bit) | max(other bits) */
1711 	reg->smax_value = min_t(s64, reg->smax_value,
1712 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1713 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1714 	reg->umax_value = min(reg->umax_value,
1715 			      reg->var_off.value | reg->var_off.mask);
1716 }
1717 
1718 static void __update_reg_bounds(struct bpf_reg_state *reg)
1719 {
1720 	__update_reg32_bounds(reg);
1721 	__update_reg64_bounds(reg);
1722 }
1723 
1724 /* Uses signed min/max values to inform unsigned, and vice-versa */
1725 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1726 {
1727 	/* Learn sign from signed bounds.
1728 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1729 	 * are the same, so combine.  This works even in the negative case, e.g.
1730 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1731 	 */
1732 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1733 		reg->s32_min_value = reg->u32_min_value =
1734 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1735 		reg->s32_max_value = reg->u32_max_value =
1736 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1737 		return;
1738 	}
1739 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1740 	 * boundary, so we must be careful.
1741 	 */
1742 	if ((s32)reg->u32_max_value >= 0) {
1743 		/* Positive.  We can't learn anything from the smin, but smax
1744 		 * is positive, hence safe.
1745 		 */
1746 		reg->s32_min_value = reg->u32_min_value;
1747 		reg->s32_max_value = reg->u32_max_value =
1748 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1749 	} else if ((s32)reg->u32_min_value < 0) {
1750 		/* Negative.  We can't learn anything from the smax, but smin
1751 		 * is negative, hence safe.
1752 		 */
1753 		reg->s32_min_value = reg->u32_min_value =
1754 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1755 		reg->s32_max_value = reg->u32_max_value;
1756 	}
1757 }
1758 
1759 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1760 {
1761 	/* Learn sign from signed bounds.
1762 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1763 	 * are the same, so combine.  This works even in the negative case, e.g.
1764 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1765 	 */
1766 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1767 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1768 							  reg->umin_value);
1769 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1770 							  reg->umax_value);
1771 		return;
1772 	}
1773 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1774 	 * boundary, so we must be careful.
1775 	 */
1776 	if ((s64)reg->umax_value >= 0) {
1777 		/* Positive.  We can't learn anything from the smin, but smax
1778 		 * is positive, hence safe.
1779 		 */
1780 		reg->smin_value = reg->umin_value;
1781 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1782 							  reg->umax_value);
1783 	} else if ((s64)reg->umin_value < 0) {
1784 		/* Negative.  We can't learn anything from the smax, but smin
1785 		 * is negative, hence safe.
1786 		 */
1787 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1788 							  reg->umin_value);
1789 		reg->smax_value = reg->umax_value;
1790 	}
1791 }
1792 
1793 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1794 {
1795 	__reg32_deduce_bounds(reg);
1796 	__reg64_deduce_bounds(reg);
1797 }
1798 
1799 /* Attempts to improve var_off based on unsigned min/max information */
1800 static void __reg_bound_offset(struct bpf_reg_state *reg)
1801 {
1802 	struct tnum var64_off = tnum_intersect(reg->var_off,
1803 					       tnum_range(reg->umin_value,
1804 							  reg->umax_value));
1805 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1806 						tnum_range(reg->u32_min_value,
1807 							   reg->u32_max_value));
1808 
1809 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1810 }
1811 
1812 static void reg_bounds_sync(struct bpf_reg_state *reg)
1813 {
1814 	/* We might have learned new bounds from the var_off. */
1815 	__update_reg_bounds(reg);
1816 	/* We might have learned something about the sign bit. */
1817 	__reg_deduce_bounds(reg);
1818 	/* We might have learned some bits from the bounds. */
1819 	__reg_bound_offset(reg);
1820 	/* Intersecting with the old var_off might have improved our bounds
1821 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1822 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1823 	 */
1824 	__update_reg_bounds(reg);
1825 }
1826 
1827 static bool __reg32_bound_s64(s32 a)
1828 {
1829 	return a >= 0 && a <= S32_MAX;
1830 }
1831 
1832 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1833 {
1834 	reg->umin_value = reg->u32_min_value;
1835 	reg->umax_value = reg->u32_max_value;
1836 
1837 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1838 	 * be positive otherwise set to worse case bounds and refine later
1839 	 * from tnum.
1840 	 */
1841 	if (__reg32_bound_s64(reg->s32_min_value) &&
1842 	    __reg32_bound_s64(reg->s32_max_value)) {
1843 		reg->smin_value = reg->s32_min_value;
1844 		reg->smax_value = reg->s32_max_value;
1845 	} else {
1846 		reg->smin_value = 0;
1847 		reg->smax_value = U32_MAX;
1848 	}
1849 }
1850 
1851 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1852 {
1853 	/* special case when 64-bit register has upper 32-bit register
1854 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1855 	 * allowing us to use 32-bit bounds directly,
1856 	 */
1857 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1858 		__reg_assign_32_into_64(reg);
1859 	} else {
1860 		/* Otherwise the best we can do is push lower 32bit known and
1861 		 * unknown bits into register (var_off set from jmp logic)
1862 		 * then learn as much as possible from the 64-bit tnum
1863 		 * known and unknown bits. The previous smin/smax bounds are
1864 		 * invalid here because of jmp32 compare so mark them unknown
1865 		 * so they do not impact tnum bounds calculation.
1866 		 */
1867 		__mark_reg64_unbounded(reg);
1868 	}
1869 	reg_bounds_sync(reg);
1870 }
1871 
1872 static bool __reg64_bound_s32(s64 a)
1873 {
1874 	return a >= S32_MIN && a <= S32_MAX;
1875 }
1876 
1877 static bool __reg64_bound_u32(u64 a)
1878 {
1879 	return a >= U32_MIN && a <= U32_MAX;
1880 }
1881 
1882 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1883 {
1884 	__mark_reg32_unbounded(reg);
1885 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1886 		reg->s32_min_value = (s32)reg->smin_value;
1887 		reg->s32_max_value = (s32)reg->smax_value;
1888 	}
1889 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1890 		reg->u32_min_value = (u32)reg->umin_value;
1891 		reg->u32_max_value = (u32)reg->umax_value;
1892 	}
1893 	reg_bounds_sync(reg);
1894 }
1895 
1896 /* Mark a register as having a completely unknown (scalar) value. */
1897 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1898 			       struct bpf_reg_state *reg)
1899 {
1900 	/*
1901 	 * Clear type, off, and union(map_ptr, range) and
1902 	 * padding between 'type' and union
1903 	 */
1904 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1905 	reg->type = SCALAR_VALUE;
1906 	reg->id = 0;
1907 	reg->ref_obj_id = 0;
1908 	reg->var_off = tnum_unknown;
1909 	reg->frameno = 0;
1910 	reg->precise = !env->bpf_capable;
1911 	__mark_reg_unbounded(reg);
1912 }
1913 
1914 static void mark_reg_unknown(struct bpf_verifier_env *env,
1915 			     struct bpf_reg_state *regs, u32 regno)
1916 {
1917 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1918 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1919 		/* Something bad happened, let's kill all regs except FP */
1920 		for (regno = 0; regno < BPF_REG_FP; regno++)
1921 			__mark_reg_not_init(env, regs + regno);
1922 		return;
1923 	}
1924 	__mark_reg_unknown(env, regs + regno);
1925 }
1926 
1927 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1928 				struct bpf_reg_state *reg)
1929 {
1930 	__mark_reg_unknown(env, reg);
1931 	reg->type = NOT_INIT;
1932 }
1933 
1934 static void mark_reg_not_init(struct bpf_verifier_env *env,
1935 			      struct bpf_reg_state *regs, u32 regno)
1936 {
1937 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1938 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1939 		/* Something bad happened, let's kill all regs except FP */
1940 		for (regno = 0; regno < BPF_REG_FP; regno++)
1941 			__mark_reg_not_init(env, regs + regno);
1942 		return;
1943 	}
1944 	__mark_reg_not_init(env, regs + regno);
1945 }
1946 
1947 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1948 			    struct bpf_reg_state *regs, u32 regno,
1949 			    enum bpf_reg_type reg_type,
1950 			    struct btf *btf, u32 btf_id,
1951 			    enum bpf_type_flag flag)
1952 {
1953 	if (reg_type == SCALAR_VALUE) {
1954 		mark_reg_unknown(env, regs, regno);
1955 		return;
1956 	}
1957 	mark_reg_known_zero(env, regs, regno);
1958 	regs[regno].type = PTR_TO_BTF_ID | flag;
1959 	regs[regno].btf = btf;
1960 	regs[regno].btf_id = btf_id;
1961 }
1962 
1963 #define DEF_NOT_SUBREG	(0)
1964 static void init_reg_state(struct bpf_verifier_env *env,
1965 			   struct bpf_func_state *state)
1966 {
1967 	struct bpf_reg_state *regs = state->regs;
1968 	int i;
1969 
1970 	for (i = 0; i < MAX_BPF_REG; i++) {
1971 		mark_reg_not_init(env, regs, i);
1972 		regs[i].live = REG_LIVE_NONE;
1973 		regs[i].parent = NULL;
1974 		regs[i].subreg_def = DEF_NOT_SUBREG;
1975 	}
1976 
1977 	/* frame pointer */
1978 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1979 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1980 	regs[BPF_REG_FP].frameno = state->frameno;
1981 }
1982 
1983 #define BPF_MAIN_FUNC (-1)
1984 static void init_func_state(struct bpf_verifier_env *env,
1985 			    struct bpf_func_state *state,
1986 			    int callsite, int frameno, int subprogno)
1987 {
1988 	state->callsite = callsite;
1989 	state->frameno = frameno;
1990 	state->subprogno = subprogno;
1991 	state->callback_ret_range = tnum_range(0, 0);
1992 	init_reg_state(env, state);
1993 	mark_verifier_state_scratched(env);
1994 }
1995 
1996 /* Similar to push_stack(), but for async callbacks */
1997 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1998 						int insn_idx, int prev_insn_idx,
1999 						int subprog)
2000 {
2001 	struct bpf_verifier_stack_elem *elem;
2002 	struct bpf_func_state *frame;
2003 
2004 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2005 	if (!elem)
2006 		goto err;
2007 
2008 	elem->insn_idx = insn_idx;
2009 	elem->prev_insn_idx = prev_insn_idx;
2010 	elem->next = env->head;
2011 	elem->log_pos = env->log.len_used;
2012 	env->head = elem;
2013 	env->stack_size++;
2014 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2015 		verbose(env,
2016 			"The sequence of %d jumps is too complex for async cb.\n",
2017 			env->stack_size);
2018 		goto err;
2019 	}
2020 	/* Unlike push_stack() do not copy_verifier_state().
2021 	 * The caller state doesn't matter.
2022 	 * This is async callback. It starts in a fresh stack.
2023 	 * Initialize it similar to do_check_common().
2024 	 */
2025 	elem->st.branches = 1;
2026 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2027 	if (!frame)
2028 		goto err;
2029 	init_func_state(env, frame,
2030 			BPF_MAIN_FUNC /* callsite */,
2031 			0 /* frameno within this callchain */,
2032 			subprog /* subprog number within this prog */);
2033 	elem->st.frame[0] = frame;
2034 	return &elem->st;
2035 err:
2036 	free_verifier_state(env->cur_state, true);
2037 	env->cur_state = NULL;
2038 	/* pop all elements and return */
2039 	while (!pop_stack(env, NULL, NULL, false));
2040 	return NULL;
2041 }
2042 
2043 
2044 enum reg_arg_type {
2045 	SRC_OP,		/* register is used as source operand */
2046 	DST_OP,		/* register is used as destination operand */
2047 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2048 };
2049 
2050 static int cmp_subprogs(const void *a, const void *b)
2051 {
2052 	return ((struct bpf_subprog_info *)a)->start -
2053 	       ((struct bpf_subprog_info *)b)->start;
2054 }
2055 
2056 static int find_subprog(struct bpf_verifier_env *env, int off)
2057 {
2058 	struct bpf_subprog_info *p;
2059 
2060 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2061 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2062 	if (!p)
2063 		return -ENOENT;
2064 	return p - env->subprog_info;
2065 
2066 }
2067 
2068 static int add_subprog(struct bpf_verifier_env *env, int off)
2069 {
2070 	int insn_cnt = env->prog->len;
2071 	int ret;
2072 
2073 	if (off >= insn_cnt || off < 0) {
2074 		verbose(env, "call to invalid destination\n");
2075 		return -EINVAL;
2076 	}
2077 	ret = find_subprog(env, off);
2078 	if (ret >= 0)
2079 		return ret;
2080 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2081 		verbose(env, "too many subprograms\n");
2082 		return -E2BIG;
2083 	}
2084 	/* determine subprog starts. The end is one before the next starts */
2085 	env->subprog_info[env->subprog_cnt++].start = off;
2086 	sort(env->subprog_info, env->subprog_cnt,
2087 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2088 	return env->subprog_cnt - 1;
2089 }
2090 
2091 #define MAX_KFUNC_DESCS 256
2092 #define MAX_KFUNC_BTFS	256
2093 
2094 struct bpf_kfunc_desc {
2095 	struct btf_func_model func_model;
2096 	u32 func_id;
2097 	s32 imm;
2098 	u16 offset;
2099 };
2100 
2101 struct bpf_kfunc_btf {
2102 	struct btf *btf;
2103 	struct module *module;
2104 	u16 offset;
2105 };
2106 
2107 struct bpf_kfunc_desc_tab {
2108 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2109 	u32 nr_descs;
2110 };
2111 
2112 struct bpf_kfunc_btf_tab {
2113 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2114 	u32 nr_descs;
2115 };
2116 
2117 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2118 {
2119 	const struct bpf_kfunc_desc *d0 = a;
2120 	const struct bpf_kfunc_desc *d1 = b;
2121 
2122 	/* func_id is not greater than BTF_MAX_TYPE */
2123 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2124 }
2125 
2126 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2127 {
2128 	const struct bpf_kfunc_btf *d0 = a;
2129 	const struct bpf_kfunc_btf *d1 = b;
2130 
2131 	return d0->offset - d1->offset;
2132 }
2133 
2134 static const struct bpf_kfunc_desc *
2135 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2136 {
2137 	struct bpf_kfunc_desc desc = {
2138 		.func_id = func_id,
2139 		.offset = offset,
2140 	};
2141 	struct bpf_kfunc_desc_tab *tab;
2142 
2143 	tab = prog->aux->kfunc_tab;
2144 	return bsearch(&desc, tab->descs, tab->nr_descs,
2145 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2146 }
2147 
2148 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2149 					 s16 offset)
2150 {
2151 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2152 	struct bpf_kfunc_btf_tab *tab;
2153 	struct bpf_kfunc_btf *b;
2154 	struct module *mod;
2155 	struct btf *btf;
2156 	int btf_fd;
2157 
2158 	tab = env->prog->aux->kfunc_btf_tab;
2159 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2160 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2161 	if (!b) {
2162 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2163 			verbose(env, "too many different module BTFs\n");
2164 			return ERR_PTR(-E2BIG);
2165 		}
2166 
2167 		if (bpfptr_is_null(env->fd_array)) {
2168 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2169 			return ERR_PTR(-EPROTO);
2170 		}
2171 
2172 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2173 					    offset * sizeof(btf_fd),
2174 					    sizeof(btf_fd)))
2175 			return ERR_PTR(-EFAULT);
2176 
2177 		btf = btf_get_by_fd(btf_fd);
2178 		if (IS_ERR(btf)) {
2179 			verbose(env, "invalid module BTF fd specified\n");
2180 			return btf;
2181 		}
2182 
2183 		if (!btf_is_module(btf)) {
2184 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2185 			btf_put(btf);
2186 			return ERR_PTR(-EINVAL);
2187 		}
2188 
2189 		mod = btf_try_get_module(btf);
2190 		if (!mod) {
2191 			btf_put(btf);
2192 			return ERR_PTR(-ENXIO);
2193 		}
2194 
2195 		b = &tab->descs[tab->nr_descs++];
2196 		b->btf = btf;
2197 		b->module = mod;
2198 		b->offset = offset;
2199 
2200 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2201 		     kfunc_btf_cmp_by_off, NULL);
2202 	}
2203 	return b->btf;
2204 }
2205 
2206 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2207 {
2208 	if (!tab)
2209 		return;
2210 
2211 	while (tab->nr_descs--) {
2212 		module_put(tab->descs[tab->nr_descs].module);
2213 		btf_put(tab->descs[tab->nr_descs].btf);
2214 	}
2215 	kfree(tab);
2216 }
2217 
2218 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2219 {
2220 	if (offset) {
2221 		if (offset < 0) {
2222 			/* In the future, this can be allowed to increase limit
2223 			 * of fd index into fd_array, interpreted as u16.
2224 			 */
2225 			verbose(env, "negative offset disallowed for kernel module function call\n");
2226 			return ERR_PTR(-EINVAL);
2227 		}
2228 
2229 		return __find_kfunc_desc_btf(env, offset);
2230 	}
2231 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2232 }
2233 
2234 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2235 {
2236 	const struct btf_type *func, *func_proto;
2237 	struct bpf_kfunc_btf_tab *btf_tab;
2238 	struct bpf_kfunc_desc_tab *tab;
2239 	struct bpf_prog_aux *prog_aux;
2240 	struct bpf_kfunc_desc *desc;
2241 	const char *func_name;
2242 	struct btf *desc_btf;
2243 	unsigned long call_imm;
2244 	unsigned long addr;
2245 	int err;
2246 
2247 	prog_aux = env->prog->aux;
2248 	tab = prog_aux->kfunc_tab;
2249 	btf_tab = prog_aux->kfunc_btf_tab;
2250 	if (!tab) {
2251 		if (!btf_vmlinux) {
2252 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2253 			return -ENOTSUPP;
2254 		}
2255 
2256 		if (!env->prog->jit_requested) {
2257 			verbose(env, "JIT is required for calling kernel function\n");
2258 			return -ENOTSUPP;
2259 		}
2260 
2261 		if (!bpf_jit_supports_kfunc_call()) {
2262 			verbose(env, "JIT does not support calling kernel function\n");
2263 			return -ENOTSUPP;
2264 		}
2265 
2266 		if (!env->prog->gpl_compatible) {
2267 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2268 			return -EINVAL;
2269 		}
2270 
2271 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2272 		if (!tab)
2273 			return -ENOMEM;
2274 		prog_aux->kfunc_tab = tab;
2275 	}
2276 
2277 	/* func_id == 0 is always invalid, but instead of returning an error, be
2278 	 * conservative and wait until the code elimination pass before returning
2279 	 * error, so that invalid calls that get pruned out can be in BPF programs
2280 	 * loaded from userspace.  It is also required that offset be untouched
2281 	 * for such calls.
2282 	 */
2283 	if (!func_id && !offset)
2284 		return 0;
2285 
2286 	if (!btf_tab && offset) {
2287 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2288 		if (!btf_tab)
2289 			return -ENOMEM;
2290 		prog_aux->kfunc_btf_tab = btf_tab;
2291 	}
2292 
2293 	desc_btf = find_kfunc_desc_btf(env, offset);
2294 	if (IS_ERR(desc_btf)) {
2295 		verbose(env, "failed to find BTF for kernel function\n");
2296 		return PTR_ERR(desc_btf);
2297 	}
2298 
2299 	if (find_kfunc_desc(env->prog, func_id, offset))
2300 		return 0;
2301 
2302 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2303 		verbose(env, "too many different kernel function calls\n");
2304 		return -E2BIG;
2305 	}
2306 
2307 	func = btf_type_by_id(desc_btf, func_id);
2308 	if (!func || !btf_type_is_func(func)) {
2309 		verbose(env, "kernel btf_id %u is not a function\n",
2310 			func_id);
2311 		return -EINVAL;
2312 	}
2313 	func_proto = btf_type_by_id(desc_btf, func->type);
2314 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2315 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2316 			func_id);
2317 		return -EINVAL;
2318 	}
2319 
2320 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2321 	addr = kallsyms_lookup_name(func_name);
2322 	if (!addr) {
2323 		verbose(env, "cannot find address for kernel function %s\n",
2324 			func_name);
2325 		return -EINVAL;
2326 	}
2327 
2328 	call_imm = BPF_CALL_IMM(addr);
2329 	/* Check whether or not the relative offset overflows desc->imm */
2330 	if ((unsigned long)(s32)call_imm != call_imm) {
2331 		verbose(env, "address of kernel function %s is out of range\n",
2332 			func_name);
2333 		return -EINVAL;
2334 	}
2335 
2336 	if (bpf_dev_bound_kfunc_id(func_id)) {
2337 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2338 		if (err)
2339 			return err;
2340 	}
2341 
2342 	desc = &tab->descs[tab->nr_descs++];
2343 	desc->func_id = func_id;
2344 	desc->imm = call_imm;
2345 	desc->offset = offset;
2346 	err = btf_distill_func_proto(&env->log, desc_btf,
2347 				     func_proto, func_name,
2348 				     &desc->func_model);
2349 	if (!err)
2350 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2351 		     kfunc_desc_cmp_by_id_off, NULL);
2352 	return err;
2353 }
2354 
2355 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2356 {
2357 	const struct bpf_kfunc_desc *d0 = a;
2358 	const struct bpf_kfunc_desc *d1 = b;
2359 
2360 	if (d0->imm > d1->imm)
2361 		return 1;
2362 	else if (d0->imm < d1->imm)
2363 		return -1;
2364 	return 0;
2365 }
2366 
2367 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2368 {
2369 	struct bpf_kfunc_desc_tab *tab;
2370 
2371 	tab = prog->aux->kfunc_tab;
2372 	if (!tab)
2373 		return;
2374 
2375 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2376 	     kfunc_desc_cmp_by_imm, NULL);
2377 }
2378 
2379 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2380 {
2381 	return !!prog->aux->kfunc_tab;
2382 }
2383 
2384 const struct btf_func_model *
2385 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2386 			 const struct bpf_insn *insn)
2387 {
2388 	const struct bpf_kfunc_desc desc = {
2389 		.imm = insn->imm,
2390 	};
2391 	const struct bpf_kfunc_desc *res;
2392 	struct bpf_kfunc_desc_tab *tab;
2393 
2394 	tab = prog->aux->kfunc_tab;
2395 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2396 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2397 
2398 	return res ? &res->func_model : NULL;
2399 }
2400 
2401 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2402 {
2403 	struct bpf_subprog_info *subprog = env->subprog_info;
2404 	struct bpf_insn *insn = env->prog->insnsi;
2405 	int i, ret, insn_cnt = env->prog->len;
2406 
2407 	/* Add entry function. */
2408 	ret = add_subprog(env, 0);
2409 	if (ret)
2410 		return ret;
2411 
2412 	for (i = 0; i < insn_cnt; i++, insn++) {
2413 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2414 		    !bpf_pseudo_kfunc_call(insn))
2415 			continue;
2416 
2417 		if (!env->bpf_capable) {
2418 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2419 			return -EPERM;
2420 		}
2421 
2422 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2423 			ret = add_subprog(env, i + insn->imm + 1);
2424 		else
2425 			ret = add_kfunc_call(env, insn->imm, insn->off);
2426 
2427 		if (ret < 0)
2428 			return ret;
2429 	}
2430 
2431 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2432 	 * logic. 'subprog_cnt' should not be increased.
2433 	 */
2434 	subprog[env->subprog_cnt].start = insn_cnt;
2435 
2436 	if (env->log.level & BPF_LOG_LEVEL2)
2437 		for (i = 0; i < env->subprog_cnt; i++)
2438 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2439 
2440 	return 0;
2441 }
2442 
2443 static int check_subprogs(struct bpf_verifier_env *env)
2444 {
2445 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2446 	struct bpf_subprog_info *subprog = env->subprog_info;
2447 	struct bpf_insn *insn = env->prog->insnsi;
2448 	int insn_cnt = env->prog->len;
2449 
2450 	/* now check that all jumps are within the same subprog */
2451 	subprog_start = subprog[cur_subprog].start;
2452 	subprog_end = subprog[cur_subprog + 1].start;
2453 	for (i = 0; i < insn_cnt; i++) {
2454 		u8 code = insn[i].code;
2455 
2456 		if (code == (BPF_JMP | BPF_CALL) &&
2457 		    insn[i].imm == BPF_FUNC_tail_call &&
2458 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2459 			subprog[cur_subprog].has_tail_call = true;
2460 		if (BPF_CLASS(code) == BPF_LD &&
2461 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2462 			subprog[cur_subprog].has_ld_abs = true;
2463 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2464 			goto next;
2465 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2466 			goto next;
2467 		off = i + insn[i].off + 1;
2468 		if (off < subprog_start || off >= subprog_end) {
2469 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2470 			return -EINVAL;
2471 		}
2472 next:
2473 		if (i == subprog_end - 1) {
2474 			/* to avoid fall-through from one subprog into another
2475 			 * the last insn of the subprog should be either exit
2476 			 * or unconditional jump back
2477 			 */
2478 			if (code != (BPF_JMP | BPF_EXIT) &&
2479 			    code != (BPF_JMP | BPF_JA)) {
2480 				verbose(env, "last insn is not an exit or jmp\n");
2481 				return -EINVAL;
2482 			}
2483 			subprog_start = subprog_end;
2484 			cur_subprog++;
2485 			if (cur_subprog < env->subprog_cnt)
2486 				subprog_end = subprog[cur_subprog + 1].start;
2487 		}
2488 	}
2489 	return 0;
2490 }
2491 
2492 /* Parentage chain of this register (or stack slot) should take care of all
2493  * issues like callee-saved registers, stack slot allocation time, etc.
2494  */
2495 static int mark_reg_read(struct bpf_verifier_env *env,
2496 			 const struct bpf_reg_state *state,
2497 			 struct bpf_reg_state *parent, u8 flag)
2498 {
2499 	bool writes = parent == state->parent; /* Observe write marks */
2500 	int cnt = 0;
2501 
2502 	while (parent) {
2503 		/* if read wasn't screened by an earlier write ... */
2504 		if (writes && state->live & REG_LIVE_WRITTEN)
2505 			break;
2506 		if (parent->live & REG_LIVE_DONE) {
2507 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2508 				reg_type_str(env, parent->type),
2509 				parent->var_off.value, parent->off);
2510 			return -EFAULT;
2511 		}
2512 		/* The first condition is more likely to be true than the
2513 		 * second, checked it first.
2514 		 */
2515 		if ((parent->live & REG_LIVE_READ) == flag ||
2516 		    parent->live & REG_LIVE_READ64)
2517 			/* The parentage chain never changes and
2518 			 * this parent was already marked as LIVE_READ.
2519 			 * There is no need to keep walking the chain again and
2520 			 * keep re-marking all parents as LIVE_READ.
2521 			 * This case happens when the same register is read
2522 			 * multiple times without writes into it in-between.
2523 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2524 			 * then no need to set the weak REG_LIVE_READ32.
2525 			 */
2526 			break;
2527 		/* ... then we depend on parent's value */
2528 		parent->live |= flag;
2529 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2530 		if (flag == REG_LIVE_READ64)
2531 			parent->live &= ~REG_LIVE_READ32;
2532 		state = parent;
2533 		parent = state->parent;
2534 		writes = true;
2535 		cnt++;
2536 	}
2537 
2538 	if (env->longest_mark_read_walk < cnt)
2539 		env->longest_mark_read_walk = cnt;
2540 	return 0;
2541 }
2542 
2543 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2544 {
2545 	struct bpf_func_state *state = func(env, reg);
2546 	int spi, ret;
2547 
2548 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2549 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2550 	 * check_kfunc_call.
2551 	 */
2552 	if (reg->type == CONST_PTR_TO_DYNPTR)
2553 		return 0;
2554 	spi = dynptr_get_spi(env, reg);
2555 	if (spi < 0)
2556 		return spi;
2557 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2558 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2559 	 * read.
2560 	 */
2561 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2562 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2563 	if (ret)
2564 		return ret;
2565 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2566 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2567 }
2568 
2569 /* This function is supposed to be used by the following 32-bit optimization
2570  * code only. It returns TRUE if the source or destination register operates
2571  * on 64-bit, otherwise return FALSE.
2572  */
2573 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2574 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2575 {
2576 	u8 code, class, op;
2577 
2578 	code = insn->code;
2579 	class = BPF_CLASS(code);
2580 	op = BPF_OP(code);
2581 	if (class == BPF_JMP) {
2582 		/* BPF_EXIT for "main" will reach here. Return TRUE
2583 		 * conservatively.
2584 		 */
2585 		if (op == BPF_EXIT)
2586 			return true;
2587 		if (op == BPF_CALL) {
2588 			/* BPF to BPF call will reach here because of marking
2589 			 * caller saved clobber with DST_OP_NO_MARK for which we
2590 			 * don't care the register def because they are anyway
2591 			 * marked as NOT_INIT already.
2592 			 */
2593 			if (insn->src_reg == BPF_PSEUDO_CALL)
2594 				return false;
2595 			/* Helper call will reach here because of arg type
2596 			 * check, conservatively return TRUE.
2597 			 */
2598 			if (t == SRC_OP)
2599 				return true;
2600 
2601 			return false;
2602 		}
2603 	}
2604 
2605 	if (class == BPF_ALU64 || class == BPF_JMP ||
2606 	    /* BPF_END always use BPF_ALU class. */
2607 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2608 		return true;
2609 
2610 	if (class == BPF_ALU || class == BPF_JMP32)
2611 		return false;
2612 
2613 	if (class == BPF_LDX) {
2614 		if (t != SRC_OP)
2615 			return BPF_SIZE(code) == BPF_DW;
2616 		/* LDX source must be ptr. */
2617 		return true;
2618 	}
2619 
2620 	if (class == BPF_STX) {
2621 		/* BPF_STX (including atomic variants) has multiple source
2622 		 * operands, one of which is a ptr. Check whether the caller is
2623 		 * asking about it.
2624 		 */
2625 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2626 			return true;
2627 		return BPF_SIZE(code) == BPF_DW;
2628 	}
2629 
2630 	if (class == BPF_LD) {
2631 		u8 mode = BPF_MODE(code);
2632 
2633 		/* LD_IMM64 */
2634 		if (mode == BPF_IMM)
2635 			return true;
2636 
2637 		/* Both LD_IND and LD_ABS return 32-bit data. */
2638 		if (t != SRC_OP)
2639 			return  false;
2640 
2641 		/* Implicit ctx ptr. */
2642 		if (regno == BPF_REG_6)
2643 			return true;
2644 
2645 		/* Explicit source could be any width. */
2646 		return true;
2647 	}
2648 
2649 	if (class == BPF_ST)
2650 		/* The only source register for BPF_ST is a ptr. */
2651 		return true;
2652 
2653 	/* Conservatively return true at default. */
2654 	return true;
2655 }
2656 
2657 /* Return the regno defined by the insn, or -1. */
2658 static int insn_def_regno(const struct bpf_insn *insn)
2659 {
2660 	switch (BPF_CLASS(insn->code)) {
2661 	case BPF_JMP:
2662 	case BPF_JMP32:
2663 	case BPF_ST:
2664 		return -1;
2665 	case BPF_STX:
2666 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2667 		    (insn->imm & BPF_FETCH)) {
2668 			if (insn->imm == BPF_CMPXCHG)
2669 				return BPF_REG_0;
2670 			else
2671 				return insn->src_reg;
2672 		} else {
2673 			return -1;
2674 		}
2675 	default:
2676 		return insn->dst_reg;
2677 	}
2678 }
2679 
2680 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2681 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2682 {
2683 	int dst_reg = insn_def_regno(insn);
2684 
2685 	if (dst_reg == -1)
2686 		return false;
2687 
2688 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2689 }
2690 
2691 static void mark_insn_zext(struct bpf_verifier_env *env,
2692 			   struct bpf_reg_state *reg)
2693 {
2694 	s32 def_idx = reg->subreg_def;
2695 
2696 	if (def_idx == DEF_NOT_SUBREG)
2697 		return;
2698 
2699 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2700 	/* The dst will be zero extended, so won't be sub-register anymore. */
2701 	reg->subreg_def = DEF_NOT_SUBREG;
2702 }
2703 
2704 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2705 			 enum reg_arg_type t)
2706 {
2707 	struct bpf_verifier_state *vstate = env->cur_state;
2708 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2709 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2710 	struct bpf_reg_state *reg, *regs = state->regs;
2711 	bool rw64;
2712 
2713 	if (regno >= MAX_BPF_REG) {
2714 		verbose(env, "R%d is invalid\n", regno);
2715 		return -EINVAL;
2716 	}
2717 
2718 	mark_reg_scratched(env, regno);
2719 
2720 	reg = &regs[regno];
2721 	rw64 = is_reg64(env, insn, regno, reg, t);
2722 	if (t == SRC_OP) {
2723 		/* check whether register used as source operand can be read */
2724 		if (reg->type == NOT_INIT) {
2725 			verbose(env, "R%d !read_ok\n", regno);
2726 			return -EACCES;
2727 		}
2728 		/* We don't need to worry about FP liveness because it's read-only */
2729 		if (regno == BPF_REG_FP)
2730 			return 0;
2731 
2732 		if (rw64)
2733 			mark_insn_zext(env, reg);
2734 
2735 		return mark_reg_read(env, reg, reg->parent,
2736 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2737 	} else {
2738 		/* check whether register used as dest operand can be written to */
2739 		if (regno == BPF_REG_FP) {
2740 			verbose(env, "frame pointer is read only\n");
2741 			return -EACCES;
2742 		}
2743 		reg->live |= REG_LIVE_WRITTEN;
2744 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2745 		if (t == DST_OP)
2746 			mark_reg_unknown(env, regs, regno);
2747 	}
2748 	return 0;
2749 }
2750 
2751 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
2752 {
2753 	env->insn_aux_data[idx].jmp_point = true;
2754 }
2755 
2756 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
2757 {
2758 	return env->insn_aux_data[insn_idx].jmp_point;
2759 }
2760 
2761 /* for any branch, call, exit record the history of jmps in the given state */
2762 static int push_jmp_history(struct bpf_verifier_env *env,
2763 			    struct bpf_verifier_state *cur)
2764 {
2765 	u32 cnt = cur->jmp_history_cnt;
2766 	struct bpf_idx_pair *p;
2767 	size_t alloc_size;
2768 
2769 	if (!is_jmp_point(env, env->insn_idx))
2770 		return 0;
2771 
2772 	cnt++;
2773 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2774 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2775 	if (!p)
2776 		return -ENOMEM;
2777 	p[cnt - 1].idx = env->insn_idx;
2778 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2779 	cur->jmp_history = p;
2780 	cur->jmp_history_cnt = cnt;
2781 	return 0;
2782 }
2783 
2784 /* Backtrack one insn at a time. If idx is not at the top of recorded
2785  * history then previous instruction came from straight line execution.
2786  */
2787 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2788 			     u32 *history)
2789 {
2790 	u32 cnt = *history;
2791 
2792 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2793 		i = st->jmp_history[cnt - 1].prev_idx;
2794 		(*history)--;
2795 	} else {
2796 		i--;
2797 	}
2798 	return i;
2799 }
2800 
2801 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2802 {
2803 	const struct btf_type *func;
2804 	struct btf *desc_btf;
2805 
2806 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2807 		return NULL;
2808 
2809 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2810 	if (IS_ERR(desc_btf))
2811 		return "<error>";
2812 
2813 	func = btf_type_by_id(desc_btf, insn->imm);
2814 	return btf_name_by_offset(desc_btf, func->name_off);
2815 }
2816 
2817 /* For given verifier state backtrack_insn() is called from the last insn to
2818  * the first insn. Its purpose is to compute a bitmask of registers and
2819  * stack slots that needs precision in the parent verifier state.
2820  */
2821 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2822 			  u32 *reg_mask, u64 *stack_mask)
2823 {
2824 	const struct bpf_insn_cbs cbs = {
2825 		.cb_call	= disasm_kfunc_name,
2826 		.cb_print	= verbose,
2827 		.private_data	= env,
2828 	};
2829 	struct bpf_insn *insn = env->prog->insnsi + idx;
2830 	u8 class = BPF_CLASS(insn->code);
2831 	u8 opcode = BPF_OP(insn->code);
2832 	u8 mode = BPF_MODE(insn->code);
2833 	u32 dreg = 1u << insn->dst_reg;
2834 	u32 sreg = 1u << insn->src_reg;
2835 	u32 spi;
2836 
2837 	if (insn->code == 0)
2838 		return 0;
2839 	if (env->log.level & BPF_LOG_LEVEL2) {
2840 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2841 		verbose(env, "%d: ", idx);
2842 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2843 	}
2844 
2845 	if (class == BPF_ALU || class == BPF_ALU64) {
2846 		if (!(*reg_mask & dreg))
2847 			return 0;
2848 		if (opcode == BPF_MOV) {
2849 			if (BPF_SRC(insn->code) == BPF_X) {
2850 				/* dreg = sreg
2851 				 * dreg needs precision after this insn
2852 				 * sreg needs precision before this insn
2853 				 */
2854 				*reg_mask &= ~dreg;
2855 				*reg_mask |= sreg;
2856 			} else {
2857 				/* dreg = K
2858 				 * dreg needs precision after this insn.
2859 				 * Corresponding register is already marked
2860 				 * as precise=true in this verifier state.
2861 				 * No further markings in parent are necessary
2862 				 */
2863 				*reg_mask &= ~dreg;
2864 			}
2865 		} else {
2866 			if (BPF_SRC(insn->code) == BPF_X) {
2867 				/* dreg += sreg
2868 				 * both dreg and sreg need precision
2869 				 * before this insn
2870 				 */
2871 				*reg_mask |= sreg;
2872 			} /* else dreg += K
2873 			   * dreg still needs precision before this insn
2874 			   */
2875 		}
2876 	} else if (class == BPF_LDX) {
2877 		if (!(*reg_mask & dreg))
2878 			return 0;
2879 		*reg_mask &= ~dreg;
2880 
2881 		/* scalars can only be spilled into stack w/o losing precision.
2882 		 * Load from any other memory can be zero extended.
2883 		 * The desire to keep that precision is already indicated
2884 		 * by 'precise' mark in corresponding register of this state.
2885 		 * No further tracking necessary.
2886 		 */
2887 		if (insn->src_reg != BPF_REG_FP)
2888 			return 0;
2889 
2890 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2891 		 * that [fp - off] slot contains scalar that needs to be
2892 		 * tracked with precision
2893 		 */
2894 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2895 		if (spi >= 64) {
2896 			verbose(env, "BUG spi %d\n", spi);
2897 			WARN_ONCE(1, "verifier backtracking bug");
2898 			return -EFAULT;
2899 		}
2900 		*stack_mask |= 1ull << spi;
2901 	} else if (class == BPF_STX || class == BPF_ST) {
2902 		if (*reg_mask & dreg)
2903 			/* stx & st shouldn't be using _scalar_ dst_reg
2904 			 * to access memory. It means backtracking
2905 			 * encountered a case of pointer subtraction.
2906 			 */
2907 			return -ENOTSUPP;
2908 		/* scalars can only be spilled into stack */
2909 		if (insn->dst_reg != BPF_REG_FP)
2910 			return 0;
2911 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2912 		if (spi >= 64) {
2913 			verbose(env, "BUG spi %d\n", spi);
2914 			WARN_ONCE(1, "verifier backtracking bug");
2915 			return -EFAULT;
2916 		}
2917 		if (!(*stack_mask & (1ull << spi)))
2918 			return 0;
2919 		*stack_mask &= ~(1ull << spi);
2920 		if (class == BPF_STX)
2921 			*reg_mask |= sreg;
2922 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2923 		if (opcode == BPF_CALL) {
2924 			if (insn->src_reg == BPF_PSEUDO_CALL)
2925 				return -ENOTSUPP;
2926 			/* BPF helpers that invoke callback subprogs are
2927 			 * equivalent to BPF_PSEUDO_CALL above
2928 			 */
2929 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2930 				return -ENOTSUPP;
2931 			/* regular helper call sets R0 */
2932 			*reg_mask &= ~1;
2933 			if (*reg_mask & 0x3f) {
2934 				/* if backtracing was looking for registers R1-R5
2935 				 * they should have been found already.
2936 				 */
2937 				verbose(env, "BUG regs %x\n", *reg_mask);
2938 				WARN_ONCE(1, "verifier backtracking bug");
2939 				return -EFAULT;
2940 			}
2941 		} else if (opcode == BPF_EXIT) {
2942 			return -ENOTSUPP;
2943 		}
2944 	} else if (class == BPF_LD) {
2945 		if (!(*reg_mask & dreg))
2946 			return 0;
2947 		*reg_mask &= ~dreg;
2948 		/* It's ld_imm64 or ld_abs or ld_ind.
2949 		 * For ld_imm64 no further tracking of precision
2950 		 * into parent is necessary
2951 		 */
2952 		if (mode == BPF_IND || mode == BPF_ABS)
2953 			/* to be analyzed */
2954 			return -ENOTSUPP;
2955 	}
2956 	return 0;
2957 }
2958 
2959 /* the scalar precision tracking algorithm:
2960  * . at the start all registers have precise=false.
2961  * . scalar ranges are tracked as normal through alu and jmp insns.
2962  * . once precise value of the scalar register is used in:
2963  *   .  ptr + scalar alu
2964  *   . if (scalar cond K|scalar)
2965  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2966  *   backtrack through the verifier states and mark all registers and
2967  *   stack slots with spilled constants that these scalar regisers
2968  *   should be precise.
2969  * . during state pruning two registers (or spilled stack slots)
2970  *   are equivalent if both are not precise.
2971  *
2972  * Note the verifier cannot simply walk register parentage chain,
2973  * since many different registers and stack slots could have been
2974  * used to compute single precise scalar.
2975  *
2976  * The approach of starting with precise=true for all registers and then
2977  * backtrack to mark a register as not precise when the verifier detects
2978  * that program doesn't care about specific value (e.g., when helper
2979  * takes register as ARG_ANYTHING parameter) is not safe.
2980  *
2981  * It's ok to walk single parentage chain of the verifier states.
2982  * It's possible that this backtracking will go all the way till 1st insn.
2983  * All other branches will be explored for needing precision later.
2984  *
2985  * The backtracking needs to deal with cases like:
2986  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2987  * r9 -= r8
2988  * r5 = r9
2989  * if r5 > 0x79f goto pc+7
2990  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2991  * r5 += 1
2992  * ...
2993  * call bpf_perf_event_output#25
2994  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2995  *
2996  * and this case:
2997  * r6 = 1
2998  * call foo // uses callee's r6 inside to compute r0
2999  * r0 += r6
3000  * if r0 == 0 goto
3001  *
3002  * to track above reg_mask/stack_mask needs to be independent for each frame.
3003  *
3004  * Also if parent's curframe > frame where backtracking started,
3005  * the verifier need to mark registers in both frames, otherwise callees
3006  * may incorrectly prune callers. This is similar to
3007  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3008  *
3009  * For now backtracking falls back into conservative marking.
3010  */
3011 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3012 				     struct bpf_verifier_state *st)
3013 {
3014 	struct bpf_func_state *func;
3015 	struct bpf_reg_state *reg;
3016 	int i, j;
3017 
3018 	/* big hammer: mark all scalars precise in this path.
3019 	 * pop_stack may still get !precise scalars.
3020 	 * We also skip current state and go straight to first parent state,
3021 	 * because precision markings in current non-checkpointed state are
3022 	 * not needed. See why in the comment in __mark_chain_precision below.
3023 	 */
3024 	for (st = st->parent; st; st = st->parent) {
3025 		for (i = 0; i <= st->curframe; i++) {
3026 			func = st->frame[i];
3027 			for (j = 0; j < BPF_REG_FP; j++) {
3028 				reg = &func->regs[j];
3029 				if (reg->type != SCALAR_VALUE)
3030 					continue;
3031 				reg->precise = true;
3032 			}
3033 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3034 				if (!is_spilled_reg(&func->stack[j]))
3035 					continue;
3036 				reg = &func->stack[j].spilled_ptr;
3037 				if (reg->type != SCALAR_VALUE)
3038 					continue;
3039 				reg->precise = true;
3040 			}
3041 		}
3042 	}
3043 }
3044 
3045 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3046 {
3047 	struct bpf_func_state *func;
3048 	struct bpf_reg_state *reg;
3049 	int i, j;
3050 
3051 	for (i = 0; i <= st->curframe; i++) {
3052 		func = st->frame[i];
3053 		for (j = 0; j < BPF_REG_FP; j++) {
3054 			reg = &func->regs[j];
3055 			if (reg->type != SCALAR_VALUE)
3056 				continue;
3057 			reg->precise = false;
3058 		}
3059 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3060 			if (!is_spilled_reg(&func->stack[j]))
3061 				continue;
3062 			reg = &func->stack[j].spilled_ptr;
3063 			if (reg->type != SCALAR_VALUE)
3064 				continue;
3065 			reg->precise = false;
3066 		}
3067 	}
3068 }
3069 
3070 /*
3071  * __mark_chain_precision() backtracks BPF program instruction sequence and
3072  * chain of verifier states making sure that register *regno* (if regno >= 0)
3073  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3074  * SCALARS, as well as any other registers and slots that contribute to
3075  * a tracked state of given registers/stack slots, depending on specific BPF
3076  * assembly instructions (see backtrack_insns() for exact instruction handling
3077  * logic). This backtracking relies on recorded jmp_history and is able to
3078  * traverse entire chain of parent states. This process ends only when all the
3079  * necessary registers/slots and their transitive dependencies are marked as
3080  * precise.
3081  *
3082  * One important and subtle aspect is that precise marks *do not matter* in
3083  * the currently verified state (current state). It is important to understand
3084  * why this is the case.
3085  *
3086  * First, note that current state is the state that is not yet "checkpointed",
3087  * i.e., it is not yet put into env->explored_states, and it has no children
3088  * states as well. It's ephemeral, and can end up either a) being discarded if
3089  * compatible explored state is found at some point or BPF_EXIT instruction is
3090  * reached or b) checkpointed and put into env->explored_states, branching out
3091  * into one or more children states.
3092  *
3093  * In the former case, precise markings in current state are completely
3094  * ignored by state comparison code (see regsafe() for details). Only
3095  * checkpointed ("old") state precise markings are important, and if old
3096  * state's register/slot is precise, regsafe() assumes current state's
3097  * register/slot as precise and checks value ranges exactly and precisely. If
3098  * states turn out to be compatible, current state's necessary precise
3099  * markings and any required parent states' precise markings are enforced
3100  * after the fact with propagate_precision() logic, after the fact. But it's
3101  * important to realize that in this case, even after marking current state
3102  * registers/slots as precise, we immediately discard current state. So what
3103  * actually matters is any of the precise markings propagated into current
3104  * state's parent states, which are always checkpointed (due to b) case above).
3105  * As such, for scenario a) it doesn't matter if current state has precise
3106  * markings set or not.
3107  *
3108  * Now, for the scenario b), checkpointing and forking into child(ren)
3109  * state(s). Note that before current state gets to checkpointing step, any
3110  * processed instruction always assumes precise SCALAR register/slot
3111  * knowledge: if precise value or range is useful to prune jump branch, BPF
3112  * verifier takes this opportunity enthusiastically. Similarly, when
3113  * register's value is used to calculate offset or memory address, exact
3114  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3115  * what we mentioned above about state comparison ignoring precise markings
3116  * during state comparison, BPF verifier ignores and also assumes precise
3117  * markings *at will* during instruction verification process. But as verifier
3118  * assumes precision, it also propagates any precision dependencies across
3119  * parent states, which are not yet finalized, so can be further restricted
3120  * based on new knowledge gained from restrictions enforced by their children
3121  * states. This is so that once those parent states are finalized, i.e., when
3122  * they have no more active children state, state comparison logic in
3123  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3124  * required for correctness.
3125  *
3126  * To build a bit more intuition, note also that once a state is checkpointed,
3127  * the path we took to get to that state is not important. This is crucial
3128  * property for state pruning. When state is checkpointed and finalized at
3129  * some instruction index, it can be correctly and safely used to "short
3130  * circuit" any *compatible* state that reaches exactly the same instruction
3131  * index. I.e., if we jumped to that instruction from a completely different
3132  * code path than original finalized state was derived from, it doesn't
3133  * matter, current state can be discarded because from that instruction
3134  * forward having a compatible state will ensure we will safely reach the
3135  * exit. States describe preconditions for further exploration, but completely
3136  * forget the history of how we got here.
3137  *
3138  * This also means that even if we needed precise SCALAR range to get to
3139  * finalized state, but from that point forward *that same* SCALAR register is
3140  * never used in a precise context (i.e., it's precise value is not needed for
3141  * correctness), it's correct and safe to mark such register as "imprecise"
3142  * (i.e., precise marking set to false). This is what we rely on when we do
3143  * not set precise marking in current state. If no child state requires
3144  * precision for any given SCALAR register, it's safe to dictate that it can
3145  * be imprecise. If any child state does require this register to be precise,
3146  * we'll mark it precise later retroactively during precise markings
3147  * propagation from child state to parent states.
3148  *
3149  * Skipping precise marking setting in current state is a mild version of
3150  * relying on the above observation. But we can utilize this property even
3151  * more aggressively by proactively forgetting any precise marking in the
3152  * current state (which we inherited from the parent state), right before we
3153  * checkpoint it and branch off into new child state. This is done by
3154  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3155  * finalized states which help in short circuiting more future states.
3156  */
3157 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
3158 				  int spi)
3159 {
3160 	struct bpf_verifier_state *st = env->cur_state;
3161 	int first_idx = st->first_insn_idx;
3162 	int last_idx = env->insn_idx;
3163 	struct bpf_func_state *func;
3164 	struct bpf_reg_state *reg;
3165 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3166 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
3167 	bool skip_first = true;
3168 	bool new_marks = false;
3169 	int i, err;
3170 
3171 	if (!env->bpf_capable)
3172 		return 0;
3173 
3174 	/* Do sanity checks against current state of register and/or stack
3175 	 * slot, but don't set precise flag in current state, as precision
3176 	 * tracking in the current state is unnecessary.
3177 	 */
3178 	func = st->frame[frame];
3179 	if (regno >= 0) {
3180 		reg = &func->regs[regno];
3181 		if (reg->type != SCALAR_VALUE) {
3182 			WARN_ONCE(1, "backtracing misuse");
3183 			return -EFAULT;
3184 		}
3185 		new_marks = true;
3186 	}
3187 
3188 	while (spi >= 0) {
3189 		if (!is_spilled_reg(&func->stack[spi])) {
3190 			stack_mask = 0;
3191 			break;
3192 		}
3193 		reg = &func->stack[spi].spilled_ptr;
3194 		if (reg->type != SCALAR_VALUE) {
3195 			stack_mask = 0;
3196 			break;
3197 		}
3198 		new_marks = true;
3199 		break;
3200 	}
3201 
3202 	if (!new_marks)
3203 		return 0;
3204 	if (!reg_mask && !stack_mask)
3205 		return 0;
3206 
3207 	for (;;) {
3208 		DECLARE_BITMAP(mask, 64);
3209 		u32 history = st->jmp_history_cnt;
3210 
3211 		if (env->log.level & BPF_LOG_LEVEL2)
3212 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3213 
3214 		if (last_idx < 0) {
3215 			/* we are at the entry into subprog, which
3216 			 * is expected for global funcs, but only if
3217 			 * requested precise registers are R1-R5
3218 			 * (which are global func's input arguments)
3219 			 */
3220 			if (st->curframe == 0 &&
3221 			    st->frame[0]->subprogno > 0 &&
3222 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3223 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3224 				bitmap_from_u64(mask, reg_mask);
3225 				for_each_set_bit(i, mask, 32) {
3226 					reg = &st->frame[0]->regs[i];
3227 					if (reg->type != SCALAR_VALUE) {
3228 						reg_mask &= ~(1u << i);
3229 						continue;
3230 					}
3231 					reg->precise = true;
3232 				}
3233 				return 0;
3234 			}
3235 
3236 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3237 				st->frame[0]->subprogno, reg_mask, stack_mask);
3238 			WARN_ONCE(1, "verifier backtracking bug");
3239 			return -EFAULT;
3240 		}
3241 
3242 		for (i = last_idx;;) {
3243 			if (skip_first) {
3244 				err = 0;
3245 				skip_first = false;
3246 			} else {
3247 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3248 			}
3249 			if (err == -ENOTSUPP) {
3250 				mark_all_scalars_precise(env, st);
3251 				return 0;
3252 			} else if (err) {
3253 				return err;
3254 			}
3255 			if (!reg_mask && !stack_mask)
3256 				/* Found assignment(s) into tracked register in this state.
3257 				 * Since this state is already marked, just return.
3258 				 * Nothing to be tracked further in the parent state.
3259 				 */
3260 				return 0;
3261 			if (i == first_idx)
3262 				break;
3263 			i = get_prev_insn_idx(st, i, &history);
3264 			if (i >= env->prog->len) {
3265 				/* This can happen if backtracking reached insn 0
3266 				 * and there are still reg_mask or stack_mask
3267 				 * to backtrack.
3268 				 * It means the backtracking missed the spot where
3269 				 * particular register was initialized with a constant.
3270 				 */
3271 				verbose(env, "BUG backtracking idx %d\n", i);
3272 				WARN_ONCE(1, "verifier backtracking bug");
3273 				return -EFAULT;
3274 			}
3275 		}
3276 		st = st->parent;
3277 		if (!st)
3278 			break;
3279 
3280 		new_marks = false;
3281 		func = st->frame[frame];
3282 		bitmap_from_u64(mask, reg_mask);
3283 		for_each_set_bit(i, mask, 32) {
3284 			reg = &func->regs[i];
3285 			if (reg->type != SCALAR_VALUE) {
3286 				reg_mask &= ~(1u << i);
3287 				continue;
3288 			}
3289 			if (!reg->precise)
3290 				new_marks = true;
3291 			reg->precise = true;
3292 		}
3293 
3294 		bitmap_from_u64(mask, stack_mask);
3295 		for_each_set_bit(i, mask, 64) {
3296 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3297 				/* the sequence of instructions:
3298 				 * 2: (bf) r3 = r10
3299 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3300 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3301 				 * doesn't contain jmps. It's backtracked
3302 				 * as a single block.
3303 				 * During backtracking insn 3 is not recognized as
3304 				 * stack access, so at the end of backtracking
3305 				 * stack slot fp-8 is still marked in stack_mask.
3306 				 * However the parent state may not have accessed
3307 				 * fp-8 and it's "unallocated" stack space.
3308 				 * In such case fallback to conservative.
3309 				 */
3310 				mark_all_scalars_precise(env, st);
3311 				return 0;
3312 			}
3313 
3314 			if (!is_spilled_reg(&func->stack[i])) {
3315 				stack_mask &= ~(1ull << i);
3316 				continue;
3317 			}
3318 			reg = &func->stack[i].spilled_ptr;
3319 			if (reg->type != SCALAR_VALUE) {
3320 				stack_mask &= ~(1ull << i);
3321 				continue;
3322 			}
3323 			if (!reg->precise)
3324 				new_marks = true;
3325 			reg->precise = true;
3326 		}
3327 		if (env->log.level & BPF_LOG_LEVEL2) {
3328 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3329 				new_marks ? "didn't have" : "already had",
3330 				reg_mask, stack_mask);
3331 			print_verifier_state(env, func, true);
3332 		}
3333 
3334 		if (!reg_mask && !stack_mask)
3335 			break;
3336 		if (!new_marks)
3337 			break;
3338 
3339 		last_idx = st->last_insn_idx;
3340 		first_idx = st->first_insn_idx;
3341 	}
3342 	return 0;
3343 }
3344 
3345 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3346 {
3347 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3348 }
3349 
3350 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3351 {
3352 	return __mark_chain_precision(env, frame, regno, -1);
3353 }
3354 
3355 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3356 {
3357 	return __mark_chain_precision(env, frame, -1, spi);
3358 }
3359 
3360 static bool is_spillable_regtype(enum bpf_reg_type type)
3361 {
3362 	switch (base_type(type)) {
3363 	case PTR_TO_MAP_VALUE:
3364 	case PTR_TO_STACK:
3365 	case PTR_TO_CTX:
3366 	case PTR_TO_PACKET:
3367 	case PTR_TO_PACKET_META:
3368 	case PTR_TO_PACKET_END:
3369 	case PTR_TO_FLOW_KEYS:
3370 	case CONST_PTR_TO_MAP:
3371 	case PTR_TO_SOCKET:
3372 	case PTR_TO_SOCK_COMMON:
3373 	case PTR_TO_TCP_SOCK:
3374 	case PTR_TO_XDP_SOCK:
3375 	case PTR_TO_BTF_ID:
3376 	case PTR_TO_BUF:
3377 	case PTR_TO_MEM:
3378 	case PTR_TO_FUNC:
3379 	case PTR_TO_MAP_KEY:
3380 		return true;
3381 	default:
3382 		return false;
3383 	}
3384 }
3385 
3386 /* Does this register contain a constant zero? */
3387 static bool register_is_null(struct bpf_reg_state *reg)
3388 {
3389 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3390 }
3391 
3392 static bool register_is_const(struct bpf_reg_state *reg)
3393 {
3394 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3395 }
3396 
3397 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3398 {
3399 	return tnum_is_unknown(reg->var_off) &&
3400 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3401 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3402 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3403 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3404 }
3405 
3406 static bool register_is_bounded(struct bpf_reg_state *reg)
3407 {
3408 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3409 }
3410 
3411 static bool __is_pointer_value(bool allow_ptr_leaks,
3412 			       const struct bpf_reg_state *reg)
3413 {
3414 	if (allow_ptr_leaks)
3415 		return false;
3416 
3417 	return reg->type != SCALAR_VALUE;
3418 }
3419 
3420 static void save_register_state(struct bpf_func_state *state,
3421 				int spi, struct bpf_reg_state *reg,
3422 				int size)
3423 {
3424 	int i;
3425 
3426 	state->stack[spi].spilled_ptr = *reg;
3427 	if (size == BPF_REG_SIZE)
3428 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3429 
3430 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3431 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3432 
3433 	/* size < 8 bytes spill */
3434 	for (; i; i--)
3435 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3436 }
3437 
3438 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3439  * stack boundary and alignment are checked in check_mem_access()
3440  */
3441 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3442 				       /* stack frame we're writing to */
3443 				       struct bpf_func_state *state,
3444 				       int off, int size, int value_regno,
3445 				       int insn_idx)
3446 {
3447 	struct bpf_func_state *cur; /* state of the current function */
3448 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3449 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3450 	struct bpf_reg_state *reg = NULL;
3451 
3452 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3453 	if (err)
3454 		return err;
3455 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3456 	 * so it's aligned access and [off, off + size) are within stack limits
3457 	 */
3458 	if (!env->allow_ptr_leaks &&
3459 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3460 	    size != BPF_REG_SIZE) {
3461 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3462 		return -EACCES;
3463 	}
3464 
3465 	cur = env->cur_state->frame[env->cur_state->curframe];
3466 	if (value_regno >= 0)
3467 		reg = &cur->regs[value_regno];
3468 	if (!env->bypass_spec_v4) {
3469 		bool sanitize = reg && is_spillable_regtype(reg->type);
3470 
3471 		for (i = 0; i < size; i++) {
3472 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3473 				sanitize = true;
3474 				break;
3475 			}
3476 		}
3477 
3478 		if (sanitize)
3479 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3480 	}
3481 
3482 	err = destroy_if_dynptr_stack_slot(env, state, spi);
3483 	if (err)
3484 		return err;
3485 
3486 	mark_stack_slot_scratched(env, spi);
3487 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3488 	    !register_is_null(reg) && env->bpf_capable) {
3489 		if (dst_reg != BPF_REG_FP) {
3490 			/* The backtracking logic can only recognize explicit
3491 			 * stack slot address like [fp - 8]. Other spill of
3492 			 * scalar via different register has to be conservative.
3493 			 * Backtrack from here and mark all registers as precise
3494 			 * that contributed into 'reg' being a constant.
3495 			 */
3496 			err = mark_chain_precision(env, value_regno);
3497 			if (err)
3498 				return err;
3499 		}
3500 		save_register_state(state, spi, reg, size);
3501 	} else if (reg && is_spillable_regtype(reg->type)) {
3502 		/* register containing pointer is being spilled into stack */
3503 		if (size != BPF_REG_SIZE) {
3504 			verbose_linfo(env, insn_idx, "; ");
3505 			verbose(env, "invalid size of register spill\n");
3506 			return -EACCES;
3507 		}
3508 		if (state != cur && reg->type == PTR_TO_STACK) {
3509 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3510 			return -EINVAL;
3511 		}
3512 		save_register_state(state, spi, reg, size);
3513 	} else {
3514 		u8 type = STACK_MISC;
3515 
3516 		/* regular write of data into stack destroys any spilled ptr */
3517 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3518 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3519 		if (is_spilled_reg(&state->stack[spi]))
3520 			for (i = 0; i < BPF_REG_SIZE; i++)
3521 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3522 
3523 		/* only mark the slot as written if all 8 bytes were written
3524 		 * otherwise read propagation may incorrectly stop too soon
3525 		 * when stack slots are partially written.
3526 		 * This heuristic means that read propagation will be
3527 		 * conservative, since it will add reg_live_read marks
3528 		 * to stack slots all the way to first state when programs
3529 		 * writes+reads less than 8 bytes
3530 		 */
3531 		if (size == BPF_REG_SIZE)
3532 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3533 
3534 		/* when we zero initialize stack slots mark them as such */
3535 		if (reg && register_is_null(reg)) {
3536 			/* backtracking doesn't work for STACK_ZERO yet. */
3537 			err = mark_chain_precision(env, value_regno);
3538 			if (err)
3539 				return err;
3540 			type = STACK_ZERO;
3541 		}
3542 
3543 		/* Mark slots affected by this stack write. */
3544 		for (i = 0; i < size; i++)
3545 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3546 				type;
3547 	}
3548 	return 0;
3549 }
3550 
3551 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3552  * known to contain a variable offset.
3553  * This function checks whether the write is permitted and conservatively
3554  * tracks the effects of the write, considering that each stack slot in the
3555  * dynamic range is potentially written to.
3556  *
3557  * 'off' includes 'regno->off'.
3558  * 'value_regno' can be -1, meaning that an unknown value is being written to
3559  * the stack.
3560  *
3561  * Spilled pointers in range are not marked as written because we don't know
3562  * what's going to be actually written. This means that read propagation for
3563  * future reads cannot be terminated by this write.
3564  *
3565  * For privileged programs, uninitialized stack slots are considered
3566  * initialized by this write (even though we don't know exactly what offsets
3567  * are going to be written to). The idea is that we don't want the verifier to
3568  * reject future reads that access slots written to through variable offsets.
