1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 29 #include "disasm.h" 30 31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 33 [_id] = & _name ## _verifier_ops, 34 #define BPF_MAP_TYPE(_id, _ops) 35 #define BPF_LINK_TYPE(_id, _name) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 #undef BPF_LINK_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all paths through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns either pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 /* length of verifier log at the time this state was pushed on stack */ 178 u32 log_pos; 179 }; 180 181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 182 #define BPF_COMPLEXITY_LIMIT_STATES 64 183 184 #define BPF_MAP_KEY_POISON (1ULL << 63) 185 #define BPF_MAP_KEY_SEEN (1ULL << 62) 186 187 #define BPF_MAP_PTR_UNPRIV 1UL 188 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 189 POISON_POINTER_DELTA)) 190 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 191 192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 196 static int ref_set_non_owning(struct bpf_verifier_env *env, 197 struct bpf_reg_state *reg); 198 static void specialize_kfunc(struct bpf_verifier_env *env, 199 u32 func_id, u16 offset, unsigned long *addr); 200 201 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 204 } 205 206 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 207 { 208 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 209 } 210 211 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 212 const struct bpf_map *map, bool unpriv) 213 { 214 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 215 unpriv |= bpf_map_ptr_unpriv(aux); 216 aux->map_ptr_state = (unsigned long)map | 217 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 218 } 219 220 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 221 { 222 return aux->map_key_state & BPF_MAP_KEY_POISON; 223 } 224 225 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 226 { 227 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 228 } 229 230 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 233 } 234 235 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 236 { 237 bool poisoned = bpf_map_key_poisoned(aux); 238 239 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 240 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 241 } 242 243 static bool bpf_pseudo_call(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_JMP | BPF_CALL) && 246 insn->src_reg == BPF_PSEUDO_CALL; 247 } 248 249 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 250 { 251 return insn->code == (BPF_JMP | BPF_CALL) && 252 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 253 } 254 255 struct bpf_call_arg_meta { 256 struct bpf_map *map_ptr; 257 bool raw_mode; 258 bool pkt_access; 259 u8 release_regno; 260 int regno; 261 int access_size; 262 int mem_size; 263 u64 msize_max_value; 264 int ref_obj_id; 265 int dynptr_id; 266 int map_uid; 267 int func_id; 268 struct btf *btf; 269 u32 btf_id; 270 struct btf *ret_btf; 271 u32 ret_btf_id; 272 u32 subprogno; 273 struct btf_field *kptr_field; 274 }; 275 276 struct btf_and_id { 277 struct btf *btf; 278 u32 btf_id; 279 }; 280 281 struct bpf_kfunc_call_arg_meta { 282 /* In parameters */ 283 struct btf *btf; 284 u32 func_id; 285 u32 kfunc_flags; 286 const struct btf_type *func_proto; 287 const char *func_name; 288 /* Out parameters */ 289 u32 ref_obj_id; 290 u8 release_regno; 291 bool r0_rdonly; 292 u32 ret_btf_id; 293 u64 r0_size; 294 u32 subprogno; 295 struct { 296 u64 value; 297 bool found; 298 } arg_constant; 299 union { 300 struct btf_and_id arg_obj_drop; 301 struct btf_and_id arg_refcount_acquire; 302 }; 303 struct { 304 struct btf_field *field; 305 } arg_list_head; 306 struct { 307 struct btf_field *field; 308 } arg_rbtree_root; 309 struct { 310 enum bpf_dynptr_type type; 311 u32 id; 312 u32 ref_obj_id; 313 } initialized_dynptr; 314 struct { 315 u8 spi; 316 u8 frameno; 317 } iter; 318 u64 mem_size; 319 }; 320 321 struct btf *btf_vmlinux; 322 323 static DEFINE_MUTEX(bpf_verifier_lock); 324 325 static const struct bpf_line_info * 326 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 327 { 328 const struct bpf_line_info *linfo; 329 const struct bpf_prog *prog; 330 u32 i, nr_linfo; 331 332 prog = env->prog; 333 nr_linfo = prog->aux->nr_linfo; 334 335 if (!nr_linfo || insn_off >= prog->len) 336 return NULL; 337 338 linfo = prog->aux->linfo; 339 for (i = 1; i < nr_linfo; i++) 340 if (insn_off < linfo[i].insn_off) 341 break; 342 343 return &linfo[i - 1]; 344 } 345 346 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 347 { 348 struct bpf_verifier_env *env = private_data; 349 va_list args; 350 351 if (!bpf_verifier_log_needed(&env->log)) 352 return; 353 354 va_start(args, fmt); 355 bpf_verifier_vlog(&env->log, fmt, args); 356 va_end(args); 357 } 358 359 static const char *ltrim(const char *s) 360 { 361 while (isspace(*s)) 362 s++; 363 364 return s; 365 } 366 367 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 368 u32 insn_off, 369 const char *prefix_fmt, ...) 370 { 371 const struct bpf_line_info *linfo; 372 373 if (!bpf_verifier_log_needed(&env->log)) 374 return; 375 376 linfo = find_linfo(env, insn_off); 377 if (!linfo || linfo == env->prev_linfo) 378 return; 379 380 if (prefix_fmt) { 381 va_list args; 382 383 va_start(args, prefix_fmt); 384 bpf_verifier_vlog(&env->log, prefix_fmt, args); 385 va_end(args); 386 } 387 388 verbose(env, "%s\n", 389 ltrim(btf_name_by_offset(env->prog->aux->btf, 390 linfo->line_off))); 391 392 env->prev_linfo = linfo; 393 } 394 395 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 396 struct bpf_reg_state *reg, 397 struct tnum *range, const char *ctx, 398 const char *reg_name) 399 { 400 char tn_buf[48]; 401 402 verbose(env, "At %s the register %s ", ctx, reg_name); 403 if (!tnum_is_unknown(reg->var_off)) { 404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 405 verbose(env, "has value %s", tn_buf); 406 } else { 407 verbose(env, "has unknown scalar value"); 408 } 409 tnum_strn(tn_buf, sizeof(tn_buf), *range); 410 verbose(env, " should have been in %s\n", tn_buf); 411 } 412 413 static bool type_is_pkt_pointer(enum bpf_reg_type type) 414 { 415 type = base_type(type); 416 return type == PTR_TO_PACKET || 417 type == PTR_TO_PACKET_META; 418 } 419 420 static bool type_is_sk_pointer(enum bpf_reg_type type) 421 { 422 return type == PTR_TO_SOCKET || 423 type == PTR_TO_SOCK_COMMON || 424 type == PTR_TO_TCP_SOCK || 425 type == PTR_TO_XDP_SOCK; 426 } 427 428 static bool type_may_be_null(u32 type) 429 { 430 return type & PTR_MAYBE_NULL; 431 } 432 433 static bool reg_type_not_null(enum bpf_reg_type type) 434 { 435 if (type_may_be_null(type)) 436 return false; 437 438 type = base_type(type); 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_TCP_SOCK || 441 type == PTR_TO_MAP_VALUE || 442 type == PTR_TO_MAP_KEY || 443 type == PTR_TO_SOCK_COMMON || 444 type == PTR_TO_MEM; 445 } 446 447 static bool type_is_ptr_alloc_obj(u32 type) 448 { 449 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 450 } 451 452 static bool type_is_non_owning_ref(u32 type) 453 { 454 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 455 } 456 457 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 458 { 459 struct btf_record *rec = NULL; 460 struct btf_struct_meta *meta; 461 462 if (reg->type == PTR_TO_MAP_VALUE) { 463 rec = reg->map_ptr->record; 464 } else if (type_is_ptr_alloc_obj(reg->type)) { 465 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 466 if (meta) 467 rec = meta->record; 468 } 469 return rec; 470 } 471 472 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 473 { 474 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 475 } 476 477 static bool type_is_rdonly_mem(u32 type) 478 { 479 return type & MEM_RDONLY; 480 } 481 482 static bool is_acquire_function(enum bpf_func_id func_id, 483 const struct bpf_map *map) 484 { 485 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 486 487 if (func_id == BPF_FUNC_sk_lookup_tcp || 488 func_id == BPF_FUNC_sk_lookup_udp || 489 func_id == BPF_FUNC_skc_lookup_tcp || 490 func_id == BPF_FUNC_ringbuf_reserve || 491 func_id == BPF_FUNC_kptr_xchg) 492 return true; 493 494 if (func_id == BPF_FUNC_map_lookup_elem && 495 (map_type == BPF_MAP_TYPE_SOCKMAP || 496 map_type == BPF_MAP_TYPE_SOCKHASH)) 497 return true; 498 499 return false; 500 } 501 502 static bool is_ptr_cast_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_tcp_sock || 505 func_id == BPF_FUNC_sk_fullsock || 506 func_id == BPF_FUNC_skc_to_tcp_sock || 507 func_id == BPF_FUNC_skc_to_tcp6_sock || 508 func_id == BPF_FUNC_skc_to_udp6_sock || 509 func_id == BPF_FUNC_skc_to_mptcp_sock || 510 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 511 func_id == BPF_FUNC_skc_to_tcp_request_sock; 512 } 513 514 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 515 { 516 return func_id == BPF_FUNC_dynptr_data; 517 } 518 519 static bool is_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_for_each_map_elem || 522 func_id == BPF_FUNC_timer_set_callback || 523 func_id == BPF_FUNC_find_vma || 524 func_id == BPF_FUNC_loop || 525 func_id == BPF_FUNC_user_ringbuf_drain; 526 } 527 528 static bool is_storage_get_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_sk_storage_get || 531 func_id == BPF_FUNC_inode_storage_get || 532 func_id == BPF_FUNC_task_storage_get || 533 func_id == BPF_FUNC_cgrp_storage_get; 534 } 535 536 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 537 const struct bpf_map *map) 538 { 539 int ref_obj_uses = 0; 540 541 if (is_ptr_cast_function(func_id)) 542 ref_obj_uses++; 543 if (is_acquire_function(func_id, map)) 544 ref_obj_uses++; 545 if (is_dynptr_ref_function(func_id)) 546 ref_obj_uses++; 547 548 return ref_obj_uses > 1; 549 } 550 551 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 552 { 553 return BPF_CLASS(insn->code) == BPF_STX && 554 BPF_MODE(insn->code) == BPF_ATOMIC && 555 insn->imm == BPF_CMPXCHG; 556 } 557 558 /* string representation of 'enum bpf_reg_type' 559 * 560 * Note that reg_type_str() can not appear more than once in a single verbose() 561 * statement. 562 */ 563 static const char *reg_type_str(struct bpf_verifier_env *env, 564 enum bpf_reg_type type) 565 { 566 char postfix[16] = {0}, prefix[64] = {0}; 567 static const char * const str[] = { 568 [NOT_INIT] = "?", 569 [SCALAR_VALUE] = "scalar", 570 [PTR_TO_CTX] = "ctx", 571 [CONST_PTR_TO_MAP] = "map_ptr", 572 [PTR_TO_MAP_VALUE] = "map_value", 573 [PTR_TO_STACK] = "fp", 574 [PTR_TO_PACKET] = "pkt", 575 [PTR_TO_PACKET_META] = "pkt_meta", 576 [PTR_TO_PACKET_END] = "pkt_end", 577 [PTR_TO_FLOW_KEYS] = "flow_keys", 578 [PTR_TO_SOCKET] = "sock", 579 [PTR_TO_SOCK_COMMON] = "sock_common", 580 [PTR_TO_TCP_SOCK] = "tcp_sock", 581 [PTR_TO_TP_BUFFER] = "tp_buffer", 582 [PTR_TO_XDP_SOCK] = "xdp_sock", 583 [PTR_TO_BTF_ID] = "ptr_", 584 [PTR_TO_MEM] = "mem", 585 [PTR_TO_BUF] = "buf", 586 [PTR_TO_FUNC] = "func", 587 [PTR_TO_MAP_KEY] = "map_key", 588 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 589 }; 590 591 if (type & PTR_MAYBE_NULL) { 592 if (base_type(type) == PTR_TO_BTF_ID) 593 strncpy(postfix, "or_null_", 16); 594 else 595 strncpy(postfix, "_or_null", 16); 596 } 597 598 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 599 type & MEM_RDONLY ? "rdonly_" : "", 600 type & MEM_RINGBUF ? "ringbuf_" : "", 601 type & MEM_USER ? "user_" : "", 602 type & MEM_PERCPU ? "percpu_" : "", 603 type & MEM_RCU ? "rcu_" : "", 604 type & PTR_UNTRUSTED ? "untrusted_" : "", 605 type & PTR_TRUSTED ? "trusted_" : "" 606 ); 607 608 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 609 prefix, str[base_type(type)], postfix); 610 return env->tmp_str_buf; 611 } 612 613 static char slot_type_char[] = { 614 [STACK_INVALID] = '?', 615 [STACK_SPILL] = 'r', 616 [STACK_MISC] = 'm', 617 [STACK_ZERO] = '0', 618 [STACK_DYNPTR] = 'd', 619 [STACK_ITER] = 'i', 620 }; 621 622 static void print_liveness(struct bpf_verifier_env *env, 623 enum bpf_reg_liveness live) 624 { 625 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 626 verbose(env, "_"); 627 if (live & REG_LIVE_READ) 628 verbose(env, "r"); 629 if (live & REG_LIVE_WRITTEN) 630 verbose(env, "w"); 631 if (live & REG_LIVE_DONE) 632 verbose(env, "D"); 633 } 634 635 static int __get_spi(s32 off) 636 { 637 return (-off - 1) / BPF_REG_SIZE; 638 } 639 640 static struct bpf_func_state *func(struct bpf_verifier_env *env, 641 const struct bpf_reg_state *reg) 642 { 643 struct bpf_verifier_state *cur = env->cur_state; 644 645 return cur->frame[reg->frameno]; 646 } 647 648 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 649 { 650 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 651 652 /* We need to check that slots between [spi - nr_slots + 1, spi] are 653 * within [0, allocated_stack). 654 * 655 * Please note that the spi grows downwards. For example, a dynptr 656 * takes the size of two stack slots; the first slot will be at 657 * spi and the second slot will be at spi - 1. 658 */ 659 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 660 } 661 662 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 663 const char *obj_kind, int nr_slots) 664 { 665 int off, spi; 666 667 if (!tnum_is_const(reg->var_off)) { 668 verbose(env, "%s has to be at a constant offset\n", obj_kind); 669 return -EINVAL; 670 } 671 672 off = reg->off + reg->var_off.value; 673 if (off % BPF_REG_SIZE) { 674 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 675 return -EINVAL; 676 } 677 678 spi = __get_spi(off); 679 if (spi + 1 < nr_slots) { 680 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 681 return -EINVAL; 682 } 683 684 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 685 return -ERANGE; 686 return spi; 687 } 688 689 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 690 { 691 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 692 } 693 694 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 695 { 696 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 697 } 698 699 static const char *btf_type_name(const struct btf *btf, u32 id) 700 { 701 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 702 } 703 704 static const char *dynptr_type_str(enum bpf_dynptr_type type) 705 { 706 switch (type) { 707 case BPF_DYNPTR_TYPE_LOCAL: 708 return "local"; 709 case BPF_DYNPTR_TYPE_RINGBUF: 710 return "ringbuf"; 711 case BPF_DYNPTR_TYPE_SKB: 712 return "skb"; 713 case BPF_DYNPTR_TYPE_XDP: 714 return "xdp"; 715 case BPF_DYNPTR_TYPE_INVALID: 716 return "<invalid>"; 717 default: 718 WARN_ONCE(1, "unknown dynptr type %d\n", type); 719 return "<unknown>"; 720 } 721 } 722 723 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 724 { 725 if (!btf || btf_id == 0) 726 return "<invalid>"; 727 728 /* we already validated that type is valid and has conforming name */ 729 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 730 } 731 732 static const char *iter_state_str(enum bpf_iter_state state) 733 { 734 switch (state) { 735 case BPF_ITER_STATE_ACTIVE: 736 return "active"; 737 case BPF_ITER_STATE_DRAINED: 738 return "drained"; 739 case BPF_ITER_STATE_INVALID: 740 return "<invalid>"; 741 default: 742 WARN_ONCE(1, "unknown iter state %d\n", state); 743 return "<unknown>"; 744 } 745 } 746 747 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 748 { 749 env->scratched_regs |= 1U << regno; 750 } 751 752 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 753 { 754 env->scratched_stack_slots |= 1ULL << spi; 755 } 756 757 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 758 { 759 return (env->scratched_regs >> regno) & 1; 760 } 761 762 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 763 { 764 return (env->scratched_stack_slots >> regno) & 1; 765 } 766 767 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 768 { 769 return env->scratched_regs || env->scratched_stack_slots; 770 } 771 772 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 773 { 774 env->scratched_regs = 0U; 775 env->scratched_stack_slots = 0ULL; 776 } 777 778 /* Used for printing the entire verifier state. */ 779 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 780 { 781 env->scratched_regs = ~0U; 782 env->scratched_stack_slots = ~0ULL; 783 } 784 785 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 786 { 787 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 788 case DYNPTR_TYPE_LOCAL: 789 return BPF_DYNPTR_TYPE_LOCAL; 790 case DYNPTR_TYPE_RINGBUF: 791 return BPF_DYNPTR_TYPE_RINGBUF; 792 case DYNPTR_TYPE_SKB: 793 return BPF_DYNPTR_TYPE_SKB; 794 case DYNPTR_TYPE_XDP: 795 return BPF_DYNPTR_TYPE_XDP; 796 default: 797 return BPF_DYNPTR_TYPE_INVALID; 798 } 799 } 800 801 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 802 { 803 switch (type) { 804 case BPF_DYNPTR_TYPE_LOCAL: 805 return DYNPTR_TYPE_LOCAL; 806 case BPF_DYNPTR_TYPE_RINGBUF: 807 return DYNPTR_TYPE_RINGBUF; 808 case BPF_DYNPTR_TYPE_SKB: 809 return DYNPTR_TYPE_SKB; 810 case BPF_DYNPTR_TYPE_XDP: 811 return DYNPTR_TYPE_XDP; 812 default: 813 return 0; 814 } 815 } 816 817 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 818 { 819 return type == BPF_DYNPTR_TYPE_RINGBUF; 820 } 821 822 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 823 enum bpf_dynptr_type type, 824 bool first_slot, int dynptr_id); 825 826 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 827 struct bpf_reg_state *reg); 828 829 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 830 struct bpf_reg_state *sreg1, 831 struct bpf_reg_state *sreg2, 832 enum bpf_dynptr_type type) 833 { 834 int id = ++env->id_gen; 835 836 __mark_dynptr_reg(sreg1, type, true, id); 837 __mark_dynptr_reg(sreg2, type, false, id); 838 } 839 840 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 841 struct bpf_reg_state *reg, 842 enum bpf_dynptr_type type) 843 { 844 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 845 } 846 847 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 848 struct bpf_func_state *state, int spi); 849 850 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 851 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 852 { 853 struct bpf_func_state *state = func(env, reg); 854 enum bpf_dynptr_type type; 855 int spi, i, err; 856 857 spi = dynptr_get_spi(env, reg); 858 if (spi < 0) 859 return spi; 860 861 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 862 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 863 * to ensure that for the following example: 864 * [d1][d1][d2][d2] 865 * spi 3 2 1 0 866 * So marking spi = 2 should lead to destruction of both d1 and d2. In 867 * case they do belong to same dynptr, second call won't see slot_type 868 * as STACK_DYNPTR and will simply skip destruction. 869 */ 870 err = destroy_if_dynptr_stack_slot(env, state, spi); 871 if (err) 872 return err; 873 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 874 if (err) 875 return err; 876 877 for (i = 0; i < BPF_REG_SIZE; i++) { 878 state->stack[spi].slot_type[i] = STACK_DYNPTR; 879 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 880 } 881 882 type = arg_to_dynptr_type(arg_type); 883 if (type == BPF_DYNPTR_TYPE_INVALID) 884 return -EINVAL; 885 886 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 887 &state->stack[spi - 1].spilled_ptr, type); 888 889 if (dynptr_type_refcounted(type)) { 890 /* The id is used to track proper releasing */ 891 int id; 892 893 if (clone_ref_obj_id) 894 id = clone_ref_obj_id; 895 else 896 id = acquire_reference_state(env, insn_idx); 897 898 if (id < 0) 899 return id; 900 901 state->stack[spi].spilled_ptr.ref_obj_id = id; 902 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 903 } 904 905 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 906 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 907 908 return 0; 909 } 910 911 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 912 { 913 int i; 914 915 for (i = 0; i < BPF_REG_SIZE; i++) { 916 state->stack[spi].slot_type[i] = STACK_INVALID; 917 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 918 } 919 920 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 921 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 922 923 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 924 * 925 * While we don't allow reading STACK_INVALID, it is still possible to 926 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 927 * helpers or insns can do partial read of that part without failing, 928 * but check_stack_range_initialized, check_stack_read_var_off, and 929 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 930 * the slot conservatively. Hence we need to prevent those liveness 931 * marking walks. 