xref: /openbmc/linux/kernel/bpf/verifier.c (revision fbc0b0253001c397a481d258a88ce5f08996574f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 
29 #include "disasm.h"
30 
31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
33 	[_id] = & _name ## _verifier_ops,
34 #define BPF_MAP_TYPE(_id, _ops)
35 #define BPF_LINK_TYPE(_id, _name)
36 #include <linux/bpf_types.h>
37 #undef BPF_PROG_TYPE
38 #undef BPF_MAP_TYPE
39 #undef BPF_LINK_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all paths through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns either pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 	/* length of verifier log at the time this state was pushed on stack */
178 	u32 log_pos;
179 };
180 
181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
182 #define BPF_COMPLEXITY_LIMIT_STATES	64
183 
184 #define BPF_MAP_KEY_POISON	(1ULL << 63)
185 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
186 
187 #define BPF_MAP_PTR_UNPRIV	1UL
188 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
189 					  POISON_POINTER_DELTA))
190 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
191 
192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
196 static int ref_set_non_owning(struct bpf_verifier_env *env,
197 			      struct bpf_reg_state *reg);
198 static void specialize_kfunc(struct bpf_verifier_env *env,
199 			     u32 func_id, u16 offset, unsigned long *addr);
200 
201 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
202 {
203 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
204 }
205 
206 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
207 {
208 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
209 }
210 
211 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
212 			      const struct bpf_map *map, bool unpriv)
213 {
214 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
215 	unpriv |= bpf_map_ptr_unpriv(aux);
216 	aux->map_ptr_state = (unsigned long)map |
217 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
218 }
219 
220 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
221 {
222 	return aux->map_key_state & BPF_MAP_KEY_POISON;
223 }
224 
225 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
226 {
227 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
228 }
229 
230 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
231 {
232 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
233 }
234 
235 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
236 {
237 	bool poisoned = bpf_map_key_poisoned(aux);
238 
239 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
240 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
241 }
242 
243 static bool bpf_helper_call(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_JMP | BPF_CALL) &&
246 	       insn->src_reg == 0;
247 }
248 
249 static bool bpf_pseudo_call(const struct bpf_insn *insn)
250 {
251 	return insn->code == (BPF_JMP | BPF_CALL) &&
252 	       insn->src_reg == BPF_PSEUDO_CALL;
253 }
254 
255 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
256 {
257 	return insn->code == (BPF_JMP | BPF_CALL) &&
258 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
259 }
260 
261 struct bpf_call_arg_meta {
262 	struct bpf_map *map_ptr;
263 	bool raw_mode;
264 	bool pkt_access;
265 	u8 release_regno;
266 	int regno;
267 	int access_size;
268 	int mem_size;
269 	u64 msize_max_value;
270 	int ref_obj_id;
271 	int dynptr_id;
272 	int map_uid;
273 	int func_id;
274 	struct btf *btf;
275 	u32 btf_id;
276 	struct btf *ret_btf;
277 	u32 ret_btf_id;
278 	u32 subprogno;
279 	struct btf_field *kptr_field;
280 };
281 
282 struct btf_and_id {
283 	struct btf *btf;
284 	u32 btf_id;
285 };
286 
287 struct bpf_kfunc_call_arg_meta {
288 	/* In parameters */
289 	struct btf *btf;
290 	u32 func_id;
291 	u32 kfunc_flags;
292 	const struct btf_type *func_proto;
293 	const char *func_name;
294 	/* Out parameters */
295 	u32 ref_obj_id;
296 	u8 release_regno;
297 	bool r0_rdonly;
298 	u32 ret_btf_id;
299 	u64 r0_size;
300 	u32 subprogno;
301 	struct {
302 		u64 value;
303 		bool found;
304 	} arg_constant;
305 	union {
306 		struct btf_and_id arg_obj_drop;
307 		struct btf_and_id arg_refcount_acquire;
308 	};
309 	struct {
310 		struct btf_field *field;
311 	} arg_list_head;
312 	struct {
313 		struct btf_field *field;
314 	} arg_rbtree_root;
315 	struct {
316 		enum bpf_dynptr_type type;
317 		u32 id;
318 		u32 ref_obj_id;
319 	} initialized_dynptr;
320 	struct {
321 		u8 spi;
322 		u8 frameno;
323 	} iter;
324 	u64 mem_size;
325 };
326 
327 struct btf *btf_vmlinux;
328 
329 static DEFINE_MUTEX(bpf_verifier_lock);
330 
331 static const struct bpf_line_info *
332 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
333 {
334 	const struct bpf_line_info *linfo;
335 	const struct bpf_prog *prog;
336 	u32 i, nr_linfo;
337 
338 	prog = env->prog;
339 	nr_linfo = prog->aux->nr_linfo;
340 
341 	if (!nr_linfo || insn_off >= prog->len)
342 		return NULL;
343 
344 	linfo = prog->aux->linfo;
345 	for (i = 1; i < nr_linfo; i++)
346 		if (insn_off < linfo[i].insn_off)
347 			break;
348 
349 	return &linfo[i - 1];
350 }
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static const char *ltrim(const char *s)
366 {
367 	while (isspace(*s))
368 		s++;
369 
370 	return s;
371 }
372 
373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 					 u32 insn_off,
375 					 const char *prefix_fmt, ...)
376 {
377 	const struct bpf_line_info *linfo;
378 
379 	if (!bpf_verifier_log_needed(&env->log))
380 		return;
381 
382 	linfo = find_linfo(env, insn_off);
383 	if (!linfo || linfo == env->prev_linfo)
384 		return;
385 
386 	if (prefix_fmt) {
387 		va_list args;
388 
389 		va_start(args, prefix_fmt);
390 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 		va_end(args);
392 	}
393 
394 	verbose(env, "%s\n",
395 		ltrim(btf_name_by_offset(env->prog->aux->btf,
396 					 linfo->line_off)));
397 
398 	env->prev_linfo = linfo;
399 }
400 
401 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 				   struct bpf_reg_state *reg,
403 				   struct tnum *range, const char *ctx,
404 				   const char *reg_name)
405 {
406 	char tn_buf[48];
407 
408 	verbose(env, "At %s the register %s ", ctx, reg_name);
409 	if (!tnum_is_unknown(reg->var_off)) {
410 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 		verbose(env, "has value %s", tn_buf);
412 	} else {
413 		verbose(env, "has unknown scalar value");
414 	}
415 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 	verbose(env, " should have been in %s\n", tn_buf);
417 }
418 
419 static bool type_is_pkt_pointer(enum bpf_reg_type type)
420 {
421 	type = base_type(type);
422 	return type == PTR_TO_PACKET ||
423 	       type == PTR_TO_PACKET_META;
424 }
425 
426 static bool type_is_sk_pointer(enum bpf_reg_type type)
427 {
428 	return type == PTR_TO_SOCKET ||
429 		type == PTR_TO_SOCK_COMMON ||
430 		type == PTR_TO_TCP_SOCK ||
431 		type == PTR_TO_XDP_SOCK;
432 }
433 
434 static bool type_may_be_null(u32 type)
435 {
436 	return type & PTR_MAYBE_NULL;
437 }
438 
439 static bool reg_type_not_null(enum bpf_reg_type type)
440 {
441 	if (type_may_be_null(type))
442 		return false;
443 
444 	type = base_type(type);
445 	return type == PTR_TO_SOCKET ||
446 		type == PTR_TO_TCP_SOCK ||
447 		type == PTR_TO_MAP_VALUE ||
448 		type == PTR_TO_MAP_KEY ||
449 		type == PTR_TO_SOCK_COMMON ||
450 		type == PTR_TO_MEM;
451 }
452 
453 static bool type_is_ptr_alloc_obj(u32 type)
454 {
455 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
456 }
457 
458 static bool type_is_non_owning_ref(u32 type)
459 {
460 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
461 }
462 
463 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
464 {
465 	struct btf_record *rec = NULL;
466 	struct btf_struct_meta *meta;
467 
468 	if (reg->type == PTR_TO_MAP_VALUE) {
469 		rec = reg->map_ptr->record;
470 	} else if (type_is_ptr_alloc_obj(reg->type)) {
471 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
472 		if (meta)
473 			rec = meta->record;
474 	}
475 	return rec;
476 }
477 
478 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
479 {
480 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
481 
482 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
483 }
484 
485 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
486 {
487 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
488 }
489 
490 static bool type_is_rdonly_mem(u32 type)
491 {
492 	return type & MEM_RDONLY;
493 }
494 
495 static bool is_acquire_function(enum bpf_func_id func_id,
496 				const struct bpf_map *map)
497 {
498 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
499 
500 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
501 	    func_id == BPF_FUNC_sk_lookup_udp ||
502 	    func_id == BPF_FUNC_skc_lookup_tcp ||
503 	    func_id == BPF_FUNC_ringbuf_reserve ||
504 	    func_id == BPF_FUNC_kptr_xchg)
505 		return true;
506 
507 	if (func_id == BPF_FUNC_map_lookup_elem &&
508 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
509 	     map_type == BPF_MAP_TYPE_SOCKHASH))
510 		return true;
511 
512 	return false;
513 }
514 
515 static bool is_ptr_cast_function(enum bpf_func_id func_id)
516 {
517 	return func_id == BPF_FUNC_tcp_sock ||
518 		func_id == BPF_FUNC_sk_fullsock ||
519 		func_id == BPF_FUNC_skc_to_tcp_sock ||
520 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
521 		func_id == BPF_FUNC_skc_to_udp6_sock ||
522 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
523 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
524 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
525 }
526 
527 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
528 {
529 	return func_id == BPF_FUNC_dynptr_data;
530 }
531 
532 static bool is_callback_calling_kfunc(u32 btf_id);
533 
534 static bool is_callback_calling_function(enum bpf_func_id func_id)
535 {
536 	return func_id == BPF_FUNC_for_each_map_elem ||
537 	       func_id == BPF_FUNC_timer_set_callback ||
538 	       func_id == BPF_FUNC_find_vma ||
539 	       func_id == BPF_FUNC_loop ||
540 	       func_id == BPF_FUNC_user_ringbuf_drain;
541 }
542 
543 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
544 {
545 	return func_id == BPF_FUNC_timer_set_callback;
546 }
547 
548 static bool is_storage_get_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_sk_storage_get ||
551 	       func_id == BPF_FUNC_inode_storage_get ||
552 	       func_id == BPF_FUNC_task_storage_get ||
553 	       func_id == BPF_FUNC_cgrp_storage_get;
554 }
555 
556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
557 					const struct bpf_map *map)
558 {
559 	int ref_obj_uses = 0;
560 
561 	if (is_ptr_cast_function(func_id))
562 		ref_obj_uses++;
563 	if (is_acquire_function(func_id, map))
564 		ref_obj_uses++;
565 	if (is_dynptr_ref_function(func_id))
566 		ref_obj_uses++;
567 
568 	return ref_obj_uses > 1;
569 }
570 
571 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
572 {
573 	return BPF_CLASS(insn->code) == BPF_STX &&
574 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
575 	       insn->imm == BPF_CMPXCHG;
576 }
577 
578 /* string representation of 'enum bpf_reg_type'
579  *
580  * Note that reg_type_str() can not appear more than once in a single verbose()
581  * statement.
582  */
583 static const char *reg_type_str(struct bpf_verifier_env *env,
584 				enum bpf_reg_type type)
585 {
586 	char postfix[16] = {0}, prefix[64] = {0};
587 	static const char * const str[] = {
588 		[NOT_INIT]		= "?",
589 		[SCALAR_VALUE]		= "scalar",
590 		[PTR_TO_CTX]		= "ctx",
591 		[CONST_PTR_TO_MAP]	= "map_ptr",
592 		[PTR_TO_MAP_VALUE]	= "map_value",
593 		[PTR_TO_STACK]		= "fp",
594 		[PTR_TO_PACKET]		= "pkt",
595 		[PTR_TO_PACKET_META]	= "pkt_meta",
596 		[PTR_TO_PACKET_END]	= "pkt_end",
597 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
598 		[PTR_TO_SOCKET]		= "sock",
599 		[PTR_TO_SOCK_COMMON]	= "sock_common",
600 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
601 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
602 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
603 		[PTR_TO_BTF_ID]		= "ptr_",
604 		[PTR_TO_MEM]		= "mem",
605 		[PTR_TO_BUF]		= "buf",
606 		[PTR_TO_FUNC]		= "func",
607 		[PTR_TO_MAP_KEY]	= "map_key",
608 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
609 	};
610 
611 	if (type & PTR_MAYBE_NULL) {
612 		if (base_type(type) == PTR_TO_BTF_ID)
613 			strncpy(postfix, "or_null_", 16);
614 		else
615 			strncpy(postfix, "_or_null", 16);
616 	}
617 
618 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
619 		 type & MEM_RDONLY ? "rdonly_" : "",
620 		 type & MEM_RINGBUF ? "ringbuf_" : "",
621 		 type & MEM_USER ? "user_" : "",
622 		 type & MEM_PERCPU ? "percpu_" : "",
623 		 type & MEM_RCU ? "rcu_" : "",
624 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
625 		 type & PTR_TRUSTED ? "trusted_" : ""
626 	);
627 
628 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
629 		 prefix, str[base_type(type)], postfix);
630 	return env->tmp_str_buf;
631 }
632 
633 static char slot_type_char[] = {
634 	[STACK_INVALID]	= '?',
635 	[STACK_SPILL]	= 'r',
636 	[STACK_MISC]	= 'm',
637 	[STACK_ZERO]	= '0',
638 	[STACK_DYNPTR]	= 'd',
639 	[STACK_ITER]	= 'i',
640 };
641 
642 static void print_liveness(struct bpf_verifier_env *env,
643 			   enum bpf_reg_liveness live)
644 {
645 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
646 	    verbose(env, "_");
647 	if (live & REG_LIVE_READ)
648 		verbose(env, "r");
649 	if (live & REG_LIVE_WRITTEN)
650 		verbose(env, "w");
651 	if (live & REG_LIVE_DONE)
652 		verbose(env, "D");
653 }
654 
655 static int __get_spi(s32 off)
656 {
657 	return (-off - 1) / BPF_REG_SIZE;
658 }
659 
660 static struct bpf_func_state *func(struct bpf_verifier_env *env,
661 				   const struct bpf_reg_state *reg)
662 {
663 	struct bpf_verifier_state *cur = env->cur_state;
664 
665 	return cur->frame[reg->frameno];
666 }
667 
668 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
669 {
670        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
671 
672        /* We need to check that slots between [spi - nr_slots + 1, spi] are
673 	* within [0, allocated_stack).
674 	*
675 	* Please note that the spi grows downwards. For example, a dynptr
676 	* takes the size of two stack slots; the first slot will be at
677 	* spi and the second slot will be at spi - 1.
678 	*/
679        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
680 }
681 
682 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
683 			          const char *obj_kind, int nr_slots)
684 {
685 	int off, spi;
686 
687 	if (!tnum_is_const(reg->var_off)) {
688 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
689 		return -EINVAL;
690 	}
691 
692 	off = reg->off + reg->var_off.value;
693 	if (off % BPF_REG_SIZE) {
694 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
695 		return -EINVAL;
696 	}
697 
698 	spi = __get_spi(off);
699 	if (spi + 1 < nr_slots) {
700 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
701 		return -EINVAL;
702 	}
703 
704 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
705 		return -ERANGE;
706 	return spi;
707 }
708 
709 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
710 {
711 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
712 }
713 
714 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
715 {
716 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
717 }
718 
719 static const char *btf_type_name(const struct btf *btf, u32 id)
720 {
721 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
722 }
723 
724 static const char *dynptr_type_str(enum bpf_dynptr_type type)
725 {
726 	switch (type) {
727 	case BPF_DYNPTR_TYPE_LOCAL:
728 		return "local";
729 	case BPF_DYNPTR_TYPE_RINGBUF:
730 		return "ringbuf";
731 	case BPF_DYNPTR_TYPE_SKB:
732 		return "skb";
733 	case BPF_DYNPTR_TYPE_XDP:
734 		return "xdp";
735 	case BPF_DYNPTR_TYPE_INVALID:
736 		return "<invalid>";
737 	default:
738 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
739 		return "<unknown>";
740 	}
741 }
742 
743 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
744 {
745 	if (!btf || btf_id == 0)
746 		return "<invalid>";
747 
748 	/* we already validated that type is valid and has conforming name */
749 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
750 }
751 
752 static const char *iter_state_str(enum bpf_iter_state state)
753 {
754 	switch (state) {
755 	case BPF_ITER_STATE_ACTIVE:
756 		return "active";
757 	case BPF_ITER_STATE_DRAINED:
758 		return "drained";
759 	case BPF_ITER_STATE_INVALID:
760 		return "<invalid>";
761 	default:
762 		WARN_ONCE(1, "unknown iter state %d\n", state);
763 		return "<unknown>";
764 	}
765 }
766 
767 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
768 {
769 	env->scratched_regs |= 1U << regno;
770 }
771 
772 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
773 {
774 	env->scratched_stack_slots |= 1ULL << spi;
775 }
776 
777 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
778 {
779 	return (env->scratched_regs >> regno) & 1;
780 }
781 
782 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
783 {
784 	return (env->scratched_stack_slots >> regno) & 1;
785 }
786 
787 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
788 {
789 	return env->scratched_regs || env->scratched_stack_slots;
790 }
791 
792 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
793 {
794 	env->scratched_regs = 0U;
795 	env->scratched_stack_slots = 0ULL;
796 }
797 
798 /* Used for printing the entire verifier state. */
799 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
800 {
801 	env->scratched_regs = ~0U;
802 	env->scratched_stack_slots = ~0ULL;
803 }
804 
805 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
806 {
807 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
808 	case DYNPTR_TYPE_LOCAL:
809 		return BPF_DYNPTR_TYPE_LOCAL;
810 	case DYNPTR_TYPE_RINGBUF:
811 		return BPF_DYNPTR_TYPE_RINGBUF;
812 	case DYNPTR_TYPE_SKB:
813 		return BPF_DYNPTR_TYPE_SKB;
814 	case DYNPTR_TYPE_XDP:
815 		return BPF_DYNPTR_TYPE_XDP;
816 	default:
817 		return BPF_DYNPTR_TYPE_INVALID;
818 	}
819 }
820 
821 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
822 {
823 	switch (type) {
824 	case BPF_DYNPTR_TYPE_LOCAL:
825 		return DYNPTR_TYPE_LOCAL;
826 	case BPF_DYNPTR_TYPE_RINGBUF:
827 		return DYNPTR_TYPE_RINGBUF;
828 	case BPF_DYNPTR_TYPE_SKB:
829 		return DYNPTR_TYPE_SKB;
830 	case BPF_DYNPTR_TYPE_XDP:
831 		return DYNPTR_TYPE_XDP;
832 	default:
833 		return 0;
834 	}
835 }
836 
837 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
838 {
839 	return type == BPF_DYNPTR_TYPE_RINGBUF;
840 }
841 
842 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
843 			      enum bpf_dynptr_type type,
844 			      bool first_slot, int dynptr_id);
845 
846 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
847 				struct bpf_reg_state *reg);
848 
849 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
850 				   struct bpf_reg_state *sreg1,
851 				   struct bpf_reg_state *sreg2,
852 				   enum bpf_dynptr_type type)
853 {
854 	int id = ++env->id_gen;
855 
856 	__mark_dynptr_reg(sreg1, type, true, id);
857 	__mark_dynptr_reg(sreg2, type, false, id);
858 }
859 
860 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
861 			       struct bpf_reg_state *reg,
862 			       enum bpf_dynptr_type type)
863 {
864 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
865 }
866 
867 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
868 				        struct bpf_func_state *state, int spi);
869 
870 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
871 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
872 {
873 	struct bpf_func_state *state = func(env, reg);
874 	enum bpf_dynptr_type type;
875 	int spi, i, err;
876 
877 	spi = dynptr_get_spi(env, reg);
878 	if (spi < 0)
879 		return spi;
880 
881 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
882 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
883 	 * to ensure that for the following example:
884 	 *	[d1][d1][d2][d2]
885 	 * spi    3   2   1   0
886 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
887 	 * case they do belong to same dynptr, second call won't see slot_type
888 	 * as STACK_DYNPTR and will simply skip destruction.
889 	 */
890 	err = destroy_if_dynptr_stack_slot(env, state, spi);
891 	if (err)
892 		return err;
893 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
894 	if (err)
895 		return err;
896 
897 	for (i = 0; i < BPF_REG_SIZE; i++) {
898 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
899 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
900 	}
901 
902 	type = arg_to_dynptr_type(arg_type);
903 	if (type == BPF_DYNPTR_TYPE_INVALID)
904 		return -EINVAL;
905 
906 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
907 			       &state->stack[spi - 1].spilled_ptr, type);
908 
909 	if (dynptr_type_refcounted(type)) {
910 		/* The id is used to track proper releasing */
911 		int id;
912 
913 		if (clone_ref_obj_id)
914 			id = clone_ref_obj_id;
915 		else
916 			id = acquire_reference_state(env, insn_idx);
917 
918 		if (id < 0)
919 			return id;
920 
921 		state->stack[spi].spilled_ptr.ref_obj_id = id;
922 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
923 	}
924 
925 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
926 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
927 
928 	return 0;
929 }
930 
931 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
932 {
933 	int i;
934 
935 	for (i = 0; i < BPF_REG_SIZE; i++) {
936 		state->stack[spi].slot_type[i] = STACK_INVALID;
937 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
938 	}
939 
940 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
941 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
942 
943 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
944 	 *
945 	 * While we don't allow reading STACK_INVALID, it is still possible to
946 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
947 	 * helpers or insns can do partial read of that part without failing,
948 	 * but check_stack_range_initialized, check_stack_read_var_off, and
949 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
950 	 * the slot conservatively. Hence we need to prevent those liveness
951 	 * marking walks.
952 	 *
953 	 * This was not a problem before because STACK_INVALID is only set by
954 	 * default (where the default reg state has its reg->parent as NULL), or
955 	 * in clean_live_states after REG_LIVE_DONE (at which point
956 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
957 	 * verifier state exploration (like we did above). Hence, for our case
958 	 * parentage chain will still be live (i.e. reg->parent may be
959 	 * non-NULL), while earlier reg->parent was NULL, so we need
960 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
961 	 * done later on reads or by mark_dynptr_read as well to unnecessary
962 	 * mark registers in verifier state.
963 	 */
964 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
965 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
966 }
967 
968 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
969 {
970 	struct bpf_func_state *state = func(env, reg);
971 	int spi, ref_obj_id, i;
972 
973 	spi = dynptr_get_spi(env, reg);
974 	if (spi < 0)
975 		return spi;
976 
977 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
978 		invalidate_dynptr(env, state, spi);
979 		return 0;
980 	}
981 
982 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
983 
984 	/* If the dynptr has a ref_obj_id, then we need to invalidate
985 	 * two things:
986 	 *
987 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
988 	 * 2) Any slices derived from this dynptr.
989 	 */
990 
991 	/* Invalidate any slices associated with this dynptr */
992 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
993 
994 	/* Invalidate any dynptr clones */
995 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
996 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
997 			continue;
998 
999 		/* it should always be the case that if the ref obj id
1000 		 * matches then the stack slot also belongs to a
1001 		 * dynptr
1002 		 */
1003 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1004 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1005 			return -EFAULT;
1006 		}
1007 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1008 			invalidate_dynptr(env, state, i);
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1015 			       struct bpf_reg_state *reg);
1016 
1017 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1018 {
1019 	if (!env->allow_ptr_leaks)
1020 		__mark_reg_not_init(env, reg);
1021 	else
1022 		__mark_reg_unknown(env, reg);
1023 }
1024 
1025 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1026 				        struct bpf_func_state *state, int spi)
1027 {
1028 	struct bpf_func_state *fstate;
1029 	struct bpf_reg_state *dreg;
1030 	int i, dynptr_id;
1031 
1032 	/* We always ensure that STACK_DYNPTR is never set partially,
1033 	 * hence just checking for slot_type[0] is enough. This is
1034 	 * different for STACK_SPILL, where it may be only set for
1035 	 * 1 byte, so code has to use is_spilled_reg.
1036 	 */
1037 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1038 		return 0;
1039 
1040 	/* Reposition spi to first slot */
1041 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1042 		spi = spi + 1;
1043 
1044 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1045 		verbose(env, "cannot overwrite referenced dynptr\n");
1046 		return -EINVAL;
1047 	}
1048 
1049 	mark_stack_slot_scratched(env, spi);
1050 	mark_stack_slot_scratched(env, spi - 1);
1051 
1052 	/* Writing partially to one dynptr stack slot destroys both. */
1053 	for (i = 0; i < BPF_REG_SIZE; i++) {
1054 		state->stack[spi].slot_type[i] = STACK_INVALID;
1055 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1056 	}
1057 
1058 	dynptr_id = state->stack[spi].spilled_ptr.id;
1059 	/* Invalidate any slices associated with this dynptr */
1060 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1061 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1062 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1063 			continue;
1064 		if (dreg->dynptr_id == dynptr_id)
1065 			mark_reg_invalid(env, dreg);
1066 	}));
1067 
1068 	/* Do not release reference state, we are destroying dynptr on stack,
1069 	 * not using some helper to release it. Just reset register.
1070 	 */
1071 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1072 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1073 
1074 	/* Same reason as unmark_stack_slots_dynptr above */
1075 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1076 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1077 
1078 	return 0;
1079 }
1080 
1081 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1082 {
1083 	int spi;
1084 
1085 	if (reg->type == CONST_PTR_TO_DYNPTR)
1086 		return false;
1087 
1088 	spi = dynptr_get_spi(env, reg);
1089 
1090 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1091 	 * error because this just means the stack state hasn't been updated yet.
1092 	 * We will do check_mem_access to check and update stack bounds later.
1093 	 */
1094 	if (spi < 0 && spi != -ERANGE)
1095 		return false;
1096 
1097 	/* We don't need to check if the stack slots are marked by previous
1098 	 * dynptr initializations because we allow overwriting existing unreferenced
1099 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1100 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1101 	 * touching are completely destructed before we reinitialize them for a new
1102 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1103 	 * instead of delaying it until the end where the user will get "Unreleased
1104 	 * reference" error.
1105 	 */
1106 	return true;
1107 }
1108 
1109 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1110 {
1111 	struct bpf_func_state *state = func(env, reg);
1112 	int i, spi;
1113 
1114 	/* This already represents first slot of initialized bpf_dynptr.
1115 	 *
1116 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1117 	 * check_func_arg_reg_off's logic, so we don't need to check its
1118 	 * offset and alignment.
1119 	 */
1120 	if (reg->type == CONST_PTR_TO_DYNPTR)
1121 		return true;
1122 
1123 	spi = dynptr_get_spi(env, reg);
1124 	if (spi < 0)
1125 		return false;
1126 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1127 		return false;
1128 
1129 	for (i = 0; i < BPF_REG_SIZE; i++) {
1130 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1131 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1132 			return false;
1133 	}
1134 
1135 	return true;
1136 }
1137 
1138 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1139 				    enum bpf_arg_type arg_type)
1140 {
1141 	struct bpf_func_state *state = func(env, reg);
1142 	enum bpf_dynptr_type dynptr_type;
1143 	int spi;
1144 
1145 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1146 	if (arg_type == ARG_PTR_TO_DYNPTR)
1147 		return true;
1148 
1149 	dynptr_type = arg_to_dynptr_type(arg_type);
1150 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1151 		return reg->dynptr.type == dynptr_type;
1152 	} else {
1153 		spi = dynptr_get_spi(env, reg);
1154 		if (spi < 0)
1155 			return false;
1156 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1157 	}
1158 }
1159 
1160 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1161 
1162 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1163 				 struct bpf_reg_state *reg, int insn_idx,
1164 				 struct btf *btf, u32 btf_id, int nr_slots)
1165 {
1166 	struct bpf_func_state *state = func(env, reg);
1167 	int spi, i, j, id;
1168 
1169 	spi = iter_get_spi(env, reg, nr_slots);
1170 	if (spi < 0)
1171 		return spi;
1172 
1173 	id = acquire_reference_state(env, insn_idx);
1174 	if (id < 0)
1175 		return id;
1176 
1177 	for (i = 0; i < nr_slots; i++) {
1178 		struct bpf_stack_state *slot = &state->stack[spi - i];
1179 		struct bpf_reg_state *st = &slot->spilled_ptr;
1180 
1181 		__mark_reg_known_zero(st);
1182 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1183 		st->live |= REG_LIVE_WRITTEN;
1184 		st->ref_obj_id = i == 0 ? id : 0;
1185 		st->iter.btf = btf;
1186 		st->iter.btf_id = btf_id;
1187 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1188 		st->iter.depth = 0;
1189 
1190 		for (j = 0; j < BPF_REG_SIZE; j++)
1191 			slot->slot_type[j] = STACK_ITER;
1192 
1193 		mark_stack_slot_scratched(env, spi - i);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1200 				   struct bpf_reg_state *reg, int nr_slots)
1201 {
1202 	struct bpf_func_state *state = func(env, reg);
1203 	int spi, i, j;
1204 
1205 	spi = iter_get_spi(env, reg, nr_slots);
1206 	if (spi < 0)
1207 		return spi;
1208 
1209 	for (i = 0; i < nr_slots; i++) {
1210 		struct bpf_stack_state *slot = &state->stack[spi - i];
1211 		struct bpf_reg_state *st = &slot->spilled_ptr;
1212 
1213 		if (i == 0)
1214 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1215 
1216 		__mark_reg_not_init(env, st);
1217 
1218 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1219 		st->live |= REG_LIVE_WRITTEN;
1220 
1221 		for (j = 0; j < BPF_REG_SIZE; j++)
1222 			slot->slot_type[j] = STACK_INVALID;
1223 
1224 		mark_stack_slot_scratched(env, spi - i);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1231 				     struct bpf_reg_state *reg, int nr_slots)
1232 {
1233 	struct bpf_func_state *state = func(env, reg);
1234 	int spi, i, j;
1235 
1236 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1237 	 * will do check_mem_access to check and update stack bounds later, so
1238 	 * return true for that case.
1239 	 */
1240 	spi = iter_get_spi(env, reg, nr_slots);
1241 	if (spi == -ERANGE)
1242 		return true;
1243 	if (spi < 0)
1244 		return false;
1245 
1246 	for (i = 0; i < nr_slots; i++) {
1247 		struct bpf_stack_state *slot = &state->stack[spi - i];
1248 
1249 		for (j = 0; j < BPF_REG_SIZE; j++)
1250 			if (slot->slot_type[j] == STACK_ITER)
1251 				return false;
1252 	}
1253 
1254 	return true;
1255 }
1256 
1257 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1258 				   struct btf *btf, u32 btf_id, int nr_slots)
1259 {
1260 	struct bpf_func_state *state = func(env, reg);
1261 	int spi, i, j;
1262 
1263 	spi = iter_get_spi(env, reg, nr_slots);
1264 	if (spi < 0)
1265 		return false;
1266 
1267 	for (i = 0; i < nr_slots; i++) {
1268 		struct bpf_stack_state *slot = &state->stack[spi - i];
1269 		struct bpf_reg_state *st = &slot->spilled_ptr;
1270 
1271 		/* only main (first) slot has ref_obj_id set */
1272 		if (i == 0 && !st->ref_obj_id)
1273 			return false;
1274 		if (i != 0 && st->ref_obj_id)
1275 			return false;
1276 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1277 			return false;
1278 
1279 		for (j = 0; j < BPF_REG_SIZE; j++)
1280 			if (slot->slot_type[j] != STACK_ITER)
1281 				return false;
1282 	}
1283 
1284 	return true;
1285 }
1286 
1287 /* Check if given stack slot is "special":
1288  *   - spilled register state (STACK_SPILL);
1289  *   - dynptr state (STACK_DYNPTR);
1290  *   - iter state (STACK_ITER).
1291  */
1292 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1293 {
1294 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1295 
1296 	switch (type) {
1297 	case STACK_SPILL:
1298 	case STACK_DYNPTR:
1299 	case STACK_ITER:
1300 		return true;
1301 	case STACK_INVALID:
1302 	case STACK_MISC:
1303 	case STACK_ZERO:
1304 		return false;
1305 	default:
1306 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1307 		return true;
1308 	}
1309 }
1310 
1311 /* The reg state of a pointer or a bounded scalar was saved when
1312  * it was spilled to the stack.
1313  */
1314 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1315 {
1316 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1317 }
1318 
1319 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1320 {
1321 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1322 	       stack->spilled_ptr.type == SCALAR_VALUE;
1323 }
1324 
1325 static void scrub_spilled_slot(u8 *stype)
1326 {
1327 	if (*stype != STACK_INVALID)
1328 		*stype = STACK_MISC;
1329 }
1330 
1331 static void print_verifier_state(struct bpf_verifier_env *env,
1332 				 const struct bpf_func_state *state,
1333 				 bool print_all)
1334 {
1335 	const struct bpf_reg_state *reg;
1336 	enum bpf_reg_type t;
1337 	int i;
1338 
1339 	if (state->frameno)
1340 		verbose(env, " frame%d:", state->frameno);
1341 	for (i = 0; i < MAX_BPF_REG; i++) {
1342 		reg = &state->regs[i];
1343 		t = reg->type;
1344 		if (t == NOT_INIT)
1345 			continue;
1346 		if (!print_all && !reg_scratched(env, i))
1347 			continue;
1348 		verbose(env, " R%d", i);
1349 		print_liveness(env, reg->live);
1350 		verbose(env, "=");
1351 		if (t == SCALAR_VALUE && reg->precise)
1352 			verbose(env, "P");
1353 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1354 		    tnum_is_const(reg->var_off)) {
1355 			/* reg->off should be 0 for SCALAR_VALUE */
1356 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1357 			verbose(env, "%lld", reg->var_off.value + reg->off);
1358 		} else {
1359 			const char *sep = "";
1360 
1361 			verbose(env, "%s", reg_type_str(env, t));
1362 			if (base_type(t) == PTR_TO_BTF_ID)
1363 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1364 			verbose(env, "(");
1365 /*
1366  * _a stands for append, was shortened to avoid multiline statements below.
1367  * This macro is used to output a comma separated list of attributes.
1368  */
1369 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1370 
1371 			if (reg->id)
1372 				verbose_a("id=%d", reg->id);
1373 			if (reg->ref_obj_id)
1374 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1375 			if (type_is_non_owning_ref(reg->type))
1376 				verbose_a("%s", "non_own_ref");
1377 			if (t != SCALAR_VALUE)
1378 				verbose_a("off=%d", reg->off);
1379 			if (type_is_pkt_pointer(t))
1380 				verbose_a("r=%d", reg->range);
1381 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1382 				 base_type(t) == PTR_TO_MAP_KEY ||
1383 				 base_type(t) == PTR_TO_MAP_VALUE)
1384 				verbose_a("ks=%d,vs=%d",
1385 					  reg->map_ptr->key_size,
1386 					  reg->map_ptr->value_size);
1387 			if (tnum_is_const(reg->var_off)) {
1388 				/* Typically an immediate SCALAR_VALUE, but
1389 				 * could be a pointer whose offset is too big
1390 				 * for reg->off
1391 				 */
1392 				verbose_a("imm=%llx", reg->var_off.value);
1393 			} else {
1394 				if (reg->smin_value != reg->umin_value &&
1395 				    reg->smin_value != S64_MIN)
1396 					verbose_a("smin=%lld", (long long)reg->smin_value);
1397 				if (reg->smax_value != reg->umax_value &&
1398 				    reg->smax_value != S64_MAX)
1399 					verbose_a("smax=%lld", (long long)reg->smax_value);
1400 				if (reg->umin_value != 0)
1401 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1402 				if (reg->umax_value != U64_MAX)
1403 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1404 				if (!tnum_is_unknown(reg->var_off)) {
1405 					char tn_buf[48];
1406 
1407 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1408 					verbose_a("var_off=%s", tn_buf);
1409 				}
1410 				if (reg->s32_min_value != reg->smin_value &&
1411 				    reg->s32_min_value != S32_MIN)
1412 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1413 				if (reg->s32_max_value != reg->smax_value &&
1414 				    reg->s32_max_value != S32_MAX)
1415 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1416 				if (reg->u32_min_value != reg->umin_value &&
1417 				    reg->u32_min_value != U32_MIN)
1418 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1419 				if (reg->u32_max_value != reg->umax_value &&
1420 				    reg->u32_max_value != U32_MAX)
1421 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1422 			}
1423 #undef verbose_a
1424 
1425 			verbose(env, ")");
1426 		}
1427 	}
1428 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1429 		char types_buf[BPF_REG_SIZE + 1];
1430 		bool valid = false;
1431 		int j;
1432 
1433 		for (j = 0; j < BPF_REG_SIZE; j++) {
1434 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1435 				valid = true;
1436 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1437 		}
1438 		types_buf[BPF_REG_SIZE] = 0;
1439 		if (!valid)
1440 			continue;
1441 		if (!print_all && !stack_slot_scratched(env, i))
1442 			continue;
1443 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1444 		case STACK_SPILL:
1445 			reg = &state->stack[i].spilled_ptr;
1446 			t = reg->type;
1447 
1448 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1449 			print_liveness(env, reg->live);
1450 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1451 			if (t == SCALAR_VALUE && reg->precise)
1452 				verbose(env, "P");
1453 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1454 				verbose(env, "%lld", reg->var_off.value + reg->off);
1455 			break;
1456 		case STACK_DYNPTR:
1457 			i += BPF_DYNPTR_NR_SLOTS - 1;
1458 			reg = &state->stack[i].spilled_ptr;
1459 
1460 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1461 			print_liveness(env, reg->live);
1462 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1463 			if (reg->ref_obj_id)
1464 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1465 			break;
1466 		case STACK_ITER:
1467 			/* only main slot has ref_obj_id set; skip others */
1468 			reg = &state->stack[i].spilled_ptr;
1469 			if (!reg->ref_obj_id)
1470 				continue;
1471 
1472 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 			print_liveness(env, reg->live);
1474 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1475 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1476 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1477 				reg->iter.depth);
1478 			break;
1479 		case STACK_MISC:
1480 		case STACK_ZERO:
1481 		default:
1482 			reg = &state->stack[i].spilled_ptr;
1483 
1484 			for (j = 0; j < BPF_REG_SIZE; j++)
1485 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1486 			types_buf[BPF_REG_SIZE] = 0;
1487 
1488 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1489 			print_liveness(env, reg->live);
1490 			verbose(env, "=%s", types_buf);
1491 			break;
1492 		}
1493 	}
1494 	if (state->acquired_refs && state->refs[0].id) {
1495 		verbose(env, " refs=%d", state->refs[0].id);
1496 		for (i = 1; i < state->acquired_refs; i++)
1497 			if (state->refs[i].id)
1498 				verbose(env, ",%d", state->refs[i].id);
1499 	}
1500 	if (state->in_callback_fn)
1501 		verbose(env, " cb");
1502 	if (state->in_async_callback_fn)
1503 		verbose(env, " async_cb");
1504 	verbose(env, "\n");
1505 	mark_verifier_state_clean(env);
1506 }
1507 
1508 static inline u32 vlog_alignment(u32 pos)
1509 {
1510 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1511 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1512 }
1513 
1514 static void print_insn_state(struct bpf_verifier_env *env,
1515 			     const struct bpf_func_state *state)
1516 {
1517 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1518 		/* remove new line character */
1519 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1520 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1521 	} else {
1522 		verbose(env, "%d:", env->insn_idx);
1523 	}
1524 	print_verifier_state(env, state, false);
1525 }
1526 
1527 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1528  * small to hold src. This is different from krealloc since we don't want to preserve
1529  * the contents of dst.
1530  *
1531  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1532  * not be allocated.
1533  */
1534 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1535 {
1536 	size_t alloc_bytes;
1537 	void *orig = dst;
1538 	size_t bytes;
1539 
1540 	if (ZERO_OR_NULL_PTR(src))
1541 		goto out;
1542 
1543 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1544 		return NULL;
1545 
1546 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1547 	dst = krealloc(orig, alloc_bytes, flags);
1548 	if (!dst) {
1549 		kfree(orig);
1550 		return NULL;
1551 	}
1552 
1553 	memcpy(dst, src, bytes);
1554 out:
1555 	return dst ? dst : ZERO_SIZE_PTR;
1556 }
1557 
1558 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1559  * small to hold new_n items. new items are zeroed out if the array grows.
1560  *
1561  * Contrary to krealloc_array, does not free arr if new_n is zero.
1562  */
1563 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1564 {
1565 	size_t alloc_size;
1566 	void *new_arr;
1567 
1568 	if (!new_n || old_n == new_n)
1569 		goto out;
1570 
1571 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1572 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1573 	if (!new_arr) {
1574 		kfree(arr);
1575 		return NULL;
1576 	}
1577 	arr = new_arr;
1578 
1579 	if (new_n > old_n)
1580 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1581 
1582 out:
1583 	return arr ? arr : ZERO_SIZE_PTR;
1584 }
1585 
1586 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1587 {
1588 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1589 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1590 	if (!dst->refs)
1591 		return -ENOMEM;
1592 
1593 	dst->acquired_refs = src->acquired_refs;
1594 	return 0;
1595 }
1596 
1597 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1598 {
1599 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1600 
1601 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1602 				GFP_KERNEL);
1603 	if (!dst->stack)
1604 		return -ENOMEM;
1605 
1606 	dst->allocated_stack = src->allocated_stack;
1607 	return 0;
1608 }
1609 
1610 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1611 {
1612 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1613 				    sizeof(struct bpf_reference_state));
1614 	if (!state->refs)
1615 		return -ENOMEM;
1616 
1617 	state->acquired_refs = n;
1618 	return 0;
1619 }
1620 
1621 static int grow_stack_state(struct bpf_func_state *state, int size)
1622 {
1623 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1624 
1625 	if (old_n >= n)
1626 		return 0;
1627 
1628 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1629 	if (!state->stack)
1630 		return -ENOMEM;
1631 
1632 	state->allocated_stack = size;
1633 	return 0;
1634 }
1635 
1636 /* Acquire a pointer id from the env and update the state->refs to include
1637  * this new pointer reference.
1638  * On success, returns a valid pointer id to associate with the register
1639  * On failure, returns a negative errno.
1640  */
1641 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1642 {
1643 	struct bpf_func_state *state = cur_func(env);
1644 	int new_ofs = state->acquired_refs;
1645 	int id, err;
1646 
1647 	err = resize_reference_state(state, state->acquired_refs + 1);
1648 	if (err)
1649 		return err;
1650 	id = ++env->id_gen;
1651 	state->refs[new_ofs].id = id;
1652 	state->refs[new_ofs].insn_idx = insn_idx;
1653 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1654 
1655 	return id;
1656 }
1657 
1658 /* release function corresponding to acquire_reference_state(). Idempotent. */
1659 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1660 {
1661 	int i, last_idx;
1662 
1663 	last_idx = state->acquired_refs - 1;
1664 	for (i = 0; i < state->acquired_refs; i++) {
1665 		if (state->refs[i].id == ptr_id) {
1666 			/* Cannot release caller references in callbacks */
1667 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1668 				return -EINVAL;
1669 			if (last_idx && i != last_idx)
1670 				memcpy(&state->refs[i], &state->refs[last_idx],
1671 				       sizeof(*state->refs));
1672 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1673 			state->acquired_refs--;
1674 			return 0;
1675 		}
1676 	}
1677 	return -EINVAL;
1678 }
1679 
1680 static void free_func_state(struct bpf_func_state *state)
1681 {
1682 	if (!state)
1683 		return;
1684 	kfree(state->refs);
1685 	kfree(state->stack);
1686 	kfree(state);
1687 }
1688 
1689 static void clear_jmp_history(struct bpf_verifier_state *state)
1690 {
1691 	kfree(state->jmp_history);
1692 	state->jmp_history = NULL;
1693 	state->jmp_history_cnt = 0;
1694 }
1695 
1696 static void free_verifier_state(struct bpf_verifier_state *state,
1697 				bool free_self)
1698 {
1699 	int i;
1700 
1701 	for (i = 0; i <= state->curframe; i++) {
1702 		free_func_state(state->frame[i]);
1703 		state->frame[i] = NULL;
1704 	}
1705 	clear_jmp_history(state);
1706 	if (free_self)
1707 		kfree(state);
1708 }
1709 
1710 /* copy verifier state from src to dst growing dst stack space
1711  * when necessary to accommodate larger src stack
1712  */
1713 static int copy_func_state(struct bpf_func_state *dst,
1714 			   const struct bpf_func_state *src)
1715 {
1716 	int err;
1717 
1718 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1719 	err = copy_reference_state(dst, src);
1720 	if (err)
1721 		return err;
1722 	return copy_stack_state(dst, src);
1723 }
1724 
1725 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1726 			       const struct bpf_verifier_state *src)
1727 {
1728 	struct bpf_func_state *dst;
1729 	int i, err;
1730 
1731 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1732 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1733 					    GFP_USER);
1734 	if (!dst_state->jmp_history)
1735 		return -ENOMEM;
1736 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1737 
1738 	/* if dst has more stack frames then src frame, free them */
1739 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1740 		free_func_state(dst_state->frame[i]);
1741 		dst_state->frame[i] = NULL;
1742 	}
1743 	dst_state->speculative = src->speculative;
1744 	dst_state->active_rcu_lock = src->active_rcu_lock;
1745 	dst_state->curframe = src->curframe;
1746 	dst_state->active_lock.ptr = src->active_lock.ptr;
1747 	dst_state->active_lock.id = src->active_lock.id;
1748 	dst_state->branches = src->branches;
1749 	dst_state->parent = src->parent;
1750 	dst_state->first_insn_idx = src->first_insn_idx;
1751 	dst_state->last_insn_idx = src->last_insn_idx;
1752 	for (i = 0; i <= src->curframe; i++) {
1753 		dst = dst_state->frame[i];
1754 		if (!dst) {
1755 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1756 			if (!dst)
1757 				return -ENOMEM;
1758 			dst_state->frame[i] = dst;
1759 		}
1760 		err = copy_func_state(dst, src->frame[i]);
1761 		if (err)
1762 			return err;
1763 	}
1764 	return 0;
1765 }
1766 
1767 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1768 {
1769 	while (st) {
1770 		u32 br = --st->branches;
1771 
1772 		/* WARN_ON(br > 1) technically makes sense here,
1773 		 * but see comment in push_stack(), hence:
1774 		 */
1775 		WARN_ONCE((int)br < 0,
1776 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1777 			  br);
1778 		if (br)
1779 			break;
1780 		st = st->parent;
1781 	}
1782 }
1783 
1784 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1785 		     int *insn_idx, bool pop_log)
1786 {
1787 	struct bpf_verifier_state *cur = env->cur_state;
1788 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1789 	int err;
1790 
1791 	if (env->head == NULL)
1792 		return -ENOENT;
1793 
1794 	if (cur) {
1795 		err = copy_verifier_state(cur, &head->st);
1796 		if (err)
1797 			return err;
1798 	}
1799 	if (pop_log)
1800 		bpf_vlog_reset(&env->log, head->log_pos);
1801 	if (insn_idx)
1802 		*insn_idx = head->insn_idx;
1803 	if (prev_insn_idx)
1804 		*prev_insn_idx = head->prev_insn_idx;
1805 	elem = head->next;
1806 	free_verifier_state(&head->st, false);
1807 	kfree(head);
1808 	env->head = elem;
1809 	env->stack_size--;
1810 	return 0;
1811 }
1812 
1813 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1814 					     int insn_idx, int prev_insn_idx,
1815 					     bool speculative)
1816 {
1817 	struct bpf_verifier_state *cur = env->cur_state;
1818 	struct bpf_verifier_stack_elem *elem;
1819 	int err;
1820 
1821 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1822 	if (!elem)
1823 		goto err;
1824 
1825 	elem->insn_idx = insn_idx;
1826 	elem->prev_insn_idx = prev_insn_idx;
1827 	elem->next = env->head;
1828 	elem->log_pos = env->log.end_pos;
1829 	env->head = elem;
1830 	env->stack_size++;
1831 	err = copy_verifier_state(&elem->st, cur);
1832 	if (err)
1833 		goto err;
1834 	elem->st.speculative |= speculative;
1835 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1836 		verbose(env, "The sequence of %d jumps is too complex.\n",
1837 			env->stack_size);
1838 		goto err;
1839 	}
1840 	if (elem->st.parent) {
1841 		++elem->st.parent->branches;
1842 		/* WARN_ON(branches > 2) technically makes sense here,
1843 		 * but
1844 		 * 1. speculative states will bump 'branches' for non-branch
1845 		 * instructions
1846 		 * 2. is_state_visited() heuristics may decide not to create
1847 		 * a new state for a sequence of branches and all such current
1848 		 * and cloned states will be pointing to a single parent state
1849 		 * which might have large 'branches' count.
1850 		 */
1851 	}
1852 	return &elem->st;
1853 err:
1854 	free_verifier_state(env->cur_state, true);
1855 	env->cur_state = NULL;
1856 	/* pop all elements and return */
1857 	while (!pop_stack(env, NULL, NULL, false));
1858 	return NULL;
1859 }
1860 
1861 #define CALLER_SAVED_REGS 6
1862 static const int caller_saved[CALLER_SAVED_REGS] = {
1863 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1864 };
1865 
1866 /* This helper doesn't clear reg->id */
1867 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1868 {
1869 	reg->var_off = tnum_const(imm);
1870 	reg->smin_value = (s64)imm;
1871 	reg->smax_value = (s64)imm;
1872 	reg->umin_value = imm;
1873 	reg->umax_value = imm;
1874 
1875 	reg->s32_min_value = (s32)imm;
1876 	reg->s32_max_value = (s32)imm;
1877 	reg->u32_min_value = (u32)imm;
1878 	reg->u32_max_value = (u32)imm;
1879 }
1880 
1881 /* Mark the unknown part of a register (variable offset or scalar value) as
1882  * known to have the value @imm.
1883  */
1884 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1885 {
1886 	/* Clear off and union(map_ptr, range) */
1887 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1888 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1889 	reg->id = 0;
1890 	reg->ref_obj_id = 0;
1891 	___mark_reg_known(reg, imm);
1892 }
1893 
1894 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1895 {
1896 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1897 	reg->s32_min_value = (s32)imm;
1898 	reg->s32_max_value = (s32)imm;
1899 	reg->u32_min_value = (u32)imm;
1900 	reg->u32_max_value = (u32)imm;
1901 }
1902 
1903 /* Mark the 'variable offset' part of a register as zero.  This should be
1904  * used only on registers holding a pointer type.
1905  */
1906 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1907 {
1908 	__mark_reg_known(reg, 0);
1909 }
1910 
1911 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1912 {
1913 	__mark_reg_known(reg, 0);
1914 	reg->type = SCALAR_VALUE;
1915 }
1916 
1917 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1918 				struct bpf_reg_state *regs, u32 regno)
1919 {
1920 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1921 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1922 		/* Something bad happened, let's kill all regs */
1923 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1924 			__mark_reg_not_init(env, regs + regno);
1925 		return;
1926 	}
1927 	__mark_reg_known_zero(regs + regno);
1928 }
1929 
1930 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1931 			      bool first_slot, int dynptr_id)
1932 {
1933 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1934 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1935 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1936 	 */
1937 	__mark_reg_known_zero(reg);
1938 	reg->type = CONST_PTR_TO_DYNPTR;
1939 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1940 	reg->id = dynptr_id;
1941 	reg->dynptr.type = type;
1942 	reg->dynptr.first_slot = first_slot;
1943 }
1944 
1945 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1946 {
1947 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1948 		const struct bpf_map *map = reg->map_ptr;
1949 
1950 		if (map->inner_map_meta) {
1951 			reg->type = CONST_PTR_TO_MAP;
1952 			reg->map_ptr = map->inner_map_meta;
1953 			/* transfer reg's id which is unique for every map_lookup_elem
1954 			 * as UID of the inner map.
1955 			 */
1956 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1957 				reg->map_uid = reg->id;
1958 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1959 			reg->type = PTR_TO_XDP_SOCK;
1960 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1961 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1962 			reg->type = PTR_TO_SOCKET;
1963 		} else {
1964 			reg->type = PTR_TO_MAP_VALUE;
1965 		}
1966 		return;
1967 	}
1968 
1969 	reg->type &= ~PTR_MAYBE_NULL;
1970 }
1971 
1972 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1973 				struct btf_field_graph_root *ds_head)
1974 {
1975 	__mark_reg_known_zero(&regs[regno]);
1976 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1977 	regs[regno].btf = ds_head->btf;
1978 	regs[regno].btf_id = ds_head->value_btf_id;
1979 	regs[regno].off = ds_head->node_offset;
1980 }
1981 
1982 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1983 {
1984 	return type_is_pkt_pointer(reg->type);
1985 }
1986 
1987 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1988 {
1989 	return reg_is_pkt_pointer(reg) ||
1990 	       reg->type == PTR_TO_PACKET_END;
1991 }
1992 
1993 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1994 {
1995 	return base_type(reg->type) == PTR_TO_MEM &&
1996 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1997 }
1998 
1999 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2000 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2001 				    enum bpf_reg_type which)
2002 {
2003 	/* The register can already have a range from prior markings.
2004 	 * This is fine as long as it hasn't been advanced from its
2005 	 * origin.
2006 	 */
2007 	return reg->type == which &&
2008 	       reg->id == 0 &&
2009 	       reg->off == 0 &&
2010 	       tnum_equals_const(reg->var_off, 0);
2011 }
2012 
2013 /* Reset the min/max bounds of a register */
2014 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2015 {
2016 	reg->smin_value = S64_MIN;
2017 	reg->smax_value = S64_MAX;
2018 	reg->umin_value = 0;
2019 	reg->umax_value = U64_MAX;
2020 
2021 	reg->s32_min_value = S32_MIN;
2022 	reg->s32_max_value = S32_MAX;
2023 	reg->u32_min_value = 0;
2024 	reg->u32_max_value = U32_MAX;
2025 }
2026 
2027 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2028 {
2029 	reg->smin_value = S64_MIN;
2030 	reg->smax_value = S64_MAX;
2031 	reg->umin_value = 0;
2032 	reg->umax_value = U64_MAX;
2033 }
2034 
2035 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2036 {
2037 	reg->s32_min_value = S32_MIN;
2038 	reg->s32_max_value = S32_MAX;
2039 	reg->u32_min_value = 0;
2040 	reg->u32_max_value = U32_MAX;
2041 }
2042 
2043 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2044 {
2045 	struct tnum var32_off = tnum_subreg(reg->var_off);
2046 
2047 	/* min signed is max(sign bit) | min(other bits) */
2048 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2049 			var32_off.value | (var32_off.mask & S32_MIN));
2050 	/* max signed is min(sign bit) | max(other bits) */
2051 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2052 			var32_off.value | (var32_off.mask & S32_MAX));
2053 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2054 	reg->u32_max_value = min(reg->u32_max_value,
2055 				 (u32)(var32_off.value | var32_off.mask));
2056 }
2057 
2058 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2059 {
2060 	/* min signed is max(sign bit) | min(other bits) */
2061 	reg->smin_value = max_t(s64, reg->smin_value,
2062 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2063 	/* max signed is min(sign bit) | max(other bits) */
2064 	reg->smax_value = min_t(s64, reg->smax_value,
2065 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2066 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2067 	reg->umax_value = min(reg->umax_value,
2068 			      reg->var_off.value | reg->var_off.mask);
2069 }
2070 
2071 static void __update_reg_bounds(struct bpf_reg_state *reg)
2072 {
2073 	__update_reg32_bounds(reg);
2074 	__update_reg64_bounds(reg);
2075 }
2076 
2077 /* Uses signed min/max values to inform unsigned, and vice-versa */
2078 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2079 {
2080 	/* Learn sign from signed bounds.
2081 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2082 	 * are the same, so combine.  This works even in the negative case, e.g.
2083 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2084 	 */
2085 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2086 		reg->s32_min_value = reg->u32_min_value =
2087 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2088 		reg->s32_max_value = reg->u32_max_value =
2089 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2090 		return;
2091 	}
2092 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2093 	 * boundary, so we must be careful.
2094 	 */
2095 	if ((s32)reg->u32_max_value >= 0) {
2096 		/* Positive.  We can't learn anything from the smin, but smax
2097 		 * is positive, hence safe.
2098 		 */
2099 		reg->s32_min_value = reg->u32_min_value;
2100 		reg->s32_max_value = reg->u32_max_value =
2101 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2102 	} else if ((s32)reg->u32_min_value < 0) {
2103 		/* Negative.  We can't learn anything from the smax, but smin
2104 		 * is negative, hence safe.
2105 		 */
2106 		reg->s32_min_value = reg->u32_min_value =
2107 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2108 		reg->s32_max_value = reg->u32_max_value;
2109 	}
2110 }
2111 
2112 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2113 {
2114 	/* Learn sign from signed bounds.
2115 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2116 	 * are the same, so combine.  This works even in the negative case, e.g.
2117 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2118 	 */
2119 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2120 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2121 							  reg->umin_value);
2122 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2123 							  reg->umax_value);
2124 		return;
2125 	}
2126 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2127 	 * boundary, so we must be careful.
2128 	 */
2129 	if ((s64)reg->umax_value >= 0) {
2130 		/* Positive.  We can't learn anything from the smin, but smax
2131 		 * is positive, hence safe.
2132 		 */
2133 		reg->smin_value = reg->umin_value;
2134 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2135 							  reg->umax_value);
2136 	} else if ((s64)reg->umin_value < 0) {
2137 		/* Negative.  We can't learn anything from the smax, but smin
2138 		 * is negative, hence safe.
2139 		 */
2140 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2141 							  reg->umin_value);
2142 		reg->smax_value = reg->umax_value;
2143 	}
2144 }
2145 
2146 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2147 {
2148 	__reg32_deduce_bounds(reg);
2149 	__reg64_deduce_bounds(reg);
2150 }
2151 
2152 /* Attempts to improve var_off based on unsigned min/max information */
2153 static void __reg_bound_offset(struct bpf_reg_state *reg)
2154 {
2155 	struct tnum var64_off = tnum_intersect(reg->var_off,
2156 					       tnum_range(reg->umin_value,
2157 							  reg->umax_value));
2158 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2159 					       tnum_range(reg->u32_min_value,
2160 							  reg->u32_max_value));
2161 
2162 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2163 }
2164 
2165 static void reg_bounds_sync(struct bpf_reg_state *reg)
2166 {
2167 	/* We might have learned new bounds from the var_off. */
2168 	__update_reg_bounds(reg);
2169 	/* We might have learned something about the sign bit. */
2170 	__reg_deduce_bounds(reg);
2171 	/* We might have learned some bits from the bounds. */
2172 	__reg_bound_offset(reg);
2173 	/* Intersecting with the old var_off might have improved our bounds
2174 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2175 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2176 	 */
2177 	__update_reg_bounds(reg);
2178 }
2179 
2180 static bool __reg32_bound_s64(s32 a)
2181 {
2182 	return a >= 0 && a <= S32_MAX;
2183 }
2184 
2185 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2186 {
2187 	reg->umin_value = reg->u32_min_value;
2188 	reg->umax_value = reg->u32_max_value;
2189 
2190 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2191 	 * be positive otherwise set to worse case bounds and refine later
2192 	 * from tnum.
2193 	 */
2194 	if (__reg32_bound_s64(reg->s32_min_value) &&
2195 	    __reg32_bound_s64(reg->s32_max_value)) {
2196 		reg->smin_value = reg->s32_min_value;
2197 		reg->smax_value = reg->s32_max_value;
2198 	} else {
2199 		reg->smin_value = 0;
2200 		reg->smax_value = U32_MAX;
2201 	}
2202 }
2203 
2204 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2205 {
2206 	/* special case when 64-bit register has upper 32-bit register
2207 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2208 	 * allowing us to use 32-bit bounds directly,
2209 	 */
2210 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2211 		__reg_assign_32_into_64(reg);
2212 	} else {
2213 		/* Otherwise the best we can do is push lower 32bit known and
2214 		 * unknown bits into register (var_off set from jmp logic)
2215 		 * then learn as much as possible from the 64-bit tnum
2216 		 * known and unknown bits. The previous smin/smax bounds are
2217 		 * invalid here because of jmp32 compare so mark them unknown
2218 		 * so they do not impact tnum bounds calculation.
2219 		 */
2220 		__mark_reg64_unbounded(reg);
2221 	}
2222 	reg_bounds_sync(reg);
2223 }
2224 
2225 static bool __reg64_bound_s32(s64 a)
2226 {
2227 	return a >= S32_MIN && a <= S32_MAX;
2228 }
2229 
2230 static bool __reg64_bound_u32(u64 a)
2231 {
2232 	return a >= U32_MIN && a <= U32_MAX;
2233 }
2234 
2235 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2236 {
2237 	__mark_reg32_unbounded(reg);
2238 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2239 		reg->s32_min_value = (s32)reg->smin_value;
2240 		reg->s32_max_value = (s32)reg->smax_value;
2241 	}
2242 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2243 		reg->u32_min_value = (u32)reg->umin_value;
2244 		reg->u32_max_value = (u32)reg->umax_value;
2245 	}
2246 	reg_bounds_sync(reg);
2247 }
2248 
2249 /* Mark a register as having a completely unknown (scalar) value. */
2250 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2251 			       struct bpf_reg_state *reg)
2252 {
2253 	/*
2254 	 * Clear type, off, and union(map_ptr, range) and
2255 	 * padding between 'type' and union
2256 	 */
2257 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2258 	reg->type = SCALAR_VALUE;
2259 	reg->id = 0;
2260 	reg->ref_obj_id = 0;
2261 	reg->var_off = tnum_unknown;
2262 	reg->frameno = 0;
2263 	reg->precise = !env->bpf_capable;
2264 	__mark_reg_unbounded(reg);
2265 }
2266 
2267 static void mark_reg_unknown(struct bpf_verifier_env *env,
2268 			     struct bpf_reg_state *regs, u32 regno)
2269 {
2270 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2271 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2272 		/* Something bad happened, let's kill all regs except FP */
2273 		for (regno = 0; regno < BPF_REG_FP; regno++)
2274 			__mark_reg_not_init(env, regs + regno);
2275 		return;
2276 	}
2277 	__mark_reg_unknown(env, regs + regno);
2278 }
2279 
2280 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2281 				struct bpf_reg_state *reg)
2282 {
2283 	__mark_reg_unknown(env, reg);
2284 	reg->type = NOT_INIT;
2285 }
2286 
2287 static void mark_reg_not_init(struct bpf_verifier_env *env,
2288 			      struct bpf_reg_state *regs, u32 regno)
2289 {
2290 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2291 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2292 		/* Something bad happened, let's kill all regs except FP */
2293 		for (regno = 0; regno < BPF_REG_FP; regno++)
2294 			__mark_reg_not_init(env, regs + regno);
2295 		return;
2296 	}
2297 	__mark_reg_not_init(env, regs + regno);
2298 }
2299 
2300 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2301 			    struct bpf_reg_state *regs, u32 regno,
2302 			    enum bpf_reg_type reg_type,
2303 			    struct btf *btf, u32 btf_id,
2304 			    enum bpf_type_flag flag)
2305 {
2306 	if (reg_type == SCALAR_VALUE) {
2307 		mark_reg_unknown(env, regs, regno);
2308 		return;
2309 	}
2310 	mark_reg_known_zero(env, regs, regno);
2311 	regs[regno].type = PTR_TO_BTF_ID | flag;
2312 	regs[regno].btf = btf;
2313 	regs[regno].btf_id = btf_id;
2314 }
2315 
2316 #define DEF_NOT_SUBREG	(0)
2317 static void init_reg_state(struct bpf_verifier_env *env,
2318 			   struct bpf_func_state *state)
2319 {
2320 	struct bpf_reg_state *regs = state->regs;
2321 	int i;
2322 
2323 	for (i = 0; i < MAX_BPF_REG; i++) {
2324 		mark_reg_not_init(env, regs, i);
2325 		regs[i].live = REG_LIVE_NONE;
2326 		regs[i].parent = NULL;
2327 		regs[i].subreg_def = DEF_NOT_SUBREG;
2328 	}
2329 
2330 	/* frame pointer */
2331 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2332 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2333 	regs[BPF_REG_FP].frameno = state->frameno;
2334 }
2335 
2336 #define BPF_MAIN_FUNC (-1)
2337 static void init_func_state(struct bpf_verifier_env *env,
2338 			    struct bpf_func_state *state,
2339 			    int callsite, int frameno, int subprogno)
2340 {
2341 	state->callsite = callsite;
2342 	state->frameno = frameno;
2343 	state->subprogno = subprogno;
2344 	state->callback_ret_range = tnum_range(0, 0);
2345 	init_reg_state(env, state);
2346 	mark_verifier_state_scratched(env);
2347 }
2348 
2349 /* Similar to push_stack(), but for async callbacks */
2350 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2351 						int insn_idx, int prev_insn_idx,
2352 						int subprog)
2353 {
2354 	struct bpf_verifier_stack_elem *elem;
2355 	struct bpf_func_state *frame;
2356 
2357 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2358 	if (!elem)
2359 		goto err;
2360 
2361 	elem->insn_idx = insn_idx;
2362 	elem->prev_insn_idx = prev_insn_idx;
2363 	elem->next = env->head;
2364 	elem->log_pos = env->log.end_pos;
2365 	env->head = elem;
2366 	env->stack_size++;
2367 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2368 		verbose(env,
2369 			"The sequence of %d jumps is too complex for async cb.\n",
2370 			env->stack_size);
2371 		goto err;
2372 	}
2373 	/* Unlike push_stack() do not copy_verifier_state().
2374 	 * The caller state doesn't matter.
2375 	 * This is async callback. It starts in a fresh stack.
2376 	 * Initialize it similar to do_check_common().
2377 	 */
2378 	elem->st.branches = 1;
2379 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2380 	if (!frame)
2381 		goto err;
2382 	init_func_state(env, frame,
2383 			BPF_MAIN_FUNC /* callsite */,
2384 			0 /* frameno within this callchain */,
2385 			subprog /* subprog number within this prog */);
2386 	elem->st.frame[0] = frame;
2387 	return &elem->st;
2388 err:
2389 	free_verifier_state(env->cur_state, true);
2390 	env->cur_state = NULL;
2391 	/* pop all elements and return */
2392 	while (!pop_stack(env, NULL, NULL, false));
2393 	return NULL;
2394 }
2395 
2396 
2397 enum reg_arg_type {
2398 	SRC_OP,		/* register is used as source operand */
2399 	DST_OP,		/* register is used as destination operand */
2400 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2401 };
2402 
2403 static int cmp_subprogs(const void *a, const void *b)
2404 {
2405 	return ((struct bpf_subprog_info *)a)->start -
2406 	       ((struct bpf_subprog_info *)b)->start;
2407 }
2408 
2409 static int find_subprog(struct bpf_verifier_env *env, int off)
2410 {
2411 	struct bpf_subprog_info *p;
2412 
2413 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2414 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2415 	if (!p)
2416 		return -ENOENT;
2417 	return p - env->subprog_info;
2418 
2419 }
2420 
2421 static int add_subprog(struct bpf_verifier_env *env, int off)
2422 {
2423 	int insn_cnt = env->prog->len;
2424 	int ret;
2425 
2426 	if (off >= insn_cnt || off < 0) {
2427 		verbose(env, "call to invalid destination\n");
2428 		return -EINVAL;
2429 	}
2430 	ret = find_subprog(env, off);
2431 	if (ret >= 0)
2432 		return ret;
2433 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2434 		verbose(env, "too many subprograms\n");
2435 		return -E2BIG;
2436 	}
2437 	/* determine subprog starts. The end is one before the next starts */
2438 	env->subprog_info[env->subprog_cnt++].start = off;
2439 	sort(env->subprog_info, env->subprog_cnt,
2440 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2441 	return env->subprog_cnt - 1;
2442 }
2443 
2444 #define MAX_KFUNC_DESCS 256
2445 #define MAX_KFUNC_BTFS	256
2446 
2447 struct bpf_kfunc_desc {
2448 	struct btf_func_model func_model;
2449 	u32 func_id;
2450 	s32 imm;
2451 	u16 offset;
2452 	unsigned long addr;
2453 };
2454 
2455 struct bpf_kfunc_btf {
2456 	struct btf *btf;
2457 	struct module *module;
2458 	u16 offset;
2459 };
2460 
2461 struct bpf_kfunc_desc_tab {
2462 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2463 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2464 	 * available, therefore at the end of verification do_misc_fixups()
2465 	 * sorts this by imm and offset.
2466 	 */
2467 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2468 	u32 nr_descs;
2469 };
2470 
2471 struct bpf_kfunc_btf_tab {
2472 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2473 	u32 nr_descs;
2474 };
2475 
2476 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2477 {
2478 	const struct bpf_kfunc_desc *d0 = a;
2479 	const struct bpf_kfunc_desc *d1 = b;
2480 
2481 	/* func_id is not greater than BTF_MAX_TYPE */
2482 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2483 }
2484 
2485 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2486 {
2487 	const struct bpf_kfunc_btf *d0 = a;
2488 	const struct bpf_kfunc_btf *d1 = b;
2489 
2490 	return d0->offset - d1->offset;
2491 }
2492 
2493 static const struct bpf_kfunc_desc *
2494 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2495 {
2496 	struct bpf_kfunc_desc desc = {
2497 		.func_id = func_id,
2498 		.offset = offset,
2499 	};
2500 	struct bpf_kfunc_desc_tab *tab;
2501 
2502 	tab = prog->aux->kfunc_tab;
2503 	return bsearch(&desc, tab->descs, tab->nr_descs,
2504 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2505 }
2506 
2507 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2508 		       u16 btf_fd_idx, u8 **func_addr)
2509 {
2510 	const struct bpf_kfunc_desc *desc;
2511 
2512 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2513 	if (!desc)
2514 		return -EFAULT;
2515 
2516 	*func_addr = (u8 *)desc->addr;
2517 	return 0;
2518 }
2519 
2520 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2521 					 s16 offset)
2522 {
2523 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2524 	struct bpf_kfunc_btf_tab *tab;
2525 	struct bpf_kfunc_btf *b;
2526 	struct module *mod;
2527 	struct btf *btf;
2528 	int btf_fd;
2529 
2530 	tab = env->prog->aux->kfunc_btf_tab;
2531 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2532 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2533 	if (!b) {
2534 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2535 			verbose(env, "too many different module BTFs\n");
2536 			return ERR_PTR(-E2BIG);
2537 		}
2538 
2539 		if (bpfptr_is_null(env->fd_array)) {
2540 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2541 			return ERR_PTR(-EPROTO);
2542 		}
2543 
2544 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2545 					    offset * sizeof(btf_fd),
2546 					    sizeof(btf_fd)))
2547 			return ERR_PTR(-EFAULT);
2548 
2549 		btf = btf_get_by_fd(btf_fd);
2550 		if (IS_ERR(btf)) {
2551 			verbose(env, "invalid module BTF fd specified\n");
2552 			return btf;
2553 		}
2554 
2555 		if (!btf_is_module(btf)) {
2556 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2557 			btf_put(btf);
2558 			return ERR_PTR(-EINVAL);
2559 		}
2560 
2561 		mod = btf_try_get_module(btf);
2562 		if (!mod) {
2563 			btf_put(btf);
2564 			return ERR_PTR(-ENXIO);
2565 		}
2566 
2567 		b = &tab->descs[tab->nr_descs++];
2568 		b->btf = btf;
2569 		b->module = mod;
2570 		b->offset = offset;
2571 
2572 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2573 		     kfunc_btf_cmp_by_off, NULL);
2574 	}
2575 	return b->btf;
2576 }
2577 
2578 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2579 {
2580 	if (!tab)
2581 		return;
2582 
2583 	while (tab->nr_descs--) {
2584 		module_put(tab->descs[tab->nr_descs].module);
2585 		btf_put(tab->descs[tab->nr_descs].btf);
2586 	}
2587 	kfree(tab);
2588 }
2589 
2590 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2591 {
2592 	if (offset) {
2593 		if (offset < 0) {
2594 			/* In the future, this can be allowed to increase limit
2595 			 * of fd index into fd_array, interpreted as u16.
2596 			 */
2597 			verbose(env, "negative offset disallowed for kernel module function call\n");
2598 			return ERR_PTR(-EINVAL);
2599 		}
2600 
2601 		return __find_kfunc_desc_btf(env, offset);
2602 	}
2603 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2604 }
2605 
2606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2607 {
2608 	const struct btf_type *func, *func_proto;
2609 	struct bpf_kfunc_btf_tab *btf_tab;
2610 	struct bpf_kfunc_desc_tab *tab;
2611 	struct bpf_prog_aux *prog_aux;
2612 	struct bpf_kfunc_desc *desc;
2613 	const char *func_name;
2614 	struct btf *desc_btf;
2615 	unsigned long call_imm;
2616 	unsigned long addr;
2617 	int err;
2618 
2619 	prog_aux = env->prog->aux;
2620 	tab = prog_aux->kfunc_tab;
2621 	btf_tab = prog_aux->kfunc_btf_tab;
2622 	if (!tab) {
2623 		if (!btf_vmlinux) {
2624 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2625 			return -ENOTSUPP;
2626 		}
2627 
2628 		if (!env->prog->jit_requested) {
2629 			verbose(env, "JIT is required for calling kernel function\n");
2630 			return -ENOTSUPP;
2631 		}
2632 
2633 		if (!bpf_jit_supports_kfunc_call()) {
2634 			verbose(env, "JIT does not support calling kernel function\n");
2635 			return -ENOTSUPP;
2636 		}
2637 
2638 		if (!env->prog->gpl_compatible) {
2639 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2640 			return -EINVAL;
2641 		}
2642 
2643 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2644 		if (!tab)
2645 			return -ENOMEM;
2646 		prog_aux->kfunc_tab = tab;
2647 	}
2648 
2649 	/* func_id == 0 is always invalid, but instead of returning an error, be
2650 	 * conservative and wait until the code elimination pass before returning
2651 	 * error, so that invalid calls that get pruned out can be in BPF programs
2652 	 * loaded from userspace.  It is also required that offset be untouched
2653 	 * for such calls.