3569  */
3570 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3571 				     /* func where register points to */
3572 				     struct bpf_func_state *state,
3573 				     int ptr_regno, int off, int size,
3574 				     int value_regno, int insn_idx)
3575 {
3576 	struct bpf_func_state *cur; /* state of the current function */
3577 	int min_off, max_off;
3578 	int i, err;
3579 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3580 	bool writing_zero = false;
3581 	/* set if the fact that we're writing a zero is used to let any
3582 	 * stack slots remain STACK_ZERO
3583 	 */
3584 	bool zero_used = false;
3585 
3586 	cur = env->cur_state->frame[env->cur_state->curframe];
3587 	ptr_reg = &cur->regs[ptr_regno];
3588 	min_off = ptr_reg->smin_value + off;
3589 	max_off = ptr_reg->smax_value + off + size;
3590 	if (value_regno >= 0)
3591 		value_reg = &cur->regs[value_regno];
3592 	if (value_reg && register_is_null(value_reg))
3593 		writing_zero = true;
3594 
3595 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3596 	if (err)
3597 		return err;
3598 
3599 	for (i = min_off; i < max_off; i++) {
3600 		int spi;
3601 
3602 		spi = __get_spi(i);
3603 		err = destroy_if_dynptr_stack_slot(env, state, spi);
3604 		if (err)
3605 			return err;
3606 	}
3607 
3608 	/* Variable offset writes destroy any spilled pointers in range. */
3609 	for (i = min_off; i < max_off; i++) {
3610 		u8 new_type, *stype;
3611 		int slot, spi;
3612 
3613 		slot = -i - 1;
3614 		spi = slot / BPF_REG_SIZE;
3615 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3616 		mark_stack_slot_scratched(env, spi);
3617 
3618 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3619 			/* Reject the write if range we may write to has not
3620 			 * been initialized beforehand. If we didn't reject
3621 			 * here, the ptr status would be erased below (even
3622 			 * though not all slots are actually overwritten),
3623 			 * possibly opening the door to leaks.
3624 			 *
3625 			 * We do however catch STACK_INVALID case below, and
3626 			 * only allow reading possibly uninitialized memory
3627 			 * later for CAP_PERFMON, as the write may not happen to
3628 			 * that slot.
3629 			 */
3630 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3631 				insn_idx, i);
3632 			return -EINVAL;
3633 		}
3634 
3635 		/* Erase all spilled pointers. */
3636 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3637 
3638 		/* Update the slot type. */
3639 		new_type = STACK_MISC;
3640 		if (writing_zero && *stype == STACK_ZERO) {
3641 			new_type = STACK_ZERO;
3642 			zero_used = true;
3643 		}
3644 		/* If the slot is STACK_INVALID, we check whether it's OK to
3645 		 * pretend that it will be initialized by this write. The slot
3646 		 * might not actually be written to, and so if we mark it as
3647 		 * initialized future reads might leak uninitialized memory.
3648 		 * For privileged programs, we will accept such reads to slots
3649 		 * that may or may not be written because, if we're reject
3650 		 * them, the error would be too confusing.
3651 		 */
3652 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3653 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3654 					insn_idx, i);
3655 			return -EINVAL;
3656 		}
3657 		*stype = new_type;
3658 	}
3659 	if (zero_used) {
3660 		/* backtracking doesn't work for STACK_ZERO yet. */
3661 		err = mark_chain_precision(env, value_regno);
3662 		if (err)
3663 			return err;
3664 	}
3665 	return 0;
3666 }
3667 
3668 /* When register 'dst_regno' is assigned some values from stack[min_off,
3669  * max_off), we set the register's type according to the types of the
3670  * respective stack slots. If all the stack values are known to be zeros, then
3671  * so is the destination reg. Otherwise, the register is considered to be
3672  * SCALAR. This function does not deal with register filling; the caller must
3673  * ensure that all spilled registers in the stack range have been marked as
3674  * read.
3675  */
3676 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3677 				/* func where src register points to */
3678 				struct bpf_func_state *ptr_state,
3679 				int min_off, int max_off, int dst_regno)
3680 {
3681 	struct bpf_verifier_state *vstate = env->cur_state;
3682 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3683 	int i, slot, spi;
3684 	u8 *stype;
3685 	int zeros = 0;
3686 
3687 	for (i = min_off; i < max_off; i++) {
3688 		slot = -i - 1;
3689 		spi = slot / BPF_REG_SIZE;
3690 		stype = ptr_state->stack[spi].slot_type;
3691 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3692 			break;
3693 		zeros++;
3694 	}
3695 	if (zeros == max_off - min_off) {
3696 		/* any access_size read into register is zero extended,
3697 		 * so the whole register == const_zero
3698 		 */
3699 		__mark_reg_const_zero(&state->regs[dst_regno]);
3700 		/* backtracking doesn't support STACK_ZERO yet,
3701 		 * so mark it precise here, so that later
3702 		 * backtracking can stop here.
3703 		 * Backtracking may not need this if this register
3704 		 * doesn't participate in pointer adjustment.
3705 		 * Forward propagation of precise flag is not
3706 		 * necessary either. This mark is only to stop
3707 		 * backtracking. Any register that contributed
3708 		 * to const 0 was marked precise before spill.
3709 		 */
3710 		state->regs[dst_regno].precise = true;
3711 	} else {
3712 		/* have read misc data from the stack */
3713 		mark_reg_unknown(env, state->regs, dst_regno);
3714 	}
3715 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3716 }
3717 
3718 /* Read the stack at 'off' and put the results into the register indicated by
3719  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3720  * spilled reg.
3721  *
3722  * 'dst_regno' can be -1, meaning that the read value is not going to a
3723  * register.
3724  *
3725  * The access is assumed to be within the current stack bounds.
3726  */
3727 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3728 				      /* func where src register points to */
3729 				      struct bpf_func_state *reg_state,
3730 				      int off, int size, int dst_regno)
3731 {
3732 	struct bpf_verifier_state *vstate = env->cur_state;
3733 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3734 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3735 	struct bpf_reg_state *reg;
3736 	u8 *stype, type;
3737 
3738 	stype = reg_state->stack[spi].slot_type;
3739 	reg = &reg_state->stack[spi].spilled_ptr;
3740 
3741 	if (is_spilled_reg(&reg_state->stack[spi])) {
3742 		u8 spill_size = 1;
3743 
3744 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3745 			spill_size++;
3746 
3747 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3748 			if (reg->type != SCALAR_VALUE) {
3749 				verbose_linfo(env, env->insn_idx, "; ");
3750 				verbose(env, "invalid size of register fill\n");
3751 				return -EACCES;
3752 			}
3753 
3754 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3755 			if (dst_regno < 0)
3756 				return 0;
3757 
3758 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3759 				/* The earlier check_reg_arg() has decided the
3760 				 * subreg_def for this insn.  Save it first.
3761 				 */
3762 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3763 
3764 				state->regs[dst_regno] = *reg;
3765 				state->regs[dst_regno].subreg_def = subreg_def;
3766 			} else {
3767 				for (i = 0; i < size; i++) {
3768 					type = stype[(slot - i) % BPF_REG_SIZE];
3769 					if (type == STACK_SPILL)
3770 						continue;
3771 					if (type == STACK_MISC)
3772 						continue;
3773 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3774 						off, i, size);
3775 					return -EACCES;
3776 				}
3777 				mark_reg_unknown(env, state->regs, dst_regno);
3778 			}
3779 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3780 			return 0;
3781 		}
3782 
3783 		if (dst_regno >= 0) {
3784 			/* restore register state from stack */
3785 			state->regs[dst_regno] = *reg;
3786 			/* mark reg as written since spilled pointer state likely
3787 			 * has its liveness marks cleared by is_state_visited()
3788 			 * which resets stack/reg liveness for state transitions
3789 			 */
3790 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3791 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3792 			/* If dst_regno==-1, the caller is asking us whether
3793 			 * it is acceptable to use this value as a SCALAR_VALUE
3794 			 * (e.g. for XADD).
3795 			 * We must not allow unprivileged callers to do that
3796 			 * with spilled pointers.
3797 			 */
3798 			verbose(env, "leaking pointer from stack off %d\n",
3799 				off);
3800 			return -EACCES;
3801 		}
3802 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3803 	} else {
3804 		for (i = 0; i < size; i++) {
3805 			type = stype[(slot - i) % BPF_REG_SIZE];
3806 			if (type == STACK_MISC)
3807 				continue;
3808 			if (type == STACK_ZERO)
3809 				continue;
3810 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3811 				off, i, size);
3812 			return -EACCES;
3813 		}
3814 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3815 		if (dst_regno >= 0)
3816 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3817 	}
3818 	return 0;
3819 }
3820 
3821 enum bpf_access_src {
3822 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3823 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3824 };
3825 
3826 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3827 					 int regno, int off, int access_size,
3828 					 bool zero_size_allowed,
3829 					 enum bpf_access_src type,
3830 					 struct bpf_call_arg_meta *meta);
3831 
3832 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3833 {
3834 	return cur_regs(env) + regno;
3835 }
3836 
3837 /* Read the stack at 'ptr_regno + off' and put the result into the register
3838  * 'dst_regno'.
3839  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3840  * but not its variable offset.
3841  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3842  *
3843  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3844  * filling registers (i.e. reads of spilled register cannot be detected when
3845  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3846  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3847  * offset; for a fixed offset check_stack_read_fixed_off should be used
3848  * instead.
3849  */
3850 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3851 				    int ptr_regno, int off, int size, int dst_regno)
3852 {
3853 	/* The state of the source register. */
3854 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3855 	struct bpf_func_state *ptr_state = func(env, reg);
3856 	int err;
3857 	int min_off, max_off;
3858 
3859 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3860 	 */
3861 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3862 					    false, ACCESS_DIRECT, NULL);
3863 	if (err)
3864 		return err;
3865 
3866 	min_off = reg->smin_value + off;
3867 	max_off = reg->smax_value + off;
3868 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3869 	return 0;
3870 }
3871 
3872 /* check_stack_read dispatches to check_stack_read_fixed_off or
3873  * check_stack_read_var_off.
3874  *
3875  * The caller must ensure that the offset falls within the allocated stack
3876  * bounds.
3877  *
3878  * 'dst_regno' is a register which will receive the value from the stack. It
3879  * can be -1, meaning that the read value is not going to a register.
3880  */
3881 static int check_stack_read(struct bpf_verifier_env *env,
3882 			    int ptr_regno, int off, int size,
3883 			    int dst_regno)
3884 {
3885 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3886 	struct bpf_func_state *state = func(env, reg);
3887 	int err;
3888 	/* Some accesses are only permitted with a static offset. */
3889 	bool var_off = !tnum_is_const(reg->var_off);
3890 
3891 	/* The offset is required to be static when reads don't go to a
3892 	 * register, in order to not leak pointers (see
3893 	 * check_stack_read_fixed_off).
3894 	 */
3895 	if (dst_regno < 0 && var_off) {
3896 		char tn_buf[48];
3897 
3898 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3899 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3900 			tn_buf, off, size);
3901 		return -EACCES;
3902 	}
3903 	/* Variable offset is prohibited for unprivileged mode for simplicity
3904 	 * since it requires corresponding support in Spectre masking for stack
3905 	 * ALU. See also retrieve_ptr_limit().
3906 	 */
3907 	if (!env->bypass_spec_v1 && var_off) {
3908 		char tn_buf[48];
3909 
3910 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3911 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3912 				ptr_regno, tn_buf);
3913 		return -EACCES;
3914 	}
3915 
3916 	if (!var_off) {
3917 		off += reg->var_off.value;
3918 		err = check_stack_read_fixed_off(env, state, off, size,
3919 						 dst_regno);
3920 	} else {
3921 		/* Variable offset stack reads need more conservative handling
3922 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3923 		 * branch.
3924 		 */
3925 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3926 					       dst_regno);
3927 	}
3928 	return err;
3929 }
3930 
3931 
3932 /* check_stack_write dispatches to check_stack_write_fixed_off or
3933  * check_stack_write_var_off.
3934  *
3935  * 'ptr_regno' is the register used as a pointer into the stack.
3936  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3937  * 'value_regno' is the register whose value we're writing to the stack. It can
3938  * be -1, meaning that we're not writing from a register.
3939  *
3940  * The caller must ensure that the offset falls within the maximum stack size.
3941  */
3942 static int check_stack_write(struct bpf_verifier_env *env,
3943 			     int ptr_regno, int off, int size,
3944 			     int value_regno, int insn_idx)
3945 {
3946 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3947 	struct bpf_func_state *state = func(env, reg);
3948 	int err;
3949 
3950 	if (tnum_is_const(reg->var_off)) {
3951 		off += reg->var_off.value;
3952 		err = check_stack_write_fixed_off(env, state, off, size,
3953 						  value_regno, insn_idx);
3954 	} else {
3955 		/* Variable offset stack reads need more conservative handling
3956 		 * than fixed offset ones.
3957 		 */
3958 		err = check_stack_write_var_off(env, state,
3959 						ptr_regno, off, size,
3960 						value_regno, insn_idx);
3961 	}
3962 	return err;
3963 }
3964 
3965 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3966 				 int off, int size, enum bpf_access_type type)
3967 {
3968 	struct bpf_reg_state *regs = cur_regs(env);
3969 	struct bpf_map *map = regs[regno].map_ptr;
3970 	u32 cap = bpf_map_flags_to_cap(map);
3971 
3972 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3973 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3974 			map->value_size, off, size);
3975 		return -EACCES;
3976 	}
3977 
3978 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3979 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3980 			map->value_size, off, size);
3981 		return -EACCES;
3982 	}
3983 
3984 	return 0;
3985 }
3986 
3987 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3988 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3989 			      int off, int size, u32 mem_size,
3990 			      bool zero_size_allowed)
3991 {
3992 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3993 	struct bpf_reg_state *reg;
3994 
3995 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3996 		return 0;
3997 
3998 	reg = &cur_regs(env)[regno];
3999 	switch (reg->type) {
4000 	case PTR_TO_MAP_KEY:
4001 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4002 			mem_size, off, size);
4003 		break;
4004 	case PTR_TO_MAP_VALUE:
4005 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4006 			mem_size, off, size);
4007 		break;
4008 	case PTR_TO_PACKET:
4009 	case PTR_TO_PACKET_META:
4010 	case PTR_TO_PACKET_END:
4011 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4012 			off, size, regno, reg->id, off, mem_size);
4013 		break;
4014 	case PTR_TO_MEM:
4015 	default:
4016 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4017 			mem_size, off, size);
4018 	}
4019 
4020 	return -EACCES;
4021 }
4022 
4023 /* check read/write into a memory region with possible variable offset */
4024 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4025 				   int off, int size, u32 mem_size,
4026 				   bool zero_size_allowed)
4027 {
4028 	struct bpf_verifier_state *vstate = env->cur_state;
4029 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4030 	struct bpf_reg_state *reg = &state->regs[regno];
4031 	int err;
4032 
4033 	/* We may have adjusted the register pointing to memory region, so we
4034 	 * need to try adding each of min_value and max_value to off
4035 	 * to make sure our theoretical access will be safe.
4036 	 *
4037 	 * The minimum value is only important with signed
4038 	 * comparisons where we can't assume the floor of a
4039 	 * value is 0.  If we are using signed variables for our
4040 	 * index'es we need to make sure that whatever we use
4041 	 * will have a set floor within our range.
4042 	 */
4043 	if (reg->smin_value < 0 &&
4044 	    (reg->smin_value == S64_MIN ||
4045 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4046 	      reg->smin_value + off < 0)) {
4047 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4048 			regno);
4049 		return -EACCES;
4050 	}
4051 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4052 				 mem_size, zero_size_allowed);
4053 	if (err) {
4054 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4055 			regno);
4056 		return err;
4057 	}
4058 
4059 	/* If we haven't set a max value then we need to bail since we can't be
4060 	 * sure we won't do bad things.
4061 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4062 	 */
4063 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4064 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4065 			regno);
4066 		return -EACCES;
4067 	}
4068 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4069 				 mem_size, zero_size_allowed);
4070 	if (err) {
4071 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4072 			regno);
4073 		return err;
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4080 			       const struct bpf_reg_state *reg, int regno,
4081 			       bool fixed_off_ok)
4082 {
4083 	/* Access to this pointer-typed register or passing it to a helper
4084 	 * is only allowed in its original, unmodified form.
4085 	 */
4086 
4087 	if (reg->off < 0) {
4088 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4089 			reg_type_str(env, reg->type), regno, reg->off);
4090 		return -EACCES;
4091 	}
4092 
4093 	if (!fixed_off_ok && reg->off) {
4094 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4095 			reg_type_str(env, reg->type), regno, reg->off);
4096 		return -EACCES;
4097 	}
4098 
4099 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4100 		char tn_buf[48];
4101 
4102 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4103 		verbose(env, "variable %s access var_off=%s disallowed\n",
4104 			reg_type_str(env, reg->type), tn_buf);
4105 		return -EACCES;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 int check_ptr_off_reg(struct bpf_verifier_env *env,
4112 		      const struct bpf_reg_state *reg, int regno)
4113 {
4114 	return __check_ptr_off_reg(env, reg, regno, false);
4115 }
4116 
4117 static int map_kptr_match_type(struct bpf_verifier_env *env,
4118 			       struct btf_field *kptr_field,
4119 			       struct bpf_reg_state *reg, u32 regno)
4120 {
4121 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4122 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
4123 	const char *reg_name = "";
4124 
4125 	/* Only unreferenced case accepts untrusted pointers */
4126 	if (kptr_field->type == BPF_KPTR_UNREF)
4127 		perm_flags |= PTR_UNTRUSTED;
4128 
4129 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4130 		goto bad_type;
4131 
4132 	if (!btf_is_kernel(reg->btf)) {
4133 		verbose(env, "R%d must point to kernel BTF\n", regno);
4134 		return -EINVAL;
4135 	}
4136 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
4137 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
4138 
4139 	/* For ref_ptr case, release function check should ensure we get one
4140 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4141 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
4142 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4143 	 * reg->off and reg->ref_obj_id are not needed here.
4144 	 */
4145 	if (__check_ptr_off_reg(env, reg, regno, true))
4146 		return -EACCES;
4147 
4148 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
4149 	 * we also need to take into account the reg->off.
4150 	 *
4151 	 * We want to support cases like:
4152 	 *
4153 	 * struct foo {
4154 	 *         struct bar br;
4155 	 *         struct baz bz;
4156 	 * };
4157 	 *
4158 	 * struct foo *v;
4159 	 * v = func();	      // PTR_TO_BTF_ID
4160 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
4161 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4162 	 *                    // first member type of struct after comparison fails
4163 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4164 	 *                    // to match type
4165 	 *
4166 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
4167 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
4168 	 * the struct to match type against first member of struct, i.e. reject
4169 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4170 	 * strict mode to true for type match.
4171 	 */
4172 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4173 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4174 				  kptr_field->type == BPF_KPTR_REF))
4175 		goto bad_type;
4176 	return 0;
4177 bad_type:
4178 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4179 		reg_type_str(env, reg->type), reg_name);
4180 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
4181 	if (kptr_field->type == BPF_KPTR_UNREF)
4182 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4183 			targ_name);
4184 	else
4185 		verbose(env, "\n");
4186 	return -EINVAL;
4187 }
4188 
4189 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4190 				 int value_regno, int insn_idx,
4191 				 struct btf_field *kptr_field)
4192 {
4193 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4194 	int class = BPF_CLASS(insn->code);
4195 	struct bpf_reg_state *val_reg;
4196 
4197 	/* Things we already checked for in check_map_access and caller:
4198 	 *  - Reject cases where variable offset may touch kptr
4199 	 *  - size of access (must be BPF_DW)
4200 	 *  - tnum_is_const(reg->var_off)
4201 	 *  - kptr_field->offset == off + reg->var_off.value
4202 	 */
4203 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4204 	if (BPF_MODE(insn->code) != BPF_MEM) {
4205 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4206 		return -EACCES;
4207 	}
4208 
4209 	/* We only allow loading referenced kptr, since it will be marked as
4210 	 * untrusted, similar to unreferenced kptr.
4211 	 */
4212 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4213 		verbose(env, "store to referenced kptr disallowed\n");
4214 		return -EACCES;
4215 	}
4216 
4217 	if (class == BPF_LDX) {
4218 		val_reg = reg_state(env, value_regno);
4219 		/* We can simply mark the value_regno receiving the pointer
4220 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4221 		 */
4222 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4223 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
4224 		/* For mark_ptr_or_null_reg */
4225 		val_reg->id = ++env->id_gen;
4226 	} else if (class == BPF_STX) {
4227 		val_reg = reg_state(env, value_regno);
4228 		if (!register_is_null(val_reg) &&
4229 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4230 			return -EACCES;
4231 	} else if (class == BPF_ST) {
4232 		if (insn->imm) {
4233 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4234 				kptr_field->offset);
4235 			return -EACCES;
4236 		}
4237 	} else {
4238 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4239 		return -EACCES;
4240 	}
4241 	return 0;
4242 }
4243 
4244 /* check read/write into a map element with possible variable offset */
4245 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4246 			    int off, int size, bool zero_size_allowed,
4247 			    enum bpf_access_src src)
4248 {
4249 	struct bpf_verifier_state *vstate = env->cur_state;
4250 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4251 	struct bpf_reg_state *reg = &state->regs[regno];
4252 	struct bpf_map *map = reg->map_ptr;
4253 	struct btf_record *rec;
4254 	int err, i;
4255 
4256 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4257 				      zero_size_allowed);
4258 	if (err)
4259 		return err;
4260 
4261 	if (IS_ERR_OR_NULL(map->record))
4262 		return 0;
4263 	rec = map->record;
4264 	for (i = 0; i < rec->cnt; i++) {
4265 		struct btf_field *field = &rec->fields[i];
4266 		u32 p = field->offset;
4267 
4268 		/* If any part of a field  can be touched by load/store, reject
4269 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4270 		 * it is sufficient to check x1 < y2 && y1 < x2.
4271 		 */
4272 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4273 		    p < reg->umax_value + off + size) {
4274 			switch (field->type) {
4275 			case BPF_KPTR_UNREF:
4276 			case BPF_KPTR_REF:
4277 				if (src != ACCESS_DIRECT) {
4278 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4279 					return -EACCES;
4280 				}
4281 				if (!tnum_is_const(reg->var_off)) {
4282 					verbose(env, "kptr access cannot have variable offset\n");
4283 					return -EACCES;
4284 				}
4285 				if (p != off + reg->var_off.value) {
4286 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4287 						p, off + reg->var_off.value);
4288 					return -EACCES;
4289 				}
4290 				if (size != bpf_size_to_bytes(BPF_DW)) {
4291 					verbose(env, "kptr access size must be BPF_DW\n");
4292 					return -EACCES;
4293 				}
4294 				break;
4295 			default:
4296 				verbose(env, "%s cannot be accessed directly by load/store\n",
4297 					btf_field_type_name(field->type));
4298 				return -EACCES;
4299 			}
4300 		}
4301 	}
4302 	return 0;
4303 }
4304 
4305 #define MAX_PACKET_OFF 0xffff
4306 
4307 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4308 				       const struct bpf_call_arg_meta *meta,
4309 				       enum bpf_access_type t)
4310 {
4311 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4312 
4313 	switch (prog_type) {
4314 	/* Program types only with direct read access go here! */
4315 	case BPF_PROG_TYPE_LWT_IN:
4316 	case BPF_PROG_TYPE_LWT_OUT:
4317 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4318 	case BPF_PROG_TYPE_SK_REUSEPORT:
4319 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4320 	case BPF_PROG_TYPE_CGROUP_SKB:
4321 		if (t == BPF_WRITE)
4322 			return false;
4323 		fallthrough;
4324 
4325 	/* Program types with direct read + write access go here! */
4326 	case BPF_PROG_TYPE_SCHED_CLS:
4327 	case BPF_PROG_TYPE_SCHED_ACT:
4328 	case BPF_PROG_TYPE_XDP:
4329 	case BPF_PROG_TYPE_LWT_XMIT:
4330 	case BPF_PROG_TYPE_SK_SKB:
4331 	case BPF_PROG_TYPE_SK_MSG:
4332 		if (meta)
4333 			return meta->pkt_access;
4334 
4335 		env->seen_direct_write = true;
4336 		return true;
4337 
4338 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4339 		if (t == BPF_WRITE)
4340 			env->seen_direct_write = true;
4341 
4342 		return true;
4343 
4344 	default:
4345 		return false;
4346 	}
4347 }
4348 
4349 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4350 			       int size, bool zero_size_allowed)
4351 {
4352 	struct bpf_reg_state *regs = cur_regs(env);
4353 	struct bpf_reg_state *reg = &regs[regno];
4354 	int err;
4355 
4356 	/* We may have added a variable offset to the packet pointer; but any
4357 	 * reg->range we have comes after that.  We are only checking the fixed
4358 	 * offset.
4359 	 */
4360 
4361 	/* We don't allow negative numbers, because we aren't tracking enough
4362 	 * detail to prove they're safe.
4363 	 */
4364 	if (reg->smin_value < 0) {
4365 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4366 			regno);
4367 		return -EACCES;
4368 	}
4369 
4370 	err = reg->range < 0 ? -EINVAL :
4371 	      __check_mem_access(env, regno, off, size, reg->range,
4372 				 zero_size_allowed);
4373 	if (err) {
4374 		verbose(env, "R%d offset is outside of the packet\n", regno);
4375 		return err;
4376 	}
4377 
4378 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4379 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4380 	 * otherwise find_good_pkt_pointers would have refused to set range info
4381 	 * that __check_mem_access would have rejected this pkt access.
4382 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4383 	 */
4384 	env->prog->aux->max_pkt_offset =
4385 		max_t(u32, env->prog->aux->max_pkt_offset,
4386 		      off + reg->umax_value + size - 1);
4387 
4388 	return err;
4389 }
4390 
4391 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4392 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4393 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4394 			    struct btf **btf, u32 *btf_id)
4395 {
4396 	struct bpf_insn_access_aux info = {
4397 		.reg_type = *reg_type,
4398 		.log = &env->log,
4399 	};
4400 
4401 	if (env->ops->is_valid_access &&
4402 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4403 		/* A non zero info.ctx_field_size indicates that this field is a
4404 		 * candidate for later verifier transformation to load the whole
4405 		 * field and then apply a mask when accessed with a narrower
4406 		 * access than actual ctx access size. A zero info.ctx_field_size
4407 		 * will only allow for whole field access and rejects any other
4408 		 * type of narrower access.
4409 		 */
4410 		*reg_type = info.reg_type;
4411 
4412 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4413 			*btf = info.btf;
4414 			*btf_id = info.btf_id;
4415 		} else {
4416 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4417 		}
4418 		/* remember the offset of last byte accessed in ctx */
4419 		if (env->prog->aux->max_ctx_offset < off + size)
4420 			env->prog->aux->max_ctx_offset = off + size;
4421 		return 0;
4422 	}
4423 
4424 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4425 	return -EACCES;
4426 }
4427 
4428 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4429 				  int size)
4430 {
4431 	if (size < 0 || off < 0 ||
4432 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4433 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4434 			off, size);
4435 		return -EACCES;
4436 	}
4437 	return 0;
4438 }
4439 
4440 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4441 			     u32 regno, int off, int size,
4442 			     enum bpf_access_type t)
4443 {
4444 	struct bpf_reg_state *regs = cur_regs(env);
4445 	struct bpf_reg_state *reg = &regs[regno];
4446 	struct bpf_insn_access_aux info = {};
4447 	bool valid;
4448 
4449 	if (reg->smin_value < 0) {
4450 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4451 			regno);
4452 		return -EACCES;
4453 	}
4454 
4455 	switch (reg->type) {
4456 	case PTR_TO_SOCK_COMMON:
4457 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4458 		break;
4459 	case PTR_TO_SOCKET:
4460 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4461 		break;
4462 	case PTR_TO_TCP_SOCK:
4463 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4464 		break;
4465 	case PTR_TO_XDP_SOCK:
4466 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4467 		break;
4468 	default:
4469 		valid = false;
4470 	}
4471 
4472 
4473 	if (valid) {
4474 		env->insn_aux_data[insn_idx].ctx_field_size =
4475 			info.ctx_field_size;
4476 		return 0;
4477 	}
4478 
4479 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4480 		regno, reg_type_str(env, reg->type), off, size);
4481 
4482 	return -EACCES;
4483 }
4484 
4485 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4486 {
4487 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4488 }
4489 
4490 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4491 {
4492 	const struct bpf_reg_state *reg = reg_state(env, regno);
4493 
4494 	return reg->type == PTR_TO_CTX;
4495 }
4496 
4497 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4498 {
4499 	const struct bpf_reg_state *reg = reg_state(env, regno);
4500 
4501 	return type_is_sk_pointer(reg->type);
4502 }
4503 
4504 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4505 {
4506 	const struct bpf_reg_state *reg = reg_state(env, regno);
4507 
4508 	return type_is_pkt_pointer(reg->type);
4509 }
4510 
4511 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4512 {
4513 	const struct bpf_reg_state *reg = reg_state(env, regno);
4514 
4515 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4516 	return reg->type == PTR_TO_FLOW_KEYS;
4517 }
4518 
4519 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4520 {
4521 	/* A referenced register is always trusted. */
4522 	if (reg->ref_obj_id)
4523 		return true;
4524 
4525 	/* If a register is not referenced, it is trusted if it has the
4526 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4527 	 * other type modifiers may be safe, but we elect to take an opt-in
4528 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4529 	 * not.
4530 	 *
4531 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4532 	 * for whether a register is trusted.
4533 	 */
4534 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4535 	       !bpf_type_has_unsafe_modifiers(reg->type);
4536 }
4537 
4538 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4539 {
4540 	return reg->type & MEM_RCU;
4541 }
4542 
4543 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4544 				   const struct bpf_reg_state *reg,
4545 				   int off, int size, bool strict)
4546 {
4547 	struct tnum reg_off;
4548 	int ip_align;
4549 
4550 	/* Byte size accesses are always allowed. */
4551 	if (!strict || size == 1)
4552 		return 0;
4553 
4554 	/* For platforms that do not have a Kconfig enabling
4555 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4556 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4557 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4558 	 * to this code only in strict mode where we want to emulate
4559 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4560 	 * unconditional IP align value of '2'.
4561 	 */
4562 	ip_align = 2;
4563 
4564 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4565 	if (!tnum_is_aligned(reg_off, size)) {
4566 		char tn_buf[48];
4567 
4568 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4569 		verbose(env,
4570 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4571 			ip_align, tn_buf, reg->off, off, size);
4572 		return -EACCES;
4573 	}
4574 
4575 	return 0;
4576 }
4577 
4578 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4579 				       const struct bpf_reg_state *reg,
4580 				       const char *pointer_desc,
4581 				       int off, int size, bool strict)
4582 {
4583 	struct tnum reg_off;
4584 
4585 	/* Byte size accesses are always allowed. */
4586 	if (!strict || size == 1)
4587 		return 0;
4588 
4589 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4590 	if (!tnum_is_aligned(reg_off, size)) {
4591 		char tn_buf[48];
4592 
4593 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4594 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4595 			pointer_desc, tn_buf, reg->off, off, size);
4596 		return -EACCES;
4597 	}
4598 
4599 	return 0;
4600 }
4601 
4602 static int check_ptr_alignment(struct bpf_verifier_env *env,
4603 			       const struct bpf_reg_state *reg, int off,
4604 			       int size, bool strict_alignment_once)
4605 {
4606 	bool strict = env->strict_alignment || strict_alignment_once;
4607 	const char *pointer_desc = "";
4608 
4609 	switch (reg->type) {
4610 	case PTR_TO_PACKET:
4611 	case PTR_TO_PACKET_META:
4612 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4613 		 * right in front, treat it the very same way.
4614 		 */
4615 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4616 	case PTR_TO_FLOW_KEYS:
4617 		pointer_desc = "flow keys ";
4618 		break;
4619 	case PTR_TO_MAP_KEY:
4620 		pointer_desc = "key ";
4621 		break;
4622 	case PTR_TO_MAP_VALUE:
4623 		pointer_desc = "value ";
4624 		break;
4625 	case PTR_TO_CTX:
4626 		pointer_desc = "context ";
4627 		break;
4628 	case PTR_TO_STACK:
4629 		pointer_desc = "stack ";
4630 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4631 		 * and check_stack_read_fixed_off() relies on stack accesses being
4632 		 * aligned.
4633 		 */
4634 		strict = true;
4635 		break;
4636 	case PTR_TO_SOCKET:
4637 		pointer_desc = "sock ";
4638 		break;
4639 	case PTR_TO_SOCK_COMMON:
4640 		pointer_desc = "sock_common ";
4641 		break;
4642 	case PTR_TO_TCP_SOCK:
4643 		pointer_desc = "tcp_sock ";
4644 		break;
4645 	case PTR_TO_XDP_SOCK:
4646 		pointer_desc = "xdp_sock ";
4647 		break;
4648 	default:
4649 		break;
4650 	}
4651 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4652 					   strict);
4653 }
4654 
4655 static int update_stack_depth(struct bpf_verifier_env *env,
4656 			      const struct bpf_func_state *func,
4657 			      int off)
4658 {
4659 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4660 
4661 	if (stack >= -off)
4662 		return 0;
4663 
4664 	/* update known max for given subprogram */
4665 	env->subprog_info[func->subprogno].stack_depth = -off;
4666 	return 0;
4667 }
4668 
4669 /* starting from main bpf function walk all instructions of the function
4670  * and recursively walk all callees that given function can call.
4671  * Ignore jump and exit insns.
4672  * Since recursion is prevented by check_cfg() this algorithm
4673  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4674  */
4675 static int check_max_stack_depth(struct bpf_verifier_env *env)
4676 {
4677 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4678 	struct bpf_subprog_info *subprog = env->subprog_info;
4679 	struct bpf_insn *insn = env->prog->insnsi;
4680 	bool tail_call_reachable = false;
4681 	int ret_insn[MAX_CALL_FRAMES];
4682 	int ret_prog[MAX_CALL_FRAMES];
4683 	int j;
4684 
4685 process_func:
4686 	/* protect against potential stack overflow that might happen when
4687 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4688 	 * depth for such case down to 256 so that the worst case scenario
4689 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4690 	 * 8k).
4691 	 *
4692 	 * To get the idea what might happen, see an example:
4693 	 * func1 -> sub rsp, 128
4694 	 *  subfunc1 -> sub rsp, 256
4695 	 *  tailcall1 -> add rsp, 256
4696 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4697 	 *   subfunc2 -> sub rsp, 64
4698 	 *   subfunc22 -> sub rsp, 128
4699 	 *   tailcall2 -> add rsp, 128
4700 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4701 	 *
4702 	 * tailcall will unwind the current stack frame but it will not get rid
4703 	 * of caller's stack as shown on the example above.
4704 	 */
4705 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4706 		verbose(env,
4707 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4708 			depth);
4709 		return -EACCES;
4710 	}
4711 	/* round up to 32-bytes, since this is granularity
4712 	 * of interpreter stack size
4713 	 */
4714 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4715 	if (depth > MAX_BPF_STACK) {
4716 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4717 			frame + 1, depth);
4718 		return -EACCES;
4719 	}
4720 continue_func:
4721 	subprog_end = subprog[idx + 1].start;
4722 	for (; i < subprog_end; i++) {
4723 		int next_insn;
4724 
4725 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4726 			continue;
4727 		/* remember insn and function to return to */
4728 		ret_insn[frame] = i + 1;
4729 		ret_prog[frame] = idx;
4730 
4731 		/* find the callee */
4732 		next_insn = i + insn[i].imm + 1;
4733 		idx = find_subprog(env, next_insn);
4734 		if (idx < 0) {
4735 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4736 				  next_insn);
4737 			return -EFAULT;
4738 		}
4739 		if (subprog[idx].is_async_cb) {
4740 			if (subprog[idx].has_tail_call) {
4741 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4742 				return -EFAULT;
4743 			}
4744 			 /* async callbacks don't increase bpf prog stack size */
4745 			continue;
4746 		}
4747 		i = next_insn;
4748 
4749 		if (subprog[idx].has_tail_call)
4750 			tail_call_reachable = true;
4751 
4752 		frame++;
4753 		if (frame >= MAX_CALL_FRAMES) {
4754 			verbose(env, "the call stack of %d frames is too deep !\n",
4755 				frame);
4756 			return -E2BIG;
4757 		}
4758 		goto process_func;
4759 	}
4760 	/* if tail call got detected across bpf2bpf calls then mark each of the
4761 	 * currently present subprog frames as tail call reachable subprogs;
4762 	 * this info will be utilized by JIT so that we will be preserving the
4763 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4764 	 */
4765 	if (tail_call_reachable)
4766 		for (j = 0; j < frame; j++)
4767 			subprog[ret_prog[j]].tail_call_reachable = true;
4768 	if (subprog[0].tail_call_reachable)
4769 		env->prog->aux->tail_call_reachable = true;
4770 
4771 	/* end of for() loop means the last insn of the 'subprog'
4772 	 * was reached. Doesn't matter whether it was JA or EXIT
4773 	 */
4774 	if (frame == 0)
4775 		return 0;
4776 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4777 	frame--;
4778 	i = ret_insn[frame];
4779 	idx = ret_prog[frame];
4780 	goto continue_func;
4781 }
4782 
4783 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4784 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4785 				  const struct bpf_insn *insn, int idx)
4786 {
4787 	int start = idx + insn->imm + 1, subprog;
4788 
4789 	subprog = find_subprog(env, start);
4790 	if (subprog < 0) {
4791 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4792 			  start);
4793 		return -EFAULT;
4794 	}
4795 	return env->subprog_info[subprog].stack_depth;
4796 }
4797 #endif
4798 
4799 static int __check_buffer_access(struct bpf_verifier_env *env,
4800 				 const char *buf_info,
4801 				 const struct bpf_reg_state *reg,
4802 				 int regno, int off, int size)
4803 {
4804 	if (off < 0) {
4805 		verbose(env,
4806 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4807 			regno, buf_info, off, size);
4808 		return -EACCES;
4809 	}
4810 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4811 		char tn_buf[48];
4812 
4813 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4814 		verbose(env,
4815 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4816 			regno, off, tn_buf);
4817 		return -EACCES;
4818 	}
4819 
4820 	return 0;
4821 }
4822 
4823 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4824 				  const struct bpf_reg_state *reg,
4825 				  int regno, int off, int size)
4826 {
4827 	int err;
4828 
4829 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4830 	if (err)
4831 		return err;
4832 
4833 	if (off + size > env->prog->aux->max_tp_access)
4834 		env->prog->aux->max_tp_access = off + size;
4835 
4836 	return 0;
4837 }
4838 
4839 static int check_buffer_access(struct bpf_verifier_env *env,
4840 			       const struct bpf_reg_state *reg,
4841 			       int regno, int off, int size,
4842 			       bool zero_size_allowed,
4843 			       u32 *max_access)
4844 {
4845 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4846 	int err;
4847 
4848 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4849 	if (err)
4850 		return err;
4851 
4852 	if (off + size > *max_access)
4853 		*max_access = off + size;
4854 
4855 	return 0;
4856 }
4857 
4858 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4859 static void zext_32_to_64(struct bpf_reg_state *reg)
4860 {
4861 	reg->var_off = tnum_subreg(reg->var_off);
4862 	__reg_assign_32_into_64(reg);
4863 }
4864 
4865 /* truncate register to smaller size (in bytes)
4866  * must be called with size < BPF_REG_SIZE
4867  */
4868 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4869 {
4870 	u64 mask;
4871 
4872 	/* clear high bits in bit representation */
4873 	reg->var_off = tnum_cast(reg->var_off, size);
4874 
4875 	/* fix arithmetic bounds */
4876 	mask = ((u64)1 << (size * 8)) - 1;
4877 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4878 		reg->umin_value &= mask;
4879 		reg->umax_value &= mask;
4880 	} else {
4881 		reg->umin_value = 0;
4882 		reg->umax_value = mask;
4883 	}
4884 	reg->smin_value = reg->umin_value;
4885 	reg->smax_value = reg->umax_value;
4886 
4887 	/* If size is smaller than 32bit register the 32bit register
4888 	 * values are also truncated so we push 64-bit bounds into
4889 	 * 32-bit bounds. Above were truncated < 32-bits already.
4890 	 */
4891 	if (size >= 4)
4892 		return;
4893 	__reg_combine_64_into_32(reg);
4894 }
4895 
4896 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4897 {
4898 	/* A map is considered read-only if the following condition are true:
4899 	 *
4900 	 * 1) BPF program side cannot change any of the map content. The
4901 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4902 	 *    and was set at map creation time.
4903 	 * 2) The map value(s) have been initialized from user space by a
4904 	 *    loader and then "frozen", such that no new map update/delete
4905 	 *    operations from syscall side are possible for the rest of
4906 	 *    the map's lifetime from that point onwards.
4907 	 * 3) Any parallel/pending map update/delete operations from syscall
4908 	 *    side have been completed. Only after that point, it's safe to
4909 	 *    assume that map value(s) are immutable.
4910 	 */
4911 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4912 	       READ_ONCE(map->frozen) &&
4913 	       !bpf_map_write_active(map);
4914 }
4915 
4916 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4917 {
4918 	void *ptr;
4919 	u64 addr;
4920 	int err;
4921 
4922 	err = map->ops->map_direct_value_addr(map, &addr, off);
4923 	if (err)
4924 		return err;
4925 	ptr = (void *)(long)addr + off;
4926 
4927 	switch (size) {
4928 	case sizeof(u8):
4929 		*val = (u64)*(u8 *)ptr;
4930 		break;
4931 	case sizeof(u16):
4932 		*val = (u64)*(u16 *)ptr;
4933 		break;
4934 	case sizeof(u32):
4935 		*val = (u64)*(u32 *)ptr;
4936 		break;
4937 	case sizeof(u64):
4938 		*val = *(u64 *)ptr;
4939 		break;
4940 	default:
4941 		return -EINVAL;
4942 	}
4943 	return 0;
4944 }
4945 
4946 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4947 				   struct bpf_reg_state *regs,
4948 				   int regno, int off, int size,
4949 				   enum bpf_access_type atype,
4950 				   int value_regno)
4951 {
4952 	struct bpf_reg_state *reg = regs + regno;
4953 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4954 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4955 	enum bpf_type_flag flag = 0;
4956 	u32 btf_id;
4957 	int ret;
4958 
4959 	if (!env->allow_ptr_leaks) {
4960 		verbose(env,
4961 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4962 			tname);
4963 		return -EPERM;
4964 	}
4965 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4966 		verbose(env,
4967 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4968 			tname);
4969 		return -EINVAL;
4970 	}
4971 	if (off < 0) {
4972 		verbose(env,
4973 			"R%d is ptr_%s invalid negative access: off=%d\n",
4974 			regno, tname, off);
4975 		return -EACCES;
4976 	}
4977 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4978 		char tn_buf[48];
4979 
4980 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4981 		verbose(env,
4982 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4983 			regno, tname, off, tn_buf);
4984 		return -EACCES;
4985 	}
4986 
4987 	if (reg->type & MEM_USER) {
4988 		verbose(env,
4989 			"R%d is ptr_%s access user memory: off=%d\n",
4990 			regno, tname, off);
4991 		return -EACCES;
4992 	}
4993 
4994 	if (reg->type & MEM_PERCPU) {
4995 		verbose(env,
4996 			"R%d is ptr_%s access percpu memory: off=%d\n",
4997 			regno, tname, off);
4998 		return -EACCES;
4999 	}
5000 
5001 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
5002 		if (!btf_is_kernel(reg->btf)) {
5003 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5004 			return -EFAULT;
5005 		}
5006 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5007 	} else {
5008 		/* Writes are permitted with default btf_struct_access for
5009 		 * program allocated objects (which always have ref_obj_id > 0),
5010 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5011 		 */
5012 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
5013 			verbose(env, "only read is supported\n");
5014 			return -EACCES;
5015 		}
5016 
5017 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
5018 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5019 			return -EFAULT;
5020 		}
5021 
5022 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
5023 	}
5024 
5025 	if (ret < 0)
5026 		return ret;
5027 
5028 	/* If this is an untrusted pointer, all pointers formed by walking it
5029 	 * also inherit the untrusted flag.
5030 	 */
5031 	if (type_flag(reg->type) & PTR_UNTRUSTED)
5032 		flag |= PTR_UNTRUSTED;
5033 
5034 	/* By default any pointer obtained from walking a trusted pointer is
5035 	 * no longer trusted except the rcu case below.
5036 	 */
5037 	flag &= ~PTR_TRUSTED;
5038 
5039 	if (flag & MEM_RCU) {
5040 		/* Mark value register as MEM_RCU only if it is protected by
5041 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
5042 		 * itself can already indicate trustedness inside the rcu
5043 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
5044 		 * it could be null in some cases.
5045 		 */
5046 		if (!env->cur_state->active_rcu_lock ||
5047 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
5048 			flag &= ~MEM_RCU;
5049 		else
5050 			flag |= PTR_MAYBE_NULL;
5051 	} else if (reg->type & MEM_RCU) {
5052 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
5053 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
5054 		 */
5055 		flag |= PTR_UNTRUSTED;
5056 	}
5057 
5058 	if (atype == BPF_READ && value_regno >= 0)
5059 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
5060 
5061 	return 0;
5062 }
5063 
5064 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5065 				   struct bpf_reg_state *regs,
5066 				   int regno, int off, int size,
5067 				   enum bpf_access_type atype,
5068 				   int value_regno)
5069 {
5070 	struct bpf_reg_state *reg = regs + regno;
5071 	struct bpf_map *map = reg->map_ptr;
5072 	struct bpf_reg_state map_reg;
5073 	enum bpf_type_flag flag = 0;
5074 	const struct btf_type *t;
5075 	const char *tname;
5076 	u32 btf_id;
5077 	int ret;
5078 
5079 	if (!btf_vmlinux) {
5080 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5081 		return -ENOTSUPP;
5082 	}
5083 
5084 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5085 		verbose(env, "map_ptr access not supported for map type %d\n",
5086 			map->map_type);
5087 		return -ENOTSUPP;
5088 	}
5089 
5090 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5091 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5092 
5093 	if (!env->allow_ptr_leaks) {
5094 		verbose(env,
5095 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5096 			tname);
5097 		return -EPERM;
5098 	}
5099 
5100 	if (off < 0) {
5101 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
5102 			regno, tname, off);
5103 		return -EACCES;
5104 	}
5105 
5106 	if (atype != BPF_READ) {
5107 		verbose(env, "only read from %s is supported\n", tname);
5108 		return -EACCES;
5109 	}
5110 
5111 	/* Simulate access to a PTR_TO_BTF_ID */
5112 	memset(&map_reg, 0, sizeof(map_reg));
5113 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5114 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
5115 	if (ret < 0)
5116 		return ret;
5117 
5118 	if (value_regno >= 0)
5119 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
5120 
5121 	return 0;
5122 }
5123 
5124 /* Check that the stack access at the given offset is within bounds. The
5125  * maximum valid offset is -1.
5126  *
5127  * The minimum valid offset is -MAX_BPF_STACK for writes, and
5128  * -state->allocated_stack for reads.
5129  */
5130 static int check_stack_slot_within_bounds(int off,
5131 					  struct bpf_func_state *state,
5132 					  enum bpf_access_type t)
5133 {
5134 	int min_valid_off;
5135 
5136 	if (t == BPF_WRITE)
5137 		min_valid_off = -MAX_BPF_STACK;
5138 	else
5139 		min_valid_off = -state->allocated_stack;
5140 
5141 	if (off < min_valid_off || off > -1)
5142 		return -EACCES;
5143 	return 0;
5144 }
5145 
5146 /* Check that the stack access at 'regno + off' falls within the maximum stack
5147  * bounds.
5148  *
5149  * 'off' includes `regno->offset`, but not its dynamic part (if any).
5150  */
5151 static int check_stack_access_within_bounds(
5152 		struct bpf_verifier_env *env,
5153 		int regno, int off, int access_size,
5154 		enum bpf_access_src src, enum bpf_access_type type)
5155 {
5156 	struct bpf_reg_state *regs = cur_regs(env);
5157 	struct bpf_reg_state *reg = regs + regno;
5158 	struct bpf_func_state *state = func(env, reg);
5159 	int min_off, max_off;
5160 	int err;
5161 	char *err_extra;
5162 
5163 	if (src == ACCESS_HELPER)
5164 		/* We don't know if helpers are reading or writing (or both). */
5165 		err_extra = " indirect access to";
5166 	else if (type == BPF_READ)
5167 		err_extra = " read from";
5168 	else
5169 		err_extra = " write to";
5170 
5171 	if (tnum_is_const(reg->var_off)) {
5172 		min_off = reg->var_off.value + off;
5173 		if (access_size > 0)
5174 			max_off = min_off + access_size - 1;
5175 		else
5176 			max_off = min_off;
5177 	} else {
5178 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5179 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
5180 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5181 				err_extra, regno);
5182 			return -EACCES;
5183 		}
5184 		min_off = reg->smin_value + off;
5185 		if (access_size > 0)
5186 			max_off = reg->smax_value + off + access_size - 1;
5187 		else
5188 			max_off = min_off;
5189 	}
5190 
5191 	err = check_stack_slot_within_bounds(min_off, state, type);
5192 	if (!err)
5193 		err = check_stack_slot_within_bounds(max_off, state, type);
5194 
5195 	if (err) {
5196 		if (tnum_is_const(reg->var_off)) {
5197 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5198 				err_extra, regno, off, access_size);
5199 		} else {
5200 			char tn_buf[48];
5201 
5202 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5203 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5204 				err_extra, regno, tn_buf, access_size);
5205 		}
5206 	}
5207 	return err;
5208 }
5209 
5210 /* check whether memory at (regno + off) is accessible for t = (read | write)
5211  * if t==write, value_regno is a register which value is stored into memory
5212  * if t==read, value_regno is a register which will receive the value from memory
5213  * if t==write && value_regno==-1, some unknown value is stored into memory
5214  * if t==read && value_regno==-1, don't care what we read from memory
5215  */
5216 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5217 			    int off, int bpf_size, enum bpf_access_type t,
5218 			    int value_regno, bool strict_alignment_once)
5219 {
5220 	struct bpf_reg_state *regs = cur_regs(env);
5221 	struct bpf_reg_state *reg = regs + regno;
5222 	struct bpf_func_state *state;
5223 	int size, err = 0;
5224 
5225 	size = bpf_size_to_bytes(bpf_size);
5226 	if (size < 0)
5227 		return size;
5228 
5229 	/* alignment checks will add in reg->off themselves */
5230 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5231 	if (err)
5232 		return err;
5233 
5234 	/* for access checks, reg->off is just part of off */
5235 	off += reg->off;
5236 
5237 	if (reg->type == PTR_TO_MAP_KEY) {
5238 		if (t == BPF_WRITE) {
5239 			verbose(env, "write to change key R%d not allowed\n", regno);
5240 			return -EACCES;
5241 		}
5242 
5243 		err = check_mem_region_access(env, regno, off, size,
5244 					      reg->map_ptr->key_size, false);
5245 		if (err)
5246 			return err;
5247 		if (value_regno >= 0)
5248 			mark_reg_unknown(env, regs, value_regno);
5249 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5250 		struct btf_field *kptr_field = NULL;
5251 
5252 		if (t == BPF_WRITE && value_regno >= 0 &&
5253 		    is_pointer_value(env, value_regno)) {
5254 			verbose(env, "R%d leaks addr into map\n", value_regno);
5255 			return -EACCES;
5256 		}
5257 		err = check_map_access_type(env, regno, off, size, t);
5258 		if (err)
5259 			return err;
5260 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5261 		if (err)
5262 			return err;
5263 		if (tnum_is_const(reg->var_off))
5264 			kptr_field = btf_record_find(reg->map_ptr->record,
5265 						     off + reg->var_off.value, BPF_KPTR);
5266 		if (kptr_field) {
5267 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5268 		} else if (t == BPF_READ && value_regno >= 0) {
5269 			struct bpf_map *map = reg->map_ptr;
5270 
5271 			/* if map is read-only, track its contents as scalars */
5272 			if (tnum_is_const(reg->var_off) &&
5273 			    bpf_map_is_rdonly(map) &&
5274 			    map->ops->map_direct_value_addr) {
5275 				int map_off = off + reg->var_off.value;
5276 				u64 val = 0;
5277 
5278 				err = bpf_map_direct_read(map, map_off, size,
5279 							  &val);
5280 				if (err)
5281 					return err;
5282 
5283 				regs[value_regno].type = SCALAR_VALUE;
5284 				__mark_reg_known(&regs[value_regno], val);
5285 			} else {
5286 				mark_reg_unknown(env, regs, value_regno);
5287 			}
5288 		}
5289 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5290 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5291 
5292 		if (type_may_be_null(reg->type)) {
5293 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5294 				reg_type_str(env, reg->type));
5295 			return -EACCES;
5296 		}
5297 
5298 		if (t == BPF_WRITE && rdonly_mem) {
5299 			verbose(env, "R%d cannot write into %s\n",
5300 				regno, reg_type_str(env, reg->type));
5301 			return -EACCES;
5302 		}
5303 
5304 		if (t == BPF_WRITE && value_regno >= 0 &&
5305 		    is_pointer_value(env, value_regno)) {
5306 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5307 			return -EACCES;
5308 		}
5309 
5310 		err = check_mem_region_access(env, regno, off, size,
5311 					      reg->mem_size, false);
5312 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5313 			mark_reg_unknown(env, regs, value_regno);
5314 	} else if (reg->type == PTR_TO_CTX) {
5315 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5316 		struct btf *btf = NULL;
5317 		u32 btf_id = 0;
5318 
5319 		if (t == BPF_WRITE && value_regno >= 0 &&
5320 		    is_pointer_value(env, value_regno)) {
5321 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5322 			return -EACCES;
5323 		}
5324 
5325 		err = check_ptr_off_reg(env, reg, regno);
5326 		if (err < 0)
5327 			return err;
5328 
5329 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5330 				       &btf_id);
5331 		if (err)
5332 			verbose_linfo(env, insn_idx, "; ");
5333 		if (!err && t == BPF_READ && value_regno >= 0) {
5334 			/* ctx access returns either a scalar, or a
5335 			 * PTR_TO_PACKET[_META,_END]. In the latter
5336 			 * case, we know the offset is zero.
5337 			 */
5338 			if (reg_type == SCALAR_VALUE) {
5339 				mark_reg_unknown(env, regs, value_regno);
5340 			} else {
5341 				mark_reg_known_zero(env, regs,
5342 						    value_regno);
5343 				if (type_may_be_null(reg_type))
5344 					regs[value_regno].id = ++env->id_gen;
5345 				/* A load of ctx field could have different
5346 				 * actual load size with the one encoded in the
5347 				 * insn. When the dst is PTR, it is for sure not
5348 				 * a sub-register.
5349 				 */
5350 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5351 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5352 					regs[value_regno].btf = btf;
5353 					regs[value_regno].btf_id = btf_id;
5354 				}
5355 			}
5356 			regs[value_regno].type = reg_type;
5357 		}
5358 
5359 	} else if (reg->type == PTR_TO_STACK) {
5360 		/* Basic bounds checks. */
5361 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5362 		if (err)
5363 			return err;
5364 
5365 		state = func(env, reg);
5366 		err = update_stack_depth(env, state, off);
5367 		if (err)
5368 			return err;
5369 
5370 		if (t == BPF_READ)
5371 			err = check_stack_read(env, regno, off, size,
5372 					       value_regno);
5373 		else
5374 			err = check_stack_write(env, regno, off, size,
5375 						value_regno, insn_idx);
5376 	} else if (reg_is_pkt_pointer(reg)) {
5377 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5378 			verbose(env, "cannot write into packet\n");
5379 			return -EACCES;
5380 		}
5381 		if (t == BPF_WRITE && value_regno >= 0 &&
5382 		    is_pointer_value(env, value_regno)) {
5383 			verbose(env, "R%d leaks addr into packet\n",
5384 				value_regno);
5385 			return -EACCES;
5386 		}
5387 		err = check_packet_access(env, regno, off, size, false);
5388 		if (!err && t == BPF_READ && value_regno >= 0)
5389 			mark_reg_unknown(env, regs, value_regno);
5390 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5391 		if (t == BPF_WRITE && value_regno >= 0 &&
5392 		    is_pointer_value(env, value_regno)) {
5393 			verbose(env, "R%d leaks addr into flow keys\n",
5394 				value_regno);
5395 			return -EACCES;
5396 		}
5397 
5398 		err = check_flow_keys_access(env, off, size);
5399 		if (!err && t == BPF_READ && value_regno >= 0)
5400 			mark_reg_unknown(env, regs, value_regno);
5401 	} else if (type_is_sk_pointer(reg->type)) {
5402 		if (t == BPF_WRITE) {
5403 			verbose(env, "R%d cannot write into %s\n",
5404 				regno, reg_type_str(env, reg->type));
5405 			return -EACCES;
5406 		}
5407 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5408 		if (!err && value_regno >= 0)
5409 			mark_reg_unknown(env, regs, value_regno);
5410 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5411 		err = check_tp_buffer_access(env, reg, regno, off, size);
5412 		if (!err && t == BPF_READ && value_regno >= 0)
5413 			mark_reg_unknown(env, regs, value_regno);
5414 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5415 		   !type_may_be_null(reg->type)) {
5416 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5417 					      value_regno);
5418 	} else if (reg->type == CONST_PTR_TO_MAP) {
5419 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5420 					      value_regno);
5421 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5422 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5423 		u32 *max_access;
5424 
5425 		if (rdonly_mem) {
5426 			if (t == BPF_WRITE) {
5427 				verbose(env, "R%d cannot write into %s\n",
5428 					regno, reg_type_str(env, reg->type));
5429 				return -EACCES;
5430 			}
5431 			max_access = &env->prog->aux->max_rdonly_access;
5432 		} else {
5433 			max_access = &env->prog->aux->max_rdwr_access;
5434 		}
5435 
5436 		err = check_buffer_access(env, reg, regno, off, size, false,
5437 					  max_access);
5438 
5439 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5440 			mark_reg_unknown(env, regs, value_regno);
5441 	} else {
5442 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5443 			reg_type_str(env, reg->type));
5444 		return -EACCES;
5445 	}
5446 
5447 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5448 	    regs[value_regno].type == SCALAR_VALUE) {
5449 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5450 		coerce_reg_to_size(&regs[value_regno], size);
5451 	}
5452 	return err;
5453 }
5454 
5455 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5456 {
5457 	int load_reg;
5458 	int err;
5459 
5460 	switch (insn->imm) {
5461 	case BPF_ADD:
5462 	case BPF_ADD | BPF_FETCH:
5463 	case BPF_AND:
5464 	case BPF_AND | BPF_FETCH:
5465 	case BPF_OR:
5466 	case BPF_OR | BPF_FETCH:
5467 	case BPF_XOR:
5468 	case BPF_XOR | BPF_FETCH:
5469 	case BPF_XCHG:
5470 	case BPF_CMPXCHG:
5471 		break;
5472 	default:
5473 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5474 		return -EINVAL;
5475 	}
5476 
5477 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5478 		verbose(env, "invalid atomic operand size\n");
5479 		return -EINVAL;
5480 	}
5481 
5482 	/* check src1 operand */
5483 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5484 	if (err)
5485 		return err;
5486 
5487 	/* check src2 operand */
5488 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5489 	if (err)
5490 		return err;
5491 
5492 	if (insn->imm == BPF_CMPXCHG) {
5493 		/* Check comparison of R0 with memory location */
5494 		const u32 aux_reg = BPF_REG_0;
5495 
5496 		err = check_reg_arg(env, aux_reg, SRC_OP);
5497 		if (err)
5498 			return err;
5499 
5500 		if (is_pointer_value(env, aux_reg)) {
5501 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5502 			return -EACCES;
5503 		}
5504 	}
5505 
5506 	if (is_pointer_value(env, insn->src_reg)) {
5507 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5508 		return -EACCES;
5509 	}
5510 
5511 	if (is_ctx_reg(env, insn->dst_reg) ||
5512 	    is_pkt_reg(env, insn->dst_reg) ||
5513 	    is_flow_key_reg(env, insn->dst_reg) ||
5514 	    is_sk_reg(env, insn->dst_reg)) {
5515 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5516 			insn->dst_reg,
5517 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5518 		return -EACCES;
5519 	}
5520 
5521 	if (insn->imm & BPF_FETCH) {
5522 		if (insn->imm == BPF_CMPXCHG)
5523 			load_reg = BPF_REG_0;
5524 		else
5525 			load_reg = insn->src_reg;
5526 
5527 		/* check and record load of old value */
5528 		err = check_reg_arg(env, load_reg, DST_OP);
5529 		if (err)
5530 			return err;
5531 	} else {
5532 		/* This instruction accesses a memory location but doesn't
5533 		 * actually load it into a register.
5534 		 */
5535 		load_reg = -1;
5536 	}
5537 
5538 	/* Check whether we can read the memory, with second call for fetch
5539 	 * case to simulate the register fill.
5540 	 */
5541 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5542 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5543 	if (!err && load_reg >= 0)
5544 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5545 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5546 				       true);
5547 	if (err)
5548 		return err;
5549 
5550 	/* Check whether we can write into the same memory. */
5551 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5552 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5553 	if (err)
5554 		return err;
5555 
5556 	return 0;
5557 }
5558 
5559 /* When register 'regno' is used to read the stack (either directly or through
5560  * a helper function) make sure that it's within stack boundary and, depending
5561  * on the access type, that all elements of the stack are initialized.
5562  *
5563  * 'off' includes 'regno->off', but not its dynamic part (if any).
5564  *
5565  * All registers that have been spilled on the stack in the slots within the
5566  * read offsets are marked as read.
5567  */
5568 static int check_stack_range_initialized(
5569 		struct bpf_verifier_env *env, int regno, int off,
5570 		int access_size, bool zero_size_allowed,
5571 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5572 {
5573 	struct bpf_reg_state *reg = reg_state(env, regno);
5574 	struct bpf_func_state *state = func(env, reg);
5575 	int err, min_off, max_off, i, j, slot, spi;
5576 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5577 	enum bpf_access_type bounds_check_type;
5578 	/* Some accesses can write anything into the stack, others are
5579 	 * read-only.
5580 	 */
5581 	bool clobber = false;
5582 
5583 	if (access_size == 0 && !zero_size_allowed) {
5584 		verbose(env, "invalid zero-sized read\n");
5585 		return -EACCES;
5586 	}
5587 
5588 	if (type == ACCESS_HELPER) {
5589 		/* The bounds checks for writes are more permissive than for
5590 		 * reads. However, if raw_mode is not set, we'll do extra
5591 		 * checks below.
5592 		 */
5593 		bounds_check_type = BPF_WRITE;
5594 		clobber = true;
5595 	} else {
5596 		bounds_check_type = BPF_READ;
5597 	}
5598 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5599 					       type, bounds_check_type);
5600 	if (err)
5601 		return err;
5602 
5603 
5604 	if (tnum_is_const(reg->var_off)) {
5605 		min_off = max_off = reg->var_off.value + off;
5606 	} else {
5607 		/* Variable offset is prohibited for unprivileged mode for
5608 		 * simplicity since it requires corresponding support in
5609 		 * Spectre masking for stack ALU.
5610 		 * See also retrieve_ptr_limit().