932 * 933 * This was not a problem before because STACK_INVALID is only set by 934 * default (where the default reg state has its reg->parent as NULL), or 935 * in clean_live_states after REG_LIVE_DONE (at which point 936 * mark_reg_read won't walk reg->parent chain), but not randomly during 937 * verifier state exploration (like we did above). Hence, for our case 938 * parentage chain will still be live (i.e. reg->parent may be 939 * non-NULL), while earlier reg->parent was NULL, so we need 940 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 941 * done later on reads or by mark_dynptr_read as well to unnecessary 942 * mark registers in verifier state. 943 */ 944 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 945 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 946 } 947 948 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 949 { 950 struct bpf_func_state *state = func(env, reg); 951 int spi, ref_obj_id, i; 952 953 spi = dynptr_get_spi(env, reg); 954 if (spi < 0) 955 return spi; 956 957 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 958 invalidate_dynptr(env, state, spi); 959 return 0; 960 } 961 962 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 963 964 /* If the dynptr has a ref_obj_id, then we need to invalidate 965 * two things: 966 * 967 * 1) Any dynptrs with a matching ref_obj_id (clones) 968 * 2) Any slices derived from this dynptr. 969 */ 970 971 /* Invalidate any slices associated with this dynptr */ 972 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 973 974 /* Invalidate any dynptr clones */ 975 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 976 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 977 continue; 978 979 /* it should always be the case that if the ref obj id 980 * matches then the stack slot also belongs to a 981 * dynptr 982 */ 983 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 984 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 985 return -EFAULT; 986 } 987 if (state->stack[i].spilled_ptr.dynptr.first_slot) 988 invalidate_dynptr(env, state, i); 989 } 990 991 return 0; 992 } 993 994 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 995 struct bpf_reg_state *reg); 996 997 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 998 { 999 if (!env->allow_ptr_leaks) 1000 __mark_reg_not_init(env, reg); 1001 else 1002 __mark_reg_unknown(env, reg); 1003 } 1004 1005 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1006 struct bpf_func_state *state, int spi) 1007 { 1008 struct bpf_func_state *fstate; 1009 struct bpf_reg_state *dreg; 1010 int i, dynptr_id; 1011 1012 /* We always ensure that STACK_DYNPTR is never set partially, 1013 * hence just checking for slot_type[0] is enough. This is 1014 * different for STACK_SPILL, where it may be only set for 1015 * 1 byte, so code has to use is_spilled_reg. 1016 */ 1017 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1018 return 0; 1019 1020 /* Reposition spi to first slot */ 1021 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1022 spi = spi + 1; 1023 1024 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1025 verbose(env, "cannot overwrite referenced dynptr\n"); 1026 return -EINVAL; 1027 } 1028 1029 mark_stack_slot_scratched(env, spi); 1030 mark_stack_slot_scratched(env, spi - 1); 1031 1032 /* Writing partially to one dynptr stack slot destroys both. */ 1033 for (i = 0; i < BPF_REG_SIZE; i++) { 1034 state->stack[spi].slot_type[i] = STACK_INVALID; 1035 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1036 } 1037 1038 dynptr_id = state->stack[spi].spilled_ptr.id; 1039 /* Invalidate any slices associated with this dynptr */ 1040 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1041 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1042 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1043 continue; 1044 if (dreg->dynptr_id == dynptr_id) 1045 mark_reg_invalid(env, dreg); 1046 })); 1047 1048 /* Do not release reference state, we are destroying dynptr on stack, 1049 * not using some helper to release it. Just reset register. 1050 */ 1051 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1052 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1053 1054 /* Same reason as unmark_stack_slots_dynptr above */ 1055 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1056 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1057 1058 return 0; 1059 } 1060 1061 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1062 { 1063 int spi; 1064 1065 if (reg->type == CONST_PTR_TO_DYNPTR) 1066 return false; 1067 1068 spi = dynptr_get_spi(env, reg); 1069 1070 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1071 * error because this just means the stack state hasn't been updated yet. 1072 * We will do check_mem_access to check and update stack bounds later. 1073 */ 1074 if (spi < 0 && spi != -ERANGE) 1075 return false; 1076 1077 /* We don't need to check if the stack slots are marked by previous 1078 * dynptr initializations because we allow overwriting existing unreferenced 1079 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1080 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1081 * touching are completely destructed before we reinitialize them for a new 1082 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1083 * instead of delaying it until the end where the user will get "Unreleased 1084 * reference" error. 1085 */ 1086 return true; 1087 } 1088 1089 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1090 { 1091 struct bpf_func_state *state = func(env, reg); 1092 int i, spi; 1093 1094 /* This already represents first slot of initialized bpf_dynptr. 1095 * 1096 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1097 * check_func_arg_reg_off's logic, so we don't need to check its 1098 * offset and alignment. 1099 */ 1100 if (reg->type == CONST_PTR_TO_DYNPTR) 1101 return true; 1102 1103 spi = dynptr_get_spi(env, reg); 1104 if (spi < 0) 1105 return false; 1106 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1107 return false; 1108 1109 for (i = 0; i < BPF_REG_SIZE; i++) { 1110 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1111 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1112 return false; 1113 } 1114 1115 return true; 1116 } 1117 1118 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1119 enum bpf_arg_type arg_type) 1120 { 1121 struct bpf_func_state *state = func(env, reg); 1122 enum bpf_dynptr_type dynptr_type; 1123 int spi; 1124 1125 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1126 if (arg_type == ARG_PTR_TO_DYNPTR) 1127 return true; 1128 1129 dynptr_type = arg_to_dynptr_type(arg_type); 1130 if (reg->type == CONST_PTR_TO_DYNPTR) { 1131 return reg->dynptr.type == dynptr_type; 1132 } else { 1133 spi = dynptr_get_spi(env, reg); 1134 if (spi < 0) 1135 return false; 1136 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1137 } 1138 } 1139 1140 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1141 1142 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1143 struct bpf_reg_state *reg, int insn_idx, 1144 struct btf *btf, u32 btf_id, int nr_slots) 1145 { 1146 struct bpf_func_state *state = func(env, reg); 1147 int spi, i, j, id; 1148 1149 spi = iter_get_spi(env, reg, nr_slots); 1150 if (spi < 0) 1151 return spi; 1152 1153 id = acquire_reference_state(env, insn_idx); 1154 if (id < 0) 1155 return id; 1156 1157 for (i = 0; i < nr_slots; i++) { 1158 struct bpf_stack_state *slot = &state->stack[spi - i]; 1159 struct bpf_reg_state *st = &slot->spilled_ptr; 1160 1161 __mark_reg_known_zero(st); 1162 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1163 st->live |= REG_LIVE_WRITTEN; 1164 st->ref_obj_id = i == 0 ? id : 0; 1165 st->iter.btf = btf; 1166 st->iter.btf_id = btf_id; 1167 st->iter.state = BPF_ITER_STATE_ACTIVE; 1168 st->iter.depth = 0; 1169 1170 for (j = 0; j < BPF_REG_SIZE; j++) 1171 slot->slot_type[j] = STACK_ITER; 1172 1173 mark_stack_slot_scratched(env, spi - i); 1174 } 1175 1176 return 0; 1177 } 1178 1179 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1180 struct bpf_reg_state *reg, int nr_slots) 1181 { 1182 struct bpf_func_state *state = func(env, reg); 1183 int spi, i, j; 1184 1185 spi = iter_get_spi(env, reg, nr_slots); 1186 if (spi < 0) 1187 return spi; 1188 1189 for (i = 0; i < nr_slots; i++) { 1190 struct bpf_stack_state *slot = &state->stack[spi - i]; 1191 struct bpf_reg_state *st = &slot->spilled_ptr; 1192 1193 if (i == 0) 1194 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1195 1196 __mark_reg_not_init(env, st); 1197 1198 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1199 st->live |= REG_LIVE_WRITTEN; 1200 1201 for (j = 0; j < BPF_REG_SIZE; j++) 1202 slot->slot_type[j] = STACK_INVALID; 1203 1204 mark_stack_slot_scratched(env, spi - i); 1205 } 1206 1207 return 0; 1208 } 1209 1210 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1211 struct bpf_reg_state *reg, int nr_slots) 1212 { 1213 struct bpf_func_state *state = func(env, reg); 1214 int spi, i, j; 1215 1216 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1217 * will do check_mem_access to check and update stack bounds later, so 1218 * return true for that case. 1219 */ 1220 spi = iter_get_spi(env, reg, nr_slots); 1221 if (spi == -ERANGE) 1222 return true; 1223 if (spi < 0) 1224 return false; 1225 1226 for (i = 0; i < nr_slots; i++) { 1227 struct bpf_stack_state *slot = &state->stack[spi - i]; 1228 1229 for (j = 0; j < BPF_REG_SIZE; j++) 1230 if (slot->slot_type[j] == STACK_ITER) 1231 return false; 1232 } 1233 1234 return true; 1235 } 1236 1237 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1238 struct btf *btf, u32 btf_id, int nr_slots) 1239 { 1240 struct bpf_func_state *state = func(env, reg); 1241 int spi, i, j; 1242 1243 spi = iter_get_spi(env, reg, nr_slots); 1244 if (spi < 0) 1245 return false; 1246 1247 for (i = 0; i < nr_slots; i++) { 1248 struct bpf_stack_state *slot = &state->stack[spi - i]; 1249 struct bpf_reg_state *st = &slot->spilled_ptr; 1250 1251 /* only main (first) slot has ref_obj_id set */ 1252 if (i == 0 && !st->ref_obj_id) 1253 return false; 1254 if (i != 0 && st->ref_obj_id) 1255 return false; 1256 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1257 return false; 1258 1259 for (j = 0; j < BPF_REG_SIZE; j++) 1260 if (slot->slot_type[j] != STACK_ITER) 1261 return false; 1262 } 1263 1264 return true; 1265 } 1266 1267 /* Check if given stack slot is "special": 1268 * - spilled register state (STACK_SPILL); 1269 * - dynptr state (STACK_DYNPTR); 1270 * - iter state (STACK_ITER). 1271 */ 1272 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1273 { 1274 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1275 1276 switch (type) { 1277 case STACK_SPILL: 1278 case STACK_DYNPTR: 1279 case STACK_ITER: 1280 return true; 1281 case STACK_INVALID: 1282 case STACK_MISC: 1283 case STACK_ZERO: 1284 return false; 1285 default: 1286 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1287 return true; 1288 } 1289 } 1290 1291 /* The reg state of a pointer or a bounded scalar was saved when 1292 * it was spilled to the stack. 1293 */ 1294 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1295 { 1296 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1297 } 1298 1299 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1300 { 1301 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1302 stack->spilled_ptr.type == SCALAR_VALUE; 1303 } 1304 1305 static void scrub_spilled_slot(u8 *stype) 1306 { 1307 if (*stype != STACK_INVALID) 1308 *stype = STACK_MISC; 1309 } 1310 1311 static void print_verifier_state(struct bpf_verifier_env *env, 1312 const struct bpf_func_state *state, 1313 bool print_all) 1314 { 1315 const struct bpf_reg_state *reg; 1316 enum bpf_reg_type t; 1317 int i; 1318 1319 if (state->frameno) 1320 verbose(env, " frame%d:", state->frameno); 1321 for (i = 0; i < MAX_BPF_REG; i++) { 1322 reg = &state->regs[i]; 1323 t = reg->type; 1324 if (t == NOT_INIT) 1325 continue; 1326 if (!print_all && !reg_scratched(env, i)) 1327 continue; 1328 verbose(env, " R%d", i); 1329 print_liveness(env, reg->live); 1330 verbose(env, "="); 1331 if (t == SCALAR_VALUE && reg->precise) 1332 verbose(env, "P"); 1333 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1334 tnum_is_const(reg->var_off)) { 1335 /* reg->off should be 0 for SCALAR_VALUE */ 1336 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1337 verbose(env, "%lld", reg->var_off.value + reg->off); 1338 } else { 1339 const char *sep = ""; 1340 1341 verbose(env, "%s", reg_type_str(env, t)); 1342 if (base_type(t) == PTR_TO_BTF_ID) 1343 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1344 verbose(env, "("); 1345 /* 1346 * _a stands for append, was shortened to avoid multiline statements below. 1347 * This macro is used to output a comma separated list of attributes. 1348 */ 1349 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1350 1351 if (reg->id) 1352 verbose_a("id=%d", reg->id); 1353 if (reg->ref_obj_id) 1354 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1355 if (type_is_non_owning_ref(reg->type)) 1356 verbose_a("%s", "non_own_ref"); 1357 if (t != SCALAR_VALUE) 1358 verbose_a("off=%d", reg->off); 1359 if (type_is_pkt_pointer(t)) 1360 verbose_a("r=%d", reg->range); 1361 else if (base_type(t) == CONST_PTR_TO_MAP || 1362 base_type(t) == PTR_TO_MAP_KEY || 1363 base_type(t) == PTR_TO_MAP_VALUE) 1364 verbose_a("ks=%d,vs=%d", 1365 reg->map_ptr->key_size, 1366 reg->map_ptr->value_size); 1367 if (tnum_is_const(reg->var_off)) { 1368 /* Typically an immediate SCALAR_VALUE, but 1369 * could be a pointer whose offset is too big 1370 * for reg->off 1371 */ 1372 verbose_a("imm=%llx", reg->var_off.value); 1373 } else { 1374 if (reg->smin_value != reg->umin_value && 1375 reg->smin_value != S64_MIN) 1376 verbose_a("smin=%lld", (long long)reg->smin_value); 1377 if (reg->smax_value != reg->umax_value && 1378 reg->smax_value != S64_MAX) 1379 verbose_a("smax=%lld", (long long)reg->smax_value); 1380 if (reg->umin_value != 0) 1381 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1382 if (reg->umax_value != U64_MAX) 1383 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1384 if (!tnum_is_unknown(reg->var_off)) { 1385 char tn_buf[48]; 1386 1387 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1388 verbose_a("var_off=%s", tn_buf); 1389 } 1390 if (reg->s32_min_value != reg->smin_value && 1391 reg->s32_min_value != S32_MIN) 1392 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1393 if (reg->s32_max_value != reg->smax_value && 1394 reg->s32_max_value != S32_MAX) 1395 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1396 if (reg->u32_min_value != reg->umin_value && 1397 reg->u32_min_value != U32_MIN) 1398 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1399 if (reg->u32_max_value != reg->umax_value && 1400 reg->u32_max_value != U32_MAX) 1401 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1402 } 1403 #undef verbose_a 1404 1405 verbose(env, ")"); 1406 } 1407 } 1408 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1409 char types_buf[BPF_REG_SIZE + 1]; 1410 bool valid = false; 1411 int j; 1412 1413 for (j = 0; j < BPF_REG_SIZE; j++) { 1414 if (state->stack[i].slot_type[j] != STACK_INVALID) 1415 valid = true; 1416 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1417 } 1418 types_buf[BPF_REG_SIZE] = 0; 1419 if (!valid) 1420 continue; 1421 if (!print_all && !stack_slot_scratched(env, i)) 1422 continue; 1423 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1424 case STACK_SPILL: 1425 reg = &state->stack[i].spilled_ptr; 1426 t = reg->type; 1427 1428 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1429 print_liveness(env, reg->live); 1430 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1431 if (t == SCALAR_VALUE && reg->precise) 1432 verbose(env, "P"); 1433 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1434 verbose(env, "%lld", reg->var_off.value + reg->off); 1435 break; 1436 case STACK_DYNPTR: 1437 i += BPF_DYNPTR_NR_SLOTS - 1; 1438 reg = &state->stack[i].spilled_ptr; 1439 1440 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1441 print_liveness(env, reg->live); 1442 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1443 if (reg->ref_obj_id) 1444 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1445 break; 1446 case STACK_ITER: 1447 /* only main slot has ref_obj_id set; skip others */ 1448 reg = &state->stack[i].spilled_ptr; 1449 if (!reg->ref_obj_id) 1450 continue; 1451 1452 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1453 print_liveness(env, reg->live); 1454 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1455 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1456 reg->ref_obj_id, iter_state_str(reg->iter.state), 1457 reg->iter.depth); 1458 break; 1459 case STACK_MISC: 1460 case STACK_ZERO: 1461 default: 1462 reg = &state->stack[i].spilled_ptr; 1463 1464 for (j = 0; j < BPF_REG_SIZE; j++) 1465 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1466 types_buf[BPF_REG_SIZE] = 0; 1467 1468 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1469 print_liveness(env, reg->live); 1470 verbose(env, "=%s", types_buf); 1471 break; 1472 } 1473 } 1474 if (state->acquired_refs && state->refs[0].id) { 1475 verbose(env, " refs=%d", state->refs[0].id); 1476 for (i = 1; i < state->acquired_refs; i++) 1477 if (state->refs[i].id) 1478 verbose(env, ",%d", state->refs[i].id); 1479 } 1480 if (state->in_callback_fn) 1481 verbose(env, " cb"); 1482 if (state->in_async_callback_fn) 1483 verbose(env, " async_cb"); 1484 verbose(env, "\n"); 1485 mark_verifier_state_clean(env); 1486 } 1487 1488 static inline u32 vlog_alignment(u32 pos) 1489 { 1490 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1491 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1492 } 1493 1494 static void print_insn_state(struct bpf_verifier_env *env, 1495 const struct bpf_func_state *state) 1496 { 1497 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1498 /* remove new line character */ 1499 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1500 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1501 } else { 1502 verbose(env, "%d:", env->insn_idx); 1503 } 1504 print_verifier_state(env, state, false); 1505 } 1506 1507 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1508 * small to hold src. This is different from krealloc since we don't want to preserve 1509 * the contents of dst. 1510 * 1511 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1512 * not be allocated. 1513 */ 1514 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1515 { 1516 size_t alloc_bytes; 1517 void *orig = dst; 1518 size_t bytes; 1519 1520 if (ZERO_OR_NULL_PTR(src)) 1521 goto out; 1522 1523 if (unlikely(check_mul_overflow(n, size, &bytes))) 1524 return NULL; 1525 1526 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1527 dst = krealloc(orig, alloc_bytes, flags); 1528 if (!dst) { 1529 kfree(orig); 1530 return NULL; 1531 } 1532 1533 memcpy(dst, src, bytes); 1534 out: 1535 return dst ? dst : ZERO_SIZE_PTR; 1536 } 1537 1538 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1539 * small to hold new_n items. new items are zeroed out if the array grows. 