2654 	 */
2655 	if (!func_id && !offset)
2656 		return 0;
2657 
2658 	if (!btf_tab && offset) {
2659 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2660 		if (!btf_tab)
2661 			return -ENOMEM;
2662 		prog_aux->kfunc_btf_tab = btf_tab;
2663 	}
2664 
2665 	desc_btf = find_kfunc_desc_btf(env, offset);
2666 	if (IS_ERR(desc_btf)) {
2667 		verbose(env, "failed to find BTF for kernel function\n");
2668 		return PTR_ERR(desc_btf);
2669 	}
2670 
2671 	if (find_kfunc_desc(env->prog, func_id, offset))
2672 		return 0;
2673 
2674 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2675 		verbose(env, "too many different kernel function calls\n");
2676 		return -E2BIG;
2677 	}
2678 
2679 	func = btf_type_by_id(desc_btf, func_id);
2680 	if (!func || !btf_type_is_func(func)) {
2681 		verbose(env, "kernel btf_id %u is not a function\n",
2682 			func_id);
2683 		return -EINVAL;
2684 	}
2685 	func_proto = btf_type_by_id(desc_btf, func->type);
2686 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2687 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2688 			func_id);
2689 		return -EINVAL;
2690 	}
2691 
2692 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2693 	addr = kallsyms_lookup_name(func_name);
2694 	if (!addr) {
2695 		verbose(env, "cannot find address for kernel function %s\n",
2696 			func_name);
2697 		return -EINVAL;
2698 	}
2699 	specialize_kfunc(env, func_id, offset, &addr);
2700 
2701 	if (bpf_jit_supports_far_kfunc_call()) {
2702 		call_imm = func_id;
2703 	} else {
2704 		call_imm = BPF_CALL_IMM(addr);
2705 		/* Check whether the relative offset overflows desc->imm */
2706 		if ((unsigned long)(s32)call_imm != call_imm) {
2707 			verbose(env, "address of kernel function %s is out of range\n",
2708 				func_name);
2709 			return -EINVAL;
2710 		}
2711 	}
2712 
2713 	if (bpf_dev_bound_kfunc_id(func_id)) {
2714 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2715 		if (err)
2716 			return err;
2717 	}
2718 
2719 	desc = &tab->descs[tab->nr_descs++];
2720 	desc->func_id = func_id;
2721 	desc->imm = call_imm;
2722 	desc->offset = offset;
2723 	desc->addr = addr;
2724 	err = btf_distill_func_proto(&env->log, desc_btf,
2725 				     func_proto, func_name,
2726 				     &desc->func_model);
2727 	if (!err)
2728 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2729 		     kfunc_desc_cmp_by_id_off, NULL);
2730 	return err;
2731 }
2732 
2733 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2734 {
2735 	const struct bpf_kfunc_desc *d0 = a;
2736 	const struct bpf_kfunc_desc *d1 = b;
2737 
2738 	if (d0->imm != d1->imm)
2739 		return d0->imm < d1->imm ? -1 : 1;
2740 	if (d0->offset != d1->offset)
2741 		return d0->offset < d1->offset ? -1 : 1;
2742 	return 0;
2743 }
2744 
2745 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2746 {
2747 	struct bpf_kfunc_desc_tab *tab;
2748 
2749 	tab = prog->aux->kfunc_tab;
2750 	if (!tab)
2751 		return;
2752 
2753 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2754 	     kfunc_desc_cmp_by_imm_off, NULL);
2755 }
2756 
2757 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2758 {
2759 	return !!prog->aux->kfunc_tab;
2760 }
2761 
2762 const struct btf_func_model *
2763 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2764 			 const struct bpf_insn *insn)
2765 {
2766 	const struct bpf_kfunc_desc desc = {
2767 		.imm = insn->imm,
2768 		.offset = insn->off,
2769 	};
2770 	const struct bpf_kfunc_desc *res;
2771 	struct bpf_kfunc_desc_tab *tab;
2772 
2773 	tab = prog->aux->kfunc_tab;
2774 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2775 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2776 
2777 	return res ? &res->func_model : NULL;
2778 }
2779 
2780 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2781 {
2782 	struct bpf_subprog_info *subprog = env->subprog_info;
2783 	struct bpf_insn *insn = env->prog->insnsi;
2784 	int i, ret, insn_cnt = env->prog->len;
2785 
2786 	/* Add entry function. */
2787 	ret = add_subprog(env, 0);
2788 	if (ret)
2789 		return ret;
2790 
2791 	for (i = 0; i < insn_cnt; i++, insn++) {
2792 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2793 		    !bpf_pseudo_kfunc_call(insn))
2794 			continue;
2795 
2796 		if (!env->bpf_capable) {
2797 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2798 			return -EPERM;
2799 		}
2800 
2801 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2802 			ret = add_subprog(env, i + insn->imm + 1);
2803 		else
2804 			ret = add_kfunc_call(env, insn->imm, insn->off);
2805 
2806 		if (ret < 0)
2807 			return ret;
2808 	}
2809 
2810 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2811 	 * logic. 'subprog_cnt' should not be increased.
2812 	 */
2813 	subprog[env->subprog_cnt].start = insn_cnt;
2814 
2815 	if (env->log.level & BPF_LOG_LEVEL2)
2816 		for (i = 0; i < env->subprog_cnt; i++)
2817 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2818 
2819 	return 0;
2820 }
2821 
2822 static int check_subprogs(struct bpf_verifier_env *env)
2823 {
2824 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2825 	struct bpf_subprog_info *subprog = env->subprog_info;
2826 	struct bpf_insn *insn = env->prog->insnsi;
2827 	int insn_cnt = env->prog->len;
2828 
2829 	/* now check that all jumps are within the same subprog */
2830 	subprog_start = subprog[cur_subprog].start;
2831 	subprog_end = subprog[cur_subprog + 1].start;
2832 	for (i = 0; i < insn_cnt; i++) {
2833 		u8 code = insn[i].code;
2834 
2835 		if (code == (BPF_JMP | BPF_CALL) &&
2836 		    insn[i].src_reg == 0 &&
2837 		    insn[i].imm == BPF_FUNC_tail_call)
2838 			subprog[cur_subprog].has_tail_call = true;
2839 		if (BPF_CLASS(code) == BPF_LD &&
2840 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2841 			subprog[cur_subprog].has_ld_abs = true;
2842 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2843 			goto next;
2844 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2845 			goto next;
2846 		off = i + insn[i].off + 1;
2847 		if (off < subprog_start || off >= subprog_end) {
2848 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2849 			return -EINVAL;
2850 		}
2851 next:
2852 		if (i == subprog_end - 1) {
2853 			/* to avoid fall-through from one subprog into another
2854 			 * the last insn of the subprog should be either exit
2855 			 * or unconditional jump back
2856 			 */
2857 			if (code != (BPF_JMP | BPF_EXIT) &&
2858 			    code != (BPF_JMP | BPF_JA)) {
2859 				verbose(env, "last insn is not an exit or jmp\n");
2860 				return -EINVAL;
2861 			}
2862 			subprog_start = subprog_end;
2863 			cur_subprog++;
2864 			if (cur_subprog < env->subprog_cnt)
2865 				subprog_end = subprog[cur_subprog + 1].start;
2866 		}
2867 	}
2868 	return 0;
2869 }
2870 
2871 /* Parentage chain of this register (or stack slot) should take care of all
2872  * issues like callee-saved registers, stack slot allocation time, etc.
2873  */
2874 static int mark_reg_read(struct bpf_verifier_env *env,
2875 			 const struct bpf_reg_state *state,
2876 			 struct bpf_reg_state *parent, u8 flag)
2877 {
2878 	bool writes = parent == state->parent; /* Observe write marks */
2879 	int cnt = 0;
2880 
2881 	while (parent) {
2882 		/* if read wasn't screened by an earlier write ... */
2883 		if (writes && state->live & REG_LIVE_WRITTEN)
2884 			break;
2885 		if (parent->live & REG_LIVE_DONE) {
2886 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2887 				reg_type_str(env, parent->type),
2888 				parent->var_off.value, parent->off);
2889 			return -EFAULT;
2890 		}
2891 		/* The first condition is more likely to be true than the
2892 		 * second, checked it first.
2893 		 */
2894 		if ((parent->live & REG_LIVE_READ) == flag ||
2895 		    parent->live & REG_LIVE_READ64)
2896 			/* The parentage chain never changes and
2897 			 * this parent was already marked as LIVE_READ.
2898 			 * There is no need to keep walking the chain again and
2899 			 * keep re-marking all parents as LIVE_READ.
2900 			 * This case happens when the same register is read
2901 			 * multiple times without writes into it in-between.
2902 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2903 			 * then no need to set the weak REG_LIVE_READ32.
2904 			 */
2905 			break;
2906 		/* ... then we depend on parent's value */
2907 		parent->live |= flag;
2908 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2909 		if (flag == REG_LIVE_READ64)
2910 			parent->live &= ~REG_LIVE_READ32;
2911 		state = parent;
2912 		parent = state->parent;
2913 		writes = true;
2914 		cnt++;
2915 	}
2916 
2917 	if (env->longest_mark_read_walk < cnt)
2918 		env->longest_mark_read_walk = cnt;
2919 	return 0;
2920 }
2921 
2922 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2923 {
2924 	struct bpf_func_state *state = func(env, reg);
2925 	int spi, ret;
2926 
2927 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2928 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2929 	 * check_kfunc_call.
2930 	 */
2931 	if (reg->type == CONST_PTR_TO_DYNPTR)
2932 		return 0;
2933 	spi = dynptr_get_spi(env, reg);
2934 	if (spi < 0)
2935 		return spi;
2936 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2937 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2938 	 * read.
2939 	 */
2940 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2941 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2942 	if (ret)
2943 		return ret;
2944 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2945 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2946 }
2947 
2948 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2949 			  int spi, int nr_slots)
2950 {
2951 	struct bpf_func_state *state = func(env, reg);
2952 	int err, i;
2953 
2954 	for (i = 0; i < nr_slots; i++) {
2955 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2956 
2957 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2958 		if (err)
2959 			return err;
2960 
2961 		mark_stack_slot_scratched(env, spi - i);
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 /* This function is supposed to be used by the following 32-bit optimization
2968  * code only. It returns TRUE if the source or destination register operates
2969  * on 64-bit, otherwise return FALSE.
2970  */
2971 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2972 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2973 {
2974 	u8 code, class, op;
2975 
2976 	code = insn->code;
2977 	class = BPF_CLASS(code);
2978 	op = BPF_OP(code);
2979 	if (class == BPF_JMP) {
2980 		/* BPF_EXIT for "main" will reach here. Return TRUE
2981 		 * conservatively.
2982 		 */
2983 		if (op == BPF_EXIT)
2984 			return true;
2985 		if (op == BPF_CALL) {
2986 			/* BPF to BPF call will reach here because of marking
2987 			 * caller saved clobber with DST_OP_NO_MARK for which we
2988 			 * don't care the register def because they are anyway
2989 			 * marked as NOT_INIT already.
2990 			 */
2991 			if (insn->src_reg == BPF_PSEUDO_CALL)
2992 				return false;
2993 			/* Helper call will reach here because of arg type
2994 			 * check, conservatively return TRUE.
2995 			 */
2996 			if (t == SRC_OP)
2997 				return true;
2998 
2999 			return false;
3000 		}
3001 	}
3002 
3003 	if (class == BPF_ALU64 || class == BPF_JMP ||
3004 	    /* BPF_END always use BPF_ALU class. */
3005 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3006 		return true;
3007 
3008 	if (class == BPF_ALU || class == BPF_JMP32)
3009 		return false;
3010 
3011 	if (class == BPF_LDX) {
3012 		if (t != SRC_OP)
3013 			return BPF_SIZE(code) == BPF_DW;
3014 		/* LDX source must be ptr. */
3015 		return true;
3016 	}
3017 
3018 	if (class == BPF_STX) {
3019 		/* BPF_STX (including atomic variants) has multiple source
3020 		 * operands, one of which is a ptr. Check whether the caller is
3021 		 * asking about it.
3022 		 */
3023 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3024 			return true;
3025 		return BPF_SIZE(code) == BPF_DW;
3026 	}
3027 
3028 	if (class == BPF_LD) {
3029 		u8 mode = BPF_MODE(code);
3030 
3031 		/* LD_IMM64 */
3032 		if (mode == BPF_IMM)
3033 			return true;
3034 
3035 		/* Both LD_IND and LD_ABS return 32-bit data. */
3036 		if (t != SRC_OP)
3037 			return  false;
3038 
3039 		/* Implicit ctx ptr. */
3040 		if (regno == BPF_REG_6)
3041 			return true;
3042 
3043 		/* Explicit source could be any width. */
3044 		return true;
3045 	}
3046 
3047 	if (class == BPF_ST)
3048 		/* The only source register for BPF_ST is a ptr. */
3049 		return true;
3050 
3051 	/* Conservatively return true at default. */
3052 	return true;
3053 }
3054 
3055 /* Return the regno defined by the insn, or -1. */
3056 static int insn_def_regno(const struct bpf_insn *insn)
3057 {
3058 	switch (BPF_CLASS(insn->code)) {
3059 	case BPF_JMP:
3060 	case BPF_JMP32:
3061 	case BPF_ST:
3062 		return -1;
3063 	case BPF_STX:
3064 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3065 		    (insn->imm & BPF_FETCH)) {
3066 			if (insn->imm == BPF_CMPXCHG)
3067 				return BPF_REG_0;
3068 			else
3069 				return insn->src_reg;
3070 		} else {
3071 			return -1;
3072 		}
3073 	default:
3074 		return insn->dst_reg;
3075 	}
3076 }
3077 
3078 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3079 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3080 {
3081 	int dst_reg = insn_def_regno(insn);
3082 
3083 	if (dst_reg == -1)
3084 		return false;
3085 
3086 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3087 }
3088 
3089 static void mark_insn_zext(struct bpf_verifier_env *env,
3090 			   struct bpf_reg_state *reg)
3091 {
3092 	s32 def_idx = reg->subreg_def;
3093 
3094 	if (def_idx == DEF_NOT_SUBREG)
3095 		return;
3096 
3097 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3098 	/* The dst will be zero extended, so won't be sub-register anymore. */
3099 	reg->subreg_def = DEF_NOT_SUBREG;
3100 }
3101 
3102 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3103 			 enum reg_arg_type t)
3104 {
3105 	struct bpf_verifier_state *vstate = env->cur_state;
3106 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3107 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3108 	struct bpf_reg_state *reg, *regs = state->regs;
3109 	bool rw64;
3110 
3111 	if (regno >= MAX_BPF_REG) {
3112 		verbose(env, "R%d is invalid\n", regno);
3113 		return -EINVAL;
3114 	}
3115 
3116 	mark_reg_scratched(env, regno);
3117 
3118 	reg = &regs[regno];
3119 	rw64 = is_reg64(env, insn, regno, reg, t);
3120 	if (t == SRC_OP) {
3121 		/* check whether register used as source operand can be read */
3122 		if (reg->type == NOT_INIT) {
3123 			verbose(env, "R%d !read_ok\n", regno);
3124 			return -EACCES;
3125 		}
3126 		/* We don't need to worry about FP liveness because it's read-only */
3127 		if (regno == BPF_REG_FP)
3128 			return 0;
3129 
3130 		if (rw64)
3131 			mark_insn_zext(env, reg);
3132 
3133 		return mark_reg_read(env, reg, reg->parent,
3134 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3135 	} else {
3136 		/* check whether register used as dest operand can be written to */
3137 		if (regno == BPF_REG_FP) {
3138 			verbose(env, "frame pointer is read only\n");
3139 			return -EACCES;
3140 		}
3141 		reg->live |= REG_LIVE_WRITTEN;
3142 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3143 		if (t == DST_OP)
3144 			mark_reg_unknown(env, regs, regno);
3145 	}
3146 	return 0;
3147 }
3148 
3149 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3150 {
3151 	env->insn_aux_data[idx].jmp_point = true;
3152 }
3153 
3154 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3155 {
3156 	return env->insn_aux_data[insn_idx].jmp_point;
3157 }
3158 
3159 /* for any branch, call, exit record the history of jmps in the given state */
3160 static int push_jmp_history(struct bpf_verifier_env *env,
3161 			    struct bpf_verifier_state *cur)
3162 {
3163 	u32 cnt = cur->jmp_history_cnt;
3164 	struct bpf_idx_pair *p;
3165 	size_t alloc_size;
3166 
3167 	if (!is_jmp_point(env, env->insn_idx))
3168 		return 0;
3169 
3170 	cnt++;
3171 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3172 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3173 	if (!p)
3174 		return -ENOMEM;
3175 	p[cnt - 1].idx = env->insn_idx;
3176 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3177 	cur->jmp_history = p;
3178 	cur->jmp_history_cnt = cnt;
3179 	return 0;
3180 }
3181 
3182 /* Backtrack one insn at a time. If idx is not at the top of recorded
3183  * history then previous instruction came from straight line execution.
3184  */
3185 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3186 			     u32 *history)
3187 {
3188 	u32 cnt = *history;
3189 
3190 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3191 		i = st->jmp_history[cnt - 1].prev_idx;
3192 		(*history)--;
3193 	} else {
3194 		i--;
3195 	}
3196 	return i;
3197 }
3198 
3199 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3200 {
3201 	const struct btf_type *func;
3202 	struct btf *desc_btf;
3203 
3204 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3205 		return NULL;
3206 
3207 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3208 	if (IS_ERR(desc_btf))
3209 		return "<error>";
3210 
3211 	func = btf_type_by_id(desc_btf, insn->imm);
3212 	return btf_name_by_offset(desc_btf, func->name_off);
3213 }
3214 
3215 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3216 {
3217 	bt->frame = frame;
3218 }
3219 
3220 static inline void bt_reset(struct backtrack_state *bt)
3221 {
3222 	struct bpf_verifier_env *env = bt->env;
3223 
3224 	memset(bt, 0, sizeof(*bt));
3225 	bt->env = env;
3226 }
3227 
3228 static inline u32 bt_empty(struct backtrack_state *bt)
3229 {
3230 	u64 mask = 0;
3231 	int i;
3232 
3233 	for (i = 0; i <= bt->frame; i++)
3234 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3235 
3236 	return mask == 0;
3237 }
3238 
3239 static inline int bt_subprog_enter(struct backtrack_state *bt)
3240 {
3241 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3242 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3243 		WARN_ONCE(1, "verifier backtracking bug");
3244 		return -EFAULT;
3245 	}
3246 	bt->frame++;
3247 	return 0;
3248 }
3249 
3250 static inline int bt_subprog_exit(struct backtrack_state *bt)
3251 {
3252 	if (bt->frame == 0) {
3253 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3254 		WARN_ONCE(1, "verifier backtracking bug");
3255 		return -EFAULT;
3256 	}
3257 	bt->frame--;
3258 	return 0;
3259 }
3260 
3261 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3262 {
3263 	bt->reg_masks[frame] |= 1 << reg;
3264 }
3265 
3266 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3267 {
3268 	bt->reg_masks[frame] &= ~(1 << reg);
3269 }
3270 
3271 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3272 {
3273 	bt_set_frame_reg(bt, bt->frame, reg);
3274 }
3275 
3276 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3277 {
3278 	bt_clear_frame_reg(bt, bt->frame, reg);
3279 }
3280 
3281 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3282 {
3283 	bt->stack_masks[frame] |= 1ull << slot;
3284 }
3285 
3286 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3287 {
3288 	bt->stack_masks[frame] &= ~(1ull << slot);
3289 }
3290 
3291 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3292 {
3293 	bt_set_frame_slot(bt, bt->frame, slot);
3294 }
3295 
3296 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3297 {
3298 	bt_clear_frame_slot(bt, bt->frame, slot);
3299 }
3300 
3301 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3302 {
3303 	return bt->reg_masks[frame];
3304 }
3305 
3306 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3307 {
3308 	return bt->reg_masks[bt->frame];
3309 }
3310 
3311 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3312 {
3313 	return bt->stack_masks[frame];
3314 }
3315 
3316 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3317 {
3318 	return bt->stack_masks[bt->frame];
3319 }
3320 
3321 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3322 {
3323 	return bt->reg_masks[bt->frame] & (1 << reg);
3324 }
3325 
3326 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3327 {
3328 	return bt->stack_masks[bt->frame] & (1ull << slot);
3329 }
3330 
3331 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3332 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3333 {
3334 	DECLARE_BITMAP(mask, 64);
3335 	bool first = true;
3336 	int i, n;
3337 
3338 	buf[0] = '\0';
3339 
3340 	bitmap_from_u64(mask, reg_mask);
3341 	for_each_set_bit(i, mask, 32) {
3342 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3343 		first = false;
3344 		buf += n;
3345 		buf_sz -= n;
3346 		if (buf_sz < 0)
3347 			break;
3348 	}
3349 }
3350 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3351 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3352 {
3353 	DECLARE_BITMAP(mask, 64);
3354 	bool first = true;
3355 	int i, n;
3356 
3357 	buf[0] = '\0';
3358 
3359 	bitmap_from_u64(mask, stack_mask);
3360 	for_each_set_bit(i, mask, 64) {
3361 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3362 		first = false;
3363 		buf += n;
3364 		buf_sz -= n;
3365 		if (buf_sz < 0)
3366 			break;
3367 	}
3368 }
3369 
3370 /* For given verifier state backtrack_insn() is called from the last insn to
3371  * the first insn. Its purpose is to compute a bitmask of registers and
3372  * stack slots that needs precision in the parent verifier state.
3373  *
3374  * @idx is an index of the instruction we are currently processing;
3375  * @subseq_idx is an index of the subsequent instruction that:
3376  *   - *would be* executed next, if jump history is viewed in forward order;
3377  *   - *was* processed previously during backtracking.
3378  */
3379 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3380 			  struct backtrack_state *bt)
3381 {
3382 	const struct bpf_insn_cbs cbs = {
3383 		.cb_call	= disasm_kfunc_name,
3384 		.cb_print	= verbose,
3385 		.private_data	= env,
3386 	};
3387 	struct bpf_insn *insn = env->prog->insnsi + idx;
3388 	u8 class = BPF_CLASS(insn->code);
3389 	u8 opcode = BPF_OP(insn->code);
3390 	u8 mode = BPF_MODE(insn->code);
3391 	u32 dreg = insn->dst_reg;
3392 	u32 sreg = insn->src_reg;
3393 	u32 spi, i;
3394 
3395 	if (insn->code == 0)
3396 		return 0;
3397 	if (env->log.level & BPF_LOG_LEVEL2) {
3398 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3399 		verbose(env, "mark_precise: frame%d: regs=%s ",
3400 			bt->frame, env->tmp_str_buf);
3401 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3402 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3403 		verbose(env, "%d: ", idx);
3404 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3405 	}
3406 
3407 	if (class == BPF_ALU || class == BPF_ALU64) {
3408 		if (!bt_is_reg_set(bt, dreg))
3409 			return 0;
3410 		if (opcode == BPF_MOV) {
3411 			if (BPF_SRC(insn->code) == BPF_X) {
3412 				/* dreg = sreg
3413 				 * dreg needs precision after this insn
3414 				 * sreg needs precision before this insn
3415 				 */
3416 				bt_clear_reg(bt, dreg);
3417 				bt_set_reg(bt, sreg);
3418 			} else {
3419 				/* dreg = K
3420 				 * dreg needs precision after this insn.
3421 				 * Corresponding register is already marked
3422 				 * as precise=true in this verifier state.
3423 				 * No further markings in parent are necessary
3424 				 */
3425 				bt_clear_reg(bt, dreg);
3426 			}
3427 		} else {
3428 			if (BPF_SRC(insn->code) == BPF_X) {
3429 				/* dreg += sreg
3430 				 * both dreg and sreg need precision
3431 				 * before this insn
3432 				 */
3433 				bt_set_reg(bt, sreg);
3434 			} /* else dreg += K
3435 			   * dreg still needs precision before this insn
3436 			   */
3437 		}
3438 	} else if (class == BPF_LDX) {
3439 		if (!bt_is_reg_set(bt, dreg))
3440 			return 0;
3441 		bt_clear_reg(bt, dreg);
3442 
3443 		/* scalars can only be spilled into stack w/o losing precision.
3444 		 * Load from any other memory can be zero extended.
3445 		 * The desire to keep that precision is already indicated
3446 		 * by 'precise' mark in corresponding register of this state.
3447 		 * No further tracking necessary.
3448 		 */
3449 		if (insn->src_reg != BPF_REG_FP)
3450 			return 0;
3451 
3452 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3453 		 * that [fp - off] slot contains scalar that needs to be
3454 		 * tracked with precision
3455 		 */
3456 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3457 		if (spi >= 64) {
3458 			verbose(env, "BUG spi %d\n", spi);
3459 			WARN_ONCE(1, "verifier backtracking bug");
3460 			return -EFAULT;
3461 		}
3462 		bt_set_slot(bt, spi);
3463 	} else if (class == BPF_STX || class == BPF_ST) {
3464 		if (bt_is_reg_set(bt, dreg))
3465 			/* stx & st shouldn't be using _scalar_ dst_reg
3466 			 * to access memory. It means backtracking
3467 			 * encountered a case of pointer subtraction.
3468 			 */
3469 			return -ENOTSUPP;
3470 		/* scalars can only be spilled into stack */
3471 		if (insn->dst_reg != BPF_REG_FP)
3472 			return 0;
3473 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3474 		if (spi >= 64) {
3475 			verbose(env, "BUG spi %d\n", spi);
3476 			WARN_ONCE(1, "verifier backtracking bug");
3477 			return -EFAULT;
3478 		}
3479 		if (!bt_is_slot_set(bt, spi))
3480 			return 0;
3481 		bt_clear_slot(bt, spi);
3482 		if (class == BPF_STX)
3483 			bt_set_reg(bt, sreg);
3484 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3485 		if (bpf_pseudo_call(insn)) {
3486 			int subprog_insn_idx, subprog;
3487 
3488 			subprog_insn_idx = idx + insn->imm + 1;
3489 			subprog = find_subprog(env, subprog_insn_idx);
3490 			if (subprog < 0)
3491 				return -EFAULT;
3492 
3493 			if (subprog_is_global(env, subprog)) {
3494 				/* check that jump history doesn't have any
3495 				 * extra instructions from subprog; the next
3496 				 * instruction after call to global subprog
3497 				 * should be literally next instruction in
3498 				 * caller program
3499 				 */
3500 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3501 				/* r1-r5 are invalidated after subprog call,
3502 				 * so for global func call it shouldn't be set
3503 				 * anymore
3504 				 */
3505 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3506 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3507 					WARN_ONCE(1, "verifier backtracking bug");
3508 					return -EFAULT;
3509 				}
3510 				/* global subprog always sets R0 */
3511 				bt_clear_reg(bt, BPF_REG_0);
3512 				return 0;
3513 			} else {
3514 				/* static subprog call instruction, which
3515 				 * means that we are exiting current subprog,
3516 				 * so only r1-r5 could be still requested as
3517 				 * precise, r0 and r6-r10 or any stack slot in
3518 				 * the current frame should be zero by now
3519 				 */
3520 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3521 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3522 					WARN_ONCE(1, "verifier backtracking bug");
3523 					return -EFAULT;
3524 				}
3525 				/* we don't track register spills perfectly,
3526 				 * so fallback to force-precise instead of failing */
3527 				if (bt_stack_mask(bt) != 0)
3528 					return -ENOTSUPP;
3529 				/* propagate r1-r5 to the caller */
3530 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3531 					if (bt_is_reg_set(bt, i)) {
3532 						bt_clear_reg(bt, i);
3533 						bt_set_frame_reg(bt, bt->frame - 1, i);
3534 					}
3535 				}
3536 				if (bt_subprog_exit(bt))
3537 					return -EFAULT;
3538 				return 0;
3539 			}
3540 		} else if ((bpf_helper_call(insn) &&
3541 			    is_callback_calling_function(insn->imm) &&
3542 			    !is_async_callback_calling_function(insn->imm)) ||
3543 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3544 			/* callback-calling helper or kfunc call, which means
3545 			 * we are exiting from subprog, but unlike the subprog
3546 			 * call handling above, we shouldn't propagate
3547 			 * precision of r1-r5 (if any requested), as they are
3548 			 * not actually arguments passed directly to callback
3549 			 * subprogs
3550 			 */
3551 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3552 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3553 				WARN_ONCE(1, "verifier backtracking bug");
3554 				return -EFAULT;
3555 			}
3556 			if (bt_stack_mask(bt) != 0)
3557 				return -ENOTSUPP;
3558 			/* clear r1-r5 in callback subprog's mask */
3559 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3560 				bt_clear_reg(bt, i);
3561 			if (bt_subprog_exit(bt))
3562 				return -EFAULT;
3563 			return 0;
3564 		} else if (opcode == BPF_CALL) {
3565 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3566 			 * catch this error later. Make backtracking conservative
3567 			 * with ENOTSUPP.
3568 			 */
3569 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3570 				return -ENOTSUPP;
3571 			/* regular helper call sets R0 */
3572 			bt_clear_reg(bt, BPF_REG_0);
3573 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3574 				/* if backtracing was looking for registers R1-R5
3575 				 * they should have been found already.
3576 				 */
3577 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3578 				WARN_ONCE(1, "verifier backtracking bug");
3579 				return -EFAULT;
3580 			}
3581 		} else if (opcode == BPF_EXIT) {
3582 			bool r0_precise;
3583 
3584 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3585 				/* if backtracing was looking for registers R1-R5
3586 				 * they should have been found already.
3587 				 */
3588 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3589 				WARN_ONCE(1, "verifier backtracking bug");
3590 				return -EFAULT;
3591 			}
3592 
3593 			/* BPF_EXIT in subprog or callback always returns
3594 			 * right after the call instruction, so by checking
3595 			 * whether the instruction at subseq_idx-1 is subprog
3596 			 * call or not we can distinguish actual exit from
3597 			 * *subprog* from exit from *callback*. In the former
3598 			 * case, we need to propagate r0 precision, if
3599 			 * necessary. In the former we never do that.
3600 			 */
3601 			r0_precise = subseq_idx - 1 >= 0 &&
3602 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3603 				     bt_is_reg_set(bt, BPF_REG_0);
3604 
3605 			bt_clear_reg(bt, BPF_REG_0);
3606 			if (bt_subprog_enter(bt))
3607 				return -EFAULT;
3608 
3609 			if (r0_precise)
3610 				bt_set_reg(bt, BPF_REG_0);
3611 			/* r6-r9 and stack slots will stay set in caller frame
3612 			 * bitmasks until we return back from callee(s)
3613 			 */
3614 			return 0;
3615 		} else if (BPF_SRC(insn->code) == BPF_X) {
3616 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3617 				return 0;
3618 			/* dreg <cond> sreg
3619 			 * Both dreg and sreg need precision before
3620 			 * this insn. If only sreg was marked precise
3621 			 * before it would be equally necessary to
3622 			 * propagate it to dreg.
3623 			 */
3624 			bt_set_reg(bt, dreg);
3625 			bt_set_reg(bt, sreg);
3626 			 /* else dreg <cond> K
3627 			  * Only dreg still needs precision before
3628 			  * this insn, so for the K-based conditional
3629 			  * there is nothing new to be marked.
3630 			  */
3631 		}
3632 	} else if (class == BPF_LD) {
3633 		if (!bt_is_reg_set(bt, dreg))
3634 			return 0;
3635 		bt_clear_reg(bt, dreg);
3636 		/* It's ld_imm64 or ld_abs or ld_ind.
3637 		 * For ld_imm64 no further tracking of precision
3638 		 * into parent is necessary
3639 		 */
3640 		if (mode == BPF_IND || mode == BPF_ABS)
3641 			/* to be analyzed */
3642 			return -ENOTSUPP;
3643 	}
3644 	return 0;
3645 }
3646 
3647 /* the scalar precision tracking algorithm:
3648  * . at the start all registers have precise=false.
3649  * . scalar ranges are tracked as normal through alu and jmp insns.
3650  * . once precise value of the scalar register is used in:
3651  *   .  ptr + scalar alu
3652  *   . if (scalar cond K|scalar)
3653  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3654  *   backtrack through the verifier states and mark all registers and
3655  *   stack slots with spilled constants that these scalar regisers
3656  *   should be precise.
3657  * . during state pruning two registers (or spilled stack slots)
3658  *   are equivalent if both are not precise.
3659  *
3660  * Note the verifier cannot simply walk register parentage chain,
3661  * since many different registers and stack slots could have been
3662  * used to compute single precise scalar.
3663  *
3664  * The approach of starting with precise=true for all registers and then
3665  * backtrack to mark a register as not precise when the verifier detects
3666  * that program doesn't care about specific value (e.g., when helper
3667  * takes register as ARG_ANYTHING parameter) is not safe.
3668  *
3669  * It's ok to walk single parentage chain of the verifier states.
3670  * It's possible that this backtracking will go all the way till 1st insn.
3671  * All other branches will be explored for needing precision later.
3672  *
3673  * The backtracking needs to deal with cases like:
3674  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3675  * r9 -= r8
3676  * r5 = r9
3677  * if r5 > 0x79f goto pc+7
3678  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3679  * r5 += 1
3680  * ...
3681  * call bpf_perf_event_output#25
3682  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3683  *
3684  * and this case:
3685  * r6 = 1
3686  * call foo // uses callee's r6 inside to compute r0
3687  * r0 += r6
3688  * if r0 == 0 goto
3689  *
3690  * to track above reg_mask/stack_mask needs to be independent for each frame.
3691  *
3692  * Also if parent's curframe > frame where backtracking started,
3693  * the verifier need to mark registers in both frames, otherwise callees
3694  * may incorrectly prune callers. This is similar to
3695  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3696  *
3697  * For now backtracking falls back into conservative marking.
3698  */
3699 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3700 				     struct bpf_verifier_state *st)
3701 {
3702 	struct bpf_func_state *func;
3703 	struct bpf_reg_state *reg;
3704 	int i, j;
3705 
3706 	if (env->log.level & BPF_LOG_LEVEL2) {
3707 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3708 			st->curframe);
3709 	}
3710 
3711 	/* big hammer: mark all scalars precise in this path.
3712 	 * pop_stack may still get !precise scalars.
3713 	 * We also skip current state and go straight to first parent state,
3714 	 * because precision markings in current non-checkpointed state are
3715 	 * not needed. See why in the comment in __mark_chain_precision below.
3716 	 */
3717 	for (st = st->parent; st; st = st->parent) {
3718 		for (i = 0; i <= st->curframe; i++) {
3719 			func = st->frame[i];
3720 			for (j = 0; j < BPF_REG_FP; j++) {
3721 				reg = &func->regs[j];
3722 				if (reg->type != SCALAR_VALUE || reg->precise)
3723 					continue;
3724 				reg->precise = true;
3725 				if (env->log.level & BPF_LOG_LEVEL2) {
3726 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3727 						i, j);
3728 				}
3729 			}
3730 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3731 				if (!is_spilled_reg(&func->stack[j]))
3732 					continue;
3733 				reg = &func->stack[j].spilled_ptr;
3734 				if (reg->type != SCALAR_VALUE || reg->precise)
3735 					continue;
3736 				reg->precise = true;
3737 				if (env->log.level & BPF_LOG_LEVEL2) {
3738 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3739 						i, -(j + 1) * 8);
3740 				}
3741 			}
3742 		}
3743 	}
3744 }
3745 
3746 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3747 {
3748 	struct bpf_func_state *func;
3749 	struct bpf_reg_state *reg;
3750 	int i, j;
3751 
3752 	for (i = 0; i <= st->curframe; i++) {
3753 		func = st->frame[i];
3754 		for (j = 0; j < BPF_REG_FP; j++) {
3755 			reg = &func->regs[j];
3756 			if (reg->type != SCALAR_VALUE)
3757 				continue;
3758 			reg->precise = false;
3759 		}
3760 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3761 			if (!is_spilled_reg(&func->stack[j]))
3762 				continue;
3763 			reg = &func->stack[j].spilled_ptr;
3764 			if (reg->type != SCALAR_VALUE)
3765 				continue;
3766 			reg->precise = false;
3767 		}
3768 	}
3769 }
3770 
3771 /*
3772  * __mark_chain_precision() backtracks BPF program instruction sequence and
3773  * chain of verifier states making sure that register *regno* (if regno >= 0)
3774  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3775  * SCALARS, as well as any other registers and slots that contribute to
3776  * a tracked state of given registers/stack slots, depending on specific BPF
3777  * assembly instructions (see backtrack_insns() for exact instruction handling
3778  * logic). This backtracking relies on recorded jmp_history and is able to
3779  * traverse entire chain of parent states. This process ends only when all the
3780  * necessary registers/slots and their transitive dependencies are marked as
3781  * precise.
3782  *
3783  * One important and subtle aspect is that precise marks *do not matter* in
3784  * the currently verified state (current state). It is important to understand
3785  * why this is the case.
3786  *
3787  * First, note that current state is the state that is not yet "checkpointed",
3788  * i.e., it is not yet put into env->explored_states, and it has no children
3789  * states as well. It's ephemeral, and can end up either a) being discarded if
3790  * compatible explored state is found at some point or BPF_EXIT instruction is
3791  * reached or b) checkpointed and put into env->explored_states, branching out
3792  * into one or more children states.
3793  *
3794  * In the former case, precise markings in current state are completely
3795  * ignored by state comparison code (see regsafe() for details). Only
3796  * checkpointed ("old") state precise markings are important, and if old
3797  * state's register/slot is precise, regsafe() assumes current state's
3798  * register/slot as precise and checks value ranges exactly and precisely. If
3799  * states turn out to be compatible, current state's necessary precise
3800  * markings and any required parent states' precise markings are enforced
3801  * after the fact with propagate_precision() logic, after the fact. But it's
3802  * important to realize that in this case, even after marking current state
3803  * registers/slots as precise, we immediately discard current state. So what
3804  * actually matters is any of the precise markings propagated into current
3805  * state's parent states, which are always checkpointed (due to b) case above).
3806  * As such, for scenario a) it doesn't matter if current state has precise
3807  * markings set or not.
3808  *
3809  * Now, for the scenario b), checkpointing and forking into child(ren)
3810  * state(s). Note that before current state gets to checkpointing step, any
3811  * processed instruction always assumes precise SCALAR register/slot
3812  * knowledge: if precise value or range is useful to prune jump branch, BPF
3813  * verifier takes this opportunity enthusiastically. Similarly, when
3814  * register's value is used to calculate offset or memory address, exact
3815  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3816  * what we mentioned above about state comparison ignoring precise markings
3817  * during state comparison, BPF verifier ignores and also assumes precise
3818  * markings *at will* during instruction verification process. But as verifier
3819  * assumes precision, it also propagates any precision dependencies across
3820  * parent states, which are not yet finalized, so can be further restricted
3821  * based on new knowledge gained from restrictions enforced by their children
3822  * states. This is so that once those parent states are finalized, i.e., when
3823  * they have no more active children state, state comparison logic in
3824  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3825  * required for correctness.
3826  *
3827  * To build a bit more intuition, note also that once a state is checkpointed,
3828  * the path we took to get to that state is not important. This is crucial
3829  * property for state pruning. When state is checkpointed and finalized at
3830  * some instruction index, it can be correctly and safely used to "short
3831  * circuit" any *compatible* state that reaches exactly the same instruction
3832  * index. I.e., if we jumped to that instruction from a completely different
3833  * code path than original finalized state was derived from, it doesn't
3834  * matter, current state can be discarded because from that instruction
3835  * forward having a compatible state will ensure we will safely reach the
3836  * exit. States describe preconditions for further exploration, but completely
3837  * forget the history of how we got here.
3838  *
3839  * This also means that even if we needed precise SCALAR range to get to
3840  * finalized state, but from that point forward *that same* SCALAR register is
3841  * never used in a precise context (i.e., it's precise value is not needed for
3842  * correctness), it's correct and safe to mark such register as "imprecise"
3843  * (i.e., precise marking set to false). This is what we rely on when we do
3844  * not set precise marking in current state. If no child state requires
3845  * precision for any given SCALAR register, it's safe to dictate that it can
3846  * be imprecise. If any child state does require this register to be precise,
3847  * we'll mark it precise later retroactively during precise markings
3848  * propagation from child state to parent states.
3849  *
3850  * Skipping precise marking setting in current state is a mild version of
3851  * relying on the above observation. But we can utilize this property even
3852  * more aggressively by proactively forgetting any precise marking in the
3853  * current state (which we inherited from the parent state), right before we
3854  * checkpoint it and branch off into new child state. This is done by
3855  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3856  * finalized states which help in short circuiting more future states.
3857  */
3858 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3859 {
3860 	struct backtrack_state *bt = &env->bt;
3861 	struct bpf_verifier_state *st = env->cur_state;
3862 	int first_idx = st->first_insn_idx;
3863 	int last_idx = env->insn_idx;
3864 	struct bpf_func_state *func;
3865 	struct bpf_reg_state *reg;
3866 	bool skip_first = true;
3867 	int i, prev_i, fr, err;
3868 
3869 	if (!env->bpf_capable)
3870 		return 0;
3871 
3872 	/* set frame number from which we are starting to backtrack */
3873 	bt_init(bt, env->cur_state->curframe);
3874 
3875 	/* Do sanity checks against current state of register and/or stack
3876 	 * slot, but don't set precise flag in current state, as precision
3877 	 * tracking in the current state is unnecessary.
3878 	 */
3879 	func = st->frame[bt->frame];
3880 	if (regno >= 0) {
3881 		reg = &func->regs[regno];
3882 		if (reg->type != SCALAR_VALUE) {
3883 			WARN_ONCE(1, "backtracing misuse");
3884 			return -EFAULT;
3885 		}
3886 		bt_set_reg(bt, regno);
3887 	}
3888 
3889 	if (bt_empty(bt))
3890 		return 0;
3891 
3892 	for (;;) {
3893 		DECLARE_BITMAP(mask, 64);
3894 		u32 history = st->jmp_history_cnt;
3895 
3896 		if (env->log.level & BPF_LOG_LEVEL2) {
3897 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d\n",
3898 				bt->frame, last_idx, first_idx);
3899 		}
3900 
3901 		if (last_idx < 0) {
3902 			/* we are at the entry into subprog, which
3903 			 * is expected for global funcs, but only if
3904 			 * requested precise registers are R1-R5
3905 			 * (which are global func's input arguments)
3906 			 */
3907 			if (st->curframe == 0 &&
3908 			    st->frame[0]->subprogno > 0 &&
3909 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3910 			    bt_stack_mask(bt) == 0 &&
3911 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
3912 				bitmap_from_u64(mask, bt_reg_mask(bt));
3913 				for_each_set_bit(i, mask, 32) {
3914 					reg = &st->frame[0]->regs[i];
3915 					if (reg->type != SCALAR_VALUE) {
3916 						bt_clear_reg(bt, i);
3917 						continue;
3918 					}
3919 					reg->precise = true;
3920 				}
3921 				return 0;
3922 			}
3923 
3924 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
3925 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
3926 			WARN_ONCE(1, "verifier backtracking bug");
3927 			return -EFAULT;
3928 		}
3929 
3930 		for (i = last_idx, prev_i = -1;;) {
3931 			if (skip_first) {
3932 				err = 0;
3933 				skip_first = false;
3934 			} else {
3935 				err = backtrack_insn(env, i, prev_i, bt);
3936 			}
3937 			if (err == -ENOTSUPP) {
3938 				mark_all_scalars_precise(env, env->cur_state);
3939 				bt_reset(bt);
3940 				return 0;
3941 			} else if (err) {
3942 				return err;
3943 			}
3944 			if (bt_empty(bt))
3945 				/* Found assignment(s) into tracked register in this state.
3946 				 * Since this state is already marked, just return.
3947 				 * Nothing to be tracked further in the parent state.
3948 				 */
3949 				return 0;
3950 			if (i == first_idx)
3951 				break;
3952 			prev_i = i;
3953 			i = get_prev_insn_idx(st, i, &history);
3954 			if (i >= env->prog->len) {
3955 				/* This can happen if backtracking reached insn 0
3956 				 * and there are still reg_mask or stack_mask
3957 				 * to backtrack.
3958 				 * It means the backtracking missed the spot where
3959 				 * particular register was initialized with a constant.
3960 				 */
3961 				verbose(env, "BUG backtracking idx %d\n", i);
3962 				WARN_ONCE(1, "verifier backtracking bug");
3963 				return -EFAULT;
3964 			}
3965 		}
3966 		st = st->parent;
3967 		if (!st)
3968 			break;
3969 
3970 		for (fr = bt->frame; fr >= 0; fr--) {
3971 			func = st->frame[fr];
3972 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3973 			for_each_set_bit(i, mask, 32) {
3974 				reg = &func->regs[i];
3975 				if (reg->type != SCALAR_VALUE) {
3976 					bt_clear_frame_reg(bt, fr, i);
3977 					continue;
3978 				}
3979 				if (reg->precise)
3980 					bt_clear_frame_reg(bt, fr, i);
3981 				else
3982 					reg->precise = true;
3983 			}
3984 
3985 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3986 			for_each_set_bit(i, mask, 64) {
3987 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
3988 					/* the sequence of instructions:
3989 					 * 2: (bf) r3 = r10
3990 					 * 3: (7b) *(u64 *)(r3 -8) = r0
3991 					 * 4: (79) r4 = *(u64 *)(r10 -8)
3992 					 * doesn't contain jmps. It's backtracked
3993 					 * as a single block.
3994 					 * During backtracking insn 3 is not recognized as
3995 					 * stack access, so at the end of backtracking
3996 					 * stack slot fp-8 is still marked in stack_mask.
3997 					 * However the parent state may not have accessed
3998 					 * fp-8 and it's "unallocated" stack space.
3999 					 * In such case fallback to conservative.
4000 					 */
4001 					mark_all_scalars_precise(env, env->cur_state);
4002 					bt_reset(bt);
4003 					return 0;
4004 				}
4005 
4006 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4007 					bt_clear_frame_slot(bt, fr, i);
4008 					continue;
4009 				}
4010 				reg = &func->stack[i].spilled_ptr;
4011 				if (reg->precise)
4012 					bt_clear_frame_slot(bt, fr, i);
4013 				else
4014 					reg->precise = true;
4015 			}
4016 			if (env->log.level & BPF_LOG_LEVEL2) {
4017 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4018 					     bt_frame_reg_mask(bt, fr));
4019 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4020 					fr, env->tmp_str_buf);
4021 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4022 					       bt_frame_stack_mask(bt, fr));
4023 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4024 				print_verifier_state(env, func, true);
4025 			}
4026 		}
4027 
4028 		if (bt_empty(bt))
4029 			return 0;
4030 
4031 		last_idx = st->last_insn_idx;
4032 		first_idx = st->first_insn_idx;
4033 	}
4034 
4035 	/* if we still have requested precise regs or slots, we missed
4036 	 * something (e.g., stack access through non-r10 register), so
4037 	 * fallback to marking all precise
4038 	 */
4039 	if (!bt_empty(bt)) {
4040 		mark_all_scalars_precise(env, env->cur_state);
4041 		bt_reset(bt);
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4048 {
4049 	return __mark_chain_precision(env, regno);
4050 }
4051 
4052 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4053  * desired reg and stack masks across all relevant frames
4054  */
4055 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4056 {
4057 	return __mark_chain_precision(env, -1);
4058 }
4059 
4060 static bool is_spillable_regtype(enum bpf_reg_type type)
4061 {
4062 	switch (base_type(type)) {
4063 	case PTR_TO_MAP_VALUE:
4064 	case PTR_TO_STACK:
4065 	case PTR_TO_CTX:
4066 	case PTR_TO_PACKET:
4067 	case PTR_TO_PACKET_META:
4068 	case PTR_TO_PACKET_END:
4069 	case PTR_TO_FLOW_KEYS:
4070 	case CONST_PTR_TO_MAP:
4071 	case PTR_TO_SOCKET:
4072 	case PTR_TO_SOCK_COMMON:
4073 	case PTR_TO_TCP_SOCK:
4074 	case PTR_TO_XDP_SOCK:
4075 	case PTR_TO_BTF_ID:
4076 	case PTR_TO_BUF:
4077 	case PTR_TO_MEM:
4078 	case PTR_TO_FUNC:
4079 	case PTR_TO_MAP_KEY:
4080 		return true;
4081 	default:
4082 		return false;
4083 	}
4084 }
4085 
4086 /* Does this register contain a constant zero? */
4087 static bool register_is_null(struct bpf_reg_state *reg)
4088 {
4089 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4090 }
4091 
4092 static bool register_is_const(struct bpf_reg_state *reg)
4093 {
4094 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4095 }
4096 
4097 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4098 {
4099 	return tnum_is_unknown(reg->var_off) &&
4100 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4101 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4102 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4103 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4104 }
4105 
4106 static bool register_is_bounded(struct bpf_reg_state *reg)
4107 {
4108 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4109 }
4110 
4111 static bool __is_pointer_value(bool allow_ptr_leaks,
4112 			       const struct bpf_reg_state *reg)
4113 {
4114 	if (allow_ptr_leaks)
4115 		return false;
4116 
4117 	return reg->type != SCALAR_VALUE;
4118 }
4119 
4120 /* Copy src state preserving dst->parent and dst->live fields */
4121 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4122 {
4123 	struct bpf_reg_state *parent = dst->parent;
4124 	enum bpf_reg_liveness live = dst->live;
4125 
4126 	*dst = *src;
4127 	dst->parent = parent;
4128 	dst->live = live;
4129 }
4130 
4131 static void save_register_state(struct bpf_func_state *state,
4132 				int spi, struct bpf_reg_state *reg,
4133 				int size)
4134 {
4135 	int i;
4136 
4137 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4138 	if (size == BPF_REG_SIZE)
4139 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4140 
4141 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4142 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4143 
4144 	/* size < 8 bytes spill */
4145 	for (; i; i--)
4146 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4147 }
4148 
4149 static bool is_bpf_st_mem(struct bpf_insn *insn)
4150 {
4151 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4152 }
4153 
4154 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4155  * stack boundary and alignment are checked in check_mem_access()
4156  */
4157 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4158 				       /* stack frame we're writing to */
4159 				       struct bpf_func_state *state,
4160 				       int off, int size, int value_regno,
4161 				       int insn_idx)
4162 {
4163 	struct bpf_func_state *cur; /* state of the current function */
4164 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4165 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4166 	struct bpf_reg_state *reg = NULL;
4167 	u32 dst_reg = insn->dst_reg;
4168 
4169 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4170 	if (err)
4171 		return err;
4172 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4173 	 * so it's aligned access and [off, off + size) are within stack limits
4174 	 */
4175 	if (!env->allow_ptr_leaks &&
4176 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4177 	    size != BPF_REG_SIZE) {
4178 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4179 		return -EACCES;
4180 	}
4181 
4182 	cur = env->cur_state->frame[env->cur_state->curframe];
4183 	if (value_regno >= 0)
4184 		reg = &cur->regs[value_regno];
4185 	if (!env->bypass_spec_v4) {
4186 		bool sanitize = reg && is_spillable_regtype(reg->type);
4187 
4188 		for (i = 0; i < size; i++) {
4189 			u8 type = state->stack[spi].slot_type[i];
4190 
4191 			if (type != STACK_MISC && type != STACK_ZERO) {
4192 				sanitize = true;
4193 				break;
4194 			}
4195 		}
4196 
4197 		if (sanitize)
4198 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4199 	}
4200 
4201 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4202 	if (err)
4203 		return err;
4204 
4205 	mark_stack_slot_scratched(env, spi);
4206 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4207 	    !register_is_null(reg) && env->bpf_capable) {
4208 		if (dst_reg != BPF_REG_FP) {
4209 			/* The backtracking logic can only recognize explicit
4210 			 * stack slot address like [fp - 8]. Other spill of
4211 			 * scalar via different register has to be conservative.
4212 			 * Backtrack from here and mark all registers as precise
4213 			 * that contributed into 'reg' being a constant.
4214 			 */
4215 			err = mark_chain_precision(env, value_regno);
4216 			if (err)
4217 				return err;
4218 		}
4219 		save_register_state(state, spi, reg, size);
4220 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4221 		   insn->imm != 0 && env->bpf_capable) {
4222 		struct bpf_reg_state fake_reg = {};
4223 
4224 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4225 		fake_reg.type = SCALAR_VALUE;
4226 		save_register_state(state, spi, &fake_reg, size);
4227 	} else if (reg && is_spillable_regtype(reg->type)) {
4228 		/* register containing pointer is being spilled into stack */
4229 		if (size != BPF_REG_SIZE) {
4230 			verbose_linfo(env, insn_idx, "; ");
4231 			verbose(env, "invalid size of register spill\n");
4232 			return -EACCES;
4233 		}
4234 		if (state != cur && reg->type == PTR_TO_STACK) {
4235 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4236 			return -EINVAL;
4237 		}
4238 		save_register_state(state, spi, reg, size);
4239 	} else {
4240 		u8 type = STACK_MISC;
4241 
4242 		/* regular write of data into stack destroys any spilled ptr */
4243 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4244 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4245 		if (is_stack_slot_special(&state->stack[spi]))
4246 			for (i = 0; i < BPF_REG_SIZE; i++)
4247 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4248 
4249 		/* only mark the slot as written if all 8 bytes were written
4250 		 * otherwise read propagation may incorrectly stop too soon
4251 		 * when stack slots are partially written.
4252 		 * This heuristic means that read propagation will be
4253 		 * conservative, since it will add reg_live_read marks
4254 		 * to stack slots all the way to first state when programs
4255 		 * writes+reads less than 8 bytes
4256 		 */
4257 		if (size == BPF_REG_SIZE)
4258 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4259 
4260 		/* when we zero initialize stack slots mark them as such */
4261 		if ((reg && register_is_null(reg)) ||
4262 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4263 			/* backtracking doesn't work for STACK_ZERO yet. */
4264 			err = mark_chain_precision(env, value_regno);
4265 			if (err)
4266 				return err;
4267 			type = STACK_ZERO;
4268 		}
4269 
4270 		/* Mark slots affected by this stack write. */
4271 		for (i = 0; i < size; i++)
4272 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4273 				type;
4274 	}
4275 	return 0;
4276 }
4277 
4278 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4279  * known to contain a variable offset.
4280  * This function checks whether the write is permitted and conservatively
4281  * tracks the effects of the write, considering that each stack slot in the
4282  * dynamic range is potentially written to.
4283  *
4284  * 'off' includes 'regno->off'.
4285  * 'value_regno' can be -1, meaning that an unknown value is being written to
4286  * the stack.
4287  *
4288  * Spilled pointers in range are not marked as written because we don't know
4289  * what's going to be actually written. This means that read propagation for
4290  * future reads cannot be terminated by this write.
4291  *
4292  * For privileged programs, uninitialized stack slots are considered
4293  * initialized by this write (even though we don't know exactly what offsets
4294  * are going to be written to). The idea is that we don't want the verifier to
4295  * reject future reads that access slots written to through variable offsets.
4296  */
4297 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4298 				     /* func where register points to */
4299 				     struct bpf_func_state *state,
4300 				     int ptr_regno, int off, int size,
4301 				     int value_regno, int insn_idx)
4302 {
4303 	struct bpf_func_state *cur; /* state of the current function */
4304 	int min_off, max_off;
4305 	int i, err;
4306 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4307 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4308 	bool writing_zero = false;
4309 	/* set if the fact that we're writing a zero is used to let any
4310 	 * stack slots remain STACK_ZERO
4311 	 */
4312 	bool zero_used = false;
4313 
4314 	cur = env->cur_state->frame[env->cur_state->curframe];
4315 	ptr_reg = &cur->regs[ptr_regno];
4316 	min_off = ptr_reg->smin_value + off;
4317 	max_off = ptr_reg->smax_value + off + size;
4318 	if (value_regno >= 0)
4319 		value_reg = &cur->regs[value_regno];
4320 	if ((value_reg && register_is_null(value_reg)) ||
4321 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4322 		writing_zero = true;
4323 
4324 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4325 	if (err)
4326 		return err;
4327 
4328 	for (i = min_off; i < max_off; i++) {
4329 		int spi;
4330 
4331 		spi = __get_spi(i);
4332 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4333 		if (err)
4334 			return err;
4335 	}
4336 
4337 	/* Variable offset writes destroy any spilled pointers in range. */
4338 	for (i = min_off; i < max_off; i++) {
4339 		u8 new_type, *stype;
4340 		int slot, spi;
4341 
4342 		slot = -i - 1;
4343 		spi = slot / BPF_REG_SIZE;
4344 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4345 		mark_stack_slot_scratched(env, spi);
4346 
4347 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4348 			/* Reject the write if range we may write to has not
4349 			 * been initialized beforehand. If we didn't reject
4350 			 * here, the ptr status would be erased below (even
4351 			 * though not all slots are actually overwritten),
4352 			 * possibly opening the door to leaks.
4353 			 *
4354 			 * We do however catch STACK_INVALID case below, and
4355 			 * only allow reading possibly uninitialized memory
4356 			 * later for CAP_PERFMON, as the write may not happen to
4357 			 * that slot.
4358 			 */
4359 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4360 				insn_idx, i);
4361 			return -EINVAL;
4362 		}
4363 
4364 		/* Erase all spilled pointers. */
4365 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4366 
4367 		/* Update the slot type. */
4368 		new_type = STACK_MISC;
4369 		if (writing_zero && *stype == STACK_ZERO) {
4370 			new_type = STACK_ZERO;
4371 			zero_used = true;
4372 		}
4373 		/* If the slot is STACK_INVALID, we check whether it's OK to
4374 		 * pretend that it will be initialized by this write. The slot
4375 		 * might not actually be written to, and so if we mark it as
4376 		 * initialized future reads might leak uninitialized memory.
4377 		 * For privileged programs, we will accept such reads to slots
4378 		 * that may or may not be written because, if we're reject
4379 		 * them, the error would be too confusing.
4380 		 */
4381 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4382 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4383 					insn_idx, i);
4384 			return -EINVAL;
4385 		}
4386 		*stype = new_type;
4387 	}
4388 	if (zero_used) {
4389 		/* backtracking doesn't work for STACK_ZERO yet. */
4390 		err = mark_chain_precision(env, value_regno);
4391 		if (err)
4392 			return err;
4393 	}
4394 	return 0;
4395 }
4396 
4397 /* When register 'dst_regno' is assigned some values from stack[min_off,
4398  * max_off), we set the register's type according to the types of the
4399  * respective stack slots. If all the stack values are known to be zeros, then
4400  * so is the destination reg. Otherwise, the register is considered to be
4401  * SCALAR. This function does not deal with register filling; the caller must
4402  * ensure that all spilled registers in the stack range have been marked as
4403  * read.
4404  */
4405 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4406 				/* func where src register points to */
4407 				struct bpf_func_state *ptr_state,
4408 				int min_off, int max_off, int dst_regno)
4409 {
4410 	struct bpf_verifier_state *vstate = env->cur_state;
4411 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4412 	int i, slot, spi;
4413 	u8 *stype;
4414 	int zeros = 0;
4415 
4416 	for (i = min_off; i < max_off; i++) {
4417 		slot = -i - 1;
4418 		spi = slot / BPF_REG_SIZE;
4419 		mark_stack_slot_scratched(env, spi);
4420 		stype = ptr_state->stack[spi].slot_type;
4421 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4422 			break;
4423 		zeros++;
4424 	}
4425 	if (zeros == max_off - min_off) {
4426 		/* any access_size read into register is zero extended,
4427 		 * so the whole register == const_zero
4428 		 */
4429 		__mark_reg_const_zero(&state->regs[dst_regno]);
4430 		/* backtracking doesn't support STACK_ZERO yet,
4431 		 * so mark it precise here, so that later
4432 		 * backtracking can stop here.
4433 		 * Backtracking may not need this if this register
4434 		 * doesn't participate in pointer adjustment.
4435 		 * Forward propagation of precise flag is not
4436 		 * necessary either. This mark is only to stop
4437 		 * backtracking. Any register that contributed
4438 		 * to const 0 was marked precise before spill.
4439 		 */
4440 		state->regs[dst_regno].precise = true;
4441 	} else {
4442 		/* have read misc data from the stack */
4443 		mark_reg_unknown(env, state->regs, dst_regno);
4444 	}
4445 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4446 }
4447 
4448 /* Read the stack at 'off' and put the results into the register indicated by
4449  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4450  * spilled reg.
4451  *
4452  * 'dst_regno' can be -1, meaning that the read value is not going to a
4453  * register.
4454  *
4455  * The access is assumed to be within the current stack bounds.
4456  */
4457 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4458 				      /* func where src register points to */
4459 				      struct bpf_func_state *reg_state,
4460 				      int off, int size, int dst_regno)
4461 {
4462 	struct bpf_verifier_state *vstate = env->cur_state;
4463 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4464 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4465 	struct bpf_reg_state *reg;
4466 	u8 *stype, type;
4467 
4468 	stype = reg_state->stack[spi].slot_type;
4469 	reg = &reg_state->stack[spi].spilled_ptr;
4470 
4471 	mark_stack_slot_scratched(env, spi);
4472 
4473 	if (is_spilled_reg(&reg_state->stack[spi])) {
4474 		u8 spill_size = 1;
4475 
4476 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4477 			spill_size++;
4478 
4479 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4480 			if (reg->type != SCALAR_VALUE) {
4481 				verbose_linfo(env, env->insn_idx, "; ");
4482 				verbose(env, "invalid size of register fill\n");
4483 				return -EACCES;
4484 			}
4485 
4486 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4487 			if (dst_regno < 0)
4488 				return 0;
4489 
4490 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4491 				/* The earlier check_reg_arg() has decided the
4492 				 * subreg_def for this insn.  Save it first.
4493 				 */
4494 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4495 
4496 				copy_register_state(&state->regs[dst_regno], reg);
4497 				state->regs[dst_regno].subreg_def = subreg_def;
4498 			} else {
4499 				for (i = 0; i < size; i++) {
4500 					type = stype[(slot - i) % BPF_REG_SIZE];
4501 					if (type == STACK_SPILL)
4502 						continue;
4503 					if (type == STACK_MISC)
4504 						continue;
4505 					if (type == STACK_INVALID && env->allow_uninit_stack)
4506 						continue;
4507 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4508 						off, i, size);
4509 					return -EACCES;
4510 				}
4511 				mark_reg_unknown(env, state->regs, dst_regno);
4512 			}
4513 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4514 			return 0;
4515 		}
4516 
4517 		if (dst_regno >= 0) {
4518 			/* restore register state from stack */
4519 			copy_register_state(&state->regs[dst_regno], reg);
4520 			/* mark reg as written since spilled pointer state likely
4521 			 * has its liveness marks cleared by is_state_visited()
4522 			 * which resets stack/reg liveness for state transitions
4523 			 */
4524 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4525 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4526 			/* If dst_regno==-1, the caller is asking us whether
4527 			 * it is acceptable to use this value as a SCALAR_VALUE
4528 			 * (e.g. for XADD).
4529 			 * We must not allow unprivileged callers to do that
4530 			 * with spilled pointers.
4531 			 */
4532 			verbose(env, "leaking pointer from stack off %d\n",
4533 				off);
4534 			return -EACCES;
4535 		}
4536 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4537 	} else {
4538 		for (i = 0; i < size; i++) {
4539 			type = stype[(slot - i) % BPF_REG_SIZE];
4540 			if (type == STACK_MISC)
4541 				continue;
4542 			if (type == STACK_ZERO)
4543 				continue;
4544 			if (type == STACK_INVALID && env->allow_uninit_stack)
4545 				continue;
4546 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4547 				off, i, size);
4548 			return -EACCES;
4549 		}
4550 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4551 		if (dst_regno >= 0)
4552 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4553 	}
4554 	return 0;
4555 }
4556 
4557 enum bpf_access_src {
4558 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4559 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4560 };
4561 
4562 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4563 					 int regno, int off, int access_size,
4564 					 bool zero_size_allowed,
4565 					 enum bpf_access_src type,
4566 					 struct bpf_call_arg_meta *meta);
4567 
4568 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4569 {
4570 	return cur_regs(env) + regno;
4571 }
4572 
4573 /* Read the stack at 'ptr_regno + off' and put the result into the register
4574  * 'dst_regno'.
4575  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4576  * but not its variable offset.
4577  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4578  *
4579  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4580  * filling registers (i.e. reads of spilled register cannot be detected when
4581  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4582  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4583  * offset; for a fixed offset check_stack_read_fixed_off should be used
4584  * instead.
4585  */
4586 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4587 				    int ptr_regno, int off, int size, int dst_regno)
4588 {
4589 	/* The state of the source register. */
4590 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4591 	struct bpf_func_state *ptr_state = func(env, reg);
4592 	int err;
4593 	int min_off, max_off;
4594 
4595 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4596 	 */
4597 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4598 					    false, ACCESS_DIRECT, NULL);
4599 	if (err)
4600 		return err;
4601 
4602 	min_off = reg->smin_value + off;
4603 	max_off = reg->smax_value + off;
4604 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4605 	return 0;
4606 }
4607 
4608 /* check_stack_read dispatches to check_stack_read_fixed_off or
4609  * check_stack_read_var_off.
4610  *
4611  * The caller must ensure that the offset falls within the allocated stack
4612  * bounds.
4613  *
4614  * 'dst_regno' is a register which will receive the value from the stack. It
4615  * can be -1, meaning that the read value is not going to a register.
4616  */
4617 static int check_stack_read(struct bpf_verifier_env *env,
4618 			    int ptr_regno, int off, int size,
4619 			    int dst_regno)
4620 {
4621 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4622 	struct bpf_func_state *state = func(env, reg);
4623 	int err;
4624 	/* Some accesses are only permitted with a static offset. */
4625 	bool var_off = !tnum_is_const(reg->var_off);
4626 
4627 	/* The offset is required to be static when reads don't go to a
4628 	 * register, in order to not leak pointers (see
4629 	 * check_stack_read_fixed_off).
4630 	 */
4631 	if (dst_regno < 0 && var_off) {
4632 		char tn_buf[48];
4633 
4634 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4635 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4636 			tn_buf, off, size);
4637 		return -EACCES;
4638 	}
4639 	/* Variable offset is prohibited for unprivileged mode for simplicity
4640 	 * since it requires corresponding support in Spectre masking for stack
4641 	 * ALU. See also retrieve_ptr_limit(). The check in
4642 	 * check_stack_access_for_ptr_arithmetic() called by
4643 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4644 	 * with variable offsets, therefore no check is required here. Further,
4645 	 * just checking it here would be insufficient as speculative stack
4646 	 * writes could still lead to unsafe speculative behaviour.
4647 	 */
4648 	if (!var_off) {
4649 		off += reg->var_off.value;
4650 		err = check_stack_read_fixed_off(env, state, off, size,
4651 						 dst_regno);
4652 	} else {
4653 		/* Variable offset stack reads need more conservative handling
4654 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4655 		 * branch.
4656 		 */
4657 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4658 					       dst_regno);
4659 	}
4660 	return err;
4661 }
4662 
4663 
4664 /* check_stack_write dispatches to check_stack_write_fixed_off or
4665  * check_stack_write_var_off.
4666  *
4667  * 'ptr_regno' is the register used as a pointer into the stack.
4668  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4669  * 'value_regno' is the register whose value we're writing to the stack. It can
4670  * be -1, meaning that we're not writing from a register.
4671  *
4672  * The caller must ensure that the offset falls within the maximum stack size.
4673  */
4674 static int check_stack_write(struct bpf_verifier_env *env,
4675 			     int ptr_regno, int off, int size,
4676 			     int value_regno, int insn_idx)
4677 {
4678 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4679 	struct bpf_func_state *state = func(env, reg);
4680 	int err;
4681 
4682 	if (tnum_is_const(reg->var_off)) {
4683 		off += reg->var_off.value;
4684 		err = check_stack_write_fixed_off(env, state, off, size,
4685 						  value_regno, insn_idx);
4686 	} else {
4687 		/* Variable offset stack reads need more conservative handling
4688 		 * than fixed offset ones.
4689 		 */
4690 		err = check_stack_write_var_off(env, state,
4691 						ptr_regno, off, size,
4692 						value_regno, insn_idx);
4693 	}
4694 	return err;
4695 }
4696 
4697 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4698 				 int off, int size, enum bpf_access_type type)
4699 {
4700 	struct bpf_reg_state *regs = cur_regs(env);
4701 	struct bpf_map *map = regs[regno].map_ptr;
4702 	u32 cap = bpf_map_flags_to_cap(map);
4703 
4704 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4705 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4706 			map->value_size, off, size);
4707 		return -EACCES;
4708 	}
4709 
4710 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4711 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4712 			map->value_size, off, size);
4713 		return -EACCES;
4714 	}
4715 
4716 	return 0;
4717 }
4718 
4719 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4720 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4721 			      int off, int size, u32 mem_size,
4722 			      bool zero_size_allowed)
4723 {
4724 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4725 	struct bpf_reg_state *reg;
4726 
4727 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4728 		return 0;
4729 
4730 	reg = &cur_regs(env)[regno];
4731 	switch (reg->type) {
4732 	case PTR_TO_MAP_KEY:
4733 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4734 			mem_size, off, size);
4735 		break;
4736 	case PTR_TO_MAP_VALUE:
4737 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4738 			mem_size, off, size);
4739 		break;
4740 	case PTR_TO_PACKET:
4741 	case PTR_TO_PACKET_META:
4742 	case PTR_TO_PACKET_END:
4743 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4744 			off, size, regno, reg->id, off, mem_size);
4745 		break;
4746 	case PTR_TO_MEM:
4747 	default:
4748 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4749 			mem_size, off, size);
4750 	}
4751 
4752 	return -EACCES;
4753 }
4754 
4755 /* check read/write into a memory region with possible variable offset */
4756 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4757 				   int off, int size, u32 mem_size,
4758 				   bool zero_size_allowed)
4759 {
4760 	struct bpf_verifier_state *vstate = env->cur_state;
4761 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4762 	struct bpf_reg_state *reg = &state->regs[regno];
4763 	int err;
4764 
4765 	/* We may have adjusted the register pointing to memory region, so we
4766 	 * need to try adding each of min_value and max_value to off
4767 	 * to make sure our theoretical access will be safe.
4768 	 *
4769 	 * The minimum value is only important with signed
4770 	 * comparisons where we can't assume the floor of a
4771 	 * value is 0.  If we are using signed variables for our
4772 	 * index'es we need to make sure that whatever we use
4773 	 * will have a set floor within our range.
4774 	 */
4775 	if (reg->smin_value < 0 &&
4776 	    (reg->smin_value == S64_MIN ||
4777 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4778 	      reg->smin_value + off < 0)) {
4779 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4780 			regno);
4781 		return -EACCES;
4782 	}
4783 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4784 				 mem_size, zero_size_allowed);
4785 	if (err) {
4786 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4787 			regno);
4788 		return err;
4789 	}
4790 
4791 	/* If we haven't set a max value then we need to bail since we can't be
4792 	 * sure we won't do bad things.
4793 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4794 	 */
4795 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4796 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4797 			regno);
4798 		return -EACCES;
4799 	}
4800 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4801 				 mem_size, zero_size_allowed);
4802 	if (err) {
4803 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4804 			regno);
4805 		return err;
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4812 			       const struct bpf_reg_state *reg, int regno,
4813 			       bool fixed_off_ok)
4814 {
4815 	/* Access to this pointer-typed register or passing it to a helper
4816 	 * is only allowed in its original, unmodified form.
4817 	 */
4818 
4819 	if (reg->off < 0) {
4820 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4821 			reg_type_str(env, reg->type), regno, reg->off);
4822 		return -EACCES;
4823 	}
4824 
4825 	if (!fixed_off_ok && reg->off) {
4826 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4827 			reg_type_str(env, reg->type), regno, reg->off);
4828 		return -EACCES;
4829 	}
4830 
4831 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4832 		char tn_buf[48];
4833 
4834 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4835 		verbose(env, "variable %s access var_off=%s disallowed\n",
4836 			reg_type_str(env, reg->type), tn_buf);
4837 		return -EACCES;
4838 	}
4839 
4840 	return 0;
4841 }
4842 
4843 int check_ptr_off_reg(struct bpf_verifier_env *env,
4844 		      const struct bpf_reg_state *reg, int regno)
4845 {
4846 	return __check_ptr_off_reg(env, reg, regno, false);
4847 }
4848 
4849 static int map_kptr_match_type(struct bpf_verifier_env *env,
4850 			       struct btf_field *kptr_field,
4851 			       struct bpf_reg_state *reg, u32 regno)
4852 {
4853 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4854 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4855 	const char *reg_name = "";
4856 
4857 	/* Only unreferenced case accepts untrusted pointers */
4858 	if (kptr_field->type == BPF_KPTR_UNREF)
4859 		perm_flags |= PTR_UNTRUSTED;
4860 
4861 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4862 		goto bad_type;
4863 
4864 	if (!btf_is_kernel(reg->btf)) {
4865 		verbose(env, "R%d must point to kernel BTF\n", regno);
4866 		return -EINVAL;
4867 	}
4868 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
4869 	reg_name = btf_type_name(reg->btf, reg->btf_id);
4870 
4871 	/* For ref_ptr case, release function check should ensure we get one
4872 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4873 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
4874 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4875 	 * reg->off and reg->ref_obj_id are not needed here.
4876 	 */
4877 	if (__check_ptr_off_reg(env, reg, regno, true))
4878 		return -EACCES;
4879 
4880 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
4881 	 * we also need to take into account the reg->off.
4882 	 *
4883 	 * We want to support cases like:
4884 	 *
4885 	 * struct foo {
4886 	 *         struct bar br;
4887 	 *         struct baz bz;
4888 	 * };
4889 	 *
4890 	 * struct foo *v;
4891 	 * v = func();	      // PTR_TO_BTF_ID
4892 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
4893 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4894 	 *                    // first member type of struct after comparison fails
4895 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4896 	 *                    // to match type
4897 	 *
4898 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
4899 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
4900 	 * the struct to match type against first member of struct, i.e. reject
4901 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4902 	 * strict mode to true for type match.
4903 	 */
4904 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4905 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4906 				  kptr_field->type == BPF_KPTR_REF))
4907 		goto bad_type;
4908 	return 0;
4909 bad_type:
4910 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4911 		reg_type_str(env, reg->type), reg_name);
4912 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
4913 	if (kptr_field->type == BPF_KPTR_UNREF)
4914 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4915 			targ_name);
4916 	else
4917 		verbose(env, "\n");
4918 	return -EINVAL;
4919 }
4920 
4921 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4922  * can dereference RCU protected pointers and result is PTR_TRUSTED.
4923  */
4924 static bool in_rcu_cs(struct bpf_verifier_env *env)
4925 {
4926 	return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4927 }
4928 
4929 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4930 BTF_SET_START(rcu_protected_types)
4931 BTF_ID(struct, prog_test_ref_kfunc)
4932 BTF_ID(struct, cgroup)
4933 BTF_ID(struct, bpf_cpumask)
4934 BTF_ID(struct, task_struct)
4935 BTF_SET_END(rcu_protected_types)
4936 
4937 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4938 {
4939 	if (!btf_is_kernel(btf))
4940 		return false;
4941 	return btf_id_set_contains(&rcu_protected_types, btf_id);
4942 }
4943 
4944 static bool rcu_safe_kptr(const struct btf_field *field)
4945 {
4946 	const struct btf_field_kptr *kptr = &field->kptr;
4947 
4948 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4949 }
4950 
4951 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4952 				 int value_regno, int insn_idx,
4953 				 struct btf_field *kptr_field)
4954 {
4955 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4956 	int class = BPF_CLASS(insn->code);
4957 	struct bpf_reg_state *val_reg;
4958 
4959 	/* Things we already checked for in check_map_access and caller:
4960 	 *  - Reject cases where variable offset may touch kptr
4961 	 *  - size of access (must be BPF_DW)
4962 	 *  - tnum_is_const(reg->var_off)
4963 	 *  - kptr_field->offset == off + reg->var_off.value
4964 	 */
4965 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4966 	if (BPF_MODE(insn->code) != BPF_MEM) {
4967 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4968 		return -EACCES;
4969 	}
4970 
4971 	/* We only allow loading referenced kptr, since it will be marked as
4972 	 * untrusted, similar to unreferenced kptr.
4973 	 */
4974 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4975 		verbose(env, "store to referenced kptr disallowed\n");
4976 		return -EACCES;
4977 	}
4978 
4979 	if (class == BPF_LDX) {
4980 		val_reg = reg_state(env, value_regno);
4981 		/* We can simply mark the value_regno receiving the pointer
4982 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4983 		 */
4984 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4985 				kptr_field->kptr.btf_id,
4986 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4987 				PTR_MAYBE_NULL | MEM_RCU :
4988 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
4989 		/* For mark_ptr_or_null_reg */
4990 		val_reg->id = ++env->id_gen;
4991 	} else if (class == BPF_STX) {
4992 		val_reg = reg_state(env, value_regno);
4993 		if (!register_is_null(val_reg) &&
4994 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4995 			return -EACCES;
4996 	} else if (class == BPF_ST) {
4997 		if (insn->imm) {
4998 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4999 				kptr_field->offset);
5000 			return -EACCES;
5001 		}
5002 	} else {
5003 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5004 		return -EACCES;
5005 	}
5006 	return 0;
5007 }
5008 
5009 /* check read/write into a map element with possible variable offset */
5010 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5011 			    int off, int size, bool zero_size_allowed,
5012 			    enum bpf_access_src src)
5013 {
5014 	struct bpf_verifier_state *vstate = env->cur_state;
5015 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5016 	struct bpf_reg_state *reg = &state->regs[regno];
5017 	struct bpf_map *map = reg->map_ptr;
5018 	struct btf_record *rec;
5019 	int err, i;
5020 
5021 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5022 				      zero_size_allowed);
5023 	if (err)
5024 		return err;
5025 
5026 	if (IS_ERR_OR_NULL(map->record))
5027 		return 0;
5028 	rec = map->record;
5029 	for (i = 0; i < rec->cnt; i++) {
5030 		struct btf_field *field = &rec->fields[i];
5031 		u32 p = field->offset;
5032 
5033 		/* If any part of a field  can be touched by load/store, reject
5034 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5035 		 * it is sufficient to check x1 < y2 && y1 < x2.