5611 		 */
5612 		if (!env->bypass_spec_v1) {
5613 			char tn_buf[48];
5614 
5615 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5616 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5617 				regno, err_extra, tn_buf);
5618 			return -EACCES;
5619 		}
5620 		/* Only initialized buffer on stack is allowed to be accessed
5621 		 * with variable offset. With uninitialized buffer it's hard to
5622 		 * guarantee that whole memory is marked as initialized on
5623 		 * helper return since specific bounds are unknown what may
5624 		 * cause uninitialized stack leaking.
5625 		 */
5626 		if (meta && meta->raw_mode)
5627 			meta = NULL;
5628 
5629 		min_off = reg->smin_value + off;
5630 		max_off = reg->smax_value + off;
5631 	}
5632 
5633 	if (meta && meta->raw_mode) {
5634 		/* Ensure we won't be overwriting dynptrs when simulating byte
5635 		 * by byte access in check_helper_call using meta.access_size.
5636 		 * This would be a problem if we have a helper in the future
5637 		 * which takes:
5638 		 *
5639 		 *	helper(uninit_mem, len, dynptr)
5640 		 *
5641 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
5642 		 * may end up writing to dynptr itself when touching memory from
5643 		 * arg 1. This can be relaxed on a case by case basis for known
5644 		 * safe cases, but reject due to the possibilitiy of aliasing by
5645 		 * default.
5646 		 */
5647 		for (i = min_off; i < max_off + access_size; i++) {
5648 			int stack_off = -i - 1;
5649 
5650 			spi = __get_spi(i);
5651 			/* raw_mode may write past allocated_stack */
5652 			if (state->allocated_stack <= stack_off)
5653 				continue;
5654 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
5655 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
5656 				return -EACCES;
5657 			}
5658 		}
5659 		meta->access_size = access_size;
5660 		meta->regno = regno;
5661 		return 0;
5662 	}
5663 
5664 	for (i = min_off; i < max_off + access_size; i++) {
5665 		u8 *stype;
5666 
5667 		slot = -i - 1;
5668 		spi = slot / BPF_REG_SIZE;
5669 		if (state->allocated_stack <= slot)
5670 			goto err;
5671 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5672 		if (*stype == STACK_MISC)
5673 			goto mark;
5674 		if (*stype == STACK_ZERO) {
5675 			if (clobber) {
5676 				/* helper can write anything into the stack */
5677 				*stype = STACK_MISC;
5678 			}
5679 			goto mark;
5680 		}
5681 
5682 		if (is_spilled_reg(&state->stack[spi]) &&
5683 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5684 		     env->allow_ptr_leaks)) {
5685 			if (clobber) {
5686 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5687 				for (j = 0; j < BPF_REG_SIZE; j++)
5688 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5689 			}
5690 			goto mark;
5691 		}
5692 
5693 err:
5694 		if (tnum_is_const(reg->var_off)) {
5695 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5696 				err_extra, regno, min_off, i - min_off, access_size);
5697 		} else {
5698 			char tn_buf[48];
5699 
5700 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5701 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5702 				err_extra, regno, tn_buf, i - min_off, access_size);
5703 		}
5704 		return -EACCES;
5705 mark:
5706 		/* reading any byte out of 8-byte 'spill_slot' will cause
5707 		 * the whole slot to be marked as 'read'
5708 		 */
5709 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5710 			      state->stack[spi].spilled_ptr.parent,
5711 			      REG_LIVE_READ64);
5712 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5713 		 * be sure that whether stack slot is written to or not. Hence,
5714 		 * we must still conservatively propagate reads upwards even if
5715 		 * helper may write to the entire memory range.
5716 		 */
5717 	}
5718 	return update_stack_depth(env, state, min_off);
5719 }
5720 
5721 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5722 				   int access_size, bool zero_size_allowed,
5723 				   struct bpf_call_arg_meta *meta)
5724 {
5725 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5726 	u32 *max_access;
5727 
5728 	switch (base_type(reg->type)) {
5729 	case PTR_TO_PACKET:
5730 	case PTR_TO_PACKET_META:
5731 		return check_packet_access(env, regno, reg->off, access_size,
5732 					   zero_size_allowed);
5733 	case PTR_TO_MAP_KEY:
5734 		if (meta && meta->raw_mode) {
5735 			verbose(env, "R%d cannot write into %s\n", regno,
5736 				reg_type_str(env, reg->type));
5737 			return -EACCES;
5738 		}
5739 		return check_mem_region_access(env, regno, reg->off, access_size,
5740 					       reg->map_ptr->key_size, false);
5741 	case PTR_TO_MAP_VALUE:
5742 		if (check_map_access_type(env, regno, reg->off, access_size,
5743 					  meta && meta->raw_mode ? BPF_WRITE :
5744 					  BPF_READ))
5745 			return -EACCES;
5746 		return check_map_access(env, regno, reg->off, access_size,
5747 					zero_size_allowed, ACCESS_HELPER);
5748 	case PTR_TO_MEM:
5749 		if (type_is_rdonly_mem(reg->type)) {
5750 			if (meta && meta->raw_mode) {
5751 				verbose(env, "R%d cannot write into %s\n", regno,
5752 					reg_type_str(env, reg->type));
5753 				return -EACCES;
5754 			}
5755 		}
5756 		return check_mem_region_access(env, regno, reg->off,
5757 					       access_size, reg->mem_size,
5758 					       zero_size_allowed);
5759 	case PTR_TO_BUF:
5760 		if (type_is_rdonly_mem(reg->type)) {
5761 			if (meta && meta->raw_mode) {
5762 				verbose(env, "R%d cannot write into %s\n", regno,
5763 					reg_type_str(env, reg->type));
5764 				return -EACCES;
5765 			}
5766 
5767 			max_access = &env->prog->aux->max_rdonly_access;
5768 		} else {
5769 			max_access = &env->prog->aux->max_rdwr_access;
5770 		}
5771 		return check_buffer_access(env, reg, regno, reg->off,
5772 					   access_size, zero_size_allowed,
5773 					   max_access);
5774 	case PTR_TO_STACK:
5775 		return check_stack_range_initialized(
5776 				env,
5777 				regno, reg->off, access_size,
5778 				zero_size_allowed, ACCESS_HELPER, meta);
5779 	case PTR_TO_CTX:
5780 		/* in case the function doesn't know how to access the context,
5781 		 * (because we are in a program of type SYSCALL for example), we
5782 		 * can not statically check its size.
5783 		 * Dynamically check it now.
5784 		 */
5785 		if (!env->ops->convert_ctx_access) {
5786 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5787 			int offset = access_size - 1;
5788 
5789 			/* Allow zero-byte read from PTR_TO_CTX */
5790 			if (access_size == 0)
5791 				return zero_size_allowed ? 0 : -EACCES;
5792 
5793 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5794 						atype, -1, false);
5795 		}
5796 
5797 		fallthrough;
5798 	default: /* scalar_value or invalid ptr */
5799 		/* Allow zero-byte read from NULL, regardless of pointer type */
5800 		if (zero_size_allowed && access_size == 0 &&
5801 		    register_is_null(reg))
5802 			return 0;
5803 
5804 		verbose(env, "R%d type=%s ", regno,
5805 			reg_type_str(env, reg->type));
5806 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5807 		return -EACCES;
5808 	}
5809 }
5810 
5811 static int check_mem_size_reg(struct bpf_verifier_env *env,
5812 			      struct bpf_reg_state *reg, u32 regno,
5813 			      bool zero_size_allowed,
5814 			      struct bpf_call_arg_meta *meta)
5815 {
5816 	int err;
5817 
5818 	/* This is used to refine r0 return value bounds for helpers
5819 	 * that enforce this value as an upper bound on return values.
5820 	 * See do_refine_retval_range() for helpers that can refine
5821 	 * the return value. C type of helper is u32 so we pull register
5822 	 * bound from umax_value however, if negative verifier errors
5823 	 * out. Only upper bounds can be learned because retval is an
5824 	 * int type and negative retvals are allowed.
5825 	 */
5826 	meta->msize_max_value = reg->umax_value;
5827 
5828 	/* The register is SCALAR_VALUE; the access check
5829 	 * happens using its boundaries.
5830 	 */
5831 	if (!tnum_is_const(reg->var_off))
5832 		/* For unprivileged variable accesses, disable raw
5833 		 * mode so that the program is required to
5834 		 * initialize all the memory that the helper could
5835 		 * just partially fill up.
5836 		 */
5837 		meta = NULL;
5838 
5839 	if (reg->smin_value < 0) {
5840 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5841 			regno);
5842 		return -EACCES;
5843 	}
5844 
5845 	if (reg->umin_value == 0) {
5846 		err = check_helper_mem_access(env, regno - 1, 0,
5847 					      zero_size_allowed,
5848 					      meta);
5849 		if (err)
5850 			return err;
5851 	}
5852 
5853 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5854 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5855 			regno);
5856 		return -EACCES;
5857 	}
5858 	err = check_helper_mem_access(env, regno - 1,
5859 				      reg->umax_value,
5860 				      zero_size_allowed, meta);
5861 	if (!err)
5862 		err = mark_chain_precision(env, regno);
5863 	return err;
5864 }
5865 
5866 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5867 		   u32 regno, u32 mem_size)
5868 {
5869 	bool may_be_null = type_may_be_null(reg->type);
5870 	struct bpf_reg_state saved_reg;
5871 	struct bpf_call_arg_meta meta;
5872 	int err;
5873 
5874 	if (register_is_null(reg))
5875 		return 0;
5876 
5877 	memset(&meta, 0, sizeof(meta));
5878 	/* Assuming that the register contains a value check if the memory
5879 	 * access is safe. Temporarily save and restore the register's state as
5880 	 * the conversion shouldn't be visible to a caller.
5881 	 */
5882 	if (may_be_null) {
5883 		saved_reg = *reg;
5884 		mark_ptr_not_null_reg(reg);
5885 	}
5886 
5887 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5888 	/* Check access for BPF_WRITE */
5889 	meta.raw_mode = true;
5890 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5891 
5892 	if (may_be_null)
5893 		*reg = saved_reg;
5894 
5895 	return err;
5896 }
5897 
5898 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5899 				    u32 regno)
5900 {
5901 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5902 	bool may_be_null = type_may_be_null(mem_reg->type);
5903 	struct bpf_reg_state saved_reg;
5904 	struct bpf_call_arg_meta meta;
5905 	int err;
5906 
5907 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5908 
5909 	memset(&meta, 0, sizeof(meta));
5910 
5911 	if (may_be_null) {
5912 		saved_reg = *mem_reg;
5913 		mark_ptr_not_null_reg(mem_reg);
5914 	}
5915 
5916 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5917 	/* Check access for BPF_WRITE */
5918 	meta.raw_mode = true;
5919 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5920 
5921 	if (may_be_null)
5922 		*mem_reg = saved_reg;
5923 	return err;
5924 }
5925 
5926 /* Implementation details:
5927  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5928  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5929  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5930  * Two separate bpf_obj_new will also have different reg->id.
5931  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5932  * clears reg->id after value_or_null->value transition, since the verifier only
5933  * cares about the range of access to valid map value pointer and doesn't care
5934  * about actual address of the map element.
5935  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5936  * reg->id > 0 after value_or_null->value transition. By doing so
5937  * two bpf_map_lookups will be considered two different pointers that
5938  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5939  * returned from bpf_obj_new.
5940  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5941  * dead-locks.
5942  * Since only one bpf_spin_lock is allowed the checks are simpler than
5943  * reg_is_refcounted() logic. The verifier needs to remember only
5944  * one spin_lock instead of array of acquired_refs.
5945  * cur_state->active_lock remembers which map value element or allocated
5946  * object got locked and clears it after bpf_spin_unlock.
5947  */
5948 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5949 			     bool is_lock)
5950 {
5951 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5952 	struct bpf_verifier_state *cur = env->cur_state;
5953 	bool is_const = tnum_is_const(reg->var_off);
5954 	u64 val = reg->var_off.value;
5955 	struct bpf_map *map = NULL;
5956 	struct btf *btf = NULL;
5957 	struct btf_record *rec;
5958 
5959 	if (!is_const) {
5960 		verbose(env,
5961 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5962 			regno);
5963 		return -EINVAL;
5964 	}
5965 	if (reg->type == PTR_TO_MAP_VALUE) {
5966 		map = reg->map_ptr;
5967 		if (!map->btf) {
5968 			verbose(env,
5969 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5970 				map->name);
5971 			return -EINVAL;
5972 		}
5973 	} else {
5974 		btf = reg->btf;
5975 	}
5976 
5977 	rec = reg_btf_record(reg);
5978 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5979 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5980 			map ? map->name : "kptr");
5981 		return -EINVAL;
5982 	}
5983 	if (rec->spin_lock_off != val + reg->off) {
5984 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5985 			val + reg->off, rec->spin_lock_off);
5986 		return -EINVAL;
5987 	}
5988 	if (is_lock) {
5989 		if (cur->active_lock.ptr) {
5990 			verbose(env,
5991 				"Locking two bpf_spin_locks are not allowed\n");
5992 			return -EINVAL;
5993 		}
5994 		if (map)
5995 			cur->active_lock.ptr = map;
5996 		else
5997 			cur->active_lock.ptr = btf;
5998 		cur->active_lock.id = reg->id;
5999 	} else {
6000 		struct bpf_func_state *fstate = cur_func(env);
6001 		void *ptr;
6002 		int i;
6003 
6004 		if (map)
6005 			ptr = map;
6006 		else
6007 			ptr = btf;
6008 
6009 		if (!cur->active_lock.ptr) {
6010 			verbose(env, "bpf_spin_unlock without taking a lock\n");
6011 			return -EINVAL;
6012 		}
6013 		if (cur->active_lock.ptr != ptr ||
6014 		    cur->active_lock.id != reg->id) {
6015 			verbose(env, "bpf_spin_unlock of different lock\n");
6016 			return -EINVAL;
6017 		}
6018 		cur->active_lock.ptr = NULL;
6019 		cur->active_lock.id = 0;
6020 
6021 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
6022 			int err;
6023 
6024 			/* Complain on error because this reference state cannot
6025 			 * be freed before this point, as bpf_spin_lock critical
6026 			 * section does not allow functions that release the
6027 			 * allocated object immediately.
6028 			 */
6029 			if (!fstate->refs[i].release_on_unlock)
6030 				continue;
6031 			err = release_reference(env, fstate->refs[i].id);
6032 			if (err) {
6033 				verbose(env, "failed to release release_on_unlock reference");
6034 				return err;
6035 			}
6036 		}
6037 	}
6038 	return 0;
6039 }
6040 
6041 static int process_timer_func(struct bpf_verifier_env *env, int regno,
6042 			      struct bpf_call_arg_meta *meta)
6043 {
6044 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6045 	bool is_const = tnum_is_const(reg->var_off);
6046 	struct bpf_map *map = reg->map_ptr;
6047 	u64 val = reg->var_off.value;
6048 
6049 	if (!is_const) {
6050 		verbose(env,
6051 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6052 			regno);
6053 		return -EINVAL;
6054 	}
6055 	if (!map->btf) {
6056 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6057 			map->name);
6058 		return -EINVAL;
6059 	}
6060 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
6061 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
6062 		return -EINVAL;
6063 	}
6064 	if (map->record->timer_off != val + reg->off) {
6065 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
6066 			val + reg->off, map->record->timer_off);
6067 		return -EINVAL;
6068 	}
6069 	if (meta->map_ptr) {
6070 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6071 		return -EFAULT;
6072 	}
6073 	meta->map_uid = reg->map_uid;
6074 	meta->map_ptr = map;
6075 	return 0;
6076 }
6077 
6078 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6079 			     struct bpf_call_arg_meta *meta)
6080 {
6081 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6082 	struct bpf_map *map_ptr = reg->map_ptr;
6083 	struct btf_field *kptr_field;
6084 	u32 kptr_off;
6085 
6086 	if (!tnum_is_const(reg->var_off)) {
6087 		verbose(env,
6088 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6089 			regno);
6090 		return -EINVAL;
6091 	}
6092 	if (!map_ptr->btf) {
6093 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6094 			map_ptr->name);
6095 		return -EINVAL;
6096 	}
6097 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6098 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
6099 		return -EINVAL;
6100 	}
6101 
6102 	meta->map_ptr = map_ptr;
6103 	kptr_off = reg->off + reg->var_off.value;
6104 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6105 	if (!kptr_field) {
6106 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6107 		return -EACCES;
6108 	}
6109 	if (kptr_field->type != BPF_KPTR_REF) {
6110 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6111 		return -EACCES;
6112 	}
6113 	meta->kptr_field = kptr_field;
6114 	return 0;
6115 }
6116 
6117 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6118  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6119  *
6120  * In both cases we deal with the first 8 bytes, but need to mark the next 8
6121  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6122  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6123  *
6124  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6125  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6126  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6127  * mutate the view of the dynptr and also possibly destroy it. In the latter
6128  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6129  * memory that dynptr points to.
6130  *
6131  * The verifier will keep track both levels of mutation (bpf_dynptr's in
6132  * reg->type and the memory's in reg->dynptr.type), but there is no support for
6133  * readonly dynptr view yet, hence only the first case is tracked and checked.
6134  *
6135  * This is consistent with how C applies the const modifier to a struct object,
6136  * where the pointer itself inside bpf_dynptr becomes const but not what it
6137  * points to.
6138  *
6139  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6140  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6141  */
6142 int process_dynptr_func(struct bpf_verifier_env *env, int regno,
6143 			enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta)
6144 {
6145 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6146 	int spi = 0;
6147 
6148 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6149 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6150 	 */
6151 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6152 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6153 		return -EFAULT;
6154 	}
6155 	/* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
6156 	 * check_func_arg_reg_off's logic. We only need to check offset
6157 	 * and its alignment for PTR_TO_STACK.
6158 	 */
6159 	if (reg->type == PTR_TO_STACK) {
6160 		spi = dynptr_get_spi(env, reg);
6161 		if (spi < 0 && spi != -ERANGE)
6162 			return spi;
6163 	}
6164 
6165 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
6166 	 *		 constructing a mutable bpf_dynptr object.
6167 	 *
6168 	 *		 Currently, this is only possible with PTR_TO_STACK
6169 	 *		 pointing to a region of at least 16 bytes which doesn't
6170 	 *		 contain an existing bpf_dynptr.
6171 	 *
6172 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6173 	 *		 mutated or destroyed. However, the memory it points to
6174 	 *		 may be mutated.
6175 	 *
6176 	 *  None       - Points to a initialized dynptr that can be mutated and
6177 	 *		 destroyed, including mutation of the memory it points
6178 	 *		 to.
6179 	 */
6180 	if (arg_type & MEM_UNINIT) {
6181 		if (!is_dynptr_reg_valid_uninit(env, reg, spi)) {
6182 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6183 			return -EINVAL;
6184 		}
6185 
6186 		/* We only support one dynptr being uninitialized at the moment,
6187 		 * which is sufficient for the helper functions we have right now.
6188 		 */
6189 		if (meta->uninit_dynptr_regno) {
6190 			verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6191 			return -EFAULT;
6192 		}
6193 
6194 		meta->uninit_dynptr_regno = regno;
6195 	} else /* MEM_RDONLY and None case from above */ {
6196 		int err;
6197 
6198 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6199 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6200 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6201 			return -EINVAL;
6202 		}
6203 
6204 		if (!is_dynptr_reg_valid_init(env, reg, spi)) {
6205 			verbose(env,
6206 				"Expected an initialized dynptr as arg #%d\n",
6207 				regno);
6208 			return -EINVAL;
6209 		}
6210 
6211 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6212 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6213 			const char *err_extra = "";
6214 
6215 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6216 			case DYNPTR_TYPE_LOCAL:
6217 				err_extra = "local";
6218 				break;
6219 			case DYNPTR_TYPE_RINGBUF:
6220 				err_extra = "ringbuf";
6221 				break;
6222 			default:
6223 				err_extra = "<unknown>";
6224 				break;
6225 			}
6226 			verbose(env,
6227 				"Expected a dynptr of type %s as arg #%d\n",
6228 				err_extra, regno);
6229 			return -EINVAL;
6230 		}
6231 
6232 		err = mark_dynptr_read(env, reg);
6233 		if (err)
6234 			return err;
6235 	}
6236 	return 0;
6237 }
6238 
6239 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6240 {
6241 	return type == ARG_CONST_SIZE ||
6242 	       type == ARG_CONST_SIZE_OR_ZERO;
6243 }
6244 
6245 static bool arg_type_is_release(enum bpf_arg_type type)
6246 {
6247 	return type & OBJ_RELEASE;
6248 }
6249 
6250 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6251 {
6252 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6253 }
6254 
6255 static int int_ptr_type_to_size(enum bpf_arg_type type)
6256 {
6257 	if (type == ARG_PTR_TO_INT)
6258 		return sizeof(u32);
6259 	else if (type == ARG_PTR_TO_LONG)
6260 		return sizeof(u64);
6261 
6262 	return -EINVAL;
6263 }
6264 
6265 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6266 				 const struct bpf_call_arg_meta *meta,
6267 				 enum bpf_arg_type *arg_type)
6268 {
6269 	if (!meta->map_ptr) {
6270 		/* kernel subsystem misconfigured verifier */
6271 		verbose(env, "invalid map_ptr to access map->type\n");
6272 		return -EACCES;
6273 	}
6274 
6275 	switch (meta->map_ptr->map_type) {
6276 	case BPF_MAP_TYPE_SOCKMAP:
6277 	case BPF_MAP_TYPE_SOCKHASH:
6278 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6279 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
6280 		} else {
6281 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
6282 			return -EINVAL;
6283 		}
6284 		break;
6285 	case BPF_MAP_TYPE_BLOOM_FILTER:
6286 		if (meta->func_id == BPF_FUNC_map_peek_elem)
6287 			*arg_type = ARG_PTR_TO_MAP_VALUE;
6288 		break;
6289 	default:
6290 		break;
6291 	}
6292 	return 0;
6293 }
6294 
6295 struct bpf_reg_types {
6296 	const enum bpf_reg_type types[10];
6297 	u32 *btf_id;
6298 };
6299 
6300 static const struct bpf_reg_types sock_types = {
6301 	.types = {
6302 		PTR_TO_SOCK_COMMON,
6303 		PTR_TO_SOCKET,
6304 		PTR_TO_TCP_SOCK,
6305 		PTR_TO_XDP_SOCK,
6306 	},
6307 };
6308 
6309 #ifdef CONFIG_NET
6310 static const struct bpf_reg_types btf_id_sock_common_types = {
6311 	.types = {
6312 		PTR_TO_SOCK_COMMON,
6313 		PTR_TO_SOCKET,
6314 		PTR_TO_TCP_SOCK,
6315 		PTR_TO_XDP_SOCK,
6316 		PTR_TO_BTF_ID,
6317 		PTR_TO_BTF_ID | PTR_TRUSTED,
6318 	},
6319 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6320 };
6321 #endif
6322 
6323 static const struct bpf_reg_types mem_types = {
6324 	.types = {
6325 		PTR_TO_STACK,
6326 		PTR_TO_PACKET,
6327 		PTR_TO_PACKET_META,
6328 		PTR_TO_MAP_KEY,
6329 		PTR_TO_MAP_VALUE,
6330 		PTR_TO_MEM,
6331 		PTR_TO_MEM | MEM_RINGBUF,
6332 		PTR_TO_BUF,
6333 	},
6334 };
6335 
6336 static const struct bpf_reg_types int_ptr_types = {
6337 	.types = {
6338 		PTR_TO_STACK,
6339 		PTR_TO_PACKET,
6340 		PTR_TO_PACKET_META,
6341 		PTR_TO_MAP_KEY,
6342 		PTR_TO_MAP_VALUE,
6343 	},
6344 };
6345 
6346 static const struct bpf_reg_types spin_lock_types = {
6347 	.types = {
6348 		PTR_TO_MAP_VALUE,
6349 		PTR_TO_BTF_ID | MEM_ALLOC,
6350 	}
6351 };
6352 
6353 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
6354 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
6355 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
6356 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
6357 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
6358 static const struct bpf_reg_types btf_ptr_types = {
6359 	.types = {
6360 		PTR_TO_BTF_ID,
6361 		PTR_TO_BTF_ID | PTR_TRUSTED,
6362 		PTR_TO_BTF_ID | MEM_RCU,
6363 	},
6364 };
6365 static const struct bpf_reg_types percpu_btf_ptr_types = {
6366 	.types = {
6367 		PTR_TO_BTF_ID | MEM_PERCPU,
6368 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
6369 	}
6370 };
6371 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
6372 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
6373 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
6374 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
6375 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
6376 static const struct bpf_reg_types dynptr_types = {
6377 	.types = {
6378 		PTR_TO_STACK,
6379 		CONST_PTR_TO_DYNPTR,
6380 	}
6381 };
6382 
6383 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
6384 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
6385 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
6386 	[ARG_CONST_SIZE]		= &scalar_types,
6387 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
6388 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
6389 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6390 	[ARG_PTR_TO_CTX]		= &context_types,
6391 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6392 #ifdef CONFIG_NET
6393 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6394 #endif
6395 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6396 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6397 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6398 	[ARG_PTR_TO_MEM]		= &mem_types,
6399 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6400 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6401 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6402 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6403 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6404 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6405 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6406 	[ARG_PTR_TO_TIMER]		= &timer_types,
6407 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6408 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6409 };
6410 
6411 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6412 			  enum bpf_arg_type arg_type,
6413 			  const u32 *arg_btf_id,
6414 			  struct bpf_call_arg_meta *meta)
6415 {
6416 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6417 	enum bpf_reg_type expected, type = reg->type;
6418 	const struct bpf_reg_types *compatible;
6419 	int i, j;
6420 
6421 	compatible = compatible_reg_types[base_type(arg_type)];
6422 	if (!compatible) {
6423 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6424 		return -EFAULT;
6425 	}
6426 
6427 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6428 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6429 	 *
6430 	 * Same for MAYBE_NULL:
6431 	 *
6432 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6433 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6434 	 *
6435 	 * Therefore we fold these flags depending on the arg_type before comparison.
6436 	 */
6437 	if (arg_type & MEM_RDONLY)
6438 		type &= ~MEM_RDONLY;
6439 	if (arg_type & PTR_MAYBE_NULL)
6440 		type &= ~PTR_MAYBE_NULL;
6441 
6442 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6443 		expected = compatible->types[i];
6444 		if (expected == NOT_INIT)
6445 			break;
6446 
6447 		if (type == expected)
6448 			goto found;
6449 	}
6450 
6451 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6452 	for (j = 0; j + 1 < i; j++)
6453 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6454 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6455 	return -EACCES;
6456 
6457 found:
6458 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6459 		/* For bpf_sk_release, it needs to match against first member
6460 		 * 'struct sock_common', hence make an exception for it. This
6461 		 * allows bpf_sk_release to work for multiple socket types.
6462 		 */
6463 		bool strict_type_match = arg_type_is_release(arg_type) &&
6464 					 meta->func_id != BPF_FUNC_sk_release;
6465 
6466 		if (!arg_btf_id) {
6467 			if (!compatible->btf_id) {
6468 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6469 				return -EFAULT;
6470 			}
6471 			arg_btf_id = compatible->btf_id;
6472 		}
6473 
6474 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6475 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6476 				return -EACCES;
6477 		} else {
6478 			if (arg_btf_id == BPF_PTR_POISON) {
6479 				verbose(env, "verifier internal error:");
6480 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6481 					regno);
6482 				return -EACCES;
6483 			}
6484 
6485 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6486 						  btf_vmlinux, *arg_btf_id,
6487 						  strict_type_match)) {
6488 				verbose(env, "R%d is of type %s but %s is expected\n",
6489 					regno, kernel_type_name(reg->btf, reg->btf_id),
6490 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6491 				return -EACCES;
6492 			}
6493 		}
6494 	} else if (type_is_alloc(reg->type)) {
6495 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6496 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6497 			return -EFAULT;
6498 		}
6499 	}
6500 
6501 	return 0;
6502 }
6503 
6504 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6505 			   const struct bpf_reg_state *reg, int regno,
6506 			   enum bpf_arg_type arg_type)
6507 {
6508 	u32 type = reg->type;
6509 
6510 	/* When referenced register is passed to release function, its fixed
6511 	 * offset must be 0.
6512 	 *
6513 	 * We will check arg_type_is_release reg has ref_obj_id when storing
6514 	 * meta->release_regno.
6515 	 */
6516 	if (arg_type_is_release(arg_type)) {
6517 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
6518 		 * may not directly point to the object being released, but to
6519 		 * dynptr pointing to such object, which might be at some offset
6520 		 * on the stack. In that case, we simply to fallback to the
6521 		 * default handling.
6522 		 */
6523 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
6524 			return 0;
6525 		/* Doing check_ptr_off_reg check for the offset will catch this
6526 		 * because fixed_off_ok is false, but checking here allows us
6527 		 * to give the user a better error message.
6528 		 */
6529 		if (reg->off) {
6530 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
6531 				regno);
6532 			return -EINVAL;
6533 		}
6534 		return __check_ptr_off_reg(env, reg, regno, false);
6535 	}
6536 
6537 	switch (type) {
6538 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
6539 	case PTR_TO_STACK:
6540 	case PTR_TO_PACKET:
6541 	case PTR_TO_PACKET_META:
6542 	case PTR_TO_MAP_KEY:
6543 	case PTR_TO_MAP_VALUE:
6544 	case PTR_TO_MEM:
6545 	case PTR_TO_MEM | MEM_RDONLY:
6546 	case PTR_TO_MEM | MEM_RINGBUF:
6547 	case PTR_TO_BUF:
6548 	case PTR_TO_BUF | MEM_RDONLY:
6549 	case SCALAR_VALUE:
6550 		return 0;
6551 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6552 	 * fixed offset.
6553 	 */
6554 	case PTR_TO_BTF_ID:
6555 	case PTR_TO_BTF_ID | MEM_ALLOC:
6556 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6557 	case PTR_TO_BTF_ID | MEM_RCU:
6558 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6559 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6560 		 * its fixed offset must be 0. In the other cases, fixed offset
6561 		 * can be non-zero. This was already checked above. So pass
6562 		 * fixed_off_ok as true to allow fixed offset for all other
6563 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
6564 		 * still need to do checks instead of returning.
6565 		 */
6566 		return __check_ptr_off_reg(env, reg, regno, true);
6567 	default:
6568 		return __check_ptr_off_reg(env, reg, regno, false);
6569 	}
6570 }
6571 
6572 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6573 {
6574 	struct bpf_func_state *state = func(env, reg);
6575 	int spi;
6576 
6577 	if (reg->type == CONST_PTR_TO_DYNPTR)
6578 		return reg->id;
6579 	spi = dynptr_get_spi(env, reg);
6580 	if (spi < 0)
6581 		return spi;
6582 	return state->stack[spi].spilled_ptr.id;
6583 }
6584 
6585 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6586 {
6587 	struct bpf_func_state *state = func(env, reg);
6588 	int spi;
6589 
6590 	if (reg->type == CONST_PTR_TO_DYNPTR)
6591 		return reg->ref_obj_id;
6592 	spi = dynptr_get_spi(env, reg);
6593 	if (spi < 0)
6594 		return spi;
6595 	return state->stack[spi].spilled_ptr.ref_obj_id;
6596 }
6597 
6598 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6599 			  struct bpf_call_arg_meta *meta,
6600 			  const struct bpf_func_proto *fn)
6601 {
6602 	u32 regno = BPF_REG_1 + arg;
6603 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6604 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6605 	enum bpf_reg_type type = reg->type;
6606 	u32 *arg_btf_id = NULL;
6607 	int err = 0;
6608 
6609 	if (arg_type == ARG_DONTCARE)
6610 		return 0;
6611 
6612 	err = check_reg_arg(env, regno, SRC_OP);
6613 	if (err)
6614 		return err;
6615 
6616 	if (arg_type == ARG_ANYTHING) {
6617 		if (is_pointer_value(env, regno)) {
6618 			verbose(env, "R%d leaks addr into helper function\n",
6619 				regno);
6620 			return -EACCES;
6621 		}
6622 		return 0;
6623 	}
6624 
6625 	if (type_is_pkt_pointer(type) &&
6626 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6627 		verbose(env, "helper access to the packet is not allowed\n");
6628 		return -EACCES;
6629 	}
6630 
6631 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6632 		err = resolve_map_arg_type(env, meta, &arg_type);
6633 		if (err)
6634 			return err;
6635 	}
6636 
6637 	if (register_is_null(reg) && type_may_be_null(arg_type))
6638 		/* A NULL register has a SCALAR_VALUE type, so skip
6639 		 * type checking.
6640 		 */
6641 		goto skip_type_check;
6642 
6643 	/* arg_btf_id and arg_size are in a union. */
6644 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6645 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6646 		arg_btf_id = fn->arg_btf_id[arg];
6647 
6648 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6649 	if (err)
6650 		return err;
6651 
6652 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6653 	if (err)
6654 		return err;
6655 
6656 skip_type_check:
6657 	if (arg_type_is_release(arg_type)) {
6658 		if (arg_type_is_dynptr(arg_type)) {
6659 			struct bpf_func_state *state = func(env, reg);
6660 			int spi;
6661 
6662 			/* Only dynptr created on stack can be released, thus
6663 			 * the get_spi and stack state checks for spilled_ptr
6664 			 * should only be done before process_dynptr_func for
6665 			 * PTR_TO_STACK.
6666 			 */
6667 			if (reg->type == PTR_TO_STACK) {
6668 				spi = dynptr_get_spi(env, reg);
6669 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
6670 					verbose(env, "arg %d is an unacquired reference\n", regno);
6671 					return -EINVAL;
6672 				}
6673 			} else {
6674 				verbose(env, "cannot release unowned const bpf_dynptr\n");
6675 				return -EINVAL;
6676 			}
6677 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6678 			verbose(env, "R%d must be referenced when passed to release function\n",
6679 				regno);
6680 			return -EINVAL;
6681 		}
6682 		if (meta->release_regno) {
6683 			verbose(env, "verifier internal error: more than one release argument\n");
6684 			return -EFAULT;
6685 		}
6686 		meta->release_regno = regno;
6687 	}
6688 
6689 	if (reg->ref_obj_id) {
6690 		if (meta->ref_obj_id) {
6691 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6692 				regno, reg->ref_obj_id,
6693 				meta->ref_obj_id);
6694 			return -EFAULT;
6695 		}
6696 		meta->ref_obj_id = reg->ref_obj_id;
6697 	}
6698 
6699 	switch (base_type(arg_type)) {
6700 	case ARG_CONST_MAP_PTR:
6701 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6702 		if (meta->map_ptr) {
6703 			/* Use map_uid (which is unique id of inner map) to reject:
6704 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6705 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6706 			 * if (inner_map1 && inner_map2) {
6707 			 *     timer = bpf_map_lookup_elem(inner_map1);
6708 			 *     if (timer)
6709 			 *         // mismatch would have been allowed
6710 			 *         bpf_timer_init(timer, inner_map2);
6711 			 * }
6712 			 *
6713 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6714 			 */
6715 			if (meta->map_ptr != reg->map_ptr ||
6716 			    meta->map_uid != reg->map_uid) {
6717 				verbose(env,
6718 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6719 					meta->map_uid, reg->map_uid);
6720 				return -EINVAL;
6721 			}
6722 		}
6723 		meta->map_ptr = reg->map_ptr;
6724 		meta->map_uid = reg->map_uid;
6725 		break;
6726 	case ARG_PTR_TO_MAP_KEY:
6727 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6728 		 * check that [key, key + map->key_size) are within
6729 		 * stack limits and initialized
6730 		 */
6731 		if (!meta->map_ptr) {
6732 			/* in function declaration map_ptr must come before
6733 			 * map_key, so that it's verified and known before
6734 			 * we have to check map_key here. Otherwise it means
6735 			 * that kernel subsystem misconfigured verifier
6736 			 */
6737 			verbose(env, "invalid map_ptr to access map->key\n");
6738 			return -EACCES;
6739 		}
6740 		err = check_helper_mem_access(env, regno,
6741 					      meta->map_ptr->key_size, false,
6742 					      NULL);
6743 		break;
6744 	case ARG_PTR_TO_MAP_VALUE:
6745 		if (type_may_be_null(arg_type) && register_is_null(reg))
6746 			return 0;
6747 
6748 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6749 		 * check [value, value + map->value_size) validity
6750 		 */
6751 		if (!meta->map_ptr) {
6752 			/* kernel subsystem misconfigured verifier */
6753 			verbose(env, "invalid map_ptr to access map->value\n");
6754 			return -EACCES;
6755 		}
6756 		meta->raw_mode = arg_type & MEM_UNINIT;
6757 		err = check_helper_mem_access(env, regno,
6758 					      meta->map_ptr->value_size, false,
6759 					      meta);
6760 		break;
6761 	case ARG_PTR_TO_PERCPU_BTF_ID:
6762 		if (!reg->btf_id) {
6763 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6764 			return -EACCES;
6765 		}
6766 		meta->ret_btf = reg->btf;
6767 		meta->ret_btf_id = reg->btf_id;
6768 		break;
6769 	case ARG_PTR_TO_SPIN_LOCK:
6770 		if (meta->func_id == BPF_FUNC_spin_lock) {
6771 			err = process_spin_lock(env, regno, true);
6772 			if (err)
6773 				return err;
6774 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6775 			err = process_spin_lock(env, regno, false);
6776 			if (err)
6777 				return err;
6778 		} else {
6779 			verbose(env, "verifier internal error\n");
6780 			return -EFAULT;
6781 		}
6782 		break;
6783 	case ARG_PTR_TO_TIMER:
6784 		err = process_timer_func(env, regno, meta);
6785 		if (err)
6786 			return err;
6787 		break;
6788 	case ARG_PTR_TO_FUNC:
6789 		meta->subprogno = reg->subprogno;
6790 		break;
6791 	case ARG_PTR_TO_MEM:
6792 		/* The access to this pointer is only checked when we hit the
6793 		 * next is_mem_size argument below.
6794 		 */
6795 		meta->raw_mode = arg_type & MEM_UNINIT;
6796 		if (arg_type & MEM_FIXED_SIZE) {
6797 			err = check_helper_mem_access(env, regno,
6798 						      fn->arg_size[arg], false,
6799 						      meta);
6800 		}
6801 		break;
6802 	case ARG_CONST_SIZE:
6803 		err = check_mem_size_reg(env, reg, regno, false, meta);
6804 		break;
6805 	case ARG_CONST_SIZE_OR_ZERO:
6806 		err = check_mem_size_reg(env, reg, regno, true, meta);
6807 		break;
6808 	case ARG_PTR_TO_DYNPTR:
6809 		err = process_dynptr_func(env, regno, arg_type, meta);
6810 		if (err)
6811 			return err;
6812 		break;
6813 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6814 		if (!tnum_is_const(reg->var_off)) {
6815 			verbose(env, "R%d is not a known constant'\n",
6816 				regno);
6817 			return -EACCES;
6818 		}
6819 		meta->mem_size = reg->var_off.value;
6820 		err = mark_chain_precision(env, regno);
6821 		if (err)
6822 			return err;
6823 		break;
6824 	case ARG_PTR_TO_INT:
6825 	case ARG_PTR_TO_LONG:
6826 	{
6827 		int size = int_ptr_type_to_size(arg_type);
6828 
6829 		err = check_helper_mem_access(env, regno, size, false, meta);
6830 		if (err)
6831 			return err;
6832 		err = check_ptr_alignment(env, reg, 0, size, true);
6833 		break;
6834 	}
6835 	case ARG_PTR_TO_CONST_STR:
6836 	{
6837 		struct bpf_map *map = reg->map_ptr;
6838 		int map_off;
6839 		u64 map_addr;
6840 		char *str_ptr;
6841 
6842 		if (!bpf_map_is_rdonly(map)) {
6843 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6844 			return -EACCES;
6845 		}
6846 
6847 		if (!tnum_is_const(reg->var_off)) {
6848 			verbose(env, "R%d is not a constant address'\n", regno);
6849 			return -EACCES;
6850 		}
6851 
6852 		if (!map->ops->map_direct_value_addr) {
6853 			verbose(env, "no direct value access support for this map type\n");
6854 			return -EACCES;
6855 		}
6856 
6857 		err = check_map_access(env, regno, reg->off,
6858 				       map->value_size - reg->off, false,
6859 				       ACCESS_HELPER);
6860 		if (err)
6861 			return err;
6862 
6863 		map_off = reg->off + reg->var_off.value;
6864 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6865 		if (err) {
6866 			verbose(env, "direct value access on string failed\n");
6867 			return err;
6868 		}
6869 
6870 		str_ptr = (char *)(long)(map_addr);
6871 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6872 			verbose(env, "string is not zero-terminated\n");
6873 			return -EINVAL;
6874 		}
6875 		break;
6876 	}
6877 	case ARG_PTR_TO_KPTR:
6878 		err = process_kptr_func(env, regno, meta);
6879 		if (err)
6880 			return err;
6881 		break;
6882 	}
6883 
6884 	return err;
6885 }
6886 
6887 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6888 {
6889 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6890 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6891 
6892 	if (func_id != BPF_FUNC_map_update_elem)
6893 		return false;
6894 
6895 	/* It's not possible to get access to a locked struct sock in these
6896 	 * contexts, so updating is safe.
6897 	 */
6898 	switch (type) {
6899 	case BPF_PROG_TYPE_TRACING:
6900 		if (eatype == BPF_TRACE_ITER)
6901 			return true;
6902 		break;
6903 	case BPF_PROG_TYPE_SOCKET_FILTER:
6904 	case BPF_PROG_TYPE_SCHED_CLS:
6905 	case BPF_PROG_TYPE_SCHED_ACT:
6906 	case BPF_PROG_TYPE_XDP:
6907 	case BPF_PROG_TYPE_SK_REUSEPORT:
6908 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6909 	case BPF_PROG_TYPE_SK_LOOKUP:
6910 		return true;
6911 	default:
6912 		break;
6913 	}
6914 
6915 	verbose(env, "cannot update sockmap in this context\n");
6916 	return false;
6917 }
6918 
6919 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6920 {
6921 	return env->prog->jit_requested &&
6922 	       bpf_jit_supports_subprog_tailcalls();
6923 }
6924 
6925 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6926 					struct bpf_map *map, int func_id)
6927 {
6928 	if (!map)
6929 		return 0;
6930 
6931 	/* We need a two way check, first is from map perspective ... */
6932 	switch (map->map_type) {
6933 	case BPF_MAP_TYPE_PROG_ARRAY:
6934 		if (func_id != BPF_FUNC_tail_call)
6935 			goto error;
6936 		break;
6937 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6938 		if (func_id != BPF_FUNC_perf_event_read &&
6939 		    func_id != BPF_FUNC_perf_event_output &&
6940 		    func_id != BPF_FUNC_skb_output &&
6941 		    func_id != BPF_FUNC_perf_event_read_value &&
6942 		    func_id != BPF_FUNC_xdp_output)
6943 			goto error;
6944 		break;
6945 	case BPF_MAP_TYPE_RINGBUF:
6946 		if (func_id != BPF_FUNC_ringbuf_output &&
6947 		    func_id != BPF_FUNC_ringbuf_reserve &&
6948 		    func_id != BPF_FUNC_ringbuf_query &&
6949 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6950 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6951 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6952 			goto error;
6953 		break;
6954 	case BPF_MAP_TYPE_USER_RINGBUF:
6955 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6956 			goto error;
6957 		break;
6958 	case BPF_MAP_TYPE_STACK_TRACE:
6959 		if (func_id != BPF_FUNC_get_stackid)
6960 			goto error;
6961 		break;
6962 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6963 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6964 		    func_id != BPF_FUNC_current_task_under_cgroup)
6965 			goto error;
6966 		break;
6967 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6968 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6969 		if (func_id != BPF_FUNC_get_local_storage)
6970 			goto error;
6971 		break;
6972 	case BPF_MAP_TYPE_DEVMAP:
6973 	case BPF_MAP_TYPE_DEVMAP_HASH:
6974 		if (func_id != BPF_FUNC_redirect_map &&
6975 		    func_id != BPF_FUNC_map_lookup_elem)
6976 			goto error;
6977 		break;
6978 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6979 	 * appear.
6980 	 */
6981 	case BPF_MAP_TYPE_CPUMAP:
6982 		if (func_id != BPF_FUNC_redirect_map)
6983 			goto error;
6984 		break;
6985 	case BPF_MAP_TYPE_XSKMAP:
6986 		if (func_id != BPF_FUNC_redirect_map &&
6987 		    func_id != BPF_FUNC_map_lookup_elem)
6988 			goto error;
6989 		break;
6990 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6991 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6992 		if (func_id != BPF_FUNC_map_lookup_elem)
6993 			goto error;
6994 		break;
6995 	case BPF_MAP_TYPE_SOCKMAP:
6996 		if (func_id != BPF_FUNC_sk_redirect_map &&
6997 		    func_id != BPF_FUNC_sock_map_update &&
6998 		    func_id != BPF_FUNC_map_delete_elem &&
6999 		    func_id != BPF_FUNC_msg_redirect_map &&
7000 		    func_id != BPF_FUNC_sk_select_reuseport &&
7001 		    func_id != BPF_FUNC_map_lookup_elem &&
7002 		    !may_update_sockmap(env, func_id))
7003 			goto error;
7004 		break;
7005 	case BPF_MAP_TYPE_SOCKHASH:
7006 		if (func_id != BPF_FUNC_sk_redirect_hash &&
7007 		    func_id != BPF_FUNC_sock_hash_update &&
7008 		    func_id != BPF_FUNC_map_delete_elem &&
7009 		    func_id != BPF_FUNC_msg_redirect_hash &&
7010 		    func_id != BPF_FUNC_sk_select_reuseport &&
7011 		    func_id != BPF_FUNC_map_lookup_elem &&
7012 		    !may_update_sockmap(env, func_id))
7013 			goto error;
7014 		break;
7015 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7016 		if (func_id != BPF_FUNC_sk_select_reuseport)
7017 			goto error;
7018 		break;
7019 	case BPF_MAP_TYPE_QUEUE:
7020 	case BPF_MAP_TYPE_STACK:
7021 		if (func_id != BPF_FUNC_map_peek_elem &&
7022 		    func_id != BPF_FUNC_map_pop_elem &&
7023 		    func_id != BPF_FUNC_map_push_elem)
7024 			goto error;
7025 		break;
7026 	case BPF_MAP_TYPE_SK_STORAGE:
7027 		if (func_id != BPF_FUNC_sk_storage_get &&
7028 		    func_id != BPF_FUNC_sk_storage_delete)
7029 			goto error;
7030 		break;
7031 	case BPF_MAP_TYPE_INODE_STORAGE:
7032 		if (func_id != BPF_FUNC_inode_storage_get &&
7033 		    func_id != BPF_FUNC_inode_storage_delete)
7034 			goto error;
7035 		break;
7036 	case BPF_MAP_TYPE_TASK_STORAGE:
7037 		if (func_id != BPF_FUNC_task_storage_get &&
7038 		    func_id != BPF_FUNC_task_storage_delete)
7039 			goto error;
7040 		break;
7041 	case BPF_MAP_TYPE_CGRP_STORAGE:
7042 		if (func_id != BPF_FUNC_cgrp_storage_get &&
7043 		    func_id != BPF_FUNC_cgrp_storage_delete)
7044 			goto error;
7045 		break;
7046 	case BPF_MAP_TYPE_BLOOM_FILTER:
7047 		if (func_id != BPF_FUNC_map_peek_elem &&
7048 		    func_id != BPF_FUNC_map_push_elem)
7049 			goto error;
7050 		break;
7051 	default:
7052 		break;
7053 	}
7054 
7055 	/* ... and second from the function itself. */
7056 	switch (func_id) {
7057 	case BPF_FUNC_tail_call:
7058 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7059 			goto error;
7060 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7061 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
7062 			return -EINVAL;
7063 		}
7064 		break;
7065 	case BPF_FUNC_perf_event_read:
7066 	case BPF_FUNC_perf_event_output:
7067 	case BPF_FUNC_perf_event_read_value:
7068 	case BPF_FUNC_skb_output:
7069 	case BPF_FUNC_xdp_output:
7070 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7071 			goto error;
7072 		break;
7073 	case BPF_FUNC_ringbuf_output:
7074 	case BPF_FUNC_ringbuf_reserve:
7075 	case BPF_FUNC_ringbuf_query:
7076 	case BPF_FUNC_ringbuf_reserve_dynptr:
7077 	case BPF_FUNC_ringbuf_submit_dynptr:
7078 	case BPF_FUNC_ringbuf_discard_dynptr:
7079 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7080 			goto error;
7081 		break;
7082 	case BPF_FUNC_user_ringbuf_drain:
7083 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7084 			goto error;
7085 		break;
7086 	case BPF_FUNC_get_stackid:
7087 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7088 			goto error;
7089 		break;
7090 	case BPF_FUNC_current_task_under_cgroup:
7091 	case BPF_FUNC_skb_under_cgroup:
7092 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7093 			goto error;
7094 		break;
7095 	case BPF_FUNC_redirect_map:
7096 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
7097 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
7098 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
7099 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
7100 			goto error;
7101 		break;
7102 	case BPF_FUNC_sk_redirect_map:
7103 	case BPF_FUNC_msg_redirect_map:
7104 	case BPF_FUNC_sock_map_update:
7105 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7106 			goto error;
7107 		break;
7108 	case BPF_FUNC_sk_redirect_hash:
7109 	case BPF_FUNC_msg_redirect_hash:
7110 	case BPF_FUNC_sock_hash_update:
7111 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
7112 			goto error;
7113 		break;
7114 	case BPF_FUNC_get_local_storage:
7115 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7116 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
7117 			goto error;
7118 		break;
7119 	case BPF_FUNC_sk_select_reuseport:
7120 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7121 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7122 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
7123 			goto error;
7124 		break;
7125 	case BPF_FUNC_map_pop_elem:
7126 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7127 		    map->map_type != BPF_MAP_TYPE_STACK)
7128 			goto error;
7129 		break;
7130 	case BPF_FUNC_map_peek_elem:
7131 	case BPF_FUNC_map_push_elem:
7132 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7133 		    map->map_type != BPF_MAP_TYPE_STACK &&
7134 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7135 			goto error;
7136 		break;
7137 	case BPF_FUNC_map_lookup_percpu_elem:
7138 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7139 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7140 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7141 			goto error;
7142 		break;
7143 	case BPF_FUNC_sk_storage_get:
7144 	case BPF_FUNC_sk_storage_delete:
7145 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7146 			goto error;
7147 		break;
7148 	case BPF_FUNC_inode_storage_get:
7149 	case BPF_FUNC_inode_storage_delete:
7150 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
7151 			goto error;
7152 		break;
7153 	case BPF_FUNC_task_storage_get:
7154 	case BPF_FUNC_task_storage_delete:
7155 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
7156 			goto error;
7157 		break;
7158 	case BPF_FUNC_cgrp_storage_get:
7159 	case BPF_FUNC_cgrp_storage_delete:
7160 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
7161 			goto error;
7162 		break;
7163 	default:
7164 		break;
7165 	}
7166 
7167 	return 0;
7168 error:
7169 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
7170 		map->map_type, func_id_name(func_id), func_id);
7171 	return -EINVAL;
7172 }
7173 
7174 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
7175 {
7176 	int count = 0;
7177 
7178 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
7179 		count++;
7180 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
7181 		count++;
7182 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
7183 		count++;
7184 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
7185 		count++;
7186 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
7187 		count++;
7188 
7189 	/* We only support one arg being in raw mode at the moment,
7190 	 * which is sufficient for the helper functions we have
7191 	 * right now.
7192 	 */
7193 	return count <= 1;
7194 }
7195 
7196 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
7197 {
7198 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
7199 	bool has_size = fn->arg_size[arg] != 0;
7200 	bool is_next_size = false;
7201 
7202 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
7203 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
7204 
7205 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
7206 		return is_next_size;
7207 
7208 	return has_size == is_next_size || is_next_size == is_fixed;
7209 }
7210 
7211 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
7212 {
7213 	/* bpf_xxx(..., buf, len) call will access 'len'
7214 	 * bytes from memory 'buf'. Both arg types need
7215 	 * to be paired, so make sure there's no buggy
7216 	 * helper function specification.
7217 	 */
7218 	if (arg_type_is_mem_size(fn->arg1_type) ||
7219 	    check_args_pair_invalid(fn, 0) ||
7220 	    check_args_pair_invalid(fn, 1) ||
7221 	    check_args_pair_invalid(fn, 2) ||
7222 	    check_args_pair_invalid(fn, 3) ||
7223 	    check_args_pair_invalid(fn, 4))
7224 		return false;
7225 
7226 	return true;
7227 }
7228 
7229 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
7230 {
7231 	int i;
7232 
7233 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
7234 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
7235 			return !!fn->arg_btf_id[i];
7236 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
7237 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
7238 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
7239 		    /* arg_btf_id and arg_size are in a union. */
7240 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
7241 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
7242 			return false;
7243 	}
7244 
7245 	return true;
7246 }
7247 
7248 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
7249 {
7250 	return check_raw_mode_ok(fn) &&
7251 	       check_arg_pair_ok(fn) &&
7252 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
7253 }
7254 
7255 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
7256  * are now invalid, so turn them into unknown SCALAR_VALUE.
7257  */
7258 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
7259 {
7260 	struct bpf_func_state *state;
7261 	struct bpf_reg_state *reg;
7262 
7263 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7264 		if (reg_is_pkt_pointer_any(reg))
7265 			__mark_reg_unknown(env, reg);
7266 	}));
7267 }
7268 
7269 enum {
7270 	AT_PKT_END = -1,
7271 	BEYOND_PKT_END = -2,
7272 };
7273 
7274 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
7275 {
7276 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7277 	struct bpf_reg_state *reg = &state->regs[regn];
7278 
7279 	if (reg->type != PTR_TO_PACKET)
7280 		/* PTR_TO_PACKET_META is not supported yet */
7281 		return;
7282 
7283 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
7284 	 * How far beyond pkt_end it goes is unknown.
7285 	 * if (!range_open) it's the case of pkt >= pkt_end
7286 	 * if (range_open) it's the case of pkt > pkt_end
7287 	 * hence this pointer is at least 1 byte bigger than pkt_end
7288 	 */
7289 	if (range_open)
7290 		reg->range = BEYOND_PKT_END;
7291 	else
7292 		reg->range = AT_PKT_END;
7293 }
7294 
7295 /* The pointer with the specified id has released its reference to kernel
7296  * resources. Identify all copies of the same pointer and clear the reference.
7297  */
7298 static int release_reference(struct bpf_verifier_env *env,
7299 			     int ref_obj_id)
7300 {
7301 	struct bpf_func_state *state;
7302 	struct bpf_reg_state *reg;
7303 	int err;
7304 
7305 	err = release_reference_state(cur_func(env), ref_obj_id);
7306 	if (err)
7307 		return err;
7308 
7309 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
7310 		if (reg->ref_obj_id == ref_obj_id) {
7311 			if (!env->allow_ptr_leaks)
7312 				__mark_reg_not_init(env, reg);
7313 			else
7314 				__mark_reg_unknown(env, reg);
7315 		}
7316 	}));
7317 
7318 	return 0;
7319 }
7320 
7321 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
7322 				    struct bpf_reg_state *regs)
7323 {
7324 	int i;
7325 
7326 	/* after the call registers r0 - r5 were scratched */
7327 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7328 		mark_reg_not_init(env, regs, caller_saved[i]);
7329 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7330 	}
7331 }
7332 
7333 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
7334 				   struct bpf_func_state *caller,
7335 				   struct bpf_func_state *callee,
7336 				   int insn_idx);
7337 
7338 static int set_callee_state(struct bpf_verifier_env *env,
7339 			    struct bpf_func_state *caller,
7340 			    struct bpf_func_state *callee, int insn_idx);
7341 
7342 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7343 			     int *insn_idx, int subprog,
7344 			     set_callee_state_fn set_callee_state_cb)
7345 {
7346 	struct bpf_verifier_state *state = env->cur_state;
7347 	struct bpf_func_info_aux *func_info_aux;
7348 	struct bpf_func_state *caller, *callee;
7349 	int err;
7350 	bool is_global = false;
7351 
7352 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
7353 		verbose(env, "the call stack of %d frames is too deep\n",
7354 			state->curframe + 2);
7355 		return -E2BIG;
7356 	}
7357 
7358 	caller = state->frame[state->curframe];
7359 	if (state->frame[state->curframe + 1]) {
7360 		verbose(env, "verifier bug. Frame %d already allocated\n",
7361 			state->curframe + 1);
7362 		return -EFAULT;
7363 	}
7364 
7365 	func_info_aux = env->prog->aux->func_info_aux;
7366 	if (func_info_aux)
7367 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
7368 	err = btf_check_subprog_call(env, subprog, caller->regs);
7369 	if (err == -EFAULT)
7370 		return err;
7371 	if (is_global) {
7372 		if (err) {
7373 			verbose(env, "Caller passes invalid args into func#%d\n",
7374 				subprog);
7375 			return err;
7376 		} else {
7377 			if (env->log.level & BPF_LOG_LEVEL)
7378 				verbose(env,
7379 					"Func#%d is global and valid. Skipping.\n",
7380 					subprog);
7381 			clear_caller_saved_regs(env, caller->regs);
7382 
7383 			/* All global functions return a 64-bit SCALAR_VALUE */
7384 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
7385 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7386 
7387 			/* continue with next insn after call */
7388 			return 0;
7389 		}
7390 	}
7391 
7392 	/* set_callee_state is used for direct subprog calls, but we are
7393 	 * interested in validating only BPF helpers that can call subprogs as
7394 	 * callbacks
7395 	 */
7396 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7397 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7398 			func_id_name(insn->imm), insn->imm);
7399 		return -EFAULT;
7400 	}
7401 
7402 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7403 	    insn->src_reg == 0 &&
7404 	    insn->imm == BPF_FUNC_timer_set_callback) {
7405 		struct bpf_verifier_state *async_cb;
7406 
7407 		/* there is no real recursion here. timer callbacks are async */
7408 		env->subprog_info[subprog].is_async_cb = true;
7409 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7410 					 *insn_idx, subprog);
7411 		if (!async_cb)
7412 			return -EFAULT;
7413 		callee = async_cb->frame[0];
7414 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7415 
7416 		/* Convert bpf_timer_set_callback() args into timer callback args */
7417 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7418 		if (err)
7419 			return err;
7420 
7421 		clear_caller_saved_regs(env, caller->regs);
7422 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7423 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7424 		/* continue with next insn after call */
7425 		return 0;
7426 	}
7427 
7428 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7429 	if (!callee)
7430 		return -ENOMEM;
7431 	state->frame[state->curframe + 1] = callee;
7432 
7433 	/* callee cannot access r0, r6 - r9 for reading and has to write
7434 	 * into its own stack before reading from it.
7435 	 * callee can read/write into caller's stack
7436 	 */
7437 	init_func_state(env, callee,
7438 			/* remember the callsite, it will be used by bpf_exit */
7439 			*insn_idx /* callsite */,
7440 			state->curframe + 1 /* frameno within this callchain */,
7441 			subprog /* subprog number within this prog */);
7442 
7443 	/* Transfer references to the callee */
7444 	err = copy_reference_state(callee, caller);
7445 	if (err)
7446 		goto err_out;
7447 
7448 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7449 	if (err)
7450 		goto err_out;
7451 
7452 	clear_caller_saved_regs(env, caller->regs);
7453 
7454 	/* only increment it after check_reg_arg() finished */
7455 	state->curframe++;
7456 
7457 	/* and go analyze first insn of the callee */
7458 	*insn_idx = env->subprog_info[subprog].start - 1;
7459 
7460 	if (env->log.level & BPF_LOG_LEVEL) {
7461 		verbose(env, "caller:\n");
7462 		print_verifier_state(env, caller, true);
7463 		verbose(env, "callee:\n");
7464 		print_verifier_state(env, callee, true);
7465 	}
7466 	return 0;
7467 
7468 err_out:
7469 	free_func_state(callee);
7470 	state->frame[state->curframe + 1] = NULL;
7471 	return err;
7472 }
7473 
7474 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7475 				   struct bpf_func_state *caller,
7476 				   struct bpf_func_state *callee)
7477 {
7478 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7479 	 *      void *callback_ctx, u64 flags);
7480 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7481 	 *      void *callback_ctx);
7482 	 */
7483 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7484 
7485 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7486 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7487 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7488 
7489 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7490 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7491 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7492 
7493 	/* pointer to stack or null */
7494 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7495 
7496 	/* unused */
7497 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7498 	return 0;
7499 }
7500 
7501 static int set_callee_state(struct bpf_verifier_env *env,
7502 			    struct bpf_func_state *caller,
7503 			    struct bpf_func_state *callee, int insn_idx)
7504 {
7505 	int i;
7506 
7507 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7508 	 * pointers, which connects us up to the liveness chain
7509 	 */
7510 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7511 		callee->regs[i] = caller->regs[i];
7512 	return 0;
7513 }
7514 
7515 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7516 			   int *insn_idx)
7517 {
7518 	int subprog, target_insn;
7519 
7520 	target_insn = *insn_idx + insn->imm + 1;
7521 	subprog = find_subprog(env, target_insn);
7522 	if (subprog < 0) {
7523 		verbose(env, "verifier bug. No program starts at insn %d\n",
7524 			target_insn);
7525 		return -EFAULT;
7526 	}
7527 
7528 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7529 }
7530 
7531 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7532 				       struct bpf_func_state *caller,
7533 				       struct bpf_func_state *callee,
7534 				       int insn_idx)
7535 {
7536 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7537 	struct bpf_map *map;
7538 	int err;
7539 
7540 	if (bpf_map_ptr_poisoned(insn_aux)) {
7541 		verbose(env, "tail_call abusing map_ptr\n");
7542 		return -EINVAL;
7543 	}
7544 
7545 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7546 	if (!map->ops->map_set_for_each_callback_args ||
7547 	    !map->ops->map_for_each_callback) {
7548 		verbose(env, "callback function not allowed for map\n");
7549 		return -ENOTSUPP;
7550 	}
7551 
7552 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7553 	if (err)
7554 		return err;
7555 
7556 	callee->in_callback_fn = true;
7557 	callee->callback_ret_range = tnum_range(0, 1);
7558 	return 0;
7559 }
7560 
7561 static int set_loop_callback_state(struct bpf_verifier_env *env,
7562 				   struct bpf_func_state *caller,
7563 				   struct bpf_func_state *callee,
7564 				   int insn_idx)
7565 {
7566 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7567 	 *	    u64 flags);
7568 	 * callback_fn(u32 index, void *callback_ctx);
7569 	 */
7570 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7571 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7572 
7573 	/* unused */
7574 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7575 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7576 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7577 
7578 	callee->in_callback_fn = true;
7579 	callee->callback_ret_range = tnum_range(0, 1);
7580 	return 0;
7581 }
7582 
7583 static int set_timer_callback_state(struct bpf_verifier_env *env,
7584 				    struct bpf_func_state *caller,
7585 				    struct bpf_func_state *callee,
7586 				    int insn_idx)
7587 {
7588 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7589 
7590 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7591 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7592 	 */
7593 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7594 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7595 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7596 
7597 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7598 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7599 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7600 
7601 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7602 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7603 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7604 
7605 	/* unused */
7606 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7607 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7608 	callee->in_async_callback_fn = true;
7609 	callee->callback_ret_range = tnum_range(0, 1);
7610 	return 0;
7611 }
7612 
7613 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7614 				       struct bpf_func_state *caller,
7615 				       struct bpf_func_state *callee,
7616 				       int insn_idx)
7617 {
7618 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7619 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7620 	 * (callback_fn)(struct task_struct *task,
7621 	 *               struct vm_area_struct *vma, void *callback_ctx);
7622 	 */
7623 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7624 
7625 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7626 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7627 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7628 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7629 
7630 	/* pointer to stack or null */
7631 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7632 
7633 	/* unused */
7634 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7635 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7636 	callee->in_callback_fn = true;
7637 	callee->callback_ret_range = tnum_range(0, 1);
7638 	return 0;
7639 }
7640 
7641 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7642 					   struct bpf_func_state *caller,
7643 					   struct bpf_func_state *callee,
7644 					   int insn_idx)
7645 {
7646 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7647 	 *			  callback_ctx, u64 flags);
7648 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
7649 	 */
7650 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7651 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
7652 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7653 
7654 	/* unused */
7655 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7656 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7657 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7658 
7659 	callee->in_callback_fn = true;
7660 	callee->callback_ret_range = tnum_range(0, 1);
7661 	return 0;
7662 }
7663 
7664 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7665 {
7666 	struct bpf_verifier_state *state = env->cur_state;
7667 	struct bpf_func_state *caller, *callee;
7668 	struct bpf_reg_state *r0;
7669 	int err;
7670 
7671 	callee = state->frame[state->curframe];
7672 	r0 = &callee->regs[BPF_REG_0];
7673 	if (r0->type == PTR_TO_STACK) {
7674 		/* technically it's ok to return caller's stack pointer
7675 		 * (or caller's caller's pointer) back to the caller,
7676 		 * since these pointers are valid. Only current stack
7677 		 * pointer will be invalid as soon as function exits,
7678 		 * but let's be conservative
7679 		 */
7680 		verbose(env, "cannot return stack pointer to the caller\n");
7681 		return -EINVAL;
7682 	}
7683 
7684 	caller = state->frame[state->curframe - 1];
7685 	if (callee->in_callback_fn) {
7686 		/* enforce R0 return value range [0, 1]. */
7687 		struct tnum range = callee->callback_ret_range;
7688 
7689 		if (r0->type != SCALAR_VALUE) {
7690 			verbose(env, "R0 not a scalar value\n");
7691 			return -EACCES;
7692 		}
7693 		if (!tnum_in(range, r0->var_off)) {
7694 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7695 			return -EINVAL;
7696 		}
7697 	} else {
7698 		/* return to the caller whatever r0 had in the callee */
7699 		caller->regs[BPF_REG_0] = *r0;
7700 	}
7701 
7702 	/* callback_fn frame should have released its own additions to parent's
7703 	 * reference state at this point, or check_reference_leak would
7704 	 * complain, hence it must be the same as the caller. There is no need
7705 	 * to copy it back.