1540 * 1541 * Contrary to krealloc_array, does not free arr if new_n is zero. 1542 */ 1543 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1544 { 1545 size_t alloc_size; 1546 void *new_arr; 1547 1548 if (!new_n || old_n == new_n) 1549 goto out; 1550 1551 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1552 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1553 if (!new_arr) { 1554 kfree(arr); 1555 return NULL; 1556 } 1557 arr = new_arr; 1558 1559 if (new_n > old_n) 1560 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1561 1562 out: 1563 return arr ? arr : ZERO_SIZE_PTR; 1564 } 1565 1566 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1567 { 1568 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1569 sizeof(struct bpf_reference_state), GFP_KERNEL); 1570 if (!dst->refs) 1571 return -ENOMEM; 1572 1573 dst->acquired_refs = src->acquired_refs; 1574 return 0; 1575 } 1576 1577 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1578 { 1579 size_t n = src->allocated_stack / BPF_REG_SIZE; 1580 1581 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1582 GFP_KERNEL); 1583 if (!dst->stack) 1584 return -ENOMEM; 1585 1586 dst->allocated_stack = src->allocated_stack; 1587 return 0; 1588 } 1589 1590 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1591 { 1592 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1593 sizeof(struct bpf_reference_state)); 1594 if (!state->refs) 1595 return -ENOMEM; 1596 1597 state->acquired_refs = n; 1598 return 0; 1599 } 1600 1601 static int grow_stack_state(struct bpf_func_state *state, int size) 1602 { 1603 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1604 1605 if (old_n >= n) 1606 return 0; 1607 1608 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1609 if (!state->stack) 1610 return -ENOMEM; 1611 1612 state->allocated_stack = size; 1613 return 0; 1614 } 1615 1616 /* Acquire a pointer id from the env and update the state->refs to include 1617 * this new pointer reference. 1618 * On success, returns a valid pointer id to associate with the register 1619 * On failure, returns a negative errno. 1620 */ 1621 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1622 { 1623 struct bpf_func_state *state = cur_func(env); 1624 int new_ofs = state->acquired_refs; 1625 int id, err; 1626 1627 err = resize_reference_state(state, state->acquired_refs + 1); 1628 if (err) 1629 return err; 1630 id = ++env->id_gen; 1631 state->refs[new_ofs].id = id; 1632 state->refs[new_ofs].insn_idx = insn_idx; 1633 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1634 1635 return id; 1636 } 1637 1638 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1639 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1640 { 1641 int i, last_idx; 1642 1643 last_idx = state->acquired_refs - 1; 1644 for (i = 0; i < state->acquired_refs; i++) { 1645 if (state->refs[i].id == ptr_id) { 1646 /* Cannot release caller references in callbacks */ 1647 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1648 return -EINVAL; 1649 if (last_idx && i != last_idx) 1650 memcpy(&state->refs[i], &state->refs[last_idx], 1651 sizeof(*state->refs)); 1652 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1653 state->acquired_refs--; 1654 return 0; 1655 } 1656 } 1657 return -EINVAL; 1658 } 1659 1660 static void free_func_state(struct bpf_func_state *state) 1661 { 1662 if (!state) 1663 return; 1664 kfree(state->refs); 1665 kfree(state->stack); 1666 kfree(state); 1667 } 1668 1669 static void clear_jmp_history(struct bpf_verifier_state *state) 1670 { 1671 kfree(state->jmp_history); 1672 state->jmp_history = NULL; 1673 state->jmp_history_cnt = 0; 1674 } 1675 1676 static void free_verifier_state(struct bpf_verifier_state *state, 1677 bool free_self) 1678 { 1679 int i; 1680 1681 for (i = 0; i <= state->curframe; i++) { 1682 free_func_state(state->frame[i]); 1683 state->frame[i] = NULL; 1684 } 1685 clear_jmp_history(state); 1686 if (free_self) 1687 kfree(state); 1688 } 1689 1690 /* copy verifier state from src to dst growing dst stack space 1691 * when necessary to accommodate larger src stack 1692 */ 1693 static int copy_func_state(struct bpf_func_state *dst, 1694 const struct bpf_func_state *src) 1695 { 1696 int err; 1697 1698 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1699 err = copy_reference_state(dst, src); 1700 if (err) 1701 return err; 1702 return copy_stack_state(dst, src); 1703 } 1704 1705 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1706 const struct bpf_verifier_state *src) 1707 { 1708 struct bpf_func_state *dst; 1709 int i, err; 1710 1711 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1712 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1713 GFP_USER); 1714 if (!dst_state->jmp_history) 1715 return -ENOMEM; 1716 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1717 1718 /* if dst has more stack frames then src frame, free them */ 1719 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1720 free_func_state(dst_state->frame[i]); 1721 dst_state->frame[i] = NULL; 1722 } 1723 dst_state->speculative = src->speculative; 1724 dst_state->active_rcu_lock = src->active_rcu_lock; 1725 dst_state->curframe = src->curframe; 1726 dst_state->active_lock.ptr = src->active_lock.ptr; 1727 dst_state->active_lock.id = src->active_lock.id; 1728 dst_state->branches = src->branches; 1729 dst_state->parent = src->parent; 1730 dst_state->first_insn_idx = src->first_insn_idx; 1731 dst_state->last_insn_idx = src->last_insn_idx; 1732 for (i = 0; i <= src->curframe; i++) { 1733 dst = dst_state->frame[i]; 1734 if (!dst) { 1735 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1736 if (!dst) 1737 return -ENOMEM; 1738 dst_state->frame[i] = dst; 1739 } 1740 err = copy_func_state(dst, src->frame[i]); 1741 if (err) 1742 return err; 1743 } 1744 return 0; 1745 } 1746 1747 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1748 { 1749 while (st) { 1750 u32 br = --st->branches; 1751 1752 /* WARN_ON(br > 1) technically makes sense here, 1753 * but see comment in push_stack(), hence: 1754 */ 1755 WARN_ONCE((int)br < 0, 1756 "BUG update_branch_counts:branches_to_explore=%d\n", 1757 br); 1758 if (br) 1759 break; 1760 st = st->parent; 1761 } 1762 } 1763 1764 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1765 int *insn_idx, bool pop_log) 1766 { 1767 struct bpf_verifier_state *cur = env->cur_state; 1768 struct bpf_verifier_stack_elem *elem, *head = env->head; 1769 int err; 1770 1771 if (env->head == NULL) 1772 return -ENOENT; 1773 1774 if (cur) { 1775 err = copy_verifier_state(cur, &head->st); 1776 if (err) 1777 return err; 1778 } 1779 if (pop_log) 1780 bpf_vlog_reset(&env->log, head->log_pos); 1781 if (insn_idx) 1782 *insn_idx = head->insn_idx; 1783 if (prev_insn_idx) 1784 *prev_insn_idx = head->prev_insn_idx; 1785 elem = head->next; 1786 free_verifier_state(&head->st, false); 1787 kfree(head); 1788 env->head = elem; 1789 env->stack_size--; 1790 return 0; 1791 } 1792 1793 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1794 int insn_idx, int prev_insn_idx, 1795 bool speculative) 1796 { 1797 struct bpf_verifier_state *cur = env->cur_state; 1798 struct bpf_verifier_stack_elem *elem; 1799 int err; 1800 1801 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1802 if (!elem) 1803 goto err; 1804 1805 elem->insn_idx = insn_idx; 1806 elem->prev_insn_idx = prev_insn_idx; 1807 elem->next = env->head; 1808 elem->log_pos = env->log.end_pos; 1809 env->head = elem; 1810 env->stack_size++; 1811 err = copy_verifier_state(&elem->st, cur); 1812 if (err) 1813 goto err; 1814 elem->st.speculative |= speculative; 1815 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1816 verbose(env, "The sequence of %d jumps is too complex.\n", 1817 env->stack_size); 1818 goto err; 1819 } 1820 if (elem->st.parent) { 1821 ++elem->st.parent->branches; 1822 /* WARN_ON(branches > 2) technically makes sense here, 1823 * but 1824 * 1. speculative states will bump 'branches' for non-branch 1825 * instructions 1826 * 2. is_state_visited() heuristics may decide not to create 1827 * a new state for a sequence of branches and all such current 1828 * and cloned states will be pointing to a single parent state 1829 * which might have large 'branches' count. 1830 */ 1831 } 1832 return &elem->st; 1833 err: 1834 free_verifier_state(env->cur_state, true); 1835 env->cur_state = NULL; 1836 /* pop all elements and return */ 1837 while (!pop_stack(env, NULL, NULL, false)); 1838 return NULL; 1839 } 1840 1841 #define CALLER_SAVED_REGS 6 1842 static const int caller_saved[CALLER_SAVED_REGS] = { 1843 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1844 }; 1845 1846 /* This helper doesn't clear reg->id */ 1847 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1848 { 1849 reg->var_off = tnum_const(imm); 1850 reg->smin_value = (s64)imm; 1851 reg->smax_value = (s64)imm; 1852 reg->umin_value = imm; 1853 reg->umax_value = imm; 1854 1855 reg->s32_min_value = (s32)imm; 1856 reg->s32_max_value = (s32)imm; 1857 reg->u32_min_value = (u32)imm; 1858 reg->u32_max_value = (u32)imm; 1859 } 1860 1861 /* Mark the unknown part of a register (variable offset or scalar value) as 1862 * known to have the value @imm. 1863 */ 1864 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1865 { 1866 /* Clear off and union(map_ptr, range) */ 1867 memset(((u8 *)reg) + sizeof(reg->type), 0, 1868 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1869 reg->id = 0; 1870 reg->ref_obj_id = 0; 1871 ___mark_reg_known(reg, imm); 1872 } 1873 1874 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1875 { 1876 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1877 reg->s32_min_value = (s32)imm; 1878 reg->s32_max_value = (s32)imm; 1879 reg->u32_min_value = (u32)imm; 1880 reg->u32_max_value = (u32)imm; 1881 } 1882 1883 /* Mark the 'variable offset' part of a register as zero. This should be 1884 * used only on registers holding a pointer type. 1885 */ 1886 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1887 { 1888 __mark_reg_known(reg, 0); 1889 } 1890 1891 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1892 { 1893 __mark_reg_known(reg, 0); 1894 reg->type = SCALAR_VALUE; 1895 } 1896 1897 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1898 struct bpf_reg_state *regs, u32 regno) 1899 { 1900 if (WARN_ON(regno >= MAX_BPF_REG)) { 1901 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1902 /* Something bad happened, let's kill all regs */ 1903 for (regno = 0; regno < MAX_BPF_REG; regno++) 1904 __mark_reg_not_init(env, regs + regno); 1905 return; 1906 } 1907 __mark_reg_known_zero(regs + regno); 1908 } 1909 1910 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1911 bool first_slot, int dynptr_id) 1912 { 1913 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1914 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1915 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1916 */ 1917 __mark_reg_known_zero(reg); 1918 reg->type = CONST_PTR_TO_DYNPTR; 1919 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1920 reg->id = dynptr_id; 1921 reg->dynptr.type = type; 1922 reg->dynptr.first_slot = first_slot; 1923 } 1924 1925 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1926 { 1927 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1928 const struct bpf_map *map = reg->map_ptr; 1929 1930 if (map->inner_map_meta) { 1931 reg->type = CONST_PTR_TO_MAP; 1932 reg->map_ptr = map->inner_map_meta; 1933 /* transfer reg's id which is unique for every map_lookup_elem 1934 * as UID of the inner map. 1935 */ 1936 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1937 reg->map_uid = reg->id; 1938 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1939 reg->type = PTR_TO_XDP_SOCK; 1940 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1941 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1942 reg->type = PTR_TO_SOCKET; 1943 } else { 1944 reg->type = PTR_TO_MAP_VALUE; 1945 } 1946 return; 1947 } 1948 1949 reg->type &= ~PTR_MAYBE_NULL; 1950 } 1951 1952 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1953 struct btf_field_graph_root *ds_head) 1954 { 1955 __mark_reg_known_zero(®s[regno]); 1956 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1957 regs[regno].btf = ds_head->btf; 1958 regs[regno].btf_id = ds_head->value_btf_id; 1959 regs[regno].off = ds_head->node_offset; 1960 } 1961 1962 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1963 { 1964 return type_is_pkt_pointer(reg->type); 1965 } 1966 1967 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1968 { 1969 return reg_is_pkt_pointer(reg) || 1970 reg->type == PTR_TO_PACKET_END; 1971 } 1972 1973 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1974 { 1975 return base_type(reg->type) == PTR_TO_MEM && 1976 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1977 } 1978 1979 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1980 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1981 enum bpf_reg_type which) 1982 { 1983 /* The register can already have a range from prior markings. 1984 * This is fine as long as it hasn't been advanced from its 1985 * origin. 1986 */ 1987 return reg->type == which && 1988 reg->id == 0 && 1989 reg->off == 0 && 1990 tnum_equals_const(reg->var_off, 0); 1991 } 1992 1993 /* Reset the min/max bounds of a register */ 1994 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1995 { 1996 reg->smin_value = S64_MIN; 1997 reg->smax_value = S64_MAX; 1998 reg->umin_value = 0; 1999 reg->umax_value = U64_MAX; 2000 2001 reg->s32_min_value = S32_MIN; 2002 reg->s32_max_value = S32_MAX; 2003 reg->u32_min_value = 0; 2004 reg->u32_max_value = U32_MAX; 2005 } 2006 2007 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2008 { 2009 reg->smin_value = S64_MIN; 2010 reg->smax_value = S64_MAX; 2011 reg->umin_value = 0; 2012 reg->umax_value = U64_MAX; 2013 } 2014 2015 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2016 { 2017 reg->s32_min_value = S32_MIN; 2018 reg->s32_max_value = S32_MAX; 2019 reg->u32_min_value = 0; 2020 reg->u32_max_value = U32_MAX; 2021 } 2022 2023 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2024 { 2025 struct tnum var32_off = tnum_subreg(reg->var_off); 2026 2027 /* min signed is max(sign bit) | min(other bits) */ 2028 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2029 var32_off.value | (var32_off.mask & S32_MIN)); 2030 /* max signed is min(sign bit) | max(other bits) */ 2031 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2032 var32_off.value | (var32_off.mask & S32_MAX)); 2033 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2034 reg->u32_max_value = min(reg->u32_max_value, 2035 (u32)(var32_off.value | var32_off.mask)); 2036 } 2037 2038 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2039 { 2040 /* min signed is max(sign bit) | min(other bits) */ 2041 reg->smin_value = max_t(s64, reg->smin_value, 2042 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2043 /* max signed is min(sign bit) | max(other bits) */ 2044 reg->smax_value = min_t(s64, reg->smax_value, 2045 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2046 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2047 reg->umax_value = min(reg->umax_value, 2048 reg->var_off.value | reg->var_off.mask); 2049 } 2050 2051 static void __update_reg_bounds(struct bpf_reg_state *reg) 2052 { 2053 __update_reg32_bounds(reg); 2054 __update_reg64_bounds(reg); 2055 } 2056 2057 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2058 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2059 { 2060 /* Learn sign from signed bounds. 2061 * If we cannot cross the sign boundary, then signed and unsigned bounds 2062 * are the same, so combine. This works even in the negative case, e.g. 2063 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2064 */ 2065 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2066 reg->s32_min_value = reg->u32_min_value = 2067 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2068 reg->s32_max_value = reg->u32_max_value = 2069 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2070 return; 2071 } 2072 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2073 * boundary, so we must be careful. 2074 */ 2075 if ((s32)reg->u32_max_value >= 0) { 2076 /* Positive. We can't learn anything from the smin, but smax 2077 * is positive, hence safe. 2078 */ 2079 reg->s32_min_value = reg->u32_min_value; 2080 reg->s32_max_value = reg->u32_max_value = 2081 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2082 } else if ((s32)reg->u32_min_value < 0) { 2083 /* Negative. We can't learn anything from the smax, but smin 2084 * is negative, hence safe. 2085 */ 2086 reg->s32_min_value = reg->u32_min_value = 2087 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2088 reg->s32_max_value = reg->u32_max_value; 2089 } 2090 } 2091 2092 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2093 { 2094 /* Learn sign from signed bounds. 2095 * If we cannot cross the sign boundary, then signed and unsigned bounds 2096 * are the same, so combine. This works even in the negative case, e.g. 2097 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2098 */ 2099 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2100 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2101 reg->umin_value); 2102 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2103 reg->umax_value); 2104 return; 2105 } 2106 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2107 * boundary, so we must be careful. 2108 */ 2109 if ((s64)reg->umax_value >= 0) { 2110 /* Positive. We can't learn anything from the smin, but smax 2111 * is positive, hence safe. 2112 */ 2113 reg->smin_value = reg->umin_value; 2114 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2115 reg->umax_value); 2116 } else if ((s64)reg->umin_value < 0) { 2117 /* Negative. We can't learn anything from the smax, but smin 2118 * is negative, hence safe. 2119 */ 2120 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2121 reg->umin_value); 2122 reg->smax_value = reg->umax_value; 2123 } 2124 } 2125 2126 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2127 { 2128 __reg32_deduce_bounds(reg); 2129 __reg64_deduce_bounds(reg); 2130 } 2131 2132 /* Attempts to improve var_off based on unsigned min/max information */ 2133 static void __reg_bound_offset(struct bpf_reg_state *reg) 2134 { 2135 struct tnum var64_off = tnum_intersect(reg->var_off, 2136 tnum_range(reg->umin_value, 2137 reg->umax_value)); 2138 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2139 tnum_range(reg->u32_min_value, 2140 reg->u32_max_value)); 2141 2142 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2143 } 2144 2145 static void reg_bounds_sync(struct bpf_reg_state *reg) 2146 { 2147 /* We might have learned new bounds from the var_off. */ 2148 __update_reg_bounds(reg); 2149 /* We might have learned something about the sign bit. */ 2150 __reg_deduce_bounds(reg); 2151 /* We might have learned some bits from the bounds. */ 2152 __reg_bound_offset(reg); 2153 /* Intersecting with the old var_off might have improved our bounds 2154 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2155 * then new var_off is (0; 0x7f...fc) which improves our umax. 2156 */ 2157 __update_reg_bounds(reg); 2158 } 2159 2160 static bool __reg32_bound_s64(s32 a) 2161 { 2162 return a >= 0 && a <= S32_MAX; 2163 } 2164 2165 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2166 { 2167 reg->umin_value = reg->u32_min_value; 2168 reg->umax_value = reg->u32_max_value; 2169 2170 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2171 * be positive otherwise set to worse case bounds and refine later 2172 * from tnum. 2173 */ 2174 if (__reg32_bound_s64(reg->s32_min_value) && 2175 __reg32_bound_s64(reg->s32_max_value)) { 2176 reg->smin_value = reg->s32_min_value; 2177 reg->smax_value = reg->s32_max_value; 2178 } else { 2179 reg->smin_value = 0; 2180 reg->smax_value = U32_MAX; 2181 } 2182 } 2183 2184 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2185 { 2186 /* special case when 64-bit register has upper 32-bit register 2187 * zeroed. Typically happens after zext or <<32, >>32 sequence 2188 * allowing us to use 32-bit bounds directly, 2189 */ 2190 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2191 __reg_assign_32_into_64(reg); 2192 } else { 2193 /* Otherwise the best we can do is push lower 32bit known and 2194 * unknown bits into register (var_off set from jmp logic) 2195 * then learn as much as possible from the 64-bit tnum 2196 * known and unknown bits. The previous smin/smax bounds are 2197 * invalid here because of jmp32 compare so mark them unknown 2198 * so they do not impact tnum bounds calculation. 