5036 		 */
5037 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5038 		    p < reg->umax_value + off + size) {
5039 			switch (field->type) {
5040 			case BPF_KPTR_UNREF:
5041 			case BPF_KPTR_REF:
5042 				if (src != ACCESS_DIRECT) {
5043 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5044 					return -EACCES;
5045 				}
5046 				if (!tnum_is_const(reg->var_off)) {
5047 					verbose(env, "kptr access cannot have variable offset\n");
5048 					return -EACCES;
5049 				}
5050 				if (p != off + reg->var_off.value) {
5051 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5052 						p, off + reg->var_off.value);
5053 					return -EACCES;
5054 				}
5055 				if (size != bpf_size_to_bytes(BPF_DW)) {
5056 					verbose(env, "kptr access size must be BPF_DW\n");
5057 					return -EACCES;
5058 				}
5059 				break;
5060 			default:
5061 				verbose(env, "%s cannot be accessed directly by load/store\n",
5062 					btf_field_type_name(field->type));
5063 				return -EACCES;
5064 			}
5065 		}
5066 	}
5067 	return 0;
5068 }
5069 
5070 #define MAX_PACKET_OFF 0xffff
5071 
5072 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5073 				       const struct bpf_call_arg_meta *meta,
5074 				       enum bpf_access_type t)
5075 {
5076 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5077 
5078 	switch (prog_type) {
5079 	/* Program types only with direct read access go here! */
5080 	case BPF_PROG_TYPE_LWT_IN:
5081 	case BPF_PROG_TYPE_LWT_OUT:
5082 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5083 	case BPF_PROG_TYPE_SK_REUSEPORT:
5084 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5085 	case BPF_PROG_TYPE_CGROUP_SKB:
5086 		if (t == BPF_WRITE)
5087 			return false;
5088 		fallthrough;
5089 
5090 	/* Program types with direct read + write access go here! */
5091 	case BPF_PROG_TYPE_SCHED_CLS:
5092 	case BPF_PROG_TYPE_SCHED_ACT:
5093 	case BPF_PROG_TYPE_XDP:
5094 	case BPF_PROG_TYPE_LWT_XMIT:
5095 	case BPF_PROG_TYPE_SK_SKB:
5096 	case BPF_PROG_TYPE_SK_MSG:
5097 		if (meta)
5098 			return meta->pkt_access;
5099 
5100 		env->seen_direct_write = true;
5101 		return true;
5102 
5103 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5104 		if (t == BPF_WRITE)
5105 			env->seen_direct_write = true;
5106 
5107 		return true;
5108 
5109 	default:
5110 		return false;
5111 	}
5112 }
5113 
5114 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5115 			       int size, bool zero_size_allowed)
5116 {
5117 	struct bpf_reg_state *regs = cur_regs(env);
5118 	struct bpf_reg_state *reg = &regs[regno];
5119 	int err;
5120 
5121 	/* We may have added a variable offset to the packet pointer; but any
5122 	 * reg->range we have comes after that.  We are only checking the fixed
5123 	 * offset.
5124 	 */
5125 
5126 	/* We don't allow negative numbers, because we aren't tracking enough
5127 	 * detail to prove they're safe.
5128 	 */
5129 	if (reg->smin_value < 0) {
5130 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5131 			regno);
5132 		return -EACCES;
5133 	}
5134 
5135 	err = reg->range < 0 ? -EINVAL :
5136 	      __check_mem_access(env, regno, off, size, reg->range,
5137 				 zero_size_allowed);
5138 	if (err) {
5139 		verbose(env, "R%d offset is outside of the packet\n", regno);
5140 		return err;
5141 	}
5142 
5143 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5144 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5145 	 * otherwise find_good_pkt_pointers would have refused to set range info
5146 	 * that __check_mem_access would have rejected this pkt access.
5147 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5148 	 */
5149 	env->prog->aux->max_pkt_offset =
5150 		max_t(u32, env->prog->aux->max_pkt_offset,
5151 		      off + reg->umax_value + size - 1);
5152 
5153 	return err;
5154 }
5155 
5156 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5157 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5158 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5159 			    struct btf **btf, u32 *btf_id)
5160 {
5161 	struct bpf_insn_access_aux info = {
5162 		.reg_type = *reg_type,
5163 		.log = &env->log,
5164 	};
5165 
5166 	if (env->ops->is_valid_access &&
5167 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5168 		/* A non zero info.ctx_field_size indicates that this field is a
5169 		 * candidate for later verifier transformation to load the whole
5170 		 * field and then apply a mask when accessed with a narrower
5171 		 * access than actual ctx access size. A zero info.ctx_field_size
5172 		 * will only allow for whole field access and rejects any other
5173 		 * type of narrower access.
5174 		 */
5175 		*reg_type = info.reg_type;
5176 
5177 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5178 			*btf = info.btf;
5179 			*btf_id = info.btf_id;
5180 		} else {
5181 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5182 		}
5183 		/* remember the offset of last byte accessed in ctx */
5184 		if (env->prog->aux->max_ctx_offset < off + size)
5185 			env->prog->aux->max_ctx_offset = off + size;
5186 		return 0;
5187 	}
5188 
5189 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5190 	return -EACCES;
5191 }
5192 
5193 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5194 				  int size)
5195 {
5196 	if (size < 0 || off < 0 ||
5197 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5198 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5199 			off, size);
5200 		return -EACCES;
5201 	}
5202 	return 0;
5203 }
5204 
5205 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5206 			     u32 regno, int off, int size,
5207 			     enum bpf_access_type t)
5208 {
5209 	struct bpf_reg_state *regs = cur_regs(env);
5210 	struct bpf_reg_state *reg = &regs[regno];
5211 	struct bpf_insn_access_aux info = {};
5212 	bool valid;
5213 
5214 	if (reg->smin_value < 0) {
5215 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5216 			regno);
5217 		return -EACCES;
5218 	}
5219 
5220 	switch (reg->type) {
5221 	case PTR_TO_SOCK_COMMON:
5222 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5223 		break;
5224 	case PTR_TO_SOCKET:
5225 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5226 		break;
5227 	case PTR_TO_TCP_SOCK:
5228 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5229 		break;
5230 	case PTR_TO_XDP_SOCK:
5231 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5232 		break;
5233 	default:
5234 		valid = false;
5235 	}
5236 
5237 
5238 	if (valid) {
5239 		env->insn_aux_data[insn_idx].ctx_field_size =
5240 			info.ctx_field_size;
5241 		return 0;
5242 	}
5243 
5244 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5245 		regno, reg_type_str(env, reg->type), off, size);
5246 
5247 	return -EACCES;
5248 }
5249 
5250 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5251 {
5252 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5253 }
5254 
5255 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5256 {
5257 	const struct bpf_reg_state *reg = reg_state(env, regno);
5258 
5259 	return reg->type == PTR_TO_CTX;
5260 }
5261 
5262 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5263 {
5264 	const struct bpf_reg_state *reg = reg_state(env, regno);
5265 
5266 	return type_is_sk_pointer(reg->type);
5267 }
5268 
5269 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5270 {
5271 	const struct bpf_reg_state *reg = reg_state(env, regno);
5272 
5273 	return type_is_pkt_pointer(reg->type);
5274 }
5275 
5276 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5277 {
5278 	const struct bpf_reg_state *reg = reg_state(env, regno);
5279 
5280 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5281 	return reg->type == PTR_TO_FLOW_KEYS;
5282 }
5283 
5284 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5285 {
5286 	/* A referenced register is always trusted. */
5287 	if (reg->ref_obj_id)
5288 		return true;
5289 
5290 	/* If a register is not referenced, it is trusted if it has the
5291 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5292 	 * other type modifiers may be safe, but we elect to take an opt-in
5293 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5294 	 * not.
5295 	 *
5296 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5297 	 * for whether a register is trusted.
5298 	 */
5299 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5300 	       !bpf_type_has_unsafe_modifiers(reg->type);
5301 }
5302 
5303 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5304 {
5305 	return reg->type & MEM_RCU;
5306 }
5307 
5308 static void clear_trusted_flags(enum bpf_type_flag *flag)
5309 {
5310 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5311 }
5312 
5313 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5314 				   const struct bpf_reg_state *reg,
5315 				   int off, int size, bool strict)
5316 {
5317 	struct tnum reg_off;
5318 	int ip_align;
5319 
5320 	/* Byte size accesses are always allowed. */
5321 	if (!strict || size == 1)
5322 		return 0;
5323 
5324 	/* For platforms that do not have a Kconfig enabling
5325 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5326 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5327 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5328 	 * to this code only in strict mode where we want to emulate
5329 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5330 	 * unconditional IP align value of '2'.
5331 	 */
5332 	ip_align = 2;
5333 
5334 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5335 	if (!tnum_is_aligned(reg_off, size)) {
5336 		char tn_buf[48];
5337 
5338 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5339 		verbose(env,
5340 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5341 			ip_align, tn_buf, reg->off, off, size);
5342 		return -EACCES;
5343 	}
5344 
5345 	return 0;
5346 }
5347 
5348 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5349 				       const struct bpf_reg_state *reg,
5350 				       const char *pointer_desc,
5351 				       int off, int size, bool strict)
5352 {
5353 	struct tnum reg_off;
5354 
5355 	/* Byte size accesses are always allowed. */
5356 	if (!strict || size == 1)
5357 		return 0;
5358 
5359 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5360 	if (!tnum_is_aligned(reg_off, size)) {
5361 		char tn_buf[48];
5362 
5363 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5364 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5365 			pointer_desc, tn_buf, reg->off, off, size);
5366 		return -EACCES;
5367 	}
5368 
5369 	return 0;
5370 }
5371 
5372 static int check_ptr_alignment(struct bpf_verifier_env *env,
5373 			       const struct bpf_reg_state *reg, int off,
5374 			       int size, bool strict_alignment_once)
5375 {
5376 	bool strict = env->strict_alignment || strict_alignment_once;
5377 	const char *pointer_desc = "";
5378 
5379 	switch (reg->type) {
5380 	case PTR_TO_PACKET:
5381 	case PTR_TO_PACKET_META:
5382 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5383 		 * right in front, treat it the very same way.
5384 		 */
5385 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5386 	case PTR_TO_FLOW_KEYS:
5387 		pointer_desc = "flow keys ";
5388 		break;
5389 	case PTR_TO_MAP_KEY:
5390 		pointer_desc = "key ";
5391 		break;
5392 	case PTR_TO_MAP_VALUE:
5393 		pointer_desc = "value ";
5394 		break;
5395 	case PTR_TO_CTX:
5396 		pointer_desc = "context ";
5397 		break;
5398 	case PTR_TO_STACK:
5399 		pointer_desc = "stack ";
5400 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5401 		 * and check_stack_read_fixed_off() relies on stack accesses being
5402 		 * aligned.
5403 		 */
5404 		strict = true;
5405 		break;
5406 	case PTR_TO_SOCKET:
5407 		pointer_desc = "sock ";
5408 		break;
5409 	case PTR_TO_SOCK_COMMON:
5410 		pointer_desc = "sock_common ";
5411 		break;
5412 	case PTR_TO_TCP_SOCK:
5413 		pointer_desc = "tcp_sock ";
5414 		break;
5415 	case PTR_TO_XDP_SOCK:
5416 		pointer_desc = "xdp_sock ";
5417 		break;
5418 	default:
5419 		break;
5420 	}
5421 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5422 					   strict);
5423 }
5424 
5425 static int update_stack_depth(struct bpf_verifier_env *env,
5426 			      const struct bpf_func_state *func,
5427 			      int off)
5428 {
5429 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5430 
5431 	if (stack >= -off)
5432 		return 0;
5433 
5434 	/* update known max for given subprogram */
5435 	env->subprog_info[func->subprogno].stack_depth = -off;
5436 	return 0;
5437 }
5438 
5439 /* starting from main bpf function walk all instructions of the function
5440  * and recursively walk all callees that given function can call.
5441  * Ignore jump and exit insns.
5442  * Since recursion is prevented by check_cfg() this algorithm
5443  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5444  */
5445 static int check_max_stack_depth(struct bpf_verifier_env *env)
5446 {
5447 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5448 	struct bpf_subprog_info *subprog = env->subprog_info;
5449 	struct bpf_insn *insn = env->prog->insnsi;
5450 	bool tail_call_reachable = false;
5451 	int ret_insn[MAX_CALL_FRAMES];
5452 	int ret_prog[MAX_CALL_FRAMES];
5453 	int j;
5454 
5455 process_func:
5456 	/* protect against potential stack overflow that might happen when
5457 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5458 	 * depth for such case down to 256 so that the worst case scenario
5459 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5460 	 * 8k).
5461 	 *
5462 	 * To get the idea what might happen, see an example:
5463 	 * func1 -> sub rsp, 128
5464 	 *  subfunc1 -> sub rsp, 256
5465 	 *  tailcall1 -> add rsp, 256
5466 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5467 	 *   subfunc2 -> sub rsp, 64
5468 	 *   subfunc22 -> sub rsp, 128
5469 	 *   tailcall2 -> add rsp, 128
5470 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5471 	 *
5472 	 * tailcall will unwind the current stack frame but it will not get rid
5473 	 * of caller's stack as shown on the example above.
5474 	 */
5475 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5476 		verbose(env,
5477 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5478 			depth);
5479 		return -EACCES;
5480 	}
5481 	/* round up to 32-bytes, since this is granularity
5482 	 * of interpreter stack size
5483 	 */
5484 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5485 	if (depth > MAX_BPF_STACK) {
5486 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5487 			frame + 1, depth);
5488 		return -EACCES;
5489 	}
5490 continue_func:
5491 	subprog_end = subprog[idx + 1].start;
5492 	for (; i < subprog_end; i++) {
5493 		int next_insn;
5494 
5495 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5496 			continue;
5497 		/* remember insn and function to return to */
5498 		ret_insn[frame] = i + 1;
5499 		ret_prog[frame] = idx;
5500 
5501 		/* find the callee */
5502 		next_insn = i + insn[i].imm + 1;
5503 		idx = find_subprog(env, next_insn);
5504 		if (idx < 0) {
5505 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5506 				  next_insn);
5507 			return -EFAULT;
5508 		}
5509 		if (subprog[idx].is_async_cb) {
5510 			if (subprog[idx].has_tail_call) {
5511 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5512 				return -EFAULT;
5513 			}
5514 			 /* async callbacks don't increase bpf prog stack size */
5515 			continue;
5516 		}
5517 		i = next_insn;
5518 
5519 		if (subprog[idx].has_tail_call)
5520 			tail_call_reachable = true;
5521 
5522 		frame++;
5523 		if (frame >= MAX_CALL_FRAMES) {
5524 			verbose(env, "the call stack of %d frames is too deep !\n",
5525 				frame);
5526 			return -E2BIG;
5527 		}
5528 		goto process_func;
5529 	}
5530 	/* if tail call got detected across bpf2bpf calls then mark each of the
5531 	 * currently present subprog frames as tail call reachable subprogs;
5532 	 * this info will be utilized by JIT so that we will be preserving the
5533 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5534 	 */
5535 	if (tail_call_reachable)
5536 		for (j = 0; j < frame; j++)
5537 			subprog[ret_prog[j]].tail_call_reachable = true;
5538 	if (subprog[0].tail_call_reachable)
5539 		env->prog->aux->tail_call_reachable = true;
5540 
5541 	/* end of for() loop means the last insn of the 'subprog'
5542 	 * was reached. Doesn't matter whether it was JA or EXIT
5543 	 */
5544 	if (frame == 0)
5545 		return 0;
5546 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5547 	frame--;
5548 	i = ret_insn[frame];
5549 	idx = ret_prog[frame];
5550 	goto continue_func;
5551 }
5552 
5553 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5554 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5555 				  const struct bpf_insn *insn, int idx)
5556 {
5557 	int start = idx + insn->imm + 1, subprog;
5558 
5559 	subprog = find_subprog(env, start);
5560 	if (subprog < 0) {
5561 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5562 			  start);
5563 		return -EFAULT;
5564 	}
5565 	return env->subprog_info[subprog].stack_depth;
5566 }
5567 #endif
5568 
5569 static int __check_buffer_access(struct bpf_verifier_env *env,
5570 				 const char *buf_info,
5571 				 const struct bpf_reg_state *reg,
5572 				 int regno, int off, int size)
5573 {
5574 	if (off < 0) {
5575 		verbose(env,
5576 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5577 			regno, buf_info, off, size);
5578 		return -EACCES;
5579 	}
5580 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5581 		char tn_buf[48];
5582 
5583 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5584 		verbose(env,
5585 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5586 			regno, off, tn_buf);
5587 		return -EACCES;
5588 	}
5589 
5590 	return 0;
5591 }
5592 
5593 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5594 				  const struct bpf_reg_state *reg,
5595 				  int regno, int off, int size)
5596 {
5597 	int err;
5598 
5599 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5600 	if (err)
5601 		return err;
5602 
5603 	if (off + size > env->prog->aux->max_tp_access)
5604 		env->prog->aux->max_tp_access = off + size;
5605 
5606 	return 0;
5607 }
5608 
5609 static int check_buffer_access(struct bpf_verifier_env *env,
5610 			       const struct bpf_reg_state *reg,
5611 			       int regno, int off, int size,
5612 			       bool zero_size_allowed,
5613 			       u32 *max_access)
5614 {
5615 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5616 	int err;
5617 
5618 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5619 	if (err)
5620 		return err;
5621 
5622 	if (off + size > *max_access)
5623 		*max_access = off + size;
5624 
5625 	return 0;
5626 }
5627 
5628 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5629 static void zext_32_to_64(struct bpf_reg_state *reg)
5630 {
5631 	reg->var_off = tnum_subreg(reg->var_off);
5632 	__reg_assign_32_into_64(reg);
5633 }
5634 
5635 /* truncate register to smaller size (in bytes)
5636  * must be called with size < BPF_REG_SIZE
5637  */
5638 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5639 {
5640 	u64 mask;
5641 
5642 	/* clear high bits in bit representation */
5643 	reg->var_off = tnum_cast(reg->var_off, size);
5644 
5645 	/* fix arithmetic bounds */
5646 	mask = ((u64)1 << (size * 8)) - 1;
5647 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5648 		reg->umin_value &= mask;
5649 		reg->umax_value &= mask;
5650 	} else {
5651 		reg->umin_value = 0;
5652 		reg->umax_value = mask;
5653 	}
5654 	reg->smin_value = reg->umin_value;
5655 	reg->smax_value = reg->umax_value;
5656 
5657 	/* If size is smaller than 32bit register the 32bit register
5658 	 * values are also truncated so we push 64-bit bounds into
5659 	 * 32-bit bounds. Above were truncated < 32-bits already.
5660 	 */
5661 	if (size >= 4)
5662 		return;
5663 	__reg_combine_64_into_32(reg);
5664 }
5665 
5666 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5667 {
5668 	/* A map is considered read-only if the following condition are true:
5669 	 *
5670 	 * 1) BPF program side cannot change any of the map content. The
5671 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5672 	 *    and was set at map creation time.
5673 	 * 2) The map value(s) have been initialized from user space by a
5674 	 *    loader and then "frozen", such that no new map update/delete
5675 	 *    operations from syscall side are possible for the rest of
5676 	 *    the map's lifetime from that point onwards.
5677 	 * 3) Any parallel/pending map update/delete operations from syscall
5678 	 *    side have been completed. Only after that point, it's safe to
5679 	 *    assume that map value(s) are immutable.
5680 	 */
5681 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5682 	       READ_ONCE(map->frozen) &&
5683 	       !bpf_map_write_active(map);
5684 }
5685 
5686 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5687 {
5688 	void *ptr;
5689 	u64 addr;
5690 	int err;
5691 
5692 	err = map->ops->map_direct_value_addr(map, &addr, off);
5693 	if (err)
5694 		return err;
5695 	ptr = (void *)(long)addr + off;
5696 
5697 	switch (size) {
5698 	case sizeof(u8):
5699 		*val = (u64)*(u8 *)ptr;
5700 		break;
5701 	case sizeof(u16):
5702 		*val = (u64)*(u16 *)ptr;
5703 		break;
5704 	case sizeof(u32):
5705 		*val = (u64)*(u32 *)ptr;
5706 		break;
5707 	case sizeof(u64):
5708 		*val = *(u64 *)ptr;
5709 		break;
5710 	default:
5711 		return -EINVAL;
5712 	}
5713 	return 0;
5714 }
5715 
5716 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
5717 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
5718 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
5719 
5720 /*
5721  * Allow list few fields as RCU trusted or full trusted.
5722  * This logic doesn't allow mix tagging and will be removed once GCC supports
5723  * btf_type_tag.
5724  */
5725 
5726 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
5727 BTF_TYPE_SAFE_RCU(struct task_struct) {
5728 	const cpumask_t *cpus_ptr;
5729 	struct css_set __rcu *cgroups;
5730 	struct task_struct __rcu *real_parent;
5731 	struct task_struct *group_leader;
5732 };
5733 
5734 BTF_TYPE_SAFE_RCU(struct cgroup) {
5735 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
5736 	struct kernfs_node *kn;
5737 };
5738 
5739 BTF_TYPE_SAFE_RCU(struct css_set) {
5740 	struct cgroup *dfl_cgrp;
5741 };
5742 
5743 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
5744 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
5745 	struct file __rcu *exe_file;
5746 };
5747 
5748 /* skb->sk, req->sk are not RCU protected, but we mark them as such
5749  * because bpf prog accessible sockets are SOCK_RCU_FREE.
5750  */
5751 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
5752 	struct sock *sk;
5753 };
5754 
5755 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
5756 	struct sock *sk;
5757 };
5758 
5759 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5760 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5761 	struct seq_file *seq;
5762 };
5763 
5764 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5765 	struct bpf_iter_meta *meta;
5766 	struct task_struct *task;
5767 };
5768 
5769 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5770 	struct file *file;
5771 };
5772 
5773 BTF_TYPE_SAFE_TRUSTED(struct file) {
5774 	struct inode *f_inode;
5775 };
5776 
5777 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5778 	/* no negative dentry-s in places where bpf can see it */
5779 	struct inode *d_inode;
5780 };
5781 
5782 BTF_TYPE_SAFE_TRUSTED(struct socket) {
5783 	struct sock *sk;
5784 };
5785 
5786 static bool type_is_rcu(struct bpf_verifier_env *env,
5787 			struct bpf_reg_state *reg,
5788 			const char *field_name, u32 btf_id)
5789 {
5790 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5791 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
5792 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
5793 
5794 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
5795 }
5796 
5797 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
5798 				struct bpf_reg_state *reg,
5799 				const char *field_name, u32 btf_id)
5800 {
5801 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
5802 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
5803 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
5804 
5805 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
5806 }
5807 
5808 static bool type_is_trusted(struct bpf_verifier_env *env,
5809 			    struct bpf_reg_state *reg,
5810 			    const char *field_name, u32 btf_id)
5811 {
5812 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5813 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5814 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5815 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5816 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5817 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5818 
5819 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
5820 }
5821 
5822 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5823 				   struct bpf_reg_state *regs,
5824 				   int regno, int off, int size,
5825 				   enum bpf_access_type atype,
5826 				   int value_regno)
5827 {
5828 	struct bpf_reg_state *reg = regs + regno;
5829 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5830 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
5831 	const char *field_name = NULL;
5832 	enum bpf_type_flag flag = 0;
5833 	u32 btf_id = 0;
5834 	int ret;
5835 
5836 	if (!env->allow_ptr_leaks) {
5837 		verbose(env,
5838 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5839 			tname);
5840 		return -EPERM;
5841 	}
5842 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5843 		verbose(env,
5844 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5845 			tname);
5846 		return -EINVAL;
5847 	}
5848 	if (off < 0) {
5849 		verbose(env,
5850 			"R%d is ptr_%s invalid negative access: off=%d\n",
5851 			regno, tname, off);
5852 		return -EACCES;
5853 	}
5854 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5855 		char tn_buf[48];
5856 
5857 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5858 		verbose(env,
5859 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5860 			regno, tname, off, tn_buf);
5861 		return -EACCES;
5862 	}
5863 
5864 	if (reg->type & MEM_USER) {
5865 		verbose(env,
5866 			"R%d is ptr_%s access user memory: off=%d\n",
5867 			regno, tname, off);
5868 		return -EACCES;
5869 	}
5870 
5871 	if (reg->type & MEM_PERCPU) {
5872 		verbose(env,
5873 			"R%d is ptr_%s access percpu memory: off=%d\n",
5874 			regno, tname, off);
5875 		return -EACCES;
5876 	}
5877 
5878 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
5879 		if (!btf_is_kernel(reg->btf)) {
5880 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5881 			return -EFAULT;
5882 		}
5883 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
5884 	} else {
5885 		/* Writes are permitted with default btf_struct_access for
5886 		 * program allocated objects (which always have ref_obj_id > 0),
5887 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5888 		 */
5889 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
5890 			verbose(env, "only read is supported\n");
5891 			return -EACCES;
5892 		}
5893 
5894 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5895 		    !reg->ref_obj_id) {
5896 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5897 			return -EFAULT;
5898 		}
5899 
5900 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
5901 	}
5902 
5903 	if (ret < 0)
5904 		return ret;
5905 
5906 	if (ret != PTR_TO_BTF_ID) {
5907 		/* just mark; */
5908 
5909 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5910 		/* If this is an untrusted pointer, all pointers formed by walking it
5911 		 * also inherit the untrusted flag.
5912 		 */
5913 		flag = PTR_UNTRUSTED;
5914 
5915 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5916 		/* By default any pointer obtained from walking a trusted pointer is no
5917 		 * longer trusted, unless the field being accessed has explicitly been
5918 		 * marked as inheriting its parent's state of trust (either full or RCU).
5919 		 * For example:
5920 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
5921 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
5922 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5923 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5924 		 *
5925 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
5926 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
5927 		 */
5928 		if (type_is_trusted(env, reg, field_name, btf_id)) {
5929 			flag |= PTR_TRUSTED;
5930 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
5931 			if (type_is_rcu(env, reg, field_name, btf_id)) {
5932 				/* ignore __rcu tag and mark it MEM_RCU */
5933 				flag |= MEM_RCU;
5934 			} else if (flag & MEM_RCU ||
5935 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
5936 				/* __rcu tagged pointers can be NULL */
5937 				flag |= MEM_RCU | PTR_MAYBE_NULL;
5938 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
5939 				/* keep as-is */
5940 			} else {
5941 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
5942 				clear_trusted_flags(&flag);
5943 			}
5944 		} else {
5945 			/*
5946 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
5947 			 * aggressively mark as untrusted otherwise such
5948 			 * pointers will be plain PTR_TO_BTF_ID without flags
5949 			 * and will be allowed to be passed into helpers for
5950 			 * compat reasons.
5951 			 */
5952 			flag = PTR_UNTRUSTED;
5953 		}
5954 	} else {
5955 		/* Old compat. Deprecated */
5956 		clear_trusted_flags(&flag);
5957 	}
5958 
5959 	if (atype == BPF_READ && value_regno >= 0)
5960 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
5961 
5962 	return 0;
5963 }
5964 
5965 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5966 				   struct bpf_reg_state *regs,
5967 				   int regno, int off, int size,
5968 				   enum bpf_access_type atype,
5969 				   int value_regno)
5970 {
5971 	struct bpf_reg_state *reg = regs + regno;
5972 	struct bpf_map *map = reg->map_ptr;
5973 	struct bpf_reg_state map_reg;
5974 	enum bpf_type_flag flag = 0;
5975 	const struct btf_type *t;
5976 	const char *tname;
5977 	u32 btf_id;
5978 	int ret;
5979 
5980 	if (!btf_vmlinux) {
5981 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5982 		return -ENOTSUPP;
5983 	}
5984 
5985 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5986 		verbose(env, "map_ptr access not supported for map type %d\n",
5987 			map->map_type);
5988 		return -ENOTSUPP;
5989 	}
5990 
5991 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5992 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5993 
5994 	if (!env->allow_ptr_leaks) {
5995 		verbose(env,
5996 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5997 			tname);
5998 		return -EPERM;
5999 	}
6000 
6001 	if (off < 0) {
6002 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6003 			regno, tname, off);
6004 		return -EACCES;
6005 	}
6006 
6007 	if (atype != BPF_READ) {
6008 		verbose(env, "only read from %s is supported\n", tname);
6009 		return -EACCES;
6010 	}
6011 
6012 	/* Simulate access to a PTR_TO_BTF_ID */
6013 	memset(&map_reg, 0, sizeof(map_reg));
6014 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6015 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6016 	if (ret < 0)
6017 		return ret;
6018 
6019 	if (value_regno >= 0)
6020 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6021 
6022 	return 0;
6023 }
6024 
6025 /* Check that the stack access at the given offset is within bounds. The
6026  * maximum valid offset is -1.
6027  *
6028  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6029  * -state->allocated_stack for reads.
6030  */
6031 static int check_stack_slot_within_bounds(int off,
6032 					  struct bpf_func_state *state,
6033 					  enum bpf_access_type t)
6034 {
6035 	int min_valid_off;
6036 
6037 	if (t == BPF_WRITE)
6038 		min_valid_off = -MAX_BPF_STACK;
6039 	else
6040 		min_valid_off = -state->allocated_stack;
6041 
6042 	if (off < min_valid_off || off > -1)
6043 		return -EACCES;
6044 	return 0;
6045 }
6046 
6047 /* Check that the stack access at 'regno + off' falls within the maximum stack
6048  * bounds.
6049  *
6050  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6051  */
6052 static int check_stack_access_within_bounds(
6053 		struct bpf_verifier_env *env,
6054 		int regno, int off, int access_size,
6055 		enum bpf_access_src src, enum bpf_access_type type)
6056 {
6057 	struct bpf_reg_state *regs = cur_regs(env);
6058 	struct bpf_reg_state *reg = regs + regno;
6059 	struct bpf_func_state *state = func(env, reg);
6060 	int min_off, max_off;
6061 	int err;
6062 	char *err_extra;
6063 
6064 	if (src == ACCESS_HELPER)
6065 		/* We don't know if helpers are reading or writing (or both). */
6066 		err_extra = " indirect access to";
6067 	else if (type == BPF_READ)
6068 		err_extra = " read from";
6069 	else
6070 		err_extra = " write to";
6071 
6072 	if (tnum_is_const(reg->var_off)) {
6073 		min_off = reg->var_off.value + off;
6074 		if (access_size > 0)
6075 			max_off = min_off + access_size - 1;
6076 		else
6077 			max_off = min_off;
6078 	} else {
6079 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6080 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6081 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6082 				err_extra, regno);
6083 			return -EACCES;
6084 		}
6085 		min_off = reg->smin_value + off;
6086 		if (access_size > 0)
6087 			max_off = reg->smax_value + off + access_size - 1;
6088 		else
6089 			max_off = min_off;
6090 	}
6091 
6092 	err = check_stack_slot_within_bounds(min_off, state, type);
6093 	if (!err)
6094 		err = check_stack_slot_within_bounds(max_off, state, type);
6095 
6096 	if (err) {
6097 		if (tnum_is_const(reg->var_off)) {
6098 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6099 				err_extra, regno, off, access_size);
6100 		} else {
6101 			char tn_buf[48];
6102 
6103 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6104 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6105 				err_extra, regno, tn_buf, access_size);
6106 		}
6107 	}
6108 	return err;
6109 }
6110 
6111 /* check whether memory at (regno + off) is accessible for t = (read | write)
6112  * if t==write, value_regno is a register which value is stored into memory
6113  * if t==read, value_regno is a register which will receive the value from memory
6114  * if t==write && value_regno==-1, some unknown value is stored into memory
6115  * if t==read && value_regno==-1, don't care what we read from memory
6116  */
6117 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6118 			    int off, int bpf_size, enum bpf_access_type t,
6119 			    int value_regno, bool strict_alignment_once)
6120 {
6121 	struct bpf_reg_state *regs = cur_regs(env);
6122 	struct bpf_reg_state *reg = regs + regno;
6123 	struct bpf_func_state *state;
6124 	int size, err = 0;
6125 
6126 	size = bpf_size_to_bytes(bpf_size);
6127 	if (size < 0)
6128 		return size;
6129 
6130 	/* alignment checks will add in reg->off themselves */
6131 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6132 	if (err)
6133 		return err;
6134 
6135 	/* for access checks, reg->off is just part of off */
6136 	off += reg->off;
6137 
6138 	if (reg->type == PTR_TO_MAP_KEY) {
6139 		if (t == BPF_WRITE) {
6140 			verbose(env, "write to change key R%d not allowed\n", regno);
6141 			return -EACCES;
6142 		}
6143 
6144 		err = check_mem_region_access(env, regno, off, size,
6145 					      reg->map_ptr->key_size, false);
6146 		if (err)
6147 			return err;
6148 		if (value_regno >= 0)
6149 			mark_reg_unknown(env, regs, value_regno);
6150 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6151 		struct btf_field *kptr_field = NULL;
6152 
6153 		if (t == BPF_WRITE && value_regno >= 0 &&
6154 		    is_pointer_value(env, value_regno)) {
6155 			verbose(env, "R%d leaks addr into map\n", value_regno);
6156 			return -EACCES;
6157 		}
6158 		err = check_map_access_type(env, regno, off, size, t);
6159 		if (err)
6160 			return err;
6161 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6162 		if (err)
6163 			return err;
6164 		if (tnum_is_const(reg->var_off))
6165 			kptr_field = btf_record_find(reg->map_ptr->record,
6166 						     off + reg->var_off.value, BPF_KPTR);
6167 		if (kptr_field) {
6168 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6169 		} else if (t == BPF_READ && value_regno >= 0) {
6170 			struct bpf_map *map = reg->map_ptr;
6171 
6172 			/* if map is read-only, track its contents as scalars */
6173 			if (tnum_is_const(reg->var_off) &&
6174 			    bpf_map_is_rdonly(map) &&
6175 			    map->ops->map_direct_value_addr) {
6176 				int map_off = off + reg->var_off.value;
6177 				u64 val = 0;
6178 
6179 				err = bpf_map_direct_read(map, map_off, size,
6180 							  &val);
6181 				if (err)
6182 					return err;
6183 
6184 				regs[value_regno].type = SCALAR_VALUE;
6185 				__mark_reg_known(&regs[value_regno], val);
6186 			} else {
6187 				mark_reg_unknown(env, regs, value_regno);
6188 			}
6189 		}
6190 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6191 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6192 
6193 		if (type_may_be_null(reg->type)) {
6194 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6195 				reg_type_str(env, reg->type));
6196 			return -EACCES;
6197 		}
6198 
6199 		if (t == BPF_WRITE && rdonly_mem) {
6200 			verbose(env, "R%d cannot write into %s\n",
6201 				regno, reg_type_str(env, reg->type));
6202 			return -EACCES;
6203 		}
6204 
6205 		if (t == BPF_WRITE && value_regno >= 0 &&
6206 		    is_pointer_value(env, value_regno)) {
6207 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6208 			return -EACCES;
6209 		}
6210 
6211 		err = check_mem_region_access(env, regno, off, size,
6212 					      reg->mem_size, false);
6213 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6214 			mark_reg_unknown(env, regs, value_regno);
6215 	} else if (reg->type == PTR_TO_CTX) {
6216 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6217 		struct btf *btf = NULL;
6218 		u32 btf_id = 0;
6219 
6220 		if (t == BPF_WRITE && value_regno >= 0 &&
6221 		    is_pointer_value(env, value_regno)) {
6222 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6223 			return -EACCES;
6224 		}
6225 
6226 		err = check_ptr_off_reg(env, reg, regno);
6227 		if (err < 0)
6228 			return err;
6229 
6230 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6231 				       &btf_id);
6232 		if (err)
6233 			verbose_linfo(env, insn_idx, "; ");
6234 		if (!err && t == BPF_READ && value_regno >= 0) {
6235 			/* ctx access returns either a scalar, or a
6236 			 * PTR_TO_PACKET[_META,_END]. In the latter
6237 			 * case, we know the offset is zero.
6238 			 */
6239 			if (reg_type == SCALAR_VALUE) {
6240 				mark_reg_unknown(env, regs, value_regno);
6241 			} else {
6242 				mark_reg_known_zero(env, regs,
6243 						    value_regno);
6244 				if (type_may_be_null(reg_type))
6245 					regs[value_regno].id = ++env->id_gen;
6246 				/* A load of ctx field could have different
6247 				 * actual load size with the one encoded in the
6248 				 * insn. When the dst is PTR, it is for sure not
6249 				 * a sub-register.
6250 				 */
6251 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6252 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6253 					regs[value_regno].btf = btf;
6254 					regs[value_regno].btf_id = btf_id;
6255 				}
6256 			}
6257 			regs[value_regno].type = reg_type;
6258 		}
6259 
6260 	} else if (reg->type == PTR_TO_STACK) {
6261 		/* Basic bounds checks. */
6262 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6263 		if (err)
6264 			return err;
6265 
6266 		state = func(env, reg);
6267 		err = update_stack_depth(env, state, off);
6268 		if (err)
6269 			return err;
6270 
6271 		if (t == BPF_READ)
6272 			err = check_stack_read(env, regno, off, size,
6273 					       value_regno);
6274 		else
6275 			err = check_stack_write(env, regno, off, size,
6276 						value_regno, insn_idx);
6277 	} else if (reg_is_pkt_pointer(reg)) {
6278 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6279 			verbose(env, "cannot write into packet\n");
6280 			return -EACCES;
6281 		}
6282 		if (t == BPF_WRITE && value_regno >= 0 &&
6283 		    is_pointer_value(env, value_regno)) {
6284 			verbose(env, "R%d leaks addr into packet\n",
6285 				value_regno);
6286 			return -EACCES;
6287 		}
6288 		err = check_packet_access(env, regno, off, size, false);
6289 		if (!err && t == BPF_READ && value_regno >= 0)
6290 			mark_reg_unknown(env, regs, value_regno);
6291 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6292 		if (t == BPF_WRITE && value_regno >= 0 &&
6293 		    is_pointer_value(env, value_regno)) {
6294 			verbose(env, "R%d leaks addr into flow keys\n",
6295 				value_regno);
6296 			return -EACCES;
6297 		}
6298 
6299 		err = check_flow_keys_access(env, off, size);
6300 		if (!err && t == BPF_READ && value_regno >= 0)
6301 			mark_reg_unknown(env, regs, value_regno);
6302 	} else if (type_is_sk_pointer(reg->type)) {
6303 		if (t == BPF_WRITE) {
6304 			verbose(env, "R%d cannot write into %s\n",
6305 				regno, reg_type_str(env, reg->type));
6306 			return -EACCES;
6307 		}
6308 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6309 		if (!err && value_regno >= 0)
6310 			mark_reg_unknown(env, regs, value_regno);
6311 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6312 		err = check_tp_buffer_access(env, reg, regno, off, size);
6313 		if (!err && t == BPF_READ && value_regno >= 0)
6314 			mark_reg_unknown(env, regs, value_regno);
6315 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6316 		   !type_may_be_null(reg->type)) {
6317 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6318 					      value_regno);
6319 	} else if (reg->type == CONST_PTR_TO_MAP) {
6320 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6321 					      value_regno);
6322 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6323 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6324 		u32 *max_access;
6325 
6326 		if (rdonly_mem) {
6327 			if (t == BPF_WRITE) {
6328 				verbose(env, "R%d cannot write into %s\n",
6329 					regno, reg_type_str(env, reg->type));
6330 				return -EACCES;
6331 			}
6332 			max_access = &env->prog->aux->max_rdonly_access;
6333 		} else {
6334 			max_access = &env->prog->aux->max_rdwr_access;
6335 		}
6336 
6337 		err = check_buffer_access(env, reg, regno, off, size, false,
6338 					  max_access);
6339 
6340 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6341 			mark_reg_unknown(env, regs, value_regno);
6342 	} else {
6343 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6344 			reg_type_str(env, reg->type));
6345 		return -EACCES;
6346 	}
6347 
6348 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6349 	    regs[value_regno].type == SCALAR_VALUE) {
6350 		/* b/h/w load zero-extends, mark upper bits as known 0 */
6351 		coerce_reg_to_size(&regs[value_regno], size);
6352 	}
6353 	return err;
6354 }
6355 
6356 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6357 {
6358 	int load_reg;
6359 	int err;
6360 
6361 	switch (insn->imm) {
6362 	case BPF_ADD:
6363 	case BPF_ADD | BPF_FETCH:
6364 	case BPF_AND:
6365 	case BPF_AND | BPF_FETCH:
6366 	case BPF_OR:
6367 	case BPF_OR | BPF_FETCH:
6368 	case BPF_XOR:
6369 	case BPF_XOR | BPF_FETCH:
6370 	case BPF_XCHG:
6371 	case BPF_CMPXCHG:
6372 		break;
6373 	default:
6374 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6375 		return -EINVAL;
6376 	}
6377 
6378 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6379 		verbose(env, "invalid atomic operand size\n");
6380 		return -EINVAL;
6381 	}
6382 
6383 	/* check src1 operand */
6384 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6385 	if (err)
6386 		return err;
6387 
6388 	/* check src2 operand */
6389 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6390 	if (err)
6391 		return err;
6392 
6393 	if (insn->imm == BPF_CMPXCHG) {
6394 		/* Check comparison of R0 with memory location */
6395 		const u32 aux_reg = BPF_REG_0;
6396 
6397 		err = check_reg_arg(env, aux_reg, SRC_OP);
6398 		if (err)
6399 			return err;
6400 
6401 		if (is_pointer_value(env, aux_reg)) {
6402 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6403 			return -EACCES;
6404 		}
6405 	}
6406 
6407 	if (is_pointer_value(env, insn->src_reg)) {
6408 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6409 		return -EACCES;
6410 	}
6411 
6412 	if (is_ctx_reg(env, insn->dst_reg) ||
6413 	    is_pkt_reg(env, insn->dst_reg) ||
6414 	    is_flow_key_reg(env, insn->dst_reg) ||
6415 	    is_sk_reg(env, insn->dst_reg)) {
6416 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6417 			insn->dst_reg,
6418 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6419 		return -EACCES;
6420 	}
6421 
6422 	if (insn->imm & BPF_FETCH) {
6423 		if (insn->imm == BPF_CMPXCHG)
6424 			load_reg = BPF_REG_0;
6425 		else
6426 			load_reg = insn->src_reg;
6427 
6428 		/* check and record load of old value */
6429 		err = check_reg_arg(env, load_reg, DST_OP);
6430 		if (err)
6431 			return err;
6432 	} else {
6433 		/* This instruction accesses a memory location but doesn't
6434 		 * actually load it into a register.
6435 		 */
6436 		load_reg = -1;
6437 	}
6438 
6439 	/* Check whether we can read the memory, with second call for fetch
6440 	 * case to simulate the register fill.
6441 	 */
6442 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6443 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
6444 	if (!err && load_reg >= 0)
6445 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6446 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6447 				       true);
6448 	if (err)
6449 		return err;
6450 
6451 	/* Check whether we can write into the same memory. */
6452 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6453 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6454 	if (err)
6455 		return err;
6456 
6457 	return 0;
6458 }
6459 
6460 /* When register 'regno' is used to read the stack (either directly or through
6461  * a helper function) make sure that it's within stack boundary and, depending
6462  * on the access type, that all elements of the stack are initialized.
6463  *
6464  * 'off' includes 'regno->off', but not its dynamic part (if any).
6465  *
6466  * All registers that have been spilled on the stack in the slots within the
6467  * read offsets are marked as read.
6468  */
6469 static int check_stack_range_initialized(
6470 		struct bpf_verifier_env *env, int regno, int off,
6471 		int access_size, bool zero_size_allowed,
6472 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6473 {
6474 	struct bpf_reg_state *reg = reg_state(env, regno);
6475 	struct bpf_func_state *state = func(env, reg);
6476 	int err, min_off, max_off, i, j, slot, spi;
6477 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6478 	enum bpf_access_type bounds_check_type;
6479 	/* Some accesses can write anything into the stack, others are
6480 	 * read-only.
6481 	 */
6482 	bool clobber = false;
6483 
6484 	if (access_size == 0 && !zero_size_allowed) {
6485 		verbose(env, "invalid zero-sized read\n");
6486 		return -EACCES;
6487 	}
6488 
6489 	if (type == ACCESS_HELPER) {
6490 		/* The bounds checks for writes are more permissive than for
6491 		 * reads. However, if raw_mode is not set, we'll do extra
6492 		 * checks below.
6493 		 */
6494 		bounds_check_type = BPF_WRITE;
6495 		clobber = true;
6496 	} else {
6497 		bounds_check_type = BPF_READ;
6498 	}
6499 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6500 					       type, bounds_check_type);
6501 	if (err)
6502 		return err;
6503 
6504 
6505 	if (tnum_is_const(reg->var_off)) {
6506 		min_off = max_off = reg->var_off.value + off;
6507 	} else {
6508 		/* Variable offset is prohibited for unprivileged mode for
6509 		 * simplicity since it requires corresponding support in
6510 		 * Spectre masking for stack ALU.
6511 		 * See also retrieve_ptr_limit().
6512 		 */
6513 		if (!env->bypass_spec_v1) {
6514 			char tn_buf[48];
6515 
6516 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6517 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6518 				regno, err_extra, tn_buf);
6519 			return -EACCES;
6520 		}
6521 		/* Only initialized buffer on stack is allowed to be accessed
6522 		 * with variable offset. With uninitialized buffer it's hard to
6523 		 * guarantee that whole memory is marked as initialized on
6524 		 * helper return since specific bounds are unknown what may
6525 		 * cause uninitialized stack leaking.
6526 		 */
6527 		if (meta && meta->raw_mode)
6528 			meta = NULL;
6529 
6530 		min_off = reg->smin_value + off;
6531 		max_off = reg->smax_value + off;
6532 	}
6533 
6534 	if (meta && meta->raw_mode) {
6535 		/* Ensure we won't be overwriting dynptrs when simulating byte
6536 		 * by byte access in check_helper_call using meta.access_size.
6537 		 * This would be a problem if we have a helper in the future
6538 		 * which takes:
6539 		 *
6540 		 *	helper(uninit_mem, len, dynptr)
6541 		 *
6542 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6543 		 * may end up writing to dynptr itself when touching memory from
6544 		 * arg 1. This can be relaxed on a case by case basis for known
6545 		 * safe cases, but reject due to the possibilitiy of aliasing by
6546 		 * default.
6547 		 */
6548 		for (i = min_off; i < max_off + access_size; i++) {
6549 			int stack_off = -i - 1;
6550 
6551 			spi = __get_spi(i);
6552 			/* raw_mode may write past allocated_stack */
6553 			if (state->allocated_stack <= stack_off)
6554 				continue;
6555 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6556 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6557 				return -EACCES;
6558 			}
6559 		}
6560 		meta->access_size = access_size;
6561 		meta->regno = regno;
6562 		return 0;
6563 	}
6564 
6565 	for (i = min_off; i < max_off + access_size; i++) {
6566 		u8 *stype;
6567 
6568 		slot = -i - 1;
6569 		spi = slot / BPF_REG_SIZE;
6570 		if (state->allocated_stack <= slot)
6571 			goto err;
6572 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6573 		if (*stype == STACK_MISC)
6574 			goto mark;
6575 		if ((*stype == STACK_ZERO) ||
6576 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6577 			if (clobber) {
6578 				/* helper can write anything into the stack */
6579 				*stype = STACK_MISC;
6580 			}
6581 			goto mark;
6582 		}
6583 
6584 		if (is_spilled_reg(&state->stack[spi]) &&
6585 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6586 		     env->allow_ptr_leaks)) {
6587 			if (clobber) {
6588 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6589 				for (j = 0; j < BPF_REG_SIZE; j++)
6590 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6591 			}
6592 			goto mark;
6593 		}
6594 
6595 err:
6596 		if (tnum_is_const(reg->var_off)) {
6597 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6598 				err_extra, regno, min_off, i - min_off, access_size);
6599 		} else {
6600 			char tn_buf[48];
6601 
6602 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6603 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6604 				err_extra, regno, tn_buf, i - min_off, access_size);
6605 		}
6606 		return -EACCES;
6607 mark:
6608 		/* reading any byte out of 8-byte 'spill_slot' will cause
6609 		 * the whole slot to be marked as 'read'
6610 		 */
6611 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6612 			      state->stack[spi].spilled_ptr.parent,
6613 			      REG_LIVE_READ64);
6614 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6615 		 * be sure that whether stack slot is written to or not. Hence,
6616 		 * we must still conservatively propagate reads upwards even if
6617 		 * helper may write to the entire memory range.
6618 		 */
6619 	}
6620 	return update_stack_depth(env, state, min_off);
6621 }
6622 
6623 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6624 				   int access_size, bool zero_size_allowed,
6625 				   struct bpf_call_arg_meta *meta)
6626 {
6627 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6628 	u32 *max_access;
6629 
6630 	switch (base_type(reg->type)) {
6631 	case PTR_TO_PACKET:
6632 	case PTR_TO_PACKET_META:
6633 		return check_packet_access(env, regno, reg->off, access_size,
6634 					   zero_size_allowed);
6635 	case PTR_TO_MAP_KEY:
6636 		if (meta && meta->raw_mode) {
6637 			verbose(env, "R%d cannot write into %s\n", regno,
6638 				reg_type_str(env, reg->type));
6639 			return -EACCES;
6640 		}
6641 		return check_mem_region_access(env, regno, reg->off, access_size,
6642 					       reg->map_ptr->key_size, false);
6643 	case PTR_TO_MAP_VALUE:
6644 		if (check_map_access_type(env, regno, reg->off, access_size,
6645 					  meta && meta->raw_mode ? BPF_WRITE :
6646 					  BPF_READ))
6647 			return -EACCES;
6648 		return check_map_access(env, regno, reg->off, access_size,
6649 					zero_size_allowed, ACCESS_HELPER);
6650 	case PTR_TO_MEM:
6651 		if (type_is_rdonly_mem(reg->type)) {
6652 			if (meta && meta->raw_mode) {
6653 				verbose(env, "R%d cannot write into %s\n", regno,
6654 					reg_type_str(env, reg->type));
6655 				return -EACCES;
6656 			}
6657 		}
6658 		return check_mem_region_access(env, regno, reg->off,
6659 					       access_size, reg->mem_size,
6660 					       zero_size_allowed);
6661 	case PTR_TO_BUF:
6662 		if (type_is_rdonly_mem(reg->type)) {
6663 			if (meta && meta->raw_mode) {
6664 				verbose(env, "R%d cannot write into %s\n", regno,
6665 					reg_type_str(env, reg->type));
6666 				return -EACCES;
6667 			}
6668 
6669 			max_access = &env->prog->aux->max_rdonly_access;
6670 		} else {
6671 			max_access = &env->prog->aux->max_rdwr_access;
6672 		}
6673 		return check_buffer_access(env, reg, regno, reg->off,
6674 					   access_size, zero_size_allowed,
6675 					   max_access);
6676 	case PTR_TO_STACK:
6677 		return check_stack_range_initialized(
6678 				env,
6679 				regno, reg->off, access_size,
6680 				zero_size_allowed, ACCESS_HELPER, meta);
6681 	case PTR_TO_BTF_ID:
6682 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
6683 					       access_size, BPF_READ, -1);
6684 	case PTR_TO_CTX:
6685 		/* in case the function doesn't know how to access the context,
6686 		 * (because we are in a program of type SYSCALL for example), we
6687 		 * can not statically check its size.
6688 		 * Dynamically check it now.
6689 		 */
6690 		if (!env->ops->convert_ctx_access) {
6691 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6692 			int offset = access_size - 1;
6693 
6694 			/* Allow zero-byte read from PTR_TO_CTX */
6695 			if (access_size == 0)
6696 				return zero_size_allowed ? 0 : -EACCES;
6697 
6698 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6699 						atype, -1, false);
6700 		}
6701 
6702 		fallthrough;
6703 	default: /* scalar_value or invalid ptr */
6704 		/* Allow zero-byte read from NULL, regardless of pointer type */
6705 		if (zero_size_allowed && access_size == 0 &&
6706 		    register_is_null(reg))
6707 			return 0;
6708 
6709 		verbose(env, "R%d type=%s ", regno,
6710 			reg_type_str(env, reg->type));
6711 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
6712 		return -EACCES;
6713 	}
6714 }
6715 
6716 static int check_mem_size_reg(struct bpf_verifier_env *env,
6717 			      struct bpf_reg_state *reg, u32 regno,
6718 			      bool zero_size_allowed,
6719 			      struct bpf_call_arg_meta *meta)
6720 {
6721 	int err;
6722 
6723 	/* This is used to refine r0 return value bounds for helpers
6724 	 * that enforce this value as an upper bound on return values.
6725 	 * See do_refine_retval_range() for helpers that can refine
6726 	 * the return value. C type of helper is u32 so we pull register
6727 	 * bound from umax_value however, if negative verifier errors
6728 	 * out. Only upper bounds can be learned because retval is an
6729 	 * int type and negative retvals are allowed.
6730 	 */
6731 	meta->msize_max_value = reg->umax_value;
6732 
6733 	/* The register is SCALAR_VALUE; the access check
6734 	 * happens using its boundaries.
6735 	 */
6736 	if (!tnum_is_const(reg->var_off))
6737 		/* For unprivileged variable accesses, disable raw
6738 		 * mode so that the program is required to
6739 		 * initialize all the memory that the helper could
6740 		 * just partially fill up.
6741 		 */
6742 		meta = NULL;
6743 
6744 	if (reg->smin_value < 0) {
6745 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6746 			regno);
6747 		return -EACCES;
6748 	}
6749 
6750 	if (reg->umin_value == 0) {
6751 		err = check_helper_mem_access(env, regno - 1, 0,
6752 					      zero_size_allowed,
6753 					      meta);
6754 		if (err)
6755 			return err;
6756 	}
6757 
6758 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6759 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6760 			regno);
6761 		return -EACCES;
6762 	}
6763 	err = check_helper_mem_access(env, regno - 1,
6764 				      reg->umax_value,
6765 				      zero_size_allowed, meta);
6766 	if (!err)
6767 		err = mark_chain_precision(env, regno);
6768 	return err;
6769 }
6770 
6771 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6772 		   u32 regno, u32 mem_size)
6773 {
6774 	bool may_be_null = type_may_be_null(reg->type);
6775 	struct bpf_reg_state saved_reg;
6776 	struct bpf_call_arg_meta meta;
6777 	int err;
6778 
6779 	if (register_is_null(reg))
6780 		return 0;
6781 
6782 	memset(&meta, 0, sizeof(meta));
6783 	/* Assuming that the register contains a value check if the memory
6784 	 * access is safe. Temporarily save and restore the register's state as
6785 	 * the conversion shouldn't be visible to a caller.
6786 	 */
6787 	if (may_be_null) {
6788 		saved_reg = *reg;
6789 		mark_ptr_not_null_reg(reg);
6790 	}
6791 
6792 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6793 	/* Check access for BPF_WRITE */
6794 	meta.raw_mode = true;
6795 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6796 
6797 	if (may_be_null)
6798 		*reg = saved_reg;
6799 
6800 	return err;
6801 }
6802 
6803 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6804 				    u32 regno)
6805 {
6806 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6807 	bool may_be_null = type_may_be_null(mem_reg->type);
6808 	struct bpf_reg_state saved_reg;
6809 	struct bpf_call_arg_meta meta;
6810 	int err;
6811 
6812 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6813 
6814 	memset(&meta, 0, sizeof(meta));
6815 
6816 	if (may_be_null) {
6817 		saved_reg = *mem_reg;
6818 		mark_ptr_not_null_reg(mem_reg);
6819 	}
6820 
6821 	err = check_mem_size_reg(env, reg, regno, true, &meta);
6822 	/* Check access for BPF_WRITE */
6823 	meta.raw_mode = true;
6824 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
6825 
6826 	if (may_be_null)
6827 		*mem_reg = saved_reg;
6828 	return err;
6829 }
6830 
6831 /* Implementation details:
6832  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6833  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
6834  * Two bpf_map_lookups (even with the same key) will have different reg->id.
6835  * Two separate bpf_obj_new will also have different reg->id.
6836  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6837  * clears reg->id after value_or_null->value transition, since the verifier only
6838  * cares about the range of access to valid map value pointer and doesn't care
6839  * about actual address of the map element.
6840  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6841  * reg->id > 0 after value_or_null->value transition. By doing so
6842  * two bpf_map_lookups will be considered two different pointers that
6843  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6844  * returned from bpf_obj_new.
6845  * The verifier allows taking only one bpf_spin_lock at a time to avoid
6846  * dead-locks.
6847  * Since only one bpf_spin_lock is allowed the checks are simpler than
6848  * reg_is_refcounted() logic. The verifier needs to remember only
6849  * one spin_lock instead of array of acquired_refs.
6850  * cur_state->active_lock remembers which map value element or allocated
6851  * object got locked and clears it after bpf_spin_unlock.
6852  */
6853 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6854 			     bool is_lock)
6855 {
6856 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6857 	struct bpf_verifier_state *cur = env->cur_state;
6858 	bool is_const = tnum_is_const(reg->var_off);
6859 	u64 val = reg->var_off.value;
6860 	struct bpf_map *map = NULL;
6861 	struct btf *btf = NULL;
6862 	struct btf_record *rec;
6863 
6864 	if (!is_const) {
6865 		verbose(env,
6866 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6867 			regno);
6868 		return -EINVAL;
6869 	}
6870 	if (reg->type == PTR_TO_MAP_VALUE) {
6871 		map = reg->map_ptr;
6872 		if (!map->btf) {
6873 			verbose(env,
6874 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
6875 				map->name);
6876 			return -EINVAL;
6877 		}
6878 	} else {
6879 		btf = reg->btf;
6880 	}
6881 
6882 	rec = reg_btf_record(reg);
6883 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6884 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6885 			map ? map->name : "kptr");
6886 		return -EINVAL;
6887 	}
6888 	if (rec->spin_lock_off != val + reg->off) {
6889 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
6890 			val + reg->off, rec->spin_lock_off);
6891 		return -EINVAL;
6892 	}
6893 	if (is_lock) {
6894 		if (cur->active_lock.ptr) {
6895 			verbose(env,
6896 				"Locking two bpf_spin_locks are not allowed\n");
6897 			return -EINVAL;
6898 		}
6899 		if (map)
6900 			cur->active_lock.ptr = map;
6901 		else
6902 			cur->active_lock.ptr = btf;
6903 		cur->active_lock.id = reg->id;
6904 	} else {
6905 		void *ptr;
6906 
6907 		if (map)
6908 			ptr = map;
6909 		else
6910 			ptr = btf;
6911 
6912 		if (!cur->active_lock.ptr) {
6913 			verbose(env, "bpf_spin_unlock without taking a lock\n");
6914 			return -EINVAL;
6915 		}
6916 		if (cur->active_lock.ptr != ptr ||
6917 		    cur->active_lock.id != reg->id) {
6918 			verbose(env, "bpf_spin_unlock of different lock\n");
6919 			return -EINVAL;
6920 		}
6921 
6922 		invalidate_non_owning_refs(env);
6923 
6924 		cur->active_lock.ptr = NULL;
6925 		cur->active_lock.id = 0;
6926 	}
6927 	return 0;
6928 }
6929 
6930 static int process_timer_func(struct bpf_verifier_env *env, int regno,
6931 			      struct bpf_call_arg_meta *meta)
6932 {
6933 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6934 	bool is_const = tnum_is_const(reg->var_off);
6935 	struct bpf_map *map = reg->map_ptr;
6936 	u64 val = reg->var_off.value;
6937 
6938 	if (!is_const) {
6939 		verbose(env,
6940 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6941 			regno);
6942 		return -EINVAL;
6943 	}
6944 	if (!map->btf) {
6945 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6946 			map->name);
6947 		return -EINVAL;
6948 	}
6949 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
6950 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
6951 		return -EINVAL;
6952 	}
6953 	if (map->record->timer_off != val + reg->off) {
6954 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
6955 			val + reg->off, map->record->timer_off);
6956 		return -EINVAL;
6957 	}
6958 	if (meta->map_ptr) {
6959 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6960 		return -EFAULT;
6961 	}
6962 	meta->map_uid = reg->map_uid;
6963 	meta->map_ptr = map;
6964 	return 0;
6965 }
6966 
6967 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6968 			     struct bpf_call_arg_meta *meta)
6969 {
6970 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6971 	struct bpf_map *map_ptr = reg->map_ptr;
6972 	struct btf_field *kptr_field;
6973 	u32 kptr_off;
6974 
6975 	if (!tnum_is_const(reg->var_off)) {
6976 		verbose(env,
6977 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6978 			regno);
6979 		return -EINVAL;
6980 	}
6981 	if (!map_ptr->btf) {
6982 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6983 			map_ptr->name);
6984 		return -EINVAL;
6985 	}
6986 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6987 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
6988 		return -EINVAL;
6989 	}
6990 
6991 	meta->map_ptr = map_ptr;
6992 	kptr_off = reg->off + reg->var_off.value;
6993 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6994 	if (!kptr_field) {
6995 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6996 		return -EACCES;
6997 	}
6998 	if (kptr_field->type != BPF_KPTR_REF) {
6999 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7000 		return -EACCES;
7001 	}
7002 	meta->kptr_field = kptr_field;
7003 	return 0;
7004 }
7005 
7006 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7007  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7008  *
7009  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7010  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7011  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7012  *
7013  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7014  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7015  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7016  * mutate the view of the dynptr and also possibly destroy it. In the latter
7017  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7018  * memory that dynptr points to.
7019  *
7020  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7021  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7022  * readonly dynptr view yet, hence only the first case is tracked and checked.
7023  *
7024  * This is consistent with how C applies the const modifier to a struct object,
7025  * where the pointer itself inside bpf_dynptr becomes const but not what it
7026  * points to.
7027  *
7028  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7029  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7030  */
7031 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7032 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7033 {
7034 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7035 	int err;
7036 
7037 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7038 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7039 	 */
7040 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7041 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7042 		return -EFAULT;
7043 	}
7044 
7045 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7046 	 *		 constructing a mutable bpf_dynptr object.
7047 	 *
7048 	 *		 Currently, this is only possible with PTR_TO_STACK
7049 	 *		 pointing to a region of at least 16 bytes which doesn't
7050 	 *		 contain an existing bpf_dynptr.
7051 	 *
7052 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7053 	 *		 mutated or destroyed. However, the memory it points to
7054 	 *		 may be mutated.
7055 	 *
7056 	 *  None       - Points to a initialized dynptr that can be mutated and
7057 	 *		 destroyed, including mutation of the memory it points
7058 	 *		 to.
7059 	 */
7060 	if (arg_type & MEM_UNINIT) {
7061 		int i;
7062 
7063 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7064 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7065 			return -EINVAL;
7066 		}
7067 
7068 		/* we write BPF_DW bits (8 bytes) at a time */
7069 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7070 			err = check_mem_access(env, insn_idx, regno,
7071 					       i, BPF_DW, BPF_WRITE, -1, false);
7072 			if (err)
7073 				return err;
7074 		}
7075 
7076 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7077 	} else /* MEM_RDONLY and None case from above */ {
7078 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7079 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7080 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7081 			return -EINVAL;
7082 		}
7083 
7084 		if (!is_dynptr_reg_valid_init(env, reg)) {
7085 			verbose(env,
7086 				"Expected an initialized dynptr as arg #%d\n",
7087 				regno);
7088 			return -EINVAL;
7089 		}
7090 
7091 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7092 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7093 			verbose(env,
7094 				"Expected a dynptr of type %s as arg #%d\n",
7095 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7096 			return -EINVAL;
7097 		}
7098 
7099 		err = mark_dynptr_read(env, reg);
7100 	}
7101 	return err;
7102 }
7103 
7104 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7105 {
7106 	struct bpf_func_state *state = func(env, reg);
7107 
7108 	return state->stack[spi].spilled_ptr.ref_obj_id;
7109 }
7110 
7111 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7112 {
7113 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7114 }
7115 
7116 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7117 {
7118 	return meta->kfunc_flags & KF_ITER_NEW;
7119 }
7120 
7121 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7122 {
7123 	return meta->kfunc_flags & KF_ITER_NEXT;
7124 }
7125 
7126 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7127 {
7128 	return meta->kfunc_flags & KF_ITER_DESTROY;
7129 }
7130 
7131 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7132 {
7133 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7134 	 * kfunc is iter state pointer
7135 	 */
7136 	return arg == 0 && is_iter_kfunc(meta);
7137 }
7138 
7139 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7140 			    struct bpf_kfunc_call_arg_meta *meta)
7141 {
7142 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7143 	const struct btf_type *t;
7144 	const struct btf_param *arg;
7145 	int spi, err, i, nr_slots;
7146 	u32 btf_id;
7147 
7148 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7149 	arg = &btf_params(meta->func_proto)[0];
7150 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7151 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7152 	nr_slots = t->size / BPF_REG_SIZE;
7153 
7154 	if (is_iter_new_kfunc(meta)) {
7155 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7156 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7157 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7158 				iter_type_str(meta->btf, btf_id), regno);
7159 			return -EINVAL;
7160 		}
7161 
7162 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7163 			err = check_mem_access(env, insn_idx, regno,
7164 					       i, BPF_DW, BPF_WRITE, -1, false);
7165 			if (err)
7166 				return err;
7167 		}
7168 
7169 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7170 		if (err)
7171 			return err;
7172 	} else {
7173 		/* iter_next() or iter_destroy() expect initialized iter state*/
7174 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7175 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7176 				iter_type_str(meta->btf, btf_id), regno);
7177 			return -EINVAL;
7178 		}
7179 
7180 		spi = iter_get_spi(env, reg, nr_slots);
7181 		if (spi < 0)
7182 			return spi;
7183 
7184 		err = mark_iter_read(env, reg, spi, nr_slots);
7185 		if (err)
7186 			return err;
7187 
7188 		/* remember meta->iter info for process_iter_next_call() */
7189 		meta->iter.spi = spi;
7190 		meta->iter.frameno = reg->frameno;
7191 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7192 
7193 		if (is_iter_destroy_kfunc(meta)) {
7194 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7195 			if (err)
7196 				return err;
7197 		}
7198 	}
7199 
7200 	return 0;
7201 }
7202 
7203 /* process_iter_next_call() is called when verifier gets to iterator's next
7204  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7205  * to it as just "iter_next()" in comments below.
7206  *
7207  * BPF verifier relies on a crucial contract for any iter_next()
7208  * implementation: it should *eventually* return NULL, and once that happens
7209  * it should keep returning NULL. That is, once iterator exhausts elements to
7210  * iterate, it should never reset or spuriously return new elements.
7211  *
7212  * With the assumption of such contract, process_iter_next_call() simulates
7213  * a fork in the verifier state to validate loop logic correctness and safety
7214  * without having to simulate infinite amount of iterations.
7215  *
7216  * In current state, we first assume that iter_next() returned NULL and
7217  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7218  * conditions we should not form an infinite loop and should eventually reach
7219  * exit.
7220  *
7221  * Besides that, we also fork current state and enqueue it for later
7222  * verification. In a forked state we keep iterator state as ACTIVE
7223  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7224  * also bump iteration depth to prevent erroneous infinite loop detection
7225  * later on (see iter_active_depths_differ() comment for details). In this
7226  * state we assume that we'll eventually loop back to another iter_next()
7227  * calls (it could be in exactly same location or in some other instruction,
7228  * it doesn't matter, we don't make any unnecessary assumptions about this,
7229  * everything revolves around iterator state in a stack slot, not which
7230  * instruction is calling iter_next()). When that happens, we either will come
7231  * to iter_next() with equivalent state and can conclude that next iteration
7232  * will proceed in exactly the same way as we just verified, so it's safe to
7233  * assume that loop converges. If not, we'll go on another iteration
7234  * simulation with a different input state, until all possible starting states
7235  * are validated or we reach maximum number of instructions limit.
7236  *
7237  * This way, we will either exhaustively discover all possible input states
7238  * that iterator loop can start with and eventually will converge, or we'll
7239  * effectively regress into bounded loop simulation logic and either reach
7240  * maximum number of instructions if loop is not provably convergent, or there
7241  * is some statically known limit on number of iterations (e.g., if there is
7242  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7243  *
7244  * One very subtle but very important aspect is that we *always* simulate NULL
7245  * condition first (as the current state) before we simulate non-NULL case.
7246  * This has to do with intricacies of scalar precision tracking. By simulating
7247  * "exit condition" of iter_next() returning NULL first, we make sure all the
7248  * relevant precision marks *that will be set **after** we exit iterator loop*
7249  * are propagated backwards to common parent state of NULL and non-NULL
7250  * branches. Thanks to that, state equivalence checks done later in forked
7251  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7252  * precision marks are finalized and won't change. Because simulating another
7253  * ACTIVE iterator iteration won't change them (because given same input
7254  * states we'll end up with exactly same output states which we are currently
7255  * comparing; and verification after the loop already propagated back what
7256  * needs to be **additionally** tracked as precise). It's subtle, grok
7257  * precision tracking for more intuitive understanding.
7258  */
7259 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7260 				  struct bpf_kfunc_call_arg_meta *meta)
7261 {
7262 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7263 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7264 	struct bpf_reg_state *cur_iter, *queued_iter;
7265 	int iter_frameno = meta->iter.frameno;
7266 	int iter_spi = meta->iter.spi;
7267 
7268 	BTF_TYPE_EMIT(struct bpf_iter);
7269 
7270 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7271 
7272 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7273 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7274 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7275 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7276 		return -EFAULT;
7277 	}
7278 
7279 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7280 		/* branch out active iter state */
7281 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7282 		if (!queued_st)
7283 			return -ENOMEM;
7284 
7285 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7286 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7287 		queued_iter->iter.depth++;
7288 
7289 		queued_fr = queued_st->frame[queued_st->curframe];
7290 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7291 	}
7292 
7293 	/* switch to DRAINED state, but keep the depth unchanged */
7294 	/* mark current iter state as drained and assume returned NULL */
7295 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7296 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7297 
7298 	return 0;
7299 }
7300 
7301 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7302 {
7303 	return type == ARG_CONST_SIZE ||
7304 	       type == ARG_CONST_SIZE_OR_ZERO;
7305 }
7306 
7307 static bool arg_type_is_release(enum bpf_arg_type type)
7308 {
7309 	return type & OBJ_RELEASE;
7310 }
7311 
7312 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7313 {
7314 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7315 }
7316 
7317 static int int_ptr_type_to_size(enum bpf_arg_type type)
7318 {
7319 	if (type == ARG_PTR_TO_INT)
7320 		return sizeof(u32);
7321 	else if (type == ARG_PTR_TO_LONG)
7322 		return sizeof(u64);
7323 
7324 	return -EINVAL;
7325 }
7326 
7327 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7328 				 const struct bpf_call_arg_meta *meta,
7329 				 enum bpf_arg_type *arg_type)
7330 {
7331 	if (!meta->map_ptr) {
7332 		/* kernel subsystem misconfigured verifier */
7333 		verbose(env, "invalid map_ptr to access map->type\n");
7334 		return -EACCES;
7335 	}
7336 
7337 	switch (meta->map_ptr->map_type) {
7338 	case BPF_MAP_TYPE_SOCKMAP:
7339 	case BPF_MAP_TYPE_SOCKHASH:
7340 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7341 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7342 		} else {
7343 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7344 			return -EINVAL;
7345 		}
7346 		break;
7347 	case BPF_MAP_TYPE_BLOOM_FILTER:
7348 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7349 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7350 		break;
7351 	default:
7352 		break;
7353 	}
7354 	return 0;
7355 }
7356 
7357 struct bpf_reg_types {
7358 	const enum bpf_reg_type types[10];
7359 	u32 *btf_id;
7360 };
7361 
7362 static const struct bpf_reg_types sock_types = {
7363 	.types = {
7364 		PTR_TO_SOCK_COMMON,
7365 		PTR_TO_SOCKET,
7366 		PTR_TO_TCP_SOCK,
7367 		PTR_TO_XDP_SOCK,
7368 	},
7369 };
7370 
7371 #ifdef CONFIG_NET
7372 static const struct bpf_reg_types btf_id_sock_common_types = {
7373 	.types = {
7374 		PTR_TO_SOCK_COMMON,
7375 		PTR_TO_SOCKET,
7376 		PTR_TO_TCP_SOCK,
7377 		PTR_TO_XDP_SOCK,
7378 		PTR_TO_BTF_ID,
7379 		PTR_TO_BTF_ID | PTR_TRUSTED,
7380 	},
7381 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7382 };
7383 #endif
7384 
7385 static const struct bpf_reg_types mem_types = {
7386 	.types = {
7387 		PTR_TO_STACK,
7388 		PTR_TO_PACKET,
7389 		PTR_TO_PACKET_META,
7390 		PTR_TO_MAP_KEY,
7391 		PTR_TO_MAP_VALUE,
7392 		PTR_TO_MEM,
7393 		PTR_TO_MEM | MEM_RINGBUF,
7394 		PTR_TO_BUF,
7395 		PTR_TO_BTF_ID | PTR_TRUSTED,
7396 	},
7397 };
7398 
7399 static const struct bpf_reg_types int_ptr_types = {
7400 	.types = {
7401 		PTR_TO_STACK,
7402 		PTR_TO_PACKET,
7403 		PTR_TO_PACKET_META,
7404 		PTR_TO_MAP_KEY,
7405 		PTR_TO_MAP_VALUE,
7406 	},
7407 };
7408 
7409 static const struct bpf_reg_types spin_lock_types = {
7410 	.types = {
7411 		PTR_TO_MAP_VALUE,
7412 		PTR_TO_BTF_ID | MEM_ALLOC,
7413 	}
7414 };
7415 
7416 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7417 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7418 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7419 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7420 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7421 static const struct bpf_reg_types btf_ptr_types = {
7422 	.types = {
7423 		PTR_TO_BTF_ID,
7424 		PTR_TO_BTF_ID | PTR_TRUSTED,
7425 		PTR_TO_BTF_ID | MEM_RCU,
7426 	},
7427 };
7428 static const struct bpf_reg_types percpu_btf_ptr_types = {
7429 	.types = {
7430 		PTR_TO_BTF_ID | MEM_PERCPU,
7431 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7432 	}
7433 };
7434 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7435 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7436 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7437 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7438 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7439 static const struct bpf_reg_types dynptr_types = {
7440 	.types = {
7441 		PTR_TO_STACK,
7442 		CONST_PTR_TO_DYNPTR,
7443 	}
7444 };
7445 
7446 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7447 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7448 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7449 	[ARG_CONST_SIZE]		= &scalar_types,
7450 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7451 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7452 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7453 	[ARG_PTR_TO_CTX]		= &context_types,
7454 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7455 #ifdef CONFIG_NET
7456 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7457 #endif
7458 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7459 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7460 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7461 	[ARG_PTR_TO_MEM]		= &mem_types,
7462 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7463 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7464 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7465 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7466 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7467 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7468 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7469 	[ARG_PTR_TO_TIMER]		= &timer_types,
7470 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7471 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7472 };
7473 
7474 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7475 			  enum bpf_arg_type arg_type,
7476 			  const u32 *arg_btf_id,
7477 			  struct bpf_call_arg_meta *meta)
7478 {
7479 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7480 	enum bpf_reg_type expected, type = reg->type;
7481 	const struct bpf_reg_types *compatible;
7482 	int i, j;
7483 
7484 	compatible = compatible_reg_types[base_type(arg_type)];
7485 	if (!compatible) {
7486 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7487 		return -EFAULT;
7488 	}
7489 
7490 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7491 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7492 	 *
7493 	 * Same for MAYBE_NULL:
7494 	 *
7495 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7496 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7497 	 *
7498 	 * Therefore we fold these flags depending on the arg_type before comparison.