7706 	 */
7707 	if (!callee->in_callback_fn) {
7708 		/* Transfer references to the caller */
7709 		err = copy_reference_state(caller, callee);
7710 		if (err)
7711 			return err;
7712 	}
7713 
7714 	*insn_idx = callee->callsite + 1;
7715 	if (env->log.level & BPF_LOG_LEVEL) {
7716 		verbose(env, "returning from callee:\n");
7717 		print_verifier_state(env, callee, true);
7718 		verbose(env, "to caller at %d:\n", *insn_idx);
7719 		print_verifier_state(env, caller, true);
7720 	}
7721 	/* clear everything in the callee */
7722 	free_func_state(callee);
7723 	state->frame[state->curframe--] = NULL;
7724 	return 0;
7725 }
7726 
7727 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7728 				   int func_id,
7729 				   struct bpf_call_arg_meta *meta)
7730 {
7731 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7732 
7733 	if (ret_type != RET_INTEGER ||
7734 	    (func_id != BPF_FUNC_get_stack &&
7735 	     func_id != BPF_FUNC_get_task_stack &&
7736 	     func_id != BPF_FUNC_probe_read_str &&
7737 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7738 	     func_id != BPF_FUNC_probe_read_user_str))
7739 		return;
7740 
7741 	ret_reg->smax_value = meta->msize_max_value;
7742 	ret_reg->s32_max_value = meta->msize_max_value;
7743 	ret_reg->smin_value = -MAX_ERRNO;
7744 	ret_reg->s32_min_value = -MAX_ERRNO;
7745 	reg_bounds_sync(ret_reg);
7746 }
7747 
7748 static int
7749 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7750 		int func_id, int insn_idx)
7751 {
7752 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7753 	struct bpf_map *map = meta->map_ptr;
7754 
7755 	if (func_id != BPF_FUNC_tail_call &&
7756 	    func_id != BPF_FUNC_map_lookup_elem &&
7757 	    func_id != BPF_FUNC_map_update_elem &&
7758 	    func_id != BPF_FUNC_map_delete_elem &&
7759 	    func_id != BPF_FUNC_map_push_elem &&
7760 	    func_id != BPF_FUNC_map_pop_elem &&
7761 	    func_id != BPF_FUNC_map_peek_elem &&
7762 	    func_id != BPF_FUNC_for_each_map_elem &&
7763 	    func_id != BPF_FUNC_redirect_map &&
7764 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7765 		return 0;
7766 
7767 	if (map == NULL) {
7768 		verbose(env, "kernel subsystem misconfigured verifier\n");
7769 		return -EINVAL;
7770 	}
7771 
7772 	/* In case of read-only, some additional restrictions
7773 	 * need to be applied in order to prevent altering the
7774 	 * state of the map from program side.
7775 	 */
7776 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7777 	    (func_id == BPF_FUNC_map_delete_elem ||
7778 	     func_id == BPF_FUNC_map_update_elem ||
7779 	     func_id == BPF_FUNC_map_push_elem ||
7780 	     func_id == BPF_FUNC_map_pop_elem)) {
7781 		verbose(env, "write into map forbidden\n");
7782 		return -EACCES;
7783 	}
7784 
7785 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7786 		bpf_map_ptr_store(aux, meta->map_ptr,
7787 				  !meta->map_ptr->bypass_spec_v1);
7788 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7789 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7790 				  !meta->map_ptr->bypass_spec_v1);
7791 	return 0;
7792 }
7793 
7794 static int
7795 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7796 		int func_id, int insn_idx)
7797 {
7798 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7799 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7800 	struct bpf_map *map = meta->map_ptr;
7801 	u64 val, max;
7802 	int err;
7803 
7804 	if (func_id != BPF_FUNC_tail_call)
7805 		return 0;
7806 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7807 		verbose(env, "kernel subsystem misconfigured verifier\n");
7808 		return -EINVAL;
7809 	}
7810 
7811 	reg = &regs[BPF_REG_3];
7812 	val = reg->var_off.value;
7813 	max = map->max_entries;
7814 
7815 	if (!(register_is_const(reg) && val < max)) {
7816 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7817 		return 0;
7818 	}
7819 
7820 	err = mark_chain_precision(env, BPF_REG_3);
7821 	if (err)
7822 		return err;
7823 	if (bpf_map_key_unseen(aux))
7824 		bpf_map_key_store(aux, val);
7825 	else if (!bpf_map_key_poisoned(aux) &&
7826 		  bpf_map_key_immediate(aux) != val)
7827 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7828 	return 0;
7829 }
7830 
7831 static int check_reference_leak(struct bpf_verifier_env *env)
7832 {
7833 	struct bpf_func_state *state = cur_func(env);
7834 	bool refs_lingering = false;
7835 	int i;
7836 
7837 	if (state->frameno && !state->in_callback_fn)
7838 		return 0;
7839 
7840 	for (i = 0; i < state->acquired_refs; i++) {
7841 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7842 			continue;
7843 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7844 			state->refs[i].id, state->refs[i].insn_idx);
7845 		refs_lingering = true;
7846 	}
7847 	return refs_lingering ? -EINVAL : 0;
7848 }
7849 
7850 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7851 				   struct bpf_reg_state *regs)
7852 {
7853 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7854 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7855 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7856 	struct bpf_bprintf_data data = {};
7857 	int err, fmt_map_off, num_args;
7858 	u64 fmt_addr;
7859 	char *fmt;
7860 
7861 	/* data must be an array of u64 */
7862 	if (data_len_reg->var_off.value % 8)
7863 		return -EINVAL;
7864 	num_args = data_len_reg->var_off.value / 8;
7865 
7866 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7867 	 * and map_direct_value_addr is set.
7868 	 */
7869 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7870 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7871 						  fmt_map_off);
7872 	if (err) {
7873 		verbose(env, "verifier bug\n");
7874 		return -EFAULT;
7875 	}
7876 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7877 
7878 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7879 	 * can focus on validating the format specifiers.
7880 	 */
7881 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7882 	if (err < 0)
7883 		verbose(env, "Invalid format string\n");
7884 
7885 	return err;
7886 }
7887 
7888 static int check_get_func_ip(struct bpf_verifier_env *env)
7889 {
7890 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7891 	int func_id = BPF_FUNC_get_func_ip;
7892 
7893 	if (type == BPF_PROG_TYPE_TRACING) {
7894 		if (!bpf_prog_has_trampoline(env->prog)) {
7895 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7896 				func_id_name(func_id), func_id);
7897 			return -ENOTSUPP;
7898 		}
7899 		return 0;
7900 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7901 		return 0;
7902 	}
7903 
7904 	verbose(env, "func %s#%d not supported for program type %d\n",
7905 		func_id_name(func_id), func_id, type);
7906 	return -ENOTSUPP;
7907 }
7908 
7909 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7910 {
7911 	return &env->insn_aux_data[env->insn_idx];
7912 }
7913 
7914 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7915 {
7916 	struct bpf_reg_state *regs = cur_regs(env);
7917 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7918 	bool reg_is_null = register_is_null(reg);
7919 
7920 	if (reg_is_null)
7921 		mark_chain_precision(env, BPF_REG_4);
7922 
7923 	return reg_is_null;
7924 }
7925 
7926 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7927 {
7928 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7929 
7930 	if (!state->initialized) {
7931 		state->initialized = 1;
7932 		state->fit_for_inline = loop_flag_is_zero(env);
7933 		state->callback_subprogno = subprogno;
7934 		return;
7935 	}
7936 
7937 	if (!state->fit_for_inline)
7938 		return;
7939 
7940 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7941 				 state->callback_subprogno == subprogno);
7942 }
7943 
7944 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7945 			     int *insn_idx_p)
7946 {
7947 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7948 	const struct bpf_func_proto *fn = NULL;
7949 	enum bpf_return_type ret_type;
7950 	enum bpf_type_flag ret_flag;
7951 	struct bpf_reg_state *regs;
7952 	struct bpf_call_arg_meta meta;
7953 	int insn_idx = *insn_idx_p;
7954 	bool changes_data;
7955 	int i, err, func_id;
7956 
7957 	/* find function prototype */
7958 	func_id = insn->imm;
7959 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7960 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7961 			func_id);
7962 		return -EINVAL;
7963 	}
7964 
7965 	if (env->ops->get_func_proto)
7966 		fn = env->ops->get_func_proto(func_id, env->prog);
7967 	if (!fn) {
7968 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7969 			func_id);
7970 		return -EINVAL;
7971 	}
7972 
7973 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7974 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7975 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7976 		return -EINVAL;
7977 	}
7978 
7979 	if (fn->allowed && !fn->allowed(env->prog)) {
7980 		verbose(env, "helper call is not allowed in probe\n");
7981 		return -EINVAL;
7982 	}
7983 
7984 	if (!env->prog->aux->sleepable && fn->might_sleep) {
7985 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
7986 		return -EINVAL;
7987 	}
7988 
7989 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7990 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7991 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7992 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7993 			func_id_name(func_id), func_id);
7994 		return -EINVAL;
7995 	}
7996 
7997 	memset(&meta, 0, sizeof(meta));
7998 	meta.pkt_access = fn->pkt_access;
7999 
8000 	err = check_func_proto(fn, func_id);
8001 	if (err) {
8002 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
8003 			func_id_name(func_id), func_id);
8004 		return err;
8005 	}
8006 
8007 	if (env->cur_state->active_rcu_lock) {
8008 		if (fn->might_sleep) {
8009 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8010 				func_id_name(func_id), func_id);
8011 			return -EINVAL;
8012 		}
8013 
8014 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8015 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8016 	}
8017 
8018 	meta.func_id = func_id;
8019 	/* check args */
8020 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8021 		err = check_func_arg(env, i, &meta, fn);
8022 		if (err)
8023 			return err;
8024 	}
8025 
8026 	err = record_func_map(env, &meta, func_id, insn_idx);
8027 	if (err)
8028 		return err;
8029 
8030 	err = record_func_key(env, &meta, func_id, insn_idx);
8031 	if (err)
8032 		return err;
8033 
8034 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
8035 	 * is inferred from register state.
8036 	 */
8037 	for (i = 0; i < meta.access_size; i++) {
8038 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8039 				       BPF_WRITE, -1, false);
8040 		if (err)
8041 			return err;
8042 	}
8043 
8044 	regs = cur_regs(env);
8045 
8046 	/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8047 	 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr
8048 	 * is safe to do directly.
8049 	 */
8050 	if (meta.uninit_dynptr_regno) {
8051 		if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) {
8052 			verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n");
8053 			return -EFAULT;
8054 		}
8055 		/* we write BPF_DW bits (8 bytes) at a time */
8056 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8057 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
8058 					       i, BPF_DW, BPF_WRITE, -1, false);
8059 			if (err)
8060 				return err;
8061 		}
8062 
8063 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
8064 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
8065 					      insn_idx);
8066 		if (err)
8067 			return err;
8068 	}
8069 
8070 	if (meta.release_regno) {
8071 		err = -EINVAL;
8072 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8073 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8074 		 * is safe to do directly.
8075 		 */
8076 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8077 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8078 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8079 				return -EFAULT;
8080 			}
8081 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
8082 		} else if (meta.ref_obj_id) {
8083 			err = release_reference(env, meta.ref_obj_id);
8084 		} else if (register_is_null(&regs[meta.release_regno])) {
8085 			/* meta.ref_obj_id can only be 0 if register that is meant to be
8086 			 * released is NULL, which must be > R0.
8087 			 */
8088 			err = 0;
8089 		}
8090 		if (err) {
8091 			verbose(env, "func %s#%d reference has not been acquired before\n",
8092 				func_id_name(func_id), func_id);
8093 			return err;
8094 		}
8095 	}
8096 
8097 	switch (func_id) {
8098 	case BPF_FUNC_tail_call:
8099 		err = check_reference_leak(env);
8100 		if (err) {
8101 			verbose(env, "tail_call would lead to reference leak\n");
8102 			return err;
8103 		}
8104 		break;
8105 	case BPF_FUNC_get_local_storage:
8106 		/* check that flags argument in get_local_storage(map, flags) is 0,
8107 		 * this is required because get_local_storage() can't return an error.
8108 		 */
8109 		if (!register_is_null(&regs[BPF_REG_2])) {
8110 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
8111 			return -EINVAL;
8112 		}
8113 		break;
8114 	case BPF_FUNC_for_each_map_elem:
8115 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8116 					set_map_elem_callback_state);
8117 		break;
8118 	case BPF_FUNC_timer_set_callback:
8119 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8120 					set_timer_callback_state);
8121 		break;
8122 	case BPF_FUNC_find_vma:
8123 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8124 					set_find_vma_callback_state);
8125 		break;
8126 	case BPF_FUNC_snprintf:
8127 		err = check_bpf_snprintf_call(env, regs);
8128 		break;
8129 	case BPF_FUNC_loop:
8130 		update_loop_inline_state(env, meta.subprogno);
8131 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8132 					set_loop_callback_state);
8133 		break;
8134 	case BPF_FUNC_dynptr_from_mem:
8135 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
8136 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
8137 				reg_type_str(env, regs[BPF_REG_1].type));
8138 			return -EACCES;
8139 		}
8140 		break;
8141 	case BPF_FUNC_set_retval:
8142 		if (prog_type == BPF_PROG_TYPE_LSM &&
8143 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
8144 			if (!env->prog->aux->attach_func_proto->type) {
8145 				/* Make sure programs that attach to void
8146 				 * hooks don't try to modify return value.
8147 				 */
8148 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
8149 				return -EINVAL;
8150 			}
8151 		}
8152 		break;
8153 	case BPF_FUNC_dynptr_data:
8154 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8155 			if (arg_type_is_dynptr(fn->arg_type[i])) {
8156 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
8157 				int id, ref_obj_id;
8158 
8159 				if (meta.dynptr_id) {
8160 					verbose(env, "verifier internal error: meta.dynptr_id already set\n");
8161 					return -EFAULT;
8162 				}
8163 
8164 				if (meta.ref_obj_id) {
8165 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
8166 					return -EFAULT;
8167 				}
8168 
8169 				id = dynptr_id(env, reg);
8170 				if (id < 0) {
8171 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
8172 					return id;
8173 				}
8174 
8175 				ref_obj_id = dynptr_ref_obj_id(env, reg);
8176 				if (ref_obj_id < 0) {
8177 					verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
8178 					return ref_obj_id;
8179 				}
8180 
8181 				meta.dynptr_id = id;
8182 				meta.ref_obj_id = ref_obj_id;
8183 				break;
8184 			}
8185 		}
8186 		if (i == MAX_BPF_FUNC_REG_ARGS) {
8187 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
8188 			return -EFAULT;
8189 		}
8190 		break;
8191 	case BPF_FUNC_user_ringbuf_drain:
8192 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
8193 					set_user_ringbuf_callback_state);
8194 		break;
8195 	}
8196 
8197 	if (err)
8198 		return err;
8199 
8200 	/* reset caller saved regs */
8201 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8202 		mark_reg_not_init(env, regs, caller_saved[i]);
8203 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8204 	}
8205 
8206 	/* helper call returns 64-bit value. */
8207 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8208 
8209 	/* update return register (already marked as written above) */
8210 	ret_type = fn->ret_type;
8211 	ret_flag = type_flag(ret_type);
8212 
8213 	switch (base_type(ret_type)) {
8214 	case RET_INTEGER:
8215 		/* sets type to SCALAR_VALUE */
8216 		mark_reg_unknown(env, regs, BPF_REG_0);
8217 		break;
8218 	case RET_VOID:
8219 		regs[BPF_REG_0].type = NOT_INIT;
8220 		break;
8221 	case RET_PTR_TO_MAP_VALUE:
8222 		/* There is no offset yet applied, variable or fixed */
8223 		mark_reg_known_zero(env, regs, BPF_REG_0);
8224 		/* remember map_ptr, so that check_map_access()
8225 		 * can check 'value_size' boundary of memory access
8226 		 * to map element returned from bpf_map_lookup_elem()
8227 		 */
8228 		if (meta.map_ptr == NULL) {
8229 			verbose(env,
8230 				"kernel subsystem misconfigured verifier\n");
8231 			return -EINVAL;
8232 		}
8233 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
8234 		regs[BPF_REG_0].map_uid = meta.map_uid;
8235 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
8236 		if (!type_may_be_null(ret_type) &&
8237 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
8238 			regs[BPF_REG_0].id = ++env->id_gen;
8239 		}
8240 		break;
8241 	case RET_PTR_TO_SOCKET:
8242 		mark_reg_known_zero(env, regs, BPF_REG_0);
8243 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
8244 		break;
8245 	case RET_PTR_TO_SOCK_COMMON:
8246 		mark_reg_known_zero(env, regs, BPF_REG_0);
8247 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
8248 		break;
8249 	case RET_PTR_TO_TCP_SOCK:
8250 		mark_reg_known_zero(env, regs, BPF_REG_0);
8251 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
8252 		break;
8253 	case RET_PTR_TO_MEM:
8254 		mark_reg_known_zero(env, regs, BPF_REG_0);
8255 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8256 		regs[BPF_REG_0].mem_size = meta.mem_size;
8257 		break;
8258 	case RET_PTR_TO_MEM_OR_BTF_ID:
8259 	{
8260 		const struct btf_type *t;
8261 
8262 		mark_reg_known_zero(env, regs, BPF_REG_0);
8263 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
8264 		if (!btf_type_is_struct(t)) {
8265 			u32 tsize;
8266 			const struct btf_type *ret;
8267 			const char *tname;
8268 
8269 			/* resolve the type size of ksym. */
8270 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
8271 			if (IS_ERR(ret)) {
8272 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
8273 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
8274 					tname, PTR_ERR(ret));
8275 				return -EINVAL;
8276 			}
8277 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
8278 			regs[BPF_REG_0].mem_size = tsize;
8279 		} else {
8280 			/* MEM_RDONLY may be carried from ret_flag, but it
8281 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
8282 			 * it will confuse the check of PTR_TO_BTF_ID in
8283 			 * check_mem_access().
8284 			 */
8285 			ret_flag &= ~MEM_RDONLY;
8286 
8287 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8288 			regs[BPF_REG_0].btf = meta.ret_btf;
8289 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
8290 		}
8291 		break;
8292 	}
8293 	case RET_PTR_TO_BTF_ID:
8294 	{
8295 		struct btf *ret_btf;
8296 		int ret_btf_id;
8297 
8298 		mark_reg_known_zero(env, regs, BPF_REG_0);
8299 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
8300 		if (func_id == BPF_FUNC_kptr_xchg) {
8301 			ret_btf = meta.kptr_field->kptr.btf;
8302 			ret_btf_id = meta.kptr_field->kptr.btf_id;
8303 		} else {
8304 			if (fn->ret_btf_id == BPF_PTR_POISON) {
8305 				verbose(env, "verifier internal error:");
8306 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
8307 					func_id_name(func_id));
8308 				return -EINVAL;
8309 			}
8310 			ret_btf = btf_vmlinux;
8311 			ret_btf_id = *fn->ret_btf_id;
8312 		}
8313 		if (ret_btf_id == 0) {
8314 			verbose(env, "invalid return type %u of func %s#%d\n",
8315 				base_type(ret_type), func_id_name(func_id),
8316 				func_id);
8317 			return -EINVAL;
8318 		}
8319 		regs[BPF_REG_0].btf = ret_btf;
8320 		regs[BPF_REG_0].btf_id = ret_btf_id;
8321 		break;
8322 	}
8323 	default:
8324 		verbose(env, "unknown return type %u of func %s#%d\n",
8325 			base_type(ret_type), func_id_name(func_id), func_id);
8326 		return -EINVAL;
8327 	}
8328 
8329 	if (type_may_be_null(regs[BPF_REG_0].type))
8330 		regs[BPF_REG_0].id = ++env->id_gen;
8331 
8332 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
8333 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
8334 			func_id_name(func_id), func_id);
8335 		return -EFAULT;
8336 	}
8337 
8338 	if (is_dynptr_ref_function(func_id))
8339 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
8340 
8341 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
8342 		/* For release_reference() */
8343 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8344 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
8345 		int id = acquire_reference_state(env, insn_idx);
8346 
8347 		if (id < 0)
8348 			return id;
8349 		/* For mark_ptr_or_null_reg() */
8350 		regs[BPF_REG_0].id = id;
8351 		/* For release_reference() */
8352 		regs[BPF_REG_0].ref_obj_id = id;
8353 	}
8354 
8355 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
8356 
8357 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
8358 	if (err)
8359 		return err;
8360 
8361 	if ((func_id == BPF_FUNC_get_stack ||
8362 	     func_id == BPF_FUNC_get_task_stack) &&
8363 	    !env->prog->has_callchain_buf) {
8364 		const char *err_str;
8365 
8366 #ifdef CONFIG_PERF_EVENTS
8367 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
8368 		err_str = "cannot get callchain buffer for func %s#%d\n";
8369 #else
8370 		err = -ENOTSUPP;
8371 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
8372 #endif
8373 		if (err) {
8374 			verbose(env, err_str, func_id_name(func_id), func_id);
8375 			return err;
8376 		}
8377 
8378 		env->prog->has_callchain_buf = true;
8379 	}
8380 
8381 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
8382 		env->prog->call_get_stack = true;
8383 
8384 	if (func_id == BPF_FUNC_get_func_ip) {
8385 		if (check_get_func_ip(env))
8386 			return -ENOTSUPP;
8387 		env->prog->call_get_func_ip = true;
8388 	}
8389 
8390 	if (changes_data)
8391 		clear_all_pkt_pointers(env);
8392 	return 0;
8393 }
8394 
8395 /* mark_btf_func_reg_size() is used when the reg size is determined by
8396  * the BTF func_proto's return value size and argument.
8397  */
8398 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
8399 				   size_t reg_size)
8400 {
8401 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
8402 
8403 	if (regno == BPF_REG_0) {
8404 		/* Function return value */
8405 		reg->live |= REG_LIVE_WRITTEN;
8406 		reg->subreg_def = reg_size == sizeof(u64) ?
8407 			DEF_NOT_SUBREG : env->insn_idx + 1;
8408 	} else {
8409 		/* Function argument */
8410 		if (reg_size == sizeof(u64)) {
8411 			mark_insn_zext(env, reg);
8412 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
8413 		} else {
8414 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
8415 		}
8416 	}
8417 }
8418 
8419 struct bpf_kfunc_call_arg_meta {
8420 	/* In parameters */
8421 	struct btf *btf;
8422 	u32 func_id;
8423 	u32 kfunc_flags;
8424 	const struct btf_type *func_proto;
8425 	const char *func_name;
8426 	/* Out parameters */
8427 	u32 ref_obj_id;
8428 	u8 release_regno;
8429 	bool r0_rdonly;
8430 	u32 ret_btf_id;
8431 	u64 r0_size;
8432 	struct {
8433 		u64 value;
8434 		bool found;
8435 	} arg_constant;
8436 	struct {
8437 		struct btf *btf;
8438 		u32 btf_id;
8439 	} arg_obj_drop;
8440 	struct {
8441 		struct btf_field *field;
8442 	} arg_list_head;
8443 };
8444 
8445 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8446 {
8447 	return meta->kfunc_flags & KF_ACQUIRE;
8448 }
8449 
8450 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8451 {
8452 	return meta->kfunc_flags & KF_RET_NULL;
8453 }
8454 
8455 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8456 {
8457 	return meta->kfunc_flags & KF_RELEASE;
8458 }
8459 
8460 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8461 {
8462 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8463 }
8464 
8465 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8466 {
8467 	return meta->kfunc_flags & KF_SLEEPABLE;
8468 }
8469 
8470 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8471 {
8472 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8473 }
8474 
8475 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8476 {
8477 	return meta->kfunc_flags & KF_RCU;
8478 }
8479 
8480 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8481 {
8482 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8483 }
8484 
8485 static bool __kfunc_param_match_suffix(const struct btf *btf,
8486 				       const struct btf_param *arg,
8487 				       const char *suffix)
8488 {
8489 	int suffix_len = strlen(suffix), len;
8490 	const char *param_name;
8491 
8492 	/* In the future, this can be ported to use BTF tagging */
8493 	param_name = btf_name_by_offset(btf, arg->name_off);
8494 	if (str_is_empty(param_name))
8495 		return false;
8496 	len = strlen(param_name);
8497 	if (len < suffix_len)
8498 		return false;
8499 	param_name += len - suffix_len;
8500 	return !strncmp(param_name, suffix, suffix_len);
8501 }
8502 
8503 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8504 				  const struct btf_param *arg,
8505 				  const struct bpf_reg_state *reg)
8506 {
8507 	const struct btf_type *t;
8508 
8509 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8510 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8511 		return false;
8512 
8513 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8514 }
8515 
8516 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8517 {
8518 	return __kfunc_param_match_suffix(btf, arg, "__k");
8519 }
8520 
8521 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8522 {
8523 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8524 }
8525 
8526 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8527 {
8528 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8529 }
8530 
8531 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8532 					  const struct btf_param *arg,
8533 					  const char *name)
8534 {
8535 	int len, target_len = strlen(name);
8536 	const char *param_name;
8537 
8538 	param_name = btf_name_by_offset(btf, arg->name_off);
8539 	if (str_is_empty(param_name))
8540 		return false;
8541 	len = strlen(param_name);
8542 	if (len != target_len)
8543 		return false;
8544 	if (strcmp(param_name, name))
8545 		return false;
8546 
8547 	return true;
8548 }
8549 
8550 enum {
8551 	KF_ARG_DYNPTR_ID,
8552 	KF_ARG_LIST_HEAD_ID,
8553 	KF_ARG_LIST_NODE_ID,
8554 };
8555 
8556 BTF_ID_LIST(kf_arg_btf_ids)
8557 BTF_ID(struct, bpf_dynptr_kern)
8558 BTF_ID(struct, bpf_list_head)
8559 BTF_ID(struct, bpf_list_node)
8560 
8561 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8562 				    const struct btf_param *arg, int type)
8563 {
8564 	const struct btf_type *t;
8565 	u32 res_id;
8566 
8567 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8568 	if (!t)
8569 		return false;
8570 	if (!btf_type_is_ptr(t))
8571 		return false;
8572 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8573 	if (!t)
8574 		return false;
8575 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8576 }
8577 
8578 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8579 {
8580 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8581 }
8582 
8583 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8584 {
8585 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8586 }
8587 
8588 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8589 {
8590 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8591 }
8592 
8593 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8594 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8595 					const struct btf *btf,
8596 					const struct btf_type *t, int rec)
8597 {
8598 	const struct btf_type *member_type;
8599 	const struct btf_member *member;
8600 	u32 i;
8601 
8602 	if (!btf_type_is_struct(t))
8603 		return false;
8604 
8605 	for_each_member(i, t, member) {
8606 		const struct btf_array *array;
8607 
8608 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8609 		if (btf_type_is_struct(member_type)) {
8610 			if (rec >= 3) {
8611 				verbose(env, "max struct nesting depth exceeded\n");
8612 				return false;
8613 			}
8614 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8615 				return false;
8616 			continue;
8617 		}
8618 		if (btf_type_is_array(member_type)) {
8619 			array = btf_array(member_type);
8620 			if (!array->nelems)
8621 				return false;
8622 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8623 			if (!btf_type_is_scalar(member_type))
8624 				return false;
8625 			continue;
8626 		}
8627 		if (!btf_type_is_scalar(member_type))
8628 			return false;
8629 	}
8630 	return true;
8631 }
8632 
8633 
8634 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8635 #ifdef CONFIG_NET
8636 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8637 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8638 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8639 #endif
8640 };
8641 
8642 enum kfunc_ptr_arg_type {
8643 	KF_ARG_PTR_TO_CTX,
8644 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8645 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8646 	KF_ARG_PTR_TO_DYNPTR,
8647 	KF_ARG_PTR_TO_LIST_HEAD,
8648 	KF_ARG_PTR_TO_LIST_NODE,
8649 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8650 	KF_ARG_PTR_TO_MEM,
8651 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8652 };
8653 
8654 enum special_kfunc_type {
8655 	KF_bpf_obj_new_impl,
8656 	KF_bpf_obj_drop_impl,
8657 	KF_bpf_list_push_front,
8658 	KF_bpf_list_push_back,
8659 	KF_bpf_list_pop_front,
8660 	KF_bpf_list_pop_back,
8661 	KF_bpf_cast_to_kern_ctx,
8662 	KF_bpf_rdonly_cast,
8663 	KF_bpf_rcu_read_lock,
8664 	KF_bpf_rcu_read_unlock,
8665 };
8666 
8667 BTF_SET_START(special_kfunc_set)
8668 BTF_ID(func, bpf_obj_new_impl)
8669 BTF_ID(func, bpf_obj_drop_impl)
8670 BTF_ID(func, bpf_list_push_front)
8671 BTF_ID(func, bpf_list_push_back)
8672 BTF_ID(func, bpf_list_pop_front)
8673 BTF_ID(func, bpf_list_pop_back)
8674 BTF_ID(func, bpf_cast_to_kern_ctx)
8675 BTF_ID(func, bpf_rdonly_cast)
8676 BTF_SET_END(special_kfunc_set)
8677 
8678 BTF_ID_LIST(special_kfunc_list)
8679 BTF_ID(func, bpf_obj_new_impl)
8680 BTF_ID(func, bpf_obj_drop_impl)
8681 BTF_ID(func, bpf_list_push_front)
8682 BTF_ID(func, bpf_list_push_back)
8683 BTF_ID(func, bpf_list_pop_front)
8684 BTF_ID(func, bpf_list_pop_back)
8685 BTF_ID(func, bpf_cast_to_kern_ctx)
8686 BTF_ID(func, bpf_rdonly_cast)
8687 BTF_ID(func, bpf_rcu_read_lock)
8688 BTF_ID(func, bpf_rcu_read_unlock)
8689 
8690 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8691 {
8692 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8693 }
8694 
8695 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8696 {
8697 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8698 }
8699 
8700 static enum kfunc_ptr_arg_type
8701 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8702 		       struct bpf_kfunc_call_arg_meta *meta,
8703 		       const struct btf_type *t, const struct btf_type *ref_t,
8704 		       const char *ref_tname, const struct btf_param *args,
8705 		       int argno, int nargs)
8706 {
8707 	u32 regno = argno + 1;
8708 	struct bpf_reg_state *regs = cur_regs(env);
8709 	struct bpf_reg_state *reg = &regs[regno];
8710 	bool arg_mem_size = false;
8711 
8712 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8713 		return KF_ARG_PTR_TO_CTX;
8714 
8715 	/* In this function, we verify the kfunc's BTF as per the argument type,
8716 	 * leaving the rest of the verification with respect to the register
8717 	 * type to our caller. When a set of conditions hold in the BTF type of
8718 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8719 	 */
8720 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8721 		return KF_ARG_PTR_TO_CTX;
8722 
8723 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8724 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8725 
8726 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8727 		if (!btf_type_is_ptr(ref_t)) {
8728 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8729 			return -EINVAL;
8730 		}
8731 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8732 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8733 		if (!btf_type_is_struct(ref_t)) {
8734 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8735 				meta->func_name, btf_type_str(ref_t), ref_tname);
8736 			return -EINVAL;
8737 		}
8738 		return KF_ARG_PTR_TO_KPTR;
8739 	}
8740 
8741 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8742 		return KF_ARG_PTR_TO_DYNPTR;
8743 
8744 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8745 		return KF_ARG_PTR_TO_LIST_HEAD;
8746 
8747 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8748 		return KF_ARG_PTR_TO_LIST_NODE;
8749 
8750 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8751 		if (!btf_type_is_struct(ref_t)) {
8752 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8753 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8754 			return -EINVAL;
8755 		}
8756 		return KF_ARG_PTR_TO_BTF_ID;
8757 	}
8758 
8759 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8760 		arg_mem_size = true;
8761 
8762 	/* This is the catch all argument type of register types supported by
8763 	 * check_helper_mem_access. However, we only allow when argument type is
8764 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8765 	 * arg_mem_size is true, the pointer can be void *.
8766 	 */
8767 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8768 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8769 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8770 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8771 		return -EINVAL;
8772 	}
8773 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8774 }
8775 
8776 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8777 					struct bpf_reg_state *reg,
8778 					const struct btf_type *ref_t,
8779 					const char *ref_tname, u32 ref_id,
8780 					struct bpf_kfunc_call_arg_meta *meta,
8781 					int argno)
8782 {
8783 	const struct btf_type *reg_ref_t;
8784 	bool strict_type_match = false;
8785 	const struct btf *reg_btf;
8786 	const char *reg_ref_tname;
8787 	u32 reg_ref_id;
8788 
8789 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8790 		reg_btf = reg->btf;
8791 		reg_ref_id = reg->btf_id;
8792 	} else {
8793 		reg_btf = btf_vmlinux;
8794 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8795 	}
8796 
8797 	if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8798 		strict_type_match = true;
8799 
8800 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8801 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8802 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8803 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8804 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8805 			btf_type_str(reg_ref_t), reg_ref_tname);
8806 		return -EINVAL;
8807 	}
8808 	return 0;
8809 }
8810 
8811 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8812 				      struct bpf_reg_state *reg,
8813 				      const struct btf_type *ref_t,
8814 				      const char *ref_tname,
8815 				      struct bpf_kfunc_call_arg_meta *meta,
8816 				      int argno)
8817 {
8818 	struct btf_field *kptr_field;
8819 
8820 	/* check_func_arg_reg_off allows var_off for
8821 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8822 	 * off_desc.
8823 	 */
8824 	if (!tnum_is_const(reg->var_off)) {
8825 		verbose(env, "arg#0 must have constant offset\n");
8826 		return -EINVAL;
8827 	}
8828 
8829 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8830 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8831 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8832 			reg->off + reg->var_off.value);
8833 		return -EINVAL;
8834 	}
8835 
8836 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8837 				  kptr_field->kptr.btf_id, true)) {
8838 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8839 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8840 		return -EINVAL;
8841 	}
8842 	return 0;
8843 }
8844 
8845 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8846 {
8847 	struct bpf_func_state *state = cur_func(env);
8848 	struct bpf_reg_state *reg;
8849 	int i;
8850 
8851 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8852 	 * subprogs, no global functions. This means that the references would
8853 	 * not be released inside the critical section but they may be added to
8854 	 * the reference state, and the acquired_refs are never copied out for a
8855 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8856 	 * critical sections.
8857 	 */
8858 	if (!ref_obj_id) {
8859 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8860 		return -EFAULT;
8861 	}
8862 	for (i = 0; i < state->acquired_refs; i++) {
8863 		if (state->refs[i].id == ref_obj_id) {
8864 			if (state->refs[i].release_on_unlock) {
8865 				verbose(env, "verifier internal error: expected false release_on_unlock");
8866 				return -EFAULT;
8867 			}
8868 			state->refs[i].release_on_unlock = true;
8869 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8870 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8871 				if (reg->ref_obj_id == ref_obj_id)
8872 					reg->type |= PTR_UNTRUSTED;
8873 			}));
8874 			return 0;
8875 		}
8876 	}
8877 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8878 	return -EFAULT;
8879 }
8880 
8881 /* Implementation details:
8882  *
8883  * Each register points to some region of memory, which we define as an
8884  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8885  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8886  * allocation. The lock and the data it protects are colocated in the same
8887  * memory region.
8888  *
8889  * Hence, everytime a register holds a pointer value pointing to such
8890  * allocation, the verifier preserves a unique reg->id for it.
8891  *
8892  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8893  * bpf_spin_lock is called.
8894  *
8895  * To enable this, lock state in the verifier captures two values:
8896  *	active_lock.ptr = Register's type specific pointer
8897  *	active_lock.id  = A unique ID for each register pointer value
8898  *
8899  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8900  * supported register types.
8901  *
8902  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8903  * allocated objects is the reg->btf pointer.
8904  *
8905  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8906  * can establish the provenance of the map value statically for each distinct
8907  * lookup into such maps. They always contain a single map value hence unique
8908  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8909  *
8910  * So, in case of global variables, they use array maps with max_entries = 1,
8911  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8912  * into the same map value as max_entries is 1, as described above).
8913  *
8914  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8915  * outer map pointer (in verifier context), but each lookup into an inner map
8916  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8917  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8918  * will get different reg->id assigned to each lookup, hence different
8919  * active_lock.id.
8920  *
8921  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8922  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8923  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8924  */
8925 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8926 {
8927 	void *ptr;
8928 	u32 id;
8929 
8930 	switch ((int)reg->type) {
8931 	case PTR_TO_MAP_VALUE:
8932 		ptr = reg->map_ptr;
8933 		break;
8934 	case PTR_TO_BTF_ID | MEM_ALLOC:
8935 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8936 		ptr = reg->btf;
8937 		break;
8938 	default:
8939 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8940 		return -EFAULT;
8941 	}
8942 	id = reg->id;
8943 
8944 	if (!env->cur_state->active_lock.ptr)
8945 		return -EINVAL;
8946 	if (env->cur_state->active_lock.ptr != ptr ||
8947 	    env->cur_state->active_lock.id != id) {
8948 		verbose(env, "held lock and object are not in the same allocation\n");
8949 		return -EINVAL;
8950 	}
8951 	return 0;
8952 }
8953 
8954 static bool is_bpf_list_api_kfunc(u32 btf_id)
8955 {
8956 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8957 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8958 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8959 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8960 }
8961 
8962 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8963 					   struct bpf_reg_state *reg, u32 regno,
8964 					   struct bpf_kfunc_call_arg_meta *meta)
8965 {
8966 	struct btf_field *field;
8967 	struct btf_record *rec;
8968 	u32 list_head_off;
8969 
8970 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8971 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8972 		return -EFAULT;
8973 	}
8974 
8975 	if (!tnum_is_const(reg->var_off)) {
8976 		verbose(env,
8977 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8978 			regno);
8979 		return -EINVAL;
8980 	}
8981 
8982 	rec = reg_btf_record(reg);
8983 	list_head_off = reg->off + reg->var_off.value;
8984 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8985 	if (!field) {
8986 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8987 		return -EINVAL;
8988 	}
8989 
8990 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8991 	if (check_reg_allocation_locked(env, reg)) {
8992 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8993 			rec->spin_lock_off);
8994 		return -EINVAL;
8995 	}
8996 
8997 	if (meta->arg_list_head.field) {
8998 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8999 		return -EFAULT;
9000 	}
9001 	meta->arg_list_head.field = field;
9002 	return 0;
9003 }
9004 
9005 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
9006 					   struct bpf_reg_state *reg, u32 regno,
9007 					   struct bpf_kfunc_call_arg_meta *meta)
9008 {
9009 	const struct btf_type *et, *t;
9010 	struct btf_field *field;
9011 	struct btf_record *rec;
9012 	u32 list_node_off;
9013 
9014 	if (meta->btf != btf_vmlinux ||
9015 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
9016 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
9017 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
9018 		return -EFAULT;
9019 	}
9020 
9021 	if (!tnum_is_const(reg->var_off)) {
9022 		verbose(env,
9023 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
9024 			regno);
9025 		return -EINVAL;
9026 	}
9027 
9028 	rec = reg_btf_record(reg);
9029 	list_node_off = reg->off + reg->var_off.value;
9030 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
9031 	if (!field || field->offset != list_node_off) {
9032 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
9033 		return -EINVAL;
9034 	}
9035 
9036 	field = meta->arg_list_head.field;
9037 
9038 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
9039 	t = btf_type_by_id(reg->btf, reg->btf_id);
9040 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
9041 				  field->graph_root.value_btf_id, true)) {
9042 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
9043 			"in struct %s, but arg is at offset=%d in struct %s\n",
9044 			field->graph_root.node_offset,
9045 			btf_name_by_offset(field->graph_root.btf, et->name_off),
9046 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
9047 		return -EINVAL;
9048 	}
9049 
9050 	if (list_node_off != field->graph_root.node_offset) {
9051 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
9052 			list_node_off, field->graph_root.node_offset,
9053 			btf_name_by_offset(field->graph_root.btf, et->name_off));
9054 		return -EINVAL;
9055 	}
9056 	/* Set arg#1 for expiration after unlock */
9057 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
9058 }
9059 
9060 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
9061 {
9062 	const char *func_name = meta->func_name, *ref_tname;
9063 	const struct btf *btf = meta->btf;
9064 	const struct btf_param *args;
9065 	u32 i, nargs;
9066 	int ret;
9067 
9068 	args = (const struct btf_param *)(meta->func_proto + 1);
9069 	nargs = btf_type_vlen(meta->func_proto);
9070 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
9071 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
9072 			MAX_BPF_FUNC_REG_ARGS);
9073 		return -EINVAL;
9074 	}
9075 
9076 	/* Check that BTF function arguments match actual types that the
9077 	 * verifier sees.
9078 	 */
9079 	for (i = 0; i < nargs; i++) {
9080 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
9081 		const struct btf_type *t, *ref_t, *resolve_ret;
9082 		enum bpf_arg_type arg_type = ARG_DONTCARE;
9083 		u32 regno = i + 1, ref_id, type_size;
9084 		bool is_ret_buf_sz = false;
9085 		int kf_arg_type;
9086 
9087 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
9088 
9089 		if (is_kfunc_arg_ignore(btf, &args[i]))
9090 			continue;
9091 
9092 		if (btf_type_is_scalar(t)) {
9093 			if (reg->type != SCALAR_VALUE) {
9094 				verbose(env, "R%d is not a scalar\n", regno);
9095 				return -EINVAL;
9096 			}
9097 
9098 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
9099 				if (meta->arg_constant.found) {
9100 					verbose(env, "verifier internal error: only one constant argument permitted\n");
9101 					return -EFAULT;
9102 				}
9103 				if (!tnum_is_const(reg->var_off)) {
9104 					verbose(env, "R%d must be a known constant\n", regno);
9105 					return -EINVAL;
9106 				}
9107 				ret = mark_chain_precision(env, regno);
9108 				if (ret < 0)
9109 					return ret;
9110 				meta->arg_constant.found = true;
9111 				meta->arg_constant.value = reg->var_off.value;
9112 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
9113 				meta->r0_rdonly = true;
9114 				is_ret_buf_sz = true;
9115 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
9116 				is_ret_buf_sz = true;
9117 			}
9118 
9119 			if (is_ret_buf_sz) {
9120 				if (meta->r0_size) {
9121 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
9122 					return -EINVAL;
9123 				}
9124 
9125 				if (!tnum_is_const(reg->var_off)) {
9126 					verbose(env, "R%d is not a const\n", regno);
9127 					return -EINVAL;
9128 				}
9129 
9130 				meta->r0_size = reg->var_off.value;
9131 				ret = mark_chain_precision(env, regno);
9132 				if (ret)
9133 					return ret;
9134 			}
9135 			continue;
9136 		}
9137 
9138 		if (!btf_type_is_ptr(t)) {
9139 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
9140 			return -EINVAL;
9141 		}
9142 
9143 		if (reg->ref_obj_id) {
9144 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
9145 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9146 					regno, reg->ref_obj_id,
9147 					meta->ref_obj_id);
9148 				return -EFAULT;
9149 			}
9150 			meta->ref_obj_id = reg->ref_obj_id;
9151 			if (is_kfunc_release(meta))
9152 				meta->release_regno = regno;
9153 		}
9154 
9155 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
9156 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
9157 
9158 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
9159 		if (kf_arg_type < 0)
9160 			return kf_arg_type;
9161 
9162 		switch (kf_arg_type) {
9163 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
9164 		case KF_ARG_PTR_TO_BTF_ID:
9165 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
9166 				break;
9167 
9168 			if (!is_trusted_reg(reg)) {
9169 				if (!is_kfunc_rcu(meta)) {
9170 					verbose(env, "R%d must be referenced or trusted\n", regno);
9171 					return -EINVAL;
9172 				}
9173 				if (!is_rcu_reg(reg)) {
9174 					verbose(env, "R%d must be a rcu pointer\n", regno);
9175 					return -EINVAL;
9176 				}
9177 			}
9178 
9179 			fallthrough;
9180 		case KF_ARG_PTR_TO_CTX:
9181 			/* Trusted arguments have the same offset checks as release arguments */
9182 			arg_type |= OBJ_RELEASE;
9183 			break;
9184 		case KF_ARG_PTR_TO_KPTR:
9185 		case KF_ARG_PTR_TO_DYNPTR:
9186 		case KF_ARG_PTR_TO_LIST_HEAD:
9187 		case KF_ARG_PTR_TO_LIST_NODE:
9188 		case KF_ARG_PTR_TO_MEM:
9189 		case KF_ARG_PTR_TO_MEM_SIZE:
9190 			/* Trusted by default */
9191 			break;
9192 		default:
9193 			WARN_ON_ONCE(1);
9194 			return -EFAULT;
9195 		}
9196 
9197 		if (is_kfunc_release(meta) && reg->ref_obj_id)
9198 			arg_type |= OBJ_RELEASE;
9199 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
9200 		if (ret < 0)
9201 			return ret;
9202 
9203 		switch (kf_arg_type) {
9204 		case KF_ARG_PTR_TO_CTX:
9205 			if (reg->type != PTR_TO_CTX) {
9206 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
9207 				return -EINVAL;
9208 			}
9209 
9210 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9211 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
9212 				if (ret < 0)
9213 					return -EINVAL;
9214 				meta->ret_btf_id  = ret;
9215 			}
9216 			break;
9217 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
9218 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9219 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9220 				return -EINVAL;
9221 			}
9222 			if (!reg->ref_obj_id) {
9223 				verbose(env, "allocated object must be referenced\n");
9224 				return -EINVAL;
9225 			}
9226 			if (meta->btf == btf_vmlinux &&
9227 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9228 				meta->arg_obj_drop.btf = reg->btf;
9229 				meta->arg_obj_drop.btf_id = reg->btf_id;
9230 			}
9231 			break;
9232 		case KF_ARG_PTR_TO_KPTR:
9233 			if (reg->type != PTR_TO_MAP_VALUE) {
9234 				verbose(env, "arg#0 expected pointer to map value\n");
9235 				return -EINVAL;
9236 			}
9237 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
9238 			if (ret < 0)
9239 				return ret;
9240 			break;
9241 		case KF_ARG_PTR_TO_DYNPTR:
9242 			if (reg->type != PTR_TO_STACK &&
9243 			    reg->type != CONST_PTR_TO_DYNPTR) {
9244 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
9245 				return -EINVAL;
9246 			}
9247 
9248 			ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL);
9249 			if (ret < 0)
9250 				return ret;
9251 			break;
9252 		case KF_ARG_PTR_TO_LIST_HEAD:
9253 			if (reg->type != PTR_TO_MAP_VALUE &&
9254 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9255 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
9256 				return -EINVAL;
9257 			}
9258 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
9259 				verbose(env, "allocated object must be referenced\n");
9260 				return -EINVAL;
9261 			}
9262 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
9263 			if (ret < 0)
9264 				return ret;
9265 			break;
9266 		case KF_ARG_PTR_TO_LIST_NODE:
9267 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
9268 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
9269 				return -EINVAL;
9270 			}
9271 			if (!reg->ref_obj_id) {
9272 				verbose(env, "allocated object must be referenced\n");
9273 				return -EINVAL;
9274 			}
9275 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
9276 			if (ret < 0)
9277 				return ret;
9278 			break;
9279 		case KF_ARG_PTR_TO_BTF_ID:
9280 			/* Only base_type is checked, further checks are done here */
9281 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
9282 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
9283 			    !reg2btf_ids[base_type(reg->type)]) {
9284 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
9285 				verbose(env, "expected %s or socket\n",
9286 					reg_type_str(env, base_type(reg->type) |
9287 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
9288 				return -EINVAL;
9289 			}
9290 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
9291 			if (ret < 0)
9292 				return ret;
9293 			break;
9294 		case KF_ARG_PTR_TO_MEM:
9295 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
9296 			if (IS_ERR(resolve_ret)) {
9297 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
9298 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
9299 				return -EINVAL;
9300 			}
9301 			ret = check_mem_reg(env, reg, regno, type_size);
9302 			if (ret < 0)
9303 				return ret;
9304 			break;
9305 		case KF_ARG_PTR_TO_MEM_SIZE:
9306 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
9307 			if (ret < 0) {
9308 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
9309 				return ret;
9310 			}
9311 			/* Skip next '__sz' argument */
9312 			i++;
9313 			break;
9314 		}
9315 	}
9316 
9317 	if (is_kfunc_release(meta) && !meta->release_regno) {
9318 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
9319 			func_name);
9320 		return -EINVAL;
9321 	}
9322 
9323 	return 0;
9324 }
9325 
9326 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9327 			    int *insn_idx_p)
9328 {
9329 	const struct btf_type *t, *func, *func_proto, *ptr_type;
9330 	struct bpf_reg_state *regs = cur_regs(env);
9331 	const char *func_name, *ptr_type_name;
9332 	bool sleepable, rcu_lock, rcu_unlock;
9333 	struct bpf_kfunc_call_arg_meta meta;
9334 	u32 i, nargs, func_id, ptr_type_id;
9335 	int err, insn_idx = *insn_idx_p;
9336 	const struct btf_param *args;
9337 	const struct btf_type *ret_t;
9338 	struct btf *desc_btf;
9339 	u32 *kfunc_flags;
9340 
9341 	/* skip for now, but return error when we find this in fixup_kfunc_call */
9342 	if (!insn->imm)
9343 		return 0;
9344 
9345 	desc_btf = find_kfunc_desc_btf(env, insn->off);
9346 	if (IS_ERR(desc_btf))
9347 		return PTR_ERR(desc_btf);
9348 
9349 	func_id = insn->imm;
9350 	func = btf_type_by_id(desc_btf, func_id);
9351 	func_name = btf_name_by_offset(desc_btf, func->name_off);
9352 	func_proto = btf_type_by_id(desc_btf, func->type);
9353 
9354 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
9355 	if (!kfunc_flags) {
9356 		verbose(env, "calling kernel function %s is not allowed\n",
9357 			func_name);
9358 		return -EACCES;
9359 	}
9360 
9361 	/* Prepare kfunc call metadata */
9362 	memset(&meta, 0, sizeof(meta));
9363 	meta.btf = desc_btf;
9364 	meta.func_id = func_id;
9365 	meta.kfunc_flags = *kfunc_flags;
9366 	meta.func_proto = func_proto;
9367 	meta.func_name = func_name;
9368 
9369 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
9370 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
9371 		return -EACCES;
9372 	}
9373 
9374 	sleepable = is_kfunc_sleepable(&meta);
9375 	if (sleepable && !env->prog->aux->sleepable) {
9376 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
9377 		return -EACCES;
9378 	}
9379 
9380 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
9381 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
9382 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
9383 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
9384 		return -EACCES;
9385 	}
9386 
9387 	if (env->cur_state->active_rcu_lock) {
9388 		struct bpf_func_state *state;
9389 		struct bpf_reg_state *reg;
9390 
9391 		if (rcu_lock) {
9392 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
9393 			return -EINVAL;
9394 		} else if (rcu_unlock) {
9395 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9396 				if (reg->type & MEM_RCU) {
9397 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
9398 					reg->type |= PTR_UNTRUSTED;
9399 				}
9400 			}));
9401 			env->cur_state->active_rcu_lock = false;
9402 		} else if (sleepable) {
9403 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
9404 			return -EACCES;
9405 		}
9406 	} else if (rcu_lock) {
9407 		env->cur_state->active_rcu_lock = true;
9408 	} else if (rcu_unlock) {
9409 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
9410 		return -EINVAL;
9411 	}
9412 
9413 	/* Check the arguments */
9414 	err = check_kfunc_args(env, &meta);
9415 	if (err < 0)
9416 		return err;
9417 	/* In case of release function, we get register number of refcounted
9418 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9419 	 */
9420 	if (meta.release_regno) {
9421 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9422 		if (err) {
9423 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9424 				func_name, func_id);
9425 			return err;
9426 		}
9427 	}
9428 
9429 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9430 		mark_reg_not_init(env, regs, caller_saved[i]);
9431 
9432 	/* Check return type */
9433 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9434 
9435 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9436 		/* Only exception is bpf_obj_new_impl */
9437 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9438 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9439 			return -EINVAL;
9440 		}
9441 	}
9442 
9443 	if (btf_type_is_scalar(t)) {
9444 		mark_reg_unknown(env, regs, BPF_REG_0);
9445 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9446 	} else if (btf_type_is_ptr(t)) {
9447 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9448 
9449 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9450 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9451 				struct btf *ret_btf;
9452 				u32 ret_btf_id;
9453 
9454 				if (unlikely(!bpf_global_ma_set))
9455 					return -ENOMEM;
9456 
9457 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9458 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9459 					return -EINVAL;
9460 				}
9461 
9462 				ret_btf = env->prog->aux->btf;
9463 				ret_btf_id = meta.arg_constant.value;
9464 
9465 				/* This may be NULL due to user not supplying a BTF */
9466 				if (!ret_btf) {
9467 					verbose(env, "bpf_obj_new requires prog BTF\n");
9468 					return -EINVAL;
9469 				}
9470 
9471 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9472 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9473 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9474 					return -EINVAL;
9475 				}
9476 
9477 				mark_reg_known_zero(env, regs, BPF_REG_0);
9478 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9479 				regs[BPF_REG_0].btf = ret_btf;
9480 				regs[BPF_REG_0].btf_id = ret_btf_id;
9481 
9482 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9483 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9484 					btf_find_struct_meta(ret_btf, ret_btf_id);
9485 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9486 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9487 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9488 							     meta.arg_obj_drop.btf_id);
9489 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9490 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9491 				struct btf_field *field = meta.arg_list_head.field;
9492 
9493 				mark_reg_known_zero(env, regs, BPF_REG_0);
9494 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9495 				regs[BPF_REG_0].btf = field->graph_root.btf;
9496 				regs[BPF_REG_0].btf_id = field->graph_root.value_btf_id;
9497 				regs[BPF_REG_0].off = field->graph_root.node_offset;
9498 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9499 				mark_reg_known_zero(env, regs, BPF_REG_0);
9500 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9501 				regs[BPF_REG_0].btf = desc_btf;
9502 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9503 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9504 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9505 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9506 					verbose(env,
9507 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9508 					return -EINVAL;
9509 				}
9510 
9511 				mark_reg_known_zero(env, regs, BPF_REG_0);
9512 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9513 				regs[BPF_REG_0].btf = desc_btf;
9514 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9515 			} else {
9516 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9517 					meta.func_name);
9518 				return -EFAULT;
9519 			}
9520 		} else if (!__btf_type_is_struct(ptr_type)) {
9521 			if (!meta.r0_size) {
9522 				ptr_type_name = btf_name_by_offset(desc_btf,
9523 								   ptr_type->name_off);
9524 				verbose(env,
9525 					"kernel function %s returns pointer type %s %s is not supported\n",
9526 					func_name,
9527 					btf_type_str(ptr_type),
9528 					ptr_type_name);
9529 				return -EINVAL;
9530 			}
9531 
9532 			mark_reg_known_zero(env, regs, BPF_REG_0);
9533 			regs[BPF_REG_0].type = PTR_TO_MEM;
9534 			regs[BPF_REG_0].mem_size = meta.r0_size;
9535 
9536 			if (meta.r0_rdonly)
9537 				regs[BPF_REG_0].type |= MEM_RDONLY;
9538 
9539 			/* Ensures we don't access the memory after a release_reference() */
9540 			if (meta.ref_obj_id)
9541 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9542 		} else {
9543 			mark_reg_known_zero(env, regs, BPF_REG_0);
9544 			regs[BPF_REG_0].btf = desc_btf;
9545 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9546 			regs[BPF_REG_0].btf_id = ptr_type_id;
9547 		}
9548 
9549 		if (is_kfunc_ret_null(&meta)) {
9550 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9551 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9552 			regs[BPF_REG_0].id = ++env->id_gen;
9553 		}
9554 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9555 		if (is_kfunc_acquire(&meta)) {
9556 			int id = acquire_reference_state(env, insn_idx);
9557 
9558 			if (id < 0)
9559 				return id;
9560 			if (is_kfunc_ret_null(&meta))
9561 				regs[BPF_REG_0].id = id;
9562 			regs[BPF_REG_0].ref_obj_id = id;
9563 		}
9564 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9565 			regs[BPF_REG_0].id = ++env->id_gen;
9566 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9567 
9568 	nargs = btf_type_vlen(func_proto);
9569 	args = (const struct btf_param *)(func_proto + 1);
9570 	for (i = 0; i < nargs; i++) {
9571 		u32 regno = i + 1;
9572 
9573 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9574 		if (btf_type_is_ptr(t))
9575 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9576 		else
9577 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9578 			mark_btf_func_reg_size(env, regno, t->size);
9579 	}
9580 
9581 	return 0;
9582 }
9583 
9584 static bool signed_add_overflows(s64 a, s64 b)
9585 {
9586 	/* Do the add in u64, where overflow is well-defined */
9587 	s64 res = (s64)((u64)a + (u64)b);
9588 
9589 	if (b < 0)
9590 		return res > a;
9591 	return res < a;
9592 }
9593 
9594 static bool signed_add32_overflows(s32 a, s32 b)
9595 {
9596 	/* Do the add in u32, where overflow is well-defined */
9597 	s32 res = (s32)((u32)a + (u32)b);
9598 
9599 	if (b < 0)
9600 		return res > a;
9601 	return res < a;
9602 }
9603 
9604 static bool signed_sub_overflows(s64 a, s64 b)
9605 {
9606 	/* Do the sub in u64, where overflow is well-defined */
9607 	s64 res = (s64)((u64)a - (u64)b);
9608 
9609 	if (b < 0)
9610 		return res < a;
9611 	return res > a;
9612 }
9613 
9614 static bool signed_sub32_overflows(s32 a, s32 b)
9615 {
9616 	/* Do the sub in u32, where overflow is well-defined */
9617 	s32 res = (s32)((u32)a - (u32)b);
9618 
9619 	if (b < 0)
9620 		return res < a;
9621 	return res > a;
9622 }
9623 
9624 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9625 				  const struct bpf_reg_state *reg,
9626 				  enum bpf_reg_type type)
9627 {
9628 	bool known = tnum_is_const(reg->var_off);
9629 	s64 val = reg->var_off.value;
9630 	s64 smin = reg->smin_value;
9631 
9632 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9633 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9634 			reg_type_str(env, type), val);
9635 		return false;
9636 	}
9637 
9638 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9639 		verbose(env, "%s pointer offset %d is not allowed\n",
9640 			reg_type_str(env, type), reg->off);
9641 		return false;
9642 	}
9643 
9644 	if (smin == S64_MIN) {
9645 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9646 			reg_type_str(env, type));
9647 		return false;
9648 	}
9649 
9650 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9651 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9652 			smin, reg_type_str(env, type));
9653 		return false;
9654 	}
9655 
9656 	return true;
9657 }
9658 
9659 enum {
9660 	REASON_BOUNDS	= -1,
9661 	REASON_TYPE	= -2,
9662 	REASON_PATHS	= -3,
9663 	REASON_LIMIT	= -4,
9664 	REASON_STACK	= -5,
9665 };
9666 
9667 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9668 			      u32 *alu_limit, bool mask_to_left)
9669 {
9670 	u32 max = 0, ptr_limit = 0;
9671 
9672 	switch (ptr_reg->type) {
9673 	case PTR_TO_STACK:
9674 		/* Offset 0 is out-of-bounds, but acceptable start for the
9675 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9676 		 * offset where we would need to deal with min/max bounds is
9677 		 * currently prohibited for unprivileged.
9678 		 */
9679 		max = MAX_BPF_STACK + mask_to_left;
9680 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9681 		break;
9682 	case PTR_TO_MAP_VALUE:
9683 		max = ptr_reg->map_ptr->value_size;
9684 		ptr_limit = (mask_to_left ?
9685 			     ptr_reg->smin_value :
9686 			     ptr_reg->umax_value) + ptr_reg->off;
9687 		break;
9688 	default:
9689 		return REASON_TYPE;
9690 	}
9691 
9692 	if (ptr_limit >= max)
9693 		return REASON_LIMIT;
9694 	*alu_limit = ptr_limit;
9695 	return 0;
9696 }
9697 
9698 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9699 				    const struct bpf_insn *insn)
9700 {
9701 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9702 }
9703 
9704 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9705 				       u32 alu_state, u32 alu_limit)
9706 {
9707 	/* If we arrived here from different branches with different
9708 	 * state or limits to sanitize, then this won't work.