2199 */ 2200 __mark_reg64_unbounded(reg); 2201 } 2202 reg_bounds_sync(reg); 2203 } 2204 2205 static bool __reg64_bound_s32(s64 a) 2206 { 2207 return a >= S32_MIN && a <= S32_MAX; 2208 } 2209 2210 static bool __reg64_bound_u32(u64 a) 2211 { 2212 return a >= U32_MIN && a <= U32_MAX; 2213 } 2214 2215 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2216 { 2217 __mark_reg32_unbounded(reg); 2218 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2219 reg->s32_min_value = (s32)reg->smin_value; 2220 reg->s32_max_value = (s32)reg->smax_value; 2221 } 2222 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2223 reg->u32_min_value = (u32)reg->umin_value; 2224 reg->u32_max_value = (u32)reg->umax_value; 2225 } 2226 reg_bounds_sync(reg); 2227 } 2228 2229 /* Mark a register as having a completely unknown (scalar) value. */ 2230 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2231 struct bpf_reg_state *reg) 2232 { 2233 /* 2234 * Clear type, off, and union(map_ptr, range) and 2235 * padding between 'type' and union 2236 */ 2237 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2238 reg->type = SCALAR_VALUE; 2239 reg->id = 0; 2240 reg->ref_obj_id = 0; 2241 reg->var_off = tnum_unknown; 2242 reg->frameno = 0; 2243 reg->precise = !env->bpf_capable; 2244 __mark_reg_unbounded(reg); 2245 } 2246 2247 static void mark_reg_unknown(struct bpf_verifier_env *env, 2248 struct bpf_reg_state *regs, u32 regno) 2249 { 2250 if (WARN_ON(regno >= MAX_BPF_REG)) { 2251 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2252 /* Something bad happened, let's kill all regs except FP */ 2253 for (regno = 0; regno < BPF_REG_FP; regno++) 2254 __mark_reg_not_init(env, regs + regno); 2255 return; 2256 } 2257 __mark_reg_unknown(env, regs + regno); 2258 } 2259 2260 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2261 struct bpf_reg_state *reg) 2262 { 2263 __mark_reg_unknown(env, reg); 2264 reg->type = NOT_INIT; 2265 } 2266 2267 static void mark_reg_not_init(struct bpf_verifier_env *env, 2268 struct bpf_reg_state *regs, u32 regno) 2269 { 2270 if (WARN_ON(regno >= MAX_BPF_REG)) { 2271 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2272 /* Something bad happened, let's kill all regs except FP */ 2273 for (regno = 0; regno < BPF_REG_FP; regno++) 2274 __mark_reg_not_init(env, regs + regno); 2275 return; 2276 } 2277 __mark_reg_not_init(env, regs + regno); 2278 } 2279 2280 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2281 struct bpf_reg_state *regs, u32 regno, 2282 enum bpf_reg_type reg_type, 2283 struct btf *btf, u32 btf_id, 2284 enum bpf_type_flag flag) 2285 { 2286 if (reg_type == SCALAR_VALUE) { 2287 mark_reg_unknown(env, regs, regno); 2288 return; 2289 } 2290 mark_reg_known_zero(env, regs, regno); 2291 regs[regno].type = PTR_TO_BTF_ID | flag; 2292 regs[regno].btf = btf; 2293 regs[regno].btf_id = btf_id; 2294 } 2295 2296 #define DEF_NOT_SUBREG (0) 2297 static void init_reg_state(struct bpf_verifier_env *env, 2298 struct bpf_func_state *state) 2299 { 2300 struct bpf_reg_state *regs = state->regs; 2301 int i; 2302 2303 for (i = 0; i < MAX_BPF_REG; i++) { 2304 mark_reg_not_init(env, regs, i); 2305 regs[i].live = REG_LIVE_NONE; 2306 regs[i].parent = NULL; 2307 regs[i].subreg_def = DEF_NOT_SUBREG; 2308 } 2309 2310 /* frame pointer */ 2311 regs[BPF_REG_FP].type = PTR_TO_STACK; 2312 mark_reg_known_zero(env, regs, BPF_REG_FP); 2313 regs[BPF_REG_FP].frameno = state->frameno; 2314 } 2315 2316 #define BPF_MAIN_FUNC (-1) 2317 static void init_func_state(struct bpf_verifier_env *env, 2318 struct bpf_func_state *state, 2319 int callsite, int frameno, int subprogno) 2320 { 2321 state->callsite = callsite; 2322 state->frameno = frameno; 2323 state->subprogno = subprogno; 2324 state->callback_ret_range = tnum_range(0, 0); 2325 init_reg_state(env, state); 2326 mark_verifier_state_scratched(env); 2327 } 2328 2329 /* Similar to push_stack(), but for async callbacks */ 2330 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2331 int insn_idx, int prev_insn_idx, 2332 int subprog) 2333 { 2334 struct bpf_verifier_stack_elem *elem; 2335 struct bpf_func_state *frame; 2336 2337 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2338 if (!elem) 2339 goto err; 2340 2341 elem->insn_idx = insn_idx; 2342 elem->prev_insn_idx = prev_insn_idx; 2343 elem->next = env->head; 2344 elem->log_pos = env->log.end_pos; 2345 env->head = elem; 2346 env->stack_size++; 2347 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2348 verbose(env, 2349 "The sequence of %d jumps is too complex for async cb.\n", 2350 env->stack_size); 2351 goto err; 2352 } 2353 /* Unlike push_stack() do not copy_verifier_state(). 2354 * The caller state doesn't matter. 2355 * This is async callback. It starts in a fresh stack. 2356 * Initialize it similar to do_check_common(). 2357 */ 2358 elem->st.branches = 1; 2359 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2360 if (!frame) 2361 goto err; 2362 init_func_state(env, frame, 2363 BPF_MAIN_FUNC /* callsite */, 2364 0 /* frameno within this callchain */, 2365 subprog /* subprog number within this prog */); 2366 elem->st.frame[0] = frame; 2367 return &elem->st; 2368 err: 2369 free_verifier_state(env->cur_state, true); 2370 env->cur_state = NULL; 2371 /* pop all elements and return */ 2372 while (!pop_stack(env, NULL, NULL, false)); 2373 return NULL; 2374 } 2375 2376 2377 enum reg_arg_type { 2378 SRC_OP, /* register is used as source operand */ 2379 DST_OP, /* register is used as destination operand */ 2380 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2381 }; 2382 2383 static int cmp_subprogs(const void *a, const void *b) 2384 { 2385 return ((struct bpf_subprog_info *)a)->start - 2386 ((struct bpf_subprog_info *)b)->start; 2387 } 2388 2389 static int find_subprog(struct bpf_verifier_env *env, int off) 2390 { 2391 struct bpf_subprog_info *p; 2392 2393 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2394 sizeof(env->subprog_info[0]), cmp_subprogs); 2395 if (!p) 2396 return -ENOENT; 2397 return p - env->subprog_info; 2398 2399 } 2400 2401 static int add_subprog(struct bpf_verifier_env *env, int off) 2402 { 2403 int insn_cnt = env->prog->len; 2404 int ret; 2405 2406 if (off >= insn_cnt || off < 0) { 2407 verbose(env, "call to invalid destination\n"); 2408 return -EINVAL; 2409 } 2410 ret = find_subprog(env, off); 2411 if (ret >= 0) 2412 return ret; 2413 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2414 verbose(env, "too many subprograms\n"); 2415 return -E2BIG; 2416 } 2417 /* determine subprog starts. The end is one before the next starts */ 2418 env->subprog_info[env->subprog_cnt++].start = off; 2419 sort(env->subprog_info, env->subprog_cnt, 2420 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2421 return env->subprog_cnt - 1; 2422 } 2423 2424 #define MAX_KFUNC_DESCS 256 2425 #define MAX_KFUNC_BTFS 256 2426 2427 struct bpf_kfunc_desc { 2428 struct btf_func_model func_model; 2429 u32 func_id; 2430 s32 imm; 2431 u16 offset; 2432 unsigned long addr; 2433 }; 2434 2435 struct bpf_kfunc_btf { 2436 struct btf *btf; 2437 struct module *module; 2438 u16 offset; 2439 }; 2440 2441 struct bpf_kfunc_desc_tab { 2442 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2443 * verification. JITs do lookups by bpf_insn, where func_id may not be 2444 * available, therefore at the end of verification do_misc_fixups() 2445 * sorts this by imm and offset. 2446 */ 2447 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2448 u32 nr_descs; 2449 }; 2450 2451 struct bpf_kfunc_btf_tab { 2452 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2453 u32 nr_descs; 2454 }; 2455 2456 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2457 { 2458 const struct bpf_kfunc_desc *d0 = a; 2459 const struct bpf_kfunc_desc *d1 = b; 2460 2461 /* func_id is not greater than BTF_MAX_TYPE */ 2462 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2463 } 2464 2465 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2466 { 2467 const struct bpf_kfunc_btf *d0 = a; 2468 const struct bpf_kfunc_btf *d1 = b; 2469 2470 return d0->offset - d1->offset; 2471 } 2472 2473 static const struct bpf_kfunc_desc * 2474 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2475 { 2476 struct bpf_kfunc_desc desc = { 2477 .func_id = func_id, 2478 .offset = offset, 2479 }; 2480 struct bpf_kfunc_desc_tab *tab; 2481 2482 tab = prog->aux->kfunc_tab; 2483 return bsearch(&desc, tab->descs, tab->nr_descs, 2484 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2485 } 2486 2487 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2488 u16 btf_fd_idx, u8 **func_addr) 2489 { 2490 const struct bpf_kfunc_desc *desc; 2491 2492 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2493 if (!desc) 2494 return -EFAULT; 2495 2496 *func_addr = (u8 *)desc->addr; 2497 return 0; 2498 } 2499 2500 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2501 s16 offset) 2502 { 2503 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2504 struct bpf_kfunc_btf_tab *tab; 2505 struct bpf_kfunc_btf *b; 2506 struct module *mod; 2507 struct btf *btf; 2508 int btf_fd; 2509 2510 tab = env->prog->aux->kfunc_btf_tab; 2511 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2512 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2513 if (!b) { 2514 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2515 verbose(env, "too many different module BTFs\n"); 2516 return ERR_PTR(-E2BIG); 2517 } 2518 2519 if (bpfptr_is_null(env->fd_array)) { 2520 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2521 return ERR_PTR(-EPROTO); 2522 } 2523 2524 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2525 offset * sizeof(btf_fd), 2526 sizeof(btf_fd))) 2527 return ERR_PTR(-EFAULT); 2528 2529 btf = btf_get_by_fd(btf_fd); 2530 if (IS_ERR(btf)) { 2531 verbose(env, "invalid module BTF fd specified\n"); 2532 return btf; 2533 } 2534 2535 if (!btf_is_module(btf)) { 2536 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2537 btf_put(btf); 2538 return ERR_PTR(-EINVAL); 2539 } 2540 2541 mod = btf_try_get_module(btf); 2542 if (!mod) { 2543 btf_put(btf); 2544 return ERR_PTR(-ENXIO); 2545 } 2546 2547 b = &tab->descs[tab->nr_descs++]; 2548 b->btf = btf; 2549 b->module = mod; 2550 b->offset = offset; 2551 2552 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2553 kfunc_btf_cmp_by_off, NULL); 2554 } 2555 return b->btf; 2556 } 2557 2558 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2559 { 2560 if (!tab) 2561 return; 2562 2563 while (tab->nr_descs--) { 2564 module_put(tab->descs[tab->nr_descs].module); 2565 btf_put(tab->descs[tab->nr_descs].btf); 2566 } 2567 kfree(tab); 2568 } 2569 2570 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2571 { 2572 if (offset) { 2573 if (offset < 0) { 2574 /* In the future, this can be allowed to increase limit 2575 * of fd index into fd_array, interpreted as u16. 2576 */ 2577 verbose(env, "negative offset disallowed for kernel module function call\n"); 2578 return ERR_PTR(-EINVAL); 2579 } 2580 2581 return __find_kfunc_desc_btf(env, offset); 2582 } 2583 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2584 } 2585 2586 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2587 { 2588 const struct btf_type *func, *func_proto; 2589 struct bpf_kfunc_btf_tab *btf_tab; 2590 struct bpf_kfunc_desc_tab *tab; 2591 struct bpf_prog_aux *prog_aux; 2592 struct bpf_kfunc_desc *desc; 2593 const char *func_name; 2594 struct btf *desc_btf; 2595 unsigned long call_imm; 2596 unsigned long addr; 2597 int err; 2598 2599 prog_aux = env->prog->aux; 2600 tab = prog_aux->kfunc_tab; 2601 btf_tab = prog_aux->kfunc_btf_tab; 2602 if (!tab) { 2603 if (!btf_vmlinux) { 2604 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2605 return -ENOTSUPP; 2606 } 2607 2608 if (!env->prog->jit_requested) { 2609 verbose(env, "JIT is required for calling kernel function\n"); 2610 return -ENOTSUPP; 2611 } 2612 2613 if (!bpf_jit_supports_kfunc_call()) { 2614 verbose(env, "JIT does not support calling kernel function\n"); 2615 return -ENOTSUPP; 2616 } 2617 2618 if (!env->prog->gpl_compatible) { 2619 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2620 return -EINVAL; 2621 } 2622 2623 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2624 if (!tab) 2625 return -ENOMEM; 2626 prog_aux->kfunc_tab = tab; 2627 } 2628 2629 /* func_id == 0 is always invalid, but instead of returning an error, be 2630 * conservative and wait until the code elimination pass before returning 2631 * error, so that invalid calls that get pruned out can be in BPF programs 2632 * loaded from userspace. It is also required that offset be untouched 2633 * for such calls. 2634 */ 2635 if (!func_id && !offset) 2636 return 0; 2637 2638 if (!btf_tab && offset) { 2639 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2640 if (!btf_tab) 2641 return -ENOMEM; 2642 prog_aux->kfunc_btf_tab = btf_tab; 2643 } 2644 2645 desc_btf = find_kfunc_desc_btf(env, offset); 2646 if (IS_ERR(desc_btf)) { 2647 verbose(env, "failed to find BTF for kernel function\n"); 2648 return PTR_ERR(desc_btf); 2649 } 2650 2651 if (find_kfunc_desc(env->prog, func_id, offset)) 2652 return 0; 2653 2654 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2655 verbose(env, "too many different kernel function calls\n"); 2656 return -E2BIG; 2657 } 2658 2659 func = btf_type_by_id(desc_btf, func_id); 2660 if (!func || !btf_type_is_func(func)) { 2661 verbose(env, "kernel btf_id %u is not a function\n", 2662 func_id); 2663 return -EINVAL; 2664 } 2665 func_proto = btf_type_by_id(desc_btf, func->type); 2666 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2667 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2668 func_id); 2669 return -EINVAL; 2670 } 2671 2672 func_name = btf_name_by_offset(desc_btf, func->name_off); 2673 addr = kallsyms_lookup_name(func_name); 2674 if (!addr) { 2675 verbose(env, "cannot find address for kernel function %s\n", 2676 func_name); 2677 return -EINVAL; 2678 } 2679 specialize_kfunc(env, func_id, offset, &addr); 2680 2681 if (bpf_jit_supports_far_kfunc_call()) { 2682 call_imm = func_id; 2683 } else { 2684 call_imm = BPF_CALL_IMM(addr); 2685 /* Check whether the relative offset overflows desc->imm */ 2686 if ((unsigned long)(s32)call_imm != call_imm) { 2687 verbose(env, "address of kernel function %s is out of range\n", 2688 func_name); 2689 return -EINVAL; 2690 } 2691 } 2692 2693 if (bpf_dev_bound_kfunc_id(func_id)) { 2694 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2695 if (err) 2696 return err; 2697 } 2698 2699 desc = &tab->descs[tab->nr_descs++]; 2700 desc->func_id = func_id; 2701 desc->imm = call_imm; 2702 desc->offset = offset; 2703 desc->addr = addr; 2704 err = btf_distill_func_proto(&env->log, desc_btf, 2705 func_proto, func_name, 2706 &desc->func_model); 2707 if (!err) 2708 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2709 kfunc_desc_cmp_by_id_off, NULL); 2710 return err; 2711 } 2712 2713 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2714 { 2715 const struct bpf_kfunc_desc *d0 = a; 2716 const struct bpf_kfunc_desc *d1 = b; 2717 2718 if (d0->imm != d1->imm) 2719 return d0->imm < d1->imm ? -1 : 1; 2720 if (d0->offset != d1->offset) 2721 return d0->offset < d1->offset ? -1 : 1; 2722 return 0; 2723 } 2724 2725 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2726 { 2727 struct bpf_kfunc_desc_tab *tab; 2728 2729 tab = prog->aux->kfunc_tab; 2730 if (!tab) 2731 return; 2732 2733 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2734 kfunc_desc_cmp_by_imm_off, NULL); 2735 } 2736 2737 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2738 { 2739 return !!prog->aux->kfunc_tab; 2740 } 2741 2742 const struct btf_func_model * 2743 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2744 const struct bpf_insn *insn) 2745 { 2746 const struct bpf_kfunc_desc desc = { 2747 .imm = insn->imm, 2748 .offset = insn->off, 2749 }; 2750 const struct bpf_kfunc_desc *res; 2751 struct bpf_kfunc_desc_tab *tab; 2752 2753 tab = prog->aux->kfunc_tab; 2754 res = bsearch(&desc, tab->descs, tab->nr_descs, 2755 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2756 2757 return res ? &res->func_model : NULL; 2758 } 2759 2760 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2761 { 2762 struct bpf_subprog_info *subprog = env->subprog_info; 2763 struct bpf_insn *insn = env->prog->insnsi; 2764 int i, ret, insn_cnt = env->prog->len; 2765 2766 /* Add entry function. */ 2767 ret = add_subprog(env, 0); 2768 if (ret) 2769 return ret; 2770 2771 for (i = 0; i < insn_cnt; i++, insn++) { 2772 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2773 !bpf_pseudo_kfunc_call(insn)) 2774 continue; 2775 2776 if (!env->bpf_capable) { 2777 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2778 return -EPERM; 2779 } 2780 2781 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2782 ret = add_subprog(env, i + insn->imm + 1); 2783 else 2784 ret = add_kfunc_call(env, insn->imm, insn->off); 2785 2786 if (ret < 0) 2787 return ret; 2788 } 2789 2790 /* Add a fake 'exit' subprog which could simplify subprog iteration 2791 * logic. 'subprog_cnt' should not be increased. 2792 */ 2793 subprog[env->subprog_cnt].start = insn_cnt; 2794 2795 if (env->log.level & BPF_LOG_LEVEL2) 2796 for (i = 0; i < env->subprog_cnt; i++) 2797 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2798 2799 return 0; 2800 } 2801 2802 static int check_subprogs(struct bpf_verifier_env *env) 2803 { 2804 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2805 struct bpf_subprog_info *subprog = env->subprog_info; 2806 struct bpf_insn *insn = env->prog->insnsi; 2807 int insn_cnt = env->prog->len; 2808 2809 /* now check that all jumps are within the same subprog */ 2810 subprog_start = subprog[cur_subprog].start; 2811 subprog_end = subprog[cur_subprog + 1].start; 2812 for (i = 0; i < insn_cnt; i++) { 2813 u8 code = insn[i].code; 2814 2815 if (code == (BPF_JMP | BPF_CALL) && 2816 insn[i].src_reg == 0 && 2817 insn[i].imm == BPF_FUNC_tail_call) 2818 subprog[cur_subprog].has_tail_call = true; 2819 if (BPF_CLASS(code) == BPF_LD && 2820 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2821 subprog[cur_subprog].has_ld_abs = true; 2822 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2823 goto next; 2824 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2825 goto next; 2826 off = i + insn[i].off + 1; 2827 if (off < subprog_start || off >= subprog_end) { 2828 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2829 return -EINVAL; 2830 } 2831 next: 2832 if (i == subprog_end - 1) { 2833 /* to avoid fall-through from one subprog into another 2834 * the last insn of the subprog should be either exit 2835 * or unconditional jump back 2836 */ 2837 if (code != (BPF_JMP | BPF_EXIT) && 2838 code != (BPF_JMP | BPF_JA)) { 2839 verbose(env, "last insn is not an exit or jmp\n"); 2840 return -EINVAL; 2841 } 2842 subprog_start = subprog_end; 2843 cur_subprog++; 2844 if (cur_subprog < env->subprog_cnt) 2845 subprog_end = subprog[cur_subprog + 1].start; 2846 } 2847 } 2848 return 0; 2849 } 2850 2851 /* Parentage chain of this register (or stack slot) should take care of all 2852 * issues like callee-saved registers, stack slot allocation time, etc. 2853 */ 2854 static int mark_reg_read(struct bpf_verifier_env *env, 2855 const struct bpf_reg_state *state, 2856 struct bpf_reg_state *parent, u8 flag) 2857 { 2858 bool writes = parent == state->parent; /* Observe write marks */ 2859 int cnt = 0; 2860 2861 while (parent) { 2862 /* if read wasn't screened by an earlier write ... */ 2863 if (writes && state->live & REG_LIVE_WRITTEN) 2864 break; 2865 if (parent->live & REG_LIVE_DONE) { 2866 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2867 reg_type_str(env, parent->type), 2868 parent->var_off.value, parent->off); 2869 return -EFAULT; 2870 } 2871 /* The first condition is more likely to be true than the 2872 * second, checked it first. 2873 */ 2874 if ((parent->live & REG_LIVE_READ) == flag || 2875 parent->live & REG_LIVE_READ64) 2876 /* The parentage chain never changes and 2877 * this parent was already marked as LIVE_READ. 2878 * There is no need to keep walking the chain again and 2879 * keep re-marking all parents as LIVE_READ. 2880 * This case happens when the same register is read 2881 * multiple times without writes into it in-between. 