7499 	 */
7500 	if (arg_type & MEM_RDONLY)
7501 		type &= ~MEM_RDONLY;
7502 	if (arg_type & PTR_MAYBE_NULL)
7503 		type &= ~PTR_MAYBE_NULL;
7504 
7505 	if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC)
7506 		type &= ~MEM_ALLOC;
7507 
7508 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7509 		expected = compatible->types[i];
7510 		if (expected == NOT_INIT)
7511 			break;
7512 
7513 		if (type == expected)
7514 			goto found;
7515 	}
7516 
7517 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7518 	for (j = 0; j + 1 < i; j++)
7519 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7520 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7521 	return -EACCES;
7522 
7523 found:
7524 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7525 		return 0;
7526 
7527 	if (compatible == &mem_types) {
7528 		if (!(arg_type & MEM_RDONLY)) {
7529 			verbose(env,
7530 				"%s() may write into memory pointed by R%d type=%s\n",
7531 				func_id_name(meta->func_id),
7532 				regno, reg_type_str(env, reg->type));
7533 			return -EACCES;
7534 		}
7535 		return 0;
7536 	}
7537 
7538 	switch ((int)reg->type) {
7539 	case PTR_TO_BTF_ID:
7540 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7541 	case PTR_TO_BTF_ID | MEM_RCU:
7542 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7543 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7544 	{
7545 		/* For bpf_sk_release, it needs to match against first member
7546 		 * 'struct sock_common', hence make an exception for it. This
7547 		 * allows bpf_sk_release to work for multiple socket types.
7548 		 */
7549 		bool strict_type_match = arg_type_is_release(arg_type) &&
7550 					 meta->func_id != BPF_FUNC_sk_release;
7551 
7552 		if (type_may_be_null(reg->type) &&
7553 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7554 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7555 			return -EACCES;
7556 		}
7557 
7558 		if (!arg_btf_id) {
7559 			if (!compatible->btf_id) {
7560 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7561 				return -EFAULT;
7562 			}
7563 			arg_btf_id = compatible->btf_id;
7564 		}
7565 
7566 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7567 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7568 				return -EACCES;
7569 		} else {
7570 			if (arg_btf_id == BPF_PTR_POISON) {
7571 				verbose(env, "verifier internal error:");
7572 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7573 					regno);
7574 				return -EACCES;
7575 			}
7576 
7577 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7578 						  btf_vmlinux, *arg_btf_id,
7579 						  strict_type_match)) {
7580 				verbose(env, "R%d is of type %s but %s is expected\n",
7581 					regno, btf_type_name(reg->btf, reg->btf_id),
7582 					btf_type_name(btf_vmlinux, *arg_btf_id));
7583 				return -EACCES;
7584 			}
7585 		}
7586 		break;
7587 	}
7588 	case PTR_TO_BTF_ID | MEM_ALLOC:
7589 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7590 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7591 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7592 			return -EFAULT;
7593 		}
7594 		/* Handled by helper specific checks */
7595 		break;
7596 	case PTR_TO_BTF_ID | MEM_PERCPU:
7597 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7598 		/* Handled by helper specific checks */
7599 		break;
7600 	default:
7601 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7602 		return -EFAULT;
7603 	}
7604 	return 0;
7605 }
7606 
7607 static struct btf_field *
7608 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7609 {
7610 	struct btf_field *field;
7611 	struct btf_record *rec;
7612 
7613 	rec = reg_btf_record(reg);
7614 	if (!rec)
7615 		return NULL;
7616 
7617 	field = btf_record_find(rec, off, fields);
7618 	if (!field)
7619 		return NULL;
7620 
7621 	return field;
7622 }
7623 
7624 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7625 			   const struct bpf_reg_state *reg, int regno,
7626 			   enum bpf_arg_type arg_type)
7627 {
7628 	u32 type = reg->type;
7629 
7630 	/* When referenced register is passed to release function, its fixed
7631 	 * offset must be 0.
7632 	 *
7633 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7634 	 * meta->release_regno.
7635 	 */
7636 	if (arg_type_is_release(arg_type)) {
7637 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7638 		 * may not directly point to the object being released, but to
7639 		 * dynptr pointing to such object, which might be at some offset
7640 		 * on the stack. In that case, we simply to fallback to the
7641 		 * default handling.
7642 		 */
7643 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7644 			return 0;
7645 
7646 		if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7647 			if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7648 				return __check_ptr_off_reg(env, reg, regno, true);
7649 
7650 			verbose(env, "R%d must have zero offset when passed to release func\n",
7651 				regno);
7652 			verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
7653 				btf_type_name(reg->btf, reg->btf_id), reg->off);
7654 			return -EINVAL;
7655 		}
7656 
7657 		/* Doing check_ptr_off_reg check for the offset will catch this
7658 		 * because fixed_off_ok is false, but checking here allows us
7659 		 * to give the user a better error message.
7660 		 */
7661 		if (reg->off) {
7662 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7663 				regno);
7664 			return -EINVAL;
7665 		}
7666 		return __check_ptr_off_reg(env, reg, regno, false);
7667 	}
7668 
7669 	switch (type) {
7670 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7671 	case PTR_TO_STACK:
7672 	case PTR_TO_PACKET:
7673 	case PTR_TO_PACKET_META:
7674 	case PTR_TO_MAP_KEY:
7675 	case PTR_TO_MAP_VALUE:
7676 	case PTR_TO_MEM:
7677 	case PTR_TO_MEM | MEM_RDONLY:
7678 	case PTR_TO_MEM | MEM_RINGBUF:
7679 	case PTR_TO_BUF:
7680 	case PTR_TO_BUF | MEM_RDONLY:
7681 	case SCALAR_VALUE:
7682 		return 0;
7683 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7684 	 * fixed offset.
7685 	 */
7686 	case PTR_TO_BTF_ID:
7687 	case PTR_TO_BTF_ID | MEM_ALLOC:
7688 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7689 	case PTR_TO_BTF_ID | MEM_RCU:
7690 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
7691 		/* When referenced PTR_TO_BTF_ID is passed to release function,
7692 		 * its fixed offset must be 0. In the other cases, fixed offset
7693 		 * can be non-zero. This was already checked above. So pass
7694 		 * fixed_off_ok as true to allow fixed offset for all other
7695 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7696 		 * still need to do checks instead of returning.
7697 		 */
7698 		return __check_ptr_off_reg(env, reg, regno, true);
7699 	default:
7700 		return __check_ptr_off_reg(env, reg, regno, false);
7701 	}
7702 }
7703 
7704 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7705 						const struct bpf_func_proto *fn,
7706 						struct bpf_reg_state *regs)
7707 {
7708 	struct bpf_reg_state *state = NULL;
7709 	int i;
7710 
7711 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7712 		if (arg_type_is_dynptr(fn->arg_type[i])) {
7713 			if (state) {
7714 				verbose(env, "verifier internal error: multiple dynptr args\n");
7715 				return NULL;
7716 			}
7717 			state = &regs[BPF_REG_1 + i];
7718 		}
7719 
7720 	if (!state)
7721 		verbose(env, "verifier internal error: no dynptr arg found\n");
7722 
7723 	return state;
7724 }
7725 
7726 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7727 {
7728 	struct bpf_func_state *state = func(env, reg);
7729 	int spi;
7730 
7731 	if (reg->type == CONST_PTR_TO_DYNPTR)
7732 		return reg->id;
7733 	spi = dynptr_get_spi(env, reg);
7734 	if (spi < 0)
7735 		return spi;
7736 	return state->stack[spi].spilled_ptr.id;
7737 }
7738 
7739 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7740 {
7741 	struct bpf_func_state *state = func(env, reg);
7742 	int spi;
7743 
7744 	if (reg->type == CONST_PTR_TO_DYNPTR)
7745 		return reg->ref_obj_id;
7746 	spi = dynptr_get_spi(env, reg);
7747 	if (spi < 0)
7748 		return spi;
7749 	return state->stack[spi].spilled_ptr.ref_obj_id;
7750 }
7751 
7752 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7753 					    struct bpf_reg_state *reg)
7754 {
7755 	struct bpf_func_state *state = func(env, reg);
7756 	int spi;
7757 
7758 	if (reg->type == CONST_PTR_TO_DYNPTR)
7759 		return reg->dynptr.type;
7760 
7761 	spi = __get_spi(reg->off);
7762 	if (spi < 0) {
7763 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7764 		return BPF_DYNPTR_TYPE_INVALID;
7765 	}
7766 
7767 	return state->stack[spi].spilled_ptr.dynptr.type;
7768 }
7769 
7770 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7771 			  struct bpf_call_arg_meta *meta,
7772 			  const struct bpf_func_proto *fn,
7773 			  int insn_idx)
7774 {
7775 	u32 regno = BPF_REG_1 + arg;
7776 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7777 	enum bpf_arg_type arg_type = fn->arg_type[arg];
7778 	enum bpf_reg_type type = reg->type;
7779 	u32 *arg_btf_id = NULL;
7780 	int err = 0;
7781 
7782 	if (arg_type == ARG_DONTCARE)
7783 		return 0;
7784 
7785 	err = check_reg_arg(env, regno, SRC_OP);
7786 	if (err)
7787 		return err;
7788 
7789 	if (arg_type == ARG_ANYTHING) {
7790 		if (is_pointer_value(env, regno)) {
7791 			verbose(env, "R%d leaks addr into helper function\n",
7792 				regno);
7793 			return -EACCES;
7794 		}
7795 		return 0;
7796 	}
7797 
7798 	if (type_is_pkt_pointer(type) &&
7799 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
7800 		verbose(env, "helper access to the packet is not allowed\n");
7801 		return -EACCES;
7802 	}
7803 
7804 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
7805 		err = resolve_map_arg_type(env, meta, &arg_type);
7806 		if (err)
7807 			return err;
7808 	}
7809 
7810 	if (register_is_null(reg) && type_may_be_null(arg_type))
7811 		/* A NULL register has a SCALAR_VALUE type, so skip
7812 		 * type checking.
7813 		 */
7814 		goto skip_type_check;
7815 
7816 	/* arg_btf_id and arg_size are in a union. */
7817 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7818 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
7819 		arg_btf_id = fn->arg_btf_id[arg];
7820 
7821 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
7822 	if (err)
7823 		return err;
7824 
7825 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
7826 	if (err)
7827 		return err;
7828 
7829 skip_type_check:
7830 	if (arg_type_is_release(arg_type)) {
7831 		if (arg_type_is_dynptr(arg_type)) {
7832 			struct bpf_func_state *state = func(env, reg);
7833 			int spi;
7834 
7835 			/* Only dynptr created on stack can be released, thus
7836 			 * the get_spi and stack state checks for spilled_ptr
7837 			 * should only be done before process_dynptr_func for
7838 			 * PTR_TO_STACK.
7839 			 */
7840 			if (reg->type == PTR_TO_STACK) {
7841 				spi = dynptr_get_spi(env, reg);
7842 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
7843 					verbose(env, "arg %d is an unacquired reference\n", regno);
7844 					return -EINVAL;
7845 				}
7846 			} else {
7847 				verbose(env, "cannot release unowned const bpf_dynptr\n");
7848 				return -EINVAL;
7849 			}
7850 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
7851 			verbose(env, "R%d must be referenced when passed to release function\n",
7852 				regno);
7853 			return -EINVAL;
7854 		}
7855 		if (meta->release_regno) {
7856 			verbose(env, "verifier internal error: more than one release argument\n");
7857 			return -EFAULT;
7858 		}
7859 		meta->release_regno = regno;
7860 	}
7861 
7862 	if (reg->ref_obj_id) {
7863 		if (meta->ref_obj_id) {
7864 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7865 				regno, reg->ref_obj_id,
7866 				meta->ref_obj_id);
7867 			return -EFAULT;
7868 		}
7869 		meta->ref_obj_id = reg->ref_obj_id;
7870 	}
7871 
7872 	switch (base_type(arg_type)) {
7873 	case ARG_CONST_MAP_PTR:
7874 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
7875 		if (meta->map_ptr) {
7876 			/* Use map_uid (which is unique id of inner map) to reject:
7877 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7878 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7879 			 * if (inner_map1 && inner_map2) {
7880 			 *     timer = bpf_map_lookup_elem(inner_map1);
7881 			 *     if (timer)
7882 			 *         // mismatch would have been allowed
7883 			 *         bpf_timer_init(timer, inner_map2);
7884 			 * }
7885 			 *
7886 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
7887 			 */
7888 			if (meta->map_ptr != reg->map_ptr ||
7889 			    meta->map_uid != reg->map_uid) {
7890 				verbose(env,
7891 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7892 					meta->map_uid, reg->map_uid);
7893 				return -EINVAL;
7894 			}
7895 		}
7896 		meta->map_ptr = reg->map_ptr;
7897 		meta->map_uid = reg->map_uid;
7898 		break;
7899 	case ARG_PTR_TO_MAP_KEY:
7900 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
7901 		 * check that [key, key + map->key_size) are within
7902 		 * stack limits and initialized
7903 		 */
7904 		if (!meta->map_ptr) {
7905 			/* in function declaration map_ptr must come before
7906 			 * map_key, so that it's verified and known before
7907 			 * we have to check map_key here. Otherwise it means
7908 			 * that kernel subsystem misconfigured verifier
7909 			 */
7910 			verbose(env, "invalid map_ptr to access map->key\n");
7911 			return -EACCES;
7912 		}
7913 		err = check_helper_mem_access(env, regno,
7914 					      meta->map_ptr->key_size, false,
7915 					      NULL);
7916 		break;
7917 	case ARG_PTR_TO_MAP_VALUE:
7918 		if (type_may_be_null(arg_type) && register_is_null(reg))
7919 			return 0;
7920 
7921 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
7922 		 * check [value, value + map->value_size) validity
7923 		 */
7924 		if (!meta->map_ptr) {
7925 			/* kernel subsystem misconfigured verifier */
7926 			verbose(env, "invalid map_ptr to access map->value\n");
7927 			return -EACCES;
7928 		}
7929 		meta->raw_mode = arg_type & MEM_UNINIT;
7930 		err = check_helper_mem_access(env, regno,
7931 					      meta->map_ptr->value_size, false,
7932 					      meta);
7933 		break;
7934 	case ARG_PTR_TO_PERCPU_BTF_ID:
7935 		if (!reg->btf_id) {
7936 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7937 			return -EACCES;
7938 		}
7939 		meta->ret_btf = reg->btf;
7940 		meta->ret_btf_id = reg->btf_id;
7941 		break;
7942 	case ARG_PTR_TO_SPIN_LOCK:
7943 		if (in_rbtree_lock_required_cb(env)) {
7944 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7945 			return -EACCES;
7946 		}
7947 		if (meta->func_id == BPF_FUNC_spin_lock) {
7948 			err = process_spin_lock(env, regno, true);
7949 			if (err)
7950 				return err;
7951 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
7952 			err = process_spin_lock(env, regno, false);
7953 			if (err)
7954 				return err;
7955 		} else {
7956 			verbose(env, "verifier internal error\n");
7957 			return -EFAULT;
7958 		}
7959 		break;
7960 	case ARG_PTR_TO_TIMER:
7961 		err = process_timer_func(env, regno, meta);
7962 		if (err)
7963 			return err;
7964 		break;
7965 	case ARG_PTR_TO_FUNC:
7966 		meta->subprogno = reg->subprogno;
7967 		break;
7968 	case ARG_PTR_TO_MEM:
7969 		/* The access to this pointer is only checked when we hit the
7970 		 * next is_mem_size argument below.
7971 		 */
7972 		meta->raw_mode = arg_type & MEM_UNINIT;
7973 		if (arg_type & MEM_FIXED_SIZE) {
7974 			err = check_helper_mem_access(env, regno,
7975 						      fn->arg_size[arg], false,
7976 						      meta);
7977 		}
7978 		break;
7979 	case ARG_CONST_SIZE:
7980 		err = check_mem_size_reg(env, reg, regno, false, meta);
7981 		break;
7982 	case ARG_CONST_SIZE_OR_ZERO:
7983 		err = check_mem_size_reg(env, reg, regno, true, meta);
7984 		break;
7985 	case ARG_PTR_TO_DYNPTR:
7986 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
7987 		if (err)
7988 			return err;
7989 		break;
7990 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
7991 		if (!tnum_is_const(reg->var_off)) {
7992 			verbose(env, "R%d is not a known constant'\n",
7993 				regno);
7994 			return -EACCES;
7995 		}
7996 		meta->mem_size = reg->var_off.value;
7997 		err = mark_chain_precision(env, regno);
7998 		if (err)
7999 			return err;
8000 		break;
8001 	case ARG_PTR_TO_INT:
8002 	case ARG_PTR_TO_LONG:
8003 	{
8004 		int size = int_ptr_type_to_size(arg_type);
8005 
8006 		err = check_helper_mem_access(env, regno, size, false, meta);
8007 		if (err)
8008 			return err;
8009 		err = check_ptr_alignment(env, reg, 0, size, true);
8010 		break;
8011 	}
8012 	case ARG_PTR_TO_CONST_STR:
8013 	{
8014 		struct bpf_map *map = reg->map_ptr;
8015 		int map_off;
8016 		u64 map_addr;
8017 		char *str_ptr;
8018 
8019 		if (!bpf_map_is_rdonly(map)) {
8020 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8021 			return -EACCES;
8022 		}
8023 
8024 		if (!tnum_is_const(reg->var_off)) {
8025 			verbose(env, "R%d is not a constant address'\n", regno);
8026 			return -EACCES;
8027 		}
8028 
8029 		if (!map->ops->map_direct_value_addr) {
8030 			verbose(env, "no direct value access support for this map type\n");
8031 			return -EACCES;
8032 		}
8033 
8034 		err = check_map_access(env, regno, reg->off,
8035 				       map->value_size - reg->off, false,
8036 				       ACCESS_HELPER);
8037 		if (err)
8038 			return err;
8039 
8040 		map_off = reg->off + reg->var_off.value;
8041 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8042 		if (err) {
8043 			verbose(env, "direct value access on string failed\n");
8044 			return err;
8045 		}
8046 
8047 		str_ptr = (char *)(long)(map_addr);
8048 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8049 			verbose(env, "string is not zero-terminated\n");
8050 			return -EINVAL;
8051 		}
8052 		break;
8053 	}
8054 	case ARG_PTR_TO_KPTR:
8055 		err = process_kptr_func(env, regno, meta);
8056 		if (err)
8057 			return err;
8058 		break;
8059 	}
8060 
8061 	return err;
8062 }
8063 
8064 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8065 {
8066 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8067 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8068 
8069 	if (func_id != BPF_FUNC_map_update_elem)
8070 		return false;
8071 
8072 	/* It's not possible to get access to a locked struct sock in these
8073 	 * contexts, so updating is safe.
8074 	 */
8075 	switch (type) {
8076 	case BPF_PROG_TYPE_TRACING:
8077 		if (eatype == BPF_TRACE_ITER)
8078 			return true;
8079 		break;
8080 	case BPF_PROG_TYPE_SOCKET_FILTER:
8081 	case BPF_PROG_TYPE_SCHED_CLS:
8082 	case BPF_PROG_TYPE_SCHED_ACT:
8083 	case BPF_PROG_TYPE_XDP:
8084 	case BPF_PROG_TYPE_SK_REUSEPORT:
8085 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8086 	case BPF_PROG_TYPE_SK_LOOKUP:
8087 		return true;
8088 	default:
8089 		break;
8090 	}
8091 
8092 	verbose(env, "cannot update sockmap in this context\n");
8093 	return false;
8094 }
8095 
8096 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8097 {
8098 	return env->prog->jit_requested &&
8099 	       bpf_jit_supports_subprog_tailcalls();
8100 }
8101 
8102 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8103 					struct bpf_map *map, int func_id)
8104 {
8105 	if (!map)
8106 		return 0;
8107 
8108 	/* We need a two way check, first is from map perspective ... */
8109 	switch (map->map_type) {
8110 	case BPF_MAP_TYPE_PROG_ARRAY:
8111 		if (func_id != BPF_FUNC_tail_call)
8112 			goto error;
8113 		break;
8114 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8115 		if (func_id != BPF_FUNC_perf_event_read &&
8116 		    func_id != BPF_FUNC_perf_event_output &&
8117 		    func_id != BPF_FUNC_skb_output &&
8118 		    func_id != BPF_FUNC_perf_event_read_value &&
8119 		    func_id != BPF_FUNC_xdp_output)
8120 			goto error;
8121 		break;
8122 	case BPF_MAP_TYPE_RINGBUF:
8123 		if (func_id != BPF_FUNC_ringbuf_output &&
8124 		    func_id != BPF_FUNC_ringbuf_reserve &&
8125 		    func_id != BPF_FUNC_ringbuf_query &&
8126 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8127 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8128 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8129 			goto error;
8130 		break;
8131 	case BPF_MAP_TYPE_USER_RINGBUF:
8132 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8133 			goto error;
8134 		break;
8135 	case BPF_MAP_TYPE_STACK_TRACE:
8136 		if (func_id != BPF_FUNC_get_stackid)
8137 			goto error;
8138 		break;
8139 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8140 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8141 		    func_id != BPF_FUNC_current_task_under_cgroup)
8142 			goto error;
8143 		break;
8144 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8145 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8146 		if (func_id != BPF_FUNC_get_local_storage)
8147 			goto error;
8148 		break;
8149 	case BPF_MAP_TYPE_DEVMAP:
8150 	case BPF_MAP_TYPE_DEVMAP_HASH:
8151 		if (func_id != BPF_FUNC_redirect_map &&
8152 		    func_id != BPF_FUNC_map_lookup_elem)
8153 			goto error;
8154 		break;
8155 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8156 	 * appear.
8157 	 */
8158 	case BPF_MAP_TYPE_CPUMAP:
8159 		if (func_id != BPF_FUNC_redirect_map)
8160 			goto error;
8161 		break;
8162 	case BPF_MAP_TYPE_XSKMAP:
8163 		if (func_id != BPF_FUNC_redirect_map &&
8164 		    func_id != BPF_FUNC_map_lookup_elem)
8165 			goto error;
8166 		break;
8167 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8168 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8169 		if (func_id != BPF_FUNC_map_lookup_elem)
8170 			goto error;
8171 		break;
8172 	case BPF_MAP_TYPE_SOCKMAP:
8173 		if (func_id != BPF_FUNC_sk_redirect_map &&
8174 		    func_id != BPF_FUNC_sock_map_update &&
8175 		    func_id != BPF_FUNC_map_delete_elem &&
8176 		    func_id != BPF_FUNC_msg_redirect_map &&
8177 		    func_id != BPF_FUNC_sk_select_reuseport &&
8178 		    func_id != BPF_FUNC_map_lookup_elem &&
8179 		    !may_update_sockmap(env, func_id))
8180 			goto error;
8181 		break;
8182 	case BPF_MAP_TYPE_SOCKHASH:
8183 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8184 		    func_id != BPF_FUNC_sock_hash_update &&
8185 		    func_id != BPF_FUNC_map_delete_elem &&
8186 		    func_id != BPF_FUNC_msg_redirect_hash &&
8187 		    func_id != BPF_FUNC_sk_select_reuseport &&
8188 		    func_id != BPF_FUNC_map_lookup_elem &&
8189 		    !may_update_sockmap(env, func_id))
8190 			goto error;
8191 		break;
8192 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8193 		if (func_id != BPF_FUNC_sk_select_reuseport)
8194 			goto error;
8195 		break;
8196 	case BPF_MAP_TYPE_QUEUE:
8197 	case BPF_MAP_TYPE_STACK:
8198 		if (func_id != BPF_FUNC_map_peek_elem &&
8199 		    func_id != BPF_FUNC_map_pop_elem &&
8200 		    func_id != BPF_FUNC_map_push_elem)
8201 			goto error;
8202 		break;
8203 	case BPF_MAP_TYPE_SK_STORAGE:
8204 		if (func_id != BPF_FUNC_sk_storage_get &&
8205 		    func_id != BPF_FUNC_sk_storage_delete &&
8206 		    func_id != BPF_FUNC_kptr_xchg)
8207 			goto error;
8208 		break;
8209 	case BPF_MAP_TYPE_INODE_STORAGE:
8210 		if (func_id != BPF_FUNC_inode_storage_get &&
8211 		    func_id != BPF_FUNC_inode_storage_delete &&
8212 		    func_id != BPF_FUNC_kptr_xchg)
8213 			goto error;
8214 		break;
8215 	case BPF_MAP_TYPE_TASK_STORAGE:
8216 		if (func_id != BPF_FUNC_task_storage_get &&
8217 		    func_id != BPF_FUNC_task_storage_delete &&
8218 		    func_id != BPF_FUNC_kptr_xchg)
8219 			goto error;
8220 		break;
8221 	case BPF_MAP_TYPE_CGRP_STORAGE:
8222 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8223 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8224 		    func_id != BPF_FUNC_kptr_xchg)
8225 			goto error;
8226 		break;
8227 	case BPF_MAP_TYPE_BLOOM_FILTER:
8228 		if (func_id != BPF_FUNC_map_peek_elem &&
8229 		    func_id != BPF_FUNC_map_push_elem)
8230 			goto error;
8231 		break;
8232 	default:
8233 		break;
8234 	}
8235 
8236 	/* ... and second from the function itself. */
8237 	switch (func_id) {
8238 	case BPF_FUNC_tail_call:
8239 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8240 			goto error;
8241 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8242 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8243 			return -EINVAL;
8244 		}
8245 		break;
8246 	case BPF_FUNC_perf_event_read:
8247 	case BPF_FUNC_perf_event_output:
8248 	case BPF_FUNC_perf_event_read_value:
8249 	case BPF_FUNC_skb_output:
8250 	case BPF_FUNC_xdp_output:
8251 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8252 			goto error;
8253 		break;
8254 	case BPF_FUNC_ringbuf_output:
8255 	case BPF_FUNC_ringbuf_reserve:
8256 	case BPF_FUNC_ringbuf_query:
8257 	case BPF_FUNC_ringbuf_reserve_dynptr:
8258 	case BPF_FUNC_ringbuf_submit_dynptr:
8259 	case BPF_FUNC_ringbuf_discard_dynptr:
8260 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8261 			goto error;
8262 		break;
8263 	case BPF_FUNC_user_ringbuf_drain:
8264 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8265 			goto error;
8266 		break;
8267 	case BPF_FUNC_get_stackid:
8268 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8269 			goto error;
8270 		break;
8271 	case BPF_FUNC_current_task_under_cgroup:
8272 	case BPF_FUNC_skb_under_cgroup:
8273 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8274 			goto error;
8275 		break;
8276 	case BPF_FUNC_redirect_map:
8277 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8278 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8279 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8280 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8281 			goto error;
8282 		break;
8283 	case BPF_FUNC_sk_redirect_map:
8284 	case BPF_FUNC_msg_redirect_map:
8285 	case BPF_FUNC_sock_map_update:
8286 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8287 			goto error;
8288 		break;
8289 	case BPF_FUNC_sk_redirect_hash:
8290 	case BPF_FUNC_msg_redirect_hash:
8291 	case BPF_FUNC_sock_hash_update:
8292 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8293 			goto error;
8294 		break;
8295 	case BPF_FUNC_get_local_storage:
8296 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8297 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8298 			goto error;
8299 		break;
8300 	case BPF_FUNC_sk_select_reuseport:
8301 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8302 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8303 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8304 			goto error;
8305 		break;
8306 	case BPF_FUNC_map_pop_elem:
8307 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8308 		    map->map_type != BPF_MAP_TYPE_STACK)
8309 			goto error;
8310 		break;
8311 	case BPF_FUNC_map_peek_elem:
8312 	case BPF_FUNC_map_push_elem:
8313 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8314 		    map->map_type != BPF_MAP_TYPE_STACK &&
8315 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8316 			goto error;
8317 		break;
8318 	case BPF_FUNC_map_lookup_percpu_elem:
8319 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8320 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8321 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8322 			goto error;
8323 		break;
8324 	case BPF_FUNC_sk_storage_get:
8325 	case BPF_FUNC_sk_storage_delete:
8326 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8327 			goto error;
8328 		break;
8329 	case BPF_FUNC_inode_storage_get:
8330 	case BPF_FUNC_inode_storage_delete:
8331 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8332 			goto error;
8333 		break;
8334 	case BPF_FUNC_task_storage_get:
8335 	case BPF_FUNC_task_storage_delete:
8336 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8337 			goto error;
8338 		break;
8339 	case BPF_FUNC_cgrp_storage_get:
8340 	case BPF_FUNC_cgrp_storage_delete:
8341 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8342 			goto error;
8343 		break;
8344 	default:
8345 		break;
8346 	}
8347 
8348 	return 0;
8349 error:
8350 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8351 		map->map_type, func_id_name(func_id), func_id);
8352 	return -EINVAL;
8353 }
8354 
8355 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8356 {
8357 	int count = 0;
8358 
8359 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8360 		count++;
8361 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8362 		count++;
8363 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8364 		count++;
8365 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8366 		count++;
8367 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8368 		count++;
8369 
8370 	/* We only support one arg being in raw mode at the moment,
8371 	 * which is sufficient for the helper functions we have
8372 	 * right now.
8373 	 */
8374 	return count <= 1;
8375 }
8376 
8377 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8378 {
8379 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8380 	bool has_size = fn->arg_size[arg] != 0;
8381 	bool is_next_size = false;
8382 
8383 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8384 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8385 
8386 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8387 		return is_next_size;
8388 
8389 	return has_size == is_next_size || is_next_size == is_fixed;
8390 }
8391 
8392 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8393 {
8394 	/* bpf_xxx(..., buf, len) call will access 'len'
8395 	 * bytes from memory 'buf'. Both arg types need
8396 	 * to be paired, so make sure there's no buggy
8397 	 * helper function specification.
8398 	 */
8399 	if (arg_type_is_mem_size(fn->arg1_type) ||
8400 	    check_args_pair_invalid(fn, 0) ||
8401 	    check_args_pair_invalid(fn, 1) ||
8402 	    check_args_pair_invalid(fn, 2) ||
8403 	    check_args_pair_invalid(fn, 3) ||
8404 	    check_args_pair_invalid(fn, 4))
8405 		return false;
8406 
8407 	return true;
8408 }
8409 
8410 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8411 {
8412 	int i;
8413 
8414 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8415 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8416 			return !!fn->arg_btf_id[i];
8417 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8418 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8419 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8420 		    /* arg_btf_id and arg_size are in a union. */
8421 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8422 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8423 			return false;
8424 	}
8425 
8426 	return true;
8427 }
8428 
8429 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8430 {
8431 	return check_raw_mode_ok(fn) &&
8432 	       check_arg_pair_ok(fn) &&
8433 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8434 }
8435 
8436 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8437  * are now invalid, so turn them into unknown SCALAR_VALUE.
8438  *
8439  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8440  * since these slices point to packet data.
8441  */
8442 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8443 {
8444 	struct bpf_func_state *state;
8445 	struct bpf_reg_state *reg;
8446 
8447 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8448 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8449 			mark_reg_invalid(env, reg);
8450 	}));
8451 }
8452 
8453 enum {
8454 	AT_PKT_END = -1,
8455 	BEYOND_PKT_END = -2,
8456 };
8457 
8458 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8459 {
8460 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8461 	struct bpf_reg_state *reg = &state->regs[regn];
8462 
8463 	if (reg->type != PTR_TO_PACKET)
8464 		/* PTR_TO_PACKET_META is not supported yet */
8465 		return;
8466 
8467 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8468 	 * How far beyond pkt_end it goes is unknown.
8469 	 * if (!range_open) it's the case of pkt >= pkt_end
8470 	 * if (range_open) it's the case of pkt > pkt_end
8471 	 * hence this pointer is at least 1 byte bigger than pkt_end
8472 	 */
8473 	if (range_open)
8474 		reg->range = BEYOND_PKT_END;
8475 	else
8476 		reg->range = AT_PKT_END;
8477 }
8478 
8479 /* The pointer with the specified id has released its reference to kernel
8480  * resources. Identify all copies of the same pointer and clear the reference.
8481  */
8482 static int release_reference(struct bpf_verifier_env *env,
8483 			     int ref_obj_id)
8484 {
8485 	struct bpf_func_state *state;
8486 	struct bpf_reg_state *reg;
8487 	int err;
8488 
8489 	err = release_reference_state(cur_func(env), ref_obj_id);
8490 	if (err)
8491 		return err;
8492 
8493 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8494 		if (reg->ref_obj_id == ref_obj_id)
8495 			mark_reg_invalid(env, reg);
8496 	}));
8497 
8498 	return 0;
8499 }
8500 
8501 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8502 {
8503 	struct bpf_func_state *unused;
8504 	struct bpf_reg_state *reg;
8505 
8506 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8507 		if (type_is_non_owning_ref(reg->type))
8508 			mark_reg_invalid(env, reg);
8509 	}));
8510 }
8511 
8512 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8513 				    struct bpf_reg_state *regs)
8514 {
8515 	int i;
8516 
8517 	/* after the call registers r0 - r5 were scratched */
8518 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8519 		mark_reg_not_init(env, regs, caller_saved[i]);
8520 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8521 	}
8522 }
8523 
8524 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8525 				   struct bpf_func_state *caller,
8526 				   struct bpf_func_state *callee,
8527 				   int insn_idx);
8528 
8529 static int set_callee_state(struct bpf_verifier_env *env,
8530 			    struct bpf_func_state *caller,
8531 			    struct bpf_func_state *callee, int insn_idx);
8532 
8533 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8534 			     int *insn_idx, int subprog,
8535 			     set_callee_state_fn set_callee_state_cb)
8536 {
8537 	struct bpf_verifier_state *state = env->cur_state;
8538 	struct bpf_func_state *caller, *callee;
8539 	int err;
8540 
8541 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8542 		verbose(env, "the call stack of %d frames is too deep\n",
8543 			state->curframe + 2);
8544 		return -E2BIG;
8545 	}
8546 
8547 	caller = state->frame[state->curframe];
8548 	if (state->frame[state->curframe + 1]) {
8549 		verbose(env, "verifier bug. Frame %d already allocated\n",
8550 			state->curframe + 1);
8551 		return -EFAULT;
8552 	}
8553 
8554 	err = btf_check_subprog_call(env, subprog, caller->regs);
8555 	if (err == -EFAULT)
8556 		return err;
8557 	if (subprog_is_global(env, subprog)) {
8558 		if (err) {
8559 			verbose(env, "Caller passes invalid args into func#%d\n",
8560 				subprog);
8561 			return err;
8562 		} else {
8563 			if (env->log.level & BPF_LOG_LEVEL)
8564 				verbose(env,
8565 					"Func#%d is global and valid. Skipping.\n",
8566 					subprog);
8567 			clear_caller_saved_regs(env, caller->regs);
8568 
8569 			/* All global functions return a 64-bit SCALAR_VALUE */
8570 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8571 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8572 
8573 			/* continue with next insn after call */
8574 			return 0;
8575 		}
8576 	}
8577 
8578 	/* set_callee_state is used for direct subprog calls, but we are
8579 	 * interested in validating only BPF helpers that can call subprogs as
8580 	 * callbacks
8581 	 */
8582 	if (set_callee_state_cb != set_callee_state) {
8583 		if (bpf_pseudo_kfunc_call(insn) &&
8584 		    !is_callback_calling_kfunc(insn->imm)) {
8585 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8586 				func_id_name(insn->imm), insn->imm);
8587 			return -EFAULT;
8588 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8589 			   !is_callback_calling_function(insn->imm)) { /* helper */
8590 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8591 				func_id_name(insn->imm), insn->imm);
8592 			return -EFAULT;
8593 		}
8594 	}
8595 
8596 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8597 	    insn->src_reg == 0 &&
8598 	    insn->imm == BPF_FUNC_timer_set_callback) {
8599 		struct bpf_verifier_state *async_cb;
8600 
8601 		/* there is no real recursion here. timer callbacks are async */
8602 		env->subprog_info[subprog].is_async_cb = true;
8603 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8604 					 *insn_idx, subprog);
8605 		if (!async_cb)
8606 			return -EFAULT;
8607 		callee = async_cb->frame[0];
8608 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8609 
8610 		/* Convert bpf_timer_set_callback() args into timer callback args */
8611 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8612 		if (err)
8613 			return err;
8614 
8615 		clear_caller_saved_regs(env, caller->regs);
8616 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8617 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8618 		/* continue with next insn after call */
8619 		return 0;
8620 	}
8621 
8622 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8623 	if (!callee)
8624 		return -ENOMEM;
8625 	state->frame[state->curframe + 1] = callee;
8626 
8627 	/* callee cannot access r0, r6 - r9 for reading and has to write
8628 	 * into its own stack before reading from it.
8629 	 * callee can read/write into caller's stack
8630 	 */
8631 	init_func_state(env, callee,
8632 			/* remember the callsite, it will be used by bpf_exit */
8633 			*insn_idx /* callsite */,
8634 			state->curframe + 1 /* frameno within this callchain */,
8635 			subprog /* subprog number within this prog */);
8636 
8637 	/* Transfer references to the callee */
8638 	err = copy_reference_state(callee, caller);
8639 	if (err)
8640 		goto err_out;
8641 
8642 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8643 	if (err)
8644 		goto err_out;
8645 
8646 	clear_caller_saved_regs(env, caller->regs);
8647 
8648 	/* only increment it after check_reg_arg() finished */
8649 	state->curframe++;
8650 
8651 	/* and go analyze first insn of the callee */
8652 	*insn_idx = env->subprog_info[subprog].start - 1;
8653 
8654 	if (env->log.level & BPF_LOG_LEVEL) {
8655 		verbose(env, "caller:\n");
8656 		print_verifier_state(env, caller, true);
8657 		verbose(env, "callee:\n");
8658 		print_verifier_state(env, callee, true);
8659 	}
8660 	return 0;
8661 
8662 err_out:
8663 	free_func_state(callee);
8664 	state->frame[state->curframe + 1] = NULL;
8665 	return err;
8666 }
8667 
8668 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8669 				   struct bpf_func_state *caller,
8670 				   struct bpf_func_state *callee)
8671 {
8672 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8673 	 *      void *callback_ctx, u64 flags);
8674 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8675 	 *      void *callback_ctx);
8676 	 */
8677 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8678 
8679 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8680 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8681 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8682 
8683 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8684 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8685 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8686 
8687 	/* pointer to stack or null */
8688 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8689 
8690 	/* unused */
8691 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8692 	return 0;
8693 }
8694 
8695 static int set_callee_state(struct bpf_verifier_env *env,
8696 			    struct bpf_func_state *caller,
8697 			    struct bpf_func_state *callee, int insn_idx)
8698 {
8699 	int i;
8700 
8701 	/* copy r1 - r5 args that callee can access.  The copy includes parent
8702 	 * pointers, which connects us up to the liveness chain
8703 	 */
8704 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8705 		callee->regs[i] = caller->regs[i];
8706 	return 0;
8707 }
8708 
8709 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8710 			   int *insn_idx)
8711 {
8712 	int subprog, target_insn;
8713 
8714 	target_insn = *insn_idx + insn->imm + 1;
8715 	subprog = find_subprog(env, target_insn);
8716 	if (subprog < 0) {
8717 		verbose(env, "verifier bug. No program starts at insn %d\n",
8718 			target_insn);
8719 		return -EFAULT;
8720 	}
8721 
8722 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8723 }
8724 
8725 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8726 				       struct bpf_func_state *caller,
8727 				       struct bpf_func_state *callee,
8728 				       int insn_idx)
8729 {
8730 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8731 	struct bpf_map *map;
8732 	int err;
8733 
8734 	if (bpf_map_ptr_poisoned(insn_aux)) {
8735 		verbose(env, "tail_call abusing map_ptr\n");
8736 		return -EINVAL;
8737 	}
8738 
8739 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8740 	if (!map->ops->map_set_for_each_callback_args ||
8741 	    !map->ops->map_for_each_callback) {
8742 		verbose(env, "callback function not allowed for map\n");
8743 		return -ENOTSUPP;
8744 	}
8745 
8746 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8747 	if (err)
8748 		return err;
8749 
8750 	callee->in_callback_fn = true;
8751 	callee->callback_ret_range = tnum_range(0, 1);
8752 	return 0;
8753 }
8754 
8755 static int set_loop_callback_state(struct bpf_verifier_env *env,
8756 				   struct bpf_func_state *caller,
8757 				   struct bpf_func_state *callee,
8758 				   int insn_idx)
8759 {
8760 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8761 	 *	    u64 flags);
8762 	 * callback_fn(u32 index, void *callback_ctx);
8763 	 */
8764 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8765 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8766 
8767 	/* unused */
8768 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8769 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8770 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8771 
8772 	callee->in_callback_fn = true;
8773 	callee->callback_ret_range = tnum_range(0, 1);
8774 	return 0;
8775 }
8776 
8777 static int set_timer_callback_state(struct bpf_verifier_env *env,
8778 				    struct bpf_func_state *caller,
8779 				    struct bpf_func_state *callee,
8780 				    int insn_idx)
8781 {
8782 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8783 
8784 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8785 	 * callback_fn(struct bpf_map *map, void *key, void *value);
8786 	 */
8787 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8788 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8789 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
8790 
8791 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8792 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8793 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
8794 
8795 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8796 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8797 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
8798 
8799 	/* unused */
8800 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8801 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8802 	callee->in_async_callback_fn = true;
8803 	callee->callback_ret_range = tnum_range(0, 1);
8804 	return 0;
8805 }
8806 
8807 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8808 				       struct bpf_func_state *caller,
8809 				       struct bpf_func_state *callee,
8810 				       int insn_idx)
8811 {
8812 	/* bpf_find_vma(struct task_struct *task, u64 addr,
8813 	 *               void *callback_fn, void *callback_ctx, u64 flags)
8814 	 * (callback_fn)(struct task_struct *task,
8815 	 *               struct vm_area_struct *vma, void *callback_ctx);
8816 	 */
8817 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8818 
8819 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8820 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8821 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
8822 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
8823 
8824 	/* pointer to stack or null */
8825 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8826 
8827 	/* unused */
8828 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8829 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8830 	callee->in_callback_fn = true;
8831 	callee->callback_ret_range = tnum_range(0, 1);
8832 	return 0;
8833 }
8834 
8835 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8836 					   struct bpf_func_state *caller,
8837 					   struct bpf_func_state *callee,
8838 					   int insn_idx)
8839 {
8840 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8841 	 *			  callback_ctx, u64 flags);
8842 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
8843 	 */
8844 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
8845 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
8846 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8847 
8848 	/* unused */
8849 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8850 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8851 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8852 
8853 	callee->in_callback_fn = true;
8854 	callee->callback_ret_range = tnum_range(0, 1);
8855 	return 0;
8856 }
8857 
8858 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8859 					 struct bpf_func_state *caller,
8860 					 struct bpf_func_state *callee,
8861 					 int insn_idx)
8862 {
8863 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
8864 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8865 	 *
8866 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
8867 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8868 	 * by this point, so look at 'root'
8869 	 */
8870 	struct btf_field *field;
8871 
8872 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8873 				      BPF_RB_ROOT);
8874 	if (!field || !field->graph_root.value_btf_id)
8875 		return -EFAULT;
8876 
8877 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8878 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8879 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8880 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8881 
8882 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8883 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8884 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8885 	callee->in_callback_fn = true;
8886 	callee->callback_ret_range = tnum_range(0, 1);
8887 	return 0;
8888 }
8889 
8890 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8891 
8892 /* Are we currently verifying the callback for a rbtree helper that must
8893  * be called with lock held? If so, no need to complain about unreleased
8894  * lock
8895  */
8896 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8897 {
8898 	struct bpf_verifier_state *state = env->cur_state;
8899 	struct bpf_insn *insn = env->prog->insnsi;
8900 	struct bpf_func_state *callee;
8901 	int kfunc_btf_id;
8902 
8903 	if (!state->curframe)
8904 		return false;
8905 
8906 	callee = state->frame[state->curframe];
8907 
8908 	if (!callee->in_callback_fn)
8909 		return false;
8910 
8911 	kfunc_btf_id = insn[callee->callsite].imm;
8912 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8913 }
8914 
8915 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8916 {
8917 	struct bpf_verifier_state *state = env->cur_state;
8918 	struct bpf_func_state *caller, *callee;
8919 	struct bpf_reg_state *r0;
8920 	int err;
8921 
8922 	callee = state->frame[state->curframe];
8923 	r0 = &callee->regs[BPF_REG_0];
8924 	if (r0->type == PTR_TO_STACK) {
8925 		/* technically it's ok to return caller's stack pointer
8926 		 * (or caller's caller's pointer) back to the caller,
8927 		 * since these pointers are valid. Only current stack
8928 		 * pointer will be invalid as soon as function exits,
8929 		 * but let's be conservative
8930 		 */
8931 		verbose(env, "cannot return stack pointer to the caller\n");
8932 		return -EINVAL;
8933 	}
8934 
8935 	caller = state->frame[state->curframe - 1];
8936 	if (callee->in_callback_fn) {
8937 		/* enforce R0 return value range [0, 1]. */
8938 		struct tnum range = callee->callback_ret_range;
8939 
8940 		if (r0->type != SCALAR_VALUE) {
8941 			verbose(env, "R0 not a scalar value\n");
8942 			return -EACCES;
8943 		}
8944 		if (!tnum_in(range, r0->var_off)) {
8945 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8946 			return -EINVAL;
8947 		}
8948 	} else {
8949 		/* return to the caller whatever r0 had in the callee */
8950 		caller->regs[BPF_REG_0] = *r0;
8951 	}
8952 
8953 	/* callback_fn frame should have released its own additions to parent's
8954 	 * reference state at this point, or check_reference_leak would
8955 	 * complain, hence it must be the same as the caller. There is no need
8956 	 * to copy it back.
8957 	 */
8958 	if (!callee->in_callback_fn) {
8959 		/* Transfer references to the caller */
8960 		err = copy_reference_state(caller, callee);
8961 		if (err)
8962 			return err;
8963 	}
8964 
8965 	*insn_idx = callee->callsite + 1;
8966 	if (env->log.level & BPF_LOG_LEVEL) {
8967 		verbose(env, "returning from callee:\n");
8968 		print_verifier_state(env, callee, true);
8969 		verbose(env, "to caller at %d:\n", *insn_idx);
8970 		print_verifier_state(env, caller, true);
8971 	}
8972 	/* clear everything in the callee */
8973 	free_func_state(callee);
8974 	state->frame[state->curframe--] = NULL;
8975 	return 0;
8976 }
8977 
8978 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8979 				   int func_id,
8980 				   struct bpf_call_arg_meta *meta)
8981 {
8982 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8983 
8984 	if (ret_type != RET_INTEGER ||
8985 	    (func_id != BPF_FUNC_get_stack &&
8986 	     func_id != BPF_FUNC_get_task_stack &&
8987 	     func_id != BPF_FUNC_probe_read_str &&
8988 	     func_id != BPF_FUNC_probe_read_kernel_str &&
8989 	     func_id != BPF_FUNC_probe_read_user_str))
8990 		return;
8991 
8992 	ret_reg->smax_value = meta->msize_max_value;
8993 	ret_reg->s32_max_value = meta->msize_max_value;
8994 	ret_reg->smin_value = -MAX_ERRNO;
8995 	ret_reg->s32_min_value = -MAX_ERRNO;
8996 	reg_bounds_sync(ret_reg);
8997 }
8998 
8999 static int
9000 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9001 		int func_id, int insn_idx)
9002 {
9003 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9004 	struct bpf_map *map = meta->map_ptr;
9005 
9006 	if (func_id != BPF_FUNC_tail_call &&
9007 	    func_id != BPF_FUNC_map_lookup_elem &&
9008 	    func_id != BPF_FUNC_map_update_elem &&
9009 	    func_id != BPF_FUNC_map_delete_elem &&
9010 	    func_id != BPF_FUNC_map_push_elem &&
9011 	    func_id != BPF_FUNC_map_pop_elem &&
9012 	    func_id != BPF_FUNC_map_peek_elem &&
9013 	    func_id != BPF_FUNC_for_each_map_elem &&
9014 	    func_id != BPF_FUNC_redirect_map &&
9015 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9016 		return 0;
9017 
9018 	if (map == NULL) {
9019 		verbose(env, "kernel subsystem misconfigured verifier\n");
9020 		return -EINVAL;
9021 	}
9022 
9023 	/* In case of read-only, some additional restrictions
9024 	 * need to be applied in order to prevent altering the
9025 	 * state of the map from program side.
9026 	 */
9027 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9028 	    (func_id == BPF_FUNC_map_delete_elem ||
9029 	     func_id == BPF_FUNC_map_update_elem ||
9030 	     func_id == BPF_FUNC_map_push_elem ||
9031 	     func_id == BPF_FUNC_map_pop_elem)) {
9032 		verbose(env, "write into map forbidden\n");
9033 		return -EACCES;
9034 	}
9035 
9036 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9037 		bpf_map_ptr_store(aux, meta->map_ptr,
9038 				  !meta->map_ptr->bypass_spec_v1);
9039 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9040 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9041 				  !meta->map_ptr->bypass_spec_v1);
9042 	return 0;
9043 }
9044 
9045 static int
9046 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9047 		int func_id, int insn_idx)
9048 {
9049 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9050 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9051 	struct bpf_map *map = meta->map_ptr;
9052 	u64 val, max;
9053 	int err;
9054 
9055 	if (func_id != BPF_FUNC_tail_call)
9056 		return 0;
9057 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9058 		verbose(env, "kernel subsystem misconfigured verifier\n");
9059 		return -EINVAL;
9060 	}
9061 
9062 	reg = &regs[BPF_REG_3];
9063 	val = reg->var_off.value;
9064 	max = map->max_entries;
9065 
9066 	if (!(register_is_const(reg) && val < max)) {
9067 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9068 		return 0;
9069 	}
9070 
9071 	err = mark_chain_precision(env, BPF_REG_3);
9072 	if (err)
9073 		return err;
9074 	if (bpf_map_key_unseen(aux))
9075 		bpf_map_key_store(aux, val);
9076 	else if (!bpf_map_key_poisoned(aux) &&
9077 		  bpf_map_key_immediate(aux) != val)
9078 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9079 	return 0;
9080 }
9081 
9082 static int check_reference_leak(struct bpf_verifier_env *env)
9083 {
9084 	struct bpf_func_state *state = cur_func(env);
9085 	bool refs_lingering = false;
9086 	int i;
9087 
9088 	if (state->frameno && !state->in_callback_fn)
9089 		return 0;
9090 
9091 	for (i = 0; i < state->acquired_refs; i++) {
9092 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9093 			continue;
9094 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9095 			state->refs[i].id, state->refs[i].insn_idx);
9096 		refs_lingering = true;
9097 	}
9098 	return refs_lingering ? -EINVAL : 0;
9099 }
9100 
9101 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9102 				   struct bpf_reg_state *regs)
9103 {
9104 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9105 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9106 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9107 	struct bpf_bprintf_data data = {};
9108 	int err, fmt_map_off, num_args;
9109 	u64 fmt_addr;
9110 	char *fmt;
9111 
9112 	/* data must be an array of u64 */
9113 	if (data_len_reg->var_off.value % 8)
9114 		return -EINVAL;
9115 	num_args = data_len_reg->var_off.value / 8;
9116 
9117 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9118 	 * and map_direct_value_addr is set.
9119 	 */
9120 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9121 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9122 						  fmt_map_off);
9123 	if (err) {
9124 		verbose(env, "verifier bug\n");
9125 		return -EFAULT;
9126 	}
9127 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9128 
9129 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9130 	 * can focus on validating the format specifiers.
9131 	 */
9132 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9133 	if (err < 0)
9134 		verbose(env, "Invalid format string\n");
9135 
9136 	return err;
9137 }
9138 
9139 static int check_get_func_ip(struct bpf_verifier_env *env)
9140 {
9141 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9142 	int func_id = BPF_FUNC_get_func_ip;
9143 
9144 	if (type == BPF_PROG_TYPE_TRACING) {
9145 		if (!bpf_prog_has_trampoline(env->prog)) {
9146 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9147 				func_id_name(func_id), func_id);
9148 			return -ENOTSUPP;
9149 		}
9150 		return 0;
9151 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9152 		return 0;
9153 	}
9154 
9155 	verbose(env, "func %s#%d not supported for program type %d\n",
9156 		func_id_name(func_id), func_id, type);
9157 	return -ENOTSUPP;
9158 }
9159 
9160 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9161 {
9162 	return &env->insn_aux_data[env->insn_idx];
9163 }
9164 
9165 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9166 {
9167 	struct bpf_reg_state *regs = cur_regs(env);
9168 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9169 	bool reg_is_null = register_is_null(reg);
9170 
9171 	if (reg_is_null)
9172 		mark_chain_precision(env, BPF_REG_4);
9173 
9174 	return reg_is_null;
9175 }
9176 
9177 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9178 {
9179 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9180 
9181 	if (!state->initialized) {
9182 		state->initialized = 1;
9183 		state->fit_for_inline = loop_flag_is_zero(env);
9184 		state->callback_subprogno = subprogno;
9185 		return;
9186 	}
9187 
9188 	if (!state->fit_for_inline)
9189 		return;
9190 
9191 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9192 				 state->callback_subprogno == subprogno);
9193 }
9194 
9195 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9196 			     int *insn_idx_p)
9197 {
9198 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9199 	const struct bpf_func_proto *fn = NULL;
9200 	enum bpf_return_type ret_type;
9201 	enum bpf_type_flag ret_flag;
9202 	struct bpf_reg_state *regs;
9203 	struct bpf_call_arg_meta meta;
9204 	int insn_idx = *insn_idx_p;
9205 	bool changes_data;
9206 	int i, err, func_id;
9207 
9208 	/* find function prototype */
9209 	func_id = insn->imm;
9210 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9211 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9212 			func_id);
9213 		return -EINVAL;
9214 	}
9215 
9216 	if (env->ops->get_func_proto)
9217 		fn = env->ops->get_func_proto(func_id, env->prog);
9218 	if (!fn) {
9219 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9220 			func_id);
9221 		return -EINVAL;
9222 	}
9223 
9224 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9225 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9226 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9227 		return -EINVAL;
9228 	}
9229 
9230 	if (fn->allowed && !fn->allowed(env->prog)) {
9231 		verbose(env, "helper call is not allowed in probe\n");
9232 		return -EINVAL;
9233 	}
9234 
9235 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9236 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9237 		return -EINVAL;
9238 	}
9239 
9240 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9241 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9242 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9243 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9244 			func_id_name(func_id), func_id);
9245 		return -EINVAL;
9246 	}
9247 
9248 	memset(&meta, 0, sizeof(meta));
9249 	meta.pkt_access = fn->pkt_access;
9250 
9251 	err = check_func_proto(fn, func_id);
9252 	if (err) {
9253 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9254 			func_id_name(func_id), func_id);
9255 		return err;
9256 	}
9257 
9258 	if (env->cur_state->active_rcu_lock) {
9259 		if (fn->might_sleep) {
9260 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9261 				func_id_name(func_id), func_id);
9262 			return -EINVAL;
9263 		}
9264 
9265 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9266 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9267 	}
9268 
9269 	meta.func_id = func_id;
9270 	/* check args */
9271 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9272 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9273 		if (err)
9274 			return err;
9275 	}
9276 
9277 	err = record_func_map(env, &meta, func_id, insn_idx);
9278 	if (err)
9279 		return err;
9280 
9281 	err = record_func_key(env, &meta, func_id, insn_idx);
9282 	if (err)
9283 		return err;
9284 
9285 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9286 	 * is inferred from register state.
9287 	 */
9288 	for (i = 0; i < meta.access_size; i++) {
9289 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9290 				       BPF_WRITE, -1, false);
9291 		if (err)
9292 			return err;
9293 	}
9294 
9295 	regs = cur_regs(env);
9296 
9297 	if (meta.release_regno) {
9298 		err = -EINVAL;
9299 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9300 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9301 		 * is safe to do directly.
9302 		 */
9303 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9304 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9305 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9306 				return -EFAULT;
9307 			}
9308 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9309 		} else if (meta.ref_obj_id) {
9310 			err = release_reference(env, meta.ref_obj_id);
9311 		} else if (register_is_null(&regs[meta.release_regno])) {
9312 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9313 			 * released is NULL, which must be > R0.
9314 			 */
9315 			err = 0;
9316 		}
9317 		if (err) {
9318 			verbose(env, "func %s#%d reference has not been acquired before\n",
9319 				func_id_name(func_id), func_id);
9320 			return err;
9321 		}
9322 	}
9323 
9324 	switch (func_id) {
9325 	case BPF_FUNC_tail_call:
9326 		err = check_reference_leak(env);
9327 		if (err) {
9328 			verbose(env, "tail_call would lead to reference leak\n");
9329 			return err;
9330 		}
9331 		break;
9332 	case BPF_FUNC_get_local_storage:
9333 		/* check that flags argument in get_local_storage(map, flags) is 0,
9334 		 * this is required because get_local_storage() can't return an error.
9335 		 */
9336 		if (!register_is_null(&regs[BPF_REG_2])) {
9337 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9338 			return -EINVAL;
9339 		}
9340 		break;
9341 	case BPF_FUNC_for_each_map_elem:
9342 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9343 					set_map_elem_callback_state);
9344 		break;
9345 	case BPF_FUNC_timer_set_callback:
9346 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9347 					set_timer_callback_state);
9348 		break;
9349 	case BPF_FUNC_find_vma:
9350 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9351 					set_find_vma_callback_state);
9352 		break;
9353 	case BPF_FUNC_snprintf:
9354 		err = check_bpf_snprintf_call(env, regs);
9355 		break;
9356 	case BPF_FUNC_loop:
9357 		update_loop_inline_state(env, meta.subprogno);
9358 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9359 					set_loop_callback_state);
9360 		break;
9361 	case BPF_FUNC_dynptr_from_mem:
9362 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9363 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9364 				reg_type_str(env, regs[BPF_REG_1].type));
9365 			return -EACCES;
9366 		}
9367 		break;
9368 	case BPF_FUNC_set_retval:
9369 		if (prog_type == BPF_PROG_TYPE_LSM &&
9370 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9371 			if (!env->prog->aux->attach_func_proto->type) {
9372 				/* Make sure programs that attach to void
9373 				 * hooks don't try to modify return value.
9374 				 */
9375 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9376 				return -EINVAL;
9377 			}
9378 		}
9379 		break;
9380 	case BPF_FUNC_dynptr_data:
9381 	{
9382 		struct bpf_reg_state *reg;
9383 		int id, ref_obj_id;
9384 
9385 		reg = get_dynptr_arg_reg(env, fn, regs);
9386 		if (!reg)
9387 			return -EFAULT;
9388 
9389 
9390 		if (meta.dynptr_id) {
9391 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9392 			return -EFAULT;
9393 		}
9394 		if (meta.ref_obj_id) {
9395 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9396 			return -EFAULT;
9397 		}
9398 
9399 		id = dynptr_id(env, reg);
9400 		if (id < 0) {
9401 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9402 			return id;
9403 		}
9404 
9405 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9406 		if (ref_obj_id < 0) {
9407 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9408 			return ref_obj_id;
9409 		}
9410 
9411 		meta.dynptr_id = id;
9412 		meta.ref_obj_id = ref_obj_id;
9413 
9414 		break;
9415 	}
9416 	case BPF_FUNC_dynptr_write:
9417 	{
9418 		enum bpf_dynptr_type dynptr_type;
9419 		struct bpf_reg_state *reg;
9420 
9421 		reg = get_dynptr_arg_reg(env, fn, regs);
9422 		if (!reg)
9423 			return -EFAULT;
9424 
9425 		dynptr_type = dynptr_get_type(env, reg);
9426 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9427 			return -EFAULT;
9428 
9429 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9430 			/* this will trigger clear_all_pkt_pointers(), which will
9431 			 * invalidate all dynptr slices associated with the skb
9432 			 */
9433 			changes_data = true;
9434 
9435 		break;
9436 	}
9437 	case BPF_FUNC_user_ringbuf_drain:
9438 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9439 					set_user_ringbuf_callback_state);
9440 		break;
9441 	}
9442 
9443 	if (err)
9444 		return err;
9445 
9446 	/* reset caller saved regs */
9447 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9448 		mark_reg_not_init(env, regs, caller_saved[i]);
9449 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9450 	}
9451 
9452 	/* helper call returns 64-bit value. */
9453 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9454 
9455 	/* update return register (already marked as written above) */
9456 	ret_type = fn->ret_type;
9457 	ret_flag = type_flag(ret_type);
9458 
9459 	switch (base_type(ret_type)) {
9460 	case RET_INTEGER:
9461 		/* sets type to SCALAR_VALUE */
9462 		mark_reg_unknown(env, regs, BPF_REG_0);
9463 		break;
9464 	case RET_VOID:
9465 		regs[BPF_REG_0].type = NOT_INIT;
9466 		break;
9467 	case RET_PTR_TO_MAP_VALUE:
9468 		/* There is no offset yet applied, variable or fixed */
9469 		mark_reg_known_zero(env, regs, BPF_REG_0);
9470 		/* remember map_ptr, so that check_map_access()
9471 		 * can check 'value_size' boundary of memory access
9472 		 * to map element returned from bpf_map_lookup_elem()
9473 		 */
9474 		if (meta.map_ptr == NULL) {
9475 			verbose(env,
9476 				"kernel subsystem misconfigured verifier\n");
9477 			return -EINVAL;
9478 		}
9479 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9480 		regs[BPF_REG_0].map_uid = meta.map_uid;
9481 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9482 		if (!type_may_be_null(ret_type) &&
9483 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9484 			regs[BPF_REG_0].id = ++env->id_gen;
9485 		}
9486 		break;
9487 	case RET_PTR_TO_SOCKET:
9488 		mark_reg_known_zero(env, regs, BPF_REG_0);
9489 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9490 		break;
9491 	case RET_PTR_TO_SOCK_COMMON:
9492 		mark_reg_known_zero(env, regs, BPF_REG_0);
9493 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9494 		break;
9495 	case RET_PTR_TO_TCP_SOCK:
9496 		mark_reg_known_zero(env, regs, BPF_REG_0);
9497 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9498 		break;
9499 	case RET_PTR_TO_MEM:
9500 		mark_reg_known_zero(env, regs, BPF_REG_0);
9501 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9502 		regs[BPF_REG_0].mem_size = meta.mem_size;
9503 		break;
9504 	case RET_PTR_TO_MEM_OR_BTF_ID:
9505 	{
9506 		const struct btf_type *t;
9507 
9508 		mark_reg_known_zero(env, regs, BPF_REG_0);
9509 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9510 		if (!btf_type_is_struct(t)) {
9511 			u32 tsize;
9512 			const struct btf_type *ret;
9513 			const char *tname;
9514 
9515 			/* resolve the type size of ksym. */
9516 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9517 			if (IS_ERR(ret)) {
9518 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9519 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9520 					tname, PTR_ERR(ret));
9521 				return -EINVAL;
9522 			}
9523 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9524 			regs[BPF_REG_0].mem_size = tsize;
9525 		} else {
9526 			/* MEM_RDONLY may be carried from ret_flag, but it
9527 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9528 			 * it will confuse the check of PTR_TO_BTF_ID in
9529 			 * check_mem_access().
9530 			 */
9531 			ret_flag &= ~MEM_RDONLY;
9532 
9533 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9534 			regs[BPF_REG_0].btf = meta.ret_btf;
9535 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9536 		}
9537 		break;
9538 	}
9539 	case RET_PTR_TO_BTF_ID:
9540 	{
9541 		struct btf *ret_btf;
9542 		int ret_btf_id;
9543 
9544 		mark_reg_known_zero(env, regs, BPF_REG_0);
9545 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9546 		if (func_id == BPF_FUNC_kptr_xchg) {
9547 			ret_btf = meta.kptr_field->kptr.btf;
9548 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9549 			if (!btf_is_kernel(ret_btf))
9550 				regs[BPF_REG_0].type |= MEM_ALLOC;
9551 		} else {
9552 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9553 				verbose(env, "verifier internal error:");
9554 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9555 					func_id_name(func_id));
9556 				return -EINVAL;
9557 			}
9558 			ret_btf = btf_vmlinux;
9559 			ret_btf_id = *fn->ret_btf_id;
9560 		}
9561 		if (ret_btf_id == 0) {
9562 			verbose(env, "invalid return type %u of func %s#%d\n",
9563 				base_type(ret_type), func_id_name(func_id),
9564 				func_id);
9565 			return -EINVAL;
9566 		}
9567 		regs[BPF_REG_0].btf = ret_btf;
9568 		regs[BPF_REG_0].btf_id = ret_btf_id;
9569 		break;
9570 	}
9571 	default:
9572 		verbose(env, "unknown return type %u of func %s#%d\n",
9573 			base_type(ret_type), func_id_name(func_id), func_id);
9574 		return -EINVAL;
9575 	}
9576 
9577 	if (type_may_be_null(regs[BPF_REG_0].type))
9578 		regs[BPF_REG_0].id = ++env->id_gen;
9579 
9580 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9581 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9582 			func_id_name(func_id), func_id);
9583 		return -EFAULT;
9584 	}
9585 
9586 	if (is_dynptr_ref_function(func_id))
9587 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9588 
9589 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9590 		/* For release_reference() */
9591 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9592 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9593 		int id = acquire_reference_state(env, insn_idx);
9594 
9595 		if (id < 0)
9596 			return id;
9597 		/* For mark_ptr_or_null_reg() */
9598 		regs[BPF_REG_0].id = id;
9599 		/* For release_reference() */
9600 		regs[BPF_REG_0].ref_obj_id = id;
9601 	}
9602 
9603 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9604 
9605 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9606 	if (err)
9607 		return err;
9608 
9609 	if ((func_id == BPF_FUNC_get_stack ||
9610 	     func_id == BPF_FUNC_get_task_stack) &&
9611 	    !env->prog->has_callchain_buf) {
9612 		const char *err_str;
9613 
9614 #ifdef CONFIG_PERF_EVENTS
9615 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9616 		err_str = "cannot get callchain buffer for func %s#%d\n";
9617 #else
9618 		err = -ENOTSUPP;
9619 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9620 #endif
9621 		if (err) {
9622 			verbose(env, err_str, func_id_name(func_id), func_id);
9623 			return err;
9624 		}
9625 
9626 		env->prog->has_callchain_buf = true;
9627 	}
9628 
9629 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9630 		env->prog->call_get_stack = true;
9631 
9632 	if (func_id == BPF_FUNC_get_func_ip) {
9633 		if (check_get_func_ip(env))
9634 			return -ENOTSUPP;
9635 		env->prog->call_get_func_ip = true;
9636 	}
9637 
9638 	if (changes_data)
9639 		clear_all_pkt_pointers(env);
9640 	return 0;
9641 }
9642 
9643 /* mark_btf_func_reg_size() is used when the reg size is determined by
9644  * the BTF func_proto's return value size and argument.
9645  */
9646 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9647 				   size_t reg_size)
9648 {
9649 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9650 
9651 	if (regno == BPF_REG_0) {
9652 		/* Function return value */
9653 		reg->live |= REG_LIVE_WRITTEN;
9654 		reg->subreg_def = reg_size == sizeof(u64) ?
9655 			DEF_NOT_SUBREG : env->insn_idx + 1;
9656 	} else {
9657 		/* Function argument */
9658 		if (reg_size == sizeof(u64)) {
9659 			mark_insn_zext(env, reg);
9660 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9661 		} else {
9662 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9663 		}
9664 	}
9665 }
9666 
9667 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9668 {
9669 	return meta->kfunc_flags & KF_ACQUIRE;
9670 }
9671 
9672 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9673 {
9674 	return meta->kfunc_flags & KF_RET_NULL;
9675 }
9676 
9677 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9678 {
9679 	return meta->kfunc_flags & KF_RELEASE;
9680 }
9681 
9682 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9683 {
9684 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
9685 }
9686 
9687 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9688 {
9689 	return meta->kfunc_flags & KF_SLEEPABLE;
9690 }
9691 
9692 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9693 {
9694 	return meta->kfunc_flags & KF_DESTRUCTIVE;
9695 }
9696 
9697 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9698 {
9699 	return meta->kfunc_flags & KF_RCU;
9700 }
9701 
9702 static bool __kfunc_param_match_suffix(const struct btf *btf,
9703 				       const struct btf_param *arg,
9704 				       const char *suffix)
9705 {
9706 	int suffix_len = strlen(suffix), len;
9707 	const char *param_name;
9708 
9709 	/* In the future, this can be ported to use BTF tagging */
9710 	param_name = btf_name_by_offset(btf, arg->name_off);
9711 	if (str_is_empty(param_name))
9712 		return false;
9713 	len = strlen(param_name);
9714 	if (len < suffix_len)
9715 		return false;
9716 	param_name += len - suffix_len;
9717 	return !strncmp(param_name, suffix, suffix_len);
9718 }
9719 
9720 static bool is_kfunc_arg_mem_size(const struct btf *btf,
9721 				  const struct btf_param *arg,
9722 				  const struct bpf_reg_state *reg)
9723 {
9724 	const struct btf_type *t;
9725 
9726 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9727 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9728 		return false;
9729 
9730 	return __kfunc_param_match_suffix(btf, arg, "__sz");
9731 }
9732 
9733 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9734 					const struct btf_param *arg,
9735 					const struct bpf_reg_state *reg)
9736 {
9737 	const struct btf_type *t;
9738 
9739 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9740 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9741 		return false;
9742 
9743 	return __kfunc_param_match_suffix(btf, arg, "__szk");
9744 }
9745 
9746 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9747 {
9748 	return __kfunc_param_match_suffix(btf, arg, "__k");
9749 }
9750 
9751 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9752 {
9753 	return __kfunc_param_match_suffix(btf, arg, "__ign");
9754 }
9755 
9756 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9757 {
9758 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
9759 }
9760 
9761 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9762 {
9763 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
9764 }
9765 
9766 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
9767 {
9768 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
9769 }
9770 
9771 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9772 					  const struct btf_param *arg,
9773 					  const char *name)
9774 {
9775 	int len, target_len = strlen(name);
9776 	const char *param_name;
9777 
9778 	param_name = btf_name_by_offset(btf, arg->name_off);
9779 	if (str_is_empty(param_name))
9780 		return false;
9781 	len = strlen(param_name);
9782 	if (len != target_len)
9783 		return false;
9784 	if (strcmp(param_name, name))
9785 		return false;
9786 
9787 	return true;
9788 }
9789 
9790 enum {
9791 	KF_ARG_DYNPTR_ID,
9792 	KF_ARG_LIST_HEAD_ID,
9793 	KF_ARG_LIST_NODE_ID,
9794 	KF_ARG_RB_ROOT_ID,
9795 	KF_ARG_RB_NODE_ID,
9796 };
9797 
9798 BTF_ID_LIST(kf_arg_btf_ids)
9799 BTF_ID(struct, bpf_dynptr_kern)
9800 BTF_ID(struct, bpf_list_head)
9801 BTF_ID(struct, bpf_list_node)
9802 BTF_ID(struct, bpf_rb_root)
9803 BTF_ID(struct, bpf_rb_node)
9804 
9805 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9806 				    const struct btf_param *arg, int type)
9807 {
9808 	const struct btf_type *t;
9809 	u32 res_id;
9810 
9811 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9812 	if (!t)
9813 		return false;
9814 	if (!btf_type_is_ptr(t))
9815 		return false;
9816 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
9817 	if (!t)
9818 		return false;
9819 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
9820 }
9821 
9822 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
9823 {
9824 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
9825 }
9826 
9827 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
9828 {
9829 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
9830 }
9831 
9832 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
9833 {
9834 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
9835 }
9836 
9837 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9838 {
9839 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9840 }
9841 
9842 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9843 {
9844 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9845 }
9846 
9847 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9848 				  const struct btf_param *arg)
9849 {
9850 	const struct btf_type *t;
9851 
9852 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9853 	if (!t)
9854 		return false;
9855 
9856 	return true;
9857 }
9858 
9859 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9860 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9861 					const struct btf *btf,
9862 					const struct btf_type *t, int rec)
9863 {
9864 	const struct btf_type *member_type;
9865 	const struct btf_member *member;
9866 	u32 i;
9867 
9868 	if (!btf_type_is_struct(t))
9869 		return false;
9870 
9871 	for_each_member(i, t, member) {
9872 		const struct btf_array *array;
9873 
9874 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9875 		if (btf_type_is_struct(member_type)) {
9876 			if (rec >= 3) {
9877 				verbose(env, "max struct nesting depth exceeded\n");
9878 				return false;
9879 			}
9880 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9881 				return false;
9882 			continue;
9883 		}
9884 		if (btf_type_is_array(member_type)) {
9885 			array = btf_array(member_type);
9886 			if (!array->nelems)
9887 				return false;
9888 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9889 			if (!btf_type_is_scalar(member_type))
9890 				return false;
9891 			continue;
9892 		}
9893 		if (!btf_type_is_scalar(member_type))
9894 			return false;
9895 	}
9896 	return true;
9897 }
9898 
9899 
9900 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9901 #ifdef CONFIG_NET
9902 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9903 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9904 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9905 #endif
9906 };
9907 
9908 enum kfunc_ptr_arg_type {
9909 	KF_ARG_PTR_TO_CTX,
9910 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
9911 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
9912 	KF_ARG_PTR_TO_DYNPTR,
9913 	KF_ARG_PTR_TO_ITER,
9914 	KF_ARG_PTR_TO_LIST_HEAD,
9915 	KF_ARG_PTR_TO_LIST_NODE,
9916 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
9917 	KF_ARG_PTR_TO_MEM,
9918 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
9919 	KF_ARG_PTR_TO_CALLBACK,
9920 	KF_ARG_PTR_TO_RB_ROOT,
9921 	KF_ARG_PTR_TO_RB_NODE,
9922 };
9923 
9924 enum special_kfunc_type {
9925 	KF_bpf_obj_new_impl,
9926 	KF_bpf_obj_drop_impl,
9927 	KF_bpf_refcount_acquire_impl,
9928 	KF_bpf_list_push_front_impl,
9929 	KF_bpf_list_push_back_impl,
9930 	KF_bpf_list_pop_front,
9931 	KF_bpf_list_pop_back,
9932 	KF_bpf_cast_to_kern_ctx,
9933 	KF_bpf_rdonly_cast,
9934 	KF_bpf_rcu_read_lock,
9935 	KF_bpf_rcu_read_unlock,
9936 	KF_bpf_rbtree_remove,
9937 	KF_bpf_rbtree_add_impl,
9938 	KF_bpf_rbtree_first,
9939 	KF_bpf_dynptr_from_skb,
9940 	KF_bpf_dynptr_from_xdp,
9941 	KF_bpf_dynptr_slice,
9942 	KF_bpf_dynptr_slice_rdwr,
9943 	KF_bpf_dynptr_clone,
9944 };
9945 
9946 BTF_SET_START(special_kfunc_set)
9947 BTF_ID(func, bpf_obj_new_impl)
9948 BTF_ID(func, bpf_obj_drop_impl)
9949 BTF_ID(func, bpf_refcount_acquire_impl)
9950 BTF_ID(func, bpf_list_push_front_impl)
9951 BTF_ID(func, bpf_list_push_back_impl)
9952 BTF_ID(func, bpf_list_pop_front)
9953 BTF_ID(func, bpf_list_pop_back)
9954 BTF_ID(func, bpf_cast_to_kern_ctx)
9955 BTF_ID(func, bpf_rdonly_cast)
9956 BTF_ID(func, bpf_rbtree_remove)
9957 BTF_ID(func, bpf_rbtree_add_impl)
9958 BTF_ID(func, bpf_rbtree_first)
9959 BTF_ID(func, bpf_dynptr_from_skb)
9960 BTF_ID(func, bpf_dynptr_from_xdp)
9961 BTF_ID(func, bpf_dynptr_slice)
9962 BTF_ID(func, bpf_dynptr_slice_rdwr)
9963 BTF_ID(func, bpf_dynptr_clone)
9964 BTF_SET_END(special_kfunc_set)
9965 
9966 BTF_ID_LIST(special_kfunc_list)
9967 BTF_ID(func, bpf_obj_new_impl)
9968 BTF_ID(func, bpf_obj_drop_impl)
9969 BTF_ID(func, bpf_refcount_acquire_impl)
9970 BTF_ID(func, bpf_list_push_front_impl)
9971 BTF_ID(func, bpf_list_push_back_impl)
9972 BTF_ID(func, bpf_list_pop_front)
9973 BTF_ID(func, bpf_list_pop_back)
9974 BTF_ID(func, bpf_cast_to_kern_ctx)
9975 BTF_ID(func, bpf_rdonly_cast)
9976 BTF_ID(func, bpf_rcu_read_lock)
9977 BTF_ID(func, bpf_rcu_read_unlock)
9978 BTF_ID(func, bpf_rbtree_remove)
9979 BTF_ID(func, bpf_rbtree_add_impl)
9980 BTF_ID(func, bpf_rbtree_first)
9981 BTF_ID(func, bpf_dynptr_from_skb)
9982 BTF_ID(func, bpf_dynptr_from_xdp)
9983 BTF_ID(func, bpf_dynptr_slice)
9984 BTF_ID(func, bpf_dynptr_slice_rdwr)
9985 BTF_ID(func, bpf_dynptr_clone)
9986 
9987 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9988 {
9989 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9990 }
9991 
9992 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9993 {
9994 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9995 }
9996 
9997 static enum kfunc_ptr_arg_type
9998 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9999 		       struct bpf_kfunc_call_arg_meta *meta,
10000 		       const struct btf_type *t, const struct btf_type *ref_t,
10001 		       const char *ref_tname, const struct btf_param *args,
10002 		       int argno, int nargs)
10003 {
10004 	u32 regno = argno + 1;
10005 	struct bpf_reg_state *regs = cur_regs(env);
10006 	struct bpf_reg_state *reg = &regs[regno];
10007 	bool arg_mem_size = false;
10008 
10009 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10010 		return KF_ARG_PTR_TO_CTX;
10011 
10012 	/* In this function, we verify the kfunc's BTF as per the argument type,
10013 	 * leaving the rest of the verification with respect to the register
10014 	 * type to our caller. When a set of conditions hold in the BTF type of
10015 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10016 	 */
10017 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10018 		return KF_ARG_PTR_TO_CTX;
10019 
10020 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10021 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10022 
10023 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10024 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10025 
10026 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10027 		return KF_ARG_PTR_TO_DYNPTR;
10028 
10029 	if (is_kfunc_arg_iter(meta, argno))
10030 		return KF_ARG_PTR_TO_ITER;
10031 
10032 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10033 		return KF_ARG_PTR_TO_LIST_HEAD;
10034 
10035 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10036 		return KF_ARG_PTR_TO_LIST_NODE;
10037 
10038 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10039 		return KF_ARG_PTR_TO_RB_ROOT;
10040 
10041 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10042 		return KF_ARG_PTR_TO_RB_NODE;
10043 
10044 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10045 		if (!btf_type_is_struct(ref_t)) {
10046 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10047 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10048 			return -EINVAL;
10049 		}
10050 		return KF_ARG_PTR_TO_BTF_ID;
10051 	}
10052 
10053 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10054 		return KF_ARG_PTR_TO_CALLBACK;
10055 
10056 
10057 	if (argno + 1 < nargs &&
10058 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10059 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10060 		arg_mem_size = true;
10061 
10062 	/* This is the catch all argument type of register types supported by
10063 	 * check_helper_mem_access. However, we only allow when argument type is
10064 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10065 	 * arg_mem_size is true, the pointer can be void *.