9709 	 */
9710 	if (aux->alu_state &&
9711 	    (aux->alu_state != alu_state ||
9712 	     aux->alu_limit != alu_limit))
9713 		return REASON_PATHS;
9714 
9715 	/* Corresponding fixup done in do_misc_fixups(). */
9716 	aux->alu_state = alu_state;
9717 	aux->alu_limit = alu_limit;
9718 	return 0;
9719 }
9720 
9721 static int sanitize_val_alu(struct bpf_verifier_env *env,
9722 			    struct bpf_insn *insn)
9723 {
9724 	struct bpf_insn_aux_data *aux = cur_aux(env);
9725 
9726 	if (can_skip_alu_sanitation(env, insn))
9727 		return 0;
9728 
9729 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9730 }
9731 
9732 static bool sanitize_needed(u8 opcode)
9733 {
9734 	return opcode == BPF_ADD || opcode == BPF_SUB;
9735 }
9736 
9737 struct bpf_sanitize_info {
9738 	struct bpf_insn_aux_data aux;
9739 	bool mask_to_left;
9740 };
9741 
9742 static struct bpf_verifier_state *
9743 sanitize_speculative_path(struct bpf_verifier_env *env,
9744 			  const struct bpf_insn *insn,
9745 			  u32 next_idx, u32 curr_idx)
9746 {
9747 	struct bpf_verifier_state *branch;
9748 	struct bpf_reg_state *regs;
9749 
9750 	branch = push_stack(env, next_idx, curr_idx, true);
9751 	if (branch && insn) {
9752 		regs = branch->frame[branch->curframe]->regs;
9753 		if (BPF_SRC(insn->code) == BPF_K) {
9754 			mark_reg_unknown(env, regs, insn->dst_reg);
9755 		} else if (BPF_SRC(insn->code) == BPF_X) {
9756 			mark_reg_unknown(env, regs, insn->dst_reg);
9757 			mark_reg_unknown(env, regs, insn->src_reg);
9758 		}
9759 	}
9760 	return branch;
9761 }
9762 
9763 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9764 			    struct bpf_insn *insn,
9765 			    const struct bpf_reg_state *ptr_reg,
9766 			    const struct bpf_reg_state *off_reg,
9767 			    struct bpf_reg_state *dst_reg,
9768 			    struct bpf_sanitize_info *info,
9769 			    const bool commit_window)
9770 {
9771 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9772 	struct bpf_verifier_state *vstate = env->cur_state;
9773 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9774 	bool off_is_neg = off_reg->smin_value < 0;
9775 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9776 	u8 opcode = BPF_OP(insn->code);
9777 	u32 alu_state, alu_limit;
9778 	struct bpf_reg_state tmp;
9779 	bool ret;
9780 	int err;
9781 
9782 	if (can_skip_alu_sanitation(env, insn))
9783 		return 0;
9784 
9785 	/* We already marked aux for masking from non-speculative
9786 	 * paths, thus we got here in the first place. We only care
9787 	 * to explore bad access from here.
9788 	 */
9789 	if (vstate->speculative)
9790 		goto do_sim;
9791 
9792 	if (!commit_window) {
9793 		if (!tnum_is_const(off_reg->var_off) &&
9794 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9795 			return REASON_BOUNDS;
9796 
9797 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9798 				     (opcode == BPF_SUB && !off_is_neg);
9799 	}
9800 
9801 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9802 	if (err < 0)
9803 		return err;
9804 
9805 	if (commit_window) {
9806 		/* In commit phase we narrow the masking window based on
9807 		 * the observed pointer move after the simulated operation.
9808 		 */
9809 		alu_state = info->aux.alu_state;
9810 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9811 	} else {
9812 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9813 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9814 		alu_state |= ptr_is_dst_reg ?
9815 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9816 
9817 		/* Limit pruning on unknown scalars to enable deep search for
9818 		 * potential masking differences from other program paths.
9819 		 */
9820 		if (!off_is_imm)
9821 			env->explore_alu_limits = true;
9822 	}
9823 
9824 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9825 	if (err < 0)
9826 		return err;
9827 do_sim:
9828 	/* If we're in commit phase, we're done here given we already
9829 	 * pushed the truncated dst_reg into the speculative verification
9830 	 * stack.
9831 	 *
9832 	 * Also, when register is a known constant, we rewrite register-based
9833 	 * operation to immediate-based, and thus do not need masking (and as
9834 	 * a consequence, do not need to simulate the zero-truncation either).
9835 	 */
9836 	if (commit_window || off_is_imm)
9837 		return 0;
9838 
9839 	/* Simulate and find potential out-of-bounds access under
9840 	 * speculative execution from truncation as a result of
9841 	 * masking when off was not within expected range. If off
9842 	 * sits in dst, then we temporarily need to move ptr there
9843 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9844 	 * for cases where we use K-based arithmetic in one direction
9845 	 * and truncated reg-based in the other in order to explore
9846 	 * bad access.
9847 	 */
9848 	if (!ptr_is_dst_reg) {
9849 		tmp = *dst_reg;
9850 		*dst_reg = *ptr_reg;
9851 	}
9852 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9853 					env->insn_idx);
9854 	if (!ptr_is_dst_reg && ret)
9855 		*dst_reg = tmp;
9856 	return !ret ? REASON_STACK : 0;
9857 }
9858 
9859 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9860 {
9861 	struct bpf_verifier_state *vstate = env->cur_state;
9862 
9863 	/* If we simulate paths under speculation, we don't update the
9864 	 * insn as 'seen' such that when we verify unreachable paths in
9865 	 * the non-speculative domain, sanitize_dead_code() can still
9866 	 * rewrite/sanitize them.
9867 	 */
9868 	if (!vstate->speculative)
9869 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9870 }
9871 
9872 static int sanitize_err(struct bpf_verifier_env *env,
9873 			const struct bpf_insn *insn, int reason,
9874 			const struct bpf_reg_state *off_reg,
9875 			const struct bpf_reg_state *dst_reg)
9876 {
9877 	static const char *err = "pointer arithmetic with it prohibited for !root";
9878 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9879 	u32 dst = insn->dst_reg, src = insn->src_reg;
9880 
9881 	switch (reason) {
9882 	case REASON_BOUNDS:
9883 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9884 			off_reg == dst_reg ? dst : src, err);
9885 		break;
9886 	case REASON_TYPE:
9887 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9888 			off_reg == dst_reg ? src : dst, err);
9889 		break;
9890 	case REASON_PATHS:
9891 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9892 			dst, op, err);
9893 		break;
9894 	case REASON_LIMIT:
9895 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9896 			dst, op, err);
9897 		break;
9898 	case REASON_STACK:
9899 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9900 			dst, err);
9901 		break;
9902 	default:
9903 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9904 			reason);
9905 		break;
9906 	}
9907 
9908 	return -EACCES;
9909 }
9910 
9911 /* check that stack access falls within stack limits and that 'reg' doesn't
9912  * have a variable offset.
9913  *
9914  * Variable offset is prohibited for unprivileged mode for simplicity since it
9915  * requires corresponding support in Spectre masking for stack ALU.  See also
9916  * retrieve_ptr_limit().
9917  *
9918  *
9919  * 'off' includes 'reg->off'.
9920  */
9921 static int check_stack_access_for_ptr_arithmetic(
9922 				struct bpf_verifier_env *env,
9923 				int regno,
9924 				const struct bpf_reg_state *reg,
9925 				int off)
9926 {
9927 	if (!tnum_is_const(reg->var_off)) {
9928 		char tn_buf[48];
9929 
9930 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9931 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9932 			regno, tn_buf, off);
9933 		return -EACCES;
9934 	}
9935 
9936 	if (off >= 0 || off < -MAX_BPF_STACK) {
9937 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9938 			"prohibited for !root; off=%d\n", regno, off);
9939 		return -EACCES;
9940 	}
9941 
9942 	return 0;
9943 }
9944 
9945 static int sanitize_check_bounds(struct bpf_verifier_env *env,
9946 				 const struct bpf_insn *insn,
9947 				 const struct bpf_reg_state *dst_reg)
9948 {
9949 	u32 dst = insn->dst_reg;
9950 
9951 	/* For unprivileged we require that resulting offset must be in bounds
9952 	 * in order to be able to sanitize access later on.
9953 	 */
9954 	if (env->bypass_spec_v1)
9955 		return 0;
9956 
9957 	switch (dst_reg->type) {
9958 	case PTR_TO_STACK:
9959 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9960 					dst_reg->off + dst_reg->var_off.value))
9961 			return -EACCES;
9962 		break;
9963 	case PTR_TO_MAP_VALUE:
9964 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
9965 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9966 				"prohibited for !root\n", dst);
9967 			return -EACCES;
9968 		}
9969 		break;
9970 	default:
9971 		break;
9972 	}
9973 
9974 	return 0;
9975 }
9976 
9977 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
9978  * Caller should also handle BPF_MOV case separately.
9979  * If we return -EACCES, caller may want to try again treating pointer as a
9980  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
9981  */
9982 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9983 				   struct bpf_insn *insn,
9984 				   const struct bpf_reg_state *ptr_reg,
9985 				   const struct bpf_reg_state *off_reg)
9986 {
9987 	struct bpf_verifier_state *vstate = env->cur_state;
9988 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9989 	struct bpf_reg_state *regs = state->regs, *dst_reg;
9990 	bool known = tnum_is_const(off_reg->var_off);
9991 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9992 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9993 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9994 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9995 	struct bpf_sanitize_info info = {};
9996 	u8 opcode = BPF_OP(insn->code);
9997 	u32 dst = insn->dst_reg;
9998 	int ret;
9999 
10000 	dst_reg = &regs[dst];
10001 
10002 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
10003 	    smin_val > smax_val || umin_val > umax_val) {
10004 		/* Taint dst register if offset had invalid bounds derived from
10005 		 * e.g. dead branches.
10006 		 */
10007 		__mark_reg_unknown(env, dst_reg);
10008 		return 0;
10009 	}
10010 
10011 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
10012 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
10013 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10014 			__mark_reg_unknown(env, dst_reg);
10015 			return 0;
10016 		}
10017 
10018 		verbose(env,
10019 			"R%d 32-bit pointer arithmetic prohibited\n",
10020 			dst);
10021 		return -EACCES;
10022 	}
10023 
10024 	if (ptr_reg->type & PTR_MAYBE_NULL) {
10025 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
10026 			dst, reg_type_str(env, ptr_reg->type));
10027 		return -EACCES;
10028 	}
10029 
10030 	switch (base_type(ptr_reg->type)) {
10031 	case CONST_PTR_TO_MAP:
10032 		/* smin_val represents the known value */
10033 		if (known && smin_val == 0 && opcode == BPF_ADD)
10034 			break;
10035 		fallthrough;
10036 	case PTR_TO_PACKET_END:
10037 	case PTR_TO_SOCKET:
10038 	case PTR_TO_SOCK_COMMON:
10039 	case PTR_TO_TCP_SOCK:
10040 	case PTR_TO_XDP_SOCK:
10041 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
10042 			dst, reg_type_str(env, ptr_reg->type));
10043 		return -EACCES;
10044 	default:
10045 		break;
10046 	}
10047 
10048 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
10049 	 * The id may be overwritten later if we create a new variable offset.
10050 	 */
10051 	dst_reg->type = ptr_reg->type;
10052 	dst_reg->id = ptr_reg->id;
10053 
10054 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
10055 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
10056 		return -EINVAL;
10057 
10058 	/* pointer types do not carry 32-bit bounds at the moment. */
10059 	__mark_reg32_unbounded(dst_reg);
10060 
10061 	if (sanitize_needed(opcode)) {
10062 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
10063 				       &info, false);
10064 		if (ret < 0)
10065 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
10066 	}
10067 
10068 	switch (opcode) {
10069 	case BPF_ADD:
10070 		/* We can take a fixed offset as long as it doesn't overflow
10071 		 * the s32 'off' field
10072 		 */
10073 		if (known && (ptr_reg->off + smin_val ==
10074 			      (s64)(s32)(ptr_reg->off + smin_val))) {
10075 			/* pointer += K.  Accumulate it into fixed offset */
10076 			dst_reg->smin_value = smin_ptr;
10077 			dst_reg->smax_value = smax_ptr;
10078 			dst_reg->umin_value = umin_ptr;
10079 			dst_reg->umax_value = umax_ptr;
10080 			dst_reg->var_off = ptr_reg->var_off;
10081 			dst_reg->off = ptr_reg->off + smin_val;
10082 			dst_reg->raw = ptr_reg->raw;
10083 			break;
10084 		}
10085 		/* A new variable offset is created.  Note that off_reg->off
10086 		 * == 0, since it's a scalar.
10087 		 * dst_reg gets the pointer type and since some positive
10088 		 * integer value was added to the pointer, give it a new 'id'
10089 		 * if it's a PTR_TO_PACKET.
10090 		 * this creates a new 'base' pointer, off_reg (variable) gets
10091 		 * added into the variable offset, and we copy the fixed offset
10092 		 * from ptr_reg.
10093 		 */
10094 		if (signed_add_overflows(smin_ptr, smin_val) ||
10095 		    signed_add_overflows(smax_ptr, smax_val)) {
10096 			dst_reg->smin_value = S64_MIN;
10097 			dst_reg->smax_value = S64_MAX;
10098 		} else {
10099 			dst_reg->smin_value = smin_ptr + smin_val;
10100 			dst_reg->smax_value = smax_ptr + smax_val;
10101 		}
10102 		if (umin_ptr + umin_val < umin_ptr ||
10103 		    umax_ptr + umax_val < umax_ptr) {
10104 			dst_reg->umin_value = 0;
10105 			dst_reg->umax_value = U64_MAX;
10106 		} else {
10107 			dst_reg->umin_value = umin_ptr + umin_val;
10108 			dst_reg->umax_value = umax_ptr + umax_val;
10109 		}
10110 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
10111 		dst_reg->off = ptr_reg->off;
10112 		dst_reg->raw = ptr_reg->raw;
10113 		if (reg_is_pkt_pointer(ptr_reg)) {
10114 			dst_reg->id = ++env->id_gen;
10115 			/* something was added to pkt_ptr, set range to zero */
10116 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
10117 		}
10118 		break;
10119 	case BPF_SUB:
10120 		if (dst_reg == off_reg) {
10121 			/* scalar -= pointer.  Creates an unknown scalar */
10122 			verbose(env, "R%d tried to subtract pointer from scalar\n",
10123 				dst);
10124 			return -EACCES;
10125 		}
10126 		/* We don't allow subtraction from FP, because (according to
10127 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
10128 		 * be able to deal with it.
10129 		 */
10130 		if (ptr_reg->type == PTR_TO_STACK) {
10131 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
10132 				dst);
10133 			return -EACCES;
10134 		}
10135 		if (known && (ptr_reg->off - smin_val ==
10136 			      (s64)(s32)(ptr_reg->off - smin_val))) {
10137 			/* pointer -= K.  Subtract it from fixed offset */
10138 			dst_reg->smin_value = smin_ptr;
10139 			dst_reg->smax_value = smax_ptr;
10140 			dst_reg->umin_value = umin_ptr;
10141 			dst_reg->umax_value = umax_ptr;
10142 			dst_reg->var_off = ptr_reg->var_off;
10143 			dst_reg->id = ptr_reg->id;
10144 			dst_reg->off = ptr_reg->off - smin_val;
10145 			dst_reg->raw = ptr_reg->raw;
10146 			break;
10147 		}
10148 		/* A new variable offset is created.  If the subtrahend is known
10149 		 * nonnegative, then any reg->range we had before is still good.
10150 		 */
10151 		if (signed_sub_overflows(smin_ptr, smax_val) ||
10152 		    signed_sub_overflows(smax_ptr, smin_val)) {
10153 			/* Overflow possible, we know nothing */
10154 			dst_reg->smin_value = S64_MIN;
10155 			dst_reg->smax_value = S64_MAX;
10156 		} else {
10157 			dst_reg->smin_value = smin_ptr - smax_val;
10158 			dst_reg->smax_value = smax_ptr - smin_val;
10159 		}
10160 		if (umin_ptr < umax_val) {
10161 			/* Overflow possible, we know nothing */
10162 			dst_reg->umin_value = 0;
10163 			dst_reg->umax_value = U64_MAX;
10164 		} else {
10165 			/* Cannot overflow (as long as bounds are consistent) */
10166 			dst_reg->umin_value = umin_ptr - umax_val;
10167 			dst_reg->umax_value = umax_ptr - umin_val;
10168 		}
10169 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
10170 		dst_reg->off = ptr_reg->off;
10171 		dst_reg->raw = ptr_reg->raw;
10172 		if (reg_is_pkt_pointer(ptr_reg)) {
10173 			dst_reg->id = ++env->id_gen;
10174 			/* something was added to pkt_ptr, set range to zero */
10175 			if (smin_val < 0)
10176 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
10177 		}
10178 		break;
10179 	case BPF_AND:
10180 	case BPF_OR:
10181 	case BPF_XOR:
10182 		/* bitwise ops on pointers are troublesome, prohibit. */
10183 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
10184 			dst, bpf_alu_string[opcode >> 4]);
10185 		return -EACCES;
10186 	default:
10187 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
10188 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
10189 			dst, bpf_alu_string[opcode >> 4]);
10190 		return -EACCES;
10191 	}
10192 
10193 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
10194 		return -EINVAL;
10195 	reg_bounds_sync(dst_reg);
10196 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
10197 		return -EACCES;
10198 	if (sanitize_needed(opcode)) {
10199 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
10200 				       &info, true);
10201 		if (ret < 0)
10202 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
10203 	}
10204 
10205 	return 0;
10206 }
10207 
10208 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
10209 				 struct bpf_reg_state *src_reg)
10210 {
10211 	s32 smin_val = src_reg->s32_min_value;
10212 	s32 smax_val = src_reg->s32_max_value;
10213 	u32 umin_val = src_reg->u32_min_value;
10214 	u32 umax_val = src_reg->u32_max_value;
10215 
10216 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
10217 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
10218 		dst_reg->s32_min_value = S32_MIN;
10219 		dst_reg->s32_max_value = S32_MAX;
10220 	} else {
10221 		dst_reg->s32_min_value += smin_val;
10222 		dst_reg->s32_max_value += smax_val;
10223 	}
10224 	if (dst_reg->u32_min_value + umin_val < umin_val ||
10225 	    dst_reg->u32_max_value + umax_val < umax_val) {
10226 		dst_reg->u32_min_value = 0;
10227 		dst_reg->u32_max_value = U32_MAX;
10228 	} else {
10229 		dst_reg->u32_min_value += umin_val;
10230 		dst_reg->u32_max_value += umax_val;
10231 	}
10232 }
10233 
10234 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
10235 			       struct bpf_reg_state *src_reg)
10236 {
10237 	s64 smin_val = src_reg->smin_value;
10238 	s64 smax_val = src_reg->smax_value;
10239 	u64 umin_val = src_reg->umin_value;
10240 	u64 umax_val = src_reg->umax_value;
10241 
10242 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
10243 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
10244 		dst_reg->smin_value = S64_MIN;
10245 		dst_reg->smax_value = S64_MAX;
10246 	} else {
10247 		dst_reg->smin_value += smin_val;
10248 		dst_reg->smax_value += smax_val;
10249 	}
10250 	if (dst_reg->umin_value + umin_val < umin_val ||
10251 	    dst_reg->umax_value + umax_val < umax_val) {
10252 		dst_reg->umin_value = 0;
10253 		dst_reg->umax_value = U64_MAX;
10254 	} else {
10255 		dst_reg->umin_value += umin_val;
10256 		dst_reg->umax_value += umax_val;
10257 	}
10258 }
10259 
10260 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
10261 				 struct bpf_reg_state *src_reg)
10262 {
10263 	s32 smin_val = src_reg->s32_min_value;
10264 	s32 smax_val = src_reg->s32_max_value;
10265 	u32 umin_val = src_reg->u32_min_value;
10266 	u32 umax_val = src_reg->u32_max_value;
10267 
10268 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
10269 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
10270 		/* Overflow possible, we know nothing */
10271 		dst_reg->s32_min_value = S32_MIN;
10272 		dst_reg->s32_max_value = S32_MAX;
10273 	} else {
10274 		dst_reg->s32_min_value -= smax_val;
10275 		dst_reg->s32_max_value -= smin_val;
10276 	}
10277 	if (dst_reg->u32_min_value < umax_val) {
10278 		/* Overflow possible, we know nothing */
10279 		dst_reg->u32_min_value = 0;
10280 		dst_reg->u32_max_value = U32_MAX;
10281 	} else {
10282 		/* Cannot overflow (as long as bounds are consistent) */
10283 		dst_reg->u32_min_value -= umax_val;
10284 		dst_reg->u32_max_value -= umin_val;
10285 	}
10286 }
10287 
10288 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
10289 			       struct bpf_reg_state *src_reg)
10290 {
10291 	s64 smin_val = src_reg->smin_value;
10292 	s64 smax_val = src_reg->smax_value;
10293 	u64 umin_val = src_reg->umin_value;
10294 	u64 umax_val = src_reg->umax_value;
10295 
10296 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
10297 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
10298 		/* Overflow possible, we know nothing */
10299 		dst_reg->smin_value = S64_MIN;
10300 		dst_reg->smax_value = S64_MAX;
10301 	} else {
10302 		dst_reg->smin_value -= smax_val;
10303 		dst_reg->smax_value -= smin_val;
10304 	}
10305 	if (dst_reg->umin_value < umax_val) {
10306 		/* Overflow possible, we know nothing */
10307 		dst_reg->umin_value = 0;
10308 		dst_reg->umax_value = U64_MAX;
10309 	} else {
10310 		/* Cannot overflow (as long as bounds are consistent) */
10311 		dst_reg->umin_value -= umax_val;
10312 		dst_reg->umax_value -= umin_val;
10313 	}
10314 }
10315 
10316 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
10317 				 struct bpf_reg_state *src_reg)
10318 {
10319 	s32 smin_val = src_reg->s32_min_value;
10320 	u32 umin_val = src_reg->u32_min_value;
10321 	u32 umax_val = src_reg->u32_max_value;
10322 
10323 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
10324 		/* Ain't nobody got time to multiply that sign */
10325 		__mark_reg32_unbounded(dst_reg);
10326 		return;
10327 	}
10328 	/* Both values are positive, so we can work with unsigned and
10329 	 * copy the result to signed (unless it exceeds S32_MAX).
10330 	 */
10331 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
10332 		/* Potential overflow, we know nothing */
10333 		__mark_reg32_unbounded(dst_reg);
10334 		return;
10335 	}
10336 	dst_reg->u32_min_value *= umin_val;
10337 	dst_reg->u32_max_value *= umax_val;
10338 	if (dst_reg->u32_max_value > S32_MAX) {
10339 		/* Overflow possible, we know nothing */
10340 		dst_reg->s32_min_value = S32_MIN;
10341 		dst_reg->s32_max_value = S32_MAX;
10342 	} else {
10343 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10344 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10345 	}
10346 }
10347 
10348 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
10349 			       struct bpf_reg_state *src_reg)
10350 {
10351 	s64 smin_val = src_reg->smin_value;
10352 	u64 umin_val = src_reg->umin_value;
10353 	u64 umax_val = src_reg->umax_value;
10354 
10355 	if (smin_val < 0 || dst_reg->smin_value < 0) {
10356 		/* Ain't nobody got time to multiply that sign */
10357 		__mark_reg64_unbounded(dst_reg);
10358 		return;
10359 	}
10360 	/* Both values are positive, so we can work with unsigned and
10361 	 * copy the result to signed (unless it exceeds S64_MAX).
10362 	 */
10363 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
10364 		/* Potential overflow, we know nothing */
10365 		__mark_reg64_unbounded(dst_reg);
10366 		return;
10367 	}
10368 	dst_reg->umin_value *= umin_val;
10369 	dst_reg->umax_value *= umax_val;
10370 	if (dst_reg->umax_value > S64_MAX) {
10371 		/* Overflow possible, we know nothing */
10372 		dst_reg->smin_value = S64_MIN;
10373 		dst_reg->smax_value = S64_MAX;
10374 	} else {
10375 		dst_reg->smin_value = dst_reg->umin_value;
10376 		dst_reg->smax_value = dst_reg->umax_value;
10377 	}
10378 }
10379 
10380 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
10381 				 struct bpf_reg_state *src_reg)
10382 {
10383 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10384 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10385 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10386 	s32 smin_val = src_reg->s32_min_value;
10387 	u32 umax_val = src_reg->u32_max_value;
10388 
10389 	if (src_known && dst_known) {
10390 		__mark_reg32_known(dst_reg, var32_off.value);
10391 		return;
10392 	}
10393 
10394 	/* We get our minimum from the var_off, since that's inherently
10395 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10396 	 */
10397 	dst_reg->u32_min_value = var32_off.value;
10398 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
10399 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10400 		/* Lose signed bounds when ANDing negative numbers,
10401 		 * ain't nobody got time for that.
10402 		 */
10403 		dst_reg->s32_min_value = S32_MIN;
10404 		dst_reg->s32_max_value = S32_MAX;
10405 	} else {
10406 		/* ANDing two positives gives a positive, so safe to
10407 		 * cast result into s64.
10408 		 */
10409 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10410 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10411 	}
10412 }
10413 
10414 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
10415 			       struct bpf_reg_state *src_reg)
10416 {
10417 	bool src_known = tnum_is_const(src_reg->var_off);
10418 	bool dst_known = tnum_is_const(dst_reg->var_off);
10419 	s64 smin_val = src_reg->smin_value;
10420 	u64 umax_val = src_reg->umax_value;
10421 
10422 	if (src_known && dst_known) {
10423 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10424 		return;
10425 	}
10426 
10427 	/* We get our minimum from the var_off, since that's inherently
10428 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10429 	 */
10430 	dst_reg->umin_value = dst_reg->var_off.value;
10431 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10432 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10433 		/* Lose signed bounds when ANDing negative numbers,
10434 		 * ain't nobody got time for that.
10435 		 */
10436 		dst_reg->smin_value = S64_MIN;
10437 		dst_reg->smax_value = S64_MAX;
10438 	} else {
10439 		/* ANDing two positives gives a positive, so safe to
10440 		 * cast result into s64.
10441 		 */
10442 		dst_reg->smin_value = dst_reg->umin_value;
10443 		dst_reg->smax_value = dst_reg->umax_value;
10444 	}
10445 	/* We may learn something more from the var_off */
10446 	__update_reg_bounds(dst_reg);
10447 }
10448 
10449 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10450 				struct bpf_reg_state *src_reg)
10451 {
10452 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10453 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10454 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10455 	s32 smin_val = src_reg->s32_min_value;
10456 	u32 umin_val = src_reg->u32_min_value;
10457 
10458 	if (src_known && dst_known) {
10459 		__mark_reg32_known(dst_reg, var32_off.value);
10460 		return;
10461 	}
10462 
10463 	/* We get our maximum from the var_off, and our minimum is the
10464 	 * maximum of the operands' minima
10465 	 */
10466 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10467 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10468 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10469 		/* Lose signed bounds when ORing negative numbers,
10470 		 * ain't nobody got time for that.
10471 		 */
10472 		dst_reg->s32_min_value = S32_MIN;
10473 		dst_reg->s32_max_value = S32_MAX;
10474 	} else {
10475 		/* ORing two positives gives a positive, so safe to
10476 		 * cast result into s64.
10477 		 */
10478 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10479 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10480 	}
10481 }
10482 
10483 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10484 			      struct bpf_reg_state *src_reg)
10485 {
10486 	bool src_known = tnum_is_const(src_reg->var_off);
10487 	bool dst_known = tnum_is_const(dst_reg->var_off);
10488 	s64 smin_val = src_reg->smin_value;
10489 	u64 umin_val = src_reg->umin_value;
10490 
10491 	if (src_known && dst_known) {
10492 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10493 		return;
10494 	}
10495 
10496 	/* We get our maximum from the var_off, and our minimum is the
10497 	 * maximum of the operands' minima
10498 	 */
10499 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10500 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10501 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10502 		/* Lose signed bounds when ORing negative numbers,
10503 		 * ain't nobody got time for that.
10504 		 */
10505 		dst_reg->smin_value = S64_MIN;
10506 		dst_reg->smax_value = S64_MAX;
10507 	} else {
10508 		/* ORing two positives gives a positive, so safe to
10509 		 * cast result into s64.
10510 		 */
10511 		dst_reg->smin_value = dst_reg->umin_value;
10512 		dst_reg->smax_value = dst_reg->umax_value;
10513 	}
10514 	/* We may learn something more from the var_off */
10515 	__update_reg_bounds(dst_reg);
10516 }
10517 
10518 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10519 				 struct bpf_reg_state *src_reg)
10520 {
10521 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10522 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10523 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10524 	s32 smin_val = src_reg->s32_min_value;
10525 
10526 	if (src_known && dst_known) {
10527 		__mark_reg32_known(dst_reg, var32_off.value);
10528 		return;
10529 	}
10530 
10531 	/* We get both minimum and maximum from the var32_off. */
10532 	dst_reg->u32_min_value = var32_off.value;
10533 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10534 
10535 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10536 		/* XORing two positive sign numbers gives a positive,
10537 		 * so safe to cast u32 result into s32.
10538 		 */
10539 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10540 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10541 	} else {
10542 		dst_reg->s32_min_value = S32_MIN;
10543 		dst_reg->s32_max_value = S32_MAX;
10544 	}
10545 }
10546 
10547 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10548 			       struct bpf_reg_state *src_reg)
10549 {
10550 	bool src_known = tnum_is_const(src_reg->var_off);
10551 	bool dst_known = tnum_is_const(dst_reg->var_off);
10552 	s64 smin_val = src_reg->smin_value;
10553 
10554 	if (src_known && dst_known) {
10555 		/* dst_reg->var_off.value has been updated earlier */
10556 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10557 		return;
10558 	}
10559 
10560 	/* We get both minimum and maximum from the var_off. */
10561 	dst_reg->umin_value = dst_reg->var_off.value;
10562 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10563 
10564 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10565 		/* XORing two positive sign numbers gives a positive,
10566 		 * so safe to cast u64 result into s64.
10567 		 */
10568 		dst_reg->smin_value = dst_reg->umin_value;
10569 		dst_reg->smax_value = dst_reg->umax_value;
10570 	} else {
10571 		dst_reg->smin_value = S64_MIN;
10572 		dst_reg->smax_value = S64_MAX;
10573 	}
10574 
10575 	__update_reg_bounds(dst_reg);
10576 }
10577 
10578 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10579 				   u64 umin_val, u64 umax_val)
10580 {
10581 	/* We lose all sign bit information (except what we can pick
10582 	 * up from var_off)
10583 	 */
10584 	dst_reg->s32_min_value = S32_MIN;
10585 	dst_reg->s32_max_value = S32_MAX;
10586 	/* If we might shift our top bit out, then we know nothing */
10587 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10588 		dst_reg->u32_min_value = 0;
10589 		dst_reg->u32_max_value = U32_MAX;
10590 	} else {
10591 		dst_reg->u32_min_value <<= umin_val;
10592 		dst_reg->u32_max_value <<= umax_val;
10593 	}
10594 }
10595 
10596 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10597 				 struct bpf_reg_state *src_reg)
10598 {
10599 	u32 umax_val = src_reg->u32_max_value;
10600 	u32 umin_val = src_reg->u32_min_value;
10601 	/* u32 alu operation will zext upper bits */
10602 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10603 
10604 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10605 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10606 	/* Not required but being careful mark reg64 bounds as unknown so
10607 	 * that we are forced to pick them up from tnum and zext later and
10608 	 * if some path skips this step we are still safe.
10609 	 */
10610 	__mark_reg64_unbounded(dst_reg);
10611 	__update_reg32_bounds(dst_reg);
10612 }
10613 
10614 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10615 				   u64 umin_val, u64 umax_val)
10616 {
10617 	/* Special case <<32 because it is a common compiler pattern to sign
10618 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10619 	 * positive we know this shift will also be positive so we can track
10620 	 * bounds correctly. Otherwise we lose all sign bit information except
10621 	 * what we can pick up from var_off. Perhaps we can generalize this
10622 	 * later to shifts of any length.
10623 	 */
10624 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10625 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10626 	else
10627 		dst_reg->smax_value = S64_MAX;
10628 
10629 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10630 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10631 	else
10632 		dst_reg->smin_value = S64_MIN;
10633 
10634 	/* If we might shift our top bit out, then we know nothing */
10635 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10636 		dst_reg->umin_value = 0;
10637 		dst_reg->umax_value = U64_MAX;
10638 	} else {
10639 		dst_reg->umin_value <<= umin_val;
10640 		dst_reg->umax_value <<= umax_val;
10641 	}
10642 }
10643 
10644 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10645 			       struct bpf_reg_state *src_reg)
10646 {
10647 	u64 umax_val = src_reg->umax_value;
10648 	u64 umin_val = src_reg->umin_value;
10649 
10650 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10651 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10652 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10653 
10654 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10655 	/* We may learn something more from the var_off */
10656 	__update_reg_bounds(dst_reg);
10657 }
10658 
10659 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10660 				 struct bpf_reg_state *src_reg)
10661 {
10662 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10663 	u32 umax_val = src_reg->u32_max_value;
10664 	u32 umin_val = src_reg->u32_min_value;
10665 
10666 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10667 	 * be negative, then either:
10668 	 * 1) src_reg might be zero, so the sign bit of the result is
10669 	 *    unknown, so we lose our signed bounds
10670 	 * 2) it's known negative, thus the unsigned bounds capture the
10671 	 *    signed bounds
10672 	 * 3) the signed bounds cross zero, so they tell us nothing
10673 	 *    about the result
10674 	 * If the value in dst_reg is known nonnegative, then again the
10675 	 * unsigned bounds capture the signed bounds.
10676 	 * Thus, in all cases it suffices to blow away our signed bounds
10677 	 * and rely on inferring new ones from the unsigned bounds and
10678 	 * var_off of the result.
10679 	 */
10680 	dst_reg->s32_min_value = S32_MIN;
10681 	dst_reg->s32_max_value = S32_MAX;
10682 
10683 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10684 	dst_reg->u32_min_value >>= umax_val;
10685 	dst_reg->u32_max_value >>= umin_val;
10686 
10687 	__mark_reg64_unbounded(dst_reg);
10688 	__update_reg32_bounds(dst_reg);
10689 }
10690 
10691 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10692 			       struct bpf_reg_state *src_reg)
10693 {
10694 	u64 umax_val = src_reg->umax_value;
10695 	u64 umin_val = src_reg->umin_value;
10696 
10697 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10698 	 * be negative, then either:
10699 	 * 1) src_reg might be zero, so the sign bit of the result is
10700 	 *    unknown, so we lose our signed bounds
10701 	 * 2) it's known negative, thus the unsigned bounds capture the
10702 	 *    signed bounds
10703 	 * 3) the signed bounds cross zero, so they tell us nothing
10704 	 *    about the result
10705 	 * If the value in dst_reg is known nonnegative, then again the
10706 	 * unsigned bounds capture the signed bounds.
10707 	 * Thus, in all cases it suffices to blow away our signed bounds
10708 	 * and rely on inferring new ones from the unsigned bounds and
10709 	 * var_off of the result.
10710 	 */
10711 	dst_reg->smin_value = S64_MIN;
10712 	dst_reg->smax_value = S64_MAX;
10713 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10714 	dst_reg->umin_value >>= umax_val;
10715 	dst_reg->umax_value >>= umin_val;
10716 
10717 	/* Its not easy to operate on alu32 bounds here because it depends
10718 	 * on bits being shifted in. Take easy way out and mark unbounded
10719 	 * so we can recalculate later from tnum.
10720 	 */
10721 	__mark_reg32_unbounded(dst_reg);
10722 	__update_reg_bounds(dst_reg);
10723 }
10724 
10725 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10726 				  struct bpf_reg_state *src_reg)
10727 {
10728 	u64 umin_val = src_reg->u32_min_value;
10729 
10730 	/* Upon reaching here, src_known is true and
10731 	 * umax_val is equal to umin_val.
10732 	 */
10733 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10734 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10735 
10736 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10737 
10738 	/* blow away the dst_reg umin_value/umax_value and rely on
10739 	 * dst_reg var_off to refine the result.
10740 	 */
10741 	dst_reg->u32_min_value = 0;
10742 	dst_reg->u32_max_value = U32_MAX;
10743 
10744 	__mark_reg64_unbounded(dst_reg);
10745 	__update_reg32_bounds(dst_reg);
10746 }
10747 
10748 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10749 				struct bpf_reg_state *src_reg)
10750 {
10751 	u64 umin_val = src_reg->umin_value;
10752 
10753 	/* Upon reaching here, src_known is true and umax_val is equal
10754 	 * to umin_val.
10755 	 */
10756 	dst_reg->smin_value >>= umin_val;
10757 	dst_reg->smax_value >>= umin_val;
10758 
10759 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10760 
10761 	/* blow away the dst_reg umin_value/umax_value and rely on
10762 	 * dst_reg var_off to refine the result.
10763 	 */
10764 	dst_reg->umin_value = 0;
10765 	dst_reg->umax_value = U64_MAX;
10766 
10767 	/* Its not easy to operate on alu32 bounds here because it depends
10768 	 * on bits being shifted in from upper 32-bits. Take easy way out
10769 	 * and mark unbounded so we can recalculate later from tnum.
10770 	 */
10771 	__mark_reg32_unbounded(dst_reg);
10772 	__update_reg_bounds(dst_reg);
10773 }
10774 
10775 /* WARNING: This function does calculations on 64-bit values, but the actual
10776  * execution may occur on 32-bit values. Therefore, things like bitshifts
10777  * need extra checks in the 32-bit case.
10778  */
10779 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10780 				      struct bpf_insn *insn,
10781 				      struct bpf_reg_state *dst_reg,
10782 				      struct bpf_reg_state src_reg)
10783 {
10784 	struct bpf_reg_state *regs = cur_regs(env);
10785 	u8 opcode = BPF_OP(insn->code);
10786 	bool src_known;
10787 	s64 smin_val, smax_val;
10788 	u64 umin_val, umax_val;
10789 	s32 s32_min_val, s32_max_val;
10790 	u32 u32_min_val, u32_max_val;
10791 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10792 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10793 	int ret;
10794 
10795 	smin_val = src_reg.smin_value;
10796 	smax_val = src_reg.smax_value;
10797 	umin_val = src_reg.umin_value;
10798 	umax_val = src_reg.umax_value;
10799 
10800 	s32_min_val = src_reg.s32_min_value;
10801 	s32_max_val = src_reg.s32_max_value;
10802 	u32_min_val = src_reg.u32_min_value;
10803 	u32_max_val = src_reg.u32_max_value;
10804 
10805 	if (alu32) {
10806 		src_known = tnum_subreg_is_const(src_reg.var_off);
10807 		if ((src_known &&
10808 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10809 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10810 			/* Taint dst register if offset had invalid bounds
10811 			 * derived from e.g. dead branches.
10812 			 */
10813 			__mark_reg_unknown(env, dst_reg);
10814 			return 0;
10815 		}
10816 	} else {
10817 		src_known = tnum_is_const(src_reg.var_off);
10818 		if ((src_known &&
10819 		     (smin_val != smax_val || umin_val != umax_val)) ||
10820 		    smin_val > smax_val || umin_val > umax_val) {
10821 			/* Taint dst register if offset had invalid bounds
10822 			 * derived from e.g. dead branches.
10823 			 */
10824 			__mark_reg_unknown(env, dst_reg);
10825 			return 0;
10826 		}
10827 	}
10828 
10829 	if (!src_known &&
10830 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10831 		__mark_reg_unknown(env, dst_reg);
10832 		return 0;
10833 	}
10834 
10835 	if (sanitize_needed(opcode)) {
10836 		ret = sanitize_val_alu(env, insn);
10837 		if (ret < 0)
10838 			return sanitize_err(env, insn, ret, NULL, NULL);
10839 	}
10840 
10841 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10842 	 * There are two classes of instructions: The first class we track both
10843 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10844 	 * greatest amount of precision when alu operations are mixed with jmp32
10845 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10846 	 * and BPF_OR. This is possible because these ops have fairly easy to
10847 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10848 	 * See alu32 verifier tests for examples. The second class of
10849 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10850 	 * with regards to tracking sign/unsigned bounds because the bits may
10851 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10852 	 * the reg unbounded in the subreg bound space and use the resulting
10853 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10854 	 */
10855 	switch (opcode) {
10856 	case BPF_ADD:
10857 		scalar32_min_max_add(dst_reg, &src_reg);
10858 		scalar_min_max_add(dst_reg, &src_reg);
10859 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10860 		break;
10861 	case BPF_SUB:
10862 		scalar32_min_max_sub(dst_reg, &src_reg);
10863 		scalar_min_max_sub(dst_reg, &src_reg);
10864 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10865 		break;
10866 	case BPF_MUL:
10867 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10868 		scalar32_min_max_mul(dst_reg, &src_reg);
10869 		scalar_min_max_mul(dst_reg, &src_reg);
10870 		break;
10871 	case BPF_AND:
10872 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10873 		scalar32_min_max_and(dst_reg, &src_reg);
10874 		scalar_min_max_and(dst_reg, &src_reg);
10875 		break;
10876 	case BPF_OR:
10877 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10878 		scalar32_min_max_or(dst_reg, &src_reg);
10879 		scalar_min_max_or(dst_reg, &src_reg);
10880 		break;
10881 	case BPF_XOR:
10882 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10883 		scalar32_min_max_xor(dst_reg, &src_reg);
10884 		scalar_min_max_xor(dst_reg, &src_reg);
10885 		break;
10886 	case BPF_LSH:
10887 		if (umax_val >= insn_bitness) {
10888 			/* Shifts greater than 31 or 63 are undefined.
10889 			 * This includes shifts by a negative number.
10890 			 */
10891 			mark_reg_unknown(env, regs, insn->dst_reg);
10892 			break;
10893 		}
10894 		if (alu32)
10895 			scalar32_min_max_lsh(dst_reg, &src_reg);
10896 		else
10897 			scalar_min_max_lsh(dst_reg, &src_reg);
10898 		break;
10899 	case BPF_RSH:
10900 		if (umax_val >= insn_bitness) {
10901 			/* Shifts greater than 31 or 63 are undefined.
10902 			 * This includes shifts by a negative number.
10903 			 */
10904 			mark_reg_unknown(env, regs, insn->dst_reg);
10905 			break;
10906 		}
10907 		if (alu32)
10908 			scalar32_min_max_rsh(dst_reg, &src_reg);
10909 		else
10910 			scalar_min_max_rsh(dst_reg, &src_reg);
10911 		break;
10912 	case BPF_ARSH:
10913 		if (umax_val >= insn_bitness) {
10914 			/* Shifts greater than 31 or 63 are undefined.
10915 			 * This includes shifts by a negative number.
10916 			 */
10917 			mark_reg_unknown(env, regs, insn->dst_reg);
10918 			break;
10919 		}
10920 		if (alu32)
10921 			scalar32_min_max_arsh(dst_reg, &src_reg);
10922 		else
10923 			scalar_min_max_arsh(dst_reg, &src_reg);
10924 		break;
10925 	default:
10926 		mark_reg_unknown(env, regs, insn->dst_reg);
10927 		break;
10928 	}
10929 
10930 	/* ALU32 ops are zero extended into 64bit register */
10931 	if (alu32)
10932 		zext_32_to_64(dst_reg);
10933 	reg_bounds_sync(dst_reg);
10934 	return 0;
10935 }
10936 
10937 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10938  * and var_off.
10939  */
10940 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10941 				   struct bpf_insn *insn)
10942 {
10943 	struct bpf_verifier_state *vstate = env->cur_state;
10944 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10945 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
10946 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10947 	u8 opcode = BPF_OP(insn->code);
10948 	int err;
10949 
10950 	dst_reg = &regs[insn->dst_reg];
10951 	src_reg = NULL;
10952 	if (dst_reg->type != SCALAR_VALUE)
10953 		ptr_reg = dst_reg;
10954 	else
10955 		/* Make sure ID is cleared otherwise dst_reg min/max could be
10956 		 * incorrectly propagated into other registers by find_equal_scalars()
10957 		 */
10958 		dst_reg->id = 0;
10959 	if (BPF_SRC(insn->code) == BPF_X) {
10960 		src_reg = &regs[insn->src_reg];
10961 		if (src_reg->type != SCALAR_VALUE) {
10962 			if (dst_reg->type != SCALAR_VALUE) {
10963 				/* Combining two pointers by any ALU op yields
10964 				 * an arbitrary scalar. Disallow all math except
10965 				 * pointer subtraction
10966 				 */
10967 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10968 					mark_reg_unknown(env, regs, insn->dst_reg);
10969 					return 0;
10970 				}
10971 				verbose(env, "R%d pointer %s pointer prohibited\n",
10972 					insn->dst_reg,
10973 					bpf_alu_string[opcode >> 4]);
10974 				return -EACCES;
10975 			} else {
10976 				/* scalar += pointer
10977 				 * This is legal, but we have to reverse our
10978 				 * src/dest handling in computing the range
10979 				 */
10980 				err = mark_chain_precision(env, insn->dst_reg);
10981 				if (err)
10982 					return err;
10983 				return adjust_ptr_min_max_vals(env, insn,
10984 							       src_reg, dst_reg);
10985 			}
10986 		} else if (ptr_reg) {
10987 			/* pointer += scalar */
10988 			err = mark_chain_precision(env, insn->src_reg);
10989 			if (err)
10990 				return err;
10991 			return adjust_ptr_min_max_vals(env, insn,
10992 						       dst_reg, src_reg);
10993 		} else if (dst_reg->precise) {
10994 			/* if dst_reg is precise, src_reg should be precise as well */
10995 			err = mark_chain_precision(env, insn->src_reg);
10996 			if (err)
10997 				return err;
10998 		}
10999 	} else {
11000 		/* Pretend the src is a reg with a known value, since we only
11001 		 * need to be able to read from this state.
11002 		 */
11003 		off_reg.type = SCALAR_VALUE;
11004 		__mark_reg_known(&off_reg, insn->imm);
11005 		src_reg = &off_reg;
11006 		if (ptr_reg) /* pointer += K */
11007 			return adjust_ptr_min_max_vals(env, insn,
11008 						       ptr_reg, src_reg);
11009 	}
11010 
11011 	/* Got here implies adding two SCALAR_VALUEs */
11012 	if (WARN_ON_ONCE(ptr_reg)) {
11013 		print_verifier_state(env, state, true);
11014 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
11015 		return -EINVAL;
11016 	}
11017 	if (WARN_ON(!src_reg)) {
11018 		print_verifier_state(env, state, true);
11019 		verbose(env, "verifier internal error: no src_reg\n");
11020 		return -EINVAL;
11021 	}
11022 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
11023 }
11024 
11025 /* check validity of 32-bit and 64-bit arithmetic operations */
11026 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
11027 {
11028 	struct bpf_reg_state *regs = cur_regs(env);
11029 	u8 opcode = BPF_OP(insn->code);
11030 	int err;
11031 
11032 	if (opcode == BPF_END || opcode == BPF_NEG) {
11033 		if (opcode == BPF_NEG) {
11034 			if (BPF_SRC(insn->code) != BPF_K ||
11035 			    insn->src_reg != BPF_REG_0 ||
11036 			    insn->off != 0 || insn->imm != 0) {
11037 				verbose(env, "BPF_NEG uses reserved fields\n");
11038 				return -EINVAL;
11039 			}
11040 		} else {
11041 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
11042 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
11043 			    BPF_CLASS(insn->code) == BPF_ALU64) {
11044 				verbose(env, "BPF_END uses reserved fields\n");
11045 				return -EINVAL;
11046 			}
11047 		}
11048 
11049 		/* check src operand */
11050 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11051 		if (err)
11052 			return err;
11053 
11054 		if (is_pointer_value(env, insn->dst_reg)) {
11055 			verbose(env, "R%d pointer arithmetic prohibited\n",
11056 				insn->dst_reg);
11057 			return -EACCES;
11058 		}
11059 
11060 		/* check dest operand */
11061 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
11062 		if (err)
11063 			return err;
11064 
11065 	} else if (opcode == BPF_MOV) {
11066 
11067 		if (BPF_SRC(insn->code) == BPF_X) {
11068 			if (insn->imm != 0 || insn->off != 0) {
11069 				verbose(env, "BPF_MOV uses reserved fields\n");
11070 				return -EINVAL;
11071 			}
11072 
11073 			/* check src operand */
11074 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11075 			if (err)
11076 				return err;
11077 		} else {
11078 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
11079 				verbose(env, "BPF_MOV uses reserved fields\n");
11080 				return -EINVAL;
11081 			}
11082 		}
11083 
11084 		/* check dest operand, mark as required later */
11085 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11086 		if (err)
11087 			return err;
11088 
11089 		if (BPF_SRC(insn->code) == BPF_X) {
11090 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
11091 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
11092 
11093 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
11094 				/* case: R1 = R2
11095 				 * copy register state to dest reg
11096 				 */
11097 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
11098 					/* Assign src and dst registers the same ID
11099 					 * that will be used by find_equal_scalars()
11100 					 * to propagate min/max range.
11101 					 */
11102 					src_reg->id = ++env->id_gen;
11103 				*dst_reg = *src_reg;
11104 				dst_reg->live |= REG_LIVE_WRITTEN;
11105 				dst_reg->subreg_def = DEF_NOT_SUBREG;
11106 			} else {
11107 				/* R1 = (u32) R2 */
11108 				if (is_pointer_value(env, insn->src_reg)) {
11109 					verbose(env,
11110 						"R%d partial copy of pointer\n",
11111 						insn->src_reg);
11112 					return -EACCES;
11113 				} else if (src_reg->type == SCALAR_VALUE) {
11114 					*dst_reg = *src_reg;
11115 					/* Make sure ID is cleared otherwise
11116 					 * dst_reg min/max could be incorrectly
11117 					 * propagated into src_reg by find_equal_scalars()
11118 					 */
11119 					dst_reg->id = 0;
11120 					dst_reg->live |= REG_LIVE_WRITTEN;
11121 					dst_reg->subreg_def = env->insn_idx + 1;
11122 				} else {
11123 					mark_reg_unknown(env, regs,
11124 							 insn->dst_reg);
11125 				}
11126 				zext_32_to_64(dst_reg);
11127 				reg_bounds_sync(dst_reg);
11128 			}
11129 		} else {
11130 			/* case: R = imm
11131 			 * remember the value we stored into this reg
11132 			 */
11133 			/* clear any state __mark_reg_known doesn't set */
11134 			mark_reg_unknown(env, regs, insn->dst_reg);
11135 			regs[insn->dst_reg].type = SCALAR_VALUE;
11136 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
11137 				__mark_reg_known(regs + insn->dst_reg,
11138 						 insn->imm);
11139 			} else {
11140 				__mark_reg_known(regs + insn->dst_reg,
11141 						 (u32)insn->imm);
11142 			}
11143 		}
11144 
11145 	} else if (opcode > BPF_END) {
11146 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
11147 		return -EINVAL;
11148 
11149 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
11150 
11151 		if (BPF_SRC(insn->code) == BPF_X) {
11152 			if (insn->imm != 0 || insn->off != 0) {
11153 				verbose(env, "BPF_ALU uses reserved fields\n");
11154 				return -EINVAL;
11155 			}
11156 			/* check src1 operand */
11157 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11158 			if (err)
11159 				return err;
11160 		} else {
11161 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
11162 				verbose(env, "BPF_ALU uses reserved fields\n");
11163 				return -EINVAL;
11164 			}
11165 		}
11166 
11167 		/* check src2 operand */
11168 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11169 		if (err)
11170 			return err;
11171 
11172 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
11173 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
11174 			verbose(env, "div by zero\n");
11175 			return -EINVAL;
11176 		}
11177 
11178 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
11179 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
11180 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
11181 
11182 			if (insn->imm < 0 || insn->imm >= size) {
11183 				verbose(env, "invalid shift %d\n", insn->imm);
11184 				return -EINVAL;
11185 			}
11186 		}
11187 
11188 		/* check dest operand */
11189 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11190 		if (err)
11191 			return err;
11192 
11193 		return adjust_reg_min_max_vals(env, insn);
11194 	}
11195 
11196 	return 0;
11197 }
11198 
11199 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
11200 				   struct bpf_reg_state *dst_reg,
11201 				   enum bpf_reg_type type,
11202 				   bool range_right_open)
11203 {
11204 	struct bpf_func_state *state;
11205 	struct bpf_reg_state *reg;
11206 	int new_range;
11207 
11208 	if (dst_reg->off < 0 ||
11209 	    (dst_reg->off == 0 && range_right_open))
11210 		/* This doesn't give us any range */
11211 		return;
11212 
11213 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
11214 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
11215 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
11216 		 * than pkt_end, but that's because it's also less than pkt.
11217 		 */
11218 		return;
11219 
11220 	new_range = dst_reg->off;
11221 	if (range_right_open)
11222 		new_range++;
11223 
11224 	/* Examples for register markings:
11225 	 *
11226 	 * pkt_data in dst register:
11227 	 *
11228 	 *   r2 = r3;
11229 	 *   r2 += 8;
11230 	 *   if (r2 > pkt_end) goto <handle exception>
11231 	 *   <access okay>
11232 	 *
11233 	 *   r2 = r3;
11234 	 *   r2 += 8;
11235 	 *   if (r2 < pkt_end) goto <access okay>
11236 	 *   <handle exception>
11237 	 *
11238 	 *   Where:
11239 	 *     r2 == dst_reg, pkt_end == src_reg
11240 	 *     r2=pkt(id=n,off=8,r=0)
11241 	 *     r3=pkt(id=n,off=0,r=0)
11242 	 *
11243 	 * pkt_data in src register:
11244 	 *
11245 	 *   r2 = r3;
11246 	 *   r2 += 8;
11247 	 *   if (pkt_end >= r2) goto <access okay>
11248 	 *   <handle exception>
11249 	 *
11250 	 *   r2 = r3;
11251 	 *   r2 += 8;
11252 	 *   if (pkt_end <= r2) goto <handle exception>
11253 	 *   <access okay>
11254 	 *
11255 	 *   Where:
11256 	 *     pkt_end == dst_reg, r2 == src_reg
11257 	 *     r2=pkt(id=n,off=8,r=0)
11258 	 *     r3=pkt(id=n,off=0,r=0)
11259 	 *
11260 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
11261 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
11262 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
11263 	 * the check.
11264 	 */
11265 
11266 	/* If our ids match, then we must have the same max_value.  And we
11267 	 * don't care about the other reg's fixed offset, since if it's too big
11268 	 * the range won't allow anything.
11269 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
11270 	 */
11271 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11272 		if (reg->type == type && reg->id == dst_reg->id)
11273 			/* keep the maximum range already checked */
11274 			reg->range = max(reg->range, new_range);
11275 	}));
11276 }
11277 
11278 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
11279 {
11280 	struct tnum subreg = tnum_subreg(reg->var_off);
11281 	s32 sval = (s32)val;
11282 
11283 	switch (opcode) {
11284 	case BPF_JEQ:
11285 		if (tnum_is_const(subreg))
11286 			return !!tnum_equals_const(subreg, val);
11287 		break;
11288 	case BPF_JNE:
11289 		if (tnum_is_const(subreg))
11290 			return !tnum_equals_const(subreg, val);
11291 		break;
11292 	case BPF_JSET:
11293 		if ((~subreg.mask & subreg.value) & val)
11294 			return 1;
11295 		if (!((subreg.mask | subreg.value) & val))
11296 			return 0;
11297 		break;
11298 	case BPF_JGT:
11299 		if (reg->u32_min_value > val)
11300 			return 1;
11301 		else if (reg->u32_max_value <= val)
11302 			return 0;
11303 		break;
11304 	case BPF_JSGT:
11305 		if (reg->s32_min_value > sval)
11306 			return 1;
11307 		else if (reg->s32_max_value <= sval)
11308 			return 0;
11309 		break;
11310 	case BPF_JLT:
11311 		if (reg->u32_max_value < val)
11312 			return 1;
11313 		else if (reg->u32_min_value >= val)
11314 			return 0;
11315 		break;
11316 	case BPF_JSLT:
11317 		if (reg->s32_max_value < sval)
11318 			return 1;
11319 		else if (reg->s32_min_value >= sval)
11320 			return 0;
11321 		break;
11322 	case BPF_JGE:
11323 		if (reg->u32_min_value >= val)
11324 			return 1;
11325 		else if (reg->u32_max_value < val)
11326 			return 0;
11327 		break;
11328 	case BPF_JSGE:
11329 		if (reg->s32_min_value >= sval)
11330 			return 1;
11331 		else if (reg->s32_max_value < sval)
11332 			return 0;
11333 		break;
11334 	case BPF_JLE:
11335 		if (reg->u32_max_value <= val)
11336 			return 1;
11337 		else if (reg->u32_min_value > val)
11338 			return 0;
11339 		break;
11340 	case BPF_JSLE:
11341 		if (reg->s32_max_value <= sval)
11342 			return 1;
11343 		else if (reg->s32_min_value > sval)
11344 			return 0;
11345 		break;
11346 	}
11347 
11348 	return -1;
11349 }
11350 
11351 
11352 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
11353 {
11354 	s64 sval = (s64)val;
11355 
11356 	switch (opcode) {
11357 	case BPF_JEQ:
11358 		if (tnum_is_const(reg->var_off))
11359 			return !!tnum_equals_const(reg->var_off, val);
11360 		break;
11361 	case BPF_JNE:
11362 		if (tnum_is_const(reg->var_off))
11363 			return !tnum_equals_const(reg->var_off, val);
11364 		break;
11365 	case BPF_JSET:
11366 		if ((~reg->var_off.mask & reg->var_off.value) & val)
11367 			return 1;
11368 		if (!((reg->var_off.mask | reg->var_off.value) & val))
11369 			return 0;
11370 		break;
11371 	case BPF_JGT:
11372 		if (reg->umin_value > val)
11373 			return 1;
11374 		else if (reg->umax_value <= val)
11375 			return 0;
11376 		break;
11377 	case BPF_JSGT:
11378 		if (reg->smin_value > sval)
11379 			return 1;
11380 		else if (reg->smax_value <= sval)
11381 			return 0;
11382 		break;
11383 	case BPF_JLT:
11384 		if (reg->umax_value < val)
11385 			return 1;
11386 		else if (reg->umin_value >= val)
11387 			return 0;
11388 		break;
11389 	case BPF_JSLT:
11390 		if (reg->smax_value < sval)
11391 			return 1;
11392 		else if (reg->smin_value >= sval)
11393 			return 0;
11394 		break;
11395 	case BPF_JGE:
11396 		if (reg->umin_value >= val)
11397 			return 1;
11398 		else if (reg->umax_value < val)
11399 			return 0;
11400 		break;
11401 	case BPF_JSGE:
11402 		if (reg->smin_value >= sval)
11403 			return 1;
11404 		else if (reg->smax_value < sval)
11405 			return 0;
11406 		break;
11407 	case BPF_JLE:
11408 		if (reg->umax_value <= val)
11409 			return 1;
11410 		else if (reg->umin_value > val)
11411 			return 0;
11412 		break;
11413 	case BPF_JSLE:
11414 		if (reg->smax_value <= sval)
11415 			return 1;
11416 		else if (reg->smin_value > sval)
11417 			return 0;
11418 		break;
11419 	}
11420 
11421 	return -1;
11422 }
11423 
11424 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11425  * and return:
11426  *  1 - branch will be taken and "goto target" will be executed
11427  *  0 - branch will not be taken and fall-through to next insn
11428  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11429  *      range [0,10]
11430  */
11431 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11432 			   bool is_jmp32)
11433 {
11434 	if (__is_pointer_value(false, reg)) {
11435 		if (!reg_type_not_null(reg->type))
11436 			return -1;
11437 
11438 		/* If pointer is valid tests against zero will fail so we can
11439 		 * use this to direct branch taken.
11440 		 */
11441 		if (val != 0)
11442 			return -1;
11443 
11444 		switch (opcode) {
11445 		case BPF_JEQ:
11446 			return 0;
11447 		case BPF_JNE:
11448 			return 1;
11449 		default:
11450 			return -1;
11451 		}
11452 	}
11453 
11454 	if (is_jmp32)
11455 		return is_branch32_taken(reg, val, opcode);
11456 	return is_branch64_taken(reg, val, opcode);
11457 }
11458 
11459 static int flip_opcode(u32 opcode)
11460 {
11461 	/* How can we transform "a <op> b" into "b <op> a"? */
11462 	static const u8 opcode_flip[16] = {
11463 		/* these stay the same */
11464 		[BPF_JEQ  >> 4] = BPF_JEQ,
11465 		[BPF_JNE  >> 4] = BPF_JNE,
11466 		[BPF_JSET >> 4] = BPF_JSET,
11467 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11468 		[BPF_JGE  >> 4] = BPF_JLE,
11469 		[BPF_JGT  >> 4] = BPF_JLT,
11470 		[BPF_JLE  >> 4] = BPF_JGE,
11471 		[BPF_JLT  >> 4] = BPF_JGT,
11472 		[BPF_JSGE >> 4] = BPF_JSLE,
11473 		[BPF_JSGT >> 4] = BPF_JSLT,
11474 		[BPF_JSLE >> 4] = BPF_JSGE,
11475 		[BPF_JSLT >> 4] = BPF_JSGT
11476 	};
11477 	return opcode_flip[opcode >> 4];
11478 }
11479 
11480 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11481 				   struct bpf_reg_state *src_reg,
11482 				   u8 opcode)
11483 {
11484 	struct bpf_reg_state *pkt;
11485 
11486 	if (src_reg->type == PTR_TO_PACKET_END) {
11487 		pkt = dst_reg;
11488 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11489 		pkt = src_reg;
11490 		opcode = flip_opcode(opcode);
11491 	} else {
11492 		return -1;
11493 	}
11494 
11495 	if (pkt->range >= 0)
11496 		return -1;
11497 
11498 	switch (opcode) {
11499 	case BPF_JLE:
11500 		/* pkt <= pkt_end */
11501 		fallthrough;
11502 	case BPF_JGT:
11503 		/* pkt > pkt_end */
11504 		if (pkt->range == BEYOND_PKT_END)
11505 			/* pkt has at last one extra byte beyond pkt_end */
11506 			return opcode == BPF_JGT;
11507 		break;
11508 	case BPF_JLT:
11509 		/* pkt < pkt_end */
11510 		fallthrough;
11511 	case BPF_JGE:
11512 		/* pkt >= pkt_end */
11513 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11514 			return opcode == BPF_JGE;
11515 		break;
11516 	}
11517 	return -1;
11518 }
11519 
11520 /* Adjusts the register min/max values in the case that the dst_reg is the
11521  * variable register that we are working on, and src_reg is a constant or we're
11522  * simply doing a BPF_K check.