2882 * Also, if parent has the stronger REG_LIVE_READ64 set, 2883 * then no need to set the weak REG_LIVE_READ32. 2884 */ 2885 break; 2886 /* ... then we depend on parent's value */ 2887 parent->live |= flag; 2888 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2889 if (flag == REG_LIVE_READ64) 2890 parent->live &= ~REG_LIVE_READ32; 2891 state = parent; 2892 parent = state->parent; 2893 writes = true; 2894 cnt++; 2895 } 2896 2897 if (env->longest_mark_read_walk < cnt) 2898 env->longest_mark_read_walk = cnt; 2899 return 0; 2900 } 2901 2902 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2903 { 2904 struct bpf_func_state *state = func(env, reg); 2905 int spi, ret; 2906 2907 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2908 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2909 * check_kfunc_call. 2910 */ 2911 if (reg->type == CONST_PTR_TO_DYNPTR) 2912 return 0; 2913 spi = dynptr_get_spi(env, reg); 2914 if (spi < 0) 2915 return spi; 2916 /* Caller ensures dynptr is valid and initialized, which means spi is in 2917 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2918 * read. 2919 */ 2920 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2921 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2922 if (ret) 2923 return ret; 2924 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2925 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2926 } 2927 2928 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2929 int spi, int nr_slots) 2930 { 2931 struct bpf_func_state *state = func(env, reg); 2932 int err, i; 2933 2934 for (i = 0; i < nr_slots; i++) { 2935 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2936 2937 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2938 if (err) 2939 return err; 2940 2941 mark_stack_slot_scratched(env, spi - i); 2942 } 2943 2944 return 0; 2945 } 2946 2947 /* This function is supposed to be used by the following 32-bit optimization 2948 * code only. It returns TRUE if the source or destination register operates 2949 * on 64-bit, otherwise return FALSE. 2950 */ 2951 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2952 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2953 { 2954 u8 code, class, op; 2955 2956 code = insn->code; 2957 class = BPF_CLASS(code); 2958 op = BPF_OP(code); 2959 if (class == BPF_JMP) { 2960 /* BPF_EXIT for "main" will reach here. Return TRUE 2961 * conservatively. 2962 */ 2963 if (op == BPF_EXIT) 2964 return true; 2965 if (op == BPF_CALL) { 2966 /* BPF to BPF call will reach here because of marking 2967 * caller saved clobber with DST_OP_NO_MARK for which we 2968 * don't care the register def because they are anyway 2969 * marked as NOT_INIT already. 2970 */ 2971 if (insn->src_reg == BPF_PSEUDO_CALL) 2972 return false; 2973 /* Helper call will reach here because of arg type 2974 * check, conservatively return TRUE. 2975 */ 2976 if (t == SRC_OP) 2977 return true; 2978 2979 return false; 2980 } 2981 } 2982 2983 if (class == BPF_ALU64 || class == BPF_JMP || 2984 /* BPF_END always use BPF_ALU class. */ 2985 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2986 return true; 2987 2988 if (class == BPF_ALU || class == BPF_JMP32) 2989 return false; 2990 2991 if (class == BPF_LDX) { 2992 if (t != SRC_OP) 2993 return BPF_SIZE(code) == BPF_DW; 2994 /* LDX source must be ptr. */ 2995 return true; 2996 } 2997 2998 if (class == BPF_STX) { 2999 /* BPF_STX (including atomic variants) has multiple source 3000 * operands, one of which is a ptr. Check whether the caller is 3001 * asking about it. 3002 */ 3003 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3004 return true; 3005 return BPF_SIZE(code) == BPF_DW; 3006 } 3007 3008 if (class == BPF_LD) { 3009 u8 mode = BPF_MODE(code); 3010 3011 /* LD_IMM64 */ 3012 if (mode == BPF_IMM) 3013 return true; 3014 3015 /* Both LD_IND and LD_ABS return 32-bit data. */ 3016 if (t != SRC_OP) 3017 return false; 3018 3019 /* Implicit ctx ptr. */ 3020 if (regno == BPF_REG_6) 3021 return true; 3022 3023 /* Explicit source could be any width. */ 3024 return true; 3025 } 3026 3027 if (class == BPF_ST) 3028 /* The only source register for BPF_ST is a ptr. */ 3029 return true; 3030 3031 /* Conservatively return true at default. */ 3032 return true; 3033 } 3034 3035 /* Return the regno defined by the insn, or -1. */ 3036 static int insn_def_regno(const struct bpf_insn *insn) 3037 { 3038 switch (BPF_CLASS(insn->code)) { 3039 case BPF_JMP: 3040 case BPF_JMP32: 3041 case BPF_ST: 3042 return -1; 3043 case BPF_STX: 3044 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3045 (insn->imm & BPF_FETCH)) { 3046 if (insn->imm == BPF_CMPXCHG) 3047 return BPF_REG_0; 3048 else 3049 return insn->src_reg; 3050 } else { 3051 return -1; 3052 } 3053 default: 3054 return insn->dst_reg; 3055 } 3056 } 3057 3058 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3059 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3060 { 3061 int dst_reg = insn_def_regno(insn); 3062 3063 if (dst_reg == -1) 3064 return false; 3065 3066 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3067 } 3068 3069 static void mark_insn_zext(struct bpf_verifier_env *env, 3070 struct bpf_reg_state *reg) 3071 { 3072 s32 def_idx = reg->subreg_def; 3073 3074 if (def_idx == DEF_NOT_SUBREG) 3075 return; 3076 3077 env->insn_aux_data[def_idx - 1].zext_dst = true; 3078 /* The dst will be zero extended, so won't be sub-register anymore. */ 3079 reg->subreg_def = DEF_NOT_SUBREG; 3080 } 3081 3082 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3083 enum reg_arg_type t) 3084 { 3085 struct bpf_verifier_state *vstate = env->cur_state; 3086 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3087 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3088 struct bpf_reg_state *reg, *regs = state->regs; 3089 bool rw64; 3090 3091 if (regno >= MAX_BPF_REG) { 3092 verbose(env, "R%d is invalid\n", regno); 3093 return -EINVAL; 3094 } 3095 3096 mark_reg_scratched(env, regno); 3097 3098 reg = ®s[regno]; 3099 rw64 = is_reg64(env, insn, regno, reg, t); 3100 if (t == SRC_OP) { 3101 /* check whether register used as source operand can be read */ 3102 if (reg->type == NOT_INIT) { 3103 verbose(env, "R%d !read_ok\n", regno); 3104 return -EACCES; 3105 } 3106 /* We don't need to worry about FP liveness because it's read-only */ 3107 if (regno == BPF_REG_FP) 3108 return 0; 3109 3110 if (rw64) 3111 mark_insn_zext(env, reg); 3112 3113 return mark_reg_read(env, reg, reg->parent, 3114 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3115 } else { 3116 /* check whether register used as dest operand can be written to */ 3117 if (regno == BPF_REG_FP) { 3118 verbose(env, "frame pointer is read only\n"); 3119 return -EACCES; 3120 } 3121 reg->live |= REG_LIVE_WRITTEN; 3122 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3123 if (t == DST_OP) 3124 mark_reg_unknown(env, regs, regno); 3125 } 3126 return 0; 3127 } 3128 3129 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3130 { 3131 env->insn_aux_data[idx].jmp_point = true; 3132 } 3133 3134 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3135 { 3136 return env->insn_aux_data[insn_idx].jmp_point; 3137 } 3138 3139 /* for any branch, call, exit record the history of jmps in the given state */ 3140 static int push_jmp_history(struct bpf_verifier_env *env, 3141 struct bpf_verifier_state *cur) 3142 { 3143 u32 cnt = cur->jmp_history_cnt; 3144 struct bpf_idx_pair *p; 3145 size_t alloc_size; 3146 3147 if (!is_jmp_point(env, env->insn_idx)) 3148 return 0; 3149 3150 cnt++; 3151 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3152 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3153 if (!p) 3154 return -ENOMEM; 3155 p[cnt - 1].idx = env->insn_idx; 3156 p[cnt - 1].prev_idx = env->prev_insn_idx; 3157 cur->jmp_history = p; 3158 cur->jmp_history_cnt = cnt; 3159 return 0; 3160 } 3161 3162 /* Backtrack one insn at a time. If idx is not at the top of recorded 3163 * history then previous instruction came from straight line execution. 3164 */ 3165 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3166 u32 *history) 3167 { 3168 u32 cnt = *history; 3169 3170 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3171 i = st->jmp_history[cnt - 1].prev_idx; 3172 (*history)--; 3173 } else { 3174 i--; 3175 } 3176 return i; 3177 } 3178 3179 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3180 { 3181 const struct btf_type *func; 3182 struct btf *desc_btf; 3183 3184 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3185 return NULL; 3186 3187 desc_btf = find_kfunc_desc_btf(data, insn->off); 3188 if (IS_ERR(desc_btf)) 3189 return "<error>"; 3190 3191 func = btf_type_by_id(desc_btf, insn->imm); 3192 return btf_name_by_offset(desc_btf, func->name_off); 3193 } 3194 3195 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3196 { 3197 bt->frame = frame; 3198 } 3199 3200 static inline void bt_reset(struct backtrack_state *bt) 3201 { 3202 struct bpf_verifier_env *env = bt->env; 3203 3204 memset(bt, 0, sizeof(*bt)); 3205 bt->env = env; 3206 } 3207 3208 static inline u32 bt_empty(struct backtrack_state *bt) 3209 { 3210 u64 mask = 0; 3211 int i; 3212 3213 for (i = 0; i <= bt->frame; i++) 3214 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3215 3216 return mask == 0; 3217 } 3218 3219 static inline int bt_subprog_enter(struct backtrack_state *bt) 3220 { 3221 if (bt->frame == MAX_CALL_FRAMES - 1) { 3222 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3223 WARN_ONCE(1, "verifier backtracking bug"); 3224 return -EFAULT; 3225 } 3226 bt->frame++; 3227 return 0; 3228 } 3229 3230 static inline int bt_subprog_exit(struct backtrack_state *bt) 3231 { 3232 if (bt->frame == 0) { 3233 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3234 WARN_ONCE(1, "verifier backtracking bug"); 3235 return -EFAULT; 3236 } 3237 bt->frame--; 3238 return 0; 3239 } 3240 3241 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3242 { 3243 bt->reg_masks[frame] |= 1 << reg; 3244 } 3245 3246 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3247 { 3248 bt->reg_masks[frame] &= ~(1 << reg); 3249 } 3250 3251 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3252 { 3253 bt_set_frame_reg(bt, bt->frame, reg); 3254 } 3255 3256 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3257 { 3258 bt_clear_frame_reg(bt, bt->frame, reg); 3259 } 3260 3261 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3262 { 3263 bt->stack_masks[frame] |= 1ull << slot; 3264 } 3265 3266 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3267 { 3268 bt->stack_masks[frame] &= ~(1ull << slot); 3269 } 3270 3271 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3272 { 3273 bt_set_frame_slot(bt, bt->frame, slot); 3274 } 3275 3276 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3277 { 3278 bt_clear_frame_slot(bt, bt->frame, slot); 3279 } 3280 3281 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3282 { 3283 return bt->reg_masks[frame]; 3284 } 3285 3286 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3287 { 3288 return bt->reg_masks[bt->frame]; 3289 } 3290 3291 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3292 { 3293 return bt->stack_masks[frame]; 3294 } 3295 3296 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3297 { 3298 return bt->stack_masks[bt->frame]; 3299 } 3300 3301 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3302 { 3303 return bt->reg_masks[bt->frame] & (1 << reg); 3304 } 3305 3306 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3307 { 3308 return bt->stack_masks[bt->frame] & (1ull << slot); 3309 } 3310 3311 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3312 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3313 { 3314 DECLARE_BITMAP(mask, 64); 3315 bool first = true; 3316 int i, n; 3317 3318 buf[0] = '\0'; 3319 3320 bitmap_from_u64(mask, reg_mask); 3321 for_each_set_bit(i, mask, 32) { 3322 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3323 first = false; 3324 buf += n; 3325 buf_sz -= n; 3326 if (buf_sz < 0) 3327 break; 3328 } 3329 } 3330 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3331 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3332 { 3333 DECLARE_BITMAP(mask, 64); 3334 bool first = true; 3335 int i, n; 3336 3337 buf[0] = '\0'; 3338 3339 bitmap_from_u64(mask, stack_mask); 3340 for_each_set_bit(i, mask, 64) { 3341 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3342 first = false; 3343 buf += n; 3344 buf_sz -= n; 3345 if (buf_sz < 0) 3346 break; 3347 } 3348 } 3349 3350 /* For given verifier state backtrack_insn() is called from the last insn to 3351 * the first insn. Its purpose is to compute a bitmask of registers and 3352 * stack slots that needs precision in the parent verifier state. 3353 */ 3354 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 3355 struct backtrack_state *bt) 3356 { 3357 const struct bpf_insn_cbs cbs = { 3358 .cb_call = disasm_kfunc_name, 3359 .cb_print = verbose, 3360 .private_data = env, 3361 }; 3362 struct bpf_insn *insn = env->prog->insnsi + idx; 3363 u8 class = BPF_CLASS(insn->code); 3364 u8 opcode = BPF_OP(insn->code); 3365 u8 mode = BPF_MODE(insn->code); 3366 u32 dreg = insn->dst_reg; 3367 u32 sreg = insn->src_reg; 3368 u32 spi; 3369 3370 if (insn->code == 0) 3371 return 0; 3372 if (env->log.level & BPF_LOG_LEVEL2) { 3373 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3374 verbose(env, "mark_precise: frame%d: regs=%s ", 3375 bt->frame, env->tmp_str_buf); 3376 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3377 verbose(env, "stack=%s before ", env->tmp_str_buf); 3378 verbose(env, "%d: ", idx); 3379 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3380 } 3381 3382 if (class == BPF_ALU || class == BPF_ALU64) { 3383 if (!bt_is_reg_set(bt, dreg)) 3384 return 0; 3385 if (opcode == BPF_MOV) { 3386 if (BPF_SRC(insn->code) == BPF_X) { 3387 /* dreg = sreg 3388 * dreg needs precision after this insn 3389 * sreg needs precision before this insn 3390 */ 3391 bt_clear_reg(bt, dreg); 3392 bt_set_reg(bt, sreg); 3393 } else { 3394 /* dreg = K 3395 * dreg needs precision after this insn. 3396 * Corresponding register is already marked 3397 * as precise=true in this verifier state. 3398 * No further markings in parent are necessary 3399 */ 3400 bt_clear_reg(bt, dreg); 3401 } 3402 } else { 3403 if (BPF_SRC(insn->code) == BPF_X) { 3404 /* dreg += sreg 3405 * both dreg and sreg need precision 3406 * before this insn 3407 */ 3408 bt_set_reg(bt, sreg); 3409 } /* else dreg += K 3410 * dreg still needs precision before this insn 3411 */ 3412 } 3413 } else if (class == BPF_LDX) { 3414 if (!bt_is_reg_set(bt, dreg)) 3415 return 0; 3416 bt_clear_reg(bt, dreg); 3417 3418 /* scalars can only be spilled into stack w/o losing precision. 3419 * Load from any other memory can be zero extended. 3420 * The desire to keep that precision is already indicated 3421 * by 'precise' mark in corresponding register of this state. 3422 * No further tracking necessary. 3423 */ 3424 if (insn->src_reg != BPF_REG_FP) 3425 return 0; 3426 3427 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3428 * that [fp - off] slot contains scalar that needs to be 3429 * tracked with precision 3430 */ 3431 spi = (-insn->off - 1) / BPF_REG_SIZE; 3432 if (spi >= 64) { 3433 verbose(env, "BUG spi %d\n", spi); 3434 WARN_ONCE(1, "verifier backtracking bug"); 3435 return -EFAULT; 3436 } 3437 bt_set_slot(bt, spi); 3438 } else if (class == BPF_STX || class == BPF_ST) { 3439 if (bt_is_reg_set(bt, dreg)) 3440 /* stx & st shouldn't be using _scalar_ dst_reg 3441 * to access memory. It means backtracking 3442 * encountered a case of pointer subtraction. 3443 */ 3444 return -ENOTSUPP; 3445 /* scalars can only be spilled into stack */ 3446 if (insn->dst_reg != BPF_REG_FP) 3447 return 0; 3448 spi = (-insn->off - 1) / BPF_REG_SIZE; 3449 if (spi >= 64) { 3450 verbose(env, "BUG spi %d\n", spi); 3451 WARN_ONCE(1, "verifier backtracking bug"); 3452 return -EFAULT; 3453 } 3454 if (!bt_is_slot_set(bt, spi)) 3455 return 0; 3456 bt_clear_slot(bt, spi); 3457 if (class == BPF_STX) 3458 bt_set_reg(bt, sreg); 3459 } else if (class == BPF_JMP || class == BPF_JMP32) { 3460 if (opcode == BPF_CALL) { 3461 if (insn->src_reg == BPF_PSEUDO_CALL) 3462 return -ENOTSUPP; 3463 /* BPF helpers that invoke callback subprogs are 3464 * equivalent to BPF_PSEUDO_CALL above 3465 */ 3466 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 3467 return -ENOTSUPP; 3468 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3469 * catch this error later. Make backtracking conservative 3470 * with ENOTSUPP. 3471 */ 3472 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3473 return -ENOTSUPP; 3474 /* regular helper call sets R0 */ 3475 bt_clear_reg(bt, BPF_REG_0); 3476 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3477 /* if backtracing was looking for registers R1-R5 3478 * they should have been found already. 3479 */ 3480 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3481 WARN_ONCE(1, "verifier backtracking bug"); 3482 return -EFAULT; 3483 } 3484 } else if (opcode == BPF_EXIT) { 3485 return -ENOTSUPP; 3486 } else if (BPF_SRC(insn->code) == BPF_X) { 3487 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3488 return 0; 3489 /* dreg <cond> sreg 3490 * Both dreg and sreg need precision before 3491 * this insn. If only sreg was marked precise 3492 * before it would be equally necessary to 3493 * propagate it to dreg. 3494 */ 3495 bt_set_reg(bt, dreg); 3496 bt_set_reg(bt, sreg); 3497 /* else dreg <cond> K 3498 * Only dreg still needs precision before 3499 * this insn, so for the K-based conditional 3500 * there is nothing new to be marked. 3501 */ 3502 } 3503 } else if (class == BPF_LD) { 3504 if (!bt_is_reg_set(bt, dreg)) 3505 return 0; 3506 bt_clear_reg(bt, dreg); 3507 /* It's ld_imm64 or ld_abs or ld_ind. 3508 * For ld_imm64 no further tracking of precision 3509 * into parent is necessary 3510 */ 3511 if (mode == BPF_IND || mode == BPF_ABS) 3512 /* to be analyzed */ 3513 return -ENOTSUPP; 3514 } 3515 return 0; 3516 } 3517 3518 /* the scalar precision tracking algorithm: 3519 * . at the start all registers have precise=false. 3520 * . scalar ranges are tracked as normal through alu and jmp insns. 3521 * . once precise value of the scalar register is used in: 3522 * . ptr + scalar alu 3523 * . if (scalar cond K|scalar) 3524 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3525 * backtrack through the verifier states and mark all registers and 3526 * stack slots with spilled constants that these scalar regisers 3527 * should be precise. 3528 * . during state pruning two registers (or spilled stack slots) 3529 * are equivalent if both are not precise. 3530 * 3531 * Note the verifier cannot simply walk register parentage chain, 3532 * since many different registers and stack slots could have been 3533 * used to compute single precise scalar. 3534 * 3535 * The approach of starting with precise=true for all registers and then 3536 * backtrack to mark a register as not precise when the verifier detects 3537 * that program doesn't care about specific value (e.g., when helper 3538 * takes register as ARG_ANYTHING parameter) is not safe. 3539 * 3540 * It's ok to walk single parentage chain of the verifier states. 3541 * It's possible that this backtracking will go all the way till 1st insn. 3542 * All other branches will be explored for needing precision later. 3543 * 3544 * The backtracking needs to deal with cases like: 3545 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3546 * r9 -= r8 3547 * r5 = r9 3548 * if r5 > 0x79f goto pc+7 3549 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3550 * r5 += 1 3551 * ... 3552 * call bpf_perf_event_output#25 3553 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3554 * 3555 * and this case: 3556 * r6 = 1 3557 * call foo // uses callee's r6 inside to compute r0 3558 * r0 += r6 3559 * if r0 == 0 goto 3560 * 3561 * to track above reg_mask/stack_mask needs to be independent for each frame. 