10066 	 */
10067 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10068 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10069 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10070 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10071 		return -EINVAL;
10072 	}
10073 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10074 }
10075 
10076 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10077 					struct bpf_reg_state *reg,
10078 					const struct btf_type *ref_t,
10079 					const char *ref_tname, u32 ref_id,
10080 					struct bpf_kfunc_call_arg_meta *meta,
10081 					int argno)
10082 {
10083 	const struct btf_type *reg_ref_t;
10084 	bool strict_type_match = false;
10085 	const struct btf *reg_btf;
10086 	const char *reg_ref_tname;
10087 	u32 reg_ref_id;
10088 
10089 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10090 		reg_btf = reg->btf;
10091 		reg_ref_id = reg->btf_id;
10092 	} else {
10093 		reg_btf = btf_vmlinux;
10094 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10095 	}
10096 
10097 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10098 	 * or releasing a reference, or are no-cast aliases. We do _not_
10099 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10100 	 * as we want to enable BPF programs to pass types that are bitwise
10101 	 * equivalent without forcing them to explicitly cast with something
10102 	 * like bpf_cast_to_kern_ctx().
10103 	 *
10104 	 * For example, say we had a type like the following:
10105 	 *
10106 	 * struct bpf_cpumask {
10107 	 *	cpumask_t cpumask;
10108 	 *	refcount_t usage;
10109 	 * };
10110 	 *
10111 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10112 	 * to a struct cpumask, so it would be safe to pass a struct
10113 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10114 	 *
10115 	 * The philosophy here is similar to how we allow scalars of different
10116 	 * types to be passed to kfuncs as long as the size is the same. The
10117 	 * only difference here is that we're simply allowing
10118 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10119 	 * resolve types.
10120 	 */
10121 	if (is_kfunc_acquire(meta) ||
10122 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10123 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10124 		strict_type_match = true;
10125 
10126 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10127 
10128 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10129 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10130 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10131 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10132 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10133 			btf_type_str(reg_ref_t), reg_ref_tname);
10134 		return -EINVAL;
10135 	}
10136 	return 0;
10137 }
10138 
10139 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10140 {
10141 	struct bpf_verifier_state *state = env->cur_state;
10142 
10143 	if (!state->active_lock.ptr) {
10144 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10145 		return -EFAULT;
10146 	}
10147 
10148 	if (type_flag(reg->type) & NON_OWN_REF) {
10149 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10150 		return -EFAULT;
10151 	}
10152 
10153 	reg->type |= NON_OWN_REF;
10154 	return 0;
10155 }
10156 
10157 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10158 {
10159 	struct bpf_func_state *state, *unused;
10160 	struct bpf_reg_state *reg;
10161 	int i;
10162 
10163 	state = cur_func(env);
10164 
10165 	if (!ref_obj_id) {
10166 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10167 			     "owning -> non-owning conversion\n");
10168 		return -EFAULT;
10169 	}
10170 
10171 	for (i = 0; i < state->acquired_refs; i++) {
10172 		if (state->refs[i].id != ref_obj_id)
10173 			continue;
10174 
10175 		/* Clear ref_obj_id here so release_reference doesn't clobber
10176 		 * the whole reg
10177 		 */
10178 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10179 			if (reg->ref_obj_id == ref_obj_id) {
10180 				reg->ref_obj_id = 0;
10181 				ref_set_non_owning(env, reg);
10182 			}
10183 		}));
10184 		return 0;
10185 	}
10186 
10187 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10188 	return -EFAULT;
10189 }
10190 
10191 /* Implementation details:
10192  *
10193  * Each register points to some region of memory, which we define as an
10194  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10195  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10196  * allocation. The lock and the data it protects are colocated in the same
10197  * memory region.
10198  *
10199  * Hence, everytime a register holds a pointer value pointing to such
10200  * allocation, the verifier preserves a unique reg->id for it.
10201  *
10202  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10203  * bpf_spin_lock is called.
10204  *
10205  * To enable this, lock state in the verifier captures two values:
10206  *	active_lock.ptr = Register's type specific pointer
10207  *	active_lock.id  = A unique ID for each register pointer value
10208  *
10209  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10210  * supported register types.
10211  *
10212  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10213  * allocated objects is the reg->btf pointer.
10214  *
10215  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10216  * can establish the provenance of the map value statically for each distinct
10217  * lookup into such maps. They always contain a single map value hence unique
10218  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10219  *
10220  * So, in case of global variables, they use array maps with max_entries = 1,
10221  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10222  * into the same map value as max_entries is 1, as described above).
10223  *
10224  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10225  * outer map pointer (in verifier context), but each lookup into an inner map
10226  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10227  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10228  * will get different reg->id assigned to each lookup, hence different
10229  * active_lock.id.
10230  *
10231  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10232  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10233  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10234  */
10235 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10236 {
10237 	void *ptr;
10238 	u32 id;
10239 
10240 	switch ((int)reg->type) {
10241 	case PTR_TO_MAP_VALUE:
10242 		ptr = reg->map_ptr;
10243 		break;
10244 	case PTR_TO_BTF_ID | MEM_ALLOC:
10245 		ptr = reg->btf;
10246 		break;
10247 	default:
10248 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10249 		return -EFAULT;
10250 	}
10251 	id = reg->id;
10252 
10253 	if (!env->cur_state->active_lock.ptr)
10254 		return -EINVAL;
10255 	if (env->cur_state->active_lock.ptr != ptr ||
10256 	    env->cur_state->active_lock.id != id) {
10257 		verbose(env, "held lock and object are not in the same allocation\n");
10258 		return -EINVAL;
10259 	}
10260 	return 0;
10261 }
10262 
10263 static bool is_bpf_list_api_kfunc(u32 btf_id)
10264 {
10265 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10266 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10267 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10268 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10269 }
10270 
10271 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10272 {
10273 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10274 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10275 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10276 }
10277 
10278 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10279 {
10280 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10281 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10282 }
10283 
10284 static bool is_callback_calling_kfunc(u32 btf_id)
10285 {
10286 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10287 }
10288 
10289 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10290 {
10291 	return is_bpf_rbtree_api_kfunc(btf_id);
10292 }
10293 
10294 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10295 					  enum btf_field_type head_field_type,
10296 					  u32 kfunc_btf_id)
10297 {
10298 	bool ret;
10299 
10300 	switch (head_field_type) {
10301 	case BPF_LIST_HEAD:
10302 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10303 		break;
10304 	case BPF_RB_ROOT:
10305 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10306 		break;
10307 	default:
10308 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10309 			btf_field_type_name(head_field_type));
10310 		return false;
10311 	}
10312 
10313 	if (!ret)
10314 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10315 			btf_field_type_name(head_field_type));
10316 	return ret;
10317 }
10318 
10319 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10320 					  enum btf_field_type node_field_type,
10321 					  u32 kfunc_btf_id)
10322 {
10323 	bool ret;
10324 
10325 	switch (node_field_type) {
10326 	case BPF_LIST_NODE:
10327 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10328 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10329 		break;
10330 	case BPF_RB_NODE:
10331 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10332 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10333 		break;
10334 	default:
10335 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10336 			btf_field_type_name(node_field_type));
10337 		return false;
10338 	}
10339 
10340 	if (!ret)
10341 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10342 			btf_field_type_name(node_field_type));
10343 	return ret;
10344 }
10345 
10346 static int
10347 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10348 				   struct bpf_reg_state *reg, u32 regno,
10349 				   struct bpf_kfunc_call_arg_meta *meta,
10350 				   enum btf_field_type head_field_type,
10351 				   struct btf_field **head_field)
10352 {
10353 	const char *head_type_name;
10354 	struct btf_field *field;
10355 	struct btf_record *rec;
10356 	u32 head_off;
10357 
10358 	if (meta->btf != btf_vmlinux) {
10359 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10360 		return -EFAULT;
10361 	}
10362 
10363 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10364 		return -EFAULT;
10365 
10366 	head_type_name = btf_field_type_name(head_field_type);
10367 	if (!tnum_is_const(reg->var_off)) {
10368 		verbose(env,
10369 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10370 			regno, head_type_name);
10371 		return -EINVAL;
10372 	}
10373 
10374 	rec = reg_btf_record(reg);
10375 	head_off = reg->off + reg->var_off.value;
10376 	field = btf_record_find(rec, head_off, head_field_type);
10377 	if (!field) {
10378 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10379 		return -EINVAL;
10380 	}
10381 
10382 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10383 	if (check_reg_allocation_locked(env, reg)) {
10384 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10385 			rec->spin_lock_off, head_type_name);
10386 		return -EINVAL;
10387 	}
10388 
10389 	if (*head_field) {
10390 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10391 		return -EFAULT;
10392 	}
10393 	*head_field = field;
10394 	return 0;
10395 }
10396 
10397 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10398 					   struct bpf_reg_state *reg, u32 regno,
10399 					   struct bpf_kfunc_call_arg_meta *meta)
10400 {
10401 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10402 							  &meta->arg_list_head.field);
10403 }
10404 
10405 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10406 					     struct bpf_reg_state *reg, u32 regno,
10407 					     struct bpf_kfunc_call_arg_meta *meta)
10408 {
10409 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10410 							  &meta->arg_rbtree_root.field);
10411 }
10412 
10413 static int
10414 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10415 				   struct bpf_reg_state *reg, u32 regno,
10416 				   struct bpf_kfunc_call_arg_meta *meta,
10417 				   enum btf_field_type head_field_type,
10418 				   enum btf_field_type node_field_type,
10419 				   struct btf_field **node_field)
10420 {
10421 	const char *node_type_name;
10422 	const struct btf_type *et, *t;
10423 	struct btf_field *field;
10424 	u32 node_off;
10425 
10426 	if (meta->btf != btf_vmlinux) {
10427 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10428 		return -EFAULT;
10429 	}
10430 
10431 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10432 		return -EFAULT;
10433 
10434 	node_type_name = btf_field_type_name(node_field_type);
10435 	if (!tnum_is_const(reg->var_off)) {
10436 		verbose(env,
10437 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10438 			regno, node_type_name);
10439 		return -EINVAL;
10440 	}
10441 
10442 	node_off = reg->off + reg->var_off.value;
10443 	field = reg_find_field_offset(reg, node_off, node_field_type);
10444 	if (!field || field->offset != node_off) {
10445 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10446 		return -EINVAL;
10447 	}
10448 
10449 	field = *node_field;
10450 
10451 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10452 	t = btf_type_by_id(reg->btf, reg->btf_id);
10453 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10454 				  field->graph_root.value_btf_id, true)) {
10455 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10456 			"in struct %s, but arg is at offset=%d in struct %s\n",
10457 			btf_field_type_name(head_field_type),
10458 			btf_field_type_name(node_field_type),
10459 			field->graph_root.node_offset,
10460 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10461 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10462 		return -EINVAL;
10463 	}
10464 
10465 	if (node_off != field->graph_root.node_offset) {
10466 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10467 			node_off, btf_field_type_name(node_field_type),
10468 			field->graph_root.node_offset,
10469 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10470 		return -EINVAL;
10471 	}
10472 
10473 	return 0;
10474 }
10475 
10476 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10477 					   struct bpf_reg_state *reg, u32 regno,
10478 					   struct bpf_kfunc_call_arg_meta *meta)
10479 {
10480 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10481 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10482 						  &meta->arg_list_head.field);
10483 }
10484 
10485 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10486 					     struct bpf_reg_state *reg, u32 regno,
10487 					     struct bpf_kfunc_call_arg_meta *meta)
10488 {
10489 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10490 						  BPF_RB_ROOT, BPF_RB_NODE,
10491 						  &meta->arg_rbtree_root.field);
10492 }
10493 
10494 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10495 			    int insn_idx)
10496 {
10497 	const char *func_name = meta->func_name, *ref_tname;
10498 	const struct btf *btf = meta->btf;
10499 	const struct btf_param *args;
10500 	struct btf_record *rec;
10501 	u32 i, nargs;
10502 	int ret;
10503 
10504 	args = (const struct btf_param *)(meta->func_proto + 1);
10505 	nargs = btf_type_vlen(meta->func_proto);
10506 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10507 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10508 			MAX_BPF_FUNC_REG_ARGS);
10509 		return -EINVAL;
10510 	}
10511 
10512 	/* Check that BTF function arguments match actual types that the
10513 	 * verifier sees.
10514 	 */
10515 	for (i = 0; i < nargs; i++) {
10516 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10517 		const struct btf_type *t, *ref_t, *resolve_ret;
10518 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10519 		u32 regno = i + 1, ref_id, type_size;
10520 		bool is_ret_buf_sz = false;
10521 		int kf_arg_type;
10522 
10523 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10524 
10525 		if (is_kfunc_arg_ignore(btf, &args[i]))
10526 			continue;
10527 
10528 		if (btf_type_is_scalar(t)) {
10529 			if (reg->type != SCALAR_VALUE) {
10530 				verbose(env, "R%d is not a scalar\n", regno);
10531 				return -EINVAL;
10532 			}
10533 
10534 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10535 				if (meta->arg_constant.found) {
10536 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10537 					return -EFAULT;
10538 				}
10539 				if (!tnum_is_const(reg->var_off)) {
10540 					verbose(env, "R%d must be a known constant\n", regno);
10541 					return -EINVAL;
10542 				}
10543 				ret = mark_chain_precision(env, regno);
10544 				if (ret < 0)
10545 					return ret;
10546 				meta->arg_constant.found = true;
10547 				meta->arg_constant.value = reg->var_off.value;
10548 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10549 				meta->r0_rdonly = true;
10550 				is_ret_buf_sz = true;
10551 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10552 				is_ret_buf_sz = true;
10553 			}
10554 
10555 			if (is_ret_buf_sz) {
10556 				if (meta->r0_size) {
10557 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10558 					return -EINVAL;
10559 				}
10560 
10561 				if (!tnum_is_const(reg->var_off)) {
10562 					verbose(env, "R%d is not a const\n", regno);
10563 					return -EINVAL;
10564 				}
10565 
10566 				meta->r0_size = reg->var_off.value;
10567 				ret = mark_chain_precision(env, regno);
10568 				if (ret)
10569 					return ret;
10570 			}
10571 			continue;
10572 		}
10573 
10574 		if (!btf_type_is_ptr(t)) {
10575 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10576 			return -EINVAL;
10577 		}
10578 
10579 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10580 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10581 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10582 			return -EACCES;
10583 		}
10584 
10585 		if (reg->ref_obj_id) {
10586 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10587 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10588 					regno, reg->ref_obj_id,
10589 					meta->ref_obj_id);
10590 				return -EFAULT;
10591 			}
10592 			meta->ref_obj_id = reg->ref_obj_id;
10593 			if (is_kfunc_release(meta))
10594 				meta->release_regno = regno;
10595 		}
10596 
10597 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10598 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10599 
10600 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10601 		if (kf_arg_type < 0)
10602 			return kf_arg_type;
10603 
10604 		switch (kf_arg_type) {
10605 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10606 		case KF_ARG_PTR_TO_BTF_ID:
10607 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10608 				break;
10609 
10610 			if (!is_trusted_reg(reg)) {
10611 				if (!is_kfunc_rcu(meta)) {
10612 					verbose(env, "R%d must be referenced or trusted\n", regno);
10613 					return -EINVAL;
10614 				}
10615 				if (!is_rcu_reg(reg)) {
10616 					verbose(env, "R%d must be a rcu pointer\n", regno);
10617 					return -EINVAL;
10618 				}
10619 			}
10620 
10621 			fallthrough;
10622 		case KF_ARG_PTR_TO_CTX:
10623 			/* Trusted arguments have the same offset checks as release arguments */
10624 			arg_type |= OBJ_RELEASE;
10625 			break;
10626 		case KF_ARG_PTR_TO_DYNPTR:
10627 		case KF_ARG_PTR_TO_ITER:
10628 		case KF_ARG_PTR_TO_LIST_HEAD:
10629 		case KF_ARG_PTR_TO_LIST_NODE:
10630 		case KF_ARG_PTR_TO_RB_ROOT:
10631 		case KF_ARG_PTR_TO_RB_NODE:
10632 		case KF_ARG_PTR_TO_MEM:
10633 		case KF_ARG_PTR_TO_MEM_SIZE:
10634 		case KF_ARG_PTR_TO_CALLBACK:
10635 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10636 			/* Trusted by default */
10637 			break;
10638 		default:
10639 			WARN_ON_ONCE(1);
10640 			return -EFAULT;
10641 		}
10642 
10643 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10644 			arg_type |= OBJ_RELEASE;
10645 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10646 		if (ret < 0)
10647 			return ret;
10648 
10649 		switch (kf_arg_type) {
10650 		case KF_ARG_PTR_TO_CTX:
10651 			if (reg->type != PTR_TO_CTX) {
10652 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10653 				return -EINVAL;
10654 			}
10655 
10656 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10657 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10658 				if (ret < 0)
10659 					return -EINVAL;
10660 				meta->ret_btf_id  = ret;
10661 			}
10662 			break;
10663 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10664 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10665 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10666 				return -EINVAL;
10667 			}
10668 			if (!reg->ref_obj_id) {
10669 				verbose(env, "allocated object must be referenced\n");
10670 				return -EINVAL;
10671 			}
10672 			if (meta->btf == btf_vmlinux &&
10673 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10674 				meta->arg_obj_drop.btf = reg->btf;
10675 				meta->arg_obj_drop.btf_id = reg->btf_id;
10676 			}
10677 			break;
10678 		case KF_ARG_PTR_TO_DYNPTR:
10679 		{
10680 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10681 			int clone_ref_obj_id = 0;
10682 
10683 			if (reg->type != PTR_TO_STACK &&
10684 			    reg->type != CONST_PTR_TO_DYNPTR) {
10685 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
10686 				return -EINVAL;
10687 			}
10688 
10689 			if (reg->type == CONST_PTR_TO_DYNPTR)
10690 				dynptr_arg_type |= MEM_RDONLY;
10691 
10692 			if (is_kfunc_arg_uninit(btf, &args[i]))
10693 				dynptr_arg_type |= MEM_UNINIT;
10694 
10695 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
10696 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
10697 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
10698 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
10699 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
10700 				   (dynptr_arg_type & MEM_UNINIT)) {
10701 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
10702 
10703 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
10704 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
10705 					return -EFAULT;
10706 				}
10707 
10708 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
10709 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
10710 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
10711 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
10712 					return -EFAULT;
10713 				}
10714 			}
10715 
10716 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
10717 			if (ret < 0)
10718 				return ret;
10719 
10720 			if (!(dynptr_arg_type & MEM_UNINIT)) {
10721 				int id = dynptr_id(env, reg);
10722 
10723 				if (id < 0) {
10724 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10725 					return id;
10726 				}
10727 				meta->initialized_dynptr.id = id;
10728 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10729 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
10730 			}
10731 
10732 			break;
10733 		}
10734 		case KF_ARG_PTR_TO_ITER:
10735 			ret = process_iter_arg(env, regno, insn_idx, meta);
10736 			if (ret < 0)
10737 				return ret;
10738 			break;
10739 		case KF_ARG_PTR_TO_LIST_HEAD:
10740 			if (reg->type != PTR_TO_MAP_VALUE &&
10741 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10742 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10743 				return -EINVAL;
10744 			}
10745 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10746 				verbose(env, "allocated object must be referenced\n");
10747 				return -EINVAL;
10748 			}
10749 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10750 			if (ret < 0)
10751 				return ret;
10752 			break;
10753 		case KF_ARG_PTR_TO_RB_ROOT:
10754 			if (reg->type != PTR_TO_MAP_VALUE &&
10755 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10756 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10757 				return -EINVAL;
10758 			}
10759 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10760 				verbose(env, "allocated object must be referenced\n");
10761 				return -EINVAL;
10762 			}
10763 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10764 			if (ret < 0)
10765 				return ret;
10766 			break;
10767 		case KF_ARG_PTR_TO_LIST_NODE:
10768 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10769 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10770 				return -EINVAL;
10771 			}
10772 			if (!reg->ref_obj_id) {
10773 				verbose(env, "allocated object must be referenced\n");
10774 				return -EINVAL;
10775 			}
10776 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10777 			if (ret < 0)
10778 				return ret;
10779 			break;
10780 		case KF_ARG_PTR_TO_RB_NODE:
10781 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10782 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10783 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
10784 					return -EINVAL;
10785 				}
10786 				if (in_rbtree_lock_required_cb(env)) {
10787 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10788 					return -EINVAL;
10789 				}
10790 			} else {
10791 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10792 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
10793 					return -EINVAL;
10794 				}
10795 				if (!reg->ref_obj_id) {
10796 					verbose(env, "allocated object must be referenced\n");
10797 					return -EINVAL;
10798 				}
10799 			}
10800 
10801 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10802 			if (ret < 0)
10803 				return ret;
10804 			break;
10805 		case KF_ARG_PTR_TO_BTF_ID:
10806 			/* Only base_type is checked, further checks are done here */
10807 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
10808 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
10809 			    !reg2btf_ids[base_type(reg->type)]) {
10810 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10811 				verbose(env, "expected %s or socket\n",
10812 					reg_type_str(env, base_type(reg->type) |
10813 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
10814 				return -EINVAL;
10815 			}
10816 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10817 			if (ret < 0)
10818 				return ret;
10819 			break;
10820 		case KF_ARG_PTR_TO_MEM:
10821 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10822 			if (IS_ERR(resolve_ret)) {
10823 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10824 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10825 				return -EINVAL;
10826 			}
10827 			ret = check_mem_reg(env, reg, regno, type_size);
10828 			if (ret < 0)
10829 				return ret;
10830 			break;
10831 		case KF_ARG_PTR_TO_MEM_SIZE:
10832 		{
10833 			struct bpf_reg_state *size_reg = &regs[regno + 1];
10834 			const struct btf_param *size_arg = &args[i + 1];
10835 
10836 			ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
10837 			if (ret < 0) {
10838 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10839 				return ret;
10840 			}
10841 
10842 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10843 				if (meta->arg_constant.found) {
10844 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10845 					return -EFAULT;
10846 				}
10847 				if (!tnum_is_const(size_reg->var_off)) {
10848 					verbose(env, "R%d must be a known constant\n", regno + 1);
10849 					return -EINVAL;
10850 				}
10851 				meta->arg_constant.found = true;
10852 				meta->arg_constant.value = size_reg->var_off.value;
10853 			}
10854 
10855 			/* Skip next '__sz' or '__szk' argument */
10856 			i++;
10857 			break;
10858 		}
10859 		case KF_ARG_PTR_TO_CALLBACK:
10860 			meta->subprogno = reg->subprogno;
10861 			break;
10862 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10863 			if (!type_is_ptr_alloc_obj(reg->type) && !type_is_non_owning_ref(reg->type)) {
10864 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
10865 				return -EINVAL;
10866 			}
10867 
10868 			rec = reg_btf_record(reg);
10869 			if (!rec) {
10870 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
10871 				return -EFAULT;
10872 			}
10873 
10874 			if (rec->refcount_off < 0) {
10875 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
10876 				return -EINVAL;
10877 			}
10878 			if (rec->refcount_off >= 0) {
10879 				verbose(env, "bpf_refcount_acquire calls are disabled for now\n");
10880 				return -EINVAL;
10881 			}
10882 			meta->arg_refcount_acquire.btf = reg->btf;
10883 			meta->arg_refcount_acquire.btf_id = reg->btf_id;
10884 			break;
10885 		}
10886 	}
10887 
10888 	if (is_kfunc_release(meta) && !meta->release_regno) {
10889 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10890 			func_name);
10891 		return -EINVAL;
10892 	}
10893 
10894 	return 0;
10895 }
10896 
10897 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10898 			    struct bpf_insn *insn,
10899 			    struct bpf_kfunc_call_arg_meta *meta,
10900 			    const char **kfunc_name)
10901 {
10902 	const struct btf_type *func, *func_proto;
10903 	u32 func_id, *kfunc_flags;
10904 	const char *func_name;
10905 	struct btf *desc_btf;
10906 
10907 	if (kfunc_name)
10908 		*kfunc_name = NULL;
10909 
10910 	if (!insn->imm)
10911 		return -EINVAL;
10912 
10913 	desc_btf = find_kfunc_desc_btf(env, insn->off);
10914 	if (IS_ERR(desc_btf))
10915 		return PTR_ERR(desc_btf);
10916 
10917 	func_id = insn->imm;
10918 	func = btf_type_by_id(desc_btf, func_id);
10919 	func_name = btf_name_by_offset(desc_btf, func->name_off);
10920 	if (kfunc_name)
10921 		*kfunc_name = func_name;
10922 	func_proto = btf_type_by_id(desc_btf, func->type);
10923 
10924 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10925 	if (!kfunc_flags) {
10926 		return -EACCES;
10927 	}
10928 
10929 	memset(meta, 0, sizeof(*meta));
10930 	meta->btf = desc_btf;
10931 	meta->func_id = func_id;
10932 	meta->kfunc_flags = *kfunc_flags;
10933 	meta->func_proto = func_proto;
10934 	meta->func_name = func_name;
10935 
10936 	return 0;
10937 }
10938 
10939 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10940 			    int *insn_idx_p)
10941 {
10942 	const struct btf_type *t, *ptr_type;
10943 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
10944 	struct bpf_reg_state *regs = cur_regs(env);
10945 	const char *func_name, *ptr_type_name;
10946 	bool sleepable, rcu_lock, rcu_unlock;
10947 	struct bpf_kfunc_call_arg_meta meta;
10948 	struct bpf_insn_aux_data *insn_aux;
10949 	int err, insn_idx = *insn_idx_p;
10950 	const struct btf_param *args;
10951 	const struct btf_type *ret_t;
10952 	struct btf *desc_btf;
10953 
10954 	/* skip for now, but return error when we find this in fixup_kfunc_call */
10955 	if (!insn->imm)
10956 		return 0;
10957 
10958 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10959 	if (err == -EACCES && func_name)
10960 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
10961 	if (err)
10962 		return err;
10963 	desc_btf = meta.btf;
10964 	insn_aux = &env->insn_aux_data[insn_idx];
10965 
10966 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10967 
10968 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10969 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
10970 		return -EACCES;
10971 	}
10972 
10973 	sleepable = is_kfunc_sleepable(&meta);
10974 	if (sleepable && !env->prog->aux->sleepable) {
10975 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10976 		return -EACCES;
10977 	}
10978 
10979 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10980 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
10981 
10982 	if (env->cur_state->active_rcu_lock) {
10983 		struct bpf_func_state *state;
10984 		struct bpf_reg_state *reg;
10985 
10986 		if (rcu_lock) {
10987 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10988 			return -EINVAL;
10989 		} else if (rcu_unlock) {
10990 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10991 				if (reg->type & MEM_RCU) {
10992 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
10993 					reg->type |= PTR_UNTRUSTED;
10994 				}
10995 			}));
10996 			env->cur_state->active_rcu_lock = false;
10997 		} else if (sleepable) {
10998 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10999 			return -EACCES;
11000 		}
11001 	} else if (rcu_lock) {
11002 		env->cur_state->active_rcu_lock = true;
11003 	} else if (rcu_unlock) {
11004 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11005 		return -EINVAL;
11006 	}
11007 
11008 	/* Check the arguments */
11009 	err = check_kfunc_args(env, &meta, insn_idx);
11010 	if (err < 0)
11011 		return err;
11012 	/* In case of release function, we get register number of refcounted
11013 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11014 	 */
11015 	if (meta.release_regno) {
11016 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11017 		if (err) {
11018 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11019 				func_name, meta.func_id);
11020 			return err;
11021 		}
11022 	}
11023 
11024 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11025 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11026 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11027 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11028 		insn_aux->insert_off = regs[BPF_REG_2].off;
11029 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11030 		if (err) {
11031 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11032 				func_name, meta.func_id);
11033 			return err;
11034 		}
11035 
11036 		err = release_reference(env, release_ref_obj_id);
11037 		if (err) {
11038 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11039 				func_name, meta.func_id);
11040 			return err;
11041 		}
11042 	}
11043 
11044 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11045 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11046 					set_rbtree_add_callback_state);
11047 		if (err) {
11048 			verbose(env, "kfunc %s#%d failed callback verification\n",
11049 				func_name, meta.func_id);
11050 			return err;
11051 		}
11052 	}
11053 
11054 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11055 		mark_reg_not_init(env, regs, caller_saved[i]);
11056 
11057 	/* Check return type */
11058 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11059 
11060 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11061 		/* Only exception is bpf_obj_new_impl */
11062 		if (meta.btf != btf_vmlinux ||
11063 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11064 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11065 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11066 			return -EINVAL;
11067 		}
11068 	}
11069 
11070 	if (btf_type_is_scalar(t)) {
11071 		mark_reg_unknown(env, regs, BPF_REG_0);
11072 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11073 	} else if (btf_type_is_ptr(t)) {
11074 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11075 
11076 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11077 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11078 				struct btf *ret_btf;
11079 				u32 ret_btf_id;
11080 
11081 				if (unlikely(!bpf_global_ma_set))
11082 					return -ENOMEM;
11083 
11084 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11085 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11086 					return -EINVAL;
11087 				}
11088 
11089 				ret_btf = env->prog->aux->btf;
11090 				ret_btf_id = meta.arg_constant.value;
11091 
11092 				/* This may be NULL due to user not supplying a BTF */
11093 				if (!ret_btf) {
11094 					verbose(env, "bpf_obj_new requires prog BTF\n");
11095 					return -EINVAL;
11096 				}
11097 
11098 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11099 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11100 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11101 					return -EINVAL;
11102 				}
11103 
11104 				mark_reg_known_zero(env, regs, BPF_REG_0);
11105 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11106 				regs[BPF_REG_0].btf = ret_btf;
11107 				regs[BPF_REG_0].btf_id = ret_btf_id;
11108 
11109 				insn_aux->obj_new_size = ret_t->size;
11110 				insn_aux->kptr_struct_meta =
11111 					btf_find_struct_meta(ret_btf, ret_btf_id);
11112 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11113 				mark_reg_known_zero(env, regs, BPF_REG_0);
11114 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11115 				regs[BPF_REG_0].btf = meta.arg_refcount_acquire.btf;
11116 				regs[BPF_REG_0].btf_id = meta.arg_refcount_acquire.btf_id;
11117 
11118 				insn_aux->kptr_struct_meta =
11119 					btf_find_struct_meta(meta.arg_refcount_acquire.btf,
11120 							     meta.arg_refcount_acquire.btf_id);
11121 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11122 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11123 				struct btf_field *field = meta.arg_list_head.field;
11124 
11125 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11126 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11127 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11128 				struct btf_field *field = meta.arg_rbtree_root.field;
11129 
11130 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11131 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11132 				mark_reg_known_zero(env, regs, BPF_REG_0);
11133 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11134 				regs[BPF_REG_0].btf = desc_btf;
11135 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11136 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11137 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11138 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11139 					verbose(env,
11140 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11141 					return -EINVAL;
11142 				}
11143 
11144 				mark_reg_known_zero(env, regs, BPF_REG_0);
11145 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11146 				regs[BPF_REG_0].btf = desc_btf;
11147 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11148 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11149 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11150 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11151 
11152 				mark_reg_known_zero(env, regs, BPF_REG_0);
11153 
11154 				if (!meta.arg_constant.found) {
11155 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11156 					return -EFAULT;
11157 				}
11158 
11159 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11160 
11161 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11162 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11163 
11164 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11165 					regs[BPF_REG_0].type |= MEM_RDONLY;
11166 				} else {
11167 					/* this will set env->seen_direct_write to true */
11168 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11169 						verbose(env, "the prog does not allow writes to packet data\n");
11170 						return -EINVAL;
11171 					}
11172 				}
11173 
11174 				if (!meta.initialized_dynptr.id) {
11175 					verbose(env, "verifier internal error: no dynptr id\n");
11176 					return -EFAULT;
11177 				}
11178 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11179 
11180 				/* we don't need to set BPF_REG_0's ref obj id
11181 				 * because packet slices are not refcounted (see
11182 				 * dynptr_type_refcounted)
11183 				 */
11184 			} else {
11185 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11186 					meta.func_name);
11187 				return -EFAULT;
11188 			}
11189 		} else if (!__btf_type_is_struct(ptr_type)) {
11190 			if (!meta.r0_size) {
11191 				__u32 sz;
11192 
11193 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11194 					meta.r0_size = sz;
11195 					meta.r0_rdonly = true;
11196 				}
11197 			}
11198 			if (!meta.r0_size) {
11199 				ptr_type_name = btf_name_by_offset(desc_btf,
11200 								   ptr_type->name_off);
11201 				verbose(env,
11202 					"kernel function %s returns pointer type %s %s is not supported\n",
11203 					func_name,
11204 					btf_type_str(ptr_type),
11205 					ptr_type_name);
11206 				return -EINVAL;
11207 			}
11208 
11209 			mark_reg_known_zero(env, regs, BPF_REG_0);
11210 			regs[BPF_REG_0].type = PTR_TO_MEM;
11211 			regs[BPF_REG_0].mem_size = meta.r0_size;
11212 
11213 			if (meta.r0_rdonly)
11214 				regs[BPF_REG_0].type |= MEM_RDONLY;
11215 
11216 			/* Ensures we don't access the memory after a release_reference() */
11217 			if (meta.ref_obj_id)
11218 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11219 		} else {
11220 			mark_reg_known_zero(env, regs, BPF_REG_0);
11221 			regs[BPF_REG_0].btf = desc_btf;
11222 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11223 			regs[BPF_REG_0].btf_id = ptr_type_id;
11224 		}
11225 
11226 		if (is_kfunc_ret_null(&meta)) {
11227 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11228 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11229 			regs[BPF_REG_0].id = ++env->id_gen;
11230 		}
11231 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11232 		if (is_kfunc_acquire(&meta)) {
11233 			int id = acquire_reference_state(env, insn_idx);
11234 
11235 			if (id < 0)
11236 				return id;
11237 			if (is_kfunc_ret_null(&meta))
11238 				regs[BPF_REG_0].id = id;
11239 			regs[BPF_REG_0].ref_obj_id = id;
11240 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11241 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11242 		}
11243 
11244 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11245 			regs[BPF_REG_0].id = ++env->id_gen;
11246 	} else if (btf_type_is_void(t)) {
11247 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11248 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11249 				insn_aux->kptr_struct_meta =
11250 					btf_find_struct_meta(meta.arg_obj_drop.btf,
11251 							     meta.arg_obj_drop.btf_id);
11252 			}
11253 		}
11254 	}
11255 
11256 	nargs = btf_type_vlen(meta.func_proto);
11257 	args = (const struct btf_param *)(meta.func_proto + 1);
11258 	for (i = 0; i < nargs; i++) {
11259 		u32 regno = i + 1;
11260 
11261 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11262 		if (btf_type_is_ptr(t))
11263 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11264 		else
11265 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11266 			mark_btf_func_reg_size(env, regno, t->size);
11267 	}
11268 
11269 	if (is_iter_next_kfunc(&meta)) {
11270 		err = process_iter_next_call(env, insn_idx, &meta);
11271 		if (err)
11272 			return err;
11273 	}
11274 
11275 	return 0;
11276 }
11277 
11278 static bool signed_add_overflows(s64 a, s64 b)
11279 {
11280 	/* Do the add in u64, where overflow is well-defined */
11281 	s64 res = (s64)((u64)a + (u64)b);
11282 
11283 	if (b < 0)
11284 		return res > a;
11285 	return res < a;
11286 }
11287 
11288 static bool signed_add32_overflows(s32 a, s32 b)
11289 {
11290 	/* Do the add in u32, where overflow is well-defined */
11291 	s32 res = (s32)((u32)a + (u32)b);
11292 
11293 	if (b < 0)
11294 		return res > a;
11295 	return res < a;
11296 }
11297 
11298 static bool signed_sub_overflows(s64 a, s64 b)
11299 {
11300 	/* Do the sub in u64, where overflow is well-defined */
11301 	s64 res = (s64)((u64)a - (u64)b);
11302 
11303 	if (b < 0)
11304 		return res < a;
11305 	return res > a;
11306 }
11307 
11308 static bool signed_sub32_overflows(s32 a, s32 b)
11309 {
11310 	/* Do the sub in u32, where overflow is well-defined */
11311 	s32 res = (s32)((u32)a - (u32)b);
11312 
11313 	if (b < 0)
11314 		return res < a;
11315 	return res > a;
11316 }
11317 
11318 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11319 				  const struct bpf_reg_state *reg,
11320 				  enum bpf_reg_type type)
11321 {
11322 	bool known = tnum_is_const(reg->var_off);
11323 	s64 val = reg->var_off.value;
11324 	s64 smin = reg->smin_value;
11325 
11326 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11327 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11328 			reg_type_str(env, type), val);
11329 		return false;
11330 	}
11331 
11332 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11333 		verbose(env, "%s pointer offset %d is not allowed\n",
11334 			reg_type_str(env, type), reg->off);
11335 		return false;
11336 	}
11337 
11338 	if (smin == S64_MIN) {
11339 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11340 			reg_type_str(env, type));
11341 		return false;
11342 	}
11343 
11344 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11345 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11346 			smin, reg_type_str(env, type));
11347 		return false;
11348 	}
11349 
11350 	return true;
11351 }
11352 
11353 enum {
11354 	REASON_BOUNDS	= -1,
11355 	REASON_TYPE	= -2,
11356 	REASON_PATHS	= -3,
11357 	REASON_LIMIT	= -4,
11358 	REASON_STACK	= -5,
11359 };
11360 
11361 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11362 			      u32 *alu_limit, bool mask_to_left)
11363 {
11364 	u32 max = 0, ptr_limit = 0;
11365 
11366 	switch (ptr_reg->type) {
11367 	case PTR_TO_STACK:
11368 		/* Offset 0 is out-of-bounds, but acceptable start for the
11369 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11370 		 * offset where we would need to deal with min/max bounds is
11371 		 * currently prohibited for unprivileged.
11372 		 */
11373 		max = MAX_BPF_STACK + mask_to_left;
11374 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11375 		break;
11376 	case PTR_TO_MAP_VALUE:
11377 		max = ptr_reg->map_ptr->value_size;
11378 		ptr_limit = (mask_to_left ?
11379 			     ptr_reg->smin_value :
11380 			     ptr_reg->umax_value) + ptr_reg->off;
11381 		break;
11382 	default:
11383 		return REASON_TYPE;
11384 	}
11385 
11386 	if (ptr_limit >= max)
11387 		return REASON_LIMIT;
11388 	*alu_limit = ptr_limit;
11389 	return 0;
11390 }
11391 
11392 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11393 				    const struct bpf_insn *insn)
11394 {
11395 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11396 }
11397 
11398 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11399 				       u32 alu_state, u32 alu_limit)
11400 {
11401 	/* If we arrived here from different branches with different
11402 	 * state or limits to sanitize, then this won't work.
11403 	 */
11404 	if (aux->alu_state &&
11405 	    (aux->alu_state != alu_state ||
11406 	     aux->alu_limit != alu_limit))
11407 		return REASON_PATHS;
11408 
11409 	/* Corresponding fixup done in do_misc_fixups(). */
11410 	aux->alu_state = alu_state;
11411 	aux->alu_limit = alu_limit;
11412 	return 0;
11413 }
11414 
11415 static int sanitize_val_alu(struct bpf_verifier_env *env,
11416 			    struct bpf_insn *insn)
11417 {
11418 	struct bpf_insn_aux_data *aux = cur_aux(env);
11419 
11420 	if (can_skip_alu_sanitation(env, insn))
11421 		return 0;
11422 
11423 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11424 }
11425 
11426 static bool sanitize_needed(u8 opcode)
11427 {
11428 	return opcode == BPF_ADD || opcode == BPF_SUB;
11429 }
11430 
11431 struct bpf_sanitize_info {
11432 	struct bpf_insn_aux_data aux;
11433 	bool mask_to_left;
11434 };
11435 
11436 static struct bpf_verifier_state *
11437 sanitize_speculative_path(struct bpf_verifier_env *env,
11438 			  const struct bpf_insn *insn,
11439 			  u32 next_idx, u32 curr_idx)
11440 {
11441 	struct bpf_verifier_state *branch;
11442 	struct bpf_reg_state *regs;
11443 
11444 	branch = push_stack(env, next_idx, curr_idx, true);
11445 	if (branch && insn) {
11446 		regs = branch->frame[branch->curframe]->regs;
11447 		if (BPF_SRC(insn->code) == BPF_K) {
11448 			mark_reg_unknown(env, regs, insn->dst_reg);
11449 		} else if (BPF_SRC(insn->code) == BPF_X) {
11450 			mark_reg_unknown(env, regs, insn->dst_reg);
11451 			mark_reg_unknown(env, regs, insn->src_reg);
11452 		}
11453 	}
11454 	return branch;
11455 }
11456 
11457 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11458 			    struct bpf_insn *insn,
11459 			    const struct bpf_reg_state *ptr_reg,
11460 			    const struct bpf_reg_state *off_reg,
11461 			    struct bpf_reg_state *dst_reg,
11462 			    struct bpf_sanitize_info *info,
11463 			    const bool commit_window)
11464 {
11465 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11466 	struct bpf_verifier_state *vstate = env->cur_state;
11467 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11468 	bool off_is_neg = off_reg->smin_value < 0;
11469 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11470 	u8 opcode = BPF_OP(insn->code);
11471 	u32 alu_state, alu_limit;
11472 	struct bpf_reg_state tmp;
11473 	bool ret;
11474 	int err;
11475 
11476 	if (can_skip_alu_sanitation(env, insn))
11477 		return 0;
11478 
11479 	/* We already marked aux for masking from non-speculative
11480 	 * paths, thus we got here in the first place. We only care
11481 	 * to explore bad access from here.
11482 	 */
11483 	if (vstate->speculative)
11484 		goto do_sim;
11485 
11486 	if (!commit_window) {
11487 		if (!tnum_is_const(off_reg->var_off) &&
11488 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11489 			return REASON_BOUNDS;
11490 
11491 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11492 				     (opcode == BPF_SUB && !off_is_neg);
11493 	}
11494 
11495 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11496 	if (err < 0)
11497 		return err;
11498 
11499 	if (commit_window) {
11500 		/* In commit phase we narrow the masking window based on
11501 		 * the observed pointer move after the simulated operation.
11502 		 */
11503 		alu_state = info->aux.alu_state;
11504 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11505 	} else {
11506 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11507 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11508 		alu_state |= ptr_is_dst_reg ?
11509 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11510 
11511 		/* Limit pruning on unknown scalars to enable deep search for
11512 		 * potential masking differences from other program paths.
11513 		 */
11514 		if (!off_is_imm)
11515 			env->explore_alu_limits = true;
11516 	}
11517 
11518 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11519 	if (err < 0)
11520 		return err;
11521 do_sim:
11522 	/* If we're in commit phase, we're done here given we already
11523 	 * pushed the truncated dst_reg into the speculative verification
11524 	 * stack.
11525 	 *
11526 	 * Also, when register is a known constant, we rewrite register-based
11527 	 * operation to immediate-based, and thus do not need masking (and as
11528 	 * a consequence, do not need to simulate the zero-truncation either).
11529 	 */
11530 	if (commit_window || off_is_imm)
11531 		return 0;
11532 
11533 	/* Simulate and find potential out-of-bounds access under
11534 	 * speculative execution from truncation as a result of
11535 	 * masking when off was not within expected range. If off
11536 	 * sits in dst, then we temporarily need to move ptr there
11537 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11538 	 * for cases where we use K-based arithmetic in one direction
11539 	 * and truncated reg-based in the other in order to explore
11540 	 * bad access.
11541 	 */
11542 	if (!ptr_is_dst_reg) {
11543 		tmp = *dst_reg;
11544 		copy_register_state(dst_reg, ptr_reg);
11545 	}
11546 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11547 					env->insn_idx);
11548 	if (!ptr_is_dst_reg && ret)
11549 		*dst_reg = tmp;
11550 	return !ret ? REASON_STACK : 0;
11551 }
11552 
11553 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11554 {
11555 	struct bpf_verifier_state *vstate = env->cur_state;
11556 
11557 	/* If we simulate paths under speculation, we don't update the
11558 	 * insn as 'seen' such that when we verify unreachable paths in
11559 	 * the non-speculative domain, sanitize_dead_code() can still
11560 	 * rewrite/sanitize them.
11561 	 */
11562 	if (!vstate->speculative)
11563 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11564 }
11565 
11566 static int sanitize_err(struct bpf_verifier_env *env,
11567 			const struct bpf_insn *insn, int reason,
11568 			const struct bpf_reg_state *off_reg,
11569 			const struct bpf_reg_state *dst_reg)
11570 {
11571 	static const char *err = "pointer arithmetic with it prohibited for !root";
11572 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11573 	u32 dst = insn->dst_reg, src = insn->src_reg;
11574 
11575 	switch (reason) {
11576 	case REASON_BOUNDS:
11577 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11578 			off_reg == dst_reg ? dst : src, err);
11579 		break;
11580 	case REASON_TYPE:
11581 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11582 			off_reg == dst_reg ? src : dst, err);
11583 		break;
11584 	case REASON_PATHS:
11585 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11586 			dst, op, err);
11587 		break;
11588 	case REASON_LIMIT:
11589 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11590 			dst, op, err);
11591 		break;
11592 	case REASON_STACK:
11593 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11594 			dst, err);
11595 		break;
11596 	default:
11597 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11598 			reason);
11599 		break;
11600 	}
11601 
11602 	return -EACCES;
11603 }
11604 
11605 /* check that stack access falls within stack limits and that 'reg' doesn't
11606  * have a variable offset.
11607  *
11608  * Variable offset is prohibited for unprivileged mode for simplicity since it
11609  * requires corresponding support in Spectre masking for stack ALU.  See also
11610  * retrieve_ptr_limit().
11611  *
11612  *
11613  * 'off' includes 'reg->off'.
11614  */
11615 static int check_stack_access_for_ptr_arithmetic(
11616 				struct bpf_verifier_env *env,
11617 				int regno,
11618 				const struct bpf_reg_state *reg,
11619 				int off)
11620 {
11621 	if (!tnum_is_const(reg->var_off)) {
11622 		char tn_buf[48];
11623 
11624 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11625 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11626 			regno, tn_buf, off);
11627 		return -EACCES;
11628 	}
11629 
11630 	if (off >= 0 || off < -MAX_BPF_STACK) {
11631 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11632 			"prohibited for !root; off=%d\n", regno, off);
11633 		return -EACCES;
11634 	}
11635 
11636 	return 0;
11637 }
11638 
11639 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11640 				 const struct bpf_insn *insn,
11641 				 const struct bpf_reg_state *dst_reg)
11642 {
11643 	u32 dst = insn->dst_reg;
11644 
11645 	/* For unprivileged we require that resulting offset must be in bounds
11646 	 * in order to be able to sanitize access later on.
11647 	 */
11648 	if (env->bypass_spec_v1)
11649 		return 0;
11650 
11651 	switch (dst_reg->type) {
11652 	case PTR_TO_STACK:
11653 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11654 					dst_reg->off + dst_reg->var_off.value))
11655 			return -EACCES;
11656 		break;
11657 	case PTR_TO_MAP_VALUE:
11658 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
11659 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11660 				"prohibited for !root\n", dst);
11661 			return -EACCES;
11662 		}
11663 		break;
11664 	default:
11665 		break;
11666 	}
11667 
11668 	return 0;
11669 }
11670 
11671 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
11672  * Caller should also handle BPF_MOV case separately.
11673  * If we return -EACCES, caller may want to try again treating pointer as a
11674  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
11675  */
11676 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11677 				   struct bpf_insn *insn,
11678 				   const struct bpf_reg_state *ptr_reg,
11679 				   const struct bpf_reg_state *off_reg)
11680 {
11681 	struct bpf_verifier_state *vstate = env->cur_state;
11682 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11683 	struct bpf_reg_state *regs = state->regs, *dst_reg;
11684 	bool known = tnum_is_const(off_reg->var_off);
11685 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11686 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11687 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11688 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
11689 	struct bpf_sanitize_info info = {};
11690 	u8 opcode = BPF_OP(insn->code);
11691 	u32 dst = insn->dst_reg;
11692 	int ret;
11693 
11694 	dst_reg = &regs[dst];
11695 
11696 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11697 	    smin_val > smax_val || umin_val > umax_val) {
11698 		/* Taint dst register if offset had invalid bounds derived from
11699 		 * e.g. dead branches.
11700 		 */
11701 		__mark_reg_unknown(env, dst_reg);
11702 		return 0;
11703 	}
11704 
11705 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
11706 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
11707 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11708 			__mark_reg_unknown(env, dst_reg);
11709 			return 0;
11710 		}
11711 
11712 		verbose(env,
11713 			"R%d 32-bit pointer arithmetic prohibited\n",
11714 			dst);
11715 		return -EACCES;
11716 	}
11717 
11718 	if (ptr_reg->type & PTR_MAYBE_NULL) {
11719 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
11720 			dst, reg_type_str(env, ptr_reg->type));
11721 		return -EACCES;
11722 	}
11723 
11724 	switch (base_type(ptr_reg->type)) {
11725 	case CONST_PTR_TO_MAP:
11726 		/* smin_val represents the known value */
11727 		if (known && smin_val == 0 && opcode == BPF_ADD)
11728 			break;
11729 		fallthrough;
11730 	case PTR_TO_PACKET_END:
11731 	case PTR_TO_SOCKET:
11732 	case PTR_TO_SOCK_COMMON:
11733 	case PTR_TO_TCP_SOCK:
11734 	case PTR_TO_XDP_SOCK:
11735 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
11736 			dst, reg_type_str(env, ptr_reg->type));
11737 		return -EACCES;
11738 	default:
11739 		break;
11740 	}
11741 
11742 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11743 	 * The id may be overwritten later if we create a new variable offset.
11744 	 */
11745 	dst_reg->type = ptr_reg->type;
11746 	dst_reg->id = ptr_reg->id;
11747 
11748 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11749 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11750 		return -EINVAL;
11751 
11752 	/* pointer types do not carry 32-bit bounds at the moment. */
11753 	__mark_reg32_unbounded(dst_reg);
11754 
11755 	if (sanitize_needed(opcode)) {
11756 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
11757 				       &info, false);
11758 		if (ret < 0)
11759 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11760 	}
11761 
11762 	switch (opcode) {
11763 	case BPF_ADD:
11764 		/* We can take a fixed offset as long as it doesn't overflow
11765 		 * the s32 'off' field
11766 		 */
11767 		if (known && (ptr_reg->off + smin_val ==
11768 			      (s64)(s32)(ptr_reg->off + smin_val))) {
11769 			/* pointer += K.  Accumulate it into fixed offset */
11770 			dst_reg->smin_value = smin_ptr;
11771 			dst_reg->smax_value = smax_ptr;
11772 			dst_reg->umin_value = umin_ptr;
11773 			dst_reg->umax_value = umax_ptr;
11774 			dst_reg->var_off = ptr_reg->var_off;
11775 			dst_reg->off = ptr_reg->off + smin_val;
11776 			dst_reg->raw = ptr_reg->raw;
11777 			break;
11778 		}
11779 		/* A new variable offset is created.  Note that off_reg->off
11780 		 * == 0, since it's a scalar.
11781 		 * dst_reg gets the pointer type and since some positive
11782 		 * integer value was added to the pointer, give it a new 'id'
11783 		 * if it's a PTR_TO_PACKET.
11784 		 * this creates a new 'base' pointer, off_reg (variable) gets
11785 		 * added into the variable offset, and we copy the fixed offset
11786 		 * from ptr_reg.
11787 		 */
11788 		if (signed_add_overflows(smin_ptr, smin_val) ||
11789 		    signed_add_overflows(smax_ptr, smax_val)) {
11790 			dst_reg->smin_value = S64_MIN;
11791 			dst_reg->smax_value = S64_MAX;
11792 		} else {
11793 			dst_reg->smin_value = smin_ptr + smin_val;
11794 			dst_reg->smax_value = smax_ptr + smax_val;
11795 		}
11796 		if (umin_ptr + umin_val < umin_ptr ||
11797 		    umax_ptr + umax_val < umax_ptr) {
11798 			dst_reg->umin_value = 0;
11799 			dst_reg->umax_value = U64_MAX;
11800 		} else {
11801 			dst_reg->umin_value = umin_ptr + umin_val;
11802 			dst_reg->umax_value = umax_ptr + umax_val;
11803 		}
11804 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11805 		dst_reg->off = ptr_reg->off;
11806 		dst_reg->raw = ptr_reg->raw;
11807 		if (reg_is_pkt_pointer(ptr_reg)) {
11808 			dst_reg->id = ++env->id_gen;
11809 			/* something was added to pkt_ptr, set range to zero */
11810 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11811 		}
11812 		break;
11813 	case BPF_SUB:
11814 		if (dst_reg == off_reg) {
11815 			/* scalar -= pointer.  Creates an unknown scalar */
11816 			verbose(env, "R%d tried to subtract pointer from scalar\n",
11817 				dst);
11818 			return -EACCES;
11819 		}
11820 		/* We don't allow subtraction from FP, because (according to
11821 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
11822 		 * be able to deal with it.
11823 		 */
11824 		if (ptr_reg->type == PTR_TO_STACK) {
11825 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
11826 				dst);
11827 			return -EACCES;
11828 		}
11829 		if (known && (ptr_reg->off - smin_val ==
11830 			      (s64)(s32)(ptr_reg->off - smin_val))) {
11831 			/* pointer -= K.  Subtract it from fixed offset */
11832 			dst_reg->smin_value = smin_ptr;
11833 			dst_reg->smax_value = smax_ptr;
11834 			dst_reg->umin_value = umin_ptr;
11835 			dst_reg->umax_value = umax_ptr;
11836 			dst_reg->var_off = ptr_reg->var_off;
11837 			dst_reg->id = ptr_reg->id;
11838 			dst_reg->off = ptr_reg->off - smin_val;
11839 			dst_reg->raw = ptr_reg->raw;
11840 			break;
11841 		}
11842 		/* A new variable offset is created.  If the subtrahend is known
11843 		 * nonnegative, then any reg->range we had before is still good.
11844 		 */
11845 		if (signed_sub_overflows(smin_ptr, smax_val) ||
11846 		    signed_sub_overflows(smax_ptr, smin_val)) {
11847 			/* Overflow possible, we know nothing */
11848 			dst_reg->smin_value = S64_MIN;
11849 			dst_reg->smax_value = S64_MAX;
11850 		} else {
11851 			dst_reg->smin_value = smin_ptr - smax_val;
11852 			dst_reg->smax_value = smax_ptr - smin_val;
11853 		}
11854 		if (umin_ptr < umax_val) {
11855 			/* Overflow possible, we know nothing */
11856 			dst_reg->umin_value = 0;
11857 			dst_reg->umax_value = U64_MAX;
11858 		} else {
11859 			/* Cannot overflow (as long as bounds are consistent) */
11860 			dst_reg->umin_value = umin_ptr - umax_val;
11861 			dst_reg->umax_value = umax_ptr - umin_val;
11862 		}
11863 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11864 		dst_reg->off = ptr_reg->off;
11865 		dst_reg->raw = ptr_reg->raw;
11866 		if (reg_is_pkt_pointer(ptr_reg)) {
11867 			dst_reg->id = ++env->id_gen;
11868 			/* something was added to pkt_ptr, set range to zero */
11869 			if (smin_val < 0)
11870 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11871 		}
11872 		break;
11873 	case BPF_AND:
11874 	case BPF_OR:
11875 	case BPF_XOR:
11876 		/* bitwise ops on pointers are troublesome, prohibit. */
11877 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11878 			dst, bpf_alu_string[opcode >> 4]);
11879 		return -EACCES;
11880 	default:
11881 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
11882 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11883 			dst, bpf_alu_string[opcode >> 4]);
11884 		return -EACCES;
11885 	}
11886 
11887 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11888 		return -EINVAL;
11889 	reg_bounds_sync(dst_reg);
11890 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11891 		return -EACCES;
11892 	if (sanitize_needed(opcode)) {
11893 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
11894 				       &info, true);
11895 		if (ret < 0)
11896 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11897 	}
11898 
11899 	return 0;
11900 }
11901 
11902 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11903 				 struct bpf_reg_state *src_reg)
11904 {
11905 	s32 smin_val = src_reg->s32_min_value;
11906 	s32 smax_val = src_reg->s32_max_value;
11907 	u32 umin_val = src_reg->u32_min_value;
11908 	u32 umax_val = src_reg->u32_max_value;
11909 
11910 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11911 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11912 		dst_reg->s32_min_value = S32_MIN;
11913 		dst_reg->s32_max_value = S32_MAX;
11914 	} else {
11915 		dst_reg->s32_min_value += smin_val;
11916 		dst_reg->s32_max_value += smax_val;
11917 	}
11918 	if (dst_reg->u32_min_value + umin_val < umin_val ||
11919 	    dst_reg->u32_max_value + umax_val < umax_val) {
11920 		dst_reg->u32_min_value = 0;
11921 		dst_reg->u32_max_value = U32_MAX;
11922 	} else {
11923 		dst_reg->u32_min_value += umin_val;
11924 		dst_reg->u32_max_value += umax_val;
11925 	}
11926 }
11927 
11928 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11929 			       struct bpf_reg_state *src_reg)
11930 {
11931 	s64 smin_val = src_reg->smin_value;
11932 	s64 smax_val = src_reg->smax_value;
11933 	u64 umin_val = src_reg->umin_value;
11934 	u64 umax_val = src_reg->umax_value;
11935 
11936 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11937 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
11938 		dst_reg->smin_value = S64_MIN;
11939 		dst_reg->smax_value = S64_MAX;
11940 	} else {
11941 		dst_reg->smin_value += smin_val;
11942 		dst_reg->smax_value += smax_val;
11943 	}
11944 	if (dst_reg->umin_value + umin_val < umin_val ||
11945 	    dst_reg->umax_value + umax_val < umax_val) {
11946 		dst_reg->umin_value = 0;
11947 		dst_reg->umax_value = U64_MAX;
11948 	} else {
11949 		dst_reg->umin_value += umin_val;
11950 		dst_reg->umax_value += umax_val;
11951 	}
11952 }
11953 
11954 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11955 				 struct bpf_reg_state *src_reg)
11956 {
11957 	s32 smin_val = src_reg->s32_min_value;
11958 	s32 smax_val = src_reg->s32_max_value;
11959 	u32 umin_val = src_reg->u32_min_value;
11960 	u32 umax_val = src_reg->u32_max_value;
11961 
11962 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11963 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11964 		/* Overflow possible, we know nothing */
11965 		dst_reg->s32_min_value = S32_MIN;
11966 		dst_reg->s32_max_value = S32_MAX;
11967 	} else {
11968 		dst_reg->s32_min_value -= smax_val;
11969 		dst_reg->s32_max_value -= smin_val;
11970 	}
11971 	if (dst_reg->u32_min_value < umax_val) {
11972 		/* Overflow possible, we know nothing */
11973 		dst_reg->u32_min_value = 0;
11974 		dst_reg->u32_max_value = U32_MAX;
11975 	} else {
11976 		/* Cannot overflow (as long as bounds are consistent) */
11977 		dst_reg->u32_min_value -= umax_val;
11978 		dst_reg->u32_max_value -= umin_val;
11979 	}
11980 }
11981 
11982 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11983 			       struct bpf_reg_state *src_reg)
11984 {
11985 	s64 smin_val = src_reg->smin_value;
11986 	s64 smax_val = src_reg->smax_value;
11987 	u64 umin_val = src_reg->umin_value;
11988 	u64 umax_val = src_reg->umax_value;
11989 
11990 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11991 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11992 		/* Overflow possible, we know nothing */
11993 		dst_reg->smin_value = S64_MIN;
11994 		dst_reg->smax_value = S64_MAX;
11995 	} else {
11996 		dst_reg->smin_value -= smax_val;
11997 		dst_reg->smax_value -= smin_val;
11998 	}
11999 	if (dst_reg->umin_value < umax_val) {
12000 		/* Overflow possible, we know nothing */
12001 		dst_reg->umin_value = 0;
12002 		dst_reg->umax_value = U64_MAX;
12003 	} else {
12004 		/* Cannot overflow (as long as bounds are consistent) */
12005 		dst_reg->umin_value -= umax_val;
12006 		dst_reg->umax_value -= umin_val;
12007 	}
12008 }
12009 
12010 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12011 				 struct bpf_reg_state *src_reg)
12012 {
12013 	s32 smin_val = src_reg->s32_min_value;
12014 	u32 umin_val = src_reg->u32_min_value;
12015 	u32 umax_val = src_reg->u32_max_value;
12016 
12017 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12018 		/* Ain't nobody got time to multiply that sign */
12019 		__mark_reg32_unbounded(dst_reg);
12020 		return;
12021 	}
12022 	/* Both values are positive, so we can work with unsigned and
12023 	 * copy the result to signed (unless it exceeds S32_MAX).
12024 	 */
12025 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12026 		/* Potential overflow, we know nothing */
12027 		__mark_reg32_unbounded(dst_reg);
12028 		return;
12029 	}
12030 	dst_reg->u32_min_value *= umin_val;
12031 	dst_reg->u32_max_value *= umax_val;
12032 	if (dst_reg->u32_max_value > S32_MAX) {
12033 		/* Overflow possible, we know nothing */
12034 		dst_reg->s32_min_value = S32_MIN;
12035 		dst_reg->s32_max_value = S32_MAX;
12036 	} else {
12037 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12038 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12039 	}
12040 }
12041 
12042 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12043 			       struct bpf_reg_state *src_reg)
12044 {
12045 	s64 smin_val = src_reg->smin_value;
12046 	u64 umin_val = src_reg->umin_value;
12047 	u64 umax_val = src_reg->umax_value;
12048 
12049 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12050 		/* Ain't nobody got time to multiply that sign */
12051 		__mark_reg64_unbounded(dst_reg);
12052 		return;
12053 	}
12054 	/* Both values are positive, so we can work with unsigned and
12055 	 * copy the result to signed (unless it exceeds S64_MAX).
12056 	 */
12057 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12058 		/* Potential overflow, we know nothing */
12059 		__mark_reg64_unbounded(dst_reg);
12060 		return;
12061 	}
12062 	dst_reg->umin_value *= umin_val;
12063 	dst_reg->umax_value *= umax_val;
12064 	if (dst_reg->umax_value > S64_MAX) {
12065 		/* Overflow possible, we know nothing */
12066 		dst_reg->smin_value = S64_MIN;
12067 		dst_reg->smax_value = S64_MAX;
12068 	} else {
12069 		dst_reg->smin_value = dst_reg->umin_value;
12070 		dst_reg->smax_value = dst_reg->umax_value;
12071 	}
12072 }
12073 
12074 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12075 				 struct bpf_reg_state *src_reg)
12076 {
12077 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12078 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12079 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12080 	s32 smin_val = src_reg->s32_min_value;
12081 	u32 umax_val = src_reg->u32_max_value;
12082 
12083 	if (src_known && dst_known) {
12084 		__mark_reg32_known(dst_reg, var32_off.value);
12085 		return;
12086 	}
12087 
12088 	/* We get our minimum from the var_off, since that's inherently
12089 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12090 	 */
12091 	dst_reg->u32_min_value = var32_off.value;
12092 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12093 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12094 		/* Lose signed bounds when ANDing negative numbers,
12095 		 * ain't nobody got time for that.
12096 		 */
12097 		dst_reg->s32_min_value = S32_MIN;
12098 		dst_reg->s32_max_value = S32_MAX;
12099 	} else {
12100 		/* ANDing two positives gives a positive, so safe to
12101 		 * cast result into s64.
12102 		 */
12103 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12104 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12105 	}
12106 }
12107 
12108 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12109 			       struct bpf_reg_state *src_reg)
12110 {
12111 	bool src_known = tnum_is_const(src_reg->var_off);
12112 	bool dst_known = tnum_is_const(dst_reg->var_off);
12113 	s64 smin_val = src_reg->smin_value;
12114 	u64 umax_val = src_reg->umax_value;
12115 
12116 	if (src_known && dst_known) {
12117 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12118 		return;
12119 	}
12120 
12121 	/* We get our minimum from the var_off, since that's inherently
12122 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12123 	 */
12124 	dst_reg->umin_value = dst_reg->var_off.value;
12125 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12126 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12127 		/* Lose signed bounds when ANDing negative numbers,
12128 		 * ain't nobody got time for that.
12129 		 */
12130 		dst_reg->smin_value = S64_MIN;
12131 		dst_reg->smax_value = S64_MAX;
12132 	} else {
12133 		/* ANDing two positives gives a positive, so safe to
12134 		 * cast result into s64.
12135 		 */
12136 		dst_reg->smin_value = dst_reg->umin_value;
12137 		dst_reg->smax_value = dst_reg->umax_value;
12138 	}
12139 	/* We may learn something more from the var_off */
12140 	__update_reg_bounds(dst_reg);
12141 }
12142 
12143 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12144 				struct bpf_reg_state *src_reg)
12145 {
12146 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12147 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12148 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12149 	s32 smin_val = src_reg->s32_min_value;
12150 	u32 umin_val = src_reg->u32_min_value;
12151 
12152 	if (src_known && dst_known) {
12153 		__mark_reg32_known(dst_reg, var32_off.value);
12154 		return;
12155 	}
12156 
12157 	/* We get our maximum from the var_off, and our minimum is the
12158 	 * maximum of the operands' minima
12159 	 */
12160 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12161 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12162 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12163 		/* Lose signed bounds when ORing negative numbers,
12164 		 * ain't nobody got time for that.
12165 		 */
12166 		dst_reg->s32_min_value = S32_MIN;
12167 		dst_reg->s32_max_value = S32_MAX;
12168 	} else {
12169 		/* ORing two positives gives a positive, so safe to
12170 		 * cast result into s64.
12171 		 */
12172 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12173 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12174 	}
12175 }
12176 
12177 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12178 			      struct bpf_reg_state *src_reg)
12179 {
12180 	bool src_known = tnum_is_const(src_reg->var_off);
12181 	bool dst_known = tnum_is_const(dst_reg->var_off);
12182 	s64 smin_val = src_reg->smin_value;
12183 	u64 umin_val = src_reg->umin_value;
12184 
12185 	if (src_known && dst_known) {
12186 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12187 		return;
12188 	}
12189 
12190 	/* We get our maximum from the var_off, and our minimum is the
12191 	 * maximum of the operands' minima
12192 	 */
12193 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12194 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12195 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12196 		/* Lose signed bounds when ORing negative numbers,
12197 		 * ain't nobody got time for that.
12198 		 */
12199 		dst_reg->smin_value = S64_MIN;
12200 		dst_reg->smax_value = S64_MAX;
12201 	} else {
12202 		/* ORing two positives gives a positive, so safe to
12203 		 * cast result into s64.
12204 		 */
12205 		dst_reg->smin_value = dst_reg->umin_value;
12206 		dst_reg->smax_value = dst_reg->umax_value;
12207 	}
12208 	/* We may learn something more from the var_off */
12209 	__update_reg_bounds(dst_reg);
12210 }
12211 
12212 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12213 				 struct bpf_reg_state *src_reg)
12214 {
12215 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12216 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12217 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12218 	s32 smin_val = src_reg->s32_min_value;
12219 
12220 	if (src_known && dst_known) {
12221 		__mark_reg32_known(dst_reg, var32_off.value);
12222 		return;
12223 	}
12224 
12225 	/* We get both minimum and maximum from the var32_off. */
12226 	dst_reg->u32_min_value = var32_off.value;
12227 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12228 
12229 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12230 		/* XORing two positive sign numbers gives a positive,
12231 		 * so safe to cast u32 result into s32.
12232 		 */
12233 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12234 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12235 	} else {
12236 		dst_reg->s32_min_value = S32_MIN;
12237 		dst_reg->s32_max_value = S32_MAX;
12238 	}
12239 }
12240 
12241 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12242 			       struct bpf_reg_state *src_reg)
12243 {
12244 	bool src_known = tnum_is_const(src_reg->var_off);
12245 	bool dst_known = tnum_is_const(dst_reg->var_off);
12246 	s64 smin_val = src_reg->smin_value;
12247 
12248 	if (src_known && dst_known) {
12249 		/* dst_reg->var_off.value has been updated earlier */
12250 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12251 		return;
12252 	}
12253 
12254 	/* We get both minimum and maximum from the var_off. */
12255 	dst_reg->umin_value = dst_reg->var_off.value;
12256 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12257 
12258 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12259 		/* XORing two positive sign numbers gives a positive,
12260 		 * so safe to cast u64 result into s64.
12261 		 */
12262 		dst_reg->smin_value = dst_reg->umin_value;
12263 		dst_reg->smax_value = dst_reg->umax_value;
12264 	} else {
12265 		dst_reg->smin_value = S64_MIN;
12266 		dst_reg->smax_value = S64_MAX;
12267 	}
12268 
12269 	__update_reg_bounds(dst_reg);
12270 }
12271 
12272 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12273 				   u64 umin_val, u64 umax_val)
12274 {
12275 	/* We lose all sign bit information (except what we can pick
12276 	 * up from var_off)
12277 	 */
12278 	dst_reg->s32_min_value = S32_MIN;
12279 	dst_reg->s32_max_value = S32_MAX;
12280 	/* If we might shift our top bit out, then we know nothing */
12281 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12282 		dst_reg->u32_min_value = 0;
12283 		dst_reg->u32_max_value = U32_MAX;
12284 	} else {
12285 		dst_reg->u32_min_value <<= umin_val;
12286 		dst_reg->u32_max_value <<= umax_val;
12287 	}
12288 }
12289 
12290 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12291 				 struct bpf_reg_state *src_reg)
12292 {
12293 	u32 umax_val = src_reg->u32_max_value;
12294 	u32 umin_val = src_reg->u32_min_value;
12295 	/* u32 alu operation will zext upper bits */
12296 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12297 
12298 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12299 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12300 	/* Not required but being careful mark reg64 bounds as unknown so
12301 	 * that we are forced to pick them up from tnum and zext later and
12302 	 * if some path skips this step we are still safe.
12303 	 */
12304 	__mark_reg64_unbounded(dst_reg);
12305 	__update_reg32_bounds(dst_reg);
12306 }
12307 
12308 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12309 				   u64 umin_val, u64 umax_val)
12310 {
12311 	/* Special case <<32 because it is a common compiler pattern to sign
12312 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12313 	 * positive we know this shift will also be positive so we can track
12314 	 * bounds correctly. Otherwise we lose all sign bit information except
12315 	 * what we can pick up from var_off. Perhaps we can generalize this
12316 	 * later to shifts of any length.
12317 	 */
12318 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12319 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12320 	else
12321 		dst_reg->smax_value = S64_MAX;
12322 
12323 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12324 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12325 	else
12326 		dst_reg->smin_value = S64_MIN;
12327 
12328 	/* If we might shift our top bit out, then we know nothing */
12329 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12330 		dst_reg->umin_value = 0;
12331 		dst_reg->umax_value = U64_MAX;
12332 	} else {
12333 		dst_reg->umin_value <<= umin_val;
12334 		dst_reg->umax_value <<= umax_val;
12335 	}
12336 }
12337 
12338 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12339 			       struct bpf_reg_state *src_reg)
12340 {
12341 	u64 umax_val = src_reg->umax_value;
12342 	u64 umin_val = src_reg->umin_value;
12343 
12344 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12345 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12346 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12347 
12348 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12349 	/* We may learn something more from the var_off */
12350 	__update_reg_bounds(dst_reg);
12351 }
12352 
12353 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12354 				 struct bpf_reg_state *src_reg)
12355 {
12356 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12357 	u32 umax_val = src_reg->u32_max_value;
12358 	u32 umin_val = src_reg->u32_min_value;
12359 
12360 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12361 	 * be negative, then either:
12362 	 * 1) src_reg might be zero, so the sign bit of the result is
12363 	 *    unknown, so we lose our signed bounds
12364 	 * 2) it's known negative, thus the unsigned bounds capture the
12365 	 *    signed bounds
12366 	 * 3) the signed bounds cross zero, so they tell us nothing
12367 	 *    about the result
12368 	 * If the value in dst_reg is known nonnegative, then again the
12369 	 * unsigned bounds capture the signed bounds.
12370 	 * Thus, in all cases it suffices to blow away our signed bounds
12371 	 * and rely on inferring new ones from the unsigned bounds and
12372 	 * var_off of the result.