11523  * In JEQ/JNE cases we also adjust the var_off values.
11524  */
11525 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11526 			    struct bpf_reg_state *false_reg,
11527 			    u64 val, u32 val32,
11528 			    u8 opcode, bool is_jmp32)
11529 {
11530 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11531 	struct tnum false_64off = false_reg->var_off;
11532 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11533 	struct tnum true_64off = true_reg->var_off;
11534 	s64 sval = (s64)val;
11535 	s32 sval32 = (s32)val32;
11536 
11537 	/* If the dst_reg is a pointer, we can't learn anything about its
11538 	 * variable offset from the compare (unless src_reg were a pointer into
11539 	 * the same object, but we don't bother with that.
11540 	 * Since false_reg and true_reg have the same type by construction, we
11541 	 * only need to check one of them for pointerness.
11542 	 */
11543 	if (__is_pointer_value(false, false_reg))
11544 		return;
11545 
11546 	switch (opcode) {
11547 	/* JEQ/JNE comparison doesn't change the register equivalence.
11548 	 *
11549 	 * r1 = r2;
11550 	 * if (r1 == 42) goto label;
11551 	 * ...
11552 	 * label: // here both r1 and r2 are known to be 42.
11553 	 *
11554 	 * Hence when marking register as known preserve it's ID.
11555 	 */
11556 	case BPF_JEQ:
11557 		if (is_jmp32) {
11558 			__mark_reg32_known(true_reg, val32);
11559 			true_32off = tnum_subreg(true_reg->var_off);
11560 		} else {
11561 			___mark_reg_known(true_reg, val);
11562 			true_64off = true_reg->var_off;
11563 		}
11564 		break;
11565 	case BPF_JNE:
11566 		if (is_jmp32) {
11567 			__mark_reg32_known(false_reg, val32);
11568 			false_32off = tnum_subreg(false_reg->var_off);
11569 		} else {
11570 			___mark_reg_known(false_reg, val);
11571 			false_64off = false_reg->var_off;
11572 		}
11573 		break;
11574 	case BPF_JSET:
11575 		if (is_jmp32) {
11576 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11577 			if (is_power_of_2(val32))
11578 				true_32off = tnum_or(true_32off,
11579 						     tnum_const(val32));
11580 		} else {
11581 			false_64off = tnum_and(false_64off, tnum_const(~val));
11582 			if (is_power_of_2(val))
11583 				true_64off = tnum_or(true_64off,
11584 						     tnum_const(val));
11585 		}
11586 		break;
11587 	case BPF_JGE:
11588 	case BPF_JGT:
11589 	{
11590 		if (is_jmp32) {
11591 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11592 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11593 
11594 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11595 						       false_umax);
11596 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11597 						      true_umin);
11598 		} else {
11599 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11600 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11601 
11602 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11603 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11604 		}
11605 		break;
11606 	}
11607 	case BPF_JSGE:
11608 	case BPF_JSGT:
11609 	{
11610 		if (is_jmp32) {
11611 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11612 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11613 
11614 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11615 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11616 		} else {
11617 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11618 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11619 
11620 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11621 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11622 		}
11623 		break;
11624 	}
11625 	case BPF_JLE:
11626 	case BPF_JLT:
11627 	{
11628 		if (is_jmp32) {
11629 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11630 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11631 
11632 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11633 						       false_umin);
11634 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11635 						      true_umax);
11636 		} else {
11637 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11638 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11639 
11640 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11641 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11642 		}
11643 		break;
11644 	}
11645 	case BPF_JSLE:
11646 	case BPF_JSLT:
11647 	{
11648 		if (is_jmp32) {
11649 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11650 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11651 
11652 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11653 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11654 		} else {
11655 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11656 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11657 
11658 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11659 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11660 		}
11661 		break;
11662 	}
11663 	default:
11664 		return;
11665 	}
11666 
11667 	if (is_jmp32) {
11668 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11669 					     tnum_subreg(false_32off));
11670 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11671 					    tnum_subreg(true_32off));
11672 		__reg_combine_32_into_64(false_reg);
11673 		__reg_combine_32_into_64(true_reg);
11674 	} else {
11675 		false_reg->var_off = false_64off;
11676 		true_reg->var_off = true_64off;
11677 		__reg_combine_64_into_32(false_reg);
11678 		__reg_combine_64_into_32(true_reg);
11679 	}
11680 }
11681 
11682 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11683  * the variable reg.
11684  */
11685 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11686 				struct bpf_reg_state *false_reg,
11687 				u64 val, u32 val32,
11688 				u8 opcode, bool is_jmp32)
11689 {
11690 	opcode = flip_opcode(opcode);
11691 	/* This uses zero as "not present in table"; luckily the zero opcode,
11692 	 * BPF_JA, can't get here.
11693 	 */
11694 	if (opcode)
11695 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11696 }
11697 
11698 /* Regs are known to be equal, so intersect their min/max/var_off */
11699 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11700 				  struct bpf_reg_state *dst_reg)
11701 {
11702 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11703 							dst_reg->umin_value);
11704 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11705 							dst_reg->umax_value);
11706 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11707 							dst_reg->smin_value);
11708 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11709 							dst_reg->smax_value);
11710 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11711 							     dst_reg->var_off);
11712 	reg_bounds_sync(src_reg);
11713 	reg_bounds_sync(dst_reg);
11714 }
11715 
11716 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11717 				struct bpf_reg_state *true_dst,
11718 				struct bpf_reg_state *false_src,
11719 				struct bpf_reg_state *false_dst,
11720 				u8 opcode)
11721 {
11722 	switch (opcode) {
11723 	case BPF_JEQ:
11724 		__reg_combine_min_max(true_src, true_dst);
11725 		break;
11726 	case BPF_JNE:
11727 		__reg_combine_min_max(false_src, false_dst);
11728 		break;
11729 	}
11730 }
11731 
11732 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11733 				 struct bpf_reg_state *reg, u32 id,
11734 				 bool is_null)
11735 {
11736 	if (type_may_be_null(reg->type) && reg->id == id &&
11737 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11738 		/* Old offset (both fixed and variable parts) should have been
11739 		 * known-zero, because we don't allow pointer arithmetic on
11740 		 * pointers that might be NULL. If we see this happening, don't
11741 		 * convert the register.
11742 		 *
11743 		 * But in some cases, some helpers that return local kptrs
11744 		 * advance offset for the returned pointer. In those cases, it
11745 		 * is fine to expect to see reg->off.
11746 		 */
11747 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11748 			return;
11749 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11750 			return;
11751 		if (is_null) {
11752 			reg->type = SCALAR_VALUE;
11753 			/* We don't need id and ref_obj_id from this point
11754 			 * onwards anymore, thus we should better reset it,
11755 			 * so that state pruning has chances to take effect.
11756 			 */
11757 			reg->id = 0;
11758 			reg->ref_obj_id = 0;
11759 
11760 			return;
11761 		}
11762 
11763 		mark_ptr_not_null_reg(reg);
11764 
11765 		if (!reg_may_point_to_spin_lock(reg)) {
11766 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11767 			 * in release_reference().
11768 			 *
11769 			 * reg->id is still used by spin_lock ptr. Other
11770 			 * than spin_lock ptr type, reg->id can be reset.
11771 			 */
11772 			reg->id = 0;
11773 		}
11774 	}
11775 }
11776 
11777 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11778  * be folded together at some point.
11779  */
11780 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11781 				  bool is_null)
11782 {
11783 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11784 	struct bpf_reg_state *regs = state->regs, *reg;
11785 	u32 ref_obj_id = regs[regno].ref_obj_id;
11786 	u32 id = regs[regno].id;
11787 
11788 	if (ref_obj_id && ref_obj_id == id && is_null)
11789 		/* regs[regno] is in the " == NULL" branch.
11790 		 * No one could have freed the reference state before
11791 		 * doing the NULL check.
11792 		 */
11793 		WARN_ON_ONCE(release_reference_state(state, id));
11794 
11795 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11796 		mark_ptr_or_null_reg(state, reg, id, is_null);
11797 	}));
11798 }
11799 
11800 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11801 				   struct bpf_reg_state *dst_reg,
11802 				   struct bpf_reg_state *src_reg,
11803 				   struct bpf_verifier_state *this_branch,
11804 				   struct bpf_verifier_state *other_branch)
11805 {
11806 	if (BPF_SRC(insn->code) != BPF_X)
11807 		return false;
11808 
11809 	/* Pointers are always 64-bit. */
11810 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11811 		return false;
11812 
11813 	switch (BPF_OP(insn->code)) {
11814 	case BPF_JGT:
11815 		if ((dst_reg->type == PTR_TO_PACKET &&
11816 		     src_reg->type == PTR_TO_PACKET_END) ||
11817 		    (dst_reg->type == PTR_TO_PACKET_META &&
11818 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11819 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11820 			find_good_pkt_pointers(this_branch, dst_reg,
11821 					       dst_reg->type, false);
11822 			mark_pkt_end(other_branch, insn->dst_reg, true);
11823 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11824 			    src_reg->type == PTR_TO_PACKET) ||
11825 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11826 			    src_reg->type == PTR_TO_PACKET_META)) {
11827 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11828 			find_good_pkt_pointers(other_branch, src_reg,
11829 					       src_reg->type, true);
11830 			mark_pkt_end(this_branch, insn->src_reg, false);
11831 		} else {
11832 			return false;
11833 		}
11834 		break;
11835 	case BPF_JLT:
11836 		if ((dst_reg->type == PTR_TO_PACKET &&
11837 		     src_reg->type == PTR_TO_PACKET_END) ||
11838 		    (dst_reg->type == PTR_TO_PACKET_META &&
11839 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11840 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11841 			find_good_pkt_pointers(other_branch, dst_reg,
11842 					       dst_reg->type, true);
11843 			mark_pkt_end(this_branch, insn->dst_reg, false);
11844 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11845 			    src_reg->type == PTR_TO_PACKET) ||
11846 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11847 			    src_reg->type == PTR_TO_PACKET_META)) {
11848 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11849 			find_good_pkt_pointers(this_branch, src_reg,
11850 					       src_reg->type, false);
11851 			mark_pkt_end(other_branch, insn->src_reg, true);
11852 		} else {
11853 			return false;
11854 		}
11855 		break;
11856 	case BPF_JGE:
11857 		if ((dst_reg->type == PTR_TO_PACKET &&
11858 		     src_reg->type == PTR_TO_PACKET_END) ||
11859 		    (dst_reg->type == PTR_TO_PACKET_META &&
11860 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11861 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11862 			find_good_pkt_pointers(this_branch, dst_reg,
11863 					       dst_reg->type, true);
11864 			mark_pkt_end(other_branch, insn->dst_reg, false);
11865 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11866 			    src_reg->type == PTR_TO_PACKET) ||
11867 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11868 			    src_reg->type == PTR_TO_PACKET_META)) {
11869 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11870 			find_good_pkt_pointers(other_branch, src_reg,
11871 					       src_reg->type, false);
11872 			mark_pkt_end(this_branch, insn->src_reg, true);
11873 		} else {
11874 			return false;
11875 		}
11876 		break;
11877 	case BPF_JLE:
11878 		if ((dst_reg->type == PTR_TO_PACKET &&
11879 		     src_reg->type == PTR_TO_PACKET_END) ||
11880 		    (dst_reg->type == PTR_TO_PACKET_META &&
11881 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11882 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11883 			find_good_pkt_pointers(other_branch, dst_reg,
11884 					       dst_reg->type, false);
11885 			mark_pkt_end(this_branch, insn->dst_reg, true);
11886 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11887 			    src_reg->type == PTR_TO_PACKET) ||
11888 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11889 			    src_reg->type == PTR_TO_PACKET_META)) {
11890 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11891 			find_good_pkt_pointers(this_branch, src_reg,
11892 					       src_reg->type, true);
11893 			mark_pkt_end(other_branch, insn->src_reg, false);
11894 		} else {
11895 			return false;
11896 		}
11897 		break;
11898 	default:
11899 		return false;
11900 	}
11901 
11902 	return true;
11903 }
11904 
11905 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11906 			       struct bpf_reg_state *known_reg)
11907 {
11908 	struct bpf_func_state *state;
11909 	struct bpf_reg_state *reg;
11910 
11911 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11912 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11913 			*reg = *known_reg;
11914 	}));
11915 }
11916 
11917 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11918 			     struct bpf_insn *insn, int *insn_idx)
11919 {
11920 	struct bpf_verifier_state *this_branch = env->cur_state;
11921 	struct bpf_verifier_state *other_branch;
11922 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11923 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11924 	struct bpf_reg_state *eq_branch_regs;
11925 	u8 opcode = BPF_OP(insn->code);
11926 	bool is_jmp32;
11927 	int pred = -1;
11928 	int err;
11929 
11930 	/* Only conditional jumps are expected to reach here. */
11931 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11932 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11933 		return -EINVAL;
11934 	}
11935 
11936 	if (BPF_SRC(insn->code) == BPF_X) {
11937 		if (insn->imm != 0) {
11938 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11939 			return -EINVAL;
11940 		}
11941 
11942 		/* check src1 operand */
11943 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11944 		if (err)
11945 			return err;
11946 
11947 		if (is_pointer_value(env, insn->src_reg)) {
11948 			verbose(env, "R%d pointer comparison prohibited\n",
11949 				insn->src_reg);
11950 			return -EACCES;
11951 		}
11952 		src_reg = &regs[insn->src_reg];
11953 	} else {
11954 		if (insn->src_reg != BPF_REG_0) {
11955 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11956 			return -EINVAL;
11957 		}
11958 	}
11959 
11960 	/* check src2 operand */
11961 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11962 	if (err)
11963 		return err;
11964 
11965 	dst_reg = &regs[insn->dst_reg];
11966 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
11967 
11968 	if (BPF_SRC(insn->code) == BPF_K) {
11969 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11970 	} else if (src_reg->type == SCALAR_VALUE &&
11971 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11972 		pred = is_branch_taken(dst_reg,
11973 				       tnum_subreg(src_reg->var_off).value,
11974 				       opcode,
11975 				       is_jmp32);
11976 	} else if (src_reg->type == SCALAR_VALUE &&
11977 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11978 		pred = is_branch_taken(dst_reg,
11979 				       src_reg->var_off.value,
11980 				       opcode,
11981 				       is_jmp32);
11982 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
11983 		   reg_is_pkt_pointer_any(src_reg) &&
11984 		   !is_jmp32) {
11985 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
11986 	}
11987 
11988 	if (pred >= 0) {
11989 		/* If we get here with a dst_reg pointer type it is because
11990 		 * above is_branch_taken() special cased the 0 comparison.
11991 		 */
11992 		if (!__is_pointer_value(false, dst_reg))
11993 			err = mark_chain_precision(env, insn->dst_reg);
11994 		if (BPF_SRC(insn->code) == BPF_X && !err &&
11995 		    !__is_pointer_value(false, src_reg))
11996 			err = mark_chain_precision(env, insn->src_reg);
11997 		if (err)
11998 			return err;
11999 	}
12000 
12001 	if (pred == 1) {
12002 		/* Only follow the goto, ignore fall-through. If needed, push
12003 		 * the fall-through branch for simulation under speculative
12004 		 * execution.
12005 		 */
12006 		if (!env->bypass_spec_v1 &&
12007 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
12008 					       *insn_idx))
12009 			return -EFAULT;
12010 		*insn_idx += insn->off;
12011 		return 0;
12012 	} else if (pred == 0) {
12013 		/* Only follow the fall-through branch, since that's where the
12014 		 * program will go. If needed, push the goto branch for
12015 		 * simulation under speculative execution.
12016 		 */
12017 		if (!env->bypass_spec_v1 &&
12018 		    !sanitize_speculative_path(env, insn,
12019 					       *insn_idx + insn->off + 1,
12020 					       *insn_idx))
12021 			return -EFAULT;
12022 		return 0;
12023 	}
12024 
12025 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
12026 				  false);
12027 	if (!other_branch)
12028 		return -EFAULT;
12029 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
12030 
12031 	/* detect if we are comparing against a constant value so we can adjust
12032 	 * our min/max values for our dst register.
12033 	 * this is only legit if both are scalars (or pointers to the same
12034 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
12035 	 * because otherwise the different base pointers mean the offsets aren't
12036 	 * comparable.
12037 	 */
12038 	if (BPF_SRC(insn->code) == BPF_X) {
12039 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
12040 
12041 		if (dst_reg->type == SCALAR_VALUE &&
12042 		    src_reg->type == SCALAR_VALUE) {
12043 			if (tnum_is_const(src_reg->var_off) ||
12044 			    (is_jmp32 &&
12045 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
12046 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
12047 						dst_reg,
12048 						src_reg->var_off.value,
12049 						tnum_subreg(src_reg->var_off).value,
12050 						opcode, is_jmp32);
12051 			else if (tnum_is_const(dst_reg->var_off) ||
12052 				 (is_jmp32 &&
12053 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
12054 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
12055 						    src_reg,
12056 						    dst_reg->var_off.value,
12057 						    tnum_subreg(dst_reg->var_off).value,
12058 						    opcode, is_jmp32);
12059 			else if (!is_jmp32 &&
12060 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
12061 				/* Comparing for equality, we can combine knowledge */
12062 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
12063 						    &other_branch_regs[insn->dst_reg],
12064 						    src_reg, dst_reg, opcode);
12065 			if (src_reg->id &&
12066 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
12067 				find_equal_scalars(this_branch, src_reg);
12068 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
12069 			}
12070 
12071 		}
12072 	} else if (dst_reg->type == SCALAR_VALUE) {
12073 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
12074 					dst_reg, insn->imm, (u32)insn->imm,
12075 					opcode, is_jmp32);
12076 	}
12077 
12078 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
12079 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
12080 		find_equal_scalars(this_branch, dst_reg);
12081 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
12082 	}
12083 
12084 	/* if one pointer register is compared to another pointer
12085 	 * register check if PTR_MAYBE_NULL could be lifted.
12086 	 * E.g. register A - maybe null
12087 	 *      register B - not null
12088 	 * for JNE A, B, ... - A is not null in the false branch;
12089 	 * for JEQ A, B, ... - A is not null in the true branch.
12090 	 *
12091 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
12092 	 * not need to be null checked by the BPF program, i.e.,
12093 	 * could be null even without PTR_MAYBE_NULL marking, so
12094 	 * only propagate nullness when neither reg is that type.
12095 	 */
12096 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
12097 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
12098 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
12099 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
12100 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
12101 		eq_branch_regs = NULL;
12102 		switch (opcode) {
12103 		case BPF_JEQ:
12104 			eq_branch_regs = other_branch_regs;
12105 			break;
12106 		case BPF_JNE:
12107 			eq_branch_regs = regs;
12108 			break;
12109 		default:
12110 			/* do nothing */
12111 			break;
12112 		}
12113 		if (eq_branch_regs) {
12114 			if (type_may_be_null(src_reg->type))
12115 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
12116 			else
12117 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
12118 		}
12119 	}
12120 
12121 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
12122 	 * NOTE: these optimizations below are related with pointer comparison
12123 	 *       which will never be JMP32.
12124 	 */
12125 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
12126 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
12127 	    type_may_be_null(dst_reg->type)) {
12128 		/* Mark all identical registers in each branch as either
12129 		 * safe or unknown depending R == 0 or R != 0 conditional.
12130 		 */
12131 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
12132 				      opcode == BPF_JNE);
12133 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
12134 				      opcode == BPF_JEQ);
12135 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
12136 					   this_branch, other_branch) &&
12137 		   is_pointer_value(env, insn->dst_reg)) {
12138 		verbose(env, "R%d pointer comparison prohibited\n",
12139 			insn->dst_reg);
12140 		return -EACCES;
12141 	}
12142 	if (env->log.level & BPF_LOG_LEVEL)
12143 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
12144 	return 0;
12145 }
12146 
12147 /* verify BPF_LD_IMM64 instruction */
12148 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
12149 {
12150 	struct bpf_insn_aux_data *aux = cur_aux(env);
12151 	struct bpf_reg_state *regs = cur_regs(env);
12152 	struct bpf_reg_state *dst_reg;
12153 	struct bpf_map *map;
12154 	int err;
12155 
12156 	if (BPF_SIZE(insn->code) != BPF_DW) {
12157 		verbose(env, "invalid BPF_LD_IMM insn\n");
12158 		return -EINVAL;
12159 	}
12160 	if (insn->off != 0) {
12161 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
12162 		return -EINVAL;
12163 	}
12164 
12165 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
12166 	if (err)
12167 		return err;
12168 
12169 	dst_reg = &regs[insn->dst_reg];
12170 	if (insn->src_reg == 0) {
12171 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
12172 
12173 		dst_reg->type = SCALAR_VALUE;
12174 		__mark_reg_known(&regs[insn->dst_reg], imm);
12175 		return 0;
12176 	}
12177 
12178 	/* All special src_reg cases are listed below. From this point onwards
12179 	 * we either succeed and assign a corresponding dst_reg->type after
12180 	 * zeroing the offset, or fail and reject the program.
12181 	 */
12182 	mark_reg_known_zero(env, regs, insn->dst_reg);
12183 
12184 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
12185 		dst_reg->type = aux->btf_var.reg_type;
12186 		switch (base_type(dst_reg->type)) {
12187 		case PTR_TO_MEM:
12188 			dst_reg->mem_size = aux->btf_var.mem_size;
12189 			break;
12190 		case PTR_TO_BTF_ID:
12191 			dst_reg->btf = aux->btf_var.btf;
12192 			dst_reg->btf_id = aux->btf_var.btf_id;
12193 			break;
12194 		default:
12195 			verbose(env, "bpf verifier is misconfigured\n");
12196 			return -EFAULT;
12197 		}
12198 		return 0;
12199 	}
12200 
12201 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
12202 		struct bpf_prog_aux *aux = env->prog->aux;
12203 		u32 subprogno = find_subprog(env,
12204 					     env->insn_idx + insn->imm + 1);
12205 
12206 		if (!aux->func_info) {
12207 			verbose(env, "missing btf func_info\n");
12208 			return -EINVAL;
12209 		}
12210 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
12211 			verbose(env, "callback function not static\n");
12212 			return -EINVAL;
12213 		}
12214 
12215 		dst_reg->type = PTR_TO_FUNC;
12216 		dst_reg->subprogno = subprogno;
12217 		return 0;
12218 	}
12219 
12220 	map = env->used_maps[aux->map_index];
12221 	dst_reg->map_ptr = map;
12222 
12223 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
12224 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
12225 		dst_reg->type = PTR_TO_MAP_VALUE;
12226 		dst_reg->off = aux->map_off;
12227 		WARN_ON_ONCE(map->max_entries != 1);
12228 		/* We want reg->id to be same (0) as map_value is not distinct */
12229 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
12230 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
12231 		dst_reg->type = CONST_PTR_TO_MAP;
12232 	} else {
12233 		verbose(env, "bpf verifier is misconfigured\n");
12234 		return -EINVAL;
12235 	}
12236 
12237 	return 0;
12238 }
12239 
12240 static bool may_access_skb(enum bpf_prog_type type)
12241 {
12242 	switch (type) {
12243 	case BPF_PROG_TYPE_SOCKET_FILTER:
12244 	case BPF_PROG_TYPE_SCHED_CLS:
12245 	case BPF_PROG_TYPE_SCHED_ACT:
12246 		return true;
12247 	default:
12248 		return false;
12249 	}
12250 }
12251 
12252 /* verify safety of LD_ABS|LD_IND instructions:
12253  * - they can only appear in the programs where ctx == skb
12254  * - since they are wrappers of function calls, they scratch R1-R5 registers,
12255  *   preserve R6-R9, and store return value into R0
12256  *
12257  * Implicit input:
12258  *   ctx == skb == R6 == CTX
12259  *
12260  * Explicit input:
12261  *   SRC == any register
12262  *   IMM == 32-bit immediate
12263  *
12264  * Output:
12265  *   R0 - 8/16/32-bit skb data converted to cpu endianness
12266  */
12267 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
12268 {
12269 	struct bpf_reg_state *regs = cur_regs(env);
12270 	static const int ctx_reg = BPF_REG_6;
12271 	u8 mode = BPF_MODE(insn->code);
12272 	int i, err;
12273 
12274 	if (!may_access_skb(resolve_prog_type(env->prog))) {
12275 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
12276 		return -EINVAL;
12277 	}
12278 
12279 	if (!env->ops->gen_ld_abs) {
12280 		verbose(env, "bpf verifier is misconfigured\n");
12281 		return -EINVAL;
12282 	}
12283 
12284 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
12285 	    BPF_SIZE(insn->code) == BPF_DW ||
12286 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
12287 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
12288 		return -EINVAL;
12289 	}
12290 
12291 	/* check whether implicit source operand (register R6) is readable */
12292 	err = check_reg_arg(env, ctx_reg, SRC_OP);
12293 	if (err)
12294 		return err;
12295 
12296 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
12297 	 * gen_ld_abs() may terminate the program at runtime, leading to
12298 	 * reference leak.
12299 	 */
12300 	err = check_reference_leak(env);
12301 	if (err) {
12302 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
12303 		return err;
12304 	}
12305 
12306 	if (env->cur_state->active_lock.ptr) {
12307 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
12308 		return -EINVAL;
12309 	}
12310 
12311 	if (env->cur_state->active_rcu_lock) {
12312 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
12313 		return -EINVAL;
12314 	}
12315 
12316 	if (regs[ctx_reg].type != PTR_TO_CTX) {
12317 		verbose(env,
12318 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
12319 		return -EINVAL;
12320 	}
12321 
12322 	if (mode == BPF_IND) {
12323 		/* check explicit source operand */
12324 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
12325 		if (err)
12326 			return err;
12327 	}
12328 
12329 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
12330 	if (err < 0)
12331 		return err;
12332 
12333 	/* reset caller saved regs to unreadable */
12334 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
12335 		mark_reg_not_init(env, regs, caller_saved[i]);
12336 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
12337 	}
12338 
12339 	/* mark destination R0 register as readable, since it contains
12340 	 * the value fetched from the packet.
12341 	 * Already marked as written above.
12342 	 */
12343 	mark_reg_unknown(env, regs, BPF_REG_0);
12344 	/* ld_abs load up to 32-bit skb data. */
12345 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
12346 	return 0;
12347 }
12348 
12349 static int check_return_code(struct bpf_verifier_env *env)
12350 {
12351 	struct tnum enforce_attach_type_range = tnum_unknown;
12352 	const struct bpf_prog *prog = env->prog;
12353 	struct bpf_reg_state *reg;
12354 	struct tnum range = tnum_range(0, 1);
12355 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12356 	int err;
12357 	struct bpf_func_state *frame = env->cur_state->frame[0];
12358 	const bool is_subprog = frame->subprogno;
12359 
12360 	/* LSM and struct_ops func-ptr's return type could be "void" */
12361 	if (!is_subprog) {
12362 		switch (prog_type) {
12363 		case BPF_PROG_TYPE_LSM:
12364 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
12365 				/* See below, can be 0 or 0-1 depending on hook. */
12366 				break;
12367 			fallthrough;
12368 		case BPF_PROG_TYPE_STRUCT_OPS:
12369 			if (!prog->aux->attach_func_proto->type)
12370 				return 0;
12371 			break;
12372 		default:
12373 			break;
12374 		}
12375 	}
12376 
12377 	/* eBPF calling convention is such that R0 is used
12378 	 * to return the value from eBPF program.
12379 	 * Make sure that it's readable at this time
12380 	 * of bpf_exit, which means that program wrote
12381 	 * something into it earlier
12382 	 */
12383 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
12384 	if (err)
12385 		return err;
12386 
12387 	if (is_pointer_value(env, BPF_REG_0)) {
12388 		verbose(env, "R0 leaks addr as return value\n");
12389 		return -EACCES;
12390 	}
12391 
12392 	reg = cur_regs(env) + BPF_REG_0;
12393 
12394 	if (frame->in_async_callback_fn) {
12395 		/* enforce return zero from async callbacks like timer */
12396 		if (reg->type != SCALAR_VALUE) {
12397 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
12398 				reg_type_str(env, reg->type));
12399 			return -EINVAL;
12400 		}
12401 
12402 		if (!tnum_in(tnum_const(0), reg->var_off)) {
12403 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
12404 			return -EINVAL;
12405 		}
12406 		return 0;
12407 	}
12408 
12409 	if (is_subprog) {
12410 		if (reg->type != SCALAR_VALUE) {
12411 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
12412 				reg_type_str(env, reg->type));
12413 			return -EINVAL;
12414 		}
12415 		return 0;
12416 	}
12417 
12418 	switch (prog_type) {
12419 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
12420 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
12421 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
12422 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12423 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12424 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12425 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12426 			range = tnum_range(1, 1);
12427 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12428 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12429 			range = tnum_range(0, 3);
12430 		break;
12431 	case BPF_PROG_TYPE_CGROUP_SKB:
12432 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12433 			range = tnum_range(0, 3);
12434 			enforce_attach_type_range = tnum_range(2, 3);
12435 		}
12436 		break;
12437 	case BPF_PROG_TYPE_CGROUP_SOCK:
12438 	case BPF_PROG_TYPE_SOCK_OPS:
12439 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12440 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12441 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12442 		break;
12443 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12444 		if (!env->prog->aux->attach_btf_id)
12445 			return 0;
12446 		range = tnum_const(0);
12447 		break;
12448 	case BPF_PROG_TYPE_TRACING:
12449 		switch (env->prog->expected_attach_type) {
12450 		case BPF_TRACE_FENTRY:
12451 		case BPF_TRACE_FEXIT:
12452 			range = tnum_const(0);
12453 			break;
12454 		case BPF_TRACE_RAW_TP:
12455 		case BPF_MODIFY_RETURN:
12456 			return 0;
12457 		case BPF_TRACE_ITER:
12458 			break;
12459 		default:
12460 			return -ENOTSUPP;
12461 		}
12462 		break;
12463 	case BPF_PROG_TYPE_SK_LOOKUP:
12464 		range = tnum_range(SK_DROP, SK_PASS);
12465 		break;
12466 
12467 	case BPF_PROG_TYPE_LSM:
12468 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12469 			/* Regular BPF_PROG_TYPE_LSM programs can return
12470 			 * any value.
12471 			 */
12472 			return 0;
12473 		}
12474 		if (!env->prog->aux->attach_func_proto->type) {
12475 			/* Make sure programs that attach to void
12476 			 * hooks don't try to modify return value.
12477 			 */
12478 			range = tnum_range(1, 1);
12479 		}
12480 		break;
12481 
12482 	case BPF_PROG_TYPE_EXT:
12483 		/* freplace program can return anything as its return value
12484 		 * depends on the to-be-replaced kernel func or bpf program.
12485 		 */
12486 	default:
12487 		return 0;
12488 	}
12489 
12490 	if (reg->type != SCALAR_VALUE) {
12491 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12492 			reg_type_str(env, reg->type));
12493 		return -EINVAL;
12494 	}
12495 
12496 	if (!tnum_in(range, reg->var_off)) {
12497 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12498 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12499 		    prog_type == BPF_PROG_TYPE_LSM &&
12500 		    !prog->aux->attach_func_proto->type)
12501 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12502 		return -EINVAL;
12503 	}
12504 
12505 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12506 	    tnum_in(enforce_attach_type_range, reg->var_off))
12507 		env->prog->enforce_expected_attach_type = 1;
12508 	return 0;
12509 }
12510 
12511 /* non-recursive DFS pseudo code
12512  * 1  procedure DFS-iterative(G,v):
12513  * 2      label v as discovered
12514  * 3      let S be a stack
12515  * 4      S.push(v)
12516  * 5      while S is not empty
12517  * 6            t <- S.peek()
12518  * 7            if t is what we're looking for:
12519  * 8                return t
12520  * 9            for all edges e in G.adjacentEdges(t) do
12521  * 10               if edge e is already labelled
12522  * 11                   continue with the next edge
12523  * 12               w <- G.adjacentVertex(t,e)
12524  * 13               if vertex w is not discovered and not explored
12525  * 14                   label e as tree-edge
12526  * 15                   label w as discovered
12527  * 16                   S.push(w)
12528  * 17                   continue at 5
12529  * 18               else if vertex w is discovered
12530  * 19                   label e as back-edge
12531  * 20               else
12532  * 21                   // vertex w is explored
12533  * 22                   label e as forward- or cross-edge
12534  * 23           label t as explored
12535  * 24           S.pop()
12536  *
12537  * convention:
12538  * 0x10 - discovered
12539  * 0x11 - discovered and fall-through edge labelled
12540  * 0x12 - discovered and fall-through and branch edges labelled
12541  * 0x20 - explored
12542  */
12543 
12544 enum {
12545 	DISCOVERED = 0x10,
12546 	EXPLORED = 0x20,
12547 	FALLTHROUGH = 1,
12548 	BRANCH = 2,
12549 };
12550 
12551 static u32 state_htab_size(struct bpf_verifier_env *env)
12552 {
12553 	return env->prog->len;
12554 }
12555 
12556 static struct bpf_verifier_state_list **explored_state(
12557 					struct bpf_verifier_env *env,
12558 					int idx)
12559 {
12560 	struct bpf_verifier_state *cur = env->cur_state;
12561 	struct bpf_func_state *state = cur->frame[cur->curframe];
12562 
12563 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12564 }
12565 
12566 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
12567 {
12568 	env->insn_aux_data[idx].prune_point = true;
12569 }
12570 
12571 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
12572 {
12573 	return env->insn_aux_data[insn_idx].prune_point;
12574 }
12575 
12576 enum {
12577 	DONE_EXPLORING = 0,
12578 	KEEP_EXPLORING = 1,
12579 };
12580 
12581 /* t, w, e - match pseudo-code above:
12582  * t - index of current instruction
12583  * w - next instruction
12584  * e - edge
12585  */
12586 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12587 		     bool loop_ok)
12588 {
12589 	int *insn_stack = env->cfg.insn_stack;
12590 	int *insn_state = env->cfg.insn_state;
12591 
12592 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12593 		return DONE_EXPLORING;
12594 
12595 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12596 		return DONE_EXPLORING;
12597 
12598 	if (w < 0 || w >= env->prog->len) {
12599 		verbose_linfo(env, t, "%d: ", t);
12600 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12601 		return -EINVAL;
12602 	}
12603 
12604 	if (e == BRANCH) {
12605 		/* mark branch target for state pruning */
12606 		mark_prune_point(env, w);
12607 		mark_jmp_point(env, w);
12608 	}
12609 
12610 	if (insn_state[w] == 0) {
12611 		/* tree-edge */
12612 		insn_state[t] = DISCOVERED | e;
12613 		insn_state[w] = DISCOVERED;
12614 		if (env->cfg.cur_stack >= env->prog->len)
12615 			return -E2BIG;
12616 		insn_stack[env->cfg.cur_stack++] = w;
12617 		return KEEP_EXPLORING;
12618 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12619 		if (loop_ok && env->bpf_capable)
12620 			return DONE_EXPLORING;
12621 		verbose_linfo(env, t, "%d: ", t);
12622 		verbose_linfo(env, w, "%d: ", w);
12623 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12624 		return -EINVAL;
12625 	} else if (insn_state[w] == EXPLORED) {
12626 		/* forward- or cross-edge */
12627 		insn_state[t] = DISCOVERED | e;
12628 	} else {
12629 		verbose(env, "insn state internal bug\n");
12630 		return -EFAULT;
12631 	}
12632 	return DONE_EXPLORING;
12633 }
12634 
12635 static int visit_func_call_insn(int t, struct bpf_insn *insns,
12636 				struct bpf_verifier_env *env,
12637 				bool visit_callee)
12638 {
12639 	int ret;
12640 
12641 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12642 	if (ret)
12643 		return ret;
12644 
12645 	mark_prune_point(env, t + 1);
12646 	/* when we exit from subprog, we need to record non-linear history */
12647 	mark_jmp_point(env, t + 1);
12648 
12649 	if (visit_callee) {
12650 		mark_prune_point(env, t);
12651 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12652 				/* It's ok to allow recursion from CFG point of
12653 				 * view. __check_func_call() will do the actual
12654 				 * check.
12655 				 */
12656 				bpf_pseudo_func(insns + t));
12657 	}
12658 	return ret;
12659 }
12660 
12661 /* Visits the instruction at index t and returns one of the following:
12662  *  < 0 - an error occurred
12663  *  DONE_EXPLORING - the instruction was fully explored
12664  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12665  */
12666 static int visit_insn(int t, struct bpf_verifier_env *env)
12667 {
12668 	struct bpf_insn *insns = env->prog->insnsi;
12669 	int ret;
12670 
12671 	if (bpf_pseudo_func(insns + t))
12672 		return visit_func_call_insn(t, insns, env, true);
12673 
12674 	/* All non-branch instructions have a single fall-through edge. */
12675 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12676 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12677 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12678 
12679 	switch (BPF_OP(insns[t].code)) {
12680 	case BPF_EXIT:
12681 		return DONE_EXPLORING;
12682 
12683 	case BPF_CALL:
12684 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12685 			/* Mark this call insn as a prune point to trigger
12686 			 * is_state_visited() check before call itself is
12687 			 * processed by __check_func_call(). Otherwise new
12688 			 * async state will be pushed for further exploration.
12689 			 */
12690 			mark_prune_point(env, t);
12691 		return visit_func_call_insn(t, insns, env,
12692 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12693 
12694 	case BPF_JA:
12695 		if (BPF_SRC(insns[t].code) != BPF_K)
12696 			return -EINVAL;
12697 
12698 		/* unconditional jump with single edge */
12699 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12700 				true);
12701 		if (ret)
12702 			return ret;
12703 
12704 		mark_prune_point(env, t + insns[t].off + 1);
12705 		mark_jmp_point(env, t + insns[t].off + 1);
12706 
12707 		return ret;
12708 
12709 	default:
12710 		/* conditional jump with two edges */
12711 		mark_prune_point(env, t);
12712 
12713 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12714 		if (ret)
12715 			return ret;
12716 
12717 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12718 	}
12719 }
12720 
12721 /* non-recursive depth-first-search to detect loops in BPF program
12722  * loop == back-edge in directed graph
12723  */
12724 static int check_cfg(struct bpf_verifier_env *env)
12725 {
12726 	int insn_cnt = env->prog->len;
12727 	int *insn_stack, *insn_state;
12728 	int ret = 0;
12729 	int i;
12730 
12731 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12732 	if (!insn_state)
12733 		return -ENOMEM;
12734 
12735 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12736 	if (!insn_stack) {
12737 		kvfree(insn_state);
12738 		return -ENOMEM;
12739 	}
12740 
12741 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12742 	insn_stack[0] = 0; /* 0 is the first instruction */
12743 	env->cfg.cur_stack = 1;
12744 
12745 	while (env->cfg.cur_stack > 0) {
12746 		int t = insn_stack[env->cfg.cur_stack - 1];
12747 
12748 		ret = visit_insn(t, env);
12749 		switch (ret) {
12750 		case DONE_EXPLORING:
12751 			insn_state[t] = EXPLORED;
12752 			env->cfg.cur_stack--;
12753 			break;
12754 		case KEEP_EXPLORING:
12755 			break;
12756 		default:
12757 			if (ret > 0) {
12758 				verbose(env, "visit_insn internal bug\n");
12759 				ret = -EFAULT;
12760 			}
12761 			goto err_free;
12762 		}
12763 	}
12764 
12765 	if (env->cfg.cur_stack < 0) {
12766 		verbose(env, "pop stack internal bug\n");
12767 		ret = -EFAULT;
12768 		goto err_free;
12769 	}
12770 
12771 	for (i = 0; i < insn_cnt; i++) {
12772 		if (insn_state[i] != EXPLORED) {
12773 			verbose(env, "unreachable insn %d\n", i);
12774 			ret = -EINVAL;
12775 			goto err_free;
12776 		}
12777 	}
12778 	ret = 0; /* cfg looks good */
12779 
12780 err_free:
12781 	kvfree(insn_state);
12782 	kvfree(insn_stack);
12783 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12784 	return ret;
12785 }
12786 
12787 static int check_abnormal_return(struct bpf_verifier_env *env)
12788 {
12789 	int i;
12790 
12791 	for (i = 1; i < env->subprog_cnt; i++) {
12792 		if (env->subprog_info[i].has_ld_abs) {
12793 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12794 			return -EINVAL;
12795 		}
12796 		if (env->subprog_info[i].has_tail_call) {
12797 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12798 			return -EINVAL;
12799 		}
12800 	}
12801 	return 0;
12802 }
12803 
12804 /* The minimum supported BTF func info size */
12805 #define MIN_BPF_FUNCINFO_SIZE	8
12806 #define MAX_FUNCINFO_REC_SIZE	252
12807 
12808 static int check_btf_func(struct bpf_verifier_env *env,
12809 			  const union bpf_attr *attr,
12810 			  bpfptr_t uattr)
12811 {
12812 	const struct btf_type *type, *func_proto, *ret_type;
12813 	u32 i, nfuncs, urec_size, min_size;
12814 	u32 krec_size = sizeof(struct bpf_func_info);
12815 	struct bpf_func_info *krecord;
12816 	struct bpf_func_info_aux *info_aux = NULL;
12817 	struct bpf_prog *prog;
12818 	const struct btf *btf;
12819 	bpfptr_t urecord;
12820 	u32 prev_offset = 0;
12821 	bool scalar_return;
12822 	int ret = -ENOMEM;
12823 
12824 	nfuncs = attr->func_info_cnt;
12825 	if (!nfuncs) {
12826 		if (check_abnormal_return(env))
12827 			return -EINVAL;
12828 		return 0;
12829 	}
12830 
12831 	if (nfuncs != env->subprog_cnt) {
12832 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12833 		return -EINVAL;
12834 	}
12835 
12836 	urec_size = attr->func_info_rec_size;
12837 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12838 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12839 	    urec_size % sizeof(u32)) {
12840 		verbose(env, "invalid func info rec size %u\n", urec_size);
12841 		return -EINVAL;
12842 	}
12843 
12844 	prog = env->prog;
12845 	btf = prog->aux->btf;
12846 
12847 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12848 	min_size = min_t(u32, krec_size, urec_size);
12849 
12850 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12851 	if (!krecord)
12852 		return -ENOMEM;
12853 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12854 	if (!info_aux)
12855 		goto err_free;
12856 
12857 	for (i = 0; i < nfuncs; i++) {
12858 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12859 		if (ret) {
12860 			if (ret == -E2BIG) {
12861 				verbose(env, "nonzero tailing record in func info");
12862 				/* set the size kernel expects so loader can zero
12863 				 * out the rest of the record.
12864 				 */
12865 				if (copy_to_bpfptr_offset(uattr,
12866 							  offsetof(union bpf_attr, func_info_rec_size),
12867 							  &min_size, sizeof(min_size)))
12868 					ret = -EFAULT;
12869 			}
12870 			goto err_free;
12871 		}
12872 
12873 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12874 			ret = -EFAULT;
12875 			goto err_free;
12876 		}
12877 
12878 		/* check insn_off */
12879 		ret = -EINVAL;
12880 		if (i == 0) {
12881 			if (krecord[i].insn_off) {
12882 				verbose(env,
12883 					"nonzero insn_off %u for the first func info record",
12884 					krecord[i].insn_off);
12885 				goto err_free;
12886 			}
12887 		} else if (krecord[i].insn_off <= prev_offset) {
12888 			verbose(env,
12889 				"same or smaller insn offset (%u) than previous func info record (%u)",
12890 				krecord[i].insn_off, prev_offset);
12891 			goto err_free;
12892 		}
12893 
12894 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12895 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12896 			goto err_free;
12897 		}
12898 
12899 		/* check type_id */
12900 		type = btf_type_by_id(btf, krecord[i].type_id);
12901 		if (!type || !btf_type_is_func(type)) {
12902 			verbose(env, "invalid type id %d in func info",
12903 				krecord[i].type_id);
12904 			goto err_free;
12905 		}
12906 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12907 
12908 		func_proto = btf_type_by_id(btf, type->type);
12909 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12910 			/* btf_func_check() already verified it during BTF load */
12911 			goto err_free;
12912 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12913 		scalar_return =
12914 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12915 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12916 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12917 			goto err_free;
12918 		}
12919 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12920 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12921 			goto err_free;
12922 		}
12923 
12924 		prev_offset = krecord[i].insn_off;
12925 		bpfptr_add(&urecord, urec_size);
12926 	}
12927 
12928 	prog->aux->func_info = krecord;
12929 	prog->aux->func_info_cnt = nfuncs;
12930 	prog->aux->func_info_aux = info_aux;
12931 	return 0;
12932 
12933 err_free:
12934 	kvfree(krecord);
12935 	kfree(info_aux);
12936 	return ret;
12937 }
12938 
12939 static void adjust_btf_func(struct bpf_verifier_env *env)
12940 {
12941 	struct bpf_prog_aux *aux = env->prog->aux;
12942 	int i;
12943 
12944 	if (!aux->func_info)
12945 		return;
12946 
12947 	for (i = 0; i < env->subprog_cnt; i++)
12948 		aux->func_info[i].insn_off = env->subprog_info[i].start;
12949 }
12950 
12951 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
12952 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
12953 
12954 static int check_btf_line(struct bpf_verifier_env *env,
12955 			  const union bpf_attr *attr,
12956 			  bpfptr_t uattr)
12957 {
12958 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12959 	struct bpf_subprog_info *sub;
12960 	struct bpf_line_info *linfo;
12961 	struct bpf_prog *prog;
12962 	const struct btf *btf;
12963 	bpfptr_t ulinfo;
12964 	int err;
12965 
12966 	nr_linfo = attr->line_info_cnt;
12967 	if (!nr_linfo)
12968 		return 0;
12969 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12970 		return -EINVAL;
12971 
12972 	rec_size = attr->line_info_rec_size;
12973 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12974 	    rec_size > MAX_LINEINFO_REC_SIZE ||
12975 	    rec_size & (sizeof(u32) - 1))
12976 		return -EINVAL;
12977 
12978 	/* Need to zero it in case the userspace may
12979 	 * pass in a smaller bpf_line_info object.
12980 	 */
12981 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12982 			 GFP_KERNEL | __GFP_NOWARN);
12983 	if (!linfo)
12984 		return -ENOMEM;
12985 
12986 	prog = env->prog;
12987 	btf = prog->aux->btf;
12988 
12989 	s = 0;
12990 	sub = env->subprog_info;
12991 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
12992 	expected_size = sizeof(struct bpf_line_info);
12993 	ncopy = min_t(u32, expected_size, rec_size);
12994 	for (i = 0; i < nr_linfo; i++) {
12995 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12996 		if (err) {
12997 			if (err == -E2BIG) {
12998 				verbose(env, "nonzero tailing record in line_info");
12999 				if (copy_to_bpfptr_offset(uattr,
13000 							  offsetof(union bpf_attr, line_info_rec_size),
13001 							  &expected_size, sizeof(expected_size)))
13002 					err = -EFAULT;
13003 			}
13004 			goto err_free;
13005 		}
13006 
13007 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
13008 			err = -EFAULT;
13009 			goto err_free;
13010 		}
13011 
13012 		/*
13013 		 * Check insn_off to ensure
13014 		 * 1) strictly increasing AND
13015 		 * 2) bounded by prog->len
13016 		 *
13017 		 * The linfo[0].insn_off == 0 check logically falls into
13018 		 * the later "missing bpf_line_info for func..." case
13019 		 * because the first linfo[0].insn_off must be the
13020 		 * first sub also and the first sub must have
13021 		 * subprog_info[0].start == 0.
13022 		 */
13023 		if ((i && linfo[i].insn_off <= prev_offset) ||
13024 		    linfo[i].insn_off >= prog->len) {
13025 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
13026 				i, linfo[i].insn_off, prev_offset,
13027 				prog->len);
13028 			err = -EINVAL;
13029 			goto err_free;
13030 		}
13031 
13032 		if (!prog->insnsi[linfo[i].insn_off].code) {
13033 			verbose(env,
13034 				"Invalid insn code at line_info[%u].insn_off\n",
13035 				i);
13036 			err = -EINVAL;
13037 			goto err_free;
13038 		}
13039 
13040 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
13041 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
13042 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
13043 			err = -EINVAL;
13044 			goto err_free;
13045 		}
13046 
13047 		if (s != env->subprog_cnt) {
13048 			if (linfo[i].insn_off == sub[s].start) {
13049 				sub[s].linfo_idx = i;
13050 				s++;
13051 			} else if (sub[s].start < linfo[i].insn_off) {
13052 				verbose(env, "missing bpf_line_info for func#%u\n", s);
13053 				err = -EINVAL;
13054 				goto err_free;
13055 			}
13056 		}
13057 
13058 		prev_offset = linfo[i].insn_off;
13059 		bpfptr_add(&ulinfo, rec_size);
13060 	}
13061 
13062 	if (s != env->subprog_cnt) {
13063 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
13064 			env->subprog_cnt - s, s);
13065 		err = -EINVAL;
13066 		goto err_free;
13067 	}
13068 
13069 	prog->aux->linfo = linfo;
13070 	prog->aux->nr_linfo = nr_linfo;
13071 
13072 	return 0;
13073 
13074 err_free:
13075 	kvfree(linfo);
13076 	return err;
13077 }
13078 
13079 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
13080 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
13081 
13082 static int check_core_relo(struct bpf_verifier_env *env,
13083 			   const union bpf_attr *attr,
13084 			   bpfptr_t uattr)
13085 {
13086 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
13087 	struct bpf_core_relo core_relo = {};
13088 	struct bpf_prog *prog = env->prog;
13089 	const struct btf *btf = prog->aux->btf;
13090 	struct bpf_core_ctx ctx = {
13091 		.log = &env->log,
13092 		.btf = btf,
13093 	};
13094 	bpfptr_t u_core_relo;
13095 	int err;
13096 
13097 	nr_core_relo = attr->core_relo_cnt;
13098 	if (!nr_core_relo)
13099 		return 0;
13100 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
13101 		return -EINVAL;
13102 
13103 	rec_size = attr->core_relo_rec_size;
13104 	if (rec_size < MIN_CORE_RELO_SIZE ||
13105 	    rec_size > MAX_CORE_RELO_SIZE ||
13106 	    rec_size % sizeof(u32))
13107 		return -EINVAL;
13108 
13109 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
13110 	expected_size = sizeof(struct bpf_core_relo);
13111 	ncopy = min_t(u32, expected_size, rec_size);
13112 
13113 	/* Unlike func_info and line_info, copy and apply each CO-RE
13114 	 * relocation record one at a time.
13115 	 */
13116 	for (i = 0; i < nr_core_relo; i++) {
13117 		/* future proofing when sizeof(bpf_core_relo) changes */
13118 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
13119 		if (err) {
13120 			if (err == -E2BIG) {
13121 				verbose(env, "nonzero tailing record in core_relo");
13122 				if (copy_to_bpfptr_offset(uattr,
13123 							  offsetof(union bpf_attr, core_relo_rec_size),
13124 							  &expected_size, sizeof(expected_size)))
13125 					err = -EFAULT;
13126 			}
13127 			break;
13128 		}
13129 
13130 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
13131 			err = -EFAULT;
13132 			break;
13133 		}
13134 
13135 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
13136 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
13137 				i, core_relo.insn_off, prog->len);
13138 			err = -EINVAL;
13139 			break;
13140 		}
13141 
13142 		err = bpf_core_apply(&ctx, &core_relo, i,
13143 				     &prog->insnsi[core_relo.insn_off / 8]);
13144 		if (err)
13145 			break;
13146 		bpfptr_add(&u_core_relo, rec_size);
13147 	}
13148 	return err;
13149 }
13150 
13151 static int check_btf_info(struct bpf_verifier_env *env,
13152 			  const union bpf_attr *attr,
13153 			  bpfptr_t uattr)
13154 {
13155 	struct btf *btf;
13156 	int err;
13157 
13158 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
13159 		if (check_abnormal_return(env))
13160 			return -EINVAL;
13161 		return 0;
13162 	}
13163 
13164 	btf = btf_get_by_fd(attr->prog_btf_fd);
13165 	if (IS_ERR(btf))
13166 		return PTR_ERR(btf);
13167 	if (btf_is_kernel(btf)) {
13168 		btf_put(btf);
13169 		return -EACCES;
13170 	}
13171 	env->prog->aux->btf = btf;
13172 
13173 	err = check_btf_func(env, attr, uattr);
13174 	if (err)
13175 		return err;
13176 
13177 	err = check_btf_line(env, attr, uattr);
13178 	if (err)
13179 		return err;
13180 
13181 	err = check_core_relo(env, attr, uattr);
13182 	if (err)
13183 		return err;
13184 
13185 	return 0;
13186 }
13187 
13188 /* check %cur's range satisfies %old's */
13189 static bool range_within(struct bpf_reg_state *old,
13190 			 struct bpf_reg_state *cur)
13191 {
13192 	return old->umin_value <= cur->umin_value &&
13193 	       old->umax_value >= cur->umax_value &&
13194 	       old->smin_value <= cur->smin_value &&
13195 	       old->smax_value >= cur->smax_value &&
13196 	       old->u32_min_value <= cur->u32_min_value &&
13197 	       old->u32_max_value >= cur->u32_max_value &&
13198 	       old->s32_min_value <= cur->s32_min_value &&
13199 	       old->s32_max_value >= cur->s32_max_value;
13200 }
13201 
13202 /* If in the old state two registers had the same id, then they need to have
13203  * the same id in the new state as well.  But that id could be different from
13204  * the old state, so we need to track the mapping from old to new ids.
13205  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
13206  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
13207  * regs with a different old id could still have new id 9, we don't care about
13208  * that.
13209  * So we look through our idmap to see if this old id has been seen before.  If
13210  * so, we require the new id to match; otherwise, we add the id pair to the map.
13211  */
13212 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
13213 {
13214 	unsigned int i;
13215 
13216 	/* either both IDs should be set or both should be zero */
13217 	if (!!old_id != !!cur_id)
13218 		return false;
13219 
13220 	if (old_id == 0) /* cur_id == 0 as well */
13221 		return true;
13222 
13223 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
13224 		if (!idmap[i].old) {
13225 			/* Reached an empty slot; haven't seen this id before */
13226 			idmap[i].old = old_id;
13227 			idmap[i].cur = cur_id;
13228 			return true;
13229 		}
13230 		if (idmap[i].old == old_id)
13231 			return idmap[i].cur == cur_id;
13232 	}
13233 	/* We ran out of idmap slots, which should be impossible */
13234 	WARN_ON_ONCE(1);
13235 	return false;
13236 }
13237 
13238 static void clean_func_state(struct bpf_verifier_env *env,
13239 			     struct bpf_func_state *st)
13240 {
13241 	enum bpf_reg_liveness live;
13242 	int i, j;
13243 
13244 	for (i = 0; i < BPF_REG_FP; i++) {
13245 		live = st->regs[i].live;
13246 		/* liveness must not touch this register anymore */
13247 		st->regs[i].live |= REG_LIVE_DONE;
13248 		if (!(live & REG_LIVE_READ))
13249 			/* since the register is unused, clear its state
13250 			 * to make further comparison simpler
13251 			 */
13252 			__mark_reg_not_init(env, &st->regs[i]);
13253 	}
13254 
13255 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
13256 		live = st->stack[i].spilled_ptr.live;
13257 		/* liveness must not touch this stack slot anymore */
13258 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
13259 		if (!(live & REG_LIVE_READ)) {
13260 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
13261 			for (j = 0; j < BPF_REG_SIZE; j++)
13262 				st->stack[i].slot_type[j] = STACK_INVALID;
13263 		}
13264 	}
13265 }
13266 
13267 static void clean_verifier_state(struct bpf_verifier_env *env,
13268 				 struct bpf_verifier_state *st)
13269 {
13270 	int i;
13271 
13272 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
13273 		/* all regs in this state in all frames were already marked */
13274 		return;
13275 
13276 	for (i = 0; i <= st->curframe; i++)
13277 		clean_func_state(env, st->frame[i]);
13278 }
13279 
13280 /* the parentage chains form a tree.
13281  * the verifier states are added to state lists at given insn and
13282  * pushed into state stack for future exploration.
13283  * when the verifier reaches bpf_exit insn some of the verifer states
13284  * stored in the state lists have their final liveness state already,
13285  * but a lot of states will get revised from liveness point of view when
13286  * the verifier explores other branches.
13287  * Example:
13288  * 1: r0 = 1
13289  * 2: if r1 == 100 goto pc+1
13290  * 3: r0 = 2
13291  * 4: exit
13292  * when the verifier reaches exit insn the register r0 in the state list of
13293  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
13294  * of insn 2 and goes exploring further. At the insn 4 it will walk the
13295  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
13296  *
13297  * Since the verifier pushes the branch states as it sees them while exploring
13298  * the program the condition of walking the branch instruction for the second
13299  * time means that all states below this branch were already explored and
13300  * their final liveness marks are already propagated.
13301  * Hence when the verifier completes the search of state list in is_state_visited()
13302  * we can call this clean_live_states() function to mark all liveness states
13303  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
13304  * will not be used.
13305  * This function also clears the registers and stack for states that !READ
13306  * to simplify state merging.
13307  *
13308  * Important note here that walking the same branch instruction in the callee
13309  * doesn't meant that the states are DONE. The verifier has to compare
13310  * the callsites
13311  */
13312 static void clean_live_states(struct bpf_verifier_env *env, int insn,
13313 			      struct bpf_verifier_state *cur)
13314 {
13315 	struct bpf_verifier_state_list *sl;
13316 	int i;
13317 
13318 	sl = *explored_state(env, insn);
13319 	while (sl) {
13320 		if (sl->state.branches)
13321 			goto next;
13322 		if (sl->state.insn_idx != insn ||
13323 		    sl->state.curframe != cur->curframe)
13324 			goto next;
13325 		for (i = 0; i <= cur->curframe; i++)
13326 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
13327 				goto next;
13328 		clean_verifier_state(env, &sl->state);
13329 next:
13330 		sl = sl->next;
13331 	}
13332 }
13333 
13334 static bool regs_exact(const struct bpf_reg_state *rold,
13335 		       const struct bpf_reg_state *rcur,
13336 		       struct bpf_id_pair *idmap)
13337 {
13338 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
13339 	       check_ids(rold->id, rcur->id, idmap) &&
13340 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
13341 }
13342 
13343 /* Returns true if (rold safe implies rcur safe) */
13344 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
13345 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
13346 {
13347 	if (!(rold->live & REG_LIVE_READ))
13348 		/* explored state didn't use this */
13349 		return true;
13350 	if (rold->type == NOT_INIT)
13351 		/* explored state can't have used this */
13352 		return true;
13353 	if (rcur->type == NOT_INIT)
13354 		return false;
13355 
13356 	/* Enforce that register types have to match exactly, including their
13357 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
13358 	 * rule.
13359 	 *
13360 	 * One can make a point that using a pointer register as unbounded
13361 	 * SCALAR would be technically acceptable, but this could lead to
13362 	 * pointer leaks because scalars are allowed to leak while pointers
13363 	 * are not. We could make this safe in special cases if root is
13364 	 * calling us, but it's probably not worth the hassle.
13365 	 *
13366 	 * Also, register types that are *not* MAYBE_NULL could technically be
13367 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
13368 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
13369 	 * to the same map).
13370 	 * However, if the old MAYBE_NULL register then got NULL checked,
13371 	 * doing so could have affected others with the same id, and we can't
13372 	 * check for that because we lost the id when we converted to
13373 	 * a non-MAYBE_NULL variant.
13374 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
13375 	 * non-MAYBE_NULL registers as well.
13376 	 */
13377 	if (rold->type != rcur->type)
13378 		return false;
13379 
13380 	switch (base_type(rold->type)) {
13381 	case SCALAR_VALUE:
13382 		if (regs_exact(rold, rcur, idmap))
13383 			return true;
13384 		if (env->explore_alu_limits)
13385 			return false;
13386 		if (!rold->precise)
13387 			return true;
13388 		/* new val must satisfy old val knowledge */
13389 		return range_within(rold, rcur) &&
13390 		       tnum_in(rold->var_off, rcur->var_off);
13391 	case PTR_TO_MAP_KEY:
13392 	case PTR_TO_MAP_VALUE:
13393 		/* If the new min/max/var_off satisfy the old ones and
13394 		 * everything else matches, we are OK.
13395 		 */
13396 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
13397 		       range_within(rold, rcur) &&
13398 		       tnum_in(rold->var_off, rcur->var_off) &&
13399 		       check_ids(rold->id, rcur->id, idmap);
13400 	case PTR_TO_PACKET_META:
13401 	case PTR_TO_PACKET:
13402 		/* We must have at least as much range as the old ptr
13403 		 * did, so that any accesses which were safe before are
13404 		 * still safe.  This is true even if old range < old off,
13405 		 * since someone could have accessed through (ptr - k), or
13406 		 * even done ptr -= k in a register, to get a safe access.
13407 		 */
13408 		if (rold->range > rcur->range)
13409 			return false;
13410 		/* If the offsets don't match, we can't trust our alignment;
13411 		 * nor can we be sure that we won't fall out of range.
13412 		 */
13413 		if (rold->off != rcur->off)
13414 			return false;
13415 		/* id relations must be preserved */
13416 		if (!check_ids(rold->id, rcur->id, idmap))
13417 			return false;
13418 		/* new val must satisfy old val knowledge */
13419 		return range_within(rold, rcur) &&
13420 		       tnum_in(rold->var_off, rcur->var_off);
13421 	case PTR_TO_STACK:
13422 		/* two stack pointers are equal only if they're pointing to
13423 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
13424 		 */
13425 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
13426 	default:
13427 		return regs_exact(rold, rcur, idmap);
13428 	}
13429 }
13430 
13431 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13432 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13433 {
13434 	int i, spi;
13435 
13436 	/* walk slots of the explored stack and ignore any additional
13437 	 * slots in the current stack, since explored(safe) state
13438 	 * didn't use them
13439 	 */
13440 	for (i = 0; i < old->allocated_stack; i++) {
13441 		spi = i / BPF_REG_SIZE;
13442 
13443 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13444 			i += BPF_REG_SIZE - 1;
13445 			/* explored state didn't use this */
13446 			continue;
13447 		}
13448 
13449 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13450 			continue;
13451 
13452 		/* explored stack has more populated slots than current stack
13453 		 * and these slots were used
13454 		 */
13455 		if (i >= cur->allocated_stack)
13456 			return false;
13457 
13458 		/* if old state was safe with misc data in the stack
13459 		 * it will be safe with zero-initialized stack.
13460 		 * The opposite is not true
13461 		 */
13462 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13463 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13464 			continue;
13465 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13466 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13467 			/* Ex: old explored (safe) state has STACK_SPILL in
13468 			 * this stack slot, but current has STACK_MISC ->
13469 			 * this verifier states are not equivalent,
13470 			 * return false to continue verification of this path
13471 			 */
13472 			return false;
13473 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13474 			continue;
13475 		/* Both old and cur are having same slot_type */
13476 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
13477 		case STACK_SPILL:
13478 			/* when explored and current stack slot are both storing
13479 			 * spilled registers, check that stored pointers types
13480 			 * are the same as well.