3562 * 3563 * Also if parent's curframe > frame where backtracking started, 3564 * the verifier need to mark registers in both frames, otherwise callees 3565 * may incorrectly prune callers. This is similar to 3566 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3567 * 3568 * For now backtracking falls back into conservative marking. 3569 */ 3570 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3571 struct bpf_verifier_state *st) 3572 { 3573 struct bpf_func_state *func; 3574 struct bpf_reg_state *reg; 3575 int i, j; 3576 3577 if (env->log.level & BPF_LOG_LEVEL2) { 3578 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3579 st->curframe); 3580 } 3581 3582 /* big hammer: mark all scalars precise in this path. 3583 * pop_stack may still get !precise scalars. 3584 * We also skip current state and go straight to first parent state, 3585 * because precision markings in current non-checkpointed state are 3586 * not needed. See why in the comment in __mark_chain_precision below. 3587 */ 3588 for (st = st->parent; st; st = st->parent) { 3589 for (i = 0; i <= st->curframe; i++) { 3590 func = st->frame[i]; 3591 for (j = 0; j < BPF_REG_FP; j++) { 3592 reg = &func->regs[j]; 3593 if (reg->type != SCALAR_VALUE || reg->precise) 3594 continue; 3595 reg->precise = true; 3596 if (env->log.level & BPF_LOG_LEVEL2) { 3597 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3598 i, j); 3599 } 3600 } 3601 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3602 if (!is_spilled_reg(&func->stack[j])) 3603 continue; 3604 reg = &func->stack[j].spilled_ptr; 3605 if (reg->type != SCALAR_VALUE || reg->precise) 3606 continue; 3607 reg->precise = true; 3608 if (env->log.level & BPF_LOG_LEVEL2) { 3609 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3610 i, -(j + 1) * 8); 3611 } 3612 } 3613 } 3614 } 3615 } 3616 3617 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3618 { 3619 struct bpf_func_state *func; 3620 struct bpf_reg_state *reg; 3621 int i, j; 3622 3623 for (i = 0; i <= st->curframe; i++) { 3624 func = st->frame[i]; 3625 for (j = 0; j < BPF_REG_FP; j++) { 3626 reg = &func->regs[j]; 3627 if (reg->type != SCALAR_VALUE) 3628 continue; 3629 reg->precise = false; 3630 } 3631 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3632 if (!is_spilled_reg(&func->stack[j])) 3633 continue; 3634 reg = &func->stack[j].spilled_ptr; 3635 if (reg->type != SCALAR_VALUE) 3636 continue; 3637 reg->precise = false; 3638 } 3639 } 3640 } 3641 3642 /* 3643 * __mark_chain_precision() backtracks BPF program instruction sequence and 3644 * chain of verifier states making sure that register *regno* (if regno >= 0) 3645 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3646 * SCALARS, as well as any other registers and slots that contribute to 3647 * a tracked state of given registers/stack slots, depending on specific BPF 3648 * assembly instructions (see backtrack_insns() for exact instruction handling 3649 * logic). This backtracking relies on recorded jmp_history and is able to 3650 * traverse entire chain of parent states. This process ends only when all the 3651 * necessary registers/slots and their transitive dependencies are marked as 3652 * precise. 3653 * 3654 * One important and subtle aspect is that precise marks *do not matter* in 3655 * the currently verified state (current state). It is important to understand 3656 * why this is the case. 3657 * 3658 * First, note that current state is the state that is not yet "checkpointed", 3659 * i.e., it is not yet put into env->explored_states, and it has no children 3660 * states as well. It's ephemeral, and can end up either a) being discarded if 3661 * compatible explored state is found at some point or BPF_EXIT instruction is 3662 * reached or b) checkpointed and put into env->explored_states, branching out 3663 * into one or more children states. 3664 * 3665 * In the former case, precise markings in current state are completely 3666 * ignored by state comparison code (see regsafe() for details). Only 3667 * checkpointed ("old") state precise markings are important, and if old 3668 * state's register/slot is precise, regsafe() assumes current state's 3669 * register/slot as precise and checks value ranges exactly and precisely. If 3670 * states turn out to be compatible, current state's necessary precise 3671 * markings and any required parent states' precise markings are enforced 3672 * after the fact with propagate_precision() logic, after the fact. But it's 3673 * important to realize that in this case, even after marking current state 3674 * registers/slots as precise, we immediately discard current state. So what 3675 * actually matters is any of the precise markings propagated into current 3676 * state's parent states, which are always checkpointed (due to b) case above). 3677 * As such, for scenario a) it doesn't matter if current state has precise 3678 * markings set or not. 3679 * 3680 * Now, for the scenario b), checkpointing and forking into child(ren) 3681 * state(s). Note that before current state gets to checkpointing step, any 3682 * processed instruction always assumes precise SCALAR register/slot 3683 * knowledge: if precise value or range is useful to prune jump branch, BPF 3684 * verifier takes this opportunity enthusiastically. Similarly, when 3685 * register's value is used to calculate offset or memory address, exact 3686 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3687 * what we mentioned above about state comparison ignoring precise markings 3688 * during state comparison, BPF verifier ignores and also assumes precise 3689 * markings *at will* during instruction verification process. But as verifier 3690 * assumes precision, it also propagates any precision dependencies across 3691 * parent states, which are not yet finalized, so can be further restricted 3692 * based on new knowledge gained from restrictions enforced by their children 3693 * states. This is so that once those parent states are finalized, i.e., when 3694 * they have no more active children state, state comparison logic in 3695 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3696 * required for correctness. 3697 * 3698 * To build a bit more intuition, note also that once a state is checkpointed, 3699 * the path we took to get to that state is not important. This is crucial 3700 * property for state pruning. When state is checkpointed and finalized at 3701 * some instruction index, it can be correctly and safely used to "short 3702 * circuit" any *compatible* state that reaches exactly the same instruction 3703 * index. I.e., if we jumped to that instruction from a completely different 3704 * code path than original finalized state was derived from, it doesn't 3705 * matter, current state can be discarded because from that instruction 3706 * forward having a compatible state will ensure we will safely reach the 3707 * exit. States describe preconditions for further exploration, but completely 3708 * forget the history of how we got here. 3709 * 3710 * This also means that even if we needed precise SCALAR range to get to 3711 * finalized state, but from that point forward *that same* SCALAR register is 3712 * never used in a precise context (i.e., it's precise value is not needed for 3713 * correctness), it's correct and safe to mark such register as "imprecise" 3714 * (i.e., precise marking set to false). This is what we rely on when we do 3715 * not set precise marking in current state. If no child state requires 3716 * precision for any given SCALAR register, it's safe to dictate that it can 3717 * be imprecise. If any child state does require this register to be precise, 3718 * we'll mark it precise later retroactively during precise markings 3719 * propagation from child state to parent states. 3720 * 3721 * Skipping precise marking setting in current state is a mild version of 3722 * relying on the above observation. But we can utilize this property even 3723 * more aggressively by proactively forgetting any precise marking in the 3724 * current state (which we inherited from the parent state), right before we 3725 * checkpoint it and branch off into new child state. This is done by 3726 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3727 * finalized states which help in short circuiting more future states. 3728 */ 3729 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3730 { 3731 struct backtrack_state *bt = &env->bt; 3732 struct bpf_verifier_state *st = env->cur_state; 3733 int first_idx = st->first_insn_idx; 3734 int last_idx = env->insn_idx; 3735 struct bpf_func_state *func; 3736 struct bpf_reg_state *reg; 3737 bool skip_first = true; 3738 int i, fr, err; 3739 3740 if (!env->bpf_capable) 3741 return 0; 3742 3743 /* set frame number from which we are starting to backtrack */ 3744 bt_init(bt, env->cur_state->curframe); 3745 3746 /* Do sanity checks against current state of register and/or stack 3747 * slot, but don't set precise flag in current state, as precision 3748 * tracking in the current state is unnecessary. 3749 */ 3750 func = st->frame[bt->frame]; 3751 if (regno >= 0) { 3752 reg = &func->regs[regno]; 3753 if (reg->type != SCALAR_VALUE) { 3754 WARN_ONCE(1, "backtracing misuse"); 3755 return -EFAULT; 3756 } 3757 bt_set_reg(bt, regno); 3758 } 3759 3760 if (bt_empty(bt)) 3761 return 0; 3762 3763 for (;;) { 3764 DECLARE_BITMAP(mask, 64); 3765 u32 history = st->jmp_history_cnt; 3766 3767 if (env->log.level & BPF_LOG_LEVEL2) { 3768 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d\n", 3769 bt->frame, last_idx, first_idx); 3770 } 3771 3772 if (last_idx < 0) { 3773 /* we are at the entry into subprog, which 3774 * is expected for global funcs, but only if 3775 * requested precise registers are R1-R5 3776 * (which are global func's input arguments) 3777 */ 3778 if (st->curframe == 0 && 3779 st->frame[0]->subprogno > 0 && 3780 st->frame[0]->callsite == BPF_MAIN_FUNC && 3781 bt_stack_mask(bt) == 0 && 3782 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 3783 bitmap_from_u64(mask, bt_reg_mask(bt)); 3784 for_each_set_bit(i, mask, 32) { 3785 reg = &st->frame[0]->regs[i]; 3786 if (reg->type != SCALAR_VALUE) { 3787 bt_clear_reg(bt, i); 3788 continue; 3789 } 3790 reg->precise = true; 3791 } 3792 return 0; 3793 } 3794 3795 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 3796 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 3797 WARN_ONCE(1, "verifier backtracking bug"); 3798 return -EFAULT; 3799 } 3800 3801 for (i = last_idx;;) { 3802 if (skip_first) { 3803 err = 0; 3804 skip_first = false; 3805 } else { 3806 err = backtrack_insn(env, i, bt); 3807 } 3808 if (err == -ENOTSUPP) { 3809 mark_all_scalars_precise(env, st); 3810 bt_reset(bt); 3811 return 0; 3812 } else if (err) { 3813 return err; 3814 } 3815 if (bt_empty(bt)) 3816 /* Found assignment(s) into tracked register in this state. 3817 * Since this state is already marked, just return. 3818 * Nothing to be tracked further in the parent state. 3819 */ 3820 return 0; 3821 if (i == first_idx) 3822 break; 3823 i = get_prev_insn_idx(st, i, &history); 3824 if (i >= env->prog->len) { 3825 /* This can happen if backtracking reached insn 0 3826 * and there are still reg_mask or stack_mask 3827 * to backtrack. 3828 * It means the backtracking missed the spot where 3829 * particular register was initialized with a constant. 3830 */ 3831 verbose(env, "BUG backtracking idx %d\n", i); 3832 WARN_ONCE(1, "verifier backtracking bug"); 3833 return -EFAULT; 3834 } 3835 } 3836 st = st->parent; 3837 if (!st) 3838 break; 3839 3840 for (fr = bt->frame; fr >= 0; fr--) { 3841 func = st->frame[fr]; 3842 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3843 for_each_set_bit(i, mask, 32) { 3844 reg = &func->regs[i]; 3845 if (reg->type != SCALAR_VALUE) { 3846 bt_clear_frame_reg(bt, fr, i); 3847 continue; 3848 } 3849 if (reg->precise) 3850 bt_clear_frame_reg(bt, fr, i); 3851 else 3852 reg->precise = true; 3853 } 3854 3855 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3856 for_each_set_bit(i, mask, 64) { 3857 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3858 /* the sequence of instructions: 3859 * 2: (bf) r3 = r10 3860 * 3: (7b) *(u64 *)(r3 -8) = r0 3861 * 4: (79) r4 = *(u64 *)(r10 -8) 3862 * doesn't contain jmps. It's backtracked 3863 * as a single block. 3864 * During backtracking insn 3 is not recognized as 3865 * stack access, so at the end of backtracking 3866 * stack slot fp-8 is still marked in stack_mask. 3867 * However the parent state may not have accessed 3868 * fp-8 and it's "unallocated" stack space. 3869 * In such case fallback to conservative. 3870 */ 3871 mark_all_scalars_precise(env, st); 3872 bt_reset(bt); 3873 return 0; 3874 } 3875 3876 if (!is_spilled_scalar_reg(&func->stack[i])) { 3877 bt_clear_frame_slot(bt, fr, i); 3878 continue; 3879 } 3880 reg = &func->stack[i].spilled_ptr; 3881 if (reg->precise) 3882 bt_clear_frame_slot(bt, fr, i); 3883 else 3884 reg->precise = true; 3885 } 3886 if (env->log.level & BPF_LOG_LEVEL2) { 3887 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 3888 bt_frame_reg_mask(bt, fr)); 3889 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 3890 fr, env->tmp_str_buf); 3891 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 3892 bt_frame_stack_mask(bt, fr)); 3893 verbose(env, "stack=%s: ", env->tmp_str_buf); 3894 print_verifier_state(env, func, true); 3895 } 3896 } 3897 3898 if (bt_empty(bt)) 3899 break; 3900 3901 last_idx = st->last_insn_idx; 3902 first_idx = st->first_insn_idx; 3903 } 3904 return 0; 3905 } 3906 3907 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3908 { 3909 return __mark_chain_precision(env, regno); 3910 } 3911 3912 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 3913 * desired reg and stack masks across all relevant frames 3914 */ 3915 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 3916 { 3917 return __mark_chain_precision(env, -1); 3918 } 3919 3920 static bool is_spillable_regtype(enum bpf_reg_type type) 3921 { 3922 switch (base_type(type)) { 3923 case PTR_TO_MAP_VALUE: 3924 case PTR_TO_STACK: 3925 case PTR_TO_CTX: 3926 case PTR_TO_PACKET: 3927 case PTR_TO_PACKET_META: 3928 case PTR_TO_PACKET_END: 3929 case PTR_TO_FLOW_KEYS: 3930 case CONST_PTR_TO_MAP: 3931 case PTR_TO_SOCKET: 3932 case PTR_TO_SOCK_COMMON: 3933 case PTR_TO_TCP_SOCK: 3934 case PTR_TO_XDP_SOCK: 3935 case PTR_TO_BTF_ID: 3936 case PTR_TO_BUF: 3937 case PTR_TO_MEM: 3938 case PTR_TO_FUNC: 3939 case PTR_TO_MAP_KEY: 3940 return true; 3941 default: 3942 return false; 3943 } 3944 } 3945 3946 /* Does this register contain a constant zero? */ 3947 static bool register_is_null(struct bpf_reg_state *reg) 3948 { 3949 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3950 } 3951 3952 static bool register_is_const(struct bpf_reg_state *reg) 3953 { 3954 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3955 } 3956 3957 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3958 { 3959 return tnum_is_unknown(reg->var_off) && 3960 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3961 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3962 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3963 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3964 } 3965 3966 static bool register_is_bounded(struct bpf_reg_state *reg) 3967 { 3968 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3969 } 3970 3971 static bool __is_pointer_value(bool allow_ptr_leaks, 3972 const struct bpf_reg_state *reg) 3973 { 3974 if (allow_ptr_leaks) 3975 return false; 3976 3977 return reg->type != SCALAR_VALUE; 3978 } 3979 3980 /* Copy src state preserving dst->parent and dst->live fields */ 3981 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 3982 { 3983 struct bpf_reg_state *parent = dst->parent; 3984 enum bpf_reg_liveness live = dst->live; 3985 3986 *dst = *src; 3987 dst->parent = parent; 3988 dst->live = live; 3989 } 3990 3991 static void save_register_state(struct bpf_func_state *state, 3992 int spi, struct bpf_reg_state *reg, 3993 int size) 3994 { 3995 int i; 3996 3997 copy_register_state(&state->stack[spi].spilled_ptr, reg); 3998 if (size == BPF_REG_SIZE) 3999 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4000 4001 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4002 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4003 4004 /* size < 8 bytes spill */ 4005 for (; i; i--) 4006 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4007 } 4008 4009 static bool is_bpf_st_mem(struct bpf_insn *insn) 4010 { 4011 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4012 } 4013 4014 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4015 * stack boundary and alignment are checked in check_mem_access() 4016 */ 4017 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4018 /* stack frame we're writing to */ 4019 struct bpf_func_state *state, 4020 int off, int size, int value_regno, 4021 int insn_idx) 4022 { 4023 struct bpf_func_state *cur; /* state of the current function */ 4024 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4025 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4026 struct bpf_reg_state *reg = NULL; 4027 u32 dst_reg = insn->dst_reg; 4028 4029 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4030 if (err) 4031 return err; 4032 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4033 * so it's aligned access and [off, off + size) are within stack limits 4034 */ 4035 if (!env->allow_ptr_leaks && 4036 state->stack[spi].slot_type[0] == STACK_SPILL && 4037 size != BPF_REG_SIZE) { 4038 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4039 return -EACCES; 4040 } 4041 4042 cur = env->cur_state->frame[env->cur_state->curframe]; 4043 if (value_regno >= 0) 4044 reg = &cur->regs[value_regno]; 4045 if (!env->bypass_spec_v4) { 4046 bool sanitize = reg && is_spillable_regtype(reg->type); 4047 4048 for (i = 0; i < size; i++) { 4049 u8 type = state->stack[spi].slot_type[i]; 4050 4051 if (type != STACK_MISC && type != STACK_ZERO) { 4052 sanitize = true; 4053 break; 4054 } 4055 } 4056 4057 if (sanitize) 4058 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4059 } 4060 4061 err = destroy_if_dynptr_stack_slot(env, state, spi); 4062 if (err) 4063 return err; 4064 4065 mark_stack_slot_scratched(env, spi); 4066 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4067 !register_is_null(reg) && env->bpf_capable) { 4068 if (dst_reg != BPF_REG_FP) { 4069 /* The backtracking logic can only recognize explicit 4070 * stack slot address like [fp - 8]. Other spill of 4071 * scalar via different register has to be conservative. 4072 * Backtrack from here and mark all registers as precise 4073 * that contributed into 'reg' being a constant. 4074 */ 4075 err = mark_chain_precision(env, value_regno); 4076 if (err) 4077 return err; 4078 } 4079 save_register_state(state, spi, reg, size); 4080 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4081 insn->imm != 0 && env->bpf_capable) { 4082 struct bpf_reg_state fake_reg = {}; 4083 4084 __mark_reg_known(&fake_reg, (u32)insn->imm); 4085 fake_reg.type = SCALAR_VALUE; 4086 save_register_state(state, spi, &fake_reg, size); 4087 } else if (reg && is_spillable_regtype(reg->type)) { 4088 /* register containing pointer is being spilled into stack */ 4089 if (size != BPF_REG_SIZE) { 4090 verbose_linfo(env, insn_idx, "; "); 4091 verbose(env, "invalid size of register spill\n"); 4092 return -EACCES; 4093 } 4094 if (state != cur && reg->type == PTR_TO_STACK) { 4095 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4096 return -EINVAL; 4097 } 4098 save_register_state(state, spi, reg, size); 4099 } else { 4100 u8 type = STACK_MISC; 4101 4102 /* regular write of data into stack destroys any spilled ptr */ 4103 state->stack[spi].spilled_ptr.type = NOT_INIT; 4104 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4105 if (is_stack_slot_special(&state->stack[spi])) 4106 for (i = 0; i < BPF_REG_SIZE; i++) 4107 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4108 4109 /* only mark the slot as written if all 8 bytes were written 4110 * otherwise read propagation may incorrectly stop too soon 4111 * when stack slots are partially written. 