12373 	 */
12374 	dst_reg->s32_min_value = S32_MIN;
12375 	dst_reg->s32_max_value = S32_MAX;
12376 
12377 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12378 	dst_reg->u32_min_value >>= umax_val;
12379 	dst_reg->u32_max_value >>= umin_val;
12380 
12381 	__mark_reg64_unbounded(dst_reg);
12382 	__update_reg32_bounds(dst_reg);
12383 }
12384 
12385 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12386 			       struct bpf_reg_state *src_reg)
12387 {
12388 	u64 umax_val = src_reg->umax_value;
12389 	u64 umin_val = src_reg->umin_value;
12390 
12391 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12392 	 * be negative, then either:
12393 	 * 1) src_reg might be zero, so the sign bit of the result is
12394 	 *    unknown, so we lose our signed bounds
12395 	 * 2) it's known negative, thus the unsigned bounds capture the
12396 	 *    signed bounds
12397 	 * 3) the signed bounds cross zero, so they tell us nothing
12398 	 *    about the result
12399 	 * If the value in dst_reg is known nonnegative, then again the
12400 	 * unsigned bounds capture the signed bounds.
12401 	 * Thus, in all cases it suffices to blow away our signed bounds
12402 	 * and rely on inferring new ones from the unsigned bounds and
12403 	 * var_off of the result.
12404 	 */
12405 	dst_reg->smin_value = S64_MIN;
12406 	dst_reg->smax_value = S64_MAX;
12407 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12408 	dst_reg->umin_value >>= umax_val;
12409 	dst_reg->umax_value >>= umin_val;
12410 
12411 	/* Its not easy to operate on alu32 bounds here because it depends
12412 	 * on bits being shifted in. Take easy way out and mark unbounded
12413 	 * so we can recalculate later from tnum.
12414 	 */
12415 	__mark_reg32_unbounded(dst_reg);
12416 	__update_reg_bounds(dst_reg);
12417 }
12418 
12419 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12420 				  struct bpf_reg_state *src_reg)
12421 {
12422 	u64 umin_val = src_reg->u32_min_value;
12423 
12424 	/* Upon reaching here, src_known is true and
12425 	 * umax_val is equal to umin_val.
12426 	 */
12427 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12428 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12429 
12430 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12431 
12432 	/* blow away the dst_reg umin_value/umax_value and rely on
12433 	 * dst_reg var_off to refine the result.
12434 	 */
12435 	dst_reg->u32_min_value = 0;
12436 	dst_reg->u32_max_value = U32_MAX;
12437 
12438 	__mark_reg64_unbounded(dst_reg);
12439 	__update_reg32_bounds(dst_reg);
12440 }
12441 
12442 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12443 				struct bpf_reg_state *src_reg)
12444 {
12445 	u64 umin_val = src_reg->umin_value;
12446 
12447 	/* Upon reaching here, src_known is true and umax_val is equal
12448 	 * to umin_val.
12449 	 */
12450 	dst_reg->smin_value >>= umin_val;
12451 	dst_reg->smax_value >>= umin_val;
12452 
12453 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12454 
12455 	/* blow away the dst_reg umin_value/umax_value and rely on
12456 	 * dst_reg var_off to refine the result.
12457 	 */
12458 	dst_reg->umin_value = 0;
12459 	dst_reg->umax_value = U64_MAX;
12460 
12461 	/* Its not easy to operate on alu32 bounds here because it depends
12462 	 * on bits being shifted in from upper 32-bits. Take easy way out
12463 	 * and mark unbounded so we can recalculate later from tnum.
12464 	 */
12465 	__mark_reg32_unbounded(dst_reg);
12466 	__update_reg_bounds(dst_reg);
12467 }
12468 
12469 /* WARNING: This function does calculations on 64-bit values, but the actual
12470  * execution may occur on 32-bit values. Therefore, things like bitshifts
12471  * need extra checks in the 32-bit case.
12472  */
12473 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12474 				      struct bpf_insn *insn,
12475 				      struct bpf_reg_state *dst_reg,
12476 				      struct bpf_reg_state src_reg)
12477 {
12478 	struct bpf_reg_state *regs = cur_regs(env);
12479 	u8 opcode = BPF_OP(insn->code);
12480 	bool src_known;
12481 	s64 smin_val, smax_val;
12482 	u64 umin_val, umax_val;
12483 	s32 s32_min_val, s32_max_val;
12484 	u32 u32_min_val, u32_max_val;
12485 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12486 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12487 	int ret;
12488 
12489 	smin_val = src_reg.smin_value;
12490 	smax_val = src_reg.smax_value;
12491 	umin_val = src_reg.umin_value;
12492 	umax_val = src_reg.umax_value;
12493 
12494 	s32_min_val = src_reg.s32_min_value;
12495 	s32_max_val = src_reg.s32_max_value;
12496 	u32_min_val = src_reg.u32_min_value;
12497 	u32_max_val = src_reg.u32_max_value;
12498 
12499 	if (alu32) {
12500 		src_known = tnum_subreg_is_const(src_reg.var_off);
12501 		if ((src_known &&
12502 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12503 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12504 			/* Taint dst register if offset had invalid bounds
12505 			 * derived from e.g. dead branches.
12506 			 */
12507 			__mark_reg_unknown(env, dst_reg);
12508 			return 0;
12509 		}
12510 	} else {
12511 		src_known = tnum_is_const(src_reg.var_off);
12512 		if ((src_known &&
12513 		     (smin_val != smax_val || umin_val != umax_val)) ||
12514 		    smin_val > smax_val || umin_val > umax_val) {
12515 			/* Taint dst register if offset had invalid bounds
12516 			 * derived from e.g. dead branches.
12517 			 */
12518 			__mark_reg_unknown(env, dst_reg);
12519 			return 0;
12520 		}
12521 	}
12522 
12523 	if (!src_known &&
12524 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12525 		__mark_reg_unknown(env, dst_reg);
12526 		return 0;
12527 	}
12528 
12529 	if (sanitize_needed(opcode)) {
12530 		ret = sanitize_val_alu(env, insn);
12531 		if (ret < 0)
12532 			return sanitize_err(env, insn, ret, NULL, NULL);
12533 	}
12534 
12535 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12536 	 * There are two classes of instructions: The first class we track both
12537 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12538 	 * greatest amount of precision when alu operations are mixed with jmp32
12539 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12540 	 * and BPF_OR. This is possible because these ops have fairly easy to
12541 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12542 	 * See alu32 verifier tests for examples. The second class of
12543 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12544 	 * with regards to tracking sign/unsigned bounds because the bits may
12545 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12546 	 * the reg unbounded in the subreg bound space and use the resulting
12547 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12548 	 */
12549 	switch (opcode) {
12550 	case BPF_ADD:
12551 		scalar32_min_max_add(dst_reg, &src_reg);
12552 		scalar_min_max_add(dst_reg, &src_reg);
12553 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12554 		break;
12555 	case BPF_SUB:
12556 		scalar32_min_max_sub(dst_reg, &src_reg);
12557 		scalar_min_max_sub(dst_reg, &src_reg);
12558 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12559 		break;
12560 	case BPF_MUL:
12561 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12562 		scalar32_min_max_mul(dst_reg, &src_reg);
12563 		scalar_min_max_mul(dst_reg, &src_reg);
12564 		break;
12565 	case BPF_AND:
12566 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12567 		scalar32_min_max_and(dst_reg, &src_reg);
12568 		scalar_min_max_and(dst_reg, &src_reg);
12569 		break;
12570 	case BPF_OR:
12571 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12572 		scalar32_min_max_or(dst_reg, &src_reg);
12573 		scalar_min_max_or(dst_reg, &src_reg);
12574 		break;
12575 	case BPF_XOR:
12576 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12577 		scalar32_min_max_xor(dst_reg, &src_reg);
12578 		scalar_min_max_xor(dst_reg, &src_reg);
12579 		break;
12580 	case BPF_LSH:
12581 		if (umax_val >= insn_bitness) {
12582 			/* Shifts greater than 31 or 63 are undefined.
12583 			 * This includes shifts by a negative number.
12584 			 */
12585 			mark_reg_unknown(env, regs, insn->dst_reg);
12586 			break;
12587 		}
12588 		if (alu32)
12589 			scalar32_min_max_lsh(dst_reg, &src_reg);
12590 		else
12591 			scalar_min_max_lsh(dst_reg, &src_reg);
12592 		break;
12593 	case BPF_RSH:
12594 		if (umax_val >= insn_bitness) {
12595 			/* Shifts greater than 31 or 63 are undefined.
12596 			 * This includes shifts by a negative number.
12597 			 */
12598 			mark_reg_unknown(env, regs, insn->dst_reg);
12599 			break;
12600 		}
12601 		if (alu32)
12602 			scalar32_min_max_rsh(dst_reg, &src_reg);
12603 		else
12604 			scalar_min_max_rsh(dst_reg, &src_reg);
12605 		break;
12606 	case BPF_ARSH:
12607 		if (umax_val >= insn_bitness) {
12608 			/* Shifts greater than 31 or 63 are undefined.
12609 			 * This includes shifts by a negative number.
12610 			 */
12611 			mark_reg_unknown(env, regs, insn->dst_reg);
12612 			break;
12613 		}
12614 		if (alu32)
12615 			scalar32_min_max_arsh(dst_reg, &src_reg);
12616 		else
12617 			scalar_min_max_arsh(dst_reg, &src_reg);
12618 		break;
12619 	default:
12620 		mark_reg_unknown(env, regs, insn->dst_reg);
12621 		break;
12622 	}
12623 
12624 	/* ALU32 ops are zero extended into 64bit register */
12625 	if (alu32)
12626 		zext_32_to_64(dst_reg);
12627 	reg_bounds_sync(dst_reg);
12628 	return 0;
12629 }
12630 
12631 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12632  * and var_off.
12633  */
12634 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12635 				   struct bpf_insn *insn)
12636 {
12637 	struct bpf_verifier_state *vstate = env->cur_state;
12638 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12639 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12640 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12641 	u8 opcode = BPF_OP(insn->code);
12642 	int err;
12643 
12644 	dst_reg = &regs[insn->dst_reg];
12645 	src_reg = NULL;
12646 	if (dst_reg->type != SCALAR_VALUE)
12647 		ptr_reg = dst_reg;
12648 	else
12649 		/* Make sure ID is cleared otherwise dst_reg min/max could be
12650 		 * incorrectly propagated into other registers by find_equal_scalars()
12651 		 */
12652 		dst_reg->id = 0;
12653 	if (BPF_SRC(insn->code) == BPF_X) {
12654 		src_reg = &regs[insn->src_reg];
12655 		if (src_reg->type != SCALAR_VALUE) {
12656 			if (dst_reg->type != SCALAR_VALUE) {
12657 				/* Combining two pointers by any ALU op yields
12658 				 * an arbitrary scalar. Disallow all math except
12659 				 * pointer subtraction
12660 				 */
12661 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12662 					mark_reg_unknown(env, regs, insn->dst_reg);
12663 					return 0;
12664 				}
12665 				verbose(env, "R%d pointer %s pointer prohibited\n",
12666 					insn->dst_reg,
12667 					bpf_alu_string[opcode >> 4]);
12668 				return -EACCES;
12669 			} else {
12670 				/* scalar += pointer
12671 				 * This is legal, but we have to reverse our
12672 				 * src/dest handling in computing the range
12673 				 */
12674 				err = mark_chain_precision(env, insn->dst_reg);
12675 				if (err)
12676 					return err;
12677 				return adjust_ptr_min_max_vals(env, insn,
12678 							       src_reg, dst_reg);
12679 			}
12680 		} else if (ptr_reg) {
12681 			/* pointer += scalar */
12682 			err = mark_chain_precision(env, insn->src_reg);
12683 			if (err)
12684 				return err;
12685 			return adjust_ptr_min_max_vals(env, insn,
12686 						       dst_reg, src_reg);
12687 		} else if (dst_reg->precise) {
12688 			/* if dst_reg is precise, src_reg should be precise as well */
12689 			err = mark_chain_precision(env, insn->src_reg);
12690 			if (err)
12691 				return err;
12692 		}
12693 	} else {
12694 		/* Pretend the src is a reg with a known value, since we only
12695 		 * need to be able to read from this state.
12696 		 */
12697 		off_reg.type = SCALAR_VALUE;
12698 		__mark_reg_known(&off_reg, insn->imm);
12699 		src_reg = &off_reg;
12700 		if (ptr_reg) /* pointer += K */
12701 			return adjust_ptr_min_max_vals(env, insn,
12702 						       ptr_reg, src_reg);
12703 	}
12704 
12705 	/* Got here implies adding two SCALAR_VALUEs */
12706 	if (WARN_ON_ONCE(ptr_reg)) {
12707 		print_verifier_state(env, state, true);
12708 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
12709 		return -EINVAL;
12710 	}
12711 	if (WARN_ON(!src_reg)) {
12712 		print_verifier_state(env, state, true);
12713 		verbose(env, "verifier internal error: no src_reg\n");
12714 		return -EINVAL;
12715 	}
12716 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
12717 }
12718 
12719 /* check validity of 32-bit and 64-bit arithmetic operations */
12720 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
12721 {
12722 	struct bpf_reg_state *regs = cur_regs(env);
12723 	u8 opcode = BPF_OP(insn->code);
12724 	int err;
12725 
12726 	if (opcode == BPF_END || opcode == BPF_NEG) {
12727 		if (opcode == BPF_NEG) {
12728 			if (BPF_SRC(insn->code) != BPF_K ||
12729 			    insn->src_reg != BPF_REG_0 ||
12730 			    insn->off != 0 || insn->imm != 0) {
12731 				verbose(env, "BPF_NEG uses reserved fields\n");
12732 				return -EINVAL;
12733 			}
12734 		} else {
12735 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
12736 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12737 			    BPF_CLASS(insn->code) == BPF_ALU64) {
12738 				verbose(env, "BPF_END uses reserved fields\n");
12739 				return -EINVAL;
12740 			}
12741 		}
12742 
12743 		/* check src operand */
12744 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12745 		if (err)
12746 			return err;
12747 
12748 		if (is_pointer_value(env, insn->dst_reg)) {
12749 			verbose(env, "R%d pointer arithmetic prohibited\n",
12750 				insn->dst_reg);
12751 			return -EACCES;
12752 		}
12753 
12754 		/* check dest operand */
12755 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
12756 		if (err)
12757 			return err;
12758 
12759 	} else if (opcode == BPF_MOV) {
12760 
12761 		if (BPF_SRC(insn->code) == BPF_X) {
12762 			if (insn->imm != 0 || insn->off != 0) {
12763 				verbose(env, "BPF_MOV uses reserved fields\n");
12764 				return -EINVAL;
12765 			}
12766 
12767 			/* check src operand */
12768 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12769 			if (err)
12770 				return err;
12771 		} else {
12772 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12773 				verbose(env, "BPF_MOV uses reserved fields\n");
12774 				return -EINVAL;
12775 			}
12776 		}
12777 
12778 		/* check dest operand, mark as required later */
12779 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12780 		if (err)
12781 			return err;
12782 
12783 		if (BPF_SRC(insn->code) == BPF_X) {
12784 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
12785 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12786 
12787 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12788 				/* case: R1 = R2
12789 				 * copy register state to dest reg
12790 				 */
12791 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12792 					/* Assign src and dst registers the same ID
12793 					 * that will be used by find_equal_scalars()
12794 					 * to propagate min/max range.
12795 					 */
12796 					src_reg->id = ++env->id_gen;
12797 				copy_register_state(dst_reg, src_reg);
12798 				dst_reg->live |= REG_LIVE_WRITTEN;
12799 				dst_reg->subreg_def = DEF_NOT_SUBREG;
12800 			} else {
12801 				/* R1 = (u32) R2 */
12802 				if (is_pointer_value(env, insn->src_reg)) {
12803 					verbose(env,
12804 						"R%d partial copy of pointer\n",
12805 						insn->src_reg);
12806 					return -EACCES;
12807 				} else if (src_reg->type == SCALAR_VALUE) {
12808 					bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
12809 
12810 					if (is_src_reg_u32 && !src_reg->id)
12811 						src_reg->id = ++env->id_gen;
12812 					copy_register_state(dst_reg, src_reg);
12813 					/* Make sure ID is cleared if src_reg is not in u32 range otherwise
12814 					 * dst_reg min/max could be incorrectly
12815 					 * propagated into src_reg by find_equal_scalars()
12816 					 */
12817 					if (!is_src_reg_u32)
12818 						dst_reg->id = 0;
12819 					dst_reg->live |= REG_LIVE_WRITTEN;
12820 					dst_reg->subreg_def = env->insn_idx + 1;
12821 				} else {
12822 					mark_reg_unknown(env, regs,
12823 							 insn->dst_reg);
12824 				}
12825 				zext_32_to_64(dst_reg);
12826 				reg_bounds_sync(dst_reg);
12827 			}
12828 		} else {
12829 			/* case: R = imm
12830 			 * remember the value we stored into this reg
12831 			 */
12832 			/* clear any state __mark_reg_known doesn't set */
12833 			mark_reg_unknown(env, regs, insn->dst_reg);
12834 			regs[insn->dst_reg].type = SCALAR_VALUE;
12835 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12836 				__mark_reg_known(regs + insn->dst_reg,
12837 						 insn->imm);
12838 			} else {
12839 				__mark_reg_known(regs + insn->dst_reg,
12840 						 (u32)insn->imm);
12841 			}
12842 		}
12843 
12844 	} else if (opcode > BPF_END) {
12845 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
12846 		return -EINVAL;
12847 
12848 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
12849 
12850 		if (BPF_SRC(insn->code) == BPF_X) {
12851 			if (insn->imm != 0 || insn->off != 0) {
12852 				verbose(env, "BPF_ALU uses reserved fields\n");
12853 				return -EINVAL;
12854 			}
12855 			/* check src1 operand */
12856 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12857 			if (err)
12858 				return err;
12859 		} else {
12860 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12861 				verbose(env, "BPF_ALU uses reserved fields\n");
12862 				return -EINVAL;
12863 			}
12864 		}
12865 
12866 		/* check src2 operand */
12867 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12868 		if (err)
12869 			return err;
12870 
12871 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12872 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
12873 			verbose(env, "div by zero\n");
12874 			return -EINVAL;
12875 		}
12876 
12877 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12878 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12879 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12880 
12881 			if (insn->imm < 0 || insn->imm >= size) {
12882 				verbose(env, "invalid shift %d\n", insn->imm);
12883 				return -EINVAL;
12884 			}
12885 		}
12886 
12887 		/* check dest operand */
12888 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12889 		if (err)
12890 			return err;
12891 
12892 		return adjust_reg_min_max_vals(env, insn);
12893 	}
12894 
12895 	return 0;
12896 }
12897 
12898 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
12899 				   struct bpf_reg_state *dst_reg,
12900 				   enum bpf_reg_type type,
12901 				   bool range_right_open)
12902 {
12903 	struct bpf_func_state *state;
12904 	struct bpf_reg_state *reg;
12905 	int new_range;
12906 
12907 	if (dst_reg->off < 0 ||
12908 	    (dst_reg->off == 0 && range_right_open))
12909 		/* This doesn't give us any range */
12910 		return;
12911 
12912 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
12913 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
12914 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
12915 		 * than pkt_end, but that's because it's also less than pkt.
12916 		 */
12917 		return;
12918 
12919 	new_range = dst_reg->off;
12920 	if (range_right_open)
12921 		new_range++;
12922 
12923 	/* Examples for register markings:
12924 	 *
12925 	 * pkt_data in dst register:
12926 	 *
12927 	 *   r2 = r3;
12928 	 *   r2 += 8;
12929 	 *   if (r2 > pkt_end) goto <handle exception>
12930 	 *   <access okay>
12931 	 *
12932 	 *   r2 = r3;
12933 	 *   r2 += 8;
12934 	 *   if (r2 < pkt_end) goto <access okay>
12935 	 *   <handle exception>
12936 	 *
12937 	 *   Where:
12938 	 *     r2 == dst_reg, pkt_end == src_reg
12939 	 *     r2=pkt(id=n,off=8,r=0)
12940 	 *     r3=pkt(id=n,off=0,r=0)
12941 	 *
12942 	 * pkt_data in src register:
12943 	 *
12944 	 *   r2 = r3;
12945 	 *   r2 += 8;
12946 	 *   if (pkt_end >= r2) goto <access okay>
12947 	 *   <handle exception>
12948 	 *
12949 	 *   r2 = r3;
12950 	 *   r2 += 8;
12951 	 *   if (pkt_end <= r2) goto <handle exception>
12952 	 *   <access okay>
12953 	 *
12954 	 *   Where:
12955 	 *     pkt_end == dst_reg, r2 == src_reg
12956 	 *     r2=pkt(id=n,off=8,r=0)
12957 	 *     r3=pkt(id=n,off=0,r=0)
12958 	 *
12959 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
12960 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12961 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
12962 	 * the check.
12963 	 */
12964 
12965 	/* If our ids match, then we must have the same max_value.  And we
12966 	 * don't care about the other reg's fixed offset, since if it's too big
12967 	 * the range won't allow anything.
12968 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12969 	 */
12970 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12971 		if (reg->type == type && reg->id == dst_reg->id)
12972 			/* keep the maximum range already checked */
12973 			reg->range = max(reg->range, new_range);
12974 	}));
12975 }
12976 
12977 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
12978 {
12979 	struct tnum subreg = tnum_subreg(reg->var_off);
12980 	s32 sval = (s32)val;
12981 
12982 	switch (opcode) {
12983 	case BPF_JEQ:
12984 		if (tnum_is_const(subreg))
12985 			return !!tnum_equals_const(subreg, val);
12986 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
12987 			return 0;
12988 		break;
12989 	case BPF_JNE:
12990 		if (tnum_is_const(subreg))
12991 			return !tnum_equals_const(subreg, val);
12992 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
12993 			return 1;
12994 		break;
12995 	case BPF_JSET:
12996 		if ((~subreg.mask & subreg.value) & val)
12997 			return 1;
12998 		if (!((subreg.mask | subreg.value) & val))
12999 			return 0;
13000 		break;
13001 	case BPF_JGT:
13002 		if (reg->u32_min_value > val)
13003 			return 1;
13004 		else if (reg->u32_max_value <= val)
13005 			return 0;
13006 		break;
13007 	case BPF_JSGT:
13008 		if (reg->s32_min_value > sval)
13009 			return 1;
13010 		else if (reg->s32_max_value <= sval)
13011 			return 0;
13012 		break;
13013 	case BPF_JLT:
13014 		if (reg->u32_max_value < val)
13015 			return 1;
13016 		else if (reg->u32_min_value >= val)
13017 			return 0;
13018 		break;
13019 	case BPF_JSLT:
13020 		if (reg->s32_max_value < sval)
13021 			return 1;
13022 		else if (reg->s32_min_value >= sval)
13023 			return 0;
13024 		break;
13025 	case BPF_JGE:
13026 		if (reg->u32_min_value >= val)
13027 			return 1;
13028 		else if (reg->u32_max_value < val)
13029 			return 0;
13030 		break;
13031 	case BPF_JSGE:
13032 		if (reg->s32_min_value >= sval)
13033 			return 1;
13034 		else if (reg->s32_max_value < sval)
13035 			return 0;
13036 		break;
13037 	case BPF_JLE:
13038 		if (reg->u32_max_value <= val)
13039 			return 1;
13040 		else if (reg->u32_min_value > val)
13041 			return 0;
13042 		break;
13043 	case BPF_JSLE:
13044 		if (reg->s32_max_value <= sval)
13045 			return 1;
13046 		else if (reg->s32_min_value > sval)
13047 			return 0;
13048 		break;
13049 	}
13050 
13051 	return -1;
13052 }
13053 
13054 
13055 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13056 {
13057 	s64 sval = (s64)val;
13058 
13059 	switch (opcode) {
13060 	case BPF_JEQ:
13061 		if (tnum_is_const(reg->var_off))
13062 			return !!tnum_equals_const(reg->var_off, val);
13063 		else if (val < reg->umin_value || val > reg->umax_value)
13064 			return 0;
13065 		break;
13066 	case BPF_JNE:
13067 		if (tnum_is_const(reg->var_off))
13068 			return !tnum_equals_const(reg->var_off, val);
13069 		else if (val < reg->umin_value || val > reg->umax_value)
13070 			return 1;
13071 		break;
13072 	case BPF_JSET:
13073 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13074 			return 1;
13075 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13076 			return 0;
13077 		break;
13078 	case BPF_JGT:
13079 		if (reg->umin_value > val)
13080 			return 1;
13081 		else if (reg->umax_value <= val)
13082 			return 0;
13083 		break;
13084 	case BPF_JSGT:
13085 		if (reg->smin_value > sval)
13086 			return 1;
13087 		else if (reg->smax_value <= sval)
13088 			return 0;
13089 		break;
13090 	case BPF_JLT:
13091 		if (reg->umax_value < val)
13092 			return 1;
13093 		else if (reg->umin_value >= val)
13094 			return 0;
13095 		break;
13096 	case BPF_JSLT:
13097 		if (reg->smax_value < sval)
13098 			return 1;
13099 		else if (reg->smin_value >= sval)
13100 			return 0;
13101 		break;
13102 	case BPF_JGE:
13103 		if (reg->umin_value >= val)
13104 			return 1;
13105 		else if (reg->umax_value < val)
13106 			return 0;
13107 		break;
13108 	case BPF_JSGE:
13109 		if (reg->smin_value >= sval)
13110 			return 1;
13111 		else if (reg->smax_value < sval)
13112 			return 0;
13113 		break;
13114 	case BPF_JLE:
13115 		if (reg->umax_value <= val)
13116 			return 1;
13117 		else if (reg->umin_value > val)
13118 			return 0;
13119 		break;
13120 	case BPF_JSLE:
13121 		if (reg->smax_value <= sval)
13122 			return 1;
13123 		else if (reg->smin_value > sval)
13124 			return 0;
13125 		break;
13126 	}
13127 
13128 	return -1;
13129 }
13130 
13131 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13132  * and return:
13133  *  1 - branch will be taken and "goto target" will be executed
13134  *  0 - branch will not be taken and fall-through to next insn
13135  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13136  *      range [0,10]
13137  */
13138 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13139 			   bool is_jmp32)
13140 {
13141 	if (__is_pointer_value(false, reg)) {
13142 		if (!reg_type_not_null(reg->type))
13143 			return -1;
13144 
13145 		/* If pointer is valid tests against zero will fail so we can
13146 		 * use this to direct branch taken.
13147 		 */
13148 		if (val != 0)
13149 			return -1;
13150 
13151 		switch (opcode) {
13152 		case BPF_JEQ:
13153 			return 0;
13154 		case BPF_JNE:
13155 			return 1;
13156 		default:
13157 			return -1;
13158 		}
13159 	}
13160 
13161 	if (is_jmp32)
13162 		return is_branch32_taken(reg, val, opcode);
13163 	return is_branch64_taken(reg, val, opcode);
13164 }
13165 
13166 static int flip_opcode(u32 opcode)
13167 {
13168 	/* How can we transform "a <op> b" into "b <op> a"? */
13169 	static const u8 opcode_flip[16] = {
13170 		/* these stay the same */
13171 		[BPF_JEQ  >> 4] = BPF_JEQ,
13172 		[BPF_JNE  >> 4] = BPF_JNE,
13173 		[BPF_JSET >> 4] = BPF_JSET,
13174 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13175 		[BPF_JGE  >> 4] = BPF_JLE,
13176 		[BPF_JGT  >> 4] = BPF_JLT,
13177 		[BPF_JLE  >> 4] = BPF_JGE,
13178 		[BPF_JLT  >> 4] = BPF_JGT,
13179 		[BPF_JSGE >> 4] = BPF_JSLE,
13180 		[BPF_JSGT >> 4] = BPF_JSLT,
13181 		[BPF_JSLE >> 4] = BPF_JSGE,
13182 		[BPF_JSLT >> 4] = BPF_JSGT
13183 	};
13184 	return opcode_flip[opcode >> 4];
13185 }
13186 
13187 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13188 				   struct bpf_reg_state *src_reg,
13189 				   u8 opcode)
13190 {
13191 	struct bpf_reg_state *pkt;
13192 
13193 	if (src_reg->type == PTR_TO_PACKET_END) {
13194 		pkt = dst_reg;
13195 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13196 		pkt = src_reg;
13197 		opcode = flip_opcode(opcode);
13198 	} else {
13199 		return -1;
13200 	}
13201 
13202 	if (pkt->range >= 0)
13203 		return -1;
13204 
13205 	switch (opcode) {
13206 	case BPF_JLE:
13207 		/* pkt <= pkt_end */
13208 		fallthrough;
13209 	case BPF_JGT:
13210 		/* pkt > pkt_end */
13211 		if (pkt->range == BEYOND_PKT_END)
13212 			/* pkt has at last one extra byte beyond pkt_end */
13213 			return opcode == BPF_JGT;
13214 		break;
13215 	case BPF_JLT:
13216 		/* pkt < pkt_end */
13217 		fallthrough;
13218 	case BPF_JGE:
13219 		/* pkt >= pkt_end */
13220 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13221 			return opcode == BPF_JGE;
13222 		break;
13223 	}
13224 	return -1;
13225 }
13226 
13227 /* Adjusts the register min/max values in the case that the dst_reg is the
13228  * variable register that we are working on, and src_reg is a constant or we're
13229  * simply doing a BPF_K check.
13230  * In JEQ/JNE cases we also adjust the var_off values.
13231  */
13232 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13233 			    struct bpf_reg_state *false_reg,
13234 			    u64 val, u32 val32,
13235 			    u8 opcode, bool is_jmp32)
13236 {
13237 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13238 	struct tnum false_64off = false_reg->var_off;
13239 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13240 	struct tnum true_64off = true_reg->var_off;
13241 	s64 sval = (s64)val;
13242 	s32 sval32 = (s32)val32;
13243 
13244 	/* If the dst_reg is a pointer, we can't learn anything about its
13245 	 * variable offset from the compare (unless src_reg were a pointer into
13246 	 * the same object, but we don't bother with that.
13247 	 * Since false_reg and true_reg have the same type by construction, we
13248 	 * only need to check one of them for pointerness.
13249 	 */
13250 	if (__is_pointer_value(false, false_reg))
13251 		return;
13252 
13253 	switch (opcode) {
13254 	/* JEQ/JNE comparison doesn't change the register equivalence.
13255 	 *
13256 	 * r1 = r2;
13257 	 * if (r1 == 42) goto label;
13258 	 * ...
13259 	 * label: // here both r1 and r2 are known to be 42.
13260 	 *
13261 	 * Hence when marking register as known preserve it's ID.
13262 	 */
13263 	case BPF_JEQ:
13264 		if (is_jmp32) {
13265 			__mark_reg32_known(true_reg, val32);
13266 			true_32off = tnum_subreg(true_reg->var_off);
13267 		} else {
13268 			___mark_reg_known(true_reg, val);
13269 			true_64off = true_reg->var_off;
13270 		}
13271 		break;
13272 	case BPF_JNE:
13273 		if (is_jmp32) {
13274 			__mark_reg32_known(false_reg, val32);
13275 			false_32off = tnum_subreg(false_reg->var_off);
13276 		} else {
13277 			___mark_reg_known(false_reg, val);
13278 			false_64off = false_reg->var_off;
13279 		}
13280 		break;
13281 	case BPF_JSET:
13282 		if (is_jmp32) {
13283 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13284 			if (is_power_of_2(val32))
13285 				true_32off = tnum_or(true_32off,
13286 						     tnum_const(val32));
13287 		} else {
13288 			false_64off = tnum_and(false_64off, tnum_const(~val));
13289 			if (is_power_of_2(val))
13290 				true_64off = tnum_or(true_64off,
13291 						     tnum_const(val));
13292 		}
13293 		break;
13294 	case BPF_JGE:
13295 	case BPF_JGT:
13296 	{
13297 		if (is_jmp32) {
13298 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13299 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13300 
13301 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13302 						       false_umax);
13303 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13304 						      true_umin);
13305 		} else {
13306 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13307 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13308 
13309 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13310 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13311 		}
13312 		break;
13313 	}
13314 	case BPF_JSGE:
13315 	case BPF_JSGT:
13316 	{
13317 		if (is_jmp32) {
13318 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13319 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13320 
13321 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13322 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13323 		} else {
13324 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13325 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13326 
13327 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13328 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13329 		}
13330 		break;
13331 	}
13332 	case BPF_JLE:
13333 	case BPF_JLT:
13334 	{
13335 		if (is_jmp32) {
13336 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13337 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13338 
13339 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13340 						       false_umin);
13341 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13342 						      true_umax);
13343 		} else {
13344 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13345 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13346 
13347 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13348 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13349 		}
13350 		break;
13351 	}
13352 	case BPF_JSLE:
13353 	case BPF_JSLT:
13354 	{
13355 		if (is_jmp32) {
13356 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13357 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13358 
13359 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13360 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13361 		} else {
13362 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13363 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13364 
13365 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13366 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13367 		}
13368 		break;
13369 	}
13370 	default:
13371 		return;
13372 	}
13373 
13374 	if (is_jmp32) {
13375 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13376 					     tnum_subreg(false_32off));
13377 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13378 					    tnum_subreg(true_32off));
13379 		__reg_combine_32_into_64(false_reg);
13380 		__reg_combine_32_into_64(true_reg);
13381 	} else {
13382 		false_reg->var_off = false_64off;
13383 		true_reg->var_off = true_64off;
13384 		__reg_combine_64_into_32(false_reg);
13385 		__reg_combine_64_into_32(true_reg);
13386 	}
13387 }
13388 
13389 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13390  * the variable reg.
13391  */
13392 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13393 				struct bpf_reg_state *false_reg,
13394 				u64 val, u32 val32,
13395 				u8 opcode, bool is_jmp32)
13396 {
13397 	opcode = flip_opcode(opcode);
13398 	/* This uses zero as "not present in table"; luckily the zero opcode,
13399 	 * BPF_JA, can't get here.
13400 	 */
13401 	if (opcode)
13402 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13403 }
13404 
13405 /* Regs are known to be equal, so intersect their min/max/var_off */
13406 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13407 				  struct bpf_reg_state *dst_reg)
13408 {
13409 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13410 							dst_reg->umin_value);
13411 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13412 							dst_reg->umax_value);
13413 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13414 							dst_reg->smin_value);
13415 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13416 							dst_reg->smax_value);
13417 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13418 							     dst_reg->var_off);
13419 	reg_bounds_sync(src_reg);
13420 	reg_bounds_sync(dst_reg);
13421 }
13422 
13423 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13424 				struct bpf_reg_state *true_dst,
13425 				struct bpf_reg_state *false_src,
13426 				struct bpf_reg_state *false_dst,
13427 				u8 opcode)
13428 {
13429 	switch (opcode) {
13430 	case BPF_JEQ:
13431 		__reg_combine_min_max(true_src, true_dst);
13432 		break;
13433 	case BPF_JNE:
13434 		__reg_combine_min_max(false_src, false_dst);
13435 		break;
13436 	}
13437 }
13438 
13439 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13440 				 struct bpf_reg_state *reg, u32 id,
13441 				 bool is_null)
13442 {
13443 	if (type_may_be_null(reg->type) && reg->id == id &&
13444 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13445 		/* Old offset (both fixed and variable parts) should have been
13446 		 * known-zero, because we don't allow pointer arithmetic on
13447 		 * pointers that might be NULL. If we see this happening, don't
13448 		 * convert the register.
13449 		 *
13450 		 * But in some cases, some helpers that return local kptrs
13451 		 * advance offset for the returned pointer. In those cases, it
13452 		 * is fine to expect to see reg->off.
13453 		 */
13454 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13455 			return;
13456 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13457 		    WARN_ON_ONCE(reg->off))
13458 			return;
13459 
13460 		if (is_null) {
13461 			reg->type = SCALAR_VALUE;
13462 			/* We don't need id and ref_obj_id from this point
13463 			 * onwards anymore, thus we should better reset it,
13464 			 * so that state pruning has chances to take effect.
13465 			 */
13466 			reg->id = 0;
13467 			reg->ref_obj_id = 0;
13468 
13469 			return;
13470 		}
13471 
13472 		mark_ptr_not_null_reg(reg);
13473 
13474 		if (!reg_may_point_to_spin_lock(reg)) {
13475 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13476 			 * in release_reference().
13477 			 *
13478 			 * reg->id is still used by spin_lock ptr. Other
13479 			 * than spin_lock ptr type, reg->id can be reset.
13480 			 */
13481 			reg->id = 0;
13482 		}
13483 	}
13484 }
13485 
13486 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13487  * be folded together at some point.
13488  */
13489 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13490 				  bool is_null)
13491 {
13492 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13493 	struct bpf_reg_state *regs = state->regs, *reg;
13494 	u32 ref_obj_id = regs[regno].ref_obj_id;
13495 	u32 id = regs[regno].id;
13496 
13497 	if (ref_obj_id && ref_obj_id == id && is_null)
13498 		/* regs[regno] is in the " == NULL" branch.
13499 		 * No one could have freed the reference state before
13500 		 * doing the NULL check.
13501 		 */
13502 		WARN_ON_ONCE(release_reference_state(state, id));
13503 
13504 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13505 		mark_ptr_or_null_reg(state, reg, id, is_null);
13506 	}));
13507 }
13508 
13509 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13510 				   struct bpf_reg_state *dst_reg,
13511 				   struct bpf_reg_state *src_reg,
13512 				   struct bpf_verifier_state *this_branch,
13513 				   struct bpf_verifier_state *other_branch)
13514 {
13515 	if (BPF_SRC(insn->code) != BPF_X)
13516 		return false;
13517 
13518 	/* Pointers are always 64-bit. */
13519 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13520 		return false;
13521 
13522 	switch (BPF_OP(insn->code)) {
13523 	case BPF_JGT:
13524 		if ((dst_reg->type == PTR_TO_PACKET &&
13525 		     src_reg->type == PTR_TO_PACKET_END) ||
13526 		    (dst_reg->type == PTR_TO_PACKET_META &&
13527 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13528 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13529 			find_good_pkt_pointers(this_branch, dst_reg,
13530 					       dst_reg->type, false);
13531 			mark_pkt_end(other_branch, insn->dst_reg, true);
13532 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13533 			    src_reg->type == PTR_TO_PACKET) ||
13534 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13535 			    src_reg->type == PTR_TO_PACKET_META)) {
13536 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13537 			find_good_pkt_pointers(other_branch, src_reg,
13538 					       src_reg->type, true);
13539 			mark_pkt_end(this_branch, insn->src_reg, false);
13540 		} else {
13541 			return false;
13542 		}
13543 		break;
13544 	case BPF_JLT:
13545 		if ((dst_reg->type == PTR_TO_PACKET &&
13546 		     src_reg->type == PTR_TO_PACKET_END) ||
13547 		    (dst_reg->type == PTR_TO_PACKET_META &&
13548 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13549 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13550 			find_good_pkt_pointers(other_branch, dst_reg,
13551 					       dst_reg->type, true);
13552 			mark_pkt_end(this_branch, insn->dst_reg, false);
13553 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13554 			    src_reg->type == PTR_TO_PACKET) ||
13555 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13556 			    src_reg->type == PTR_TO_PACKET_META)) {
13557 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13558 			find_good_pkt_pointers(this_branch, src_reg,
13559 					       src_reg->type, false);
13560 			mark_pkt_end(other_branch, insn->src_reg, true);
13561 		} else {
13562 			return false;
13563 		}
13564 		break;
13565 	case BPF_JGE:
13566 		if ((dst_reg->type == PTR_TO_PACKET &&
13567 		     src_reg->type == PTR_TO_PACKET_END) ||
13568 		    (dst_reg->type == PTR_TO_PACKET_META &&
13569 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13570 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13571 			find_good_pkt_pointers(this_branch, dst_reg,
13572 					       dst_reg->type, true);
13573 			mark_pkt_end(other_branch, insn->dst_reg, false);
13574 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13575 			    src_reg->type == PTR_TO_PACKET) ||
13576 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13577 			    src_reg->type == PTR_TO_PACKET_META)) {
13578 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13579 			find_good_pkt_pointers(other_branch, src_reg,
13580 					       src_reg->type, false);
13581 			mark_pkt_end(this_branch, insn->src_reg, true);
13582 		} else {
13583 			return false;
13584 		}
13585 		break;
13586 	case BPF_JLE:
13587 		if ((dst_reg->type == PTR_TO_PACKET &&
13588 		     src_reg->type == PTR_TO_PACKET_END) ||
13589 		    (dst_reg->type == PTR_TO_PACKET_META &&
13590 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13591 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13592 			find_good_pkt_pointers(other_branch, dst_reg,
13593 					       dst_reg->type, false);
13594 			mark_pkt_end(this_branch, insn->dst_reg, true);
13595 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13596 			    src_reg->type == PTR_TO_PACKET) ||
13597 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13598 			    src_reg->type == PTR_TO_PACKET_META)) {
13599 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13600 			find_good_pkt_pointers(this_branch, src_reg,
13601 					       src_reg->type, true);
13602 			mark_pkt_end(other_branch, insn->src_reg, false);
13603 		} else {
13604 			return false;
13605 		}
13606 		break;
13607 	default:
13608 		return false;
13609 	}
13610 
13611 	return true;
13612 }
13613 
13614 static void find_equal_scalars(struct bpf_verifier_state *vstate,
13615 			       struct bpf_reg_state *known_reg)
13616 {
13617 	struct bpf_func_state *state;
13618 	struct bpf_reg_state *reg;
13619 
13620 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13621 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
13622 			copy_register_state(reg, known_reg);
13623 	}));
13624 }
13625 
13626 static int check_cond_jmp_op(struct bpf_verifier_env *env,
13627 			     struct bpf_insn *insn, int *insn_idx)
13628 {
13629 	struct bpf_verifier_state *this_branch = env->cur_state;
13630 	struct bpf_verifier_state *other_branch;
13631 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
13632 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
13633 	struct bpf_reg_state *eq_branch_regs;
13634 	u8 opcode = BPF_OP(insn->code);
13635 	bool is_jmp32;
13636 	int pred = -1;
13637 	int err;
13638 
13639 	/* Only conditional jumps are expected to reach here. */
13640 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
13641 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
13642 		return -EINVAL;
13643 	}
13644 
13645 	if (BPF_SRC(insn->code) == BPF_X) {
13646 		if (insn->imm != 0) {
13647 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13648 			return -EINVAL;
13649 		}
13650 
13651 		/* check src1 operand */
13652 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13653 		if (err)
13654 			return err;
13655 
13656 		if (is_pointer_value(env, insn->src_reg)) {
13657 			verbose(env, "R%d pointer comparison prohibited\n",
13658 				insn->src_reg);
13659 			return -EACCES;
13660 		}
13661 		src_reg = &regs[insn->src_reg];
13662 	} else {
13663 		if (insn->src_reg != BPF_REG_0) {
13664 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13665 			return -EINVAL;
13666 		}
13667 	}
13668 
13669 	/* check src2 operand */
13670 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13671 	if (err)
13672 		return err;
13673 
13674 	dst_reg = &regs[insn->dst_reg];
13675 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
13676 
13677 	if (BPF_SRC(insn->code) == BPF_K) {
13678 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13679 	} else if (src_reg->type == SCALAR_VALUE &&
13680 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13681 		pred = is_branch_taken(dst_reg,
13682 				       tnum_subreg(src_reg->var_off).value,
13683 				       opcode,
13684 				       is_jmp32);
13685 	} else if (src_reg->type == SCALAR_VALUE &&
13686 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13687 		pred = is_branch_taken(dst_reg,
13688 				       src_reg->var_off.value,
13689 				       opcode,
13690 				       is_jmp32);
13691 	} else if (dst_reg->type == SCALAR_VALUE &&
13692 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
13693 		pred = is_branch_taken(src_reg,
13694 				       tnum_subreg(dst_reg->var_off).value,
13695 				       flip_opcode(opcode),
13696 				       is_jmp32);
13697 	} else if (dst_reg->type == SCALAR_VALUE &&
13698 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
13699 		pred = is_branch_taken(src_reg,
13700 				       dst_reg->var_off.value,
13701 				       flip_opcode(opcode),
13702 				       is_jmp32);
13703 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
13704 		   reg_is_pkt_pointer_any(src_reg) &&
13705 		   !is_jmp32) {
13706 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
13707 	}
13708 
13709 	if (pred >= 0) {
13710 		/* If we get here with a dst_reg pointer type it is because
13711 		 * above is_branch_taken() special cased the 0 comparison.
13712 		 */
13713 		if (!__is_pointer_value(false, dst_reg))
13714 			err = mark_chain_precision(env, insn->dst_reg);
13715 		if (BPF_SRC(insn->code) == BPF_X && !err &&
13716 		    !__is_pointer_value(false, src_reg))
13717 			err = mark_chain_precision(env, insn->src_reg);
13718 		if (err)
13719 			return err;
13720 	}
13721 
13722 	if (pred == 1) {
13723 		/* Only follow the goto, ignore fall-through. If needed, push
13724 		 * the fall-through branch for simulation under speculative
13725 		 * execution.
13726 		 */
13727 		if (!env->bypass_spec_v1 &&
13728 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
13729 					       *insn_idx))
13730 			return -EFAULT;
13731 		*insn_idx += insn->off;
13732 		return 0;
13733 	} else if (pred == 0) {
13734 		/* Only follow the fall-through branch, since that's where the
13735 		 * program will go. If needed, push the goto branch for
13736 		 * simulation under speculative execution.
13737 		 */
13738 		if (!env->bypass_spec_v1 &&
13739 		    !sanitize_speculative_path(env, insn,
13740 					       *insn_idx + insn->off + 1,
13741 					       *insn_idx))
13742 			return -EFAULT;
13743 		return 0;
13744 	}
13745 
13746 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13747 				  false);
13748 	if (!other_branch)
13749 		return -EFAULT;
13750 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
13751 
13752 	/* detect if we are comparing against a constant value so we can adjust
13753 	 * our min/max values for our dst register.
13754 	 * this is only legit if both are scalars (or pointers to the same
13755 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13756 	 * because otherwise the different base pointers mean the offsets aren't
13757 	 * comparable.
13758 	 */
13759 	if (BPF_SRC(insn->code) == BPF_X) {
13760 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
13761 
13762 		if (dst_reg->type == SCALAR_VALUE &&
13763 		    src_reg->type == SCALAR_VALUE) {
13764 			if (tnum_is_const(src_reg->var_off) ||
13765 			    (is_jmp32 &&
13766 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
13767 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
13768 						dst_reg,
13769 						src_reg->var_off.value,
13770 						tnum_subreg(src_reg->var_off).value,
13771 						opcode, is_jmp32);
13772 			else if (tnum_is_const(dst_reg->var_off) ||
13773 				 (is_jmp32 &&
13774 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
13775 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
13776 						    src_reg,
13777 						    dst_reg->var_off.value,
13778 						    tnum_subreg(dst_reg->var_off).value,
13779 						    opcode, is_jmp32);
13780 			else if (!is_jmp32 &&
13781 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
13782 				/* Comparing for equality, we can combine knowledge */
13783 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
13784 						    &other_branch_regs[insn->dst_reg],
13785 						    src_reg, dst_reg, opcode);
13786 			if (src_reg->id &&
13787 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
13788 				find_equal_scalars(this_branch, src_reg);
13789 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13790 			}
13791 
13792 		}
13793 	} else if (dst_reg->type == SCALAR_VALUE) {
13794 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
13795 					dst_reg, insn->imm, (u32)insn->imm,
13796 					opcode, is_jmp32);
13797 	}
13798 
13799 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13800 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
13801 		find_equal_scalars(this_branch, dst_reg);
13802 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13803 	}
13804 
13805 	/* if one pointer register is compared to another pointer
13806 	 * register check if PTR_MAYBE_NULL could be lifted.
13807 	 * E.g. register A - maybe null
13808 	 *      register B - not null
13809 	 * for JNE A, B, ... - A is not null in the false branch;
13810 	 * for JEQ A, B, ... - A is not null in the true branch.
13811 	 *
13812 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
13813 	 * not need to be null checked by the BPF program, i.e.,
13814 	 * could be null even without PTR_MAYBE_NULL marking, so
13815 	 * only propagate nullness when neither reg is that type.
13816 	 */
13817 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13818 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
13819 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13820 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
13821 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
13822 		eq_branch_regs = NULL;
13823 		switch (opcode) {
13824 		case BPF_JEQ:
13825 			eq_branch_regs = other_branch_regs;
13826 			break;
13827 		case BPF_JNE:
13828 			eq_branch_regs = regs;
13829 			break;
13830 		default:
13831 			/* do nothing */
13832 			break;
13833 		}
13834 		if (eq_branch_regs) {
13835 			if (type_may_be_null(src_reg->type))
13836 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13837 			else
13838 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13839 		}
13840 	}
13841 
13842 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13843 	 * NOTE: these optimizations below are related with pointer comparison
13844 	 *       which will never be JMP32.
13845 	 */
13846 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
13847 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
13848 	    type_may_be_null(dst_reg->type)) {
13849 		/* Mark all identical registers in each branch as either
13850 		 * safe or unknown depending R == 0 or R != 0 conditional.
13851 		 */
13852 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13853 				      opcode == BPF_JNE);
13854 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13855 				      opcode == BPF_JEQ);
13856 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13857 					   this_branch, other_branch) &&
13858 		   is_pointer_value(env, insn->dst_reg)) {
13859 		verbose(env, "R%d pointer comparison prohibited\n",
13860 			insn->dst_reg);
13861 		return -EACCES;
13862 	}
13863 	if (env->log.level & BPF_LOG_LEVEL)
13864 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
13865 	return 0;
13866 }
13867 
13868 /* verify BPF_LD_IMM64 instruction */
13869 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
13870 {
13871 	struct bpf_insn_aux_data *aux = cur_aux(env);
13872 	struct bpf_reg_state *regs = cur_regs(env);
13873 	struct bpf_reg_state *dst_reg;
13874 	struct bpf_map *map;
13875 	int err;
13876 
13877 	if (BPF_SIZE(insn->code) != BPF_DW) {
13878 		verbose(env, "invalid BPF_LD_IMM insn\n");
13879 		return -EINVAL;
13880 	}
13881 	if (insn->off != 0) {
13882 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
13883 		return -EINVAL;
13884 	}
13885 
13886 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
13887 	if (err)
13888 		return err;
13889 
13890 	dst_reg = &regs[insn->dst_reg];
13891 	if (insn->src_reg == 0) {
13892 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13893 
13894 		dst_reg->type = SCALAR_VALUE;
13895 		__mark_reg_known(&regs[insn->dst_reg], imm);
13896 		return 0;
13897 	}
13898 
13899 	/* All special src_reg cases are listed below. From this point onwards
13900 	 * we either succeed and assign a corresponding dst_reg->type after
13901 	 * zeroing the offset, or fail and reject the program.
13902 	 */
13903 	mark_reg_known_zero(env, regs, insn->dst_reg);
13904 
13905 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
13906 		dst_reg->type = aux->btf_var.reg_type;
13907 		switch (base_type(dst_reg->type)) {
13908 		case PTR_TO_MEM:
13909 			dst_reg->mem_size = aux->btf_var.mem_size;
13910 			break;
13911 		case PTR_TO_BTF_ID:
13912 			dst_reg->btf = aux->btf_var.btf;
13913 			dst_reg->btf_id = aux->btf_var.btf_id;
13914 			break;
13915 		default:
13916 			verbose(env, "bpf verifier is misconfigured\n");
13917 			return -EFAULT;
13918 		}
13919 		return 0;
13920 	}
13921 
13922 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
13923 		struct bpf_prog_aux *aux = env->prog->aux;
13924 		u32 subprogno = find_subprog(env,
13925 					     env->insn_idx + insn->imm + 1);
13926 
13927 		if (!aux->func_info) {
13928 			verbose(env, "missing btf func_info\n");
13929 			return -EINVAL;
13930 		}
13931 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13932 			verbose(env, "callback function not static\n");
13933 			return -EINVAL;
13934 		}
13935 
13936 		dst_reg->type = PTR_TO_FUNC;
13937 		dst_reg->subprogno = subprogno;
13938 		return 0;
13939 	}
13940 
13941 	map = env->used_maps[aux->map_index];
13942 	dst_reg->map_ptr = map;
13943 
13944 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13945 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
13946 		dst_reg->type = PTR_TO_MAP_VALUE;
13947 		dst_reg->off = aux->map_off;
13948 		WARN_ON_ONCE(map->max_entries != 1);
13949 		/* We want reg->id to be same (0) as map_value is not distinct */
13950 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13951 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
13952 		dst_reg->type = CONST_PTR_TO_MAP;
13953 	} else {
13954 		verbose(env, "bpf verifier is misconfigured\n");
13955 		return -EINVAL;
13956 	}
13957 
13958 	return 0;
13959 }
13960 
13961 static bool may_access_skb(enum bpf_prog_type type)
13962 {
13963 	switch (type) {
13964 	case BPF_PROG_TYPE_SOCKET_FILTER:
13965 	case BPF_PROG_TYPE_SCHED_CLS:
13966 	case BPF_PROG_TYPE_SCHED_ACT:
13967 		return true;
13968 	default:
13969 		return false;
13970 	}
13971 }
13972 
13973 /* verify safety of LD_ABS|LD_IND instructions:
13974  * - they can only appear in the programs where ctx == skb
13975  * - since they are wrappers of function calls, they scratch R1-R5 registers,
13976  *   preserve R6-R9, and store return value into R0
13977  *
13978  * Implicit input:
13979  *   ctx == skb == R6 == CTX
13980  *
13981  * Explicit input:
13982  *   SRC == any register
13983  *   IMM == 32-bit immediate
13984  *
13985  * Output:
13986  *   R0 - 8/16/32-bit skb data converted to cpu endianness
13987  */
13988 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
13989 {
13990 	struct bpf_reg_state *regs = cur_regs(env);
13991 	static const int ctx_reg = BPF_REG_6;
13992 	u8 mode = BPF_MODE(insn->code);
13993 	int i, err;
13994 
13995 	if (!may_access_skb(resolve_prog_type(env->prog))) {
13996 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
13997 		return -EINVAL;
13998 	}
13999 
14000 	if (!env->ops->gen_ld_abs) {
14001 		verbose(env, "bpf verifier is misconfigured\n");
14002 		return -EINVAL;
14003 	}
14004 
14005 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14006 	    BPF_SIZE(insn->code) == BPF_DW ||
14007 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14008 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14009 		return -EINVAL;
14010 	}
14011 
14012 	/* check whether implicit source operand (register R6) is readable */
14013 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14014 	if (err)
14015 		return err;
14016 
14017 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14018 	 * gen_ld_abs() may terminate the program at runtime, leading to
14019 	 * reference leak.
14020 	 */
14021 	err = check_reference_leak(env);
14022 	if (err) {
14023 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14024 		return err;
14025 	}
14026 
14027 	if (env->cur_state->active_lock.ptr) {
14028 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14029 		return -EINVAL;
14030 	}
14031 
14032 	if (env->cur_state->active_rcu_lock) {
14033 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14034 		return -EINVAL;
14035 	}
14036 
14037 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14038 		verbose(env,
14039 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14040 		return -EINVAL;
14041 	}
14042 
14043 	if (mode == BPF_IND) {
14044 		/* check explicit source operand */
14045 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14046 		if (err)
14047 			return err;
14048 	}
14049 
14050 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14051 	if (err < 0)
14052 		return err;
14053 
14054 	/* reset caller saved regs to unreadable */
14055 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14056 		mark_reg_not_init(env, regs, caller_saved[i]);
14057 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14058 	}
14059 
14060 	/* mark destination R0 register as readable, since it contains
14061 	 * the value fetched from the packet.
14062 	 * Already marked as written above.
14063 	 */
14064 	mark_reg_unknown(env, regs, BPF_REG_0);
14065 	/* ld_abs load up to 32-bit skb data. */
14066 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14067 	return 0;
14068 }
14069 
14070 static int check_return_code(struct bpf_verifier_env *env)
14071 {
14072 	struct tnum enforce_attach_type_range = tnum_unknown;
14073 	const struct bpf_prog *prog = env->prog;
14074 	struct bpf_reg_state *reg;
14075 	struct tnum range = tnum_range(0, 1);
14076 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14077 	int err;
14078 	struct bpf_func_state *frame = env->cur_state->frame[0];
14079 	const bool is_subprog = frame->subprogno;
14080 
14081 	/* LSM and struct_ops func-ptr's return type could be "void" */
14082 	if (!is_subprog) {
14083 		switch (prog_type) {
14084 		case BPF_PROG_TYPE_LSM:
14085 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14086 				/* See below, can be 0 or 0-1 depending on hook. */
14087 				break;
14088 			fallthrough;
14089 		case BPF_PROG_TYPE_STRUCT_OPS:
14090 			if (!prog->aux->attach_func_proto->type)
14091 				return 0;
14092 			break;
14093 		default:
14094 			break;
14095 		}
14096 	}
14097 
14098 	/* eBPF calling convention is such that R0 is used
14099 	 * to return the value from eBPF program.
14100 	 * Make sure that it's readable at this time
14101 	 * of bpf_exit, which means that program wrote
14102 	 * something into it earlier
14103 	 */
14104 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14105 	if (err)
14106 		return err;
14107 
14108 	if (is_pointer_value(env, BPF_REG_0)) {
14109 		verbose(env, "R0 leaks addr as return value\n");
14110 		return -EACCES;
14111 	}
14112 
14113 	reg = cur_regs(env) + BPF_REG_0;
14114 
14115 	if (frame->in_async_callback_fn) {
14116 		/* enforce return zero from async callbacks like timer */
14117 		if (reg->type != SCALAR_VALUE) {
14118 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14119 				reg_type_str(env, reg->type));
14120 			return -EINVAL;
14121 		}
14122 
14123 		if (!tnum_in(tnum_const(0), reg->var_off)) {
14124 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14125 			return -EINVAL;
14126 		}
14127 		return 0;
14128 	}
14129 
14130 	if (is_subprog) {
14131 		if (reg->type != SCALAR_VALUE) {
14132 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14133 				reg_type_str(env, reg->type));
14134 			return -EINVAL;
14135 		}
14136 		return 0;
14137 	}
14138 
14139 	switch (prog_type) {
14140 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14141 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14142 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14143 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14144 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14145 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14146 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14147 			range = tnum_range(1, 1);
14148 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14149 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14150 			range = tnum_range(0, 3);
14151 		break;
14152 	case BPF_PROG_TYPE_CGROUP_SKB:
14153 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14154 			range = tnum_range(0, 3);
14155 			enforce_attach_type_range = tnum_range(2, 3);
14156 		}
14157 		break;
14158 	case BPF_PROG_TYPE_CGROUP_SOCK:
14159 	case BPF_PROG_TYPE_SOCK_OPS:
14160 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14161 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14162 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14163 		break;
14164 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14165 		if (!env->prog->aux->attach_btf_id)
14166 			return 0;
14167 		range = tnum_const(0);
14168 		break;
14169 	case BPF_PROG_TYPE_TRACING:
14170 		switch (env->prog->expected_attach_type) {
14171 		case BPF_TRACE_FENTRY:
14172 		case BPF_TRACE_FEXIT:
14173 			range = tnum_const(0);
14174 			break;
14175 		case BPF_TRACE_RAW_TP:
14176 		case BPF_MODIFY_RETURN:
14177 			return 0;
14178 		case BPF_TRACE_ITER:
14179 			break;
14180 		default:
14181 			return -ENOTSUPP;
14182 		}
14183 		break;
14184 	case BPF_PROG_TYPE_SK_LOOKUP:
14185 		range = tnum_range(SK_DROP, SK_PASS);
14186 		break;
14187 
14188 	case BPF_PROG_TYPE_LSM:
14189 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14190 			/* Regular BPF_PROG_TYPE_LSM programs can return
14191 			 * any value.
14192 			 */
14193 			return 0;
14194 		}
14195 		if (!env->prog->aux->attach_func_proto->type) {
14196 			/* Make sure programs that attach to void
14197 			 * hooks don't try to modify return value.
14198 			 */
14199 			range = tnum_range(1, 1);
14200 		}
14201 		break;
14202 
14203 	case BPF_PROG_TYPE_NETFILTER:
14204 		range = tnum_range(NF_DROP, NF_ACCEPT);
14205 		break;
14206 	case BPF_PROG_TYPE_EXT:
14207 		/* freplace program can return anything as its return value
14208 		 * depends on the to-be-replaced kernel func or bpf program.
14209 		 */
14210 	default:
14211 		return 0;
14212 	}
14213 
14214 	if (reg->type != SCALAR_VALUE) {
14215 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14216 			reg_type_str(env, reg->type));
14217 		return -EINVAL;
14218 	}
14219 
14220 	if (!tnum_in(range, reg->var_off)) {
14221 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14222 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14223 		    prog_type == BPF_PROG_TYPE_LSM &&
14224 		    !prog->aux->attach_func_proto->type)
14225 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14226 		return -EINVAL;
14227 	}
14228 
14229 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14230 	    tnum_in(enforce_attach_type_range, reg->var_off))
14231 		env->prog->enforce_expected_attach_type = 1;
14232 	return 0;
14233 }
14234 
14235 /* non-recursive DFS pseudo code
14236  * 1  procedure DFS-iterative(G,v):
14237  * 2      label v as discovered
14238  * 3      let S be a stack
14239  * 4      S.push(v)
14240  * 5      while S is not empty
14241  * 6            t <- S.peek()
14242  * 7            if t is what we're looking for:
14243  * 8                return t
14244  * 9            for all edges e in G.adjacentEdges(t) do
14245  * 10               if edge e is already labelled
14246  * 11                   continue with the next edge
14247  * 12               w <- G.adjacentVertex(t,e)
14248  * 13               if vertex w is not discovered and not explored
14249  * 14                   label e as tree-edge
14250  * 15                   label w as discovered
14251  * 16                   S.push(w)
14252  * 17                   continue at 5
14253  * 18               else if vertex w is discovered
14254  * 19                   label e as back-edge
14255  * 20               else
14256  * 21                   // vertex w is explored
14257  * 22                   label e as forward- or cross-edge
14258  * 23           label t as explored
14259  * 24           S.pop()
14260  *
14261  * convention:
14262  * 0x10 - discovered
14263  * 0x11 - discovered and fall-through edge labelled
14264  * 0x12 - discovered and fall-through and branch edges labelled
14265  * 0x20 - explored
14266  */
14267 
14268 enum {
14269 	DISCOVERED = 0x10,
14270 	EXPLORED = 0x20,
14271 	FALLTHROUGH = 1,
14272 	BRANCH = 2,
14273 };
14274 
14275 static u32 state_htab_size(struct bpf_verifier_env *env)
14276 {
14277 	return env->prog->len;
14278 }
14279 
14280 static struct bpf_verifier_state_list **explored_state(
14281 					struct bpf_verifier_env *env,
14282 					int idx)
14283 {
14284 	struct bpf_verifier_state *cur = env->cur_state;
14285 	struct bpf_func_state *state = cur->frame[cur->curframe];
14286 
14287 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14288 }
14289 
14290 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14291 {
14292 	env->insn_aux_data[idx].prune_point = true;
14293 }
14294 
14295 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14296 {
14297 	return env->insn_aux_data[insn_idx].prune_point;
14298 }
14299 
14300 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14301 {
14302 	env->insn_aux_data[idx].force_checkpoint = true;
14303 }
14304 
14305 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14306 {
14307 	return env->insn_aux_data[insn_idx].force_checkpoint;
14308 }
14309 
14310 
14311 enum {
14312 	DONE_EXPLORING = 0,
14313 	KEEP_EXPLORING = 1,
14314 };
14315 
14316 /* t, w, e - match pseudo-code above:
14317  * t - index of current instruction
14318  * w - next instruction
14319  * e - edge
14320  */
14321 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14322 		     bool loop_ok)
14323 {
14324 	int *insn_stack = env->cfg.insn_stack;
14325 	int *insn_state = env->cfg.insn_state;
14326 
14327 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14328 		return DONE_EXPLORING;
14329 
14330 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14331 		return DONE_EXPLORING;
14332 
14333 	if (w < 0 || w >= env->prog->len) {
14334 		verbose_linfo(env, t, "%d: ", t);
14335 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14336 		return -EINVAL;
14337 	}
14338 
14339 	if (e == BRANCH) {
14340 		/* mark branch target for state pruning */
14341 		mark_prune_point(env, w);
14342 		mark_jmp_point(env, w);
14343 	}
14344 
14345 	if (insn_state[w] == 0) {
14346 		/* tree-edge */
14347 		insn_state[t] = DISCOVERED | e;
14348 		insn_state[w] = DISCOVERED;
14349 		if (env->cfg.cur_stack >= env->prog->len)
14350 			return -E2BIG;
14351 		insn_stack[env->cfg.cur_stack++] = w;
14352 		return KEEP_EXPLORING;
14353 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14354 		if (loop_ok && env->bpf_capable)
14355 			return DONE_EXPLORING;
14356 		verbose_linfo(env, t, "%d: ", t);
14357 		verbose_linfo(env, w, "%d: ", w);
14358 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14359 		return -EINVAL;
14360 	} else if (insn_state[w] == EXPLORED) {
14361 		/* forward- or cross-edge */
14362 		insn_state[t] = DISCOVERED | e;
14363 	} else {
14364 		verbose(env, "insn state internal bug\n");
14365 		return -EFAULT;
14366 	}
14367 	return DONE_EXPLORING;
14368 }
14369 
14370 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14371 				struct bpf_verifier_env *env,
14372 				bool visit_callee)
14373 {
14374 	int ret;
14375 
14376 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14377 	if (ret)
14378 		return ret;
14379 
14380 	mark_prune_point(env, t + 1);
14381 	/* when we exit from subprog, we need to record non-linear history */
14382 	mark_jmp_point(env, t + 1);
14383 
14384 	if (visit_callee) {
14385 		mark_prune_point(env, t);
14386 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14387 				/* It's ok to allow recursion from CFG point of
14388 				 * view. __check_func_call() will do the actual
14389 				 * check.
14390 				 */
14391 				bpf_pseudo_func(insns + t));
14392 	}
14393 	return ret;
14394 }
14395 
14396 /* Visits the instruction at index t and returns one of the following:
14397  *  < 0 - an error occurred
14398  *  DONE_EXPLORING - the instruction was fully explored
14399  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14400  */
14401 static int visit_insn(int t, struct bpf_verifier_env *env)
14402 {
14403 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14404 	int ret;
14405 
14406 	if (bpf_pseudo_func(insn))
14407 		return visit_func_call_insn(t, insns, env, true);
14408 
14409 	/* All non-branch instructions have a single fall-through edge. */
14410 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14411 	    BPF_CLASS(insn->code) != BPF_JMP32)
14412 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
14413 
14414 	switch (BPF_OP(insn->code)) {
14415 	case BPF_EXIT:
14416 		return DONE_EXPLORING;
14417 
14418 	case BPF_CALL:
14419 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14420 			/* Mark this call insn as a prune point to trigger
14421 			 * is_state_visited() check before call itself is
14422 			 * processed by __check_func_call(). Otherwise new
14423 			 * async state will be pushed for further exploration.
14424 			 */
14425 			mark_prune_point(env, t);
14426 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14427 			struct bpf_kfunc_call_arg_meta meta;
14428 
14429 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14430 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14431 				mark_prune_point(env, t);
14432 				/* Checking and saving state checkpoints at iter_next() call
14433 				 * is crucial for fast convergence of open-coded iterator loop
14434 				 * logic, so we need to force it. If we don't do that,
14435 				 * is_state_visited() might skip saving a checkpoint, causing
14436 				 * unnecessarily long sequence of not checkpointed
14437 				 * instructions and jumps, leading to exhaustion of jump
14438 				 * history buffer, and potentially other undesired outcomes.
14439 				 * It is expected that with correct open-coded iterators
14440 				 * convergence will happen quickly, so we don't run a risk of
14441 				 * exhausting memory.
14442 				 */
14443 				mark_force_checkpoint(env, t);
14444 			}
14445 		}
14446 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14447 
14448 	case BPF_JA:
14449 		if (BPF_SRC(insn->code) != BPF_K)
14450 			return -EINVAL;
14451 
14452 		/* unconditional jump with single edge */
14453 		ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
14454 				true);
14455 		if (ret)
14456 			return ret;
14457 
14458 		mark_prune_point(env, t + insn->off + 1);
14459 		mark_jmp_point(env, t + insn->off + 1);
14460 
14461 		return ret;
14462 
14463 	default:
14464 		/* conditional jump with two edges */
14465 		mark_prune_point(env, t);
14466 
14467 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14468 		if (ret)
14469 			return ret;
14470 
14471 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14472 	}
14473 }
14474 
14475 /* non-recursive depth-first-search to detect loops in BPF program
14476  * loop == back-edge in directed graph
14477  */
14478 static int check_cfg(struct bpf_verifier_env *env)
14479 {
14480 	int insn_cnt = env->prog->len;
14481 	int *insn_stack, *insn_state;
14482 	int ret = 0;
14483 	int i;
14484 
14485 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14486 	if (!insn_state)
14487 		return -ENOMEM;
14488 
14489 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14490 	if (!insn_stack) {
14491 		kvfree(insn_state);
14492 		return -ENOMEM;
14493 	}
14494 
14495 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14496 	insn_stack[0] = 0; /* 0 is the first instruction */
14497 	env->cfg.cur_stack = 1;
14498 
14499 	while (env->cfg.cur_stack > 0) {
14500 		int t = insn_stack[env->cfg.cur_stack - 1];
14501 
14502 		ret = visit_insn(t, env);
14503 		switch (ret) {
14504 		case DONE_EXPLORING:
14505 			insn_state[t] = EXPLORED;
14506 			env->cfg.cur_stack--;
14507 			break;
14508 		case KEEP_EXPLORING:
14509 			break;
14510 		default:
14511 			if (ret > 0) {
14512 				verbose(env, "visit_insn internal bug\n");
14513 				ret = -EFAULT;
14514 			}
14515 			goto err_free;
14516 		}
14517 	}
14518 
14519 	if (env->cfg.cur_stack < 0) {
14520 		verbose(env, "pop stack internal bug\n");
14521 		ret = -EFAULT;
14522 		goto err_free;
14523 	}
14524 
14525 	for (i = 0; i < insn_cnt; i++) {
14526 		if (insn_state[i] != EXPLORED) {
14527 			verbose(env, "unreachable insn %d\n", i);
14528 			ret = -EINVAL;
14529 			goto err_free;
14530 		}
14531 	}
14532 	ret = 0; /* cfg looks good */
14533 
14534 err_free:
14535 	kvfree(insn_state);
14536 	kvfree(insn_stack);
14537 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14538 	return ret;
14539 }
14540 
14541 static int check_abnormal_return(struct bpf_verifier_env *env)
14542 {
14543 	int i;
14544 
14545 	for (i = 1; i < env->subprog_cnt; i++) {
14546 		if (env->subprog_info[i].has_ld_abs) {
14547 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14548 			return -EINVAL;
14549 		}
14550 		if (env->subprog_info[i].has_tail_call) {
14551 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14552 			return -EINVAL;
14553 		}
14554 	}
14555 	return 0;
14556 }
14557 
14558 /* The minimum supported BTF func info size */
14559 #define MIN_BPF_FUNCINFO_SIZE	8
14560 #define MAX_FUNCINFO_REC_SIZE	252
14561 
14562 static int check_btf_func(struct bpf_verifier_env *env,
14563 			  const union bpf_attr *attr,
14564 			  bpfptr_t uattr)
14565 {
14566 	const struct btf_type *type, *func_proto, *ret_type;
14567 	u32 i, nfuncs, urec_size, min_size;
14568 	u32 krec_size = sizeof(struct bpf_func_info);
14569 	struct bpf_func_info *krecord;
14570 	struct bpf_func_info_aux *info_aux = NULL;
14571 	struct bpf_prog *prog;
14572 	const struct btf *btf;
14573 	bpfptr_t urecord;
14574 	u32 prev_offset = 0;
14575 	bool scalar_return;
14576 	int ret = -ENOMEM;
14577 
14578 	nfuncs = attr->func_info_cnt;
14579 	if (!nfuncs) {
14580 		if (check_abnormal_return(env))
14581 			return -EINVAL;
14582 		return 0;
14583 	}
14584 
14585 	if (nfuncs != env->subprog_cnt) {
14586 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14587 		return -EINVAL;
14588 	}
14589 
14590 	urec_size = attr->func_info_rec_size;
14591 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14592 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
14593 	    urec_size % sizeof(u32)) {
14594 		verbose(env, "invalid func info rec size %u\n", urec_size);
14595 		return -EINVAL;
14596 	}
14597 
14598 	prog = env->prog;
14599 	btf = prog->aux->btf;
14600 
14601 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
14602 	min_size = min_t(u32, krec_size, urec_size);
14603 
14604 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
14605 	if (!krecord)
14606 		return -ENOMEM;
14607 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14608 	if (!info_aux)
14609 		goto err_free;
14610 
14611 	for (i = 0; i < nfuncs; i++) {
14612 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14613 		if (ret) {
14614 			if (ret == -E2BIG) {
14615 				verbose(env, "nonzero tailing record in func info");
14616 				/* set the size kernel expects so loader can zero
14617 				 * out the rest of the record.
14618 				 */
14619 				if (copy_to_bpfptr_offset(uattr,
14620 							  offsetof(union bpf_attr, func_info_rec_size),
14621 							  &min_size, sizeof(min_size)))
14622 					ret = -EFAULT;
14623 			}
14624 			goto err_free;
14625 		}
14626 
14627 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
14628 			ret = -EFAULT;
14629 			goto err_free;
14630 		}
14631 
14632 		/* check insn_off */
14633 		ret = -EINVAL;
14634 		if (i == 0) {
14635 			if (krecord[i].insn_off) {
14636 				verbose(env,
14637 					"nonzero insn_off %u for the first func info record",
14638 					krecord[i].insn_off);
14639 				goto err_free;
14640 			}
14641 		} else if (krecord[i].insn_off <= prev_offset) {
14642 			verbose(env,
14643 				"same or smaller insn offset (%u) than previous func info record (%u)",
14644 				krecord[i].insn_off, prev_offset);
14645 			goto err_free;
14646 		}
14647 
14648 		if (env->subprog_info[i].start != krecord[i].insn_off) {
14649 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
14650 			goto err_free;
14651 		}
14652 
14653 		/* check type_id */
14654 		type = btf_type_by_id(btf, krecord[i].type_id);
14655 		if (!type || !btf_type_is_func(type)) {
14656 			verbose(env, "invalid type id %d in func info",
14657 				krecord[i].type_id);
14658 			goto err_free;
14659 		}
14660 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
14661 
14662 		func_proto = btf_type_by_id(btf, type->type);
14663 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14664 			/* btf_func_check() already verified it during BTF load */
14665 			goto err_free;
14666 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14667 		scalar_return =
14668 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
14669 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14670 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14671 			goto err_free;
14672 		}
14673 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14674 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14675 			goto err_free;
14676 		}
14677 
14678 		prev_offset = krecord[i].insn_off;
14679 		bpfptr_add(&urecord, urec_size);
14680 	}
14681 
14682 	prog->aux->func_info = krecord;
14683 	prog->aux->func_info_cnt = nfuncs;
14684 	prog->aux->func_info_aux = info_aux;
14685 	return 0;
14686 
14687 err_free:
14688 	kvfree(krecord);
14689 	kfree(info_aux);
14690 	return ret;
14691 }
14692 
14693 static void adjust_btf_func(struct bpf_verifier_env *env)
14694 {
14695 	struct bpf_prog_aux *aux = env->prog->aux;
14696 	int i;
14697 
14698 	if (!aux->func_info)
14699 		return;
14700 
14701 	for (i = 0; i < env->subprog_cnt; i++)
14702 		aux->func_info[i].insn_off = env->subprog_info[i].start;
14703 }
14704 
14705 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
14706 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
14707 
14708 static int check_btf_line(struct bpf_verifier_env *env,
14709 			  const union bpf_attr *attr,
14710 			  bpfptr_t uattr)
14711 {
14712 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14713 	struct bpf_subprog_info *sub;
14714 	struct bpf_line_info *linfo;
14715 	struct bpf_prog *prog;
14716 	const struct btf *btf;
14717 	bpfptr_t ulinfo;
14718 	int err;
14719 
14720 	nr_linfo = attr->line_info_cnt;
14721 	if (!nr_linfo)
14722 		return 0;
14723 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14724 		return -EINVAL;
14725 
14726 	rec_size = attr->line_info_rec_size;
14727 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14728 	    rec_size > MAX_LINEINFO_REC_SIZE ||
14729 	    rec_size & (sizeof(u32) - 1))
14730 		return -EINVAL;
14731 
14732 	/* Need to zero it in case the userspace may
14733 	 * pass in a smaller bpf_line_info object.