13481 			 * Ex: explored safe path could have stored
13482 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13483 			 * but current path has stored:
13484 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13485 			 * such verifier states are not equivalent.
13486 			 * return false to continue verification of this path
13487 			 */
13488 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
13489 				     &cur->stack[spi].spilled_ptr, idmap))
13490 				return false;
13491 			break;
13492 		case STACK_DYNPTR:
13493 		{
13494 			const struct bpf_reg_state *old_reg, *cur_reg;
13495 
13496 			old_reg = &old->stack[spi].spilled_ptr;
13497 			cur_reg = &cur->stack[spi].spilled_ptr;
13498 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
13499 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
13500 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
13501 				return false;
13502 			break;
13503 		}
13504 		case STACK_MISC:
13505 		case STACK_ZERO:
13506 		case STACK_INVALID:
13507 			continue;
13508 		/* Ensure that new unhandled slot types return false by default */
13509 		default:
13510 			return false;
13511 		}
13512 	}
13513 	return true;
13514 }
13515 
13516 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
13517 		    struct bpf_id_pair *idmap)
13518 {
13519 	int i;
13520 
13521 	if (old->acquired_refs != cur->acquired_refs)
13522 		return false;
13523 
13524 	for (i = 0; i < old->acquired_refs; i++) {
13525 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
13526 			return false;
13527 	}
13528 
13529 	return true;
13530 }
13531 
13532 /* compare two verifier states
13533  *
13534  * all states stored in state_list are known to be valid, since
13535  * verifier reached 'bpf_exit' instruction through them
13536  *
13537  * this function is called when verifier exploring different branches of
13538  * execution popped from the state stack. If it sees an old state that has
13539  * more strict register state and more strict stack state then this execution
13540  * branch doesn't need to be explored further, since verifier already
13541  * concluded that more strict state leads to valid finish.
13542  *
13543  * Therefore two states are equivalent if register state is more conservative
13544  * and explored stack state is more conservative than the current one.
13545  * Example:
13546  *       explored                   current
13547  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13548  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13549  *
13550  * In other words if current stack state (one being explored) has more
13551  * valid slots than old one that already passed validation, it means
13552  * the verifier can stop exploring and conclude that current state is valid too
13553  *
13554  * Similarly with registers. If explored state has register type as invalid
13555  * whereas register type in current state is meaningful, it means that
13556  * the current state will reach 'bpf_exit' instruction safely
13557  */
13558 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13559 			      struct bpf_func_state *cur)
13560 {
13561 	int i;
13562 
13563 	for (i = 0; i < MAX_BPF_REG; i++)
13564 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13565 			     env->idmap_scratch))
13566 			return false;
13567 
13568 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13569 		return false;
13570 
13571 	if (!refsafe(old, cur, env->idmap_scratch))
13572 		return false;
13573 
13574 	return true;
13575 }
13576 
13577 static bool states_equal(struct bpf_verifier_env *env,
13578 			 struct bpf_verifier_state *old,
13579 			 struct bpf_verifier_state *cur)
13580 {
13581 	int i;
13582 
13583 	if (old->curframe != cur->curframe)
13584 		return false;
13585 
13586 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13587 
13588 	/* Verification state from speculative execution simulation
13589 	 * must never prune a non-speculative execution one.
13590 	 */
13591 	if (old->speculative && !cur->speculative)
13592 		return false;
13593 
13594 	if (old->active_lock.ptr != cur->active_lock.ptr)
13595 		return false;
13596 
13597 	/* Old and cur active_lock's have to be either both present
13598 	 * or both absent.
13599 	 */
13600 	if (!!old->active_lock.id != !!cur->active_lock.id)
13601 		return false;
13602 
13603 	if (old->active_lock.id &&
13604 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
13605 		return false;
13606 
13607 	if (old->active_rcu_lock != cur->active_rcu_lock)
13608 		return false;
13609 
13610 	/* for states to be equal callsites have to be the same
13611 	 * and all frame states need to be equivalent
13612 	 */
13613 	for (i = 0; i <= old->curframe; i++) {
13614 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13615 			return false;
13616 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13617 			return false;
13618 	}
13619 	return true;
13620 }
13621 
13622 /* Return 0 if no propagation happened. Return negative error code if error
13623  * happened. Otherwise, return the propagated bit.
13624  */
13625 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13626 				  struct bpf_reg_state *reg,
13627 				  struct bpf_reg_state *parent_reg)
13628 {
13629 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13630 	u8 flag = reg->live & REG_LIVE_READ;
13631 	int err;
13632 
13633 	/* When comes here, read flags of PARENT_REG or REG could be any of
13634 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13635 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13636 	 */
13637 	if (parent_flag == REG_LIVE_READ64 ||
13638 	    /* Or if there is no read flag from REG. */
13639 	    !flag ||
13640 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13641 	    parent_flag == flag)
13642 		return 0;
13643 
13644 	err = mark_reg_read(env, reg, parent_reg, flag);
13645 	if (err)
13646 		return err;
13647 
13648 	return flag;
13649 }
13650 
13651 /* A write screens off any subsequent reads; but write marks come from the
13652  * straight-line code between a state and its parent.  When we arrive at an
13653  * equivalent state (jump target or such) we didn't arrive by the straight-line
13654  * code, so read marks in the state must propagate to the parent regardless
13655  * of the state's write marks. That's what 'parent == state->parent' comparison
13656  * in mark_reg_read() is for.
13657  */
13658 static int propagate_liveness(struct bpf_verifier_env *env,
13659 			      const struct bpf_verifier_state *vstate,
13660 			      struct bpf_verifier_state *vparent)
13661 {
13662 	struct bpf_reg_state *state_reg, *parent_reg;
13663 	struct bpf_func_state *state, *parent;
13664 	int i, frame, err = 0;
13665 
13666 	if (vparent->curframe != vstate->curframe) {
13667 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13668 		     vparent->curframe, vstate->curframe);
13669 		return -EFAULT;
13670 	}
13671 	/* Propagate read liveness of registers... */
13672 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13673 	for (frame = 0; frame <= vstate->curframe; frame++) {
13674 		parent = vparent->frame[frame];
13675 		state = vstate->frame[frame];
13676 		parent_reg = parent->regs;
13677 		state_reg = state->regs;
13678 		/* We don't need to worry about FP liveness, it's read-only */
13679 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13680 			err = propagate_liveness_reg(env, &state_reg[i],
13681 						     &parent_reg[i]);
13682 			if (err < 0)
13683 				return err;
13684 			if (err == REG_LIVE_READ64)
13685 				mark_insn_zext(env, &parent_reg[i]);
13686 		}
13687 
13688 		/* Propagate stack slots. */
13689 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13690 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13691 			parent_reg = &parent->stack[i].spilled_ptr;
13692 			state_reg = &state->stack[i].spilled_ptr;
13693 			err = propagate_liveness_reg(env, state_reg,
13694 						     parent_reg);
13695 			if (err < 0)
13696 				return err;
13697 		}
13698 	}
13699 	return 0;
13700 }
13701 
13702 /* find precise scalars in the previous equivalent state and
13703  * propagate them into the current state
13704  */
13705 static int propagate_precision(struct bpf_verifier_env *env,
13706 			       const struct bpf_verifier_state *old)
13707 {
13708 	struct bpf_reg_state *state_reg;
13709 	struct bpf_func_state *state;
13710 	int i, err = 0, fr;
13711 
13712 	for (fr = old->curframe; fr >= 0; fr--) {
13713 		state = old->frame[fr];
13714 		state_reg = state->regs;
13715 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13716 			if (state_reg->type != SCALAR_VALUE ||
13717 			    !state_reg->precise)
13718 				continue;
13719 			if (env->log.level & BPF_LOG_LEVEL2)
13720 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13721 			err = mark_chain_precision_frame(env, fr, i);
13722 			if (err < 0)
13723 				return err;
13724 		}
13725 
13726 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13727 			if (!is_spilled_reg(&state->stack[i]))
13728 				continue;
13729 			state_reg = &state->stack[i].spilled_ptr;
13730 			if (state_reg->type != SCALAR_VALUE ||
13731 			    !state_reg->precise)
13732 				continue;
13733 			if (env->log.level & BPF_LOG_LEVEL2)
13734 				verbose(env, "frame %d: propagating fp%d\n",
13735 					(-i - 1) * BPF_REG_SIZE, fr);
13736 			err = mark_chain_precision_stack_frame(env, fr, i);
13737 			if (err < 0)
13738 				return err;
13739 		}
13740 	}
13741 	return 0;
13742 }
13743 
13744 static bool states_maybe_looping(struct bpf_verifier_state *old,
13745 				 struct bpf_verifier_state *cur)
13746 {
13747 	struct bpf_func_state *fold, *fcur;
13748 	int i, fr = cur->curframe;
13749 
13750 	if (old->curframe != fr)
13751 		return false;
13752 
13753 	fold = old->frame[fr];
13754 	fcur = cur->frame[fr];
13755 	for (i = 0; i < MAX_BPF_REG; i++)
13756 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13757 			   offsetof(struct bpf_reg_state, parent)))
13758 			return false;
13759 	return true;
13760 }
13761 
13762 
13763 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13764 {
13765 	struct bpf_verifier_state_list *new_sl;
13766 	struct bpf_verifier_state_list *sl, **pprev;
13767 	struct bpf_verifier_state *cur = env->cur_state, *new;
13768 	int i, j, err, states_cnt = 0;
13769 	bool add_new_state = env->test_state_freq ? true : false;
13770 
13771 	/* bpf progs typically have pruning point every 4 instructions
13772 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13773 	 * Do not add new state for future pruning if the verifier hasn't seen
13774 	 * at least 2 jumps and at least 8 instructions.
13775 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13776 	 * In tests that amounts to up to 50% reduction into total verifier
13777 	 * memory consumption and 20% verifier time speedup.
13778 	 */
13779 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13780 	    env->insn_processed - env->prev_insn_processed >= 8)
13781 		add_new_state = true;
13782 
13783 	pprev = explored_state(env, insn_idx);
13784 	sl = *pprev;
13785 
13786 	clean_live_states(env, insn_idx, cur);
13787 
13788 	while (sl) {
13789 		states_cnt++;
13790 		if (sl->state.insn_idx != insn_idx)
13791 			goto next;
13792 
13793 		if (sl->state.branches) {
13794 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13795 
13796 			if (frame->in_async_callback_fn &&
13797 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13798 				/* Different async_entry_cnt means that the verifier is
13799 				 * processing another entry into async callback.
13800 				 * Seeing the same state is not an indication of infinite
13801 				 * loop or infinite recursion.
13802 				 * But finding the same state doesn't mean that it's safe
13803 				 * to stop processing the current state. The previous state
13804 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13805 				 * Checking in_async_callback_fn alone is not enough either.
13806 				 * Since the verifier still needs to catch infinite loops
13807 				 * inside async callbacks.
13808 				 */
13809 			} else if (states_maybe_looping(&sl->state, cur) &&
13810 				   states_equal(env, &sl->state, cur)) {
13811 				verbose_linfo(env, insn_idx, "; ");
13812 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13813 				return -EINVAL;
13814 			}
13815 			/* if the verifier is processing a loop, avoid adding new state
13816 			 * too often, since different loop iterations have distinct
13817 			 * states and may not help future pruning.
13818 			 * This threshold shouldn't be too low to make sure that
13819 			 * a loop with large bound will be rejected quickly.
13820 			 * The most abusive loop will be:
13821 			 * r1 += 1
13822 			 * if r1 < 1000000 goto pc-2
13823 			 * 1M insn_procssed limit / 100 == 10k peak states.
13824 			 * This threshold shouldn't be too high either, since states
13825 			 * at the end of the loop are likely to be useful in pruning.
13826 			 */
13827 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13828 			    env->insn_processed - env->prev_insn_processed < 100)
13829 				add_new_state = false;
13830 			goto miss;
13831 		}
13832 		if (states_equal(env, &sl->state, cur)) {
13833 			sl->hit_cnt++;
13834 			/* reached equivalent register/stack state,
13835 			 * prune the search.
13836 			 * Registers read by the continuation are read by us.
13837 			 * If we have any write marks in env->cur_state, they
13838 			 * will prevent corresponding reads in the continuation
13839 			 * from reaching our parent (an explored_state).  Our
13840 			 * own state will get the read marks recorded, but
13841 			 * they'll be immediately forgotten as we're pruning
13842 			 * this state and will pop a new one.
13843 			 */
13844 			err = propagate_liveness(env, &sl->state, cur);
13845 
13846 			/* if previous state reached the exit with precision and
13847 			 * current state is equivalent to it (except precsion marks)
13848 			 * the precision needs to be propagated back in
13849 			 * the current state.
13850 			 */
13851 			err = err ? : push_jmp_history(env, cur);
13852 			err = err ? : propagate_precision(env, &sl->state);
13853 			if (err)
13854 				return err;
13855 			return 1;
13856 		}
13857 miss:
13858 		/* when new state is not going to be added do not increase miss count.
13859 		 * Otherwise several loop iterations will remove the state
13860 		 * recorded earlier. The goal of these heuristics is to have
13861 		 * states from some iterations of the loop (some in the beginning
13862 		 * and some at the end) to help pruning.
13863 		 */
13864 		if (add_new_state)
13865 			sl->miss_cnt++;
13866 		/* heuristic to determine whether this state is beneficial
13867 		 * to keep checking from state equivalence point of view.
13868 		 * Higher numbers increase max_states_per_insn and verification time,
13869 		 * but do not meaningfully decrease insn_processed.
13870 		 */
13871 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13872 			/* the state is unlikely to be useful. Remove it to
13873 			 * speed up verification
13874 			 */
13875 			*pprev = sl->next;
13876 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13877 				u32 br = sl->state.branches;
13878 
13879 				WARN_ONCE(br,
13880 					  "BUG live_done but branches_to_explore %d\n",
13881 					  br);
13882 				free_verifier_state(&sl->state, false);
13883 				kfree(sl);
13884 				env->peak_states--;
13885 			} else {
13886 				/* cannot free this state, since parentage chain may
13887 				 * walk it later. Add it for free_list instead to
13888 				 * be freed at the end of verification
13889 				 */
13890 				sl->next = env->free_list;
13891 				env->free_list = sl;
13892 			}
13893 			sl = *pprev;
13894 			continue;
13895 		}
13896 next:
13897 		pprev = &sl->next;
13898 		sl = *pprev;
13899 	}
13900 
13901 	if (env->max_states_per_insn < states_cnt)
13902 		env->max_states_per_insn = states_cnt;
13903 
13904 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13905 		return 0;
13906 
13907 	if (!add_new_state)
13908 		return 0;
13909 
13910 	/* There were no equivalent states, remember the current one.
13911 	 * Technically the current state is not proven to be safe yet,
13912 	 * but it will either reach outer most bpf_exit (which means it's safe)
13913 	 * or it will be rejected. When there are no loops the verifier won't be
13914 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13915 	 * again on the way to bpf_exit.
13916 	 * When looping the sl->state.branches will be > 0 and this state
13917 	 * will not be considered for equivalence until branches == 0.
13918 	 */
13919 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13920 	if (!new_sl)
13921 		return -ENOMEM;
13922 	env->total_states++;
13923 	env->peak_states++;
13924 	env->prev_jmps_processed = env->jmps_processed;
13925 	env->prev_insn_processed = env->insn_processed;
13926 
13927 	/* forget precise markings we inherited, see __mark_chain_precision */
13928 	if (env->bpf_capable)
13929 		mark_all_scalars_imprecise(env, cur);
13930 
13931 	/* add new state to the head of linked list */
13932 	new = &new_sl->state;
13933 	err = copy_verifier_state(new, cur);
13934 	if (err) {
13935 		free_verifier_state(new, false);
13936 		kfree(new_sl);
13937 		return err;
13938 	}
13939 	new->insn_idx = insn_idx;
13940 	WARN_ONCE(new->branches != 1,
13941 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
13942 
13943 	cur->parent = new;
13944 	cur->first_insn_idx = insn_idx;
13945 	clear_jmp_history(cur);
13946 	new_sl->next = *explored_state(env, insn_idx);
13947 	*explored_state(env, insn_idx) = new_sl;
13948 	/* connect new state to parentage chain. Current frame needs all
13949 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
13950 	 * to the stack implicitly by JITs) so in callers' frames connect just
13951 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13952 	 * the state of the call instruction (with WRITTEN set), and r0 comes
13953 	 * from callee with its full parentage chain, anyway.
13954 	 */
13955 	/* clear write marks in current state: the writes we did are not writes
13956 	 * our child did, so they don't screen off its reads from us.
13957 	 * (There are no read marks in current state, because reads always mark
13958 	 * their parent and current state never has children yet.  Only
13959 	 * explored_states can get read marks.)
13960 	 */
13961 	for (j = 0; j <= cur->curframe; j++) {
13962 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13963 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13964 		for (i = 0; i < BPF_REG_FP; i++)
13965 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13966 	}
13967 
13968 	/* all stack frames are accessible from callee, clear them all */
13969 	for (j = 0; j <= cur->curframe; j++) {
13970 		struct bpf_func_state *frame = cur->frame[j];
13971 		struct bpf_func_state *newframe = new->frame[j];
13972 
13973 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
13974 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
13975 			frame->stack[i].spilled_ptr.parent =
13976 						&newframe->stack[i].spilled_ptr;
13977 		}
13978 	}
13979 	return 0;
13980 }
13981 
13982 /* Return true if it's OK to have the same insn return a different type. */
13983 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13984 {
13985 	switch (base_type(type)) {
13986 	case PTR_TO_CTX:
13987 	case PTR_TO_SOCKET:
13988 	case PTR_TO_SOCK_COMMON:
13989 	case PTR_TO_TCP_SOCK:
13990 	case PTR_TO_XDP_SOCK:
13991 	case PTR_TO_BTF_ID:
13992 		return false;
13993 	default:
13994 		return true;
13995 	}
13996 }
13997 
13998 /* If an instruction was previously used with particular pointer types, then we
13999  * need to be careful to avoid cases such as the below, where it may be ok
14000  * for one branch accessing the pointer, but not ok for the other branch:
14001  *
14002  * R1 = sock_ptr
14003  * goto X;
14004  * ...
14005  * R1 = some_other_valid_ptr;
14006  * goto X;
14007  * ...
14008  * R2 = *(u32 *)(R1 + 0);
14009  */
14010 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
14011 {
14012 	return src != prev && (!reg_type_mismatch_ok(src) ||
14013 			       !reg_type_mismatch_ok(prev));
14014 }
14015 
14016 static int do_check(struct bpf_verifier_env *env)
14017 {
14018 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14019 	struct bpf_verifier_state *state = env->cur_state;
14020 	struct bpf_insn *insns = env->prog->insnsi;
14021 	struct bpf_reg_state *regs;
14022 	int insn_cnt = env->prog->len;
14023 	bool do_print_state = false;
14024 	int prev_insn_idx = -1;
14025 
14026 	for (;;) {
14027 		struct bpf_insn *insn;
14028 		u8 class;
14029 		int err;
14030 
14031 		env->prev_insn_idx = prev_insn_idx;
14032 		if (env->insn_idx >= insn_cnt) {
14033 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
14034 				env->insn_idx, insn_cnt);
14035 			return -EFAULT;
14036 		}
14037 
14038 		insn = &insns[env->insn_idx];
14039 		class = BPF_CLASS(insn->code);
14040 
14041 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
14042 			verbose(env,
14043 				"BPF program is too large. Processed %d insn\n",
14044 				env->insn_processed);
14045 			return -E2BIG;
14046 		}
14047 
14048 		state->last_insn_idx = env->prev_insn_idx;
14049 
14050 		if (is_prune_point(env, env->insn_idx)) {
14051 			err = is_state_visited(env, env->insn_idx);
14052 			if (err < 0)
14053 				return err;
14054 			if (err == 1) {
14055 				/* found equivalent state, can prune the search */
14056 				if (env->log.level & BPF_LOG_LEVEL) {
14057 					if (do_print_state)
14058 						verbose(env, "\nfrom %d to %d%s: safe\n",
14059 							env->prev_insn_idx, env->insn_idx,
14060 							env->cur_state->speculative ?
14061 							" (speculative execution)" : "");
14062 					else
14063 						verbose(env, "%d: safe\n", env->insn_idx);
14064 				}
14065 				goto process_bpf_exit;
14066 			}
14067 		}
14068 
14069 		if (is_jmp_point(env, env->insn_idx)) {
14070 			err = push_jmp_history(env, state);
14071 			if (err)
14072 				return err;
14073 		}
14074 
14075 		if (signal_pending(current))
14076 			return -EAGAIN;
14077 
14078 		if (need_resched())
14079 			cond_resched();
14080 
14081 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
14082 			verbose(env, "\nfrom %d to %d%s:",
14083 				env->prev_insn_idx, env->insn_idx,
14084 				env->cur_state->speculative ?
14085 				" (speculative execution)" : "");
14086 			print_verifier_state(env, state->frame[state->curframe], true);
14087 			do_print_state = false;
14088 		}
14089 
14090 		if (env->log.level & BPF_LOG_LEVEL) {
14091 			const struct bpf_insn_cbs cbs = {
14092 				.cb_call	= disasm_kfunc_name,
14093 				.cb_print	= verbose,
14094 				.private_data	= env,
14095 			};
14096 
14097 			if (verifier_state_scratched(env))
14098 				print_insn_state(env, state->frame[state->curframe]);
14099 
14100 			verbose_linfo(env, env->insn_idx, "; ");
14101 			env->prev_log_len = env->log.len_used;
14102 			verbose(env, "%d: ", env->insn_idx);
14103 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
14104 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
14105 			env->prev_log_len = env->log.len_used;
14106 		}
14107 
14108 		if (bpf_prog_is_offloaded(env->prog->aux)) {
14109 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
14110 							   env->prev_insn_idx);
14111 			if (err)
14112 				return err;
14113 		}
14114 
14115 		regs = cur_regs(env);
14116 		sanitize_mark_insn_seen(env);
14117 		prev_insn_idx = env->insn_idx;
14118 
14119 		if (class == BPF_ALU || class == BPF_ALU64) {
14120 			err = check_alu_op(env, insn);
14121 			if (err)
14122 				return err;
14123 
14124 		} else if (class == BPF_LDX) {
14125 			enum bpf_reg_type *prev_src_type, src_reg_type;
14126 
14127 			/* check for reserved fields is already done */
14128 
14129 			/* check src operand */
14130 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14131 			if (err)
14132 				return err;
14133 
14134 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14135 			if (err)
14136 				return err;
14137 
14138 			src_reg_type = regs[insn->src_reg].type;
14139 
14140 			/* check that memory (src_reg + off) is readable,
14141 			 * the state of dst_reg will be updated by this func
14142 			 */
14143 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
14144 					       insn->off, BPF_SIZE(insn->code),
14145 					       BPF_READ, insn->dst_reg, false);
14146 			if (err)
14147 				return err;
14148 
14149 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
14150 
14151 			if (*prev_src_type == NOT_INIT) {
14152 				/* saw a valid insn
14153 				 * dst_reg = *(u32 *)(src_reg + off)
14154 				 * save type to validate intersecting paths
14155 				 */
14156 				*prev_src_type = src_reg_type;
14157 
14158 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
14159 				/* ABuser program is trying to use the same insn
14160 				 * dst_reg = *(u32*) (src_reg + off)
14161 				 * with different pointer types:
14162 				 * src_reg == ctx in one branch and
14163 				 * src_reg == stack|map in some other branch.
14164 				 * Reject it.
14165 				 */
14166 				verbose(env, "same insn cannot be used with different pointers\n");
14167 				return -EINVAL;
14168 			}
14169 
14170 		} else if (class == BPF_STX) {
14171 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
14172 
14173 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
14174 				err = check_atomic(env, env->insn_idx, insn);
14175 				if (err)
14176 					return err;
14177 				env->insn_idx++;
14178 				continue;
14179 			}
14180 
14181 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
14182 				verbose(env, "BPF_STX uses reserved fields\n");
14183 				return -EINVAL;
14184 			}
14185 
14186 			/* check src1 operand */
14187 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14188 			if (err)
14189 				return err;
14190 			/* check src2 operand */
14191 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14192 			if (err)
14193 				return err;
14194 
14195 			dst_reg_type = regs[insn->dst_reg].type;
14196 
14197 			/* check that memory (dst_reg + off) is writeable */
14198 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
14199 					       insn->off, BPF_SIZE(insn->code),
14200 					       BPF_WRITE, insn->src_reg, false);
14201 			if (err)
14202 				return err;
14203 
14204 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
14205 
14206 			if (*prev_dst_type == NOT_INIT) {
14207 				*prev_dst_type = dst_reg_type;
14208 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
14209 				verbose(env, "same insn cannot be used with different pointers\n");
14210 				return -EINVAL;
14211 			}
14212 
14213 		} else if (class == BPF_ST) {
14214 			if (BPF_MODE(insn->code) != BPF_MEM ||
14215 			    insn->src_reg != BPF_REG_0) {
14216 				verbose(env, "BPF_ST uses reserved fields\n");
14217 				return -EINVAL;
14218 			}
14219 			/* check src operand */
14220 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14221 			if (err)
14222 				return err;
14223 
14224 			if (is_ctx_reg(env, insn->dst_reg)) {
14225 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
14226 					insn->dst_reg,
14227 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
14228 				return -EACCES;
14229 			}
14230 
14231 			/* check that memory (dst_reg + off) is writeable */
14232 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
14233 					       insn->off, BPF_SIZE(insn->code),
14234 					       BPF_WRITE, -1, false);
14235 			if (err)
14236 				return err;
14237 
14238 		} else if (class == BPF_JMP || class == BPF_JMP32) {
14239 			u8 opcode = BPF_OP(insn->code);
14240 
14241 			env->jmps_processed++;
14242 			if (opcode == BPF_CALL) {
14243 				if (BPF_SRC(insn->code) != BPF_K ||
14244 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
14245 				     && insn->off != 0) ||
14246 				    (insn->src_reg != BPF_REG_0 &&
14247 				     insn->src_reg != BPF_PSEUDO_CALL &&
14248 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
14249 				    insn->dst_reg != BPF_REG_0 ||
14250 				    class == BPF_JMP32) {
14251 					verbose(env, "BPF_CALL uses reserved fields\n");
14252 					return -EINVAL;
14253 				}
14254 
14255 				if (env->cur_state->active_lock.ptr) {
14256 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
14257 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
14258 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
14259 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
14260 						verbose(env, "function calls are not allowed while holding a lock\n");
14261 						return -EINVAL;
14262 					}
14263 				}
14264 				if (insn->src_reg == BPF_PSEUDO_CALL)
14265 					err = check_func_call(env, insn, &env->insn_idx);
14266 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
14267 					err = check_kfunc_call(env, insn, &env->insn_idx);
14268 				else
14269 					err = check_helper_call(env, insn, &env->insn_idx);
14270 				if (err)
14271 					return err;
14272 			} else if (opcode == BPF_JA) {
14273 				if (BPF_SRC(insn->code) != BPF_K ||
14274 				    insn->imm != 0 ||
14275 				    insn->src_reg != BPF_REG_0 ||
14276 				    insn->dst_reg != BPF_REG_0 ||
14277 				    class == BPF_JMP32) {
14278 					verbose(env, "BPF_JA uses reserved fields\n");
14279 					return -EINVAL;
14280 				}
14281 
14282 				env->insn_idx += insn->off + 1;
14283 				continue;
14284 
14285 			} else if (opcode == BPF_EXIT) {
14286 				if (BPF_SRC(insn->code) != BPF_K ||
14287 				    insn->imm != 0 ||
14288 				    insn->src_reg != BPF_REG_0 ||
14289 				    insn->dst_reg != BPF_REG_0 ||
14290 				    class == BPF_JMP32) {
14291 					verbose(env, "BPF_EXIT uses reserved fields\n");
14292 					return -EINVAL;
14293 				}
14294 
14295 				if (env->cur_state->active_lock.ptr) {
14296 					verbose(env, "bpf_spin_unlock is missing\n");
14297 					return -EINVAL;
14298 				}
14299 
14300 				if (env->cur_state->active_rcu_lock) {
14301 					verbose(env, "bpf_rcu_read_unlock is missing\n");
14302 					return -EINVAL;
14303 				}
14304 
14305 				/* We must do check_reference_leak here before
14306 				 * prepare_func_exit to handle the case when
14307 				 * state->curframe > 0, it may be a callback
14308 				 * function, for which reference_state must
14309 				 * match caller reference state when it exits.
14310 				 */
14311 				err = check_reference_leak(env);
14312 				if (err)
14313 					return err;
14314 
14315 				if (state->curframe) {
14316 					/* exit from nested function */
14317 					err = prepare_func_exit(env, &env->insn_idx);
14318 					if (err)
14319 						return err;
14320 					do_print_state = true;
14321 					continue;
14322 				}
14323 
14324 				err = check_return_code(env);
14325 				if (err)
14326 					return err;
14327 process_bpf_exit:
14328 				mark_verifier_state_scratched(env);
14329 				update_branch_counts(env, env->cur_state);
14330 				err = pop_stack(env, &prev_insn_idx,
14331 						&env->insn_idx, pop_log);
14332 				if (err < 0) {
14333 					if (err != -ENOENT)
14334 						return err;
14335 					break;
14336 				} else {
14337 					do_print_state = true;
14338 					continue;
14339 				}
14340 			} else {
14341 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
14342 				if (err)
14343 					return err;
14344 			}
14345 		} else if (class == BPF_LD) {
14346 			u8 mode = BPF_MODE(insn->code);
14347 
14348 			if (mode == BPF_ABS || mode == BPF_IND) {
14349 				err = check_ld_abs(env, insn);
14350 				if (err)
14351 					return err;
14352 
14353 			} else if (mode == BPF_IMM) {
14354 				err = check_ld_imm(env, insn);
14355 				if (err)
14356 					return err;
14357 
14358 				env->insn_idx++;
14359 				sanitize_mark_insn_seen(env);
14360 			} else {
14361 				verbose(env, "invalid BPF_LD mode\n");
14362 				return -EINVAL;
14363 			}
14364 		} else {
14365 			verbose(env, "unknown insn class %d\n", class);
14366 			return -EINVAL;
14367 		}
14368 
14369 		env->insn_idx++;
14370 	}
14371 
14372 	return 0;
14373 }
14374 
14375 static int find_btf_percpu_datasec(struct btf *btf)
14376 {
14377 	const struct btf_type *t;
14378 	const char *tname;
14379 	int i, n;
14380 
14381 	/*
14382 	 * Both vmlinux and module each have their own ".data..percpu"
14383 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
14384 	 * types to look at only module's own BTF types.
14385 	 */
14386 	n = btf_nr_types(btf);
14387 	if (btf_is_module(btf))
14388 		i = btf_nr_types(btf_vmlinux);
14389 	else
14390 		i = 1;
14391 
14392 	for(; i < n; i++) {
14393 		t = btf_type_by_id(btf, i);
14394 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
14395 			continue;
14396 
14397 		tname = btf_name_by_offset(btf, t->name_off);
14398 		if (!strcmp(tname, ".data..percpu"))
14399 			return i;
14400 	}
14401 
14402 	return -ENOENT;
14403 }
14404 
14405 /* replace pseudo btf_id with kernel symbol address */
14406 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
14407 			       struct bpf_insn *insn,
14408 			       struct bpf_insn_aux_data *aux)
14409 {
14410 	const struct btf_var_secinfo *vsi;
14411 	const struct btf_type *datasec;
14412 	struct btf_mod_pair *btf_mod;
14413 	const struct btf_type *t;
14414 	const char *sym_name;
14415 	bool percpu = false;
14416 	u32 type, id = insn->imm;
14417 	struct btf *btf;
14418 	s32 datasec_id;
14419 	u64 addr;
14420 	int i, btf_fd, err;
14421 
14422 	btf_fd = insn[1].imm;
14423 	if (btf_fd) {
14424 		btf = btf_get_by_fd(btf_fd);
14425 		if (IS_ERR(btf)) {
14426 			verbose(env, "invalid module BTF object FD specified.\n");
14427 			return -EINVAL;
14428 		}
14429 	} else {
14430 		if (!btf_vmlinux) {
14431 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
14432 			return -EINVAL;
14433 		}
14434 		btf = btf_vmlinux;
14435 		btf_get(btf);
14436 	}
14437 
14438 	t = btf_type_by_id(btf, id);
14439 	if (!t) {
14440 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
14441 		err = -ENOENT;
14442 		goto err_put;
14443 	}
14444 
14445 	if (!btf_type_is_var(t)) {
14446 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
14447 		err = -EINVAL;
14448 		goto err_put;
14449 	}
14450 
14451 	sym_name = btf_name_by_offset(btf, t->name_off);
14452 	addr = kallsyms_lookup_name(sym_name);
14453 	if (!addr) {
14454 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14455 			sym_name);
14456 		err = -ENOENT;
14457 		goto err_put;
14458 	}
14459 
14460 	datasec_id = find_btf_percpu_datasec(btf);
14461 	if (datasec_id > 0) {
14462 		datasec = btf_type_by_id(btf, datasec_id);
14463 		for_each_vsi(i, datasec, vsi) {
14464 			if (vsi->type == id) {
14465 				percpu = true;
14466 				break;
14467 			}
14468 		}
14469 	}
14470 
14471 	insn[0].imm = (u32)addr;
14472 	insn[1].imm = addr >> 32;
14473 
14474 	type = t->type;
14475 	t = btf_type_skip_modifiers(btf, type, NULL);
14476 	if (percpu) {
14477 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14478 		aux->btf_var.btf = btf;
14479 		aux->btf_var.btf_id = type;
14480 	} else if (!btf_type_is_struct(t)) {
14481 		const struct btf_type *ret;
14482 		const char *tname;
14483 		u32 tsize;
14484 
14485 		/* resolve the type size of ksym. */
14486 		ret = btf_resolve_size(btf, t, &tsize);
14487 		if (IS_ERR(ret)) {
14488 			tname = btf_name_by_offset(btf, t->name_off);
14489 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14490 				tname, PTR_ERR(ret));
14491 			err = -EINVAL;
14492 			goto err_put;
14493 		}
14494 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14495 		aux->btf_var.mem_size = tsize;
14496 	} else {
14497 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14498 		aux->btf_var.btf = btf;
14499 		aux->btf_var.btf_id = type;
14500 	}
14501 
14502 	/* check whether we recorded this BTF (and maybe module) already */
14503 	for (i = 0; i < env->used_btf_cnt; i++) {
14504 		if (env->used_btfs[i].btf == btf) {
14505 			btf_put(btf);
14506 			return 0;
14507 		}
14508 	}
14509 
14510 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14511 		err = -E2BIG;
14512 		goto err_put;
14513 	}
14514 
14515 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14516 	btf_mod->btf = btf;
14517 	btf_mod->module = NULL;
14518 
14519 	/* if we reference variables from kernel module, bump its refcount */
14520 	if (btf_is_module(btf)) {
14521 		btf_mod->module = btf_try_get_module(btf);
14522 		if (!btf_mod->module) {
14523 			err = -ENXIO;
14524 			goto err_put;
14525 		}
14526 	}
14527 
14528 	env->used_btf_cnt++;
14529 
14530 	return 0;
14531 err_put:
14532 	btf_put(btf);
14533 	return err;
14534 }
14535 
14536 static bool is_tracing_prog_type(enum bpf_prog_type type)
14537 {
14538 	switch (type) {
14539 	case BPF_PROG_TYPE_KPROBE:
14540 	case BPF_PROG_TYPE_TRACEPOINT:
14541 	case BPF_PROG_TYPE_PERF_EVENT:
14542 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14543 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14544 		return true;
14545 	default:
14546 		return false;
14547 	}
14548 }
14549 
14550 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14551 					struct bpf_map *map,
14552 					struct bpf_prog *prog)
14553 
14554 {
14555 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14556 
14557 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14558 		if (is_tracing_prog_type(prog_type)) {
14559 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14560 			return -EINVAL;
14561 		}
14562 	}
14563 
14564 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14565 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14566 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14567 			return -EINVAL;
14568 		}
14569 
14570 		if (is_tracing_prog_type(prog_type)) {
14571 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14572 			return -EINVAL;
14573 		}
14574 
14575 		if (prog->aux->sleepable) {
14576 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14577 			return -EINVAL;
14578 		}
14579 	}
14580 
14581 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14582 		if (is_tracing_prog_type(prog_type)) {
14583 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14584 			return -EINVAL;
14585 		}
14586 	}
14587 
14588 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
14589 	    !bpf_offload_prog_map_match(prog, map)) {
14590 		verbose(env, "offload device mismatch between prog and map\n");
14591 		return -EINVAL;
14592 	}
14593 
14594 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14595 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14596 		return -EINVAL;
14597 	}
14598 
14599 	if (prog->aux->sleepable)
14600 		switch (map->map_type) {
14601 		case BPF_MAP_TYPE_HASH:
14602 		case BPF_MAP_TYPE_LRU_HASH:
14603 		case BPF_MAP_TYPE_ARRAY:
14604 		case BPF_MAP_TYPE_PERCPU_HASH:
14605 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14606 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14607 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14608 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14609 		case BPF_MAP_TYPE_RINGBUF:
14610 		case BPF_MAP_TYPE_USER_RINGBUF:
14611 		case BPF_MAP_TYPE_INODE_STORAGE:
14612 		case BPF_MAP_TYPE_SK_STORAGE:
14613 		case BPF_MAP_TYPE_TASK_STORAGE:
14614 		case BPF_MAP_TYPE_CGRP_STORAGE:
14615 			break;
14616 		default:
14617 			verbose(env,
14618 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14619 			return -EINVAL;
14620 		}
14621 
14622 	return 0;
14623 }
14624 
14625 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14626 {
14627 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14628 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14629 }
14630 
14631 /* find and rewrite pseudo imm in ld_imm64 instructions:
14632  *
14633  * 1. if it accesses map FD, replace it with actual map pointer.
14634  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14635  *
14636  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14637  */
14638 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14639 {
14640 	struct bpf_insn *insn = env->prog->insnsi;
14641 	int insn_cnt = env->prog->len;
14642 	int i, j, err;
14643 
14644 	err = bpf_prog_calc_tag(env->prog);
14645 	if (err)
14646 		return err;
14647 
14648 	for (i = 0; i < insn_cnt; i++, insn++) {
14649 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14650 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14651 			verbose(env, "BPF_LDX uses reserved fields\n");
14652 			return -EINVAL;
14653 		}
14654 
14655 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14656 			struct bpf_insn_aux_data *aux;
14657 			struct bpf_map *map;
14658 			struct fd f;
14659 			u64 addr;
14660 			u32 fd;
14661 
14662 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14663 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14664 			    insn[1].off != 0) {
14665 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14666 				return -EINVAL;
14667 			}
14668 
14669 			if (insn[0].src_reg == 0)
14670 				/* valid generic load 64-bit imm */
14671 				goto next_insn;
14672 
14673 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14674 				aux = &env->insn_aux_data[i];
14675 				err = check_pseudo_btf_id(env, insn, aux);
14676 				if (err)
14677 					return err;
14678 				goto next_insn;
14679 			}
14680 
14681 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14682 				aux = &env->insn_aux_data[i];
14683 				aux->ptr_type = PTR_TO_FUNC;
14684 				goto next_insn;
14685 			}
14686 
14687 			/* In final convert_pseudo_ld_imm64() step, this is
14688 			 * converted into regular 64-bit imm load insn.
14689 			 */
14690 			switch (insn[0].src_reg) {
14691 			case BPF_PSEUDO_MAP_VALUE:
14692 			case BPF_PSEUDO_MAP_IDX_VALUE:
14693 				break;
14694 			case BPF_PSEUDO_MAP_FD:
14695 			case BPF_PSEUDO_MAP_IDX:
14696 				if (insn[1].imm == 0)
14697 					break;
14698 				fallthrough;
14699 			default:
14700 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14701 				return -EINVAL;
14702 			}
14703 
14704 			switch (insn[0].src_reg) {
14705 			case BPF_PSEUDO_MAP_IDX_VALUE:
14706 			case BPF_PSEUDO_MAP_IDX:
14707 				if (bpfptr_is_null(env->fd_array)) {
14708 					verbose(env, "fd_idx without fd_array is invalid\n");
14709 					return -EPROTO;
14710 				}
14711 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14712 							    insn[0].imm * sizeof(fd),
14713 							    sizeof(fd)))
14714 					return -EFAULT;
14715 				break;
14716 			default:
14717 				fd = insn[0].imm;
14718 				break;
14719 			}
14720 
14721 			f = fdget(fd);
14722 			map = __bpf_map_get(f);
14723 			if (IS_ERR(map)) {
14724 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14725 					insn[0].imm);
14726 				return PTR_ERR(map);
14727 			}
14728 
14729 			err = check_map_prog_compatibility(env, map, env->prog);
14730 			if (err) {
14731 				fdput(f);
14732 				return err;
14733 			}
14734 
14735 			aux = &env->insn_aux_data[i];
14736 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14737 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14738 				addr = (unsigned long)map;
14739 			} else {
14740 				u32 off = insn[1].imm;
14741 
14742 				if (off >= BPF_MAX_VAR_OFF) {
14743 					verbose(env, "direct value offset of %u is not allowed\n", off);
14744 					fdput(f);
14745 					return -EINVAL;
14746 				}
14747 
14748 				if (!map->ops->map_direct_value_addr) {
14749 					verbose(env, "no direct value access support for this map type\n");
14750 					fdput(f);
14751 					return -EINVAL;
14752 				}
14753 
14754 				err = map->ops->map_direct_value_addr(map, &addr, off);
14755 				if (err) {
14756 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14757 						map->value_size, off);
14758 					fdput(f);
14759 					return err;
14760 				}
14761 
14762 				aux->map_off = off;
14763 				addr += off;
14764 			}
14765 
14766 			insn[0].imm = (u32)addr;
14767 			insn[1].imm = addr >> 32;
14768 
14769 			/* check whether we recorded this map already */
14770 			for (j = 0; j < env->used_map_cnt; j++) {
14771 				if (env->used_maps[j] == map) {
14772 					aux->map_index = j;
14773 					fdput(f);
14774 					goto next_insn;
14775 				}
14776 			}
14777 
14778 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14779 				fdput(f);
14780 				return -E2BIG;
14781 			}
14782 
14783 			/* hold the map. If the program is rejected by verifier,
14784 			 * the map will be released by release_maps() or it
14785 			 * will be used by the valid program until it's unloaded
14786 			 * and all maps are released in free_used_maps()
14787 			 */
14788 			bpf_map_inc(map);
14789 
14790 			aux->map_index = env->used_map_cnt;
14791 			env->used_maps[env->used_map_cnt++] = map;
14792 
14793 			if (bpf_map_is_cgroup_storage(map) &&
14794 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14795 				verbose(env, "only one cgroup storage of each type is allowed\n");
14796 				fdput(f);
14797 				return -EBUSY;
14798 			}
14799 
14800 			fdput(f);
14801 next_insn:
14802 			insn++;
14803 			i++;
14804 			continue;
14805 		}
14806 
14807 		/* Basic sanity check before we invest more work here. */
14808 		if (!bpf_opcode_in_insntable(insn->code)) {
14809 			verbose(env, "unknown opcode %02x\n", insn->code);
14810 			return -EINVAL;
14811 		}
14812 	}
14813 
14814 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14815 	 * 'struct bpf_map *' into a register instead of user map_fd.
14816 	 * These pointers will be used later by verifier to validate map access.
14817 	 */
14818 	return 0;
14819 }
14820 
14821 /* drop refcnt of maps used by the rejected program */
14822 static void release_maps(struct bpf_verifier_env *env)
14823 {
14824 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14825 			     env->used_map_cnt);
14826 }
14827 
14828 /* drop refcnt of maps used by the rejected program */
14829 static void release_btfs(struct bpf_verifier_env *env)
14830 {
14831 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14832 			     env->used_btf_cnt);
14833 }
14834 
14835 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14836 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14837 {
14838 	struct bpf_insn *insn = env->prog->insnsi;
14839 	int insn_cnt = env->prog->len;
14840 	int i;
14841 
14842 	for (i = 0; i < insn_cnt; i++, insn++) {
14843 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14844 			continue;
14845 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14846 			continue;
14847 		insn->src_reg = 0;
14848 	}
14849 }
14850 
14851 /* single env->prog->insni[off] instruction was replaced with the range
14852  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14853  * [0, off) and [off, end) to new locations, so the patched range stays zero
14854  */
14855 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14856 				 struct bpf_insn_aux_data *new_data,
14857 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14858 {
14859 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14860 	struct bpf_insn *insn = new_prog->insnsi;
14861 	u32 old_seen = old_data[off].seen;
14862 	u32 prog_len;
14863 	int i;
14864 
14865 	/* aux info at OFF always needs adjustment, no matter fast path
14866 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14867 	 * original insn at old prog.
14868 	 */
14869 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14870 
14871 	if (cnt == 1)
14872 		return;
14873 	prog_len = new_prog->len;
14874 
14875 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14876 	memcpy(new_data + off + cnt - 1, old_data + off,
14877 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14878 	for (i = off; i < off + cnt - 1; i++) {
14879 		/* Expand insni[off]'s seen count to the patched range. */
14880 		new_data[i].seen = old_seen;
14881 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14882 	}
14883 	env->insn_aux_data = new_data;
14884 	vfree(old_data);
14885 }
14886 
14887 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14888 {
14889 	int i;
14890 
14891 	if (len == 1)
14892 		return;
14893 	/* NOTE: fake 'exit' subprog should be updated as well. */
14894 	for (i = 0; i <= env->subprog_cnt; i++) {
14895 		if (env->subprog_info[i].start <= off)
14896 			continue;
14897 		env->subprog_info[i].start += len - 1;
14898 	}
14899 }
14900 
14901 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14902 {
14903 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14904 	int i, sz = prog->aux->size_poke_tab;
14905 	struct bpf_jit_poke_descriptor *desc;
14906 
14907 	for (i = 0; i < sz; i++) {
14908 		desc = &tab[i];
14909 		if (desc->insn_idx <= off)
14910 			continue;
14911 		desc->insn_idx += len - 1;
14912 	}
14913 }
14914 
14915 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14916 					    const struct bpf_insn *patch, u32 len)
14917 {
14918 	struct bpf_prog *new_prog;
14919 	struct bpf_insn_aux_data *new_data = NULL;
14920 
14921 	if (len > 1) {
14922 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14923 					      sizeof(struct bpf_insn_aux_data)));
14924 		if (!new_data)
14925 			return NULL;
14926 	}
14927 
14928 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14929 	if (IS_ERR(new_prog)) {
14930 		if (PTR_ERR(new_prog) == -ERANGE)
14931 			verbose(env,
14932 				"insn %d cannot be patched due to 16-bit range\n",
14933 				env->insn_aux_data[off].orig_idx);
14934 		vfree(new_data);
14935 		return NULL;
14936 	}
14937 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14938 	adjust_subprog_starts(env, off, len);
14939 	adjust_poke_descs(new_prog, off, len);
14940 	return new_prog;
14941 }
14942 
14943 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14944 					      u32 off, u32 cnt)
14945 {
14946 	int i, j;
14947 
14948 	/* find first prog starting at or after off (first to remove) */
14949 	for (i = 0; i < env->subprog_cnt; i++)
14950 		if (env->subprog_info[i].start >= off)
14951 			break;
14952 	/* find first prog starting at or after off + cnt (first to stay) */
14953 	for (j = i; j < env->subprog_cnt; j++)
14954 		if (env->subprog_info[j].start >= off + cnt)
14955 			break;
14956 	/* if j doesn't start exactly at off + cnt, we are just removing
14957 	 * the front of previous prog
14958 	 */
14959 	if (env->subprog_info[j].start != off + cnt)
14960 		j--;
14961 
14962 	if (j > i) {
14963 		struct bpf_prog_aux *aux = env->prog->aux;
14964 		int move;
14965 
14966 		/* move fake 'exit' subprog as well */
14967 		move = env->subprog_cnt + 1 - j;
14968 
14969 		memmove(env->subprog_info + i,
14970 			env->subprog_info + j,
14971 			sizeof(*env->subprog_info) * move);
14972 		env->subprog_cnt -= j - i;
14973 
14974 		/* remove func_info */
14975 		if (aux->func_info) {
14976 			move = aux->func_info_cnt - j;
14977 
14978 			memmove(aux->func_info + i,
14979 				aux->func_info + j,
14980 				sizeof(*aux->func_info) * move);
14981 			aux->func_info_cnt -= j - i;
14982 			/* func_info->insn_off is set after all code rewrites,
14983 			 * in adjust_btf_func() - no need to adjust
14984 			 */
14985 		}
14986 	} else {
14987 		/* convert i from "first prog to remove" to "first to adjust" */
14988 		if (env->subprog_info[i].start == off)
14989 			i++;
14990 	}
14991 
14992 	/* update fake 'exit' subprog as well */
14993 	for (; i <= env->subprog_cnt; i++)
14994 		env->subprog_info[i].start -= cnt;
14995 
14996 	return 0;
14997 }
14998 
14999 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
15000 				      u32 cnt)
15001 {
15002 	struct bpf_prog *prog = env->prog;
15003 	u32 i, l_off, l_cnt, nr_linfo;
15004 	struct bpf_line_info *linfo;
15005 
15006 	nr_linfo = prog->aux->nr_linfo;
15007 	if (!nr_linfo)
15008 		return 0;
15009 
15010 	linfo = prog->aux->linfo;
15011 
15012 	/* find first line info to remove, count lines to be removed */
15013 	for (i = 0; i < nr_linfo; i++)
15014 		if (linfo[i].insn_off >= off)
15015 			break;
15016 
15017 	l_off = i;
15018 	l_cnt = 0;
15019 	for (; i < nr_linfo; i++)
15020 		if (linfo[i].insn_off < off + cnt)
15021 			l_cnt++;
15022 		else
15023 			break;
15024 
15025 	/* First live insn doesn't match first live linfo, it needs to "inherit"
15026 	 * last removed linfo.  prog is already modified, so prog->len == off
15027 	 * means no live instructions after (tail of the program was removed).
15028 	 */
15029 	if (prog->len != off && l_cnt &&
15030 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
15031 		l_cnt--;
15032 		linfo[--i].insn_off = off + cnt;
15033 	}
15034 
15035 	/* remove the line info which refer to the removed instructions */
15036 	if (l_cnt) {
15037 		memmove(linfo + l_off, linfo + i,
15038 			sizeof(*linfo) * (nr_linfo - i));
15039 
15040 		prog->aux->nr_linfo -= l_cnt;
15041 		nr_linfo = prog->aux->nr_linfo;
15042 	}
15043 
15044 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
15045 	for (i = l_off; i < nr_linfo; i++)
15046 		linfo[i].insn_off -= cnt;
15047 
15048 	/* fix up all subprogs (incl. 'exit') which start >= off */
15049 	for (i = 0; i <= env->subprog_cnt; i++)
15050 		if (env->subprog_info[i].linfo_idx > l_off) {
15051 			/* program may have started in the removed region but
15052 			 * may not be fully removed
15053 			 */
15054 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
15055 				env->subprog_info[i].linfo_idx -= l_cnt;
15056 			else
15057 				env->subprog_info[i].linfo_idx = l_off;
15058 		}
15059 
15060 	return 0;
15061 }
15062 
15063 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
15064 {
15065 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15066 	unsigned int orig_prog_len = env->prog->len;
15067 	int err;
15068 
15069 	if (bpf_prog_is_offloaded(env->prog->aux))
15070 		bpf_prog_offload_remove_insns(env, off, cnt);
15071 
15072 	err = bpf_remove_insns(env->prog, off, cnt);
15073 	if (err)
15074 		return err;
15075 
15076 	err = adjust_subprog_starts_after_remove(env, off, cnt);
15077 	if (err)
15078 		return err;
15079 
15080 	err = bpf_adj_linfo_after_remove(env, off, cnt);
15081 	if (err)
15082 		return err;
15083 
15084 	memmove(aux_data + off,	aux_data + off + cnt,
15085 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
15086 
15087 	return 0;
15088 }
15089 
15090 /* The verifier does more data flow analysis than llvm and will not
15091  * explore branches that are dead at run time. Malicious programs can
15092  * have dead code too. Therefore replace all dead at-run-time code
15093  * with 'ja -1'.
15094  *
15095  * Just nops are not optimal, e.g. if they would sit at the end of the
15096  * program and through another bug we would manage to jump there, then
15097  * we'd execute beyond program memory otherwise. Returning exception
15098  * code also wouldn't work since we can have subprogs where the dead
15099  * code could be located.
15100  */
15101 static void sanitize_dead_code(struct bpf_verifier_env *env)
15102 {
15103 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15104 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
15105 	struct bpf_insn *insn = env->prog->insnsi;
15106 	const int insn_cnt = env->prog->len;
15107 	int i;
15108 
15109 	for (i = 0; i < insn_cnt; i++) {
15110 		if (aux_data[i].seen)
15111 			continue;
15112 		memcpy(insn + i, &trap, sizeof(trap));
15113 		aux_data[i].zext_dst = false;
15114 	}
15115 }
15116 
15117 static bool insn_is_cond_jump(u8 code)
15118 {
15119 	u8 op;
15120 
15121 	if (BPF_CLASS(code) == BPF_JMP32)
15122 		return true;
15123 
15124 	if (BPF_CLASS(code) != BPF_JMP)
15125 		return false;
15126 
15127 	op = BPF_OP(code);
15128 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
15129 }
15130 
15131 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
15132 {
15133 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15134 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
15135 	struct bpf_insn *insn = env->prog->insnsi;
15136 	const int insn_cnt = env->prog->len;
15137 	int i;
15138 
15139 	for (i = 0; i < insn_cnt; i++, insn++) {
15140 		if (!insn_is_cond_jump(insn->code))
15141 			continue;
15142 
15143 		if (!aux_data[i + 1].seen)
15144 			ja.off = insn->off;
15145 		else if (!aux_data[i + 1 + insn->off].seen)
15146 			ja.off = 0;
15147 		else
15148 			continue;
15149 
15150 		if (bpf_prog_is_offloaded(env->prog->aux))
15151 			bpf_prog_offload_replace_insn(env, i, &ja);
15152 
15153 		memcpy(insn, &ja, sizeof(ja));
15154 	}
15155 }
15156 
15157 static int opt_remove_dead_code(struct bpf_verifier_env *env)
15158 {
15159 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
15160 	int insn_cnt = env->prog->len;
15161 	int i, err;
15162 
15163 	for (i = 0; i < insn_cnt; i++) {
15164 		int j;
15165 
15166 		j = 0;
15167 		while (i + j < insn_cnt && !aux_data[i + j].seen)
15168 			j++;
15169 		if (!j)
15170 			continue;
15171 
15172 		err = verifier_remove_insns(env, i, j);
15173 		if (err)
15174 			return err;
15175 		insn_cnt = env->prog->len;
15176 	}
15177 
15178 	return 0;
15179 }
15180 
15181 static int opt_remove_nops(struct bpf_verifier_env *env)
15182 {
15183 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
15184 	struct bpf_insn *insn = env->prog->insnsi;
15185 	int insn_cnt = env->prog->len;
15186 	int i, err;
15187 
15188 	for (i = 0; i < insn_cnt; i++) {
15189 		if (memcmp(&insn[i], &ja, sizeof(ja)))
15190 			continue;
15191 
15192 		err = verifier_remove_insns(env, i, 1);
15193 		if (err)
15194 			return err;
15195 		insn_cnt--;
15196 		i--;
15197 	}
15198 
15199 	return 0;
15200 }
15201 
15202 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
15203 					 const union bpf_attr *attr)
15204 {
15205 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
15206 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
15207 	int i, patch_len, delta = 0, len = env->prog->len;
15208 	struct bpf_insn *insns = env->prog->insnsi;
15209 	struct bpf_prog *new_prog;
15210 	bool rnd_hi32;
15211 
15212 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
15213 	zext_patch[1] = BPF_ZEXT_REG(0);
15214 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
15215 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
15216 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
15217 	for (i = 0; i < len; i++) {
15218 		int adj_idx = i + delta;
15219 		struct bpf_insn insn;
15220 		int load_reg;
15221 
15222 		insn = insns[adj_idx];
15223 		load_reg = insn_def_regno(&insn);
15224 		if (!aux[adj_idx].zext_dst) {
15225 			u8 code, class;
15226 			u32 imm_rnd;
15227 
15228 			if (!rnd_hi32)
15229 				continue;
15230 
15231 			code = insn.code;
15232 			class = BPF_CLASS(code);
15233 			if (load_reg == -1)
15234 				continue;
15235 
15236 			/* NOTE: arg "reg" (the fourth one) is only used for
15237 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
15238 			 *       here.
15239 			 */
15240 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
15241 				if (class == BPF_LD &&
15242 				    BPF_MODE(code) == BPF_IMM)
15243 					i++;
15244 				continue;
15245 			}
15246 
15247 			/* ctx load could be transformed into wider load. */
15248 			if (class == BPF_LDX &&
15249 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
15250 				continue;
15251 
15252 			imm_rnd = get_random_u32();
15253 			rnd_hi32_patch[0] = insn;
15254 			rnd_hi32_patch[1].imm = imm_rnd;
15255 			rnd_hi32_patch[3].dst_reg = load_reg;
15256 			patch = rnd_hi32_patch;
15257 			patch_len = 4;
15258 			goto apply_patch_buffer;
15259 		}
15260 
15261 		/* Add in an zero-extend instruction if a) the JIT has requested
15262 		 * it or b) it's a CMPXCHG.
15263 		 *
15264 		 * The latter is because: BPF_CMPXCHG always loads a value into
15265 		 * R0, therefore always zero-extends. However some archs'
15266 		 * equivalent instruction only does this load when the
15267 		 * comparison is successful. This detail of CMPXCHG is
15268 		 * orthogonal to the general zero-extension behaviour of the
15269 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
15270 		 */
15271 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
15272 			continue;
15273 
15274 		/* Zero-extension is done by the caller. */
15275 		if (bpf_pseudo_kfunc_call(&insn))
15276 			continue;
15277 
15278 		if (WARN_ON(load_reg == -1)) {
15279 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
15280 			return -EFAULT;
15281 		}
15282 
15283 		zext_patch[0] = insn;
15284 		zext_patch[1].dst_reg = load_reg;
15285 		zext_patch[1].src_reg = load_reg;
15286 		patch = zext_patch;
15287 		patch_len = 2;
15288 apply_patch_buffer:
15289 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
15290 		if (!new_prog)
15291 			return -ENOMEM;
15292 		env->prog = new_prog;
15293 		insns = new_prog->insnsi;
15294 		aux = env->insn_aux_data;
15295 		delta += patch_len - 1;
15296 	}
15297 
15298 	return 0;
15299 }
15300 
15301 /* convert load instructions that access fields of a context type into a
15302  * sequence of instructions that access fields of the underlying structure:
15303  *     struct __sk_buff    -> struct sk_buff
15304  *     struct bpf_sock_ops -> struct sock
15305  */
15306 static int convert_ctx_accesses(struct bpf_verifier_env *env)
15307 {
15308 	const struct bpf_verifier_ops *ops = env->ops;
15309 	int i, cnt, size, ctx_field_size, delta = 0;
15310 	const int insn_cnt = env->prog->len;
15311 	struct bpf_insn insn_buf[16], *insn;
15312 	u32 target_size, size_default, off;
15313 	struct bpf_prog *new_prog;
15314 	enum bpf_access_type type;
15315 	bool is_narrower_load;
15316 
15317 	if (ops->gen_prologue || env->seen_direct_write) {
15318 		if (!ops->gen_prologue) {
15319 			verbose(env, "bpf verifier is misconfigured\n");
15320 			return -EINVAL;
15321 		}
15322 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
15323 					env->prog);
15324 		if (cnt >= ARRAY_SIZE(insn_buf)) {
15325 			verbose(env, "bpf verifier is misconfigured\n");
15326 			return -EINVAL;
15327 		} else if (cnt) {
15328 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
15329 			if (!new_prog)
15330 				return -ENOMEM;
15331 
15332 			env->prog = new_prog;
15333 			delta += cnt - 1;
15334 		}
15335 	}
15336 
15337 	if (bpf_prog_is_offloaded(env->prog->aux))
15338 		return 0;
15339 
15340 	insn = env->prog->insnsi + delta;
15341 
15342 	for (i = 0; i < insn_cnt; i++, insn++) {
15343 		bpf_convert_ctx_access_t convert_ctx_access;
15344 		bool ctx_access;
15345 
15346 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
15347 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
15348 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
15349 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
15350 			type = BPF_READ;
15351 			ctx_access = true;
15352 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
15353 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
15354 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
15355 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
15356 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
15357 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
15358 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
15359 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
15360 			type = BPF_WRITE;
15361 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
15362 		} else {
15363 			continue;
15364 		}
15365 
15366 		if (type == BPF_WRITE &&
15367 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
15368 			struct bpf_insn patch[] = {
15369 				*insn,
15370 				BPF_ST_NOSPEC(),
15371 			};
15372 
15373 			cnt = ARRAY_SIZE(patch);
15374 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
15375 			if (!new_prog)
15376 				return -ENOMEM;
15377 
15378 			delta    += cnt - 1;
15379 			env->prog = new_prog;
15380 			insn      = new_prog->insnsi + i + delta;
15381 			continue;
15382 		}
15383 
15384 		if (!ctx_access)
15385 			continue;
15386 
15387 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
15388 		case PTR_TO_CTX:
15389 			if (!ops->convert_ctx_access)
15390 				continue;
15391 			convert_ctx_access = ops->convert_ctx_access;
15392 			break;
15393 		case PTR_TO_SOCKET:
15394 		case PTR_TO_SOCK_COMMON:
15395 			convert_ctx_access = bpf_sock_convert_ctx_access;
15396 			break;
15397 		case PTR_TO_TCP_SOCK:
15398 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
15399 			break;
15400 		case PTR_TO_XDP_SOCK:
15401 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
15402 			break;
15403 		case PTR_TO_BTF_ID:
15404 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
15405 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
15406 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
15407 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
15408 		 * any faults for loads into such types. BPF_WRITE is disallowed
15409 		 * for this case.
15410 		 */
15411 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
15412 			if (type == BPF_READ) {
15413 				insn->code = BPF_LDX | BPF_PROBE_MEM |
15414 					BPF_SIZE((insn)->code);
15415 				env->prog->aux->num_exentries++;
15416 			}
15417 			continue;
15418 		default:
15419 			continue;
15420 		}
15421 
15422 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
15423 		size = BPF_LDST_BYTES(insn);
15424 
15425 		/* If the read access is a narrower load of the field,
15426 		 * convert to a 4/8-byte load, to minimum program type specific
15427 		 * convert_ctx_access changes. If conversion is successful,
15428 		 * we will apply proper mask to the result.