4112 * This heuristic means that read propagation will be 4113 * conservative, since it will add reg_live_read marks 4114 * to stack slots all the way to first state when programs 4115 * writes+reads less than 8 bytes 4116 */ 4117 if (size == BPF_REG_SIZE) 4118 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4119 4120 /* when we zero initialize stack slots mark them as such */ 4121 if ((reg && register_is_null(reg)) || 4122 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4123 /* backtracking doesn't work for STACK_ZERO yet. */ 4124 err = mark_chain_precision(env, value_regno); 4125 if (err) 4126 return err; 4127 type = STACK_ZERO; 4128 } 4129 4130 /* Mark slots affected by this stack write. */ 4131 for (i = 0; i < size; i++) 4132 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4133 type; 4134 } 4135 return 0; 4136 } 4137 4138 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4139 * known to contain a variable offset. 4140 * This function checks whether the write is permitted and conservatively 4141 * tracks the effects of the write, considering that each stack slot in the 4142 * dynamic range is potentially written to. 4143 * 4144 * 'off' includes 'regno->off'. 4145 * 'value_regno' can be -1, meaning that an unknown value is being written to 4146 * the stack. 4147 * 4148 * Spilled pointers in range are not marked as written because we don't know 4149 * what's going to be actually written. This means that read propagation for 4150 * future reads cannot be terminated by this write. 4151 * 4152 * For privileged programs, uninitialized stack slots are considered 4153 * initialized by this write (even though we don't know exactly what offsets 4154 * are going to be written to). The idea is that we don't want the verifier to 4155 * reject future reads that access slots written to through variable offsets. 4156 */ 4157 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4158 /* func where register points to */ 4159 struct bpf_func_state *state, 4160 int ptr_regno, int off, int size, 4161 int value_regno, int insn_idx) 4162 { 4163 struct bpf_func_state *cur; /* state of the current function */ 4164 int min_off, max_off; 4165 int i, err; 4166 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4167 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4168 bool writing_zero = false; 4169 /* set if the fact that we're writing a zero is used to let any 4170 * stack slots remain STACK_ZERO 4171 */ 4172 bool zero_used = false; 4173 4174 cur = env->cur_state->frame[env->cur_state->curframe]; 4175 ptr_reg = &cur->regs[ptr_regno]; 4176 min_off = ptr_reg->smin_value + off; 4177 max_off = ptr_reg->smax_value + off + size; 4178 if (value_regno >= 0) 4179 value_reg = &cur->regs[value_regno]; 4180 if ((value_reg && register_is_null(value_reg)) || 4181 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4182 writing_zero = true; 4183 4184 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4185 if (err) 4186 return err; 4187 4188 for (i = min_off; i < max_off; i++) { 4189 int spi; 4190 4191 spi = __get_spi(i); 4192 err = destroy_if_dynptr_stack_slot(env, state, spi); 4193 if (err) 4194 return err; 4195 } 4196 4197 /* Variable offset writes destroy any spilled pointers in range. */ 4198 for (i = min_off; i < max_off; i++) { 4199 u8 new_type, *stype; 4200 int slot, spi; 4201 4202 slot = -i - 1; 4203 spi = slot / BPF_REG_SIZE; 4204 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4205 mark_stack_slot_scratched(env, spi); 4206 4207 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4208 /* Reject the write if range we may write to has not 4209 * been initialized beforehand. If we didn't reject 4210 * here, the ptr status would be erased below (even 4211 * though not all slots are actually overwritten), 4212 * possibly opening the door to leaks. 4213 * 4214 * We do however catch STACK_INVALID case below, and 4215 * only allow reading possibly uninitialized memory 4216 * later for CAP_PERFMON, as the write may not happen to 4217 * that slot. 4218 */ 4219 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4220 insn_idx, i); 4221 return -EINVAL; 4222 } 4223 4224 /* Erase all spilled pointers. */ 4225 state->stack[spi].spilled_ptr.type = NOT_INIT; 4226 4227 /* Update the slot type. */ 4228 new_type = STACK_MISC; 4229 if (writing_zero && *stype == STACK_ZERO) { 4230 new_type = STACK_ZERO; 4231 zero_used = true; 4232 } 4233 /* If the slot is STACK_INVALID, we check whether it's OK to 4234 * pretend that it will be initialized by this write. The slot 4235 * might not actually be written to, and so if we mark it as 4236 * initialized future reads might leak uninitialized memory. 4237 * For privileged programs, we will accept such reads to slots 4238 * that may or may not be written because, if we're reject 4239 * them, the error would be too confusing. 4240 */ 4241 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4242 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4243 insn_idx, i); 4244 return -EINVAL; 4245 } 4246 *stype = new_type; 4247 } 4248 if (zero_used) { 4249 /* backtracking doesn't work for STACK_ZERO yet. */ 4250 err = mark_chain_precision(env, value_regno); 4251 if (err) 4252 return err; 4253 } 4254 return 0; 4255 } 4256 4257 /* When register 'dst_regno' is assigned some values from stack[min_off, 4258 * max_off), we set the register's type according to the types of the 4259 * respective stack slots. If all the stack values are known to be zeros, then 4260 * so is the destination reg. Otherwise, the register is considered to be 4261 * SCALAR. This function does not deal with register filling; the caller must 4262 * ensure that all spilled registers in the stack range have been marked as 4263 * read. 4264 */ 4265 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4266 /* func where src register points to */ 4267 struct bpf_func_state *ptr_state, 4268 int min_off, int max_off, int dst_regno) 4269 { 4270 struct bpf_verifier_state *vstate = env->cur_state; 4271 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4272 int i, slot, spi; 4273 u8 *stype; 4274 int zeros = 0; 4275 4276 for (i = min_off; i < max_off; i++) { 4277 slot = -i - 1; 4278 spi = slot / BPF_REG_SIZE; 4279 mark_stack_slot_scratched(env, spi); 4280 stype = ptr_state->stack[spi].slot_type; 4281 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4282 break; 4283 zeros++; 4284 } 4285 if (zeros == max_off - min_off) { 4286 /* any access_size read into register is zero extended, 4287 * so the whole register == const_zero 4288 */ 4289 __mark_reg_const_zero(&state->regs[dst_regno]); 4290 /* backtracking doesn't support STACK_ZERO yet, 4291 * so mark it precise here, so that later 4292 * backtracking can stop here. 4293 * Backtracking may not need this if this register 4294 * doesn't participate in pointer adjustment. 4295 * Forward propagation of precise flag is not 4296 * necessary either. This mark is only to stop 4297 * backtracking. Any register that contributed 4298 * to const 0 was marked precise before spill. 4299 */ 4300 state->regs[dst_regno].precise = true; 4301 } else { 4302 /* have read misc data from the stack */ 4303 mark_reg_unknown(env, state->regs, dst_regno); 4304 } 4305 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4306 } 4307 4308 /* Read the stack at 'off' and put the results into the register indicated by 4309 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4310 * spilled reg. 4311 * 4312 * 'dst_regno' can be -1, meaning that the read value is not going to a 4313 * register. 4314 * 4315 * The access is assumed to be within the current stack bounds. 4316 */ 4317 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4318 /* func where src register points to */ 4319 struct bpf_func_state *reg_state, 4320 int off, int size, int dst_regno) 4321 { 4322 struct bpf_verifier_state *vstate = env->cur_state; 4323 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4324 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4325 struct bpf_reg_state *reg; 4326 u8 *stype, type; 4327 4328 stype = reg_state->stack[spi].slot_type; 4329 reg = ®_state->stack[spi].spilled_ptr; 4330 4331 mark_stack_slot_scratched(env, spi); 4332 4333 if (is_spilled_reg(®_state->stack[spi])) { 4334 u8 spill_size = 1; 4335 4336 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4337 spill_size++; 4338 4339 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4340 if (reg->type != SCALAR_VALUE) { 4341 verbose_linfo(env, env->insn_idx, "; "); 4342 verbose(env, "invalid size of register fill\n"); 4343 return -EACCES; 4344 } 4345 4346 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4347 if (dst_regno < 0) 4348 return 0; 4349 4350 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4351 /* The earlier check_reg_arg() has decided the 4352 * subreg_def for this insn. Save it first. 4353 */ 4354 s32 subreg_def = state->regs[dst_regno].subreg_def; 4355 4356 copy_register_state(&state->regs[dst_regno], reg); 4357 state->regs[dst_regno].subreg_def = subreg_def; 4358 } else { 4359 for (i = 0; i < size; i++) { 4360 type = stype[(slot - i) % BPF_REG_SIZE]; 4361 if (type == STACK_SPILL) 4362 continue; 4363 if (type == STACK_MISC) 4364 continue; 4365 if (type == STACK_INVALID && env->allow_uninit_stack) 4366 continue; 4367 verbose(env, "invalid read from stack off %d+%d size %d\n", 4368 off, i, size); 4369 return -EACCES; 4370 } 4371 mark_reg_unknown(env, state->regs, dst_regno); 4372 } 4373 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4374 return 0; 4375 } 4376 4377 if (dst_regno >= 0) { 4378 /* restore register state from stack */ 4379 copy_register_state(&state->regs[dst_regno], reg); 4380 /* mark reg as written since spilled pointer state likely 4381 * has its liveness marks cleared by is_state_visited() 4382 * which resets stack/reg liveness for state transitions 4383 */ 4384 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4385 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4386 /* If dst_regno==-1, the caller is asking us whether 4387 * it is acceptable to use this value as a SCALAR_VALUE 4388 * (e.g. for XADD). 4389 * We must not allow unprivileged callers to do that 4390 * with spilled pointers. 4391 */ 4392 verbose(env, "leaking pointer from stack off %d\n", 4393 off); 4394 return -EACCES; 4395 } 4396 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4397 } else { 4398 for (i = 0; i < size; i++) { 4399 type = stype[(slot - i) % BPF_REG_SIZE]; 4400 if (type == STACK_MISC) 4401 continue; 4402 if (type == STACK_ZERO) 4403 continue; 4404 if (type == STACK_INVALID && env->allow_uninit_stack) 4405 continue; 4406 verbose(env, "invalid read from stack off %d+%d size %d\n", 4407 off, i, size); 4408 return -EACCES; 4409 } 4410 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4411 if (dst_regno >= 0) 4412 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4413 } 4414 return 0; 4415 } 4416 4417 enum bpf_access_src { 4418 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4419 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4420 }; 4421 4422 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4423 int regno, int off, int access_size, 4424 bool zero_size_allowed, 4425 enum bpf_access_src type, 4426 struct bpf_call_arg_meta *meta); 4427 4428 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4429 { 4430 return cur_regs(env) + regno; 4431 } 4432 4433 /* Read the stack at 'ptr_regno + off' and put the result into the register 4434 * 'dst_regno'. 4435 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4436 * but not its variable offset. 4437 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4438 * 4439 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4440 * filling registers (i.e. reads of spilled register cannot be detected when 4441 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4442 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4443 * offset; for a fixed offset check_stack_read_fixed_off should be used 4444 * instead. 4445 */ 4446 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4447 int ptr_regno, int off, int size, int dst_regno) 4448 { 4449 /* The state of the source register. */ 4450 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4451 struct bpf_func_state *ptr_state = func(env, reg); 4452 int err; 4453 int min_off, max_off; 4454 4455 /* Note that we pass a NULL meta, so raw access will not be permitted. 4456 */ 4457 err = check_stack_range_initialized(env, ptr_regno, off, size, 4458 false, ACCESS_DIRECT, NULL); 4459 if (err) 4460 return err; 4461 4462 min_off = reg->smin_value + off; 4463 max_off = reg->smax_value + off; 4464 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4465 return 0; 4466 } 4467 4468 /* check_stack_read dispatches to check_stack_read_fixed_off or 4469 * check_stack_read_var_off. 4470 * 4471 * The caller must ensure that the offset falls within the allocated stack 4472 * bounds. 4473 * 4474 * 'dst_regno' is a register which will receive the value from the stack. It 4475 * can be -1, meaning that the read value is not going to a register. 4476 */ 4477 static int check_stack_read(struct bpf_verifier_env *env, 4478 int ptr_regno, int off, int size, 4479 int dst_regno) 4480 { 4481 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4482 struct bpf_func_state *state = func(env, reg); 4483 int err; 4484 /* Some accesses are only permitted with a static offset. */ 4485 bool var_off = !tnum_is_const(reg->var_off); 4486 4487 /* The offset is required to be static when reads don't go to a 4488 * register, in order to not leak pointers (see 4489 * check_stack_read_fixed_off). 4490 */ 4491 if (dst_regno < 0 && var_off) { 4492 char tn_buf[48]; 4493 4494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4495 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4496 tn_buf, off, size); 4497 return -EACCES; 4498 } 4499 /* Variable offset is prohibited for unprivileged mode for simplicity 4500 * since it requires corresponding support in Spectre masking for stack 4501 * ALU. See also retrieve_ptr_limit(). The check in 4502 * check_stack_access_for_ptr_arithmetic() called by 4503 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4504 * with variable offsets, therefore no check is required here. Further, 4505 * just checking it here would be insufficient as speculative stack 4506 * writes could still lead to unsafe speculative behaviour. 4507 */ 4508 if (!var_off) { 4509 off += reg->var_off.value; 4510 err = check_stack_read_fixed_off(env, state, off, size, 4511 dst_regno); 4512 } else { 4513 /* Variable offset stack reads need more conservative handling 4514 * than fixed offset ones. Note that dst_regno >= 0 on this 4515 * branch. 4516 */ 4517 err = check_stack_read_var_off(env, ptr_regno, off, size, 4518 dst_regno); 4519 } 4520 return err; 4521 } 4522 4523 4524 /* check_stack_write dispatches to check_stack_write_fixed_off or 4525 * check_stack_write_var_off. 4526 * 4527 * 'ptr_regno' is the register used as a pointer into the stack. 4528 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4529 * 'value_regno' is the register whose value we're writing to the stack. It can 4530 * be -1, meaning that we're not writing from a register. 4531 * 4532 * The caller must ensure that the offset falls within the maximum stack size. 4533 */ 4534 static int check_stack_write(struct bpf_verifier_env *env, 4535 int ptr_regno, int off, int size, 4536 int value_regno, int insn_idx) 4537 { 4538 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4539 struct bpf_func_state *state = func(env, reg); 4540 int err; 4541 4542 if (tnum_is_const(reg->var_off)) { 4543 off += reg->var_off.value; 4544 err = check_stack_write_fixed_off(env, state, off, size, 4545 value_regno, insn_idx); 4546 } else { 4547 /* Variable offset stack reads need more conservative handling 4548 * than fixed offset ones. 4549 */ 4550 err = check_stack_write_var_off(env, state, 4551 ptr_regno, off, size, 4552 value_regno, insn_idx); 4553 } 4554 return err; 4555 } 4556 4557 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4558 int off, int size, enum bpf_access_type type) 4559 { 4560 struct bpf_reg_state *regs = cur_regs(env); 4561 struct bpf_map *map = regs[regno].map_ptr; 4562 u32 cap = bpf_map_flags_to_cap(map); 4563 4564 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4565 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4566 map->value_size, off, size); 4567 return -EACCES; 4568 } 4569 4570 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4571 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4572 map->value_size, off, size); 4573 return -EACCES; 4574 } 4575 4576 return 0; 4577 } 4578 4579 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4580 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4581 int off, int size, u32 mem_size, 4582 bool zero_size_allowed) 4583 { 4584 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4585 struct bpf_reg_state *reg; 4586 4587 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4588 return 0; 4589 4590 reg = &cur_regs(env)[regno]; 4591 switch (reg->type) { 4592 case PTR_TO_MAP_KEY: 4593 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4594 mem_size, off, size); 4595 break; 4596 case PTR_TO_MAP_VALUE: 4597 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4598 mem_size, off, size); 4599 break; 4600 case PTR_TO_PACKET: 4601 case PTR_TO_PACKET_META: 4602 case PTR_TO_PACKET_END: 4603 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4604 off, size, regno, reg->id, off, mem_size); 4605 break; 4606 case PTR_TO_MEM: 4607 default: 4608 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4609 mem_size, off, size); 4610 } 4611 4612 return -EACCES; 4613 } 4614 4615 /* check read/write into a memory region with possible variable offset */ 4616 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4617 int off, int size, u32 mem_size, 4618 bool zero_size_allowed) 4619 { 4620 struct bpf_verifier_state *vstate = env->cur_state; 4621 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4622 struct bpf_reg_state *reg = &state->regs[regno]; 4623 int err; 4624 4625 /* We may have adjusted the register pointing to memory region, so we 4626 * need to try adding each of min_value and max_value to off 4627 * to make sure our theoretical access will be safe. 4628 * 4629 * The minimum value is only important with signed 4630 * comparisons where we can't assume the floor of a 4631 * value is 0. If we are using signed variables for our 4632 * index'es we need to make sure that whatever we use 4633 * will have a set floor within our range. 4634 */ 4635 if (reg->smin_value < 0 && 4636 (reg->smin_value == S64_MIN || 4637 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4638 reg->smin_value + off < 0)) { 4639 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4640 regno); 4641 return -EACCES; 4642 } 4643 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4644 mem_size, zero_size_allowed); 4645 if (err) { 4646 verbose(env, "R%d min value is outside of the allowed memory range\n", 4647 regno); 4648 return err; 4649 } 4650 4651 /* If we haven't set a max value then we need to bail since we can't be 4652 * sure we won't do bad things. 