14734 	 */
14735 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14736 			 GFP_KERNEL | __GFP_NOWARN);
14737 	if (!linfo)
14738 		return -ENOMEM;
14739 
14740 	prog = env->prog;
14741 	btf = prog->aux->btf;
14742 
14743 	s = 0;
14744 	sub = env->subprog_info;
14745 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
14746 	expected_size = sizeof(struct bpf_line_info);
14747 	ncopy = min_t(u32, expected_size, rec_size);
14748 	for (i = 0; i < nr_linfo; i++) {
14749 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14750 		if (err) {
14751 			if (err == -E2BIG) {
14752 				verbose(env, "nonzero tailing record in line_info");
14753 				if (copy_to_bpfptr_offset(uattr,
14754 							  offsetof(union bpf_attr, line_info_rec_size),
14755 							  &expected_size, sizeof(expected_size)))
14756 					err = -EFAULT;
14757 			}
14758 			goto err_free;
14759 		}
14760 
14761 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
14762 			err = -EFAULT;
14763 			goto err_free;
14764 		}
14765 
14766 		/*
14767 		 * Check insn_off to ensure
14768 		 * 1) strictly increasing AND
14769 		 * 2) bounded by prog->len
14770 		 *
14771 		 * The linfo[0].insn_off == 0 check logically falls into
14772 		 * the later "missing bpf_line_info for func..." case
14773 		 * because the first linfo[0].insn_off must be the
14774 		 * first sub also and the first sub must have
14775 		 * subprog_info[0].start == 0.
14776 		 */
14777 		if ((i && linfo[i].insn_off <= prev_offset) ||
14778 		    linfo[i].insn_off >= prog->len) {
14779 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14780 				i, linfo[i].insn_off, prev_offset,
14781 				prog->len);
14782 			err = -EINVAL;
14783 			goto err_free;
14784 		}
14785 
14786 		if (!prog->insnsi[linfo[i].insn_off].code) {
14787 			verbose(env,
14788 				"Invalid insn code at line_info[%u].insn_off\n",
14789 				i);
14790 			err = -EINVAL;
14791 			goto err_free;
14792 		}
14793 
14794 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14795 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
14796 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14797 			err = -EINVAL;
14798 			goto err_free;
14799 		}
14800 
14801 		if (s != env->subprog_cnt) {
14802 			if (linfo[i].insn_off == sub[s].start) {
14803 				sub[s].linfo_idx = i;
14804 				s++;
14805 			} else if (sub[s].start < linfo[i].insn_off) {
14806 				verbose(env, "missing bpf_line_info for func#%u\n", s);
14807 				err = -EINVAL;
14808 				goto err_free;
14809 			}
14810 		}
14811 
14812 		prev_offset = linfo[i].insn_off;
14813 		bpfptr_add(&ulinfo, rec_size);
14814 	}
14815 
14816 	if (s != env->subprog_cnt) {
14817 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14818 			env->subprog_cnt - s, s);
14819 		err = -EINVAL;
14820 		goto err_free;
14821 	}
14822 
14823 	prog->aux->linfo = linfo;
14824 	prog->aux->nr_linfo = nr_linfo;
14825 
14826 	return 0;
14827 
14828 err_free:
14829 	kvfree(linfo);
14830 	return err;
14831 }
14832 
14833 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
14834 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
14835 
14836 static int check_core_relo(struct bpf_verifier_env *env,
14837 			   const union bpf_attr *attr,
14838 			   bpfptr_t uattr)
14839 {
14840 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14841 	struct bpf_core_relo core_relo = {};
14842 	struct bpf_prog *prog = env->prog;
14843 	const struct btf *btf = prog->aux->btf;
14844 	struct bpf_core_ctx ctx = {
14845 		.log = &env->log,
14846 		.btf = btf,
14847 	};
14848 	bpfptr_t u_core_relo;
14849 	int err;
14850 
14851 	nr_core_relo = attr->core_relo_cnt;
14852 	if (!nr_core_relo)
14853 		return 0;
14854 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14855 		return -EINVAL;
14856 
14857 	rec_size = attr->core_relo_rec_size;
14858 	if (rec_size < MIN_CORE_RELO_SIZE ||
14859 	    rec_size > MAX_CORE_RELO_SIZE ||
14860 	    rec_size % sizeof(u32))
14861 		return -EINVAL;
14862 
14863 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14864 	expected_size = sizeof(struct bpf_core_relo);
14865 	ncopy = min_t(u32, expected_size, rec_size);
14866 
14867 	/* Unlike func_info and line_info, copy and apply each CO-RE
14868 	 * relocation record one at a time.
14869 	 */
14870 	for (i = 0; i < nr_core_relo; i++) {
14871 		/* future proofing when sizeof(bpf_core_relo) changes */
14872 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14873 		if (err) {
14874 			if (err == -E2BIG) {
14875 				verbose(env, "nonzero tailing record in core_relo");
14876 				if (copy_to_bpfptr_offset(uattr,
14877 							  offsetof(union bpf_attr, core_relo_rec_size),
14878 							  &expected_size, sizeof(expected_size)))
14879 					err = -EFAULT;
14880 			}
14881 			break;
14882 		}
14883 
14884 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14885 			err = -EFAULT;
14886 			break;
14887 		}
14888 
14889 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14890 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14891 				i, core_relo.insn_off, prog->len);
14892 			err = -EINVAL;
14893 			break;
14894 		}
14895 
14896 		err = bpf_core_apply(&ctx, &core_relo, i,
14897 				     &prog->insnsi[core_relo.insn_off / 8]);
14898 		if (err)
14899 			break;
14900 		bpfptr_add(&u_core_relo, rec_size);
14901 	}
14902 	return err;
14903 }
14904 
14905 static int check_btf_info(struct bpf_verifier_env *env,
14906 			  const union bpf_attr *attr,
14907 			  bpfptr_t uattr)
14908 {
14909 	struct btf *btf;
14910 	int err;
14911 
14912 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
14913 		if (check_abnormal_return(env))
14914 			return -EINVAL;
14915 		return 0;
14916 	}
14917 
14918 	btf = btf_get_by_fd(attr->prog_btf_fd);
14919 	if (IS_ERR(btf))
14920 		return PTR_ERR(btf);
14921 	if (btf_is_kernel(btf)) {
14922 		btf_put(btf);
14923 		return -EACCES;
14924 	}
14925 	env->prog->aux->btf = btf;
14926 
14927 	err = check_btf_func(env, attr, uattr);
14928 	if (err)
14929 		return err;
14930 
14931 	err = check_btf_line(env, attr, uattr);
14932 	if (err)
14933 		return err;
14934 
14935 	err = check_core_relo(env, attr, uattr);
14936 	if (err)
14937 		return err;
14938 
14939 	return 0;
14940 }
14941 
14942 /* check %cur's range satisfies %old's */
14943 static bool range_within(struct bpf_reg_state *old,
14944 			 struct bpf_reg_state *cur)
14945 {
14946 	return old->umin_value <= cur->umin_value &&
14947 	       old->umax_value >= cur->umax_value &&
14948 	       old->smin_value <= cur->smin_value &&
14949 	       old->smax_value >= cur->smax_value &&
14950 	       old->u32_min_value <= cur->u32_min_value &&
14951 	       old->u32_max_value >= cur->u32_max_value &&
14952 	       old->s32_min_value <= cur->s32_min_value &&
14953 	       old->s32_max_value >= cur->s32_max_value;
14954 }
14955 
14956 /* If in the old state two registers had the same id, then they need to have
14957  * the same id in the new state as well.  But that id could be different from
14958  * the old state, so we need to track the mapping from old to new ids.
14959  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14960  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
14961  * regs with a different old id could still have new id 9, we don't care about
14962  * that.
14963  * So we look through our idmap to see if this old id has been seen before.  If
14964  * so, we require the new id to match; otherwise, we add the id pair to the map.
14965  */
14966 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
14967 {
14968 	unsigned int i;
14969 
14970 	/* either both IDs should be set or both should be zero */
14971 	if (!!old_id != !!cur_id)
14972 		return false;
14973 
14974 	if (old_id == 0) /* cur_id == 0 as well */
14975 		return true;
14976 
14977 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
14978 		if (!idmap[i].old) {
14979 			/* Reached an empty slot; haven't seen this id before */
14980 			idmap[i].old = old_id;
14981 			idmap[i].cur = cur_id;
14982 			return true;
14983 		}
14984 		if (idmap[i].old == old_id)
14985 			return idmap[i].cur == cur_id;
14986 	}
14987 	/* We ran out of idmap slots, which should be impossible */
14988 	WARN_ON_ONCE(1);
14989 	return false;
14990 }
14991 
14992 static void clean_func_state(struct bpf_verifier_env *env,
14993 			     struct bpf_func_state *st)
14994 {
14995 	enum bpf_reg_liveness live;
14996 	int i, j;
14997 
14998 	for (i = 0; i < BPF_REG_FP; i++) {
14999 		live = st->regs[i].live;
15000 		/* liveness must not touch this register anymore */
15001 		st->regs[i].live |= REG_LIVE_DONE;
15002 		if (!(live & REG_LIVE_READ))
15003 			/* since the register is unused, clear its state
15004 			 * to make further comparison simpler
15005 			 */
15006 			__mark_reg_not_init(env, &st->regs[i]);
15007 	}
15008 
15009 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15010 		live = st->stack[i].spilled_ptr.live;
15011 		/* liveness must not touch this stack slot anymore */
15012 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15013 		if (!(live & REG_LIVE_READ)) {
15014 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15015 			for (j = 0; j < BPF_REG_SIZE; j++)
15016 				st->stack[i].slot_type[j] = STACK_INVALID;
15017 		}
15018 	}
15019 }
15020 
15021 static void clean_verifier_state(struct bpf_verifier_env *env,
15022 				 struct bpf_verifier_state *st)
15023 {
15024 	int i;
15025 
15026 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15027 		/* all regs in this state in all frames were already marked */
15028 		return;
15029 
15030 	for (i = 0; i <= st->curframe; i++)
15031 		clean_func_state(env, st->frame[i]);
15032 }
15033 
15034 /* the parentage chains form a tree.
15035  * the verifier states are added to state lists at given insn and
15036  * pushed into state stack for future exploration.
15037  * when the verifier reaches bpf_exit insn some of the verifer states
15038  * stored in the state lists have their final liveness state already,
15039  * but a lot of states will get revised from liveness point of view when
15040  * the verifier explores other branches.
15041  * Example:
15042  * 1: r0 = 1
15043  * 2: if r1 == 100 goto pc+1
15044  * 3: r0 = 2
15045  * 4: exit
15046  * when the verifier reaches exit insn the register r0 in the state list of
15047  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15048  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15049  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15050  *
15051  * Since the verifier pushes the branch states as it sees them while exploring
15052  * the program the condition of walking the branch instruction for the second
15053  * time means that all states below this branch were already explored and
15054  * their final liveness marks are already propagated.
15055  * Hence when the verifier completes the search of state list in is_state_visited()
15056  * we can call this clean_live_states() function to mark all liveness states
15057  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15058  * will not be used.
15059  * This function also clears the registers and stack for states that !READ
15060  * to simplify state merging.
15061  *
15062  * Important note here that walking the same branch instruction in the callee
15063  * doesn't meant that the states are DONE. The verifier has to compare
15064  * the callsites
15065  */
15066 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15067 			      struct bpf_verifier_state *cur)
15068 {
15069 	struct bpf_verifier_state_list *sl;
15070 	int i;
15071 
15072 	sl = *explored_state(env, insn);
15073 	while (sl) {
15074 		if (sl->state.branches)
15075 			goto next;
15076 		if (sl->state.insn_idx != insn ||
15077 		    sl->state.curframe != cur->curframe)
15078 			goto next;
15079 		for (i = 0; i <= cur->curframe; i++)
15080 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15081 				goto next;
15082 		clean_verifier_state(env, &sl->state);
15083 next:
15084 		sl = sl->next;
15085 	}
15086 }
15087 
15088 static bool regs_exact(const struct bpf_reg_state *rold,
15089 		       const struct bpf_reg_state *rcur,
15090 		       struct bpf_id_pair *idmap)
15091 {
15092 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15093 	       check_ids(rold->id, rcur->id, idmap) &&
15094 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15095 }
15096 
15097 /* Returns true if (rold safe implies rcur safe) */
15098 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15099 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
15100 {
15101 	if (!(rold->live & REG_LIVE_READ))
15102 		/* explored state didn't use this */
15103 		return true;
15104 	if (rold->type == NOT_INIT)
15105 		/* explored state can't have used this */
15106 		return true;
15107 	if (rcur->type == NOT_INIT)
15108 		return false;
15109 
15110 	/* Enforce that register types have to match exactly, including their
15111 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15112 	 * rule.
15113 	 *
15114 	 * One can make a point that using a pointer register as unbounded
15115 	 * SCALAR would be technically acceptable, but this could lead to
15116 	 * pointer leaks because scalars are allowed to leak while pointers
15117 	 * are not. We could make this safe in special cases if root is
15118 	 * calling us, but it's probably not worth the hassle.
15119 	 *
15120 	 * Also, register types that are *not* MAYBE_NULL could technically be
15121 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15122 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15123 	 * to the same map).
15124 	 * However, if the old MAYBE_NULL register then got NULL checked,
15125 	 * doing so could have affected others with the same id, and we can't
15126 	 * check for that because we lost the id when we converted to
15127 	 * a non-MAYBE_NULL variant.
15128 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15129 	 * non-MAYBE_NULL registers as well.
15130 	 */
15131 	if (rold->type != rcur->type)
15132 		return false;
15133 
15134 	switch (base_type(rold->type)) {
15135 	case SCALAR_VALUE:
15136 		if (regs_exact(rold, rcur, idmap))
15137 			return true;
15138 		if (env->explore_alu_limits)
15139 			return false;
15140 		if (!rold->precise)
15141 			return true;
15142 		/* new val must satisfy old val knowledge */
15143 		return range_within(rold, rcur) &&
15144 		       tnum_in(rold->var_off, rcur->var_off);
15145 	case PTR_TO_MAP_KEY:
15146 	case PTR_TO_MAP_VALUE:
15147 	case PTR_TO_MEM:
15148 	case PTR_TO_BUF:
15149 	case PTR_TO_TP_BUFFER:
15150 		/* If the new min/max/var_off satisfy the old ones and
15151 		 * everything else matches, we are OK.
15152 		 */
15153 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15154 		       range_within(rold, rcur) &&
15155 		       tnum_in(rold->var_off, rcur->var_off) &&
15156 		       check_ids(rold->id, rcur->id, idmap) &&
15157 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15158 	case PTR_TO_PACKET_META:
15159 	case PTR_TO_PACKET:
15160 		/* We must have at least as much range as the old ptr
15161 		 * did, so that any accesses which were safe before are
15162 		 * still safe.  This is true even if old range < old off,
15163 		 * since someone could have accessed through (ptr - k), or
15164 		 * even done ptr -= k in a register, to get a safe access.
15165 		 */
15166 		if (rold->range > rcur->range)
15167 			return false;
15168 		/* If the offsets don't match, we can't trust our alignment;
15169 		 * nor can we be sure that we won't fall out of range.
15170 		 */
15171 		if (rold->off != rcur->off)
15172 			return false;
15173 		/* id relations must be preserved */
15174 		if (!check_ids(rold->id, rcur->id, idmap))
15175 			return false;
15176 		/* new val must satisfy old val knowledge */
15177 		return range_within(rold, rcur) &&
15178 		       tnum_in(rold->var_off, rcur->var_off);
15179 	case PTR_TO_STACK:
15180 		/* two stack pointers are equal only if they're pointing to
15181 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15182 		 */
15183 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15184 	default:
15185 		return regs_exact(rold, rcur, idmap);
15186 	}
15187 }
15188 
15189 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15190 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
15191 {
15192 	int i, spi;
15193 
15194 	/* walk slots of the explored stack and ignore any additional
15195 	 * slots in the current stack, since explored(safe) state
15196 	 * didn't use them
15197 	 */
15198 	for (i = 0; i < old->allocated_stack; i++) {
15199 		struct bpf_reg_state *old_reg, *cur_reg;
15200 
15201 		spi = i / BPF_REG_SIZE;
15202 
15203 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15204 			i += BPF_REG_SIZE - 1;
15205 			/* explored state didn't use this */
15206 			continue;
15207 		}
15208 
15209 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15210 			continue;
15211 
15212 		if (env->allow_uninit_stack &&
15213 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15214 			continue;
15215 
15216 		/* explored stack has more populated slots than current stack
15217 		 * and these slots were used
15218 		 */
15219 		if (i >= cur->allocated_stack)
15220 			return false;
15221 
15222 		/* if old state was safe with misc data in the stack
15223 		 * it will be safe with zero-initialized stack.
15224 		 * The opposite is not true
15225 		 */
15226 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15227 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15228 			continue;
15229 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15230 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15231 			/* Ex: old explored (safe) state has STACK_SPILL in
15232 			 * this stack slot, but current has STACK_MISC ->
15233 			 * this verifier states are not equivalent,
15234 			 * return false to continue verification of this path
15235 			 */
15236 			return false;
15237 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15238 			continue;
15239 		/* Both old and cur are having same slot_type */
15240 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15241 		case STACK_SPILL:
15242 			/* when explored and current stack slot are both storing
15243 			 * spilled registers, check that stored pointers types
15244 			 * are the same as well.
15245 			 * Ex: explored safe path could have stored
15246 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15247 			 * but current path has stored:
15248 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15249 			 * such verifier states are not equivalent.
15250 			 * return false to continue verification of this path
15251 			 */
15252 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15253 				     &cur->stack[spi].spilled_ptr, idmap))
15254 				return false;
15255 			break;
15256 		case STACK_DYNPTR:
15257 			old_reg = &old->stack[spi].spilled_ptr;
15258 			cur_reg = &cur->stack[spi].spilled_ptr;
15259 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15260 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15261 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15262 				return false;
15263 			break;
15264 		case STACK_ITER:
15265 			old_reg = &old->stack[spi].spilled_ptr;
15266 			cur_reg = &cur->stack[spi].spilled_ptr;
15267 			/* iter.depth is not compared between states as it
15268 			 * doesn't matter for correctness and would otherwise
15269 			 * prevent convergence; we maintain it only to prevent
15270 			 * infinite loop check triggering, see
15271 			 * iter_active_depths_differ()
15272 			 */
15273 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15274 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15275 			    old_reg->iter.state != cur_reg->iter.state ||
15276 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15277 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15278 				return false;
15279 			break;
15280 		case STACK_MISC:
15281 		case STACK_ZERO:
15282 		case STACK_INVALID:
15283 			continue;
15284 		/* Ensure that new unhandled slot types return false by default */
15285 		default:
15286 			return false;
15287 		}
15288 	}
15289 	return true;
15290 }
15291 
15292 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15293 		    struct bpf_id_pair *idmap)
15294 {
15295 	int i;
15296 
15297 	if (old->acquired_refs != cur->acquired_refs)
15298 		return false;
15299 
15300 	for (i = 0; i < old->acquired_refs; i++) {
15301 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15302 			return false;
15303 	}
15304 
15305 	return true;
15306 }
15307 
15308 /* compare two verifier states
15309  *
15310  * all states stored in state_list are known to be valid, since
15311  * verifier reached 'bpf_exit' instruction through them
15312  *
15313  * this function is called when verifier exploring different branches of
15314  * execution popped from the state stack. If it sees an old state that has
15315  * more strict register state and more strict stack state then this execution
15316  * branch doesn't need to be explored further, since verifier already
15317  * concluded that more strict state leads to valid finish.
15318  *
15319  * Therefore two states are equivalent if register state is more conservative
15320  * and explored stack state is more conservative than the current one.
15321  * Example:
15322  *       explored                   current
15323  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15324  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15325  *
15326  * In other words if current stack state (one being explored) has more
15327  * valid slots than old one that already passed validation, it means
15328  * the verifier can stop exploring and conclude that current state is valid too
15329  *
15330  * Similarly with registers. If explored state has register type as invalid
15331  * whereas register type in current state is meaningful, it means that
15332  * the current state will reach 'bpf_exit' instruction safely
15333  */
15334 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15335 			      struct bpf_func_state *cur)
15336 {
15337 	int i;
15338 
15339 	for (i = 0; i < MAX_BPF_REG; i++)
15340 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15341 			     env->idmap_scratch))
15342 			return false;
15343 
15344 	if (!stacksafe(env, old, cur, env->idmap_scratch))
15345 		return false;
15346 
15347 	if (!refsafe(old, cur, env->idmap_scratch))
15348 		return false;
15349 
15350 	return true;
15351 }
15352 
15353 static bool states_equal(struct bpf_verifier_env *env,
15354 			 struct bpf_verifier_state *old,
15355 			 struct bpf_verifier_state *cur)
15356 {
15357 	int i;
15358 
15359 	if (old->curframe != cur->curframe)
15360 		return false;
15361 
15362 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
15363 
15364 	/* Verification state from speculative execution simulation
15365 	 * must never prune a non-speculative execution one.
15366 	 */
15367 	if (old->speculative && !cur->speculative)
15368 		return false;
15369 
15370 	if (old->active_lock.ptr != cur->active_lock.ptr)
15371 		return false;
15372 
15373 	/* Old and cur active_lock's have to be either both present
15374 	 * or both absent.
15375 	 */
15376 	if (!!old->active_lock.id != !!cur->active_lock.id)
15377 		return false;
15378 
15379 	if (old->active_lock.id &&
15380 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
15381 		return false;
15382 
15383 	if (old->active_rcu_lock != cur->active_rcu_lock)
15384 		return false;
15385 
15386 	/* for states to be equal callsites have to be the same
15387 	 * and all frame states need to be equivalent
15388 	 */
15389 	for (i = 0; i <= old->curframe; i++) {
15390 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15391 			return false;
15392 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15393 			return false;
15394 	}
15395 	return true;
15396 }
15397 
15398 /* Return 0 if no propagation happened. Return negative error code if error
15399  * happened. Otherwise, return the propagated bit.
15400  */
15401 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15402 				  struct bpf_reg_state *reg,
15403 				  struct bpf_reg_state *parent_reg)
15404 {
15405 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15406 	u8 flag = reg->live & REG_LIVE_READ;
15407 	int err;
15408 
15409 	/* When comes here, read flags of PARENT_REG or REG could be any of
15410 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15411 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15412 	 */
15413 	if (parent_flag == REG_LIVE_READ64 ||
15414 	    /* Or if there is no read flag from REG. */
15415 	    !flag ||
15416 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15417 	    parent_flag == flag)
15418 		return 0;
15419 
15420 	err = mark_reg_read(env, reg, parent_reg, flag);
15421 	if (err)
15422 		return err;
15423 
15424 	return flag;
15425 }
15426 
15427 /* A write screens off any subsequent reads; but write marks come from the
15428  * straight-line code between a state and its parent.  When we arrive at an
15429  * equivalent state (jump target or such) we didn't arrive by the straight-line
15430  * code, so read marks in the state must propagate to the parent regardless
15431  * of the state's write marks. That's what 'parent == state->parent' comparison
15432  * in mark_reg_read() is for.
15433  */
15434 static int propagate_liveness(struct bpf_verifier_env *env,
15435 			      const struct bpf_verifier_state *vstate,
15436 			      struct bpf_verifier_state *vparent)
15437 {
15438 	struct bpf_reg_state *state_reg, *parent_reg;
15439 	struct bpf_func_state *state, *parent;
15440 	int i, frame, err = 0;
15441 
15442 	if (vparent->curframe != vstate->curframe) {
15443 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15444 		     vparent->curframe, vstate->curframe);
15445 		return -EFAULT;
15446 	}
15447 	/* Propagate read liveness of registers... */
15448 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15449 	for (frame = 0; frame <= vstate->curframe; frame++) {
15450 		parent = vparent->frame[frame];
15451 		state = vstate->frame[frame];
15452 		parent_reg = parent->regs;
15453 		state_reg = state->regs;
15454 		/* We don't need to worry about FP liveness, it's read-only */
15455 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15456 			err = propagate_liveness_reg(env, &state_reg[i],
15457 						     &parent_reg[i]);
15458 			if (err < 0)
15459 				return err;
15460 			if (err == REG_LIVE_READ64)
15461 				mark_insn_zext(env, &parent_reg[i]);
15462 		}
15463 
15464 		/* Propagate stack slots. */
15465 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15466 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15467 			parent_reg = &parent->stack[i].spilled_ptr;
15468 			state_reg = &state->stack[i].spilled_ptr;
15469 			err = propagate_liveness_reg(env, state_reg,
15470 						     parent_reg);
15471 			if (err < 0)
15472 				return err;
15473 		}
15474 	}
15475 	return 0;
15476 }
15477 
15478 /* find precise scalars in the previous equivalent state and
15479  * propagate them into the current state
15480  */
15481 static int propagate_precision(struct bpf_verifier_env *env,
15482 			       const struct bpf_verifier_state *old)
15483 {
15484 	struct bpf_reg_state *state_reg;
15485 	struct bpf_func_state *state;
15486 	int i, err = 0, fr;
15487 	bool first;
15488 
15489 	for (fr = old->curframe; fr >= 0; fr--) {
15490 		state = old->frame[fr];
15491 		state_reg = state->regs;
15492 		first = true;
15493 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15494 			if (state_reg->type != SCALAR_VALUE ||
15495 			    !state_reg->precise ||
15496 			    !(state_reg->live & REG_LIVE_READ))
15497 				continue;
15498 			if (env->log.level & BPF_LOG_LEVEL2) {
15499 				if (first)
15500 					verbose(env, "frame %d: propagating r%d", fr, i);
15501 				else
15502 					verbose(env, ",r%d", i);
15503 			}
15504 			bt_set_frame_reg(&env->bt, fr, i);
15505 			first = false;
15506 		}
15507 
15508 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15509 			if (!is_spilled_reg(&state->stack[i]))
15510 				continue;
15511 			state_reg = &state->stack[i].spilled_ptr;
15512 			if (state_reg->type != SCALAR_VALUE ||
15513 			    !state_reg->precise ||
15514 			    !(state_reg->live & REG_LIVE_READ))
15515 				continue;
15516 			if (env->log.level & BPF_LOG_LEVEL2) {
15517 				if (first)
15518 					verbose(env, "frame %d: propagating fp%d",
15519 						fr, (-i - 1) * BPF_REG_SIZE);
15520 				else
15521 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15522 			}
15523 			bt_set_frame_slot(&env->bt, fr, i);
15524 			first = false;
15525 		}
15526 		if (!first)
15527 			verbose(env, "\n");
15528 	}
15529 
15530 	err = mark_chain_precision_batch(env);
15531 	if (err < 0)
15532 		return err;
15533 
15534 	return 0;
15535 }
15536 
15537 static bool states_maybe_looping(struct bpf_verifier_state *old,
15538 				 struct bpf_verifier_state *cur)
15539 {
15540 	struct bpf_func_state *fold, *fcur;
15541 	int i, fr = cur->curframe;
15542 
15543 	if (old->curframe != fr)
15544 		return false;
15545 
15546 	fold = old->frame[fr];
15547 	fcur = cur->frame[fr];
15548 	for (i = 0; i < MAX_BPF_REG; i++)
15549 		if (memcmp(&fold->regs[i], &fcur->regs[i],
15550 			   offsetof(struct bpf_reg_state, parent)))
15551 			return false;
15552 	return true;
15553 }
15554 
15555 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15556 {
15557 	return env->insn_aux_data[insn_idx].is_iter_next;
15558 }
15559 
15560 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
15561  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15562  * states to match, which otherwise would look like an infinite loop. So while
15563  * iter_next() calls are taken care of, we still need to be careful and
15564  * prevent erroneous and too eager declaration of "ininite loop", when
15565  * iterators are involved.
15566  *
15567  * Here's a situation in pseudo-BPF assembly form:
15568  *
15569  *   0: again:                          ; set up iter_next() call args
15570  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
15571  *   2:   call bpf_iter_num_next        ; this is iter_next() call
15572  *   3:   if r0 == 0 goto done
15573  *   4:   ... something useful here ...
15574  *   5:   goto again                    ; another iteration
15575  *   6: done:
15576  *   7:   r1 = &it
15577  *   8:   call bpf_iter_num_destroy     ; clean up iter state
15578  *   9:   exit
15579  *
15580  * This is a typical loop. Let's assume that we have a prune point at 1:,
15581  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15582  * again`, assuming other heuristics don't get in a way).
15583  *
15584  * When we first time come to 1:, let's say we have some state X. We proceed
15585  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15586  * Now we come back to validate that forked ACTIVE state. We proceed through
15587  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15588  * are converging. But the problem is that we don't know that yet, as this
15589  * convergence has to happen at iter_next() call site only. So if nothing is
15590  * done, at 1: verifier will use bounded loop logic and declare infinite
15591  * looping (and would be *technically* correct, if not for iterator's
15592  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15593  * don't want that. So what we do in process_iter_next_call() when we go on
15594  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15595  * a different iteration. So when we suspect an infinite loop, we additionally
15596  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15597  * pretend we are not looping and wait for next iter_next() call.
15598  *
15599  * This only applies to ACTIVE state. In DRAINED state we don't expect to
15600  * loop, because that would actually mean infinite loop, as DRAINED state is
15601  * "sticky", and so we'll keep returning into the same instruction with the
15602  * same state (at least in one of possible code paths).
15603  *
15604  * This approach allows to keep infinite loop heuristic even in the face of
15605  * active iterator. E.g., C snippet below is and will be detected as
15606  * inifintely looping:
15607  *
15608  *   struct bpf_iter_num it;
15609  *   int *p, x;
15610  *
15611  *   bpf_iter_num_new(&it, 0, 10);
15612  *   while ((p = bpf_iter_num_next(&t))) {
15613  *       x = p;
15614  *       while (x--) {} // <<-- infinite loop here
15615  *   }
15616  *
15617  */
15618 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15619 {
15620 	struct bpf_reg_state *slot, *cur_slot;
15621 	struct bpf_func_state *state;
15622 	int i, fr;
15623 
15624 	for (fr = old->curframe; fr >= 0; fr--) {
15625 		state = old->frame[fr];
15626 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15627 			if (state->stack[i].slot_type[0] != STACK_ITER)
15628 				continue;
15629 
15630 			slot = &state->stack[i].spilled_ptr;
15631 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15632 				continue;
15633 
15634 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15635 			if (cur_slot->iter.depth != slot->iter.depth)
15636 				return true;
15637 		}
15638 	}
15639 	return false;
15640 }
15641 
15642 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
15643 {
15644 	struct bpf_verifier_state_list *new_sl;
15645 	struct bpf_verifier_state_list *sl, **pprev;
15646 	struct bpf_verifier_state *cur = env->cur_state, *new;
15647 	int i, j, err, states_cnt = 0;
15648 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15649 	bool add_new_state = force_new_state;
15650 
15651 	/* bpf progs typically have pruning point every 4 instructions
15652 	 * http://vger.kernel.org/bpfconf2019.html#session-1
15653 	 * Do not add new state for future pruning if the verifier hasn't seen
15654 	 * at least 2 jumps and at least 8 instructions.
15655 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15656 	 * In tests that amounts to up to 50% reduction into total verifier
15657 	 * memory consumption and 20% verifier time speedup.
15658 	 */
15659 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15660 	    env->insn_processed - env->prev_insn_processed >= 8)
15661 		add_new_state = true;
15662 
15663 	pprev = explored_state(env, insn_idx);
15664 	sl = *pprev;
15665 
15666 	clean_live_states(env, insn_idx, cur);
15667 
15668 	while (sl) {
15669 		states_cnt++;
15670 		if (sl->state.insn_idx != insn_idx)
15671 			goto next;
15672 
15673 		if (sl->state.branches) {
15674 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15675 
15676 			if (frame->in_async_callback_fn &&
15677 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15678 				/* Different async_entry_cnt means that the verifier is
15679 				 * processing another entry into async callback.
15680 				 * Seeing the same state is not an indication of infinite
15681 				 * loop or infinite recursion.
15682 				 * But finding the same state doesn't mean that it's safe
15683 				 * to stop processing the current state. The previous state
15684 				 * hasn't yet reached bpf_exit, since state.branches > 0.
15685 				 * Checking in_async_callback_fn alone is not enough either.
15686 				 * Since the verifier still needs to catch infinite loops
15687 				 * inside async callbacks.
15688 				 */
15689 				goto skip_inf_loop_check;
15690 			}
15691 			/* BPF open-coded iterators loop detection is special.
15692 			 * states_maybe_looping() logic is too simplistic in detecting
15693 			 * states that *might* be equivalent, because it doesn't know
15694 			 * about ID remapping, so don't even perform it.
15695 			 * See process_iter_next_call() and iter_active_depths_differ()
15696 			 * for overview of the logic. When current and one of parent
15697 			 * states are detected as equivalent, it's a good thing: we prove
15698 			 * convergence and can stop simulating further iterations.
15699 			 * It's safe to assume that iterator loop will finish, taking into
15700 			 * account iter_next() contract of eventually returning
15701 			 * sticky NULL result.
15702 			 */
15703 			if (is_iter_next_insn(env, insn_idx)) {
15704 				if (states_equal(env, &sl->state, cur)) {
15705 					struct bpf_func_state *cur_frame;
15706 					struct bpf_reg_state *iter_state, *iter_reg;
15707 					int spi;
15708 
15709 					cur_frame = cur->frame[cur->curframe];
15710 					/* btf_check_iter_kfuncs() enforces that
15711 					 * iter state pointer is always the first arg
15712 					 */
15713 					iter_reg = &cur_frame->regs[BPF_REG_1];
15714 					/* current state is valid due to states_equal(),
15715 					 * so we can assume valid iter and reg state,
15716 					 * no need for extra (re-)validations
15717 					 */
15718 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15719 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15720 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15721 						goto hit;
15722 				}
15723 				goto skip_inf_loop_check;
15724 			}
15725 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
15726 			if (states_maybe_looping(&sl->state, cur) &&
15727 			    states_equal(env, &sl->state, cur) &&
15728 			    !iter_active_depths_differ(&sl->state, cur)) {
15729 				verbose_linfo(env, insn_idx, "; ");
15730 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15731 				return -EINVAL;
15732 			}
15733 			/* if the verifier is processing a loop, avoid adding new state
15734 			 * too often, since different loop iterations have distinct
15735 			 * states and may not help future pruning.
15736 			 * This threshold shouldn't be too low to make sure that
15737 			 * a loop with large bound will be rejected quickly.
15738 			 * The most abusive loop will be:
15739 			 * r1 += 1
15740 			 * if r1 < 1000000 goto pc-2
15741 			 * 1M insn_procssed limit / 100 == 10k peak states.
15742 			 * This threshold shouldn't be too high either, since states
15743 			 * at the end of the loop are likely to be useful in pruning.
15744 			 */
15745 skip_inf_loop_check:
15746 			if (!force_new_state &&
15747 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
15748 			    env->insn_processed - env->prev_insn_processed < 100)
15749 				add_new_state = false;
15750 			goto miss;
15751 		}
15752 		if (states_equal(env, &sl->state, cur)) {
15753 hit:
15754 			sl->hit_cnt++;
15755 			/* reached equivalent register/stack state,
15756 			 * prune the search.
15757 			 * Registers read by the continuation are read by us.
15758 			 * If we have any write marks in env->cur_state, they
15759 			 * will prevent corresponding reads in the continuation
15760 			 * from reaching our parent (an explored_state).  Our
15761 			 * own state will get the read marks recorded, but
15762 			 * they'll be immediately forgotten as we're pruning
15763 			 * this state and will pop a new one.
15764 			 */
15765 			err = propagate_liveness(env, &sl->state, cur);
15766 
15767 			/* if previous state reached the exit with precision and
15768 			 * current state is equivalent to it (except precsion marks)
15769 			 * the precision needs to be propagated back in
15770 			 * the current state.
15771 			 */
15772 			err = err ? : push_jmp_history(env, cur);
15773 			err = err ? : propagate_precision(env, &sl->state);
15774 			if (err)
15775 				return err;
15776 			return 1;
15777 		}
15778 miss:
15779 		/* when new state is not going to be added do not increase miss count.
15780 		 * Otherwise several loop iterations will remove the state
15781 		 * recorded earlier. The goal of these heuristics is to have
15782 		 * states from some iterations of the loop (some in the beginning
15783 		 * and some at the end) to help pruning.
15784 		 */
15785 		if (add_new_state)
15786 			sl->miss_cnt++;
15787 		/* heuristic to determine whether this state is beneficial
15788 		 * to keep checking from state equivalence point of view.
15789 		 * Higher numbers increase max_states_per_insn and verification time,
15790 		 * but do not meaningfully decrease insn_processed.
15791 		 */
15792 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15793 			/* the state is unlikely to be useful. Remove it to
15794 			 * speed up verification
15795 			 */
15796 			*pprev = sl->next;
15797 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
15798 				u32 br = sl->state.branches;
15799 
15800 				WARN_ONCE(br,
15801 					  "BUG live_done but branches_to_explore %d\n",
15802 					  br);
15803 				free_verifier_state(&sl->state, false);
15804 				kfree(sl);
15805 				env->peak_states--;
15806 			} else {
15807 				/* cannot free this state, since parentage chain may
15808 				 * walk it later. Add it for free_list instead to
15809 				 * be freed at the end of verification
15810 				 */
15811 				sl->next = env->free_list;
15812 				env->free_list = sl;
15813 			}
15814 			sl = *pprev;
15815 			continue;
15816 		}
15817 next:
15818 		pprev = &sl->next;
15819 		sl = *pprev;
15820 	}
15821 
15822 	if (env->max_states_per_insn < states_cnt)
15823 		env->max_states_per_insn = states_cnt;
15824 
15825 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
15826 		return 0;
15827 
15828 	if (!add_new_state)
15829 		return 0;
15830 
15831 	/* There were no equivalent states, remember the current one.
15832 	 * Technically the current state is not proven to be safe yet,
15833 	 * but it will either reach outer most bpf_exit (which means it's safe)
15834 	 * or it will be rejected. When there are no loops the verifier won't be
15835 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
15836 	 * again on the way to bpf_exit.
15837 	 * When looping the sl->state.branches will be > 0 and this state
15838 	 * will not be considered for equivalence until branches == 0.
15839 	 */
15840 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
15841 	if (!new_sl)
15842 		return -ENOMEM;
15843 	env->total_states++;
15844 	env->peak_states++;
15845 	env->prev_jmps_processed = env->jmps_processed;
15846 	env->prev_insn_processed = env->insn_processed;
15847 
15848 	/* forget precise markings we inherited, see __mark_chain_precision */
15849 	if (env->bpf_capable)
15850 		mark_all_scalars_imprecise(env, cur);
15851 
15852 	/* add new state to the head of linked list */
15853 	new = &new_sl->state;
15854 	err = copy_verifier_state(new, cur);
15855 	if (err) {
15856 		free_verifier_state(new, false);
15857 		kfree(new_sl);
15858 		return err;
15859 	}
15860 	new->insn_idx = insn_idx;
15861 	WARN_ONCE(new->branches != 1,
15862 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
15863 
15864 	cur->parent = new;
15865 	cur->first_insn_idx = insn_idx;
15866 	clear_jmp_history(cur);
15867 	new_sl->next = *explored_state(env, insn_idx);
15868 	*explored_state(env, insn_idx) = new_sl;
15869 	/* connect new state to parentage chain. Current frame needs all
15870 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
15871 	 * to the stack implicitly by JITs) so in callers' frames connect just
15872 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15873 	 * the state of the call instruction (with WRITTEN set), and r0 comes
15874 	 * from callee with its full parentage chain, anyway.
15875 	 */
15876 	/* clear write marks in current state: the writes we did are not writes
15877 	 * our child did, so they don't screen off its reads from us.
15878 	 * (There are no read marks in current state, because reads always mark
15879 	 * their parent and current state never has children yet.  Only
15880 	 * explored_states can get read marks.)
15881 	 */
15882 	for (j = 0; j <= cur->curframe; j++) {
15883 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15884 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15885 		for (i = 0; i < BPF_REG_FP; i++)
15886 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15887 	}
15888 
15889 	/* all stack frames are accessible from callee, clear them all */
15890 	for (j = 0; j <= cur->curframe; j++) {
15891 		struct bpf_func_state *frame = cur->frame[j];
15892 		struct bpf_func_state *newframe = new->frame[j];
15893 
15894 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
15895 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
15896 			frame->stack[i].spilled_ptr.parent =
15897 						&newframe->stack[i].spilled_ptr;
15898 		}
15899 	}
15900 	return 0;
15901 }
15902 
15903 /* Return true if it's OK to have the same insn return a different type. */
15904 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15905 {
15906 	switch (base_type(type)) {
15907 	case PTR_TO_CTX:
15908 	case PTR_TO_SOCKET:
15909 	case PTR_TO_SOCK_COMMON:
15910 	case PTR_TO_TCP_SOCK:
15911 	case PTR_TO_XDP_SOCK:
15912 	case PTR_TO_BTF_ID:
15913 		return false;
15914 	default:
15915 		return true;
15916 	}
15917 }
15918 
15919 /* If an instruction was previously used with particular pointer types, then we
15920  * need to be careful to avoid cases such as the below, where it may be ok
15921  * for one branch accessing the pointer, but not ok for the other branch:
15922  *
15923  * R1 = sock_ptr
15924  * goto X;
15925  * ...
15926  * R1 = some_other_valid_ptr;
15927  * goto X;
15928  * ...
15929  * R2 = *(u32 *)(R1 + 0);
15930  */
15931 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15932 {
15933 	return src != prev && (!reg_type_mismatch_ok(src) ||
15934 			       !reg_type_mismatch_ok(prev));
15935 }
15936 
15937 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15938 			     bool allow_trust_missmatch)
15939 {
15940 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15941 
15942 	if (*prev_type == NOT_INIT) {
15943 		/* Saw a valid insn
15944 		 * dst_reg = *(u32 *)(src_reg + off)
15945 		 * save type to validate intersecting paths
15946 		 */
15947 		*prev_type = type;
15948 	} else if (reg_type_mismatch(type, *prev_type)) {
15949 		/* Abuser program is trying to use the same insn
15950 		 * dst_reg = *(u32*) (src_reg + off)
15951 		 * with different pointer types:
15952 		 * src_reg == ctx in one branch and
15953 		 * src_reg == stack|map in some other branch.
15954 		 * Reject it.
15955 		 */
15956 		if (allow_trust_missmatch &&
15957 		    base_type(type) == PTR_TO_BTF_ID &&
15958 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
15959 			/*
15960 			 * Have to support a use case when one path through
15961 			 * the program yields TRUSTED pointer while another
15962 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15963 			 * BPF_PROBE_MEM.
15964 			 */
15965 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15966 		} else {
15967 			verbose(env, "same insn cannot be used with different pointers\n");
15968 			return -EINVAL;
15969 		}
15970 	}
15971 
15972 	return 0;
15973 }
15974 
15975 static int do_check(struct bpf_verifier_env *env)
15976 {
15977 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
15978 	struct bpf_verifier_state *state = env->cur_state;
15979 	struct bpf_insn *insns = env->prog->insnsi;
15980 	struct bpf_reg_state *regs;
15981 	int insn_cnt = env->prog->len;
15982 	bool do_print_state = false;
15983 	int prev_insn_idx = -1;
15984 
15985 	for (;;) {
15986 		struct bpf_insn *insn;
15987 		u8 class;
15988 		int err;
15989 
15990 		env->prev_insn_idx = prev_insn_idx;
15991 		if (env->insn_idx >= insn_cnt) {
15992 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
15993 				env->insn_idx, insn_cnt);
15994 			return -EFAULT;
15995 		}
15996 
15997 		insn = &insns[env->insn_idx];
15998 		class = BPF_CLASS(insn->code);
15999 
16000 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16001 			verbose(env,
16002 				"BPF program is too large. Processed %d insn\n",
16003 				env->insn_processed);
16004 			return -E2BIG;
16005 		}
16006 
16007 		state->last_insn_idx = env->prev_insn_idx;
16008 
16009 		if (is_prune_point(env, env->insn_idx)) {
16010 			err = is_state_visited(env, env->insn_idx);
16011 			if (err < 0)
16012 				return err;
16013 			if (err == 1) {
16014 				/* found equivalent state, can prune the search */
16015 				if (env->log.level & BPF_LOG_LEVEL) {
16016 					if (do_print_state)
16017 						verbose(env, "\nfrom %d to %d%s: safe\n",
16018 							env->prev_insn_idx, env->insn_idx,
16019 							env->cur_state->speculative ?
16020 							" (speculative execution)" : "");
16021 					else
16022 						verbose(env, "%d: safe\n", env->insn_idx);
16023 				}
16024 				goto process_bpf_exit;
16025 			}
16026 		}
16027 
16028 		if (is_jmp_point(env, env->insn_idx)) {
16029 			err = push_jmp_history(env, state);
16030 			if (err)
16031 				return err;
16032 		}
16033 
16034 		if (signal_pending(current))
16035 			return -EAGAIN;
16036 
16037 		if (need_resched())
16038 			cond_resched();
16039 
16040 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16041 			verbose(env, "\nfrom %d to %d%s:",
16042 				env->prev_insn_idx, env->insn_idx,
16043 				env->cur_state->speculative ?
16044 				" (speculative execution)" : "");
16045 			print_verifier_state(env, state->frame[state->curframe], true);
16046 			do_print_state = false;
16047 		}
16048 
16049 		if (env->log.level & BPF_LOG_LEVEL) {
16050 			const struct bpf_insn_cbs cbs = {
16051 				.cb_call	= disasm_kfunc_name,
16052 				.cb_print	= verbose,
16053 				.private_data	= env,
16054 			};
16055 
16056 			if (verifier_state_scratched(env))
16057 				print_insn_state(env, state->frame[state->curframe]);
16058 
16059 			verbose_linfo(env, env->insn_idx, "; ");
16060 			env->prev_log_pos = env->log.end_pos;
16061 			verbose(env, "%d: ", env->insn_idx);
16062 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16063 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16064 			env->prev_log_pos = env->log.end_pos;
16065 		}
16066 
16067 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16068 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16069 							   env->prev_insn_idx);
16070 			if (err)
16071 				return err;
16072 		}
16073 
16074 		regs = cur_regs(env);
16075 		sanitize_mark_insn_seen(env);
16076 		prev_insn_idx = env->insn_idx;
16077 
16078 		if (class == BPF_ALU || class == BPF_ALU64) {
16079 			err = check_alu_op(env, insn);
16080 			if (err)
16081 				return err;
16082 
16083 		} else if (class == BPF_LDX) {
16084 			enum bpf_reg_type src_reg_type;
16085 
16086 			/* check for reserved fields is already done */
16087 
16088 			/* check src operand */
16089 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16090 			if (err)
16091 				return err;
16092 
16093 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16094 			if (err)
16095 				return err;
16096 
16097 			src_reg_type = regs[insn->src_reg].type;
16098 
16099 			/* check that memory (src_reg + off) is readable,
16100 			 * the state of dst_reg will be updated by this func
16101 			 */
16102 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16103 					       insn->off, BPF_SIZE(insn->code),
16104 					       BPF_READ, insn->dst_reg, false);
16105 			if (err)
16106 				return err;
16107 
16108 			err = save_aux_ptr_type(env, src_reg_type, true);
16109 			if (err)
16110 				return err;
16111 		} else if (class == BPF_STX) {
16112 			enum bpf_reg_type dst_reg_type;
16113 
16114 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16115 				err = check_atomic(env, env->insn_idx, insn);
16116 				if (err)
16117 					return err;
16118 				env->insn_idx++;
16119 				continue;
16120 			}
16121 
16122 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16123 				verbose(env, "BPF_STX uses reserved fields\n");
16124 				return -EINVAL;
16125 			}
16126 
16127 			/* check src1 operand */
16128 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16129 			if (err)
16130 				return err;
16131 			/* check src2 operand */
16132 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16133 			if (err)
16134 				return err;
16135 
16136 			dst_reg_type = regs[insn->dst_reg].type;
16137 
16138 			/* check that memory (dst_reg + off) is writeable */
16139 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16140 					       insn->off, BPF_SIZE(insn->code),
16141 					       BPF_WRITE, insn->src_reg, false);
16142 			if (err)
16143 				return err;
16144 
16145 			err = save_aux_ptr_type(env, dst_reg_type, false);
16146 			if (err)
16147 				return err;
16148 		} else if (class == BPF_ST) {
16149 			enum bpf_reg_type dst_reg_type;
16150 
16151 			if (BPF_MODE(insn->code) != BPF_MEM ||
16152 			    insn->src_reg != BPF_REG_0) {
16153 				verbose(env, "BPF_ST uses reserved fields\n");
16154 				return -EINVAL;
16155 			}
16156 			/* check src operand */
16157 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16158 			if (err)
16159 				return err;
16160 
16161 			dst_reg_type = regs[insn->dst_reg].type;
16162 
16163 			/* check that memory (dst_reg + off) is writeable */
16164 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16165 					       insn->off, BPF_SIZE(insn->code),
16166 					       BPF_WRITE, -1, false);
16167 			if (err)
16168 				return err;
16169 
16170 			err = save_aux_ptr_type(env, dst_reg_type, false);
16171 			if (err)
16172 				return err;
16173 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16174 			u8 opcode = BPF_OP(insn->code);
16175 
16176 			env->jmps_processed++;
16177 			if (opcode == BPF_CALL) {
16178 				if (BPF_SRC(insn->code) != BPF_K ||
16179 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16180 				     && insn->off != 0) ||
16181 				    (insn->src_reg != BPF_REG_0 &&
16182 				     insn->src_reg != BPF_PSEUDO_CALL &&
16183 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16184 				    insn->dst_reg != BPF_REG_0 ||
16185 				    class == BPF_JMP32) {
16186 					verbose(env, "BPF_CALL uses reserved fields\n");
16187 					return -EINVAL;
16188 				}
16189 
16190 				if (env->cur_state->active_lock.ptr) {
16191 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16192 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16193 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16194 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16195 						verbose(env, "function calls are not allowed while holding a lock\n");
16196 						return -EINVAL;
16197 					}
16198 				}
16199 				if (insn->src_reg == BPF_PSEUDO_CALL)
16200 					err = check_func_call(env, insn, &env->insn_idx);
16201 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16202 					err = check_kfunc_call(env, insn, &env->insn_idx);
16203 				else
16204 					err = check_helper_call(env, insn, &env->insn_idx);
16205 				if (err)
16206 					return err;
16207 
16208 				mark_reg_scratched(env, BPF_REG_0);
16209 			} else if (opcode == BPF_JA) {
16210 				if (BPF_SRC(insn->code) != BPF_K ||
16211 				    insn->imm != 0 ||
16212 				    insn->src_reg != BPF_REG_0 ||
16213 				    insn->dst_reg != BPF_REG_0 ||
16214 				    class == BPF_JMP32) {
16215 					verbose(env, "BPF_JA uses reserved fields\n");
16216 					return -EINVAL;
16217 				}
16218 
16219 				env->insn_idx += insn->off + 1;
16220 				continue;
16221 
16222 			} else if (opcode == BPF_EXIT) {
16223 				if (BPF_SRC(insn->code) != BPF_K ||
16224 				    insn->imm != 0 ||
16225 				    insn->src_reg != BPF_REG_0 ||
16226 				    insn->dst_reg != BPF_REG_0 ||
16227 				    class == BPF_JMP32) {
16228 					verbose(env, "BPF_EXIT uses reserved fields\n");
16229 					return -EINVAL;
16230 				}
16231 
16232 				if (env->cur_state->active_lock.ptr &&
16233 				    !in_rbtree_lock_required_cb(env)) {
16234 					verbose(env, "bpf_spin_unlock is missing\n");
16235 					return -EINVAL;
16236 				}
16237 
16238 				if (env->cur_state->active_rcu_lock) {
16239 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16240 					return -EINVAL;
16241 				}
16242 
16243 				/* We must do check_reference_leak here before
16244 				 * prepare_func_exit to handle the case when
16245 				 * state->curframe > 0, it may be a callback
16246 				 * function, for which reference_state must
16247 				 * match caller reference state when it exits.
16248 				 */
16249 				err = check_reference_leak(env);
16250 				if (err)
16251 					return err;
16252 
16253 				if (state->curframe) {
16254 					/* exit from nested function */
16255 					err = prepare_func_exit(env, &env->insn_idx);
16256 					if (err)
16257 						return err;
16258 					do_print_state = true;
16259 					continue;
16260 				}
16261 
16262 				err = check_return_code(env);
16263 				if (err)
16264 					return err;
16265 process_bpf_exit:
16266 				mark_verifier_state_scratched(env);
16267 				update_branch_counts(env, env->cur_state);
16268 				err = pop_stack(env, &prev_insn_idx,
16269 						&env->insn_idx, pop_log);
16270 				if (err < 0) {
16271 					if (err != -ENOENT)
16272 						return err;
16273 					break;
16274 				} else {
16275 					do_print_state = true;
16276 					continue;
16277 				}
16278 			} else {
16279 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16280 				if (err)
16281 					return err;
16282 			}
16283 		} else if (class == BPF_LD) {
16284 			u8 mode = BPF_MODE(insn->code);
16285 
16286 			if (mode == BPF_ABS || mode == BPF_IND) {
16287 				err = check_ld_abs(env, insn);
16288 				if (err)
16289 					return err;
16290 
16291 			} else if (mode == BPF_IMM) {
16292 				err = check_ld_imm(env, insn);
16293 				if (err)
16294 					return err;
16295 
16296 				env->insn_idx++;
16297 				sanitize_mark_insn_seen(env);
16298 			} else {
16299 				verbose(env, "invalid BPF_LD mode\n");
16300 				return -EINVAL;
16301 			}
16302 		} else {
16303 			verbose(env, "unknown insn class %d\n", class);
16304 			return -EINVAL;
16305 		}
16306 
16307 		env->insn_idx++;
16308 	}
16309 
16310 	return 0;
16311 }
16312 
16313 static int find_btf_percpu_datasec(struct btf *btf)
16314 {
16315 	const struct btf_type *t;
16316 	const char *tname;
16317 	int i, n;
16318 
16319 	/*
16320 	 * Both vmlinux and module each have their own ".data..percpu"
16321 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16322 	 * types to look at only module's own BTF types.
16323 	 */
16324 	n = btf_nr_types(btf);
16325 	if (btf_is_module(btf))
16326 		i = btf_nr_types(btf_vmlinux);
16327 	else
16328 		i = 1;
16329 
16330 	for(; i < n; i++) {
16331 		t = btf_type_by_id(btf, i);
16332 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16333 			continue;
16334 
16335 		tname = btf_name_by_offset(btf, t->name_off);
16336 		if (!strcmp(tname, ".data..percpu"))
16337 			return i;
16338 	}
16339 
16340 	return -ENOENT;
16341 }
16342 
16343 /* replace pseudo btf_id with kernel symbol address */
16344 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16345 			       struct bpf_insn *insn,
16346 			       struct bpf_insn_aux_data *aux)
16347 {
16348 	const struct btf_var_secinfo *vsi;
16349 	const struct btf_type *datasec;
16350 	struct btf_mod_pair *btf_mod;
16351 	const struct btf_type *t;
16352 	const char *sym_name;
16353 	bool percpu = false;
16354 	u32 type, id = insn->imm;
16355 	struct btf *btf;
16356 	s32 datasec_id;
16357 	u64 addr;
16358 	int i, btf_fd, err;
16359 
16360 	btf_fd = insn[1].imm;
16361 	if (btf_fd) {
16362 		btf = btf_get_by_fd(btf_fd);
16363 		if (IS_ERR(btf)) {
16364 			verbose(env, "invalid module BTF object FD specified.\n");
16365 			return -EINVAL;
16366 		}
16367 	} else {
16368 		if (!btf_vmlinux) {
16369 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16370 			return -EINVAL;
16371 		}
16372 		btf = btf_vmlinux;
16373 		btf_get(btf);
16374 	}
16375 
16376 	t = btf_type_by_id(btf, id);
16377 	if (!t) {
16378 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16379 		err = -ENOENT;
16380 		goto err_put;
16381 	}
16382 
16383 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16384 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16385 		err = -EINVAL;
16386 		goto err_put;
16387 	}
16388 
16389 	sym_name = btf_name_by_offset(btf, t->name_off);
16390 	addr = kallsyms_lookup_name(sym_name);
16391 	if (!addr) {
16392 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16393 			sym_name);
16394 		err = -ENOENT;
16395 		goto err_put;
16396 	}
16397 	insn[0].imm = (u32)addr;
16398 	insn[1].imm = addr >> 32;
16399 
16400 	if (btf_type_is_func(t)) {
16401 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16402 		aux->btf_var.mem_size = 0;
16403 		goto check_btf;
16404 	}
16405 
16406 	datasec_id = find_btf_percpu_datasec(btf);
16407 	if (datasec_id > 0) {
16408 		datasec = btf_type_by_id(btf, datasec_id);
16409 		for_each_vsi(i, datasec, vsi) {
16410 			if (vsi->type == id) {
16411 				percpu = true;
16412 				break;
16413 			}
16414 		}
16415 	}
16416 
16417 	type = t->type;
16418 	t = btf_type_skip_modifiers(btf, type, NULL);
16419 	if (percpu) {
16420 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16421 		aux->btf_var.btf = btf;
16422 		aux->btf_var.btf_id = type;
16423 	} else if (!btf_type_is_struct(t)) {
16424 		const struct btf_type *ret;
16425 		const char *tname;
16426 		u32 tsize;
16427 
16428 		/* resolve the type size of ksym. */
16429 		ret = btf_resolve_size(btf, t, &tsize);
16430 		if (IS_ERR(ret)) {
16431 			tname = btf_name_by_offset(btf, t->name_off);
16432 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16433 				tname, PTR_ERR(ret));
16434 			err = -EINVAL;
16435 			goto err_put;
16436 		}
16437 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16438 		aux->btf_var.mem_size = tsize;
16439 	} else {
16440 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16441 		aux->btf_var.btf = btf;
16442 		aux->btf_var.btf_id = type;
16443 	}
16444 check_btf:
16445 	/* check whether we recorded this BTF (and maybe module) already */
16446 	for (i = 0; i < env->used_btf_cnt; i++) {
16447 		if (env->used_btfs[i].btf == btf) {
16448 			btf_put(btf);
16449 			return 0;
16450 		}
16451 	}
16452 
16453 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16454 		err = -E2BIG;
16455 		goto err_put;
16456 	}
16457 
16458 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16459 	btf_mod->btf = btf;
16460 	btf_mod->module = NULL;
16461 
16462 	/* if we reference variables from kernel module, bump its refcount */
16463 	if (btf_is_module(btf)) {
16464 		btf_mod->module = btf_try_get_module(btf);
16465 		if (!btf_mod->module) {
16466 			err = -ENXIO;
16467 			goto err_put;
16468 		}
16469 	}
16470 
16471 	env->used_btf_cnt++;
16472 
16473 	return 0;
16474 err_put:
16475 	btf_put(btf);
16476 	return err;
16477 }
16478 
16479 static bool is_tracing_prog_type(enum bpf_prog_type type)
16480 {
16481 	switch (type) {
16482 	case BPF_PROG_TYPE_KPROBE:
16483 	case BPF_PROG_TYPE_TRACEPOINT:
16484 	case BPF_PROG_TYPE_PERF_EVENT:
16485 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16486 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16487 		return true;
16488 	default:
16489 		return false;
16490 	}
16491 }
16492 
16493 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16494 					struct bpf_map *map,
16495 					struct bpf_prog *prog)
16496 
16497 {
16498 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16499 
16500 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16501 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16502 		if (is_tracing_prog_type(prog_type)) {
16503 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16504 			return -EINVAL;
16505 		}
16506 	}
16507 
16508 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16509 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16510 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16511 			return -EINVAL;
16512 		}
16513 
16514 		if (is_tracing_prog_type(prog_type)) {
16515 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16516 			return -EINVAL;
16517 		}
16518 
16519 		if (prog->aux->sleepable) {
16520 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16521 			return -EINVAL;
16522 		}
16523 	}
16524 
16525 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16526 		if (is_tracing_prog_type(prog_type)) {
16527 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16528 			return -EINVAL;
16529 		}
16530 	}
16531 
16532 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16533 	    !bpf_offload_prog_map_match(prog, map)) {
16534 		verbose(env, "offload device mismatch between prog and map\n");
16535 		return -EINVAL;
16536 	}
16537 
16538 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16539 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16540 		return -EINVAL;
16541 	}
16542 
16543 	if (prog->aux->sleepable)
16544 		switch (map->map_type) {
16545 		case BPF_MAP_TYPE_HASH:
16546 		case BPF_MAP_TYPE_LRU_HASH:
16547 		case BPF_MAP_TYPE_ARRAY:
16548 		case BPF_MAP_TYPE_PERCPU_HASH:
16549 		case BPF_MAP_TYPE_PERCPU_ARRAY:
16550 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16551 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16552 		case BPF_MAP_TYPE_HASH_OF_MAPS:
16553 		case BPF_MAP_TYPE_RINGBUF:
16554 		case BPF_MAP_TYPE_USER_RINGBUF:
16555 		case BPF_MAP_TYPE_INODE_STORAGE:
16556 		case BPF_MAP_TYPE_SK_STORAGE:
16557 		case BPF_MAP_TYPE_TASK_STORAGE:
16558 		case BPF_MAP_TYPE_CGRP_STORAGE:
16559 			break;
16560 		default:
16561 			verbose(env,
16562 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
16563 			return -EINVAL;
16564 		}
16565 
16566 	return 0;
16567 }
16568 
16569 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16570 {
16571 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16572 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16573 }
16574 
16575 /* find and rewrite pseudo imm in ld_imm64 instructions:
16576  *
16577  * 1. if it accesses map FD, replace it with actual map pointer.
16578  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16579  *
16580  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
16581  */
16582 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
16583 {
16584 	struct bpf_insn *insn = env->prog->insnsi;
16585 	int insn_cnt = env->prog->len;
16586 	int i, j, err;
16587 
16588 	err = bpf_prog_calc_tag(env->prog);
16589 	if (err)
16590 		return err;
16591 
16592 	for (i = 0; i < insn_cnt; i++, insn++) {
16593 		if (BPF_CLASS(insn->code) == BPF_LDX &&
16594 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
16595 			verbose(env, "BPF_LDX uses reserved fields\n");
16596 			return -EINVAL;
16597 		}
16598 
16599 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
16600 			struct bpf_insn_aux_data *aux;
16601 			struct bpf_map *map;
16602 			struct fd f;
16603 			u64 addr;
16604 			u32 fd;
16605 
16606 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
16607 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16608 			    insn[1].off != 0) {
16609 				verbose(env, "invalid bpf_ld_imm64 insn\n");
16610 				return -EINVAL;
16611 			}
16612 
16613 			if (insn[0].src_reg == 0)
16614 				/* valid generic load 64-bit imm */
16615 				goto next_insn;
16616 
16617 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16618 				aux = &env->insn_aux_data[i];
16619 				err = check_pseudo_btf_id(env, insn, aux);
16620 				if (err)
16621 					return err;
16622 				goto next_insn;
16623 			}
16624 
16625 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16626 				aux = &env->insn_aux_data[i];
16627 				aux->ptr_type = PTR_TO_FUNC;
16628 				goto next_insn;
16629 			}
16630 
16631 			/* In final convert_pseudo_ld_imm64() step, this is
16632 			 * converted into regular 64-bit imm load insn.
16633 			 */
16634 			switch (insn[0].src_reg) {
16635 			case BPF_PSEUDO_MAP_VALUE:
16636 			case BPF_PSEUDO_MAP_IDX_VALUE:
16637 				break;
16638 			case BPF_PSEUDO_MAP_FD:
16639 			case BPF_PSEUDO_MAP_IDX:
16640 				if (insn[1].imm == 0)
16641 					break;
16642 				fallthrough;
16643 			default:
16644 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
16645 				return -EINVAL;
16646 			}
16647 
16648 			switch (insn[0].src_reg) {
16649 			case BPF_PSEUDO_MAP_IDX_VALUE:
16650 			case BPF_PSEUDO_MAP_IDX:
16651 				if (bpfptr_is_null(env->fd_array)) {
16652 					verbose(env, "fd_idx without fd_array is invalid\n");
16653 					return -EPROTO;
16654 				}
16655 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
16656 							    insn[0].imm * sizeof(fd),
16657 							    sizeof(fd)))
16658 					return -EFAULT;
16659 				break;
16660 			default:
16661 				fd = insn[0].imm;
16662 				break;
16663 			}
16664 
16665 			f = fdget(fd);
16666 			map = __bpf_map_get(f);
16667 			if (IS_ERR(map)) {
16668 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
16669 					insn[0].imm);
16670 				return PTR_ERR(map);
16671 			}
16672 
16673 			err = check_map_prog_compatibility(env, map, env->prog);
16674 			if (err) {
16675 				fdput(f);
16676 				return err;
16677 			}
16678 
16679 			aux = &env->insn_aux_data[i];
16680 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16681 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
16682 				addr = (unsigned long)map;
16683 			} else {
16684 				u32 off = insn[1].imm;
16685 
16686 				if (off >= BPF_MAX_VAR_OFF) {
16687 					verbose(env, "direct value offset of %u is not allowed\n", off);
16688 					fdput(f);
16689 					return -EINVAL;
16690 				}
16691 
16692 				if (!map->ops->map_direct_value_addr) {
16693 					verbose(env, "no direct value access support for this map type\n");
16694 					fdput(f);
16695 					return -EINVAL;
16696 				}
16697 
16698 				err = map->ops->map_direct_value_addr(map, &addr, off);
16699 				if (err) {
16700 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16701 						map->value_size, off);
16702 					fdput(f);
16703 					return err;
16704 				}
16705 
16706 				aux->map_off = off;
16707 				addr += off;
16708 			}
16709 
16710 			insn[0].imm = (u32)addr;
16711 			insn[1].imm = addr >> 32;
16712 
16713 			/* check whether we recorded this map already */
16714 			for (j = 0; j < env->used_map_cnt; j++) {
16715 				if (env->used_maps[j] == map) {
16716 					aux->map_index = j;
16717 					fdput(f);
16718 					goto next_insn;
16719 				}
16720 			}
16721 
16722 			if (env->used_map_cnt >= MAX_USED_MAPS) {
16723 				fdput(f);
16724 				return -E2BIG;
16725 			}
16726 
16727 			/* hold the map. If the program is rejected by verifier,
16728 			 * the map will be released by release_maps() or it
16729 			 * will be used by the valid program until it's unloaded
16730 			 * and all maps are released in free_used_maps()
16731 			 */
16732 			bpf_map_inc(map);
16733 
16734 			aux->map_index = env->used_map_cnt;
16735 			env->used_maps[env->used_map_cnt++] = map;
16736 
16737 			if (bpf_map_is_cgroup_storage(map) &&
16738 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
16739 				verbose(env, "only one cgroup storage of each type is allowed\n");
16740 				fdput(f);
16741 				return -EBUSY;
16742 			}
16743 
16744 			fdput(f);
16745 next_insn:
16746 			insn++;
16747 			i++;
16748 			continue;
16749 		}
16750 
16751 		/* Basic sanity check before we invest more work here. */
16752 		if (!bpf_opcode_in_insntable(insn->code)) {
16753 			verbose(env, "unknown opcode %02x\n", insn->code);
16754 			return -EINVAL;
16755 		}
16756 	}
16757 
16758 	/* now all pseudo BPF_LD_IMM64 instructions load valid
16759 	 * 'struct bpf_map *' into a register instead of user map_fd.
16760 	 * These pointers will be used later by verifier to validate map access.
16761 	 */
16762 	return 0;
16763 }
16764 
16765 /* drop refcnt of maps used by the rejected program */
16766 static void release_maps(struct bpf_verifier_env *env)
16767 {
16768 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
16769 			     env->used_map_cnt);
16770 }
16771 
16772 /* drop refcnt of maps used by the rejected program */
16773 static void release_btfs(struct bpf_verifier_env *env)
16774 {
16775 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16776 			     env->used_btf_cnt);
16777 }
16778 
16779 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
16780 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
16781 {
16782 	struct bpf_insn *insn = env->prog->insnsi;
16783 	int insn_cnt = env->prog->len;
16784 	int i;
16785 
16786 	for (i = 0; i < insn_cnt; i++, insn++) {
16787 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16788 			continue;
16789 		if (insn->src_reg == BPF_PSEUDO_FUNC)
16790 			continue;
16791 		insn->src_reg = 0;
16792 	}
16793 }
16794 
16795 /* single env->prog->insni[off] instruction was replaced with the range
16796  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
16797  * [0, off) and [off, end) to new locations, so the patched range stays zero
16798  */
16799 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16800 				 struct bpf_insn_aux_data *new_data,
16801 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
16802 {
16803 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
16804 	struct bpf_insn *insn = new_prog->insnsi;
16805 	u32 old_seen = old_data[off].seen;
16806 	u32 prog_len;
16807 	int i;
16808 
16809 	/* aux info at OFF always needs adjustment, no matter fast path
16810 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16811 	 * original insn at old prog.
16812 	 */
16813 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16814 
16815 	if (cnt == 1)
16816 		return;
16817 	prog_len = new_prog->len;
16818 
16819 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16820 	memcpy(new_data + off + cnt - 1, old_data + off,
16821 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
16822 	for (i = off; i < off + cnt - 1; i++) {
16823 		/* Expand insni[off]'s seen count to the patched range. */
16824 		new_data[i].seen = old_seen;
16825 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
16826 	}
16827 	env->insn_aux_data = new_data;
16828 	vfree(old_data);
16829 }
16830 
16831 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16832 {
16833 	int i;
16834 
16835 	if (len == 1)
16836 		return;
16837 	/* NOTE: fake 'exit' subprog should be updated as well. */
16838 	for (i = 0; i <= env->subprog_cnt; i++) {
16839 		if (env->subprog_info[i].start <= off)
16840 			continue;
16841 		env->subprog_info[i].start += len - 1;
16842 	}
16843 }
16844 
16845 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
16846 {
16847 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16848 	int i, sz = prog->aux->size_poke_tab;
16849 	struct bpf_jit_poke_descriptor *desc;
16850 
16851 	for (i = 0; i < sz; i++) {
16852 		desc = &tab[i];
16853 		if (desc->insn_idx <= off)
16854 			continue;
16855 		desc->insn_idx += len - 1;
16856 	}
16857 }
16858 
16859 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16860 					    const struct bpf_insn *patch, u32 len)
16861 {
16862 	struct bpf_prog *new_prog;
16863 	struct bpf_insn_aux_data *new_data = NULL;
16864 
16865 	if (len > 1) {
16866 		new_data = vzalloc(array_size(env->prog->len + len - 1,
16867 					      sizeof(struct bpf_insn_aux_data)));
16868 		if (!new_data)
16869 			return NULL;
16870 	}
16871 
16872 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
16873 	if (IS_ERR(new_prog)) {
16874 		if (PTR_ERR(new_prog) == -ERANGE)
16875 			verbose(env,
16876 				"insn %d cannot be patched due to 16-bit range\n",
16877 				env->insn_aux_data[off].orig_idx);
16878 		vfree(new_data);
16879 		return NULL;
16880 	}
16881 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
16882 	adjust_subprog_starts(env, off, len);
16883 	adjust_poke_descs(new_prog, off, len);
16884 	return new_prog;
16885 }
16886 
16887 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16888 					      u32 off, u32 cnt)
16889 {
16890 	int i, j;
16891 
16892 	/* find first prog starting at or after off (first to remove) */
16893 	for (i = 0; i < env->subprog_cnt; i++)
16894 		if (env->subprog_info[i].start >= off)
16895 			break;
16896 	/* find first prog starting at or after off + cnt (first to stay) */
16897 	for (j = i; j < env->subprog_cnt; j++)
16898 		if (env->subprog_info[j].start >= off + cnt)
16899 			break;
16900 	/* if j doesn't start exactly at off + cnt, we are just removing
16901 	 * the front of previous prog
16902 	 */
16903 	if (env->subprog_info[j].start != off + cnt)
16904 		j--;
16905 
16906 	if (j > i) {
16907 		struct bpf_prog_aux *aux = env->prog->aux;
16908 		int move;
16909 
16910 		/* move fake 'exit' subprog as well */
16911 		move = env->subprog_cnt + 1 - j;
16912 
16913 		memmove(env->subprog_info + i,
16914 			env->subprog_info + j,
16915 			sizeof(*env->subprog_info) * move);
16916 		env->subprog_cnt -= j - i;
16917 
16918 		/* remove func_info */
16919 		if (aux->func_info) {
16920 			move = aux->func_info_cnt - j;
16921 
16922 			memmove(aux->func_info + i,
16923 				aux->func_info + j,
16924 				sizeof(*aux->func_info) * move);
16925 			aux->func_info_cnt -= j - i;
16926 			/* func_info->insn_off is set after all code rewrites,
16927 			 * in adjust_btf_func() - no need to adjust
16928 			 */
16929 		}
16930 	} else {
16931 		/* convert i from "first prog to remove" to "first to adjust" */
16932 		if (env->subprog_info[i].start == off)
16933 			i++;
16934 	}
16935 
16936 	/* update fake 'exit' subprog as well */
16937 	for (; i <= env->subprog_cnt; i++)
16938 		env->subprog_info[i].start -= cnt;
16939 
16940 	return 0;
16941 }
16942 
16943 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16944 				      u32 cnt)
16945 {
16946 	struct bpf_prog *prog = env->prog;
16947 	u32 i, l_off, l_cnt, nr_linfo;
16948 	struct bpf_line_info *linfo;
16949 
16950 	nr_linfo = prog->aux->nr_linfo;
16951 	if (!nr_linfo)
16952 		return 0;
16953 
16954 	linfo = prog->aux->linfo;
16955 
16956 	/* find first line info to remove, count lines to be removed */
16957 	for (i = 0; i < nr_linfo; i++)
16958 		if (linfo[i].insn_off >= off)
16959 			break;
16960 
16961 	l_off = i;
16962 	l_cnt = 0;
16963 	for (; i < nr_linfo; i++)
16964 		if (linfo[i].insn_off < off + cnt)
16965 			l_cnt++;
16966 		else
16967 			break;
16968 
16969 	/* First live insn doesn't match first live linfo, it needs to "inherit"
16970 	 * last removed linfo.  prog is already modified, so prog->len == off
16971 	 * means no live instructions after (tail of the program was removed).