15429 		 */
15430 		is_narrower_load = size < ctx_field_size;
15431 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
15432 		off = insn->off;
15433 		if (is_narrower_load) {
15434 			u8 size_code;
15435 
15436 			if (type == BPF_WRITE) {
15437 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
15438 				return -EINVAL;
15439 			}
15440 
15441 			size_code = BPF_H;
15442 			if (ctx_field_size == 4)
15443 				size_code = BPF_W;
15444 			else if (ctx_field_size == 8)
15445 				size_code = BPF_DW;
15446 
15447 			insn->off = off & ~(size_default - 1);
15448 			insn->code = BPF_LDX | BPF_MEM | size_code;
15449 		}
15450 
15451 		target_size = 0;
15452 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
15453 					 &target_size);
15454 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
15455 		    (ctx_field_size && !target_size)) {
15456 			verbose(env, "bpf verifier is misconfigured\n");
15457 			return -EINVAL;
15458 		}
15459 
15460 		if (is_narrower_load && size < target_size) {
15461 			u8 shift = bpf_ctx_narrow_access_offset(
15462 				off, size, size_default) * 8;
15463 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15464 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15465 				return -EINVAL;
15466 			}
15467 			if (ctx_field_size <= 4) {
15468 				if (shift)
15469 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15470 									insn->dst_reg,
15471 									shift);
15472 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15473 								(1 << size * 8) - 1);
15474 			} else {
15475 				if (shift)
15476 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15477 									insn->dst_reg,
15478 									shift);
15479 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15480 								(1ULL << size * 8) - 1);
15481 			}
15482 		}
15483 
15484 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15485 		if (!new_prog)
15486 			return -ENOMEM;
15487 
15488 		delta += cnt - 1;
15489 
15490 		/* keep walking new program and skip insns we just inserted */
15491 		env->prog = new_prog;
15492 		insn      = new_prog->insnsi + i + delta;
15493 	}
15494 
15495 	return 0;
15496 }
15497 
15498 static int jit_subprogs(struct bpf_verifier_env *env)
15499 {
15500 	struct bpf_prog *prog = env->prog, **func, *tmp;
15501 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15502 	struct bpf_map *map_ptr;
15503 	struct bpf_insn *insn;
15504 	void *old_bpf_func;
15505 	int err, num_exentries;
15506 
15507 	if (env->subprog_cnt <= 1)
15508 		return 0;
15509 
15510 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15511 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15512 			continue;
15513 
15514 		/* Upon error here we cannot fall back to interpreter but
15515 		 * need a hard reject of the program. Thus -EFAULT is
15516 		 * propagated in any case.
15517 		 */
15518 		subprog = find_subprog(env, i + insn->imm + 1);
15519 		if (subprog < 0) {
15520 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15521 				  i + insn->imm + 1);
15522 			return -EFAULT;
15523 		}
15524 		/* temporarily remember subprog id inside insn instead of
15525 		 * aux_data, since next loop will split up all insns into funcs
15526 		 */
15527 		insn->off = subprog;
15528 		/* remember original imm in case JIT fails and fallback
15529 		 * to interpreter will be needed
15530 		 */
15531 		env->insn_aux_data[i].call_imm = insn->imm;
15532 		/* point imm to __bpf_call_base+1 from JITs point of view */
15533 		insn->imm = 1;
15534 		if (bpf_pseudo_func(insn))
15535 			/* jit (e.g. x86_64) may emit fewer instructions
15536 			 * if it learns a u32 imm is the same as a u64 imm.
15537 			 * Force a non zero here.
15538 			 */
15539 			insn[1].imm = 1;
15540 	}
15541 
15542 	err = bpf_prog_alloc_jited_linfo(prog);
15543 	if (err)
15544 		goto out_undo_insn;
15545 
15546 	err = -ENOMEM;
15547 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15548 	if (!func)
15549 		goto out_undo_insn;
15550 
15551 	for (i = 0; i < env->subprog_cnt; i++) {
15552 		subprog_start = subprog_end;
15553 		subprog_end = env->subprog_info[i + 1].start;
15554 
15555 		len = subprog_end - subprog_start;
15556 		/* bpf_prog_run() doesn't call subprogs directly,
15557 		 * hence main prog stats include the runtime of subprogs.
15558 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15559 		 * func[i]->stats will never be accessed and stays NULL
15560 		 */
15561 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15562 		if (!func[i])
15563 			goto out_free;
15564 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15565 		       len * sizeof(struct bpf_insn));
15566 		func[i]->type = prog->type;
15567 		func[i]->len = len;
15568 		if (bpf_prog_calc_tag(func[i]))
15569 			goto out_free;
15570 		func[i]->is_func = 1;
15571 		func[i]->aux->func_idx = i;
15572 		/* Below members will be freed only at prog->aux */
15573 		func[i]->aux->btf = prog->aux->btf;
15574 		func[i]->aux->func_info = prog->aux->func_info;
15575 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15576 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15577 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15578 
15579 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15580 			struct bpf_jit_poke_descriptor *poke;
15581 
15582 			poke = &prog->aux->poke_tab[j];
15583 			if (poke->insn_idx < subprog_end &&
15584 			    poke->insn_idx >= subprog_start)
15585 				poke->aux = func[i]->aux;
15586 		}
15587 
15588 		func[i]->aux->name[0] = 'F';
15589 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15590 		func[i]->jit_requested = 1;
15591 		func[i]->blinding_requested = prog->blinding_requested;
15592 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15593 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15594 		func[i]->aux->linfo = prog->aux->linfo;
15595 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15596 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15597 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15598 		num_exentries = 0;
15599 		insn = func[i]->insnsi;
15600 		for (j = 0; j < func[i]->len; j++, insn++) {
15601 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15602 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15603 				num_exentries++;
15604 		}
15605 		func[i]->aux->num_exentries = num_exentries;
15606 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15607 		func[i] = bpf_int_jit_compile(func[i]);
15608 		if (!func[i]->jited) {
15609 			err = -ENOTSUPP;
15610 			goto out_free;
15611 		}
15612 		cond_resched();
15613 	}
15614 
15615 	/* at this point all bpf functions were successfully JITed
15616 	 * now populate all bpf_calls with correct addresses and
15617 	 * run last pass of JIT
15618 	 */
15619 	for (i = 0; i < env->subprog_cnt; i++) {
15620 		insn = func[i]->insnsi;
15621 		for (j = 0; j < func[i]->len; j++, insn++) {
15622 			if (bpf_pseudo_func(insn)) {
15623 				subprog = insn->off;
15624 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15625 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15626 				continue;
15627 			}
15628 			if (!bpf_pseudo_call(insn))
15629 				continue;
15630 			subprog = insn->off;
15631 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15632 		}
15633 
15634 		/* we use the aux data to keep a list of the start addresses
15635 		 * of the JITed images for each function in the program
15636 		 *
15637 		 * for some architectures, such as powerpc64, the imm field
15638 		 * might not be large enough to hold the offset of the start
15639 		 * address of the callee's JITed image from __bpf_call_base
15640 		 *
15641 		 * in such cases, we can lookup the start address of a callee
15642 		 * by using its subprog id, available from the off field of
15643 		 * the call instruction, as an index for this list
15644 		 */
15645 		func[i]->aux->func = func;
15646 		func[i]->aux->func_cnt = env->subprog_cnt;
15647 	}
15648 	for (i = 0; i < env->subprog_cnt; i++) {
15649 		old_bpf_func = func[i]->bpf_func;
15650 		tmp = bpf_int_jit_compile(func[i]);
15651 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15652 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15653 			err = -ENOTSUPP;
15654 			goto out_free;
15655 		}
15656 		cond_resched();
15657 	}
15658 
15659 	/* finally lock prog and jit images for all functions and
15660 	 * populate kallsysm
15661 	 */
15662 	for (i = 0; i < env->subprog_cnt; i++) {
15663 		bpf_prog_lock_ro(func[i]);
15664 		bpf_prog_kallsyms_add(func[i]);
15665 	}
15666 
15667 	/* Last step: make now unused interpreter insns from main
15668 	 * prog consistent for later dump requests, so they can
15669 	 * later look the same as if they were interpreted only.
15670 	 */
15671 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15672 		if (bpf_pseudo_func(insn)) {
15673 			insn[0].imm = env->insn_aux_data[i].call_imm;
15674 			insn[1].imm = insn->off;
15675 			insn->off = 0;
15676 			continue;
15677 		}
15678 		if (!bpf_pseudo_call(insn))
15679 			continue;
15680 		insn->off = env->insn_aux_data[i].call_imm;
15681 		subprog = find_subprog(env, i + insn->off + 1);
15682 		insn->imm = subprog;
15683 	}
15684 
15685 	prog->jited = 1;
15686 	prog->bpf_func = func[0]->bpf_func;
15687 	prog->jited_len = func[0]->jited_len;
15688 	prog->aux->func = func;
15689 	prog->aux->func_cnt = env->subprog_cnt;
15690 	bpf_prog_jit_attempt_done(prog);
15691 	return 0;
15692 out_free:
15693 	/* We failed JIT'ing, so at this point we need to unregister poke
15694 	 * descriptors from subprogs, so that kernel is not attempting to
15695 	 * patch it anymore as we're freeing the subprog JIT memory.
15696 	 */
15697 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15698 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15699 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15700 	}
15701 	/* At this point we're guaranteed that poke descriptors are not
15702 	 * live anymore. We can just unlink its descriptor table as it's
15703 	 * released with the main prog.
15704 	 */
15705 	for (i = 0; i < env->subprog_cnt; i++) {
15706 		if (!func[i])
15707 			continue;
15708 		func[i]->aux->poke_tab = NULL;
15709 		bpf_jit_free(func[i]);
15710 	}
15711 	kfree(func);
15712 out_undo_insn:
15713 	/* cleanup main prog to be interpreted */
15714 	prog->jit_requested = 0;
15715 	prog->blinding_requested = 0;
15716 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15717 		if (!bpf_pseudo_call(insn))
15718 			continue;
15719 		insn->off = 0;
15720 		insn->imm = env->insn_aux_data[i].call_imm;
15721 	}
15722 	bpf_prog_jit_attempt_done(prog);
15723 	return err;
15724 }
15725 
15726 static int fixup_call_args(struct bpf_verifier_env *env)
15727 {
15728 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15729 	struct bpf_prog *prog = env->prog;
15730 	struct bpf_insn *insn = prog->insnsi;
15731 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15732 	int i, depth;
15733 #endif
15734 	int err = 0;
15735 
15736 	if (env->prog->jit_requested &&
15737 	    !bpf_prog_is_offloaded(env->prog->aux)) {
15738 		err = jit_subprogs(env);
15739 		if (err == 0)
15740 			return 0;
15741 		if (err == -EFAULT)
15742 			return err;
15743 	}
15744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15745 	if (has_kfunc_call) {
15746 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15747 		return -EINVAL;
15748 	}
15749 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15750 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15751 		 * have to be rejected, since interpreter doesn't support them yet.
15752 		 */
15753 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15754 		return -EINVAL;
15755 	}
15756 	for (i = 0; i < prog->len; i++, insn++) {
15757 		if (bpf_pseudo_func(insn)) {
15758 			/* When JIT fails the progs with callback calls
15759 			 * have to be rejected, since interpreter doesn't support them yet.
15760 			 */
15761 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15762 			return -EINVAL;
15763 		}
15764 
15765 		if (!bpf_pseudo_call(insn))
15766 			continue;
15767 		depth = get_callee_stack_depth(env, insn, i);
15768 		if (depth < 0)
15769 			return depth;
15770 		bpf_patch_call_args(insn, depth);
15771 	}
15772 	err = 0;
15773 #endif
15774 	return err;
15775 }
15776 
15777 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15778 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15779 {
15780 	const struct bpf_kfunc_desc *desc;
15781 	void *xdp_kfunc;
15782 
15783 	if (!insn->imm) {
15784 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15785 		return -EINVAL;
15786 	}
15787 
15788 	*cnt = 0;
15789 
15790 	if (bpf_dev_bound_kfunc_id(insn->imm)) {
15791 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
15792 		if (xdp_kfunc) {
15793 			insn->imm = BPF_CALL_IMM(xdp_kfunc);
15794 			return 0;
15795 		}
15796 
15797 		/* fallback to default kfunc when not supported by netdev */
15798 	}
15799 
15800 	/* insn->imm has the btf func_id. Replace it with
15801 	 * an address (relative to __bpf_call_base).
15802 	 */
15803 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15804 	if (!desc) {
15805 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15806 			insn->imm);
15807 		return -EFAULT;
15808 	}
15809 
15810 	insn->imm = desc->imm;
15811 	if (insn->off)
15812 		return 0;
15813 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15814 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15815 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15816 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15817 
15818 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15819 		insn_buf[1] = addr[0];
15820 		insn_buf[2] = addr[1];
15821 		insn_buf[3] = *insn;
15822 		*cnt = 4;
15823 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15824 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15825 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15826 
15827 		insn_buf[0] = addr[0];
15828 		insn_buf[1] = addr[1];
15829 		insn_buf[2] = *insn;
15830 		*cnt = 3;
15831 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15832 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15833 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15834 		*cnt = 1;
15835 	}
15836 	return 0;
15837 }
15838 
15839 /* Do various post-verification rewrites in a single program pass.
15840  * These rewrites simplify JIT and interpreter implementations.
15841  */
15842 static int do_misc_fixups(struct bpf_verifier_env *env)
15843 {
15844 	struct bpf_prog *prog = env->prog;
15845 	enum bpf_attach_type eatype = prog->expected_attach_type;
15846 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15847 	struct bpf_insn *insn = prog->insnsi;
15848 	const struct bpf_func_proto *fn;
15849 	const int insn_cnt = prog->len;
15850 	const struct bpf_map_ops *ops;
15851 	struct bpf_insn_aux_data *aux;
15852 	struct bpf_insn insn_buf[16];
15853 	struct bpf_prog *new_prog;
15854 	struct bpf_map *map_ptr;
15855 	int i, ret, cnt, delta = 0;
15856 
15857 	for (i = 0; i < insn_cnt; i++, insn++) {
15858 		/* Make divide-by-zero exceptions impossible. */
15859 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15860 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15861 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15862 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15863 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15864 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15865 			struct bpf_insn *patchlet;
15866 			struct bpf_insn chk_and_div[] = {
15867 				/* [R,W]x div 0 -> 0 */
15868 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15869 					     BPF_JNE | BPF_K, insn->src_reg,
15870 					     0, 2, 0),
15871 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15872 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15873 				*insn,
15874 			};
15875 			struct bpf_insn chk_and_mod[] = {
15876 				/* [R,W]x mod 0 -> [R,W]x */
15877 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15878 					     BPF_JEQ | BPF_K, insn->src_reg,
15879 					     0, 1 + (is64 ? 0 : 1), 0),
15880 				*insn,
15881 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15882 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15883 			};
15884 
15885 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15886 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15887 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15888 
15889 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15890 			if (!new_prog)
15891 				return -ENOMEM;
15892 
15893 			delta    += cnt - 1;
15894 			env->prog = prog = new_prog;
15895 			insn      = new_prog->insnsi + i + delta;
15896 			continue;
15897 		}
15898 
15899 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15900 		if (BPF_CLASS(insn->code) == BPF_LD &&
15901 		    (BPF_MODE(insn->code) == BPF_ABS ||
15902 		     BPF_MODE(insn->code) == BPF_IND)) {
15903 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15904 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15905 				verbose(env, "bpf verifier is misconfigured\n");
15906 				return -EINVAL;
15907 			}
15908 
15909 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15910 			if (!new_prog)
15911 				return -ENOMEM;
15912 
15913 			delta    += cnt - 1;
15914 			env->prog = prog = new_prog;
15915 			insn      = new_prog->insnsi + i + delta;
15916 			continue;
15917 		}
15918 
15919 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15920 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15921 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15922 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15923 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15924 			struct bpf_insn *patch = &insn_buf[0];
15925 			bool issrc, isneg, isimm;
15926 			u32 off_reg;
15927 
15928 			aux = &env->insn_aux_data[i + delta];
15929 			if (!aux->alu_state ||
15930 			    aux->alu_state == BPF_ALU_NON_POINTER)
15931 				continue;
15932 
15933 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15934 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15935 				BPF_ALU_SANITIZE_SRC;
15936 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15937 
15938 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15939 			if (isimm) {
15940 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15941 			} else {
15942 				if (isneg)
15943 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15944 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15945 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15946 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15947 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15948 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15949 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15950 			}
15951 			if (!issrc)
15952 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15953 			insn->src_reg = BPF_REG_AX;
15954 			if (isneg)
15955 				insn->code = insn->code == code_add ?
15956 					     code_sub : code_add;
15957 			*patch++ = *insn;
15958 			if (issrc && isneg && !isimm)
15959 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15960 			cnt = patch - insn_buf;
15961 
15962 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15963 			if (!new_prog)
15964 				return -ENOMEM;
15965 
15966 			delta    += cnt - 1;
15967 			env->prog = prog = new_prog;
15968 			insn      = new_prog->insnsi + i + delta;
15969 			continue;
15970 		}
15971 
15972 		if (insn->code != (BPF_JMP | BPF_CALL))
15973 			continue;
15974 		if (insn->src_reg == BPF_PSEUDO_CALL)
15975 			continue;
15976 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15977 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
15978 			if (ret)
15979 				return ret;
15980 			if (cnt == 0)
15981 				continue;
15982 
15983 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15984 			if (!new_prog)
15985 				return -ENOMEM;
15986 
15987 			delta	 += cnt - 1;
15988 			env->prog = prog = new_prog;
15989 			insn	  = new_prog->insnsi + i + delta;
15990 			continue;
15991 		}
15992 
15993 		if (insn->imm == BPF_FUNC_get_route_realm)
15994 			prog->dst_needed = 1;
15995 		if (insn->imm == BPF_FUNC_get_prandom_u32)
15996 			bpf_user_rnd_init_once();
15997 		if (insn->imm == BPF_FUNC_override_return)
15998 			prog->kprobe_override = 1;
15999 		if (insn->imm == BPF_FUNC_tail_call) {
16000 			/* If we tail call into other programs, we
16001 			 * cannot make any assumptions since they can
16002 			 * be replaced dynamically during runtime in
16003 			 * the program array.
16004 			 */
16005 			prog->cb_access = 1;
16006 			if (!allow_tail_call_in_subprogs(env))
16007 				prog->aux->stack_depth = MAX_BPF_STACK;
16008 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
16009 
16010 			/* mark bpf_tail_call as different opcode to avoid
16011 			 * conditional branch in the interpreter for every normal
16012 			 * call and to prevent accidental JITing by JIT compiler
16013 			 * that doesn't support bpf_tail_call yet
16014 			 */
16015 			insn->imm = 0;
16016 			insn->code = BPF_JMP | BPF_TAIL_CALL;
16017 
16018 			aux = &env->insn_aux_data[i + delta];
16019 			if (env->bpf_capable && !prog->blinding_requested &&
16020 			    prog->jit_requested &&
16021 			    !bpf_map_key_poisoned(aux) &&
16022 			    !bpf_map_ptr_poisoned(aux) &&
16023 			    !bpf_map_ptr_unpriv(aux)) {
16024 				struct bpf_jit_poke_descriptor desc = {
16025 					.reason = BPF_POKE_REASON_TAIL_CALL,
16026 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
16027 					.tail_call.key = bpf_map_key_immediate(aux),
16028 					.insn_idx = i + delta,
16029 				};
16030 
16031 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
16032 				if (ret < 0) {
16033 					verbose(env, "adding tail call poke descriptor failed\n");
16034 					return ret;
16035 				}
16036 
16037 				insn->imm = ret + 1;
16038 				continue;
16039 			}
16040 
16041 			if (!bpf_map_ptr_unpriv(aux))
16042 				continue;
16043 
16044 			/* instead of changing every JIT dealing with tail_call
16045 			 * emit two extra insns:
16046 			 * if (index >= max_entries) goto out;
16047 			 * index &= array->index_mask;
16048 			 * to avoid out-of-bounds cpu speculation
16049 			 */
16050 			if (bpf_map_ptr_poisoned(aux)) {
16051 				verbose(env, "tail_call abusing map_ptr\n");
16052 				return -EINVAL;
16053 			}
16054 
16055 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
16056 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
16057 						  map_ptr->max_entries, 2);
16058 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
16059 						    container_of(map_ptr,
16060 								 struct bpf_array,
16061 								 map)->index_mask);
16062 			insn_buf[2] = *insn;
16063 			cnt = 3;
16064 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16065 			if (!new_prog)
16066 				return -ENOMEM;
16067 
16068 			delta    += cnt - 1;
16069 			env->prog = prog = new_prog;
16070 			insn      = new_prog->insnsi + i + delta;
16071 			continue;
16072 		}
16073 
16074 		if (insn->imm == BPF_FUNC_timer_set_callback) {
16075 			/* The verifier will process callback_fn as many times as necessary
16076 			 * with different maps and the register states prepared by
16077 			 * set_timer_callback_state will be accurate.
16078 			 *
16079 			 * The following use case is valid:
16080 			 *   map1 is shared by prog1, prog2, prog3.
16081 			 *   prog1 calls bpf_timer_init for some map1 elements
16082 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
16083 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
16084 			 *   prog3 calls bpf_timer_start for some map1 elements.
16085 			 *     Those that were not both bpf_timer_init-ed and
16086 			 *     bpf_timer_set_callback-ed will return -EINVAL.
16087 			 */
16088 			struct bpf_insn ld_addrs[2] = {
16089 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
16090 			};
16091 
16092 			insn_buf[0] = ld_addrs[0];
16093 			insn_buf[1] = ld_addrs[1];
16094 			insn_buf[2] = *insn;
16095 			cnt = 3;
16096 
16097 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16098 			if (!new_prog)
16099 				return -ENOMEM;
16100 
16101 			delta    += cnt - 1;
16102 			env->prog = prog = new_prog;
16103 			insn      = new_prog->insnsi + i + delta;
16104 			goto patch_call_imm;
16105 		}
16106 
16107 		if (is_storage_get_function(insn->imm)) {
16108 			if (!env->prog->aux->sleepable ||
16109 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
16110 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
16111 			else
16112 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
16113 			insn_buf[1] = *insn;
16114 			cnt = 2;
16115 
16116 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16117 			if (!new_prog)
16118 				return -ENOMEM;
16119 
16120 			delta += cnt - 1;
16121 			env->prog = prog = new_prog;
16122 			insn = new_prog->insnsi + i + delta;
16123 			goto patch_call_imm;
16124 		}
16125 
16126 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
16127 		 * and other inlining handlers are currently limited to 64 bit
16128 		 * only.
16129 		 */
16130 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
16131 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
16132 		     insn->imm == BPF_FUNC_map_update_elem ||
16133 		     insn->imm == BPF_FUNC_map_delete_elem ||
16134 		     insn->imm == BPF_FUNC_map_push_elem   ||
16135 		     insn->imm == BPF_FUNC_map_pop_elem    ||
16136 		     insn->imm == BPF_FUNC_map_peek_elem   ||
16137 		     insn->imm == BPF_FUNC_redirect_map    ||
16138 		     insn->imm == BPF_FUNC_for_each_map_elem ||
16139 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
16140 			aux = &env->insn_aux_data[i + delta];
16141 			if (bpf_map_ptr_poisoned(aux))
16142 				goto patch_call_imm;
16143 
16144 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
16145 			ops = map_ptr->ops;
16146 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
16147 			    ops->map_gen_lookup) {
16148 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
16149 				if (cnt == -EOPNOTSUPP)
16150 					goto patch_map_ops_generic;
16151 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
16152 					verbose(env, "bpf verifier is misconfigured\n");
16153 					return -EINVAL;
16154 				}
16155 
16156 				new_prog = bpf_patch_insn_data(env, i + delta,
16157 							       insn_buf, cnt);
16158 				if (!new_prog)
16159 					return -ENOMEM;
16160 
16161 				delta    += cnt - 1;
16162 				env->prog = prog = new_prog;
16163 				insn      = new_prog->insnsi + i + delta;
16164 				continue;
16165 			}
16166 
16167 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
16168 				     (void *(*)(struct bpf_map *map, void *key))NULL));
16169 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
16170 				     (int (*)(struct bpf_map *map, void *key))NULL));
16171 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
16172 				     (int (*)(struct bpf_map *map, void *key, void *value,
16173 					      u64 flags))NULL));
16174 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
16175 				     (int (*)(struct bpf_map *map, void *value,
16176 					      u64 flags))NULL));
16177 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
16178 				     (int (*)(struct bpf_map *map, void *value))NULL));
16179 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
16180 				     (int (*)(struct bpf_map *map, void *value))NULL));
16181 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
16182 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
16183 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
16184 				     (int (*)(struct bpf_map *map,
16185 					      bpf_callback_t callback_fn,
16186 					      void *callback_ctx,
16187 					      u64 flags))NULL));
16188 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
16189 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
16190 
16191 patch_map_ops_generic:
16192 			switch (insn->imm) {
16193 			case BPF_FUNC_map_lookup_elem:
16194 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
16195 				continue;
16196 			case BPF_FUNC_map_update_elem:
16197 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
16198 				continue;
16199 			case BPF_FUNC_map_delete_elem:
16200 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
16201 				continue;
16202 			case BPF_FUNC_map_push_elem:
16203 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
16204 				continue;
16205 			case BPF_FUNC_map_pop_elem:
16206 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
16207 				continue;
16208 			case BPF_FUNC_map_peek_elem:
16209 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
16210 				continue;
16211 			case BPF_FUNC_redirect_map:
16212 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
16213 				continue;
16214 			case BPF_FUNC_for_each_map_elem:
16215 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
16216 				continue;
16217 			case BPF_FUNC_map_lookup_percpu_elem:
16218 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
16219 				continue;
16220 			}
16221 
16222 			goto patch_call_imm;
16223 		}
16224 
16225 		/* Implement bpf_jiffies64 inline. */
16226 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
16227 		    insn->imm == BPF_FUNC_jiffies64) {
16228 			struct bpf_insn ld_jiffies_addr[2] = {
16229 				BPF_LD_IMM64(BPF_REG_0,
16230 					     (unsigned long)&jiffies),
16231 			};
16232 
16233 			insn_buf[0] = ld_jiffies_addr[0];
16234 			insn_buf[1] = ld_jiffies_addr[1];
16235 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
16236 						  BPF_REG_0, 0);
16237 			cnt = 3;
16238 
16239 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
16240 						       cnt);
16241 			if (!new_prog)
16242 				return -ENOMEM;
16243 
16244 			delta    += cnt - 1;
16245 			env->prog = prog = new_prog;
16246 			insn      = new_prog->insnsi + i + delta;
16247 			continue;
16248 		}
16249 
16250 		/* Implement bpf_get_func_arg inline. */
16251 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16252 		    insn->imm == BPF_FUNC_get_func_arg) {
16253 			/* Load nr_args from ctx - 8 */
16254 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16255 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
16256 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
16257 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
16258 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
16259 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
16260 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
16261 			insn_buf[7] = BPF_JMP_A(1);
16262 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
16263 			cnt = 9;
16264 
16265 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16266 			if (!new_prog)
16267 				return -ENOMEM;
16268 
16269 			delta    += cnt - 1;
16270 			env->prog = prog = new_prog;
16271 			insn      = new_prog->insnsi + i + delta;
16272 			continue;
16273 		}
16274 
16275 		/* Implement bpf_get_func_ret inline. */
16276 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16277 		    insn->imm == BPF_FUNC_get_func_ret) {
16278 			if (eatype == BPF_TRACE_FEXIT ||
16279 			    eatype == BPF_MODIFY_RETURN) {
16280 				/* Load nr_args from ctx - 8 */
16281 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16282 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
16283 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
16284 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
16285 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
16286 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
16287 				cnt = 6;
16288 			} else {
16289 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
16290 				cnt = 1;
16291 			}
16292 
16293 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
16294 			if (!new_prog)
16295 				return -ENOMEM;
16296 
16297 			delta    += cnt - 1;
16298 			env->prog = prog = new_prog;
16299 			insn      = new_prog->insnsi + i + delta;
16300 			continue;
16301 		}
16302 
16303 		/* Implement get_func_arg_cnt inline. */
16304 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16305 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
16306 			/* Load nr_args from ctx - 8 */
16307 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
16308 
16309 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16310 			if (!new_prog)
16311 				return -ENOMEM;
16312 
16313 			env->prog = prog = new_prog;
16314 			insn      = new_prog->insnsi + i + delta;
16315 			continue;
16316 		}
16317 
16318 		/* Implement bpf_get_func_ip inline. */
16319 		if (prog_type == BPF_PROG_TYPE_TRACING &&
16320 		    insn->imm == BPF_FUNC_get_func_ip) {
16321 			/* Load IP address from ctx - 16 */
16322 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
16323 
16324 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
16325 			if (!new_prog)
16326 				return -ENOMEM;
16327 
16328 			env->prog = prog = new_prog;
16329 			insn      = new_prog->insnsi + i + delta;
16330 			continue;
16331 		}
16332 
16333 patch_call_imm:
16334 		fn = env->ops->get_func_proto(insn->imm, env->prog);
16335 		/* all functions that have prototype and verifier allowed
16336 		 * programs to call them, must be real in-kernel functions
16337 		 */
16338 		if (!fn->func) {
16339 			verbose(env,
16340 				"kernel subsystem misconfigured func %s#%d\n",
16341 				func_id_name(insn->imm), insn->imm);
16342 			return -EFAULT;
16343 		}
16344 		insn->imm = fn->func - __bpf_call_base;
16345 	}
16346 
16347 	/* Since poke tab is now finalized, publish aux to tracker. */
16348 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
16349 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
16350 		if (!map_ptr->ops->map_poke_track ||
16351 		    !map_ptr->ops->map_poke_untrack ||
16352 		    !map_ptr->ops->map_poke_run) {
16353 			verbose(env, "bpf verifier is misconfigured\n");
16354 			return -EINVAL;
16355 		}
16356 
16357 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
16358 		if (ret < 0) {
16359 			verbose(env, "tracking tail call prog failed\n");
16360 			return ret;
16361 		}
16362 	}
16363 
16364 	sort_kfunc_descs_by_imm(env->prog);
16365 
16366 	return 0;
16367 }
16368 
16369 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
16370 					int position,
16371 					s32 stack_base,
16372 					u32 callback_subprogno,
16373 					u32 *cnt)
16374 {
16375 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
16376 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
16377 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
16378 	int reg_loop_max = BPF_REG_6;
16379 	int reg_loop_cnt = BPF_REG_7;
16380 	int reg_loop_ctx = BPF_REG_8;
16381 
16382 	struct bpf_prog *new_prog;
16383 	u32 callback_start;
16384 	u32 call_insn_offset;
16385 	s32 callback_offset;
16386 
16387 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
16388 	 * be careful to modify this code in sync.
16389 	 */
16390 	struct bpf_insn insn_buf[] = {
16391 		/* Return error and jump to the end of the patch if
16392 		 * expected number of iterations is too big.
16393 		 */
16394 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
16395 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
16396 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
16397 		/* spill R6, R7, R8 to use these as loop vars */
16398 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
16399 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
16400 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
16401 		/* initialize loop vars */
16402 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
16403 		BPF_MOV32_IMM(reg_loop_cnt, 0),
16404 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
16405 		/* loop header,
16406 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
16407 		 */
16408 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
16409 		/* callback call,
16410 		 * correct callback offset would be set after patching
16411 		 */
16412 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
16413 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
16414 		BPF_CALL_REL(0),
16415 		/* increment loop counter */
16416 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
16417 		/* jump to loop header if callback returned 0 */
16418 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
16419 		/* return value of bpf_loop,
16420 		 * set R0 to the number of iterations
16421 		 */
16422 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
16423 		/* restore original values of R6, R7, R8 */
16424 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
16425 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
16426 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
16427 	};
16428 
16429 	*cnt = ARRAY_SIZE(insn_buf);
16430 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
16431 	if (!new_prog)
16432 		return new_prog;
16433 
16434 	/* callback start is known only after patching */
16435 	callback_start = env->subprog_info[callback_subprogno].start;
16436 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
16437 	call_insn_offset = position + 12;
16438 	callback_offset = callback_start - call_insn_offset - 1;
16439 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
16440 
16441 	return new_prog;
16442 }
16443 
16444 static bool is_bpf_loop_call(struct bpf_insn *insn)
16445 {
16446 	return insn->code == (BPF_JMP | BPF_CALL) &&
16447 		insn->src_reg == 0 &&
16448 		insn->imm == BPF_FUNC_loop;
16449 }
16450 
16451 /* For all sub-programs in the program (including main) check
16452  * insn_aux_data to see if there are bpf_loop calls that require
16453  * inlining. If such calls are found the calls are replaced with a
16454  * sequence of instructions produced by `inline_bpf_loop` function and
16455  * subprog stack_depth is increased by the size of 3 registers.
16456  * This stack space is used to spill values of the R6, R7, R8.  These
16457  * registers are used to store the loop bound, counter and context
16458  * variables.
16459  */
16460 static int optimize_bpf_loop(struct bpf_verifier_env *env)
16461 {
16462 	struct bpf_subprog_info *subprogs = env->subprog_info;
16463 	int i, cur_subprog = 0, cnt, delta = 0;
16464 	struct bpf_insn *insn = env->prog->insnsi;
16465 	int insn_cnt = env->prog->len;
16466 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
16467 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16468 	u16 stack_depth_extra = 0;
16469 
16470 	for (i = 0; i < insn_cnt; i++, insn++) {
16471 		struct bpf_loop_inline_state *inline_state =
16472 			&env->insn_aux_data[i + delta].loop_inline_state;
16473 
16474 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16475 			struct bpf_prog *new_prog;
16476 
16477 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16478 			new_prog = inline_bpf_loop(env,
16479 						   i + delta,
16480 						   -(stack_depth + stack_depth_extra),
16481 						   inline_state->callback_subprogno,
16482 						   &cnt);
16483 			if (!new_prog)
16484 				return -ENOMEM;
16485 
16486 			delta     += cnt - 1;
16487 			env->prog  = new_prog;
16488 			insn       = new_prog->insnsi + i + delta;
16489 		}
16490 
16491 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16492 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16493 			cur_subprog++;
16494 			stack_depth = subprogs[cur_subprog].stack_depth;
16495 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16496 			stack_depth_extra = 0;
16497 		}
16498 	}
16499 
16500 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16501 
16502 	return 0;
16503 }
16504 
16505 static void free_states(struct bpf_verifier_env *env)
16506 {
16507 	struct bpf_verifier_state_list *sl, *sln;
16508 	int i;
16509 
16510 	sl = env->free_list;
16511 	while (sl) {
16512 		sln = sl->next;
16513 		free_verifier_state(&sl->state, false);
16514 		kfree(sl);
16515 		sl = sln;
16516 	}
16517 	env->free_list = NULL;
16518 
16519 	if (!env->explored_states)
16520 		return;
16521 
16522 	for (i = 0; i < state_htab_size(env); i++) {
16523 		sl = env->explored_states[i];
16524 
16525 		while (sl) {
16526 			sln = sl->next;
16527 			free_verifier_state(&sl->state, false);
16528 			kfree(sl);
16529 			sl = sln;
16530 		}
16531 		env->explored_states[i] = NULL;
16532 	}
16533 }
16534 
16535 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16536 {
16537 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16538 	struct bpf_verifier_state *state;
16539 	struct bpf_reg_state *regs;
16540 	int ret, i;
16541 
16542 	env->prev_linfo = NULL;
16543 	env->pass_cnt++;
16544 
16545 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16546 	if (!state)
16547 		return -ENOMEM;
16548 	state->curframe = 0;
16549 	state->speculative = false;
16550 	state->branches = 1;
16551 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16552 	if (!state->frame[0]) {
16553 		kfree(state);
16554 		return -ENOMEM;
16555 	}
16556 	env->cur_state = state;
16557 	init_func_state(env, state->frame[0],
16558 			BPF_MAIN_FUNC /* callsite */,
16559 			0 /* frameno */,
16560 			subprog);
16561 	state->first_insn_idx = env->subprog_info[subprog].start;
16562 	state->last_insn_idx = -1;
16563 
16564 	regs = state->frame[state->curframe]->regs;
16565 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16566 		ret = btf_prepare_func_args(env, subprog, regs);
16567 		if (ret)
16568 			goto out;
16569 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16570 			if (regs[i].type == PTR_TO_CTX)
16571 				mark_reg_known_zero(env, regs, i);
16572 			else if (regs[i].type == SCALAR_VALUE)
16573 				mark_reg_unknown(env, regs, i);
16574 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16575 				const u32 mem_size = regs[i].mem_size;
16576 
16577 				mark_reg_known_zero(env, regs, i);
16578 				regs[i].mem_size = mem_size;
16579 				regs[i].id = ++env->id_gen;
16580 			}
16581 		}
16582 	} else {
16583 		/* 1st arg to a function */
16584 		regs[BPF_REG_1].type = PTR_TO_CTX;
16585 		mark_reg_known_zero(env, regs, BPF_REG_1);
16586 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16587 		if (ret == -EFAULT)
16588 			/* unlikely verifier bug. abort.
16589 			 * ret == 0 and ret < 0 are sadly acceptable for
16590 			 * main() function due to backward compatibility.
16591 			 * Like socket filter program may be written as:
16592 			 * int bpf_prog(struct pt_regs *ctx)
16593 			 * and never dereference that ctx in the program.
16594 			 * 'struct pt_regs' is a type mismatch for socket
16595 			 * filter that should be using 'struct __sk_buff'.
16596 			 */
16597 			goto out;
16598 	}
16599 
16600 	ret = do_check(env);
16601 out:
16602 	/* check for NULL is necessary, since cur_state can be freed inside
16603 	 * do_check() under memory pressure.
16604 	 */
16605 	if (env->cur_state) {
16606 		free_verifier_state(env->cur_state, true);
16607 		env->cur_state = NULL;
16608 	}
16609 	while (!pop_stack(env, NULL, NULL, false));
16610 	if (!ret && pop_log)
16611 		bpf_vlog_reset(&env->log, 0);
16612 	free_states(env);
16613 	return ret;
16614 }
16615 
16616 /* Verify all global functions in a BPF program one by one based on their BTF.
16617  * All global functions must pass verification. Otherwise the whole program is rejected.
16618  * Consider:
16619  * int bar(int);
16620  * int foo(int f)
16621  * {
16622  *    return bar(f);
16623  * }
16624  * int bar(int b)
16625  * {
16626  *    ...
16627  * }
16628  * foo() will be verified first for R1=any_scalar_value. During verification it
16629  * will be assumed that bar() already verified successfully and call to bar()
16630  * from foo() will be checked for type match only. Later bar() will be verified
16631  * independently to check that it's safe for R1=any_scalar_value.
16632  */
16633 static int do_check_subprogs(struct bpf_verifier_env *env)
16634 {
16635 	struct bpf_prog_aux *aux = env->prog->aux;
16636 	int i, ret;
16637 
16638 	if (!aux->func_info)
16639 		return 0;
16640 
16641 	for (i = 1; i < env->subprog_cnt; i++) {
16642 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16643 			continue;
16644 		env->insn_idx = env->subprog_info[i].start;
16645 		WARN_ON_ONCE(env->insn_idx == 0);
16646 		ret = do_check_common(env, i);
16647 		if (ret) {
16648 			return ret;
16649 		} else if (env->log.level & BPF_LOG_LEVEL) {
16650 			verbose(env,
16651 				"Func#%d is safe for any args that match its prototype\n",
16652 				i);
16653 		}
16654 	}
16655 	return 0;
16656 }
16657 
16658 static int do_check_main(struct bpf_verifier_env *env)
16659 {
16660 	int ret;
16661 
16662 	env->insn_idx = 0;
16663 	ret = do_check_common(env, 0);
16664 	if (!ret)
16665 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16666 	return ret;
16667 }
16668 
16669 
16670 static void print_verification_stats(struct bpf_verifier_env *env)
16671 {
16672 	int i;
16673 
16674 	if (env->log.level & BPF_LOG_STATS) {
16675 		verbose(env, "verification time %lld usec\n",
16676 			div_u64(env->verification_time, 1000));
16677 		verbose(env, "stack depth ");
16678 		for (i = 0; i < env->subprog_cnt; i++) {
16679 			u32 depth = env->subprog_info[i].stack_depth;
16680 
16681 			verbose(env, "%d", depth);
16682 			if (i + 1 < env->subprog_cnt)
16683 				verbose(env, "+");
16684 		}
16685 		verbose(env, "\n");
16686 	}
16687 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16688 		"total_states %d peak_states %d mark_read %d\n",
16689 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16690 		env->max_states_per_insn, env->total_states,
16691 		env->peak_states, env->longest_mark_read_walk);
16692 }
16693 
16694 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16695 {
16696 	const struct btf_type *t, *func_proto;
16697 	const struct bpf_struct_ops *st_ops;
16698 	const struct btf_member *member;
16699 	struct bpf_prog *prog = env->prog;
16700 	u32 btf_id, member_idx;
16701 	const char *mname;
16702 
16703 	if (!prog->gpl_compatible) {
16704 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16705 		return -EINVAL;
16706 	}
16707 
16708 	btf_id = prog->aux->attach_btf_id;
16709 	st_ops = bpf_struct_ops_find(btf_id);
16710 	if (!st_ops) {
16711 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16712 			btf_id);
16713 		return -ENOTSUPP;
16714 	}
16715 
16716 	t = st_ops->type;
16717 	member_idx = prog->expected_attach_type;
16718 	if (member_idx >= btf_type_vlen(t)) {
16719 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16720 			member_idx, st_ops->name);
16721 		return -EINVAL;
16722 	}
16723 
16724 	member = &btf_type_member(t)[member_idx];
16725 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16726 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16727 					       NULL);
16728 	if (!func_proto) {
16729 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16730 			mname, member_idx, st_ops->name);
16731 		return -EINVAL;
16732 	}
16733 
16734 	if (st_ops->check_member) {
16735 		int err = st_ops->check_member(t, member);
16736 
16737 		if (err) {
16738 			verbose(env, "attach to unsupported member %s of struct %s\n",
16739 				mname, st_ops->name);
16740 			return err;
16741 		}
16742 	}
16743 
16744 	prog->aux->attach_func_proto = func_proto;
16745 	prog->aux->attach_func_name = mname;
16746 	env->ops = st_ops->verifier_ops;
16747 
16748 	return 0;
16749 }
16750 #define SECURITY_PREFIX "security_"
16751 
16752 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16753 {
16754 	if (within_error_injection_list(addr) ||
16755 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16756 		return 0;
16757 
16758 	return -EINVAL;
16759 }
16760 
16761 /* list of non-sleepable functions that are otherwise on
16762  * ALLOW_ERROR_INJECTION list
16763  */
16764 BTF_SET_START(btf_non_sleepable_error_inject)
16765 /* Three functions below can be called from sleepable and non-sleepable context.
16766  * Assume non-sleepable from bpf safety point of view.
16767  */
16768 BTF_ID(func, __filemap_add_folio)
16769 BTF_ID(func, should_fail_alloc_page)
16770 BTF_ID(func, should_failslab)
16771 BTF_SET_END(btf_non_sleepable_error_inject)
16772 
16773 static int check_non_sleepable_error_inject(u32 btf_id)
16774 {
16775 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16776 }
16777 
16778 int bpf_check_attach_target(struct bpf_verifier_log *log,
16779 			    const struct bpf_prog *prog,
16780 			    const struct bpf_prog *tgt_prog,
16781 			    u32 btf_id,
16782 			    struct bpf_attach_target_info *tgt_info)
16783 {
16784 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16785 	const char prefix[] = "btf_trace_";
16786 	int ret = 0, subprog = -1, i;
16787 	const struct btf_type *t;
16788 	bool conservative = true;
16789 	const char *tname;
16790 	struct btf *btf;
16791 	long addr = 0;
16792 
16793 	if (!btf_id) {
16794 		bpf_log(log, "Tracing programs must provide btf_id\n");
16795 		return -EINVAL;
16796 	}
16797 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16798 	if (!btf) {
16799 		bpf_log(log,
16800 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16801 		return -EINVAL;
16802 	}
16803 	t = btf_type_by_id(btf, btf_id);
16804 	if (!t) {
16805 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16806 		return -EINVAL;
16807 	}
16808 	tname = btf_name_by_offset(btf, t->name_off);
16809 	if (!tname) {
16810 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16811 		return -EINVAL;
16812 	}
16813 	if (tgt_prog) {
16814 		struct bpf_prog_aux *aux = tgt_prog->aux;
16815 
16816 		if (bpf_prog_is_dev_bound(prog->aux) &&
16817 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
16818 			bpf_log(log, "Target program bound device mismatch");
16819 			return -EINVAL;
16820 		}
16821 
16822 		for (i = 0; i < aux->func_info_cnt; i++)
16823 			if (aux->func_info[i].type_id == btf_id) {
16824 				subprog = i;
16825 				break;
16826 			}
16827 		if (subprog == -1) {
16828 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16829 			return -EINVAL;
16830 		}
16831 		conservative = aux->func_info_aux[subprog].unreliable;
16832 		if (prog_extension) {
16833 			if (conservative) {
16834 				bpf_log(log,
16835 					"Cannot replace static functions\n");
16836 				return -EINVAL;
16837 			}
16838 			if (!prog->jit_requested) {
16839 				bpf_log(log,
16840 					"Extension programs should be JITed\n");
16841 				return -EINVAL;
16842 			}
16843 		}
16844 		if (!tgt_prog->jited) {
16845 			bpf_log(log, "Can attach to only JITed progs\n");
16846 			return -EINVAL;
16847 		}
16848 		if (tgt_prog->type == prog->type) {
16849 			/* Cannot fentry/fexit another fentry/fexit program.
16850 			 * Cannot attach program extension to another extension.
16851 			 * It's ok to attach fentry/fexit to extension program.
16852 			 */
16853 			bpf_log(log, "Cannot recursively attach\n");
16854 			return -EINVAL;
16855 		}
16856 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16857 		    prog_extension &&
16858 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16859 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16860 			/* Program extensions can extend all program types
16861 			 * except fentry/fexit. The reason is the following.
16862 			 * The fentry/fexit programs are used for performance
16863 			 * analysis, stats and can be attached to any program
16864 			 * type except themselves. When extension program is
16865 			 * replacing XDP function it is necessary to allow
16866 			 * performance analysis of all functions. Both original
16867 			 * XDP program and its program extension. Hence
16868 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16869 			 * allowed. If extending of fentry/fexit was allowed it
16870 			 * would be possible to create long call chain
16871 			 * fentry->extension->fentry->extension beyond
16872 			 * reasonable stack size. Hence extending fentry is not
16873 			 * allowed.
16874 			 */
16875 			bpf_log(log, "Cannot extend fentry/fexit\n");
16876 			return -EINVAL;
16877 		}
16878 	} else {
16879 		if (prog_extension) {
16880 			bpf_log(log, "Cannot replace kernel functions\n");
16881 			return -EINVAL;
16882 		}
16883 	}
16884 
16885 	switch (prog->expected_attach_type) {
16886 	case BPF_TRACE_RAW_TP:
16887 		if (tgt_prog) {
16888 			bpf_log(log,
16889 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16890 			return -EINVAL;
16891 		}
16892 		if (!btf_type_is_typedef(t)) {
16893 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16894 				btf_id);
16895 			return -EINVAL;
16896 		}
16897 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16898 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16899 				btf_id, tname);
16900 			return -EINVAL;
16901 		}
16902 		tname += sizeof(prefix) - 1;
16903 		t = btf_type_by_id(btf, t->type);
16904 		if (!btf_type_is_ptr(t))
16905 			/* should never happen in valid vmlinux build */
16906 			return -EINVAL;
16907 		t = btf_type_by_id(btf, t->type);
16908 		if (!btf_type_is_func_proto(t))
16909 			/* should never happen in valid vmlinux build */
16910 			return -EINVAL;
16911 
16912 		break;
16913 	case BPF_TRACE_ITER:
16914 		if (!btf_type_is_func(t)) {
16915 			bpf_log(log, "attach_btf_id %u is not a function\n",
16916 				btf_id);
16917 			return -EINVAL;
16918 		}
16919 		t = btf_type_by_id(btf, t->type);
16920 		if (!btf_type_is_func_proto(t))
16921 			return -EINVAL;
16922 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16923 		if (ret)
16924 			return ret;
16925 		break;
16926 	default:
16927 		if (!prog_extension)
16928 			return -EINVAL;
16929 		fallthrough;
16930 	case BPF_MODIFY_RETURN:
16931 	case BPF_LSM_MAC:
16932 	case BPF_LSM_CGROUP:
16933 	case BPF_TRACE_FENTRY:
16934 	case BPF_TRACE_FEXIT:
16935 		if (!btf_type_is_func(t)) {
16936 			bpf_log(log, "attach_btf_id %u is not a function\n",
16937 				btf_id);
16938 			return -EINVAL;
16939 		}
16940 		if (prog_extension &&
16941 		    btf_check_type_match(log, prog, btf, t))
16942 			return -EINVAL;
16943 		t = btf_type_by_id(btf, t->type);
16944 		if (!btf_type_is_func_proto(t))
16945 			return -EINVAL;
16946 
16947 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16948 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16949 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16950 			return -EINVAL;
16951 
16952 		if (tgt_prog && conservative)
16953 			t = NULL;
16954 
16955 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16956 		if (ret < 0)
16957 			return ret;
16958 
16959 		if (tgt_prog) {
16960 			if (subprog == 0)
16961 				addr = (long) tgt_prog->bpf_func;
16962 			else
16963 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
16964 		} else {
16965 			addr = kallsyms_lookup_name(tname);
16966 			if (!addr) {
16967 				bpf_log(log,
16968 					"The address of function %s cannot be found\n",
16969 					tname);
16970 				return -ENOENT;
16971 			}
16972 		}
16973 
16974 		if (prog->aux->sleepable) {
16975 			ret = -EINVAL;
16976 			switch (prog->type) {
16977 			case BPF_PROG_TYPE_TRACING:
16978 
16979 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
16980 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16981 				 */
16982 				if (!check_non_sleepable_error_inject(btf_id) &&
16983 				    within_error_injection_list(addr))
16984 					ret = 0;
16985 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
16986 				 * in the fmodret id set with the KF_SLEEPABLE flag.
16987 				 */
16988 				else {
16989 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
16990 
16991 					if (flags && (*flags & KF_SLEEPABLE))
16992 						ret = 0;
16993 				}
16994 				break;
16995 			case BPF_PROG_TYPE_LSM:
16996 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
16997 				 * Only some of them are sleepable.
16998 				 */
16999 				if (bpf_lsm_is_sleepable_hook(btf_id))
17000 					ret = 0;
17001 				break;
17002 			default:
17003 				break;
17004 			}
17005 			if (ret) {
17006 				bpf_log(log, "%s is not sleepable\n", tname);
17007 				return ret;
17008 			}
17009 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
17010 			if (tgt_prog) {
17011 				bpf_log(log, "can't modify return codes of BPF programs\n");
17012 				return -EINVAL;
17013 			}
17014 			ret = -EINVAL;
17015 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
17016 			    !check_attach_modify_return(addr, tname))
17017 				ret = 0;
17018 			if (ret) {
17019 				bpf_log(log, "%s() is not modifiable\n", tname);
17020 				return ret;
17021 			}
17022 		}
17023 
17024 		break;
17025 	}
17026 	tgt_info->tgt_addr = addr;
17027 	tgt_info->tgt_name = tname;
17028 	tgt_info->tgt_type = t;
17029 	return 0;
17030 }
17031 
17032 BTF_SET_START(btf_id_deny)
17033 BTF_ID_UNUSED
17034 #ifdef CONFIG_SMP
17035 BTF_ID(func, migrate_disable)
17036 BTF_ID(func, migrate_enable)
17037 #endif
17038 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
17039 BTF_ID(func, rcu_read_unlock_strict)
17040 #endif
17041 BTF_SET_END(btf_id_deny)
17042 
17043 static bool can_be_sleepable(struct bpf_prog *prog)
17044 {
17045 	if (prog->type == BPF_PROG_TYPE_TRACING) {
17046 		switch (prog->expected_attach_type) {
17047 		case BPF_TRACE_FENTRY:
17048 		case BPF_TRACE_FEXIT:
17049 		case BPF_MODIFY_RETURN:
17050 		case BPF_TRACE_ITER:
17051 			return true;
17052 		default:
17053 			return false;
17054 		}
17055 	}
17056 	return prog->type == BPF_PROG_TYPE_LSM ||
17057 	       prog->type == BPF_PROG_TYPE_KPROBE; /* only for uprobes */
17058 }
17059 
17060 static int check_attach_btf_id(struct bpf_verifier_env *env)
17061 {
17062 	struct bpf_prog *prog = env->prog;
17063 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
17064 	struct bpf_attach_target_info tgt_info = {};
17065 	u32 btf_id = prog->aux->attach_btf_id;
17066 	struct bpf_trampoline *tr;
17067 	int ret;
17068 	u64 key;
17069 
17070 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
17071 		if (prog->aux->sleepable)
17072 			/* attach_btf_id checked to be zero already */
17073 			return 0;
17074 		verbose(env, "Syscall programs can only be sleepable\n");
17075 		return -EINVAL;
17076 	}
17077 
17078 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
17079 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter and uprobe programs can be sleepable\n");
17080 		return -EINVAL;
17081 	}
17082 
17083 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
17084 		return check_struct_ops_btf_id(env);
17085 
17086 	if (prog->type != BPF_PROG_TYPE_TRACING &&
17087 	    prog->type != BPF_PROG_TYPE_LSM &&
17088 	    prog->type != BPF_PROG_TYPE_EXT)
17089 		return 0;
17090 
17091 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
17092 	if (ret)
17093 		return ret;
17094 
17095 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
17096 		/* to make freplace equivalent to their targets, they need to
17097 		 * inherit env->ops and expected_attach_type for the rest of the
17098 		 * verification
17099 		 */
17100 		env->ops = bpf_verifier_ops[tgt_prog->type];
17101 		prog->expected_attach_type = tgt_prog->expected_attach_type;
17102 	}
17103 
17104 	/* store info about the attachment target that will be used later */
17105 	prog->aux->attach_func_proto = tgt_info.tgt_type;
17106 	prog->aux->attach_func_name = tgt_info.tgt_name;
17107 
17108 	if (tgt_prog) {
17109 		prog->aux->saved_dst_prog_type = tgt_prog->type;
17110 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
17111 	}
17112 
17113 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
17114 		prog->aux->attach_btf_trace = true;
17115 		return 0;
17116 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
17117 		if (!bpf_iter_prog_supported(prog))
17118 			return -EINVAL;
17119 		return 0;
17120 	}
17121 
17122 	if (prog->type == BPF_PROG_TYPE_LSM) {
17123 		ret = bpf_lsm_verify_prog(&env->log, prog);
17124 		if (ret < 0)
17125 			return ret;
17126 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
17127 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
17128 		return -EINVAL;
17129 	}
17130 
17131 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
17132 	tr = bpf_trampoline_get(key, &tgt_info);
17133 	if (!tr)
17134 		return -ENOMEM;
17135 
17136 	prog->aux->dst_trampoline = tr;
17137 	return 0;
17138 }
17139 
17140 struct btf *bpf_get_btf_vmlinux(void)
17141 {
17142 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
17143 		mutex_lock(&bpf_verifier_lock);
17144 		if (!btf_vmlinux)
17145 			btf_vmlinux = btf_parse_vmlinux();
17146 		mutex_unlock(&bpf_verifier_lock);
17147 	}
17148 	return btf_vmlinux;
17149 }
17150 
17151 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
17152 {
17153 	u64 start_time = ktime_get_ns();
17154 	struct bpf_verifier_env *env;
17155 	struct bpf_verifier_log *log;
17156 	int i, len, ret = -EINVAL;
17157 	bool is_priv;
17158 
17159 	/* no program is valid */
17160 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
17161 		return -EINVAL;
17162 
17163 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
17164 	 * allocate/free it every time bpf_check() is called
17165 	 */
17166 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
17167 	if (!env)
17168 		return -ENOMEM;
17169 	log = &env->log;
17170 
17171 	len = (*prog)->len;
17172 	env->insn_aux_data =
17173 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
17174 	ret = -ENOMEM;
17175 	if (!env->insn_aux_data)
17176 		goto err_free_env;
17177 	for (i = 0; i < len; i++)
17178 		env->insn_aux_data[i].orig_idx = i;
17179 	env->prog = *prog;
17180 	env->ops = bpf_verifier_ops[env->prog->type];
17181 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
17182 	is_priv = bpf_capable();
17183 
17184 	bpf_get_btf_vmlinux();
17185 
17186 	/* grab the mutex to protect few globals used by verifier */
17187 	if (!is_priv)
17188 		mutex_lock(&bpf_verifier_lock);
17189 
17190 	if (attr->log_level || attr->log_buf || attr->log_size) {
17191 		/* user requested verbose verifier output
17192 		 * and supplied buffer to store the verification trace
17193 		 */
17194 		log->level = attr->log_level;
17195 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
17196 		log->len_total = attr->log_size;
17197 
17198 		/* log attributes have to be sane */
17199 		if (!bpf_verifier_log_attr_valid(log)) {
17200 			ret = -EINVAL;
17201 			goto err_unlock;
17202 		}
17203 	}
17204 
17205 	mark_verifier_state_clean(env);
17206 
17207 	if (IS_ERR(btf_vmlinux)) {
17208 		/* Either gcc or pahole or kernel are broken. */
17209 		verbose(env, "in-kernel BTF is malformed\n");
17210 		ret = PTR_ERR(btf_vmlinux);
17211 		goto skip_full_check;
17212 	}
17213 
17214 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
17215 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
17216 		env->strict_alignment = true;
17217 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
17218 		env->strict_alignment = false;
17219 
17220 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
17221 	env->allow_uninit_stack = bpf_allow_uninit_stack();
17222 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
17223 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
17224 	env->bpf_capable = bpf_capable();
17225 	env->rcu_tag_supported = btf_vmlinux &&
17226 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
17227 
17228 	if (is_priv)
17229 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
17230 
17231 	env->explored_states = kvcalloc(state_htab_size(env),
17232 				       sizeof(struct bpf_verifier_state_list *),
17233 				       GFP_USER);
17234 	ret = -ENOMEM;
17235 	if (!env->explored_states)
17236 		goto skip_full_check;
17237 
17238 	ret = add_subprog_and_kfunc(env);
17239 	if (ret < 0)
17240 		goto skip_full_check;
17241 
17242 	ret = check_subprogs(env);
17243 	if (ret < 0)
17244 		goto skip_full_check;
17245 
17246 	ret = check_btf_info(env, attr, uattr);
17247 	if (ret < 0)
17248 		goto skip_full_check;
17249 
17250 	ret = check_attach_btf_id(env);
17251 	if (ret)
17252 		goto skip_full_check;
17253 
17254 	ret = resolve_pseudo_ldimm64(env);
17255 	if (ret < 0)
17256 		goto skip_full_check;
17257 
17258 	if (bpf_prog_is_offloaded(env->prog->aux)) {
17259 		ret = bpf_prog_offload_verifier_prep(env->prog);
17260 		if (ret)
17261 			goto skip_full_check;
17262 	}
17263 
17264 	ret = check_cfg(env);
17265 	if (ret < 0)
17266 		goto skip_full_check;
17267 
17268 	ret = do_check_subprogs(env);
17269 	ret = ret ?: do_check_main(env);
17270 
17271 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
17272 		ret = bpf_prog_offload_finalize(env);
17273 
17274 skip_full_check:
17275 	kvfree(env->explored_states);
17276 
17277 	if (ret == 0)
17278 		ret = check_max_stack_depth(env);
17279 
17280 	/* instruction rewrites happen after this point */
17281 	if (ret == 0)
17282 		ret = optimize_bpf_loop(env);
17283 
17284 	if (is_priv) {
17285 		if (ret == 0)
17286 			opt_hard_wire_dead_code_branches(env);
17287 		if (ret == 0)
17288 			ret = opt_remove_dead_code(env);
17289 		if (ret == 0)
17290 			ret = opt_remove_nops(env);
17291 	} else {
17292 		if (ret == 0)
17293 			sanitize_dead_code(env);
17294 	}
17295 
17296 	if (ret == 0)
17297 		/* program is valid, convert *(u32*)(ctx + off) accesses */
17298 		ret = convert_ctx_accesses(env);
17299 
17300 	if (ret == 0)
17301 		ret = do_misc_fixups(env);
17302 
17303 	/* do 32-bit optimization after insn patching has done so those patched
17304 	 * insns could be handled correctly.
17305 	 */
17306 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
17307 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
17308 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
17309 								     : false;
17310 	}
17311 
17312 	if (ret == 0)
17313 		ret = fixup_call_args(env);
17314 
17315 	env->verification_time = ktime_get_ns() - start_time;
17316 	print_verification_stats(env);
17317 	env->prog->aux->verified_insns = env->insn_processed;
17318 
17319 	if (log->level && bpf_verifier_log_full(log))
17320 		ret = -ENOSPC;
17321 	if (log->level && !log->ubuf) {
17322 		ret = -EFAULT;
17323 		goto err_release_maps;
17324 	}
17325 
17326 	if (ret)
17327 		goto err_release_maps;
17328 
17329 	if (env->used_map_cnt) {
17330 		/* if program passed verifier, update used_maps in bpf_prog_info */
17331 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
17332 							  sizeof(env->used_maps[0]),
17333 							  GFP_KERNEL);
17334 
17335 		if (!env->prog->aux->used_maps) {
17336 			ret = -ENOMEM;
17337 			goto err_release_maps;
17338 		}
17339 
17340 		memcpy(env->prog->aux->used_maps, env->used_maps,
17341 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
17342 		env->prog->aux->used_map_cnt = env->used_map_cnt;
17343 	}
17344 	if (env->used_btf_cnt) {
17345 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
17346 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
17347 							  sizeof(env->used_btfs[0]),
17348 							  GFP_KERNEL);
17349 		if (!env->prog->aux->used_btfs) {
17350 			ret = -ENOMEM;
17351 			goto err_release_maps;
17352 		}
17353 
17354 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
17355 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
17356 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
17357 	}
17358 	if (env->used_map_cnt || env->used_btf_cnt) {
17359 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
17360 		 * bpf_ld_imm64 instructions
17361 		 */
17362 		convert_pseudo_ld_imm64(env);
17363 	}
17364 
17365 	adjust_btf_func(env);
17366 
17367 err_release_maps:
17368 	if (!env->prog->aux->used_maps)
17369 		/* if we didn't copy map pointers into bpf_prog_info, release
17370 		 * them now. Otherwise free_used_maps() will release them.
17371 		 */
17372 		release_maps(env);
17373 	if (!env->prog->aux->used_btfs)
17374 		release_btfs(env);
17375 
17376 	/* extension progs temporarily inherit the attach_type of their targets
17377 	   for verification purposes, so set it back to zero before returning
17378 	 */
17379 	if (env->prog->type == BPF_PROG_TYPE_EXT)
17380 		env->prog->expected_attach_type = 0;
17381 
17382 	*prog = env->prog;
17383 err_unlock:
17384 	if (!is_priv)
17385 		mutex_unlock(&bpf_verifier_lock);
17386 	vfree(env->insn_aux_data);
17387 err_free_env:
17388 	kfree(env);
17389 	return ret;
17390 }
17391