16972 	 */
16973 	if (prog->len != off && l_cnt &&
16974 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16975 		l_cnt--;
16976 		linfo[--i].insn_off = off + cnt;
16977 	}
16978 
16979 	/* remove the line info which refer to the removed instructions */
16980 	if (l_cnt) {
16981 		memmove(linfo + l_off, linfo + i,
16982 			sizeof(*linfo) * (nr_linfo - i));
16983 
16984 		prog->aux->nr_linfo -= l_cnt;
16985 		nr_linfo = prog->aux->nr_linfo;
16986 	}
16987 
16988 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
16989 	for (i = l_off; i < nr_linfo; i++)
16990 		linfo[i].insn_off -= cnt;
16991 
16992 	/* fix up all subprogs (incl. 'exit') which start >= off */
16993 	for (i = 0; i <= env->subprog_cnt; i++)
16994 		if (env->subprog_info[i].linfo_idx > l_off) {
16995 			/* program may have started in the removed region but
16996 			 * may not be fully removed
16997 			 */
16998 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16999 				env->subprog_info[i].linfo_idx -= l_cnt;
17000 			else
17001 				env->subprog_info[i].linfo_idx = l_off;
17002 		}
17003 
17004 	return 0;
17005 }
17006 
17007 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17008 {
17009 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17010 	unsigned int orig_prog_len = env->prog->len;
17011 	int err;
17012 
17013 	if (bpf_prog_is_offloaded(env->prog->aux))
17014 		bpf_prog_offload_remove_insns(env, off, cnt);
17015 
17016 	err = bpf_remove_insns(env->prog, off, cnt);
17017 	if (err)
17018 		return err;
17019 
17020 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17021 	if (err)
17022 		return err;
17023 
17024 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17025 	if (err)
17026 		return err;
17027 
17028 	memmove(aux_data + off,	aux_data + off + cnt,
17029 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17030 
17031 	return 0;
17032 }
17033 
17034 /* The verifier does more data flow analysis than llvm and will not
17035  * explore branches that are dead at run time. Malicious programs can
17036  * have dead code too. Therefore replace all dead at-run-time code
17037  * with 'ja -1'.
17038  *
17039  * Just nops are not optimal, e.g. if they would sit at the end of the
17040  * program and through another bug we would manage to jump there, then
17041  * we'd execute beyond program memory otherwise. Returning exception
17042  * code also wouldn't work since we can have subprogs where the dead
17043  * code could be located.
17044  */
17045 static void sanitize_dead_code(struct bpf_verifier_env *env)
17046 {
17047 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17048 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17049 	struct bpf_insn *insn = env->prog->insnsi;
17050 	const int insn_cnt = env->prog->len;
17051 	int i;
17052 
17053 	for (i = 0; i < insn_cnt; i++) {
17054 		if (aux_data[i].seen)
17055 			continue;
17056 		memcpy(insn + i, &trap, sizeof(trap));
17057 		aux_data[i].zext_dst = false;
17058 	}
17059 }
17060 
17061 static bool insn_is_cond_jump(u8 code)
17062 {
17063 	u8 op;
17064 
17065 	if (BPF_CLASS(code) == BPF_JMP32)
17066 		return true;
17067 
17068 	if (BPF_CLASS(code) != BPF_JMP)
17069 		return false;
17070 
17071 	op = BPF_OP(code);
17072 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17073 }
17074 
17075 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17076 {
17077 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17078 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17079 	struct bpf_insn *insn = env->prog->insnsi;
17080 	const int insn_cnt = env->prog->len;
17081 	int i;
17082 
17083 	for (i = 0; i < insn_cnt; i++, insn++) {
17084 		if (!insn_is_cond_jump(insn->code))
17085 			continue;
17086 
17087 		if (!aux_data[i + 1].seen)
17088 			ja.off = insn->off;
17089 		else if (!aux_data[i + 1 + insn->off].seen)
17090 			ja.off = 0;
17091 		else
17092 			continue;
17093 
17094 		if (bpf_prog_is_offloaded(env->prog->aux))
17095 			bpf_prog_offload_replace_insn(env, i, &ja);
17096 
17097 		memcpy(insn, &ja, sizeof(ja));
17098 	}
17099 }
17100 
17101 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17102 {
17103 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17104 	int insn_cnt = env->prog->len;
17105 	int i, err;
17106 
17107 	for (i = 0; i < insn_cnt; i++) {
17108 		int j;
17109 
17110 		j = 0;
17111 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17112 			j++;
17113 		if (!j)
17114 			continue;
17115 
17116 		err = verifier_remove_insns(env, i, j);
17117 		if (err)
17118 			return err;
17119 		insn_cnt = env->prog->len;
17120 	}
17121 
17122 	return 0;
17123 }
17124 
17125 static int opt_remove_nops(struct bpf_verifier_env *env)
17126 {
17127 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17128 	struct bpf_insn *insn = env->prog->insnsi;
17129 	int insn_cnt = env->prog->len;
17130 	int i, err;
17131 
17132 	for (i = 0; i < insn_cnt; i++) {
17133 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17134 			continue;
17135 
17136 		err = verifier_remove_insns(env, i, 1);
17137 		if (err)
17138 			return err;
17139 		insn_cnt--;
17140 		i--;
17141 	}
17142 
17143 	return 0;
17144 }
17145 
17146 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17147 					 const union bpf_attr *attr)
17148 {
17149 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17150 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17151 	int i, patch_len, delta = 0, len = env->prog->len;
17152 	struct bpf_insn *insns = env->prog->insnsi;
17153 	struct bpf_prog *new_prog;
17154 	bool rnd_hi32;
17155 
17156 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17157 	zext_patch[1] = BPF_ZEXT_REG(0);
17158 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17159 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17160 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17161 	for (i = 0; i < len; i++) {
17162 		int adj_idx = i + delta;
17163 		struct bpf_insn insn;
17164 		int load_reg;
17165 
17166 		insn = insns[adj_idx];
17167 		load_reg = insn_def_regno(&insn);
17168 		if (!aux[adj_idx].zext_dst) {
17169 			u8 code, class;
17170 			u32 imm_rnd;
17171 
17172 			if (!rnd_hi32)
17173 				continue;
17174 
17175 			code = insn.code;
17176 			class = BPF_CLASS(code);
17177 			if (load_reg == -1)
17178 				continue;
17179 
17180 			/* NOTE: arg "reg" (the fourth one) is only used for
17181 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17182 			 *       here.
17183 			 */
17184 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17185 				if (class == BPF_LD &&
17186 				    BPF_MODE(code) == BPF_IMM)
17187 					i++;
17188 				continue;
17189 			}
17190 
17191 			/* ctx load could be transformed into wider load. */
17192 			if (class == BPF_LDX &&
17193 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17194 				continue;
17195 
17196 			imm_rnd = get_random_u32();
17197 			rnd_hi32_patch[0] = insn;
17198 			rnd_hi32_patch[1].imm = imm_rnd;
17199 			rnd_hi32_patch[3].dst_reg = load_reg;
17200 			patch = rnd_hi32_patch;
17201 			patch_len = 4;
17202 			goto apply_patch_buffer;
17203 		}
17204 
17205 		/* Add in an zero-extend instruction if a) the JIT has requested
17206 		 * it or b) it's a CMPXCHG.
17207 		 *
17208 		 * The latter is because: BPF_CMPXCHG always loads a value into
17209 		 * R0, therefore always zero-extends. However some archs'
17210 		 * equivalent instruction only does this load when the
17211 		 * comparison is successful. This detail of CMPXCHG is
17212 		 * orthogonal to the general zero-extension behaviour of the
17213 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17214 		 */
17215 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17216 			continue;
17217 
17218 		/* Zero-extension is done by the caller. */
17219 		if (bpf_pseudo_kfunc_call(&insn))
17220 			continue;
17221 
17222 		if (WARN_ON(load_reg == -1)) {
17223 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17224 			return -EFAULT;
17225 		}
17226 
17227 		zext_patch[0] = insn;
17228 		zext_patch[1].dst_reg = load_reg;
17229 		zext_patch[1].src_reg = load_reg;
17230 		patch = zext_patch;
17231 		patch_len = 2;
17232 apply_patch_buffer:
17233 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17234 		if (!new_prog)
17235 			return -ENOMEM;
17236 		env->prog = new_prog;
17237 		insns = new_prog->insnsi;
17238 		aux = env->insn_aux_data;
17239 		delta += patch_len - 1;
17240 	}
17241 
17242 	return 0;
17243 }
17244 
17245 /* convert load instructions that access fields of a context type into a
17246  * sequence of instructions that access fields of the underlying structure:
17247  *     struct __sk_buff    -> struct sk_buff
17248  *     struct bpf_sock_ops -> struct sock
17249  */
17250 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17251 {
17252 	const struct bpf_verifier_ops *ops = env->ops;
17253 	int i, cnt, size, ctx_field_size, delta = 0;
17254 	const int insn_cnt = env->prog->len;
17255 	struct bpf_insn insn_buf[16], *insn;
17256 	u32 target_size, size_default, off;
17257 	struct bpf_prog *new_prog;
17258 	enum bpf_access_type type;
17259 	bool is_narrower_load;
17260 
17261 	if (ops->gen_prologue || env->seen_direct_write) {
17262 		if (!ops->gen_prologue) {
17263 			verbose(env, "bpf verifier is misconfigured\n");
17264 			return -EINVAL;
17265 		}
17266 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17267 					env->prog);
17268 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17269 			verbose(env, "bpf verifier is misconfigured\n");
17270 			return -EINVAL;
17271 		} else if (cnt) {
17272 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17273 			if (!new_prog)
17274 				return -ENOMEM;
17275 
17276 			env->prog = new_prog;
17277 			delta += cnt - 1;
17278 		}
17279 	}
17280 
17281 	if (bpf_prog_is_offloaded(env->prog->aux))
17282 		return 0;
17283 
17284 	insn = env->prog->insnsi + delta;
17285 
17286 	for (i = 0; i < insn_cnt; i++, insn++) {
17287 		bpf_convert_ctx_access_t convert_ctx_access;
17288 
17289 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17290 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17291 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17292 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
17293 			type = BPF_READ;
17294 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17295 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17296 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17297 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17298 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17299 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17300 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17301 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17302 			type = BPF_WRITE;
17303 		} else {
17304 			continue;
17305 		}
17306 
17307 		if (type == BPF_WRITE &&
17308 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17309 			struct bpf_insn patch[] = {
17310 				*insn,
17311 				BPF_ST_NOSPEC(),
17312 			};
17313 
17314 			cnt = ARRAY_SIZE(patch);
17315 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17316 			if (!new_prog)
17317 				return -ENOMEM;
17318 
17319 			delta    += cnt - 1;
17320 			env->prog = new_prog;
17321 			insn      = new_prog->insnsi + i + delta;
17322 			continue;
17323 		}
17324 
17325 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17326 		case PTR_TO_CTX:
17327 			if (!ops->convert_ctx_access)
17328 				continue;
17329 			convert_ctx_access = ops->convert_ctx_access;
17330 			break;
17331 		case PTR_TO_SOCKET:
17332 		case PTR_TO_SOCK_COMMON:
17333 			convert_ctx_access = bpf_sock_convert_ctx_access;
17334 			break;
17335 		case PTR_TO_TCP_SOCK:
17336 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17337 			break;
17338 		case PTR_TO_XDP_SOCK:
17339 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17340 			break;
17341 		case PTR_TO_BTF_ID:
17342 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17343 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17344 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17345 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17346 		 * any faults for loads into such types. BPF_WRITE is disallowed
17347 		 * for this case.
17348 		 */
17349 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17350 			if (type == BPF_READ) {
17351 				insn->code = BPF_LDX | BPF_PROBE_MEM |
17352 					BPF_SIZE((insn)->code);
17353 				env->prog->aux->num_exentries++;
17354 			}
17355 			continue;
17356 		default:
17357 			continue;
17358 		}
17359 
17360 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17361 		size = BPF_LDST_BYTES(insn);
17362 
17363 		/* If the read access is a narrower load of the field,
17364 		 * convert to a 4/8-byte load, to minimum program type specific
17365 		 * convert_ctx_access changes. If conversion is successful,
17366 		 * we will apply proper mask to the result.
17367 		 */
17368 		is_narrower_load = size < ctx_field_size;
17369 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17370 		off = insn->off;
17371 		if (is_narrower_load) {
17372 			u8 size_code;
17373 
17374 			if (type == BPF_WRITE) {
17375 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17376 				return -EINVAL;
17377 			}
17378 
17379 			size_code = BPF_H;
17380 			if (ctx_field_size == 4)
17381 				size_code = BPF_W;
17382 			else if (ctx_field_size == 8)
17383 				size_code = BPF_DW;
17384 
17385 			insn->off = off & ~(size_default - 1);
17386 			insn->code = BPF_LDX | BPF_MEM | size_code;
17387 		}
17388 
17389 		target_size = 0;
17390 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17391 					 &target_size);
17392 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17393 		    (ctx_field_size && !target_size)) {
17394 			verbose(env, "bpf verifier is misconfigured\n");
17395 			return -EINVAL;
17396 		}
17397 
17398 		if (is_narrower_load && size < target_size) {
17399 			u8 shift = bpf_ctx_narrow_access_offset(
17400 				off, size, size_default) * 8;
17401 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17402 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17403 				return -EINVAL;
17404 			}
17405 			if (ctx_field_size <= 4) {
17406 				if (shift)
17407 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17408 									insn->dst_reg,
17409 									shift);
17410 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17411 								(1 << size * 8) - 1);
17412 			} else {
17413 				if (shift)
17414 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17415 									insn->dst_reg,
17416 									shift);
17417 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
17418 								(1ULL << size * 8) - 1);
17419 			}
17420 		}
17421 
17422 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17423 		if (!new_prog)
17424 			return -ENOMEM;
17425 
17426 		delta += cnt - 1;
17427 
17428 		/* keep walking new program and skip insns we just inserted */
17429 		env->prog = new_prog;
17430 		insn      = new_prog->insnsi + i + delta;
17431 	}
17432 
17433 	return 0;
17434 }
17435 
17436 static int jit_subprogs(struct bpf_verifier_env *env)
17437 {
17438 	struct bpf_prog *prog = env->prog, **func, *tmp;
17439 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17440 	struct bpf_map *map_ptr;
17441 	struct bpf_insn *insn;
17442 	void *old_bpf_func;
17443 	int err, num_exentries;
17444 
17445 	if (env->subprog_cnt <= 1)
17446 		return 0;
17447 
17448 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17449 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17450 			continue;
17451 
17452 		/* Upon error here we cannot fall back to interpreter but
17453 		 * need a hard reject of the program. Thus -EFAULT is
17454 		 * propagated in any case.
17455 		 */
17456 		subprog = find_subprog(env, i + insn->imm + 1);
17457 		if (subprog < 0) {
17458 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17459 				  i + insn->imm + 1);
17460 			return -EFAULT;
17461 		}
17462 		/* temporarily remember subprog id inside insn instead of
17463 		 * aux_data, since next loop will split up all insns into funcs
17464 		 */
17465 		insn->off = subprog;
17466 		/* remember original imm in case JIT fails and fallback
17467 		 * to interpreter will be needed
17468 		 */
17469 		env->insn_aux_data[i].call_imm = insn->imm;
17470 		/* point imm to __bpf_call_base+1 from JITs point of view */
17471 		insn->imm = 1;
17472 		if (bpf_pseudo_func(insn))
17473 			/* jit (e.g. x86_64) may emit fewer instructions
17474 			 * if it learns a u32 imm is the same as a u64 imm.
17475 			 * Force a non zero here.
17476 			 */
17477 			insn[1].imm = 1;
17478 	}
17479 
17480 	err = bpf_prog_alloc_jited_linfo(prog);
17481 	if (err)
17482 		goto out_undo_insn;
17483 
17484 	err = -ENOMEM;
17485 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17486 	if (!func)
17487 		goto out_undo_insn;
17488 
17489 	for (i = 0; i < env->subprog_cnt; i++) {
17490 		subprog_start = subprog_end;
17491 		subprog_end = env->subprog_info[i + 1].start;
17492 
17493 		len = subprog_end - subprog_start;
17494 		/* bpf_prog_run() doesn't call subprogs directly,
17495 		 * hence main prog stats include the runtime of subprogs.
17496 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17497 		 * func[i]->stats will never be accessed and stays NULL
17498 		 */
17499 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17500 		if (!func[i])
17501 			goto out_free;
17502 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17503 		       len * sizeof(struct bpf_insn));
17504 		func[i]->type = prog->type;
17505 		func[i]->len = len;
17506 		if (bpf_prog_calc_tag(func[i]))
17507 			goto out_free;
17508 		func[i]->is_func = 1;
17509 		func[i]->aux->func_idx = i;
17510 		/* Below members will be freed only at prog->aux */
17511 		func[i]->aux->btf = prog->aux->btf;
17512 		func[i]->aux->func_info = prog->aux->func_info;
17513 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17514 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17515 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17516 
17517 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17518 			struct bpf_jit_poke_descriptor *poke;
17519 
17520 			poke = &prog->aux->poke_tab[j];
17521 			if (poke->insn_idx < subprog_end &&
17522 			    poke->insn_idx >= subprog_start)
17523 				poke->aux = func[i]->aux;
17524 		}
17525 
17526 		func[i]->aux->name[0] = 'F';
17527 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17528 		func[i]->jit_requested = 1;
17529 		func[i]->blinding_requested = prog->blinding_requested;
17530 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
17531 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
17532 		func[i]->aux->linfo = prog->aux->linfo;
17533 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17534 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17535 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
17536 		num_exentries = 0;
17537 		insn = func[i]->insnsi;
17538 		for (j = 0; j < func[i]->len; j++, insn++) {
17539 			if (BPF_CLASS(insn->code) == BPF_LDX &&
17540 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
17541 				num_exentries++;
17542 		}
17543 		func[i]->aux->num_exentries = num_exentries;
17544 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
17545 		func[i] = bpf_int_jit_compile(func[i]);
17546 		if (!func[i]->jited) {
17547 			err = -ENOTSUPP;
17548 			goto out_free;
17549 		}
17550 		cond_resched();
17551 	}
17552 
17553 	/* at this point all bpf functions were successfully JITed
17554 	 * now populate all bpf_calls with correct addresses and
17555 	 * run last pass of JIT
17556 	 */
17557 	for (i = 0; i < env->subprog_cnt; i++) {
17558 		insn = func[i]->insnsi;
17559 		for (j = 0; j < func[i]->len; j++, insn++) {
17560 			if (bpf_pseudo_func(insn)) {
17561 				subprog = insn->off;
17562 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17563 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17564 				continue;
17565 			}
17566 			if (!bpf_pseudo_call(insn))
17567 				continue;
17568 			subprog = insn->off;
17569 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
17570 		}
17571 
17572 		/* we use the aux data to keep a list of the start addresses
17573 		 * of the JITed images for each function in the program
17574 		 *
17575 		 * for some architectures, such as powerpc64, the imm field
17576 		 * might not be large enough to hold the offset of the start
17577 		 * address of the callee's JITed image from __bpf_call_base
17578 		 *
17579 		 * in such cases, we can lookup the start address of a callee
17580 		 * by using its subprog id, available from the off field of
17581 		 * the call instruction, as an index for this list
17582 		 */
17583 		func[i]->aux->func = func;
17584 		func[i]->aux->func_cnt = env->subprog_cnt;
17585 	}
17586 	for (i = 0; i < env->subprog_cnt; i++) {
17587 		old_bpf_func = func[i]->bpf_func;
17588 		tmp = bpf_int_jit_compile(func[i]);
17589 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17590 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
17591 			err = -ENOTSUPP;
17592 			goto out_free;
17593 		}
17594 		cond_resched();
17595 	}
17596 
17597 	/* finally lock prog and jit images for all functions and
17598 	 * populate kallsysm
17599 	 */
17600 	for (i = 0; i < env->subprog_cnt; i++) {
17601 		bpf_prog_lock_ro(func[i]);
17602 		bpf_prog_kallsyms_add(func[i]);
17603 	}
17604 
17605 	/* Last step: make now unused interpreter insns from main
17606 	 * prog consistent for later dump requests, so they can
17607 	 * later look the same as if they were interpreted only.
17608 	 */
17609 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17610 		if (bpf_pseudo_func(insn)) {
17611 			insn[0].imm = env->insn_aux_data[i].call_imm;
17612 			insn[1].imm = insn->off;
17613 			insn->off = 0;
17614 			continue;
17615 		}
17616 		if (!bpf_pseudo_call(insn))
17617 			continue;
17618 		insn->off = env->insn_aux_data[i].call_imm;
17619 		subprog = find_subprog(env, i + insn->off + 1);
17620 		insn->imm = subprog;
17621 	}
17622 
17623 	prog->jited = 1;
17624 	prog->bpf_func = func[0]->bpf_func;
17625 	prog->jited_len = func[0]->jited_len;
17626 	prog->aux->func = func;
17627 	prog->aux->func_cnt = env->subprog_cnt;
17628 	bpf_prog_jit_attempt_done(prog);
17629 	return 0;
17630 out_free:
17631 	/* We failed JIT'ing, so at this point we need to unregister poke
17632 	 * descriptors from subprogs, so that kernel is not attempting to
17633 	 * patch it anymore as we're freeing the subprog JIT memory.
17634 	 */
17635 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17636 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17637 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17638 	}
17639 	/* At this point we're guaranteed that poke descriptors are not
17640 	 * live anymore. We can just unlink its descriptor table as it's
17641 	 * released with the main prog.
17642 	 */
17643 	for (i = 0; i < env->subprog_cnt; i++) {
17644 		if (!func[i])
17645 			continue;
17646 		func[i]->aux->poke_tab = NULL;
17647 		bpf_jit_free(func[i]);
17648 	}
17649 	kfree(func);
17650 out_undo_insn:
17651 	/* cleanup main prog to be interpreted */
17652 	prog->jit_requested = 0;
17653 	prog->blinding_requested = 0;
17654 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17655 		if (!bpf_pseudo_call(insn))
17656 			continue;
17657 		insn->off = 0;
17658 		insn->imm = env->insn_aux_data[i].call_imm;
17659 	}
17660 	bpf_prog_jit_attempt_done(prog);
17661 	return err;
17662 }
17663 
17664 static int fixup_call_args(struct bpf_verifier_env *env)
17665 {
17666 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17667 	struct bpf_prog *prog = env->prog;
17668 	struct bpf_insn *insn = prog->insnsi;
17669 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
17670 	int i, depth;
17671 #endif
17672 	int err = 0;
17673 
17674 	if (env->prog->jit_requested &&
17675 	    !bpf_prog_is_offloaded(env->prog->aux)) {
17676 		err = jit_subprogs(env);
17677 		if (err == 0)
17678 			return 0;
17679 		if (err == -EFAULT)
17680 			return err;
17681 	}
17682 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17683 	if (has_kfunc_call) {
17684 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17685 		return -EINVAL;
17686 	}
17687 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17688 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
17689 		 * have to be rejected, since interpreter doesn't support them yet.
17690 		 */
17691 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17692 		return -EINVAL;
17693 	}
17694 	for (i = 0; i < prog->len; i++, insn++) {
17695 		if (bpf_pseudo_func(insn)) {
17696 			/* When JIT fails the progs with callback calls
17697 			 * have to be rejected, since interpreter doesn't support them yet.
17698 			 */
17699 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
17700 			return -EINVAL;
17701 		}
17702 
17703 		if (!bpf_pseudo_call(insn))
17704 			continue;
17705 		depth = get_callee_stack_depth(env, insn, i);
17706 		if (depth < 0)
17707 			return depth;
17708 		bpf_patch_call_args(insn, depth);
17709 	}
17710 	err = 0;
17711 #endif
17712 	return err;
17713 }
17714 
17715 /* replace a generic kfunc with a specialized version if necessary */
17716 static void specialize_kfunc(struct bpf_verifier_env *env,
17717 			     u32 func_id, u16 offset, unsigned long *addr)
17718 {
17719 	struct bpf_prog *prog = env->prog;
17720 	bool seen_direct_write;
17721 	void *xdp_kfunc;
17722 	bool is_rdonly;
17723 
17724 	if (bpf_dev_bound_kfunc_id(func_id)) {
17725 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
17726 		if (xdp_kfunc) {
17727 			*addr = (unsigned long)xdp_kfunc;
17728 			return;
17729 		}
17730 		/* fallback to default kfunc when not supported by netdev */
17731 	}
17732 
17733 	if (offset)
17734 		return;
17735 
17736 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17737 		seen_direct_write = env->seen_direct_write;
17738 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17739 
17740 		if (is_rdonly)
17741 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
17742 
17743 		/* restore env->seen_direct_write to its original value, since
17744 		 * may_access_direct_pkt_data mutates it
17745 		 */
17746 		env->seen_direct_write = seen_direct_write;
17747 	}
17748 }
17749 
17750 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
17751 					    u16 struct_meta_reg,
17752 					    u16 node_offset_reg,
17753 					    struct bpf_insn *insn,
17754 					    struct bpf_insn *insn_buf,
17755 					    int *cnt)
17756 {
17757 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
17758 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
17759 
17760 	insn_buf[0] = addr[0];
17761 	insn_buf[1] = addr[1];
17762 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
17763 	insn_buf[3] = *insn;
17764 	*cnt = 4;
17765 }
17766 
17767 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17768 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
17769 {
17770 	const struct bpf_kfunc_desc *desc;
17771 
17772 	if (!insn->imm) {
17773 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17774 		return -EINVAL;
17775 	}
17776 
17777 	*cnt = 0;
17778 
17779 	/* insn->imm has the btf func_id. Replace it with an offset relative to
17780 	 * __bpf_call_base, unless the JIT needs to call functions that are
17781 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
17782 	 */
17783 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
17784 	if (!desc) {
17785 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17786 			insn->imm);
17787 		return -EFAULT;
17788 	}
17789 
17790 	if (!bpf_jit_supports_far_kfunc_call())
17791 		insn->imm = BPF_CALL_IMM(desc->addr);
17792 	if (insn->off)
17793 		return 0;
17794 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17795 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17796 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17797 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
17798 
17799 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17800 		insn_buf[1] = addr[0];
17801 		insn_buf[2] = addr[1];
17802 		insn_buf[3] = *insn;
17803 		*cnt = 4;
17804 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
17805 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
17806 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17807 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17808 
17809 		insn_buf[0] = addr[0];
17810 		insn_buf[1] = addr[1];
17811 		insn_buf[2] = *insn;
17812 		*cnt = 3;
17813 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
17814 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
17815 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
17816 		int struct_meta_reg = BPF_REG_3;
17817 		int node_offset_reg = BPF_REG_4;
17818 
17819 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
17820 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
17821 			struct_meta_reg = BPF_REG_4;
17822 			node_offset_reg = BPF_REG_5;
17823 		}
17824 
17825 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
17826 						node_offset_reg, insn, insn_buf, cnt);
17827 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17828 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
17829 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17830 		*cnt = 1;
17831 	}
17832 	return 0;
17833 }
17834 
17835 /* Do various post-verification rewrites in a single program pass.
17836  * These rewrites simplify JIT and interpreter implementations.
17837  */
17838 static int do_misc_fixups(struct bpf_verifier_env *env)
17839 {
17840 	struct bpf_prog *prog = env->prog;
17841 	enum bpf_attach_type eatype = prog->expected_attach_type;
17842 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17843 	struct bpf_insn *insn = prog->insnsi;
17844 	const struct bpf_func_proto *fn;
17845 	const int insn_cnt = prog->len;
17846 	const struct bpf_map_ops *ops;
17847 	struct bpf_insn_aux_data *aux;
17848 	struct bpf_insn insn_buf[16];
17849 	struct bpf_prog *new_prog;
17850 	struct bpf_map *map_ptr;
17851 	int i, ret, cnt, delta = 0;
17852 
17853 	for (i = 0; i < insn_cnt; i++, insn++) {
17854 		/* Make divide-by-zero exceptions impossible. */
17855 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17856 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17857 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
17858 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
17859 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
17860 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17861 			struct bpf_insn *patchlet;
17862 			struct bpf_insn chk_and_div[] = {
17863 				/* [R,W]x div 0 -> 0 */
17864 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17865 					     BPF_JNE | BPF_K, insn->src_reg,
17866 					     0, 2, 0),
17867 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17868 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17869 				*insn,
17870 			};
17871 			struct bpf_insn chk_and_mod[] = {
17872 				/* [R,W]x mod 0 -> [R,W]x */
17873 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17874 					     BPF_JEQ | BPF_K, insn->src_reg,
17875 					     0, 1 + (is64 ? 0 : 1), 0),
17876 				*insn,
17877 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17878 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
17879 			};
17880 
17881 			patchlet = isdiv ? chk_and_div : chk_and_mod;
17882 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
17883 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
17884 
17885 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
17886 			if (!new_prog)
17887 				return -ENOMEM;
17888 
17889 			delta    += cnt - 1;
17890 			env->prog = prog = new_prog;
17891 			insn      = new_prog->insnsi + i + delta;
17892 			continue;
17893 		}
17894 
17895 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
17896 		if (BPF_CLASS(insn->code) == BPF_LD &&
17897 		    (BPF_MODE(insn->code) == BPF_ABS ||
17898 		     BPF_MODE(insn->code) == BPF_IND)) {
17899 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
17900 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17901 				verbose(env, "bpf verifier is misconfigured\n");
17902 				return -EINVAL;
17903 			}
17904 
17905 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17906 			if (!new_prog)
17907 				return -ENOMEM;
17908 
17909 			delta    += cnt - 1;
17910 			env->prog = prog = new_prog;
17911 			insn      = new_prog->insnsi + i + delta;
17912 			continue;
17913 		}
17914 
17915 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
17916 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17917 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17918 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17919 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
17920 			struct bpf_insn *patch = &insn_buf[0];
17921 			bool issrc, isneg, isimm;
17922 			u32 off_reg;
17923 
17924 			aux = &env->insn_aux_data[i + delta];
17925 			if (!aux->alu_state ||
17926 			    aux->alu_state == BPF_ALU_NON_POINTER)
17927 				continue;
17928 
17929 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17930 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17931 				BPF_ALU_SANITIZE_SRC;
17932 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
17933 
17934 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
17935 			if (isimm) {
17936 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17937 			} else {
17938 				if (isneg)
17939 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17940 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17941 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17942 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17943 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17944 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17945 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17946 			}
17947 			if (!issrc)
17948 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17949 			insn->src_reg = BPF_REG_AX;
17950 			if (isneg)
17951 				insn->code = insn->code == code_add ?
17952 					     code_sub : code_add;
17953 			*patch++ = *insn;
17954 			if (issrc && isneg && !isimm)
17955 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17956 			cnt = patch - insn_buf;
17957 
17958 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17959 			if (!new_prog)
17960 				return -ENOMEM;
17961 
17962 			delta    += cnt - 1;
17963 			env->prog = prog = new_prog;
17964 			insn      = new_prog->insnsi + i + delta;
17965 			continue;
17966 		}
17967 
17968 		if (insn->code != (BPF_JMP | BPF_CALL))
17969 			continue;
17970 		if (insn->src_reg == BPF_PSEUDO_CALL)
17971 			continue;
17972 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17973 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
17974 			if (ret)
17975 				return ret;
17976 			if (cnt == 0)
17977 				continue;
17978 
17979 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17980 			if (!new_prog)
17981 				return -ENOMEM;
17982 
17983 			delta	 += cnt - 1;
17984 			env->prog = prog = new_prog;
17985 			insn	  = new_prog->insnsi + i + delta;
17986 			continue;
17987 		}
17988 
17989 		if (insn->imm == BPF_FUNC_get_route_realm)
17990 			prog->dst_needed = 1;
17991 		if (insn->imm == BPF_FUNC_get_prandom_u32)
17992 			bpf_user_rnd_init_once();
17993 		if (insn->imm == BPF_FUNC_override_return)
17994 			prog->kprobe_override = 1;
17995 		if (insn->imm == BPF_FUNC_tail_call) {
17996 			/* If we tail call into other programs, we
17997 			 * cannot make any assumptions since they can
17998 			 * be replaced dynamically during runtime in
17999 			 * the program array.
18000 			 */
18001 			prog->cb_access = 1;
18002 			if (!allow_tail_call_in_subprogs(env))
18003 				prog->aux->stack_depth = MAX_BPF_STACK;
18004 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18005 
18006 			/* mark bpf_tail_call as different opcode to avoid
18007 			 * conditional branch in the interpreter for every normal
18008 			 * call and to prevent accidental JITing by JIT compiler
18009 			 * that doesn't support bpf_tail_call yet
18010 			 */
18011 			insn->imm = 0;
18012 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18013 
18014 			aux = &env->insn_aux_data[i + delta];
18015 			if (env->bpf_capable && !prog->blinding_requested &&
18016 			    prog->jit_requested &&
18017 			    !bpf_map_key_poisoned(aux) &&
18018 			    !bpf_map_ptr_poisoned(aux) &&
18019 			    !bpf_map_ptr_unpriv(aux)) {
18020 				struct bpf_jit_poke_descriptor desc = {
18021 					.reason = BPF_POKE_REASON_TAIL_CALL,
18022 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18023 					.tail_call.key = bpf_map_key_immediate(aux),
18024 					.insn_idx = i + delta,
18025 				};
18026 
18027 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18028 				if (ret < 0) {
18029 					verbose(env, "adding tail call poke descriptor failed\n");
18030 					return ret;
18031 				}
18032 
18033 				insn->imm = ret + 1;
18034 				continue;
18035 			}
18036 
18037 			if (!bpf_map_ptr_unpriv(aux))
18038 				continue;
18039 
18040 			/* instead of changing every JIT dealing with tail_call
18041 			 * emit two extra insns:
18042 			 * if (index >= max_entries) goto out;
18043 			 * index &= array->index_mask;
18044 			 * to avoid out-of-bounds cpu speculation
18045 			 */
18046 			if (bpf_map_ptr_poisoned(aux)) {
18047 				verbose(env, "tail_call abusing map_ptr\n");
18048 				return -EINVAL;
18049 			}
18050 
18051 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18052 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18053 						  map_ptr->max_entries, 2);
18054 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18055 						    container_of(map_ptr,
18056 								 struct bpf_array,
18057 								 map)->index_mask);
18058 			insn_buf[2] = *insn;
18059 			cnt = 3;
18060 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18061 			if (!new_prog)
18062 				return -ENOMEM;
18063 
18064 			delta    += cnt - 1;
18065 			env->prog = prog = new_prog;
18066 			insn      = new_prog->insnsi + i + delta;
18067 			continue;
18068 		}
18069 
18070 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18071 			/* The verifier will process callback_fn as many times as necessary
18072 			 * with different maps and the register states prepared by
18073 			 * set_timer_callback_state will be accurate.
18074 			 *
18075 			 * The following use case is valid:
18076 			 *   map1 is shared by prog1, prog2, prog3.
18077 			 *   prog1 calls bpf_timer_init for some map1 elements
18078 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18079 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18080 			 *   prog3 calls bpf_timer_start for some map1 elements.
18081 			 *     Those that were not both bpf_timer_init-ed and
18082 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18083 			 */
18084 			struct bpf_insn ld_addrs[2] = {
18085 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18086 			};
18087 
18088 			insn_buf[0] = ld_addrs[0];
18089 			insn_buf[1] = ld_addrs[1];
18090 			insn_buf[2] = *insn;
18091 			cnt = 3;
18092 
18093 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18094 			if (!new_prog)
18095 				return -ENOMEM;
18096 
18097 			delta    += cnt - 1;
18098 			env->prog = prog = new_prog;
18099 			insn      = new_prog->insnsi + i + delta;
18100 			goto patch_call_imm;
18101 		}
18102 
18103 		if (is_storage_get_function(insn->imm)) {
18104 			if (!env->prog->aux->sleepable ||
18105 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18106 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18107 			else
18108 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18109 			insn_buf[1] = *insn;
18110 			cnt = 2;
18111 
18112 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18113 			if (!new_prog)
18114 				return -ENOMEM;
18115 
18116 			delta += cnt - 1;
18117 			env->prog = prog = new_prog;
18118 			insn = new_prog->insnsi + i + delta;
18119 			goto patch_call_imm;
18120 		}
18121 
18122 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18123 		 * and other inlining handlers are currently limited to 64 bit
18124 		 * only.
18125 		 */
18126 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18127 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18128 		     insn->imm == BPF_FUNC_map_update_elem ||
18129 		     insn->imm == BPF_FUNC_map_delete_elem ||
18130 		     insn->imm == BPF_FUNC_map_push_elem   ||
18131 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18132 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18133 		     insn->imm == BPF_FUNC_redirect_map    ||
18134 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18135 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18136 			aux = &env->insn_aux_data[i + delta];
18137 			if (bpf_map_ptr_poisoned(aux))
18138 				goto patch_call_imm;
18139 
18140 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18141 			ops = map_ptr->ops;
18142 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18143 			    ops->map_gen_lookup) {
18144 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18145 				if (cnt == -EOPNOTSUPP)
18146 					goto patch_map_ops_generic;
18147 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18148 					verbose(env, "bpf verifier is misconfigured\n");
18149 					return -EINVAL;
18150 				}
18151 
18152 				new_prog = bpf_patch_insn_data(env, i + delta,
18153 							       insn_buf, cnt);
18154 				if (!new_prog)
18155 					return -ENOMEM;
18156 
18157 				delta    += cnt - 1;
18158 				env->prog = prog = new_prog;
18159 				insn      = new_prog->insnsi + i + delta;
18160 				continue;
18161 			}
18162 
18163 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18164 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18165 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18166 				     (long (*)(struct bpf_map *map, void *key))NULL));
18167 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18168 				     (long (*)(struct bpf_map *map, void *key, void *value,
18169 					      u64 flags))NULL));
18170 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18171 				     (long (*)(struct bpf_map *map, void *value,
18172 					      u64 flags))NULL));
18173 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18174 				     (long (*)(struct bpf_map *map, void *value))NULL));
18175 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18176 				     (long (*)(struct bpf_map *map, void *value))NULL));
18177 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18178 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18179 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18180 				     (long (*)(struct bpf_map *map,
18181 					      bpf_callback_t callback_fn,
18182 					      void *callback_ctx,
18183 					      u64 flags))NULL));
18184 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18185 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18186 
18187 patch_map_ops_generic:
18188 			switch (insn->imm) {
18189 			case BPF_FUNC_map_lookup_elem:
18190 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18191 				continue;
18192 			case BPF_FUNC_map_update_elem:
18193 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18194 				continue;
18195 			case BPF_FUNC_map_delete_elem:
18196 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18197 				continue;
18198 			case BPF_FUNC_map_push_elem:
18199 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18200 				continue;
18201 			case BPF_FUNC_map_pop_elem:
18202 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18203 				continue;
18204 			case BPF_FUNC_map_peek_elem:
18205 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18206 				continue;
18207 			case BPF_FUNC_redirect_map:
18208 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18209 				continue;
18210 			case BPF_FUNC_for_each_map_elem:
18211 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18212 				continue;
18213 			case BPF_FUNC_map_lookup_percpu_elem:
18214 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18215 				continue;
18216 			}
18217 
18218 			goto patch_call_imm;
18219 		}
18220 
18221 		/* Implement bpf_jiffies64 inline. */
18222 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18223 		    insn->imm == BPF_FUNC_jiffies64) {
18224 			struct bpf_insn ld_jiffies_addr[2] = {
18225 				BPF_LD_IMM64(BPF_REG_0,
18226 					     (unsigned long)&jiffies),
18227 			};
18228 
18229 			insn_buf[0] = ld_jiffies_addr[0];
18230 			insn_buf[1] = ld_jiffies_addr[1];
18231 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18232 						  BPF_REG_0, 0);
18233 			cnt = 3;
18234 
18235 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18236 						       cnt);
18237 			if (!new_prog)
18238 				return -ENOMEM;
18239 
18240 			delta    += cnt - 1;
18241 			env->prog = prog = new_prog;
18242 			insn      = new_prog->insnsi + i + delta;
18243 			continue;
18244 		}
18245 
18246 		/* Implement bpf_get_func_arg inline. */
18247 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18248 		    insn->imm == BPF_FUNC_get_func_arg) {
18249 			/* Load nr_args from ctx - 8 */
18250 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18251 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18252 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18253 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18254 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18255 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18256 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18257 			insn_buf[7] = BPF_JMP_A(1);
18258 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18259 			cnt = 9;
18260 
18261 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18262 			if (!new_prog)
18263 				return -ENOMEM;
18264 
18265 			delta    += cnt - 1;
18266 			env->prog = prog = new_prog;
18267 			insn      = new_prog->insnsi + i + delta;
18268 			continue;
18269 		}
18270 
18271 		/* Implement bpf_get_func_ret inline. */
18272 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18273 		    insn->imm == BPF_FUNC_get_func_ret) {
18274 			if (eatype == BPF_TRACE_FEXIT ||
18275 			    eatype == BPF_MODIFY_RETURN) {
18276 				/* Load nr_args from ctx - 8 */
18277 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18278 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18279 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18280 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18281 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18282 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18283 				cnt = 6;
18284 			} else {
18285 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18286 				cnt = 1;
18287 			}
18288 
18289 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18290 			if (!new_prog)
18291 				return -ENOMEM;
18292 
18293 			delta    += cnt - 1;
18294 			env->prog = prog = new_prog;
18295 			insn      = new_prog->insnsi + i + delta;
18296 			continue;
18297 		}
18298 
18299 		/* Implement get_func_arg_cnt inline. */
18300 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18301 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18302 			/* Load nr_args from ctx - 8 */
18303 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18304 
18305 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18306 			if (!new_prog)
18307 				return -ENOMEM;
18308 
18309 			env->prog = prog = new_prog;
18310 			insn      = new_prog->insnsi + i + delta;
18311 			continue;
18312 		}
18313 
18314 		/* Implement bpf_get_func_ip inline. */
18315 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18316 		    insn->imm == BPF_FUNC_get_func_ip) {
18317 			/* Load IP address from ctx - 16 */
18318 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18319 
18320 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18321 			if (!new_prog)
18322 				return -ENOMEM;
18323 
18324 			env->prog = prog = new_prog;
18325 			insn      = new_prog->insnsi + i + delta;
18326 			continue;
18327 		}
18328 
18329 patch_call_imm:
18330 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18331 		/* all functions that have prototype and verifier allowed
18332 		 * programs to call them, must be real in-kernel functions
18333 		 */
18334 		if (!fn->func) {
18335 			verbose(env,
18336 				"kernel subsystem misconfigured func %s#%d\n",
18337 				func_id_name(insn->imm), insn->imm);
18338 			return -EFAULT;
18339 		}
18340 		insn->imm = fn->func - __bpf_call_base;
18341 	}
18342 
18343 	/* Since poke tab is now finalized, publish aux to tracker. */
18344 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18345 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18346 		if (!map_ptr->ops->map_poke_track ||
18347 		    !map_ptr->ops->map_poke_untrack ||
18348 		    !map_ptr->ops->map_poke_run) {
18349 			verbose(env, "bpf verifier is misconfigured\n");
18350 			return -EINVAL;
18351 		}
18352 
18353 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18354 		if (ret < 0) {
18355 			verbose(env, "tracking tail call prog failed\n");
18356 			return ret;
18357 		}
18358 	}
18359 
18360 	sort_kfunc_descs_by_imm_off(env->prog);
18361 
18362 	return 0;
18363 }
18364 
18365 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18366 					int position,
18367 					s32 stack_base,
18368 					u32 callback_subprogno,
18369 					u32 *cnt)
18370 {
18371 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18372 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18373 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18374 	int reg_loop_max = BPF_REG_6;
18375 	int reg_loop_cnt = BPF_REG_7;
18376 	int reg_loop_ctx = BPF_REG_8;
18377 
18378 	struct bpf_prog *new_prog;
18379 	u32 callback_start;
18380 	u32 call_insn_offset;
18381 	s32 callback_offset;
18382 
18383 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18384 	 * be careful to modify this code in sync.
18385 	 */
18386 	struct bpf_insn insn_buf[] = {
18387 		/* Return error and jump to the end of the patch if
18388 		 * expected number of iterations is too big.
18389 		 */
18390 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18391 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18392 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18393 		/* spill R6, R7, R8 to use these as loop vars */
18394 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18395 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18396 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18397 		/* initialize loop vars */
18398 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18399 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18400 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18401 		/* loop header,
18402 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18403 		 */
18404 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18405 		/* callback call,
18406 		 * correct callback offset would be set after patching
18407 		 */
18408 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18409 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18410 		BPF_CALL_REL(0),
18411 		/* increment loop counter */
18412 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18413 		/* jump to loop header if callback returned 0 */
18414 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18415 		/* return value of bpf_loop,
18416 		 * set R0 to the number of iterations
18417 		 */
18418 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18419 		/* restore original values of R6, R7, R8 */
18420 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18421 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18422 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18423 	};
18424 
18425 	*cnt = ARRAY_SIZE(insn_buf);
18426 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18427 	if (!new_prog)
18428 		return new_prog;
18429 
18430 	/* callback start is known only after patching */
18431 	callback_start = env->subprog_info[callback_subprogno].start;
18432 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18433 	call_insn_offset = position + 12;
18434 	callback_offset = callback_start - call_insn_offset - 1;
18435 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18436 
18437 	return new_prog;
18438 }
18439 
18440 static bool is_bpf_loop_call(struct bpf_insn *insn)
18441 {
18442 	return insn->code == (BPF_JMP | BPF_CALL) &&
18443 		insn->src_reg == 0 &&
18444 		insn->imm == BPF_FUNC_loop;
18445 }
18446 
18447 /* For all sub-programs in the program (including main) check
18448  * insn_aux_data to see if there are bpf_loop calls that require
18449  * inlining. If such calls are found the calls are replaced with a
18450  * sequence of instructions produced by `inline_bpf_loop` function and
18451  * subprog stack_depth is increased by the size of 3 registers.
18452  * This stack space is used to spill values of the R6, R7, R8.  These
18453  * registers are used to store the loop bound, counter and context
18454  * variables.
18455  */
18456 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18457 {
18458 	struct bpf_subprog_info *subprogs = env->subprog_info;
18459 	int i, cur_subprog = 0, cnt, delta = 0;
18460 	struct bpf_insn *insn = env->prog->insnsi;
18461 	int insn_cnt = env->prog->len;
18462 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18463 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18464 	u16 stack_depth_extra = 0;
18465 
18466 	for (i = 0; i < insn_cnt; i++, insn++) {
18467 		struct bpf_loop_inline_state *inline_state =
18468 			&env->insn_aux_data[i + delta].loop_inline_state;
18469 
18470 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18471 			struct bpf_prog *new_prog;
18472 
18473 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18474 			new_prog = inline_bpf_loop(env,
18475 						   i + delta,
18476 						   -(stack_depth + stack_depth_extra),
18477 						   inline_state->callback_subprogno,
18478 						   &cnt);
18479 			if (!new_prog)
18480 				return -ENOMEM;
18481 
18482 			delta     += cnt - 1;
18483 			env->prog  = new_prog;
18484 			insn       = new_prog->insnsi + i + delta;
18485 		}
18486 
18487 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18488 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
18489 			cur_subprog++;
18490 			stack_depth = subprogs[cur_subprog].stack_depth;
18491 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18492 			stack_depth_extra = 0;
18493 		}
18494 	}
18495 
18496 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18497 
18498 	return 0;
18499 }
18500 
18501 static void free_states(struct bpf_verifier_env *env)
18502 {
18503 	struct bpf_verifier_state_list *sl, *sln;
18504 	int i;
18505 
18506 	sl = env->free_list;
18507 	while (sl) {
18508 		sln = sl->next;
18509 		free_verifier_state(&sl->state, false);
18510 		kfree(sl);
18511 		sl = sln;
18512 	}
18513 	env->free_list = NULL;
18514 
18515 	if (!env->explored_states)
18516 		return;
18517 
18518 	for (i = 0; i < state_htab_size(env); i++) {
18519 		sl = env->explored_states[i];
18520 
18521 		while (sl) {
18522 			sln = sl->next;
18523 			free_verifier_state(&sl->state, false);
18524 			kfree(sl);
18525 			sl = sln;
18526 		}
18527 		env->explored_states[i] = NULL;
18528 	}
18529 }
18530 
18531 static int do_check_common(struct bpf_verifier_env *env, int subprog)
18532 {
18533 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18534 	struct bpf_verifier_state *state;
18535 	struct bpf_reg_state *regs;
18536 	int ret, i;
18537 
18538 	env->prev_linfo = NULL;
18539 	env->pass_cnt++;
18540 
18541 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18542 	if (!state)
18543 		return -ENOMEM;
18544 	state->curframe = 0;
18545 	state->speculative = false;
18546 	state->branches = 1;
18547 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18548 	if (!state->frame[0]) {
18549 		kfree(state);
18550 		return -ENOMEM;
18551 	}
18552 	env->cur_state = state;
18553 	init_func_state(env, state->frame[0],
18554 			BPF_MAIN_FUNC /* callsite */,
18555 			0 /* frameno */,
18556 			subprog);
18557 	state->first_insn_idx = env->subprog_info[subprog].start;
18558 	state->last_insn_idx = -1;
18559 
18560 	regs = state->frame[state->curframe]->regs;
18561 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
18562 		ret = btf_prepare_func_args(env, subprog, regs);
18563 		if (ret)
18564 			goto out;
18565 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18566 			if (regs[i].type == PTR_TO_CTX)
18567 				mark_reg_known_zero(env, regs, i);
18568 			else if (regs[i].type == SCALAR_VALUE)
18569 				mark_reg_unknown(env, regs, i);
18570 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
18571 				const u32 mem_size = regs[i].mem_size;
18572 
18573 				mark_reg_known_zero(env, regs, i);
18574 				regs[i].mem_size = mem_size;
18575 				regs[i].id = ++env->id_gen;
18576 			}
18577 		}
18578 	} else {
18579 		/* 1st arg to a function */
18580 		regs[BPF_REG_1].type = PTR_TO_CTX;
18581 		mark_reg_known_zero(env, regs, BPF_REG_1);
18582 		ret = btf_check_subprog_arg_match(env, subprog, regs);
18583 		if (ret == -EFAULT)
18584 			/* unlikely verifier bug. abort.
18585 			 * ret == 0 and ret < 0 are sadly acceptable for
18586 			 * main() function due to backward compatibility.
18587 			 * Like socket filter program may be written as:
18588 			 * int bpf_prog(struct pt_regs *ctx)
18589 			 * and never dereference that ctx in the program.
18590 			 * 'struct pt_regs' is a type mismatch for socket
18591 			 * filter that should be using 'struct __sk_buff'.
18592 			 */
18593 			goto out;
18594 	}
18595 
18596 	ret = do_check(env);
18597 out:
18598 	/* check for NULL is necessary, since cur_state can be freed inside
18599 	 * do_check() under memory pressure.
18600 	 */
18601 	if (env->cur_state) {
18602 		free_verifier_state(env->cur_state, true);
18603 		env->cur_state = NULL;
18604 	}
18605 	while (!pop_stack(env, NULL, NULL, false));
18606 	if (!ret && pop_log)
18607 		bpf_vlog_reset(&env->log, 0);
18608 	free_states(env);
18609 	return ret;
18610 }
18611 
18612 /* Verify all global functions in a BPF program one by one based on their BTF.
18613  * All global functions must pass verification. Otherwise the whole program is rejected.
18614  * Consider:
18615  * int bar(int);
18616  * int foo(int f)
18617  * {
18618  *    return bar(f);
18619  * }
18620  * int bar(int b)
18621  * {
18622  *    ...
18623  * }
18624  * foo() will be verified first for R1=any_scalar_value. During verification it
18625  * will be assumed that bar() already verified successfully and call to bar()
18626  * from foo() will be checked for type match only. Later bar() will be verified
18627  * independently to check that it's safe for R1=any_scalar_value.
18628  */
18629 static int do_check_subprogs(struct bpf_verifier_env *env)
18630 {
18631 	struct bpf_prog_aux *aux = env->prog->aux;
18632 	int i, ret;
18633 
18634 	if (!aux->func_info)
18635 		return 0;
18636 
18637 	for (i = 1; i < env->subprog_cnt; i++) {
18638 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18639 			continue;
18640 		env->insn_idx = env->subprog_info[i].start;
18641 		WARN_ON_ONCE(env->insn_idx == 0);
18642 		ret = do_check_common(env, i);
18643 		if (ret) {
18644 			return ret;
18645 		} else if (env->log.level & BPF_LOG_LEVEL) {
18646 			verbose(env,
18647 				"Func#%d is safe for any args that match its prototype\n",
18648 				i);
18649 		}
18650 	}
18651 	return 0;
18652 }
18653 
18654 static int do_check_main(struct bpf_verifier_env *env)
18655 {
18656 	int ret;
18657 
18658 	env->insn_idx = 0;
18659 	ret = do_check_common(env, 0);
18660 	if (!ret)
18661 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18662 	return ret;
18663 }
18664 
18665 
18666 static void print_verification_stats(struct bpf_verifier_env *env)
18667 {
18668 	int i;
18669 
18670 	if (env->log.level & BPF_LOG_STATS) {
18671 		verbose(env, "verification time %lld usec\n",
18672 			div_u64(env->verification_time, 1000));
18673 		verbose(env, "stack depth ");
18674 		for (i = 0; i < env->subprog_cnt; i++) {
18675 			u32 depth = env->subprog_info[i].stack_depth;
18676 
18677 			verbose(env, "%d", depth);
18678 			if (i + 1 < env->subprog_cnt)
18679 				verbose(env, "+");
18680 		}
18681 		verbose(env, "\n");
18682 	}
18683 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18684 		"total_states %d peak_states %d mark_read %d\n",
18685 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18686 		env->max_states_per_insn, env->total_states,
18687 		env->peak_states, env->longest_mark_read_walk);
18688 }
18689 
18690 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18691 {
18692 	const struct btf_type *t, *func_proto;
18693 	const struct bpf_struct_ops *st_ops;
18694 	const struct btf_member *member;
18695 	struct bpf_prog *prog = env->prog;
18696 	u32 btf_id, member_idx;
18697 	const char *mname;
18698 
18699 	if (!prog->gpl_compatible) {
18700 		verbose(env, "struct ops programs must have a GPL compatible license\n");
18701 		return -EINVAL;
18702 	}
18703 
18704 	btf_id = prog->aux->attach_btf_id;
18705 	st_ops = bpf_struct_ops_find(btf_id);
18706 	if (!st_ops) {
18707 		verbose(env, "attach_btf_id %u is not a supported struct\n",
18708 			btf_id);
18709 		return -ENOTSUPP;
18710 	}
18711 
18712 	t = st_ops->type;
18713 	member_idx = prog->expected_attach_type;
18714 	if (member_idx >= btf_type_vlen(t)) {
18715 		verbose(env, "attach to invalid member idx %u of struct %s\n",
18716 			member_idx, st_ops->name);
18717 		return -EINVAL;
18718 	}
18719 
18720 	member = &btf_type_member(t)[member_idx];
18721 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18722 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18723 					       NULL);
18724 	if (!func_proto) {
18725 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18726 			mname, member_idx, st_ops->name);
18727 		return -EINVAL;
18728 	}
18729 
18730 	if (st_ops->check_member) {
18731 		int err = st_ops->check_member(t, member, prog);
18732 
18733 		if (err) {
18734 			verbose(env, "attach to unsupported member %s of struct %s\n",
18735 				mname, st_ops->name);
18736 			return err;
18737 		}
18738 	}
18739 
18740 	prog->aux->attach_func_proto = func_proto;
18741 	prog->aux->attach_func_name = mname;
18742 	env->ops = st_ops->verifier_ops;
18743 
18744 	return 0;
18745 }
18746 #define SECURITY_PREFIX "security_"
18747 
18748 static int check_attach_modify_return(unsigned long addr, const char *func_name)
18749 {
18750 	if (within_error_injection_list(addr) ||
18751 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
18752 		return 0;
18753 
18754 	return -EINVAL;
18755 }
18756 
18757 /* list of non-sleepable functions that are otherwise on
18758  * ALLOW_ERROR_INJECTION list
18759  */
18760 BTF_SET_START(btf_non_sleepable_error_inject)
18761 /* Three functions below can be called from sleepable and non-sleepable context.
18762  * Assume non-sleepable from bpf safety point of view.
18763  */
18764 BTF_ID(func, __filemap_add_folio)
18765 BTF_ID(func, should_fail_alloc_page)
18766 BTF_ID(func, should_failslab)
18767 BTF_SET_END(btf_non_sleepable_error_inject)
18768 
18769 static int check_non_sleepable_error_inject(u32 btf_id)
18770 {
18771 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18772 }
18773 
18774 int bpf_check_attach_target(struct bpf_verifier_log *log,
18775 			    const struct bpf_prog *prog,
18776 			    const struct bpf_prog *tgt_prog,
18777 			    u32 btf_id,
18778 			    struct bpf_attach_target_info *tgt_info)
18779 {
18780 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
18781 	const char prefix[] = "btf_trace_";
18782 	int ret = 0, subprog = -1, i;
18783 	const struct btf_type *t;
18784 	bool conservative = true;
18785 	const char *tname;
18786 	struct btf *btf;
18787 	long addr = 0;
18788 	struct module *mod = NULL;
18789 
18790 	if (!btf_id) {
18791 		bpf_log(log, "Tracing programs must provide btf_id\n");
18792 		return -EINVAL;
18793 	}
18794 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
18795 	if (!btf) {
18796 		bpf_log(log,
18797 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18798 		return -EINVAL;
18799 	}
18800 	t = btf_type_by_id(btf, btf_id);
18801 	if (!t) {
18802 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
18803 		return -EINVAL;
18804 	}
18805 	tname = btf_name_by_offset(btf, t->name_off);
18806 	if (!tname) {
18807 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
18808 		return -EINVAL;
18809 	}
18810 	if (tgt_prog) {
18811 		struct bpf_prog_aux *aux = tgt_prog->aux;
18812 
18813 		if (bpf_prog_is_dev_bound(prog->aux) &&
18814 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18815 			bpf_log(log, "Target program bound device mismatch");
18816 			return -EINVAL;
18817 		}
18818 
18819 		for (i = 0; i < aux->func_info_cnt; i++)
18820 			if (aux->func_info[i].type_id == btf_id) {
18821 				subprog = i;
18822 				break;
18823 			}
18824 		if (subprog == -1) {
18825 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
18826 			return -EINVAL;
18827 		}
18828 		conservative = aux->func_info_aux[subprog].unreliable;
18829 		if (prog_extension) {
18830 			if (conservative) {
18831 				bpf_log(log,
18832 					"Cannot replace static functions\n");
18833 				return -EINVAL;
18834 			}
18835 			if (!prog->jit_requested) {
18836 				bpf_log(log,
18837 					"Extension programs should be JITed\n");
18838 				return -EINVAL;
18839 			}
18840 		}
18841 		if (!tgt_prog->jited) {
18842 			bpf_log(log, "Can attach to only JITed progs\n");
18843 			return -EINVAL;
18844 		}
18845 		if (tgt_prog->type == prog->type) {
18846 			/* Cannot fentry/fexit another fentry/fexit program.
18847 			 * Cannot attach program extension to another extension.
18848 			 * It's ok to attach fentry/fexit to extension program.
18849 			 */
18850 			bpf_log(log, "Cannot recursively attach\n");
18851 			return -EINVAL;
18852 		}
18853 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18854 		    prog_extension &&
18855 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18856 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18857 			/* Program extensions can extend all program types
18858 			 * except fentry/fexit. The reason is the following.
18859 			 * The fentry/fexit programs are used for performance
18860 			 * analysis, stats and can be attached to any program
18861 			 * type except themselves. When extension program is
18862 			 * replacing XDP function it is necessary to allow
18863 			 * performance analysis of all functions. Both original
18864 			 * XDP program and its program extension. Hence
18865 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18866 			 * allowed. If extending of fentry/fexit was allowed it
18867 			 * would be possible to create long call chain
18868 			 * fentry->extension->fentry->extension beyond
18869 			 * reasonable stack size. Hence extending fentry is not
18870 			 * allowed.
18871 			 */
18872 			bpf_log(log, "Cannot extend fentry/fexit\n");
18873 			return -EINVAL;
18874 		}
18875 	} else {
18876 		if (prog_extension) {
18877 			bpf_log(log, "Cannot replace kernel functions\n");
18878 			return -EINVAL;
18879 		}
18880 	}
18881 
18882 	switch (prog->expected_attach_type) {
18883 	case BPF_TRACE_RAW_TP:
18884 		if (tgt_prog) {
18885 			bpf_log(log,
18886 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18887 			return -EINVAL;
18888 		}
18889 		if (!btf_type_is_typedef(t)) {
18890 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
18891 				btf_id);
18892 			return -EINVAL;
18893 		}
18894 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
18895 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
18896 				btf_id, tname);
18897 			return -EINVAL;
18898 		}
18899 		tname += sizeof(prefix) - 1;
18900 		t = btf_type_by_id(btf, t->type);
18901 		if (!btf_type_is_ptr(t))
18902 			/* should never happen in valid vmlinux build */
18903 			return -EINVAL;
18904 		t = btf_type_by_id(btf, t->type);
18905 		if (!btf_type_is_func_proto(t))
18906 			/* should never happen in valid vmlinux build */
18907 			return -EINVAL;
18908 
18909 		break;
18910 	case BPF_TRACE_ITER:
18911 		if (!btf_type_is_func(t)) {
18912 			bpf_log(log, "attach_btf_id %u is not a function\n",
18913 				btf_id);
18914 			return -EINVAL;
18915 		}
18916 		t = btf_type_by_id(btf, t->type);
18917 		if (!btf_type_is_func_proto(t))
18918 			return -EINVAL;
18919 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18920 		if (ret)
18921 			return ret;
18922 		break;
18923 	default:
18924 		if (!prog_extension)
18925 			return -EINVAL;
18926 		fallthrough;
18927 	case BPF_MODIFY_RETURN:
18928 	case BPF_LSM_MAC:
18929 	case BPF_LSM_CGROUP:
18930 	case BPF_TRACE_FENTRY:
18931 	case BPF_TRACE_FEXIT:
18932 		if (!btf_type_is_func(t)) {
18933 			bpf_log(log, "attach_btf_id %u is not a function\n",
18934 				btf_id);
18935 			return -EINVAL;
18936 		}
18937 		if (prog_extension &&
18938 		    btf_check_type_match(log, prog, btf, t))
18939 			return -EINVAL;
18940 		t = btf_type_by_id(btf, t->type);
18941 		if (!btf_type_is_func_proto(t))
18942 			return -EINVAL;
18943 
18944 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18945 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18946 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18947 			return -EINVAL;
18948 
18949 		if (tgt_prog && conservative)
18950 			t = NULL;
18951 
18952 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18953 		if (ret < 0)
18954 			return ret;
18955 
18956 		if (tgt_prog) {
18957 			if (subprog == 0)
18958 				addr = (long) tgt_prog->bpf_func;
18959 			else
18960 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
18961 		} else {
18962 			if (btf_is_module(btf)) {
18963 				mod = btf_try_get_module(btf);
18964 				if (mod)
18965 					addr = find_kallsyms_symbol_value(mod, tname);
18966 				else
18967 					addr = 0;
18968 			} else {
18969 				addr = kallsyms_lookup_name(tname);
18970 			}
18971 			if (!addr) {
18972 				module_put(mod);
18973 				bpf_log(log,
18974 					"The address of function %s cannot be found\n",
18975 					tname);
18976 				return -ENOENT;
18977 			}
18978 		}
18979 
18980 		if (prog->aux->sleepable) {
18981 			ret = -EINVAL;
18982 			switch (prog->type) {
18983 			case BPF_PROG_TYPE_TRACING:
18984 
18985 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
18986 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18987 				 */
18988 				if (!check_non_sleepable_error_inject(btf_id) &&
18989 				    within_error_injection_list(addr))
18990 					ret = 0;
18991 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
18992 				 * in the fmodret id set with the KF_SLEEPABLE flag.
18993 				 */
18994 				else {
18995 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18996 
18997 					if (flags && (*flags & KF_SLEEPABLE))
18998 						ret = 0;
18999 				}
19000 				break;
19001 			case BPF_PROG_TYPE_LSM:
19002 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19003 				 * Only some of them are sleepable.
19004 				 */
19005 				if (bpf_lsm_is_sleepable_hook(btf_id))
19006 					ret = 0;
19007 				break;
19008 			default:
19009 				break;
19010 			}
19011 			if (ret) {
19012 				module_put(mod);
19013 				bpf_log(log, "%s is not sleepable\n", tname);
19014 				return ret;
19015 			}
19016 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19017 			if (tgt_prog) {
19018 				module_put(mod);
19019 				bpf_log(log, "can't modify return codes of BPF programs\n");
19020 				return -EINVAL;
19021 			}
19022 			ret = -EINVAL;
19023 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
19024 			    !check_attach_modify_return(addr, tname))
19025 				ret = 0;
19026 			if (ret) {
19027 				module_put(mod);
19028 				bpf_log(log, "%s() is not modifiable\n", tname);
19029 				return ret;
19030 			}
19031 		}
19032 
19033 		break;
19034 	}
19035 	tgt_info->tgt_addr = addr;
19036 	tgt_info->tgt_name = tname;
19037 	tgt_info->tgt_type = t;
19038 	tgt_info->tgt_mod = mod;
19039 	return 0;
19040 }
19041 
19042 BTF_SET_START(btf_id_deny)
19043 BTF_ID_UNUSED
19044 #ifdef CONFIG_SMP
19045 BTF_ID(func, migrate_disable)
19046 BTF_ID(func, migrate_enable)
19047 #endif
19048 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19049 BTF_ID(func, rcu_read_unlock_strict)
19050 #endif
19051 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19052 BTF_ID(func, preempt_count_add)
19053 BTF_ID(func, preempt_count_sub)
19054 #endif
19055 #ifdef CONFIG_PREEMPT_RCU
19056 BTF_ID(func, __rcu_read_lock)
19057 BTF_ID(func, __rcu_read_unlock)
19058 #endif
19059 BTF_SET_END(btf_id_deny)
19060 
19061 static bool can_be_sleepable(struct bpf_prog *prog)
19062 {
19063 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19064 		switch (prog->expected_attach_type) {
19065 		case BPF_TRACE_FENTRY:
19066 		case BPF_TRACE_FEXIT:
19067 		case BPF_MODIFY_RETURN:
19068 		case BPF_TRACE_ITER:
19069 			return true;
19070 		default:
19071 			return false;
19072 		}
19073 	}
19074 	return prog->type == BPF_PROG_TYPE_LSM ||
19075 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19076 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19077 }
19078 
19079 static int check_attach_btf_id(struct bpf_verifier_env *env)
19080 {
19081 	struct bpf_prog *prog = env->prog;
19082 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19083 	struct bpf_attach_target_info tgt_info = {};
19084 	u32 btf_id = prog->aux->attach_btf_id;
19085 	struct bpf_trampoline *tr;
19086 	int ret;
19087 	u64 key;
19088 
19089 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19090 		if (prog->aux->sleepable)
19091 			/* attach_btf_id checked to be zero already */
19092 			return 0;
19093 		verbose(env, "Syscall programs can only be sleepable\n");
19094 		return -EINVAL;
19095 	}
19096 
19097 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19098 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19099 		return -EINVAL;
19100 	}
19101 
19102 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19103 		return check_struct_ops_btf_id(env);
19104 
19105 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19106 	    prog->type != BPF_PROG_TYPE_LSM &&
19107 	    prog->type != BPF_PROG_TYPE_EXT)
19108 		return 0;
19109 
19110 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19111 	if (ret)
19112 		return ret;
19113 
19114 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19115 		/* to make freplace equivalent to their targets, they need to
19116 		 * inherit env->ops and expected_attach_type for the rest of the
19117 		 * verification
19118 		 */
19119 		env->ops = bpf_verifier_ops[tgt_prog->type];
19120 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19121 	}
19122 
19123 	/* store info about the attachment target that will be used later */
19124 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19125 	prog->aux->attach_func_name = tgt_info.tgt_name;
19126 	prog->aux->mod = tgt_info.tgt_mod;
19127 
19128 	if (tgt_prog) {
19129 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19130 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19131 	}
19132 
19133 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19134 		prog->aux->attach_btf_trace = true;
19135 		return 0;
19136 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19137 		if (!bpf_iter_prog_supported(prog))
19138 			return -EINVAL;
19139 		return 0;
19140 	}
19141 
19142 	if (prog->type == BPF_PROG_TYPE_LSM) {
19143 		ret = bpf_lsm_verify_prog(&env->log, prog);
19144 		if (ret < 0)
19145 			return ret;
19146 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19147 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19148 		return -EINVAL;
19149 	}
19150 
19151 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19152 	tr = bpf_trampoline_get(key, &tgt_info);
19153 	if (!tr)
19154 		return -ENOMEM;
19155 
19156 	prog->aux->dst_trampoline = tr;
19157 	return 0;
19158 }
19159 
19160 struct btf *bpf_get_btf_vmlinux(void)
19161 {
19162 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19163 		mutex_lock(&bpf_verifier_lock);
19164 		if (!btf_vmlinux)
19165 			btf_vmlinux = btf_parse_vmlinux();
19166 		mutex_unlock(&bpf_verifier_lock);
19167 	}
19168 	return btf_vmlinux;
19169 }
19170 
19171 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19172 {
19173 	u64 start_time = ktime_get_ns();
19174 	struct bpf_verifier_env *env;
19175 	int i, len, ret = -EINVAL, err;
19176 	u32 log_true_size;
19177 	bool is_priv;
19178 
19179 	/* no program is valid */
19180 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19181 		return -EINVAL;
19182 
19183 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19184 	 * allocate/free it every time bpf_check() is called
19185 	 */
19186 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19187 	if (!env)
19188 		return -ENOMEM;
19189 
19190 	env->bt.env = env;
19191 
19192 	len = (*prog)->len;
19193 	env->insn_aux_data =
19194 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19195 	ret = -ENOMEM;
19196 	if (!env->insn_aux_data)
19197 		goto err_free_env;
19198 	for (i = 0; i < len; i++)
19199 		env->insn_aux_data[i].orig_idx = i;
19200 	env->prog = *prog;
19201 	env->ops = bpf_verifier_ops[env->prog->type];
19202 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19203 	is_priv = bpf_capable();
19204 
19205 	bpf_get_btf_vmlinux();
19206 
19207 	/* grab the mutex to protect few globals used by verifier */
19208 	if (!is_priv)
19209 		mutex_lock(&bpf_verifier_lock);
19210 
19211 	/* user could have requested verbose verifier output
19212 	 * and supplied buffer to store the verification trace
19213 	 */
19214 	ret = bpf_vlog_init(&env->log, attr->log_level,
19215 			    (char __user *) (unsigned long) attr->log_buf,
19216 			    attr->log_size);
19217 	if (ret)
19218 		goto err_unlock;
19219 
19220 	mark_verifier_state_clean(env);
19221 
19222 	if (IS_ERR(btf_vmlinux)) {
19223 		/* Either gcc or pahole or kernel are broken. */
19224 		verbose(env, "in-kernel BTF is malformed\n");
19225 		ret = PTR_ERR(btf_vmlinux);
19226 		goto skip_full_check;
19227 	}
19228 
19229 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19230 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19231 		env->strict_alignment = true;
19232 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19233 		env->strict_alignment = false;
19234 
19235 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19236 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19237 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19238 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19239 	env->bpf_capable = bpf_capable();
19240 
19241 	if (is_priv)
19242 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19243 
19244 	env->explored_states = kvcalloc(state_htab_size(env),
19245 				       sizeof(struct bpf_verifier_state_list *),
19246 				       GFP_USER);
19247 	ret = -ENOMEM;
19248 	if (!env->explored_states)
19249 		goto skip_full_check;
19250 
19251 	ret = add_subprog_and_kfunc(env);
19252 	if (ret < 0)
19253 		goto skip_full_check;
19254 
19255 	ret = check_subprogs(env);
19256 	if (ret < 0)
19257 		goto skip_full_check;
19258 
19259 	ret = check_btf_info(env, attr, uattr);
19260 	if (ret < 0)
19261 		goto skip_full_check;
19262 
19263 	ret = check_attach_btf_id(env);
19264 	if (ret)
19265 		goto skip_full_check;
19266 
19267 	ret = resolve_pseudo_ldimm64(env);
19268 	if (ret < 0)
19269 		goto skip_full_check;
19270 
19271 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19272 		ret = bpf_prog_offload_verifier_prep(env->prog);
19273 		if (ret)
19274 			goto skip_full_check;
19275 	}
19276 
19277 	ret = check_cfg(env);
19278 	if (ret < 0)
19279 		goto skip_full_check;
19280 
19281 	ret = do_check_subprogs(env);
19282 	ret = ret ?: do_check_main(env);
19283 
19284 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19285 		ret = bpf_prog_offload_finalize(env);
19286 
19287 skip_full_check:
19288 	kvfree(env->explored_states);
19289 
19290 	if (ret == 0)
19291 		ret = check_max_stack_depth(env);
19292 
19293 	/* instruction rewrites happen after this point */
19294 	if (ret == 0)
19295 		ret = optimize_bpf_loop(env);
19296 
19297 	if (is_priv) {
19298 		if (ret == 0)
19299 			opt_hard_wire_dead_code_branches(env);
19300 		if (ret == 0)
19301 			ret = opt_remove_dead_code(env);
19302 		if (ret == 0)
19303 			ret = opt_remove_nops(env);
19304 	} else {
19305 		if (ret == 0)
19306 			sanitize_dead_code(env);
19307 	}
19308 
19309 	if (ret == 0)
19310 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19311 		ret = convert_ctx_accesses(env);
19312 
19313 	if (ret == 0)
19314 		ret = do_misc_fixups(env);
19315 
19316 	/* do 32-bit optimization after insn patching has done so those patched
19317 	 * insns could be handled correctly.
19318 	 */
19319 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19320 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19321 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19322 								     : false;
19323 	}
19324 
19325 	if (ret == 0)
19326 		ret = fixup_call_args(env);
19327 
19328 	env->verification_time = ktime_get_ns() - start_time;
19329 	print_verification_stats(env);
19330 	env->prog->aux->verified_insns = env->insn_processed;
19331 
19332 	/* preserve original error even if log finalization is successful */
19333 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19334 	if (err)
19335 		ret = err;
19336 
19337 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19338 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19339 				  &log_true_size, sizeof(log_true_size))) {
19340 		ret = -EFAULT;
19341 		goto err_release_maps;
19342 	}
19343 
19344 	if (ret)
19345 		goto err_release_maps;
19346 
19347 	if (env->used_map_cnt) {
19348 		/* if program passed verifier, update used_maps in bpf_prog_info */
19349 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19350 							  sizeof(env->used_maps[0]),
19351 							  GFP_KERNEL);
19352 
19353 		if (!env->prog->aux->used_maps) {
19354 			ret = -ENOMEM;
19355 			goto err_release_maps;
19356 		}
19357 
19358 		memcpy(env->prog->aux->used_maps, env->used_maps,
19359 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19360 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19361 	}
19362 	if (env->used_btf_cnt) {
19363 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19364 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19365 							  sizeof(env->used_btfs[0]),
19366 							  GFP_KERNEL);
19367 		if (!env->prog->aux->used_btfs) {
19368 			ret = -ENOMEM;
19369 			goto err_release_maps;
19370 		}
19371 
19372 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19373 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19374 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19375 	}
19376 	if (env->used_map_cnt || env->used_btf_cnt) {
19377 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19378 		 * bpf_ld_imm64 instructions
19379 		 */
19380 		convert_pseudo_ld_imm64(env);
19381 	}
19382 
19383 	adjust_btf_func(env);
19384 
19385 err_release_maps:
19386 	if (!env->prog->aux->used_maps)
19387 		/* if we didn't copy map pointers into bpf_prog_info, release
19388 		 * them now. Otherwise free_used_maps() will release them.
19389 		 */
19390 		release_maps(env);
19391 	if (!env->prog->aux->used_btfs)
19392 		release_btfs(env);
19393 
19394 	/* extension progs temporarily inherit the attach_type of their targets
19395 	   for verification purposes, so set it back to zero before returning
19396 	 */
19397 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19398 		env->prog->expected_attach_type = 0;
19399 
19400 	*prog = env->prog;
19401 err_unlock:
19402 	if (!is_priv)
19403 		mutex_unlock(&bpf_verifier_lock);
19404 	vfree(env->insn_aux_data);
19405 err_free_env:
19406 	kfree(env);
19407 	return ret;
19408 }
19409