4653 * If reg->umax_value + off could overflow, treat that as unbounded too. 4654 */ 4655 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4656 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4657 regno); 4658 return -EACCES; 4659 } 4660 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4661 mem_size, zero_size_allowed); 4662 if (err) { 4663 verbose(env, "R%d max value is outside of the allowed memory range\n", 4664 regno); 4665 return err; 4666 } 4667 4668 return 0; 4669 } 4670 4671 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4672 const struct bpf_reg_state *reg, int regno, 4673 bool fixed_off_ok) 4674 { 4675 /* Access to this pointer-typed register or passing it to a helper 4676 * is only allowed in its original, unmodified form. 4677 */ 4678 4679 if (reg->off < 0) { 4680 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4681 reg_type_str(env, reg->type), regno, reg->off); 4682 return -EACCES; 4683 } 4684 4685 if (!fixed_off_ok && reg->off) { 4686 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4687 reg_type_str(env, reg->type), regno, reg->off); 4688 return -EACCES; 4689 } 4690 4691 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4692 char tn_buf[48]; 4693 4694 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4695 verbose(env, "variable %s access var_off=%s disallowed\n", 4696 reg_type_str(env, reg->type), tn_buf); 4697 return -EACCES; 4698 } 4699 4700 return 0; 4701 } 4702 4703 int check_ptr_off_reg(struct bpf_verifier_env *env, 4704 const struct bpf_reg_state *reg, int regno) 4705 { 4706 return __check_ptr_off_reg(env, reg, regno, false); 4707 } 4708 4709 static int map_kptr_match_type(struct bpf_verifier_env *env, 4710 struct btf_field *kptr_field, 4711 struct bpf_reg_state *reg, u32 regno) 4712 { 4713 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4714 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4715 const char *reg_name = ""; 4716 4717 /* Only unreferenced case accepts untrusted pointers */ 4718 if (kptr_field->type == BPF_KPTR_UNREF) 4719 perm_flags |= PTR_UNTRUSTED; 4720 4721 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4722 goto bad_type; 4723 4724 if (!btf_is_kernel(reg->btf)) { 4725 verbose(env, "R%d must point to kernel BTF\n", regno); 4726 return -EINVAL; 4727 } 4728 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4729 reg_name = btf_type_name(reg->btf, reg->btf_id); 4730 4731 /* For ref_ptr case, release function check should ensure we get one 4732 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4733 * normal store of unreferenced kptr, we must ensure var_off is zero. 4734 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4735 * reg->off and reg->ref_obj_id are not needed here. 4736 */ 4737 if (__check_ptr_off_reg(env, reg, regno, true)) 4738 return -EACCES; 4739 4740 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4741 * we also need to take into account the reg->off. 4742 * 4743 * We want to support cases like: 4744 * 4745 * struct foo { 4746 * struct bar br; 4747 * struct baz bz; 4748 * }; 4749 * 4750 * struct foo *v; 4751 * v = func(); // PTR_TO_BTF_ID 4752 * val->foo = v; // reg->off is zero, btf and btf_id match type 4753 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4754 * // first member type of struct after comparison fails 4755 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4756 * // to match type 4757 * 4758 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4759 * is zero. We must also ensure that btf_struct_ids_match does not walk 4760 * the struct to match type against first member of struct, i.e. reject 4761 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4762 * strict mode to true for type match. 4763 */ 4764 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4765 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4766 kptr_field->type == BPF_KPTR_REF)) 4767 goto bad_type; 4768 return 0; 4769 bad_type: 4770 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4771 reg_type_str(env, reg->type), reg_name); 4772 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4773 if (kptr_field->type == BPF_KPTR_UNREF) 4774 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4775 targ_name); 4776 else 4777 verbose(env, "\n"); 4778 return -EINVAL; 4779 } 4780 4781 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 4782 * can dereference RCU protected pointers and result is PTR_TRUSTED. 4783 */ 4784 static bool in_rcu_cs(struct bpf_verifier_env *env) 4785 { 4786 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 4787 } 4788 4789 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 4790 BTF_SET_START(rcu_protected_types) 4791 BTF_ID(struct, prog_test_ref_kfunc) 4792 BTF_ID(struct, cgroup) 4793 BTF_ID(struct, bpf_cpumask) 4794 BTF_ID(struct, task_struct) 4795 BTF_SET_END(rcu_protected_types) 4796 4797 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 4798 { 4799 if (!btf_is_kernel(btf)) 4800 return false; 4801 return btf_id_set_contains(&rcu_protected_types, btf_id); 4802 } 4803 4804 static bool rcu_safe_kptr(const struct btf_field *field) 4805 { 4806 const struct btf_field_kptr *kptr = &field->kptr; 4807 4808 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 4809 } 4810 4811 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4812 int value_regno, int insn_idx, 4813 struct btf_field *kptr_field) 4814 { 4815 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4816 int class = BPF_CLASS(insn->code); 4817 struct bpf_reg_state *val_reg; 4818 4819 /* Things we already checked for in check_map_access and caller: 4820 * - Reject cases where variable offset may touch kptr 4821 * - size of access (must be BPF_DW) 4822 * - tnum_is_const(reg->var_off) 4823 * - kptr_field->offset == off + reg->var_off.value 4824 */ 4825 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4826 if (BPF_MODE(insn->code) != BPF_MEM) { 4827 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4828 return -EACCES; 4829 } 4830 4831 /* We only allow loading referenced kptr, since it will be marked as 4832 * untrusted, similar to unreferenced kptr. 4833 */ 4834 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4835 verbose(env, "store to referenced kptr disallowed\n"); 4836 return -EACCES; 4837 } 4838 4839 if (class == BPF_LDX) { 4840 val_reg = reg_state(env, value_regno); 4841 /* We can simply mark the value_regno receiving the pointer 4842 * value from map as PTR_TO_BTF_ID, with the correct type. 4843 */ 4844 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4845 kptr_field->kptr.btf_id, 4846 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 4847 PTR_MAYBE_NULL | MEM_RCU : 4848 PTR_MAYBE_NULL | PTR_UNTRUSTED); 4849 /* For mark_ptr_or_null_reg */ 4850 val_reg->id = ++env->id_gen; 4851 } else if (class == BPF_STX) { 4852 val_reg = reg_state(env, value_regno); 4853 if (!register_is_null(val_reg) && 4854 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4855 return -EACCES; 4856 } else if (class == BPF_ST) { 4857 if (insn->imm) { 4858 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4859 kptr_field->offset); 4860 return -EACCES; 4861 } 4862 } else { 4863 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4864 return -EACCES; 4865 } 4866 return 0; 4867 } 4868 4869 /* check read/write into a map element with possible variable offset */ 4870 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4871 int off, int size, bool zero_size_allowed, 4872 enum bpf_access_src src) 4873 { 4874 struct bpf_verifier_state *vstate = env->cur_state; 4875 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4876 struct bpf_reg_state *reg = &state->regs[regno]; 4877 struct bpf_map *map = reg->map_ptr; 4878 struct btf_record *rec; 4879 int err, i; 4880 4881 err = check_mem_region_access(env, regno, off, size, map->value_size, 4882 zero_size_allowed); 4883 if (err) 4884 return err; 4885 4886 if (IS_ERR_OR_NULL(map->record)) 4887 return 0; 4888 rec = map->record; 4889 for (i = 0; i < rec->cnt; i++) { 4890 struct btf_field *field = &rec->fields[i]; 4891 u32 p = field->offset; 4892 4893 /* If any part of a field can be touched by load/store, reject 4894 * this program. To check that [x1, x2) overlaps with [y1, y2), 4895 * it is sufficient to check x1 < y2 && y1 < x2. 4896 */ 4897 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4898 p < reg->umax_value + off + size) { 4899 switch (field->type) { 4900 case BPF_KPTR_UNREF: 4901 case BPF_KPTR_REF: 4902 if (src != ACCESS_DIRECT) { 4903 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4904 return -EACCES; 4905 } 4906 if (!tnum_is_const(reg->var_off)) { 4907 verbose(env, "kptr access cannot have variable offset\n"); 4908 return -EACCES; 4909 } 4910 if (p != off + reg->var_off.value) { 4911 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4912 p, off + reg->var_off.value); 4913 return -EACCES; 4914 } 4915 if (size != bpf_size_to_bytes(BPF_DW)) { 4916 verbose(env, "kptr access size must be BPF_DW\n"); 4917 return -EACCES; 4918 } 4919 break; 4920 default: 4921 verbose(env, "%s cannot be accessed directly by load/store\n", 4922 btf_field_type_name(field->type)); 4923 return -EACCES; 4924 } 4925 } 4926 } 4927 return 0; 4928 } 4929 4930 #define MAX_PACKET_OFF 0xffff 4931 4932 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4933 const struct bpf_call_arg_meta *meta, 4934 enum bpf_access_type t) 4935 { 4936 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4937 4938 switch (prog_type) { 4939 /* Program types only with direct read access go here! */ 4940 case BPF_PROG_TYPE_LWT_IN: 4941 case BPF_PROG_TYPE_LWT_OUT: 4942 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4943 case BPF_PROG_TYPE_SK_REUSEPORT: 4944 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4945 case BPF_PROG_TYPE_CGROUP_SKB: 4946 if (t == BPF_WRITE) 4947 return false; 4948 fallthrough; 4949 4950 /* Program types with direct read + write access go here! */ 4951 case BPF_PROG_TYPE_SCHED_CLS: 4952 case BPF_PROG_TYPE_SCHED_ACT: 4953 case BPF_PROG_TYPE_XDP: 4954 case BPF_PROG_TYPE_LWT_XMIT: 4955 case BPF_PROG_TYPE_SK_SKB: 4956 case BPF_PROG_TYPE_SK_MSG: 4957 if (meta) 4958 return meta->pkt_access; 4959 4960 env->seen_direct_write = true; 4961 return true; 4962 4963 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4964 if (t == BPF_WRITE) 4965 env->seen_direct_write = true; 4966 4967 return true; 4968 4969 default: 4970 return false; 4971 } 4972 } 4973 4974 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4975 int size, bool zero_size_allowed) 4976 { 4977 struct bpf_reg_state *regs = cur_regs(env); 4978 struct bpf_reg_state *reg = ®s[regno]; 4979 int err; 4980 4981 /* We may have added a variable offset to the packet pointer; but any 4982 * reg->range we have comes after that. We are only checking the fixed 4983 * offset. 4984 */ 4985 4986 /* We don't allow negative numbers, because we aren't tracking enough 4987 * detail to prove they're safe. 4988 */ 4989 if (reg->smin_value < 0) { 4990 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4991 regno); 4992 return -EACCES; 4993 } 4994 4995 err = reg->range < 0 ? -EINVAL : 4996 __check_mem_access(env, regno, off, size, reg->range, 4997 zero_size_allowed); 4998 if (err) { 4999 verbose(env, "R%d offset is outside of the packet\n", regno); 5000 return err; 5001 } 5002 5003 /* __check_mem_access has made sure "off + size - 1" is within u16. 5004 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5005 * otherwise find_good_pkt_pointers would have refused to set range info 5006 * that __check_mem_access would have rejected this pkt access. 5007 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5008 */ 5009 env->prog->aux->max_pkt_offset = 5010 max_t(u32, env->prog->aux->max_pkt_offset, 5011 off + reg->umax_value + size - 1); 5012 5013 return err; 5014 } 5015 5016 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5017 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5018 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5019 struct btf **btf, u32 *btf_id) 5020 { 5021 struct bpf_insn_access_aux info = { 5022 .reg_type = *reg_type, 5023 .log = &env->log, 5024 }; 5025 5026 if (env->ops->is_valid_access && 5027 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5028 /* A non zero info.ctx_field_size indicates that this field is a 5029 * candidate for later verifier transformation to load the whole 5030 * field and then apply a mask when accessed with a narrower 5031 * access than actual ctx access size. A zero info.ctx_field_size 5032 * will only allow for whole field access and rejects any other 5033 * type of narrower access. 5034 */ 5035 *reg_type = info.reg_type; 5036 5037 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5038 *btf = info.btf; 5039 *btf_id = info.btf_id; 5040 } else { 5041 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5042 } 5043 /* remember the offset of last byte accessed in ctx */ 5044 if (env->prog->aux->max_ctx_offset < off + size) 5045 env->prog->aux->max_ctx_offset = off + size; 5046 return 0; 5047 } 5048 5049 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5050 return -EACCES; 5051 } 5052 5053 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5054 int size) 5055 { 5056 if (size < 0 || off < 0 || 5057 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5058 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5059 off, size); 5060 return -EACCES; 5061 } 5062 return 0; 5063 } 5064 5065 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5066 u32 regno, int off, int size, 5067 enum bpf_access_type t) 5068 { 5069 struct bpf_reg_state *regs = cur_regs(env); 5070 struct bpf_reg_state *reg = ®s[regno]; 5071 struct bpf_insn_access_aux info = {}; 5072 bool valid; 5073 5074 if (reg->smin_value < 0) { 5075 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5076 regno); 5077 return -EACCES; 5078 } 5079 5080 switch (reg->type) { 5081 case PTR_TO_SOCK_COMMON: 5082 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5083 break; 5084 case PTR_TO_SOCKET: 5085 valid = bpf_sock_is_valid_access(off, size, t, &info); 5086 break; 5087 case PTR_TO_TCP_SOCK: 5088 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5089 break; 5090 case PTR_TO_XDP_SOCK: 5091 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5092 break; 5093 default: 5094 valid = false; 5095 } 5096 5097 5098 if (valid) { 5099 env->insn_aux_data[insn_idx].ctx_field_size = 5100 info.ctx_field_size; 5101 return 0; 5102 } 5103 5104 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5105 regno, reg_type_str(env, reg->type), off, size); 5106 5107 return -EACCES; 5108 } 5109 5110 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5111 { 5112 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5113 } 5114 5115 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5116 { 5117 const struct bpf_reg_state *reg = reg_state(env, regno); 5118 5119 return reg->type == PTR_TO_CTX; 5120 } 5121 5122 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5123 { 5124 const struct bpf_reg_state *reg = reg_state(env, regno); 5125 5126 return type_is_sk_pointer(reg->type); 5127 } 5128 5129 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5130 { 5131 const struct bpf_reg_state *reg = reg_state(env, regno); 5132 5133 return type_is_pkt_pointer(reg->type); 5134 } 5135 5136 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5137 { 5138 const struct bpf_reg_state *reg = reg_state(env, regno); 5139 5140 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5141 return reg->type == PTR_TO_FLOW_KEYS; 5142 } 5143 5144 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5145 { 5146 /* A referenced register is always trusted. */ 5147 if (reg->ref_obj_id) 5148 return true; 5149 5150 /* If a register is not referenced, it is trusted if it has the 5151 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5152 * other type modifiers may be safe, but we elect to take an opt-in 5153 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5154 * not. 5155 * 5156 * Eventually, we should make PTR_TRUSTED the single source of truth 5157 * for whether a register is trusted. 5158 */ 5159 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5160 !bpf_type_has_unsafe_modifiers(reg->type); 5161 } 5162 5163 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5164 { 5165 return reg->type & MEM_RCU; 5166 } 5167 5168 static void clear_trusted_flags(enum bpf_type_flag *flag) 5169 { 5170 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5171 } 5172 5173 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5174 const struct bpf_reg_state *reg, 5175 int off, int size, bool strict) 5176 { 5177 struct tnum reg_off; 5178 int ip_align; 5179 5180 /* Byte size accesses are always allowed. */ 5181 if (!strict || size == 1) 5182 return 0; 5183 5184 /* For platforms that do not have a Kconfig enabling 5185 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5186 * NET_IP_ALIGN is universally set to '2'. And on platforms 5187 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5188 * to this code only in strict mode where we want to emulate 5189 * the NET_IP_ALIGN==2 checking. Therefore use an 5190 * unconditional IP align value of '2'. 5191 */ 5192 ip_align = 2; 5193 5194 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5195 if (!tnum_is_aligned(reg_off, size)) { 5196 char tn_buf[48]; 5197 5198 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5199 verbose(env, 5200 "misaligned packet access off %d+%s+%d+%d size %d\n", 5201 ip_align, tn_buf, reg->off, off, size); 5202 return -EACCES; 5203 } 5204 5205 return 0; 5206 } 5207 5208 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5209 const struct bpf_reg_state *reg, 5210 const char *pointer_desc, 5211 int off, int size, bool strict) 5212 { 5213 struct tnum reg_off; 5214 5215 /* Byte size accesses are always allowed. */ 5216 if (!strict || size == 1) 5217 return 0; 5218 5219 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5220 if (!tnum_is_aligned(reg_off, size)) { 5221 char tn_buf[48]; 5222 5223 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5224 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5225 pointer_desc, tn_buf, reg->off, off, size); 5226 return -EACCES; 5227 } 5228 5229 return 0; 5230 } 5231 5232 static int check_ptr_alignment(struct bpf_verifier_env *env, 5233 const struct bpf_reg_state *reg, int off, 5234 int size, bool strict_alignment_once) 5235 { 5236 bool strict = env->strict_alignment || strict_alignment_once; 5237 const char *pointer_desc = ""; 5238 5239 switch (reg->type) { 5240 case PTR_TO_PACKET: 5241 case PTR_TO_PACKET_META: 5242 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5243 * right in front, treat it the very same way. 5244 */ 5245 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5246 case PTR_TO_FLOW_KEYS: 5247 pointer_desc = "flow keys "; 5248 break; 5249 case PTR_TO_MAP_KEY: 5250 pointer_desc = "key "; 5251 break; 5252 case PTR_TO_MAP_VALUE: 5253 pointer_desc = "value "; 5254 break; 5255 case PTR_TO_CTX: 5256 pointer_desc = "context "; 5257 break; 5258 case PTR_TO_STACK: 5259 pointer_desc = "stack "; 5260 /* The stack spill tracking logic in check_stack_write_fixed_off() 5261 * and check_stack_read_fixed_off() relies on stack accesses being 5262 * aligned. 5263 */ 5264 strict = true; 5265 break; 5266 case PTR_TO_SOCKET: 5267 pointer_desc = "sock "; 5268 break; 5269 case PTR_TO_SOCK_COMMON: 5270 pointer_desc = "sock_common "; 5271 break; 5272 case PTR_TO_TCP_SOCK: 5273 pointer_desc = "tcp_sock "; 5274 break; 5275 case PTR_TO_XDP_SOCK: 5276 pointer_desc = "xdp_sock "; 5277 break; 5278 default: 5279 break; 5280 } 5281 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5282 strict); 5283 } 5284 5285 static int update_stack_depth(struct bpf_verifier_env *env, 5286 const struct bpf_func_state *func, 5287 int off) 5288 { 5289 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5290 5291 if (stack >= -off) 5292 return 0; 5293 5294 /* update known max for given subprogram */ 5295 env->subprog_info[func->subprogno].stack_depth = -off; 5296 return 0; 5297 } 5298 5299 /* starting from main bpf function walk all instructions of the function 5300 * and recursively walk all callees that given function can call. 5301 * Ignore jump and exit insns. 5302 * Since recursion is prevented by check_cfg() this algorithm 5303 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5304 */ 5305 static int check_max_stack_depth(struct bpf_verifier_env *env) 5306 { 5307 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 5308 struct bpf_subprog_info *subprog = env->subprog_info; 5309 struct bpf_insn *insn = env->prog->insnsi; 5310 bool tail_call_reachable = false; 5311 int ret_insn[MAX_CALL_FRAMES]; 5312 int ret_prog[MAX_CALL_FRAMES]; 5313 int j; 5314 5315 process_func: 5316 /* protect against potential stack overflow that might happen when 5317 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5318 * depth for such case down to 256 so that the worst case scenario 5319 * would result in 8k stack size (32 which is tailcall limit * 256 = 5320 * 8k). 5321 * 5322 * To get the idea what might happen, see an example: 5323 * func1 -> sub rsp, 128 5324 * subfunc1 -> sub rsp, 256 5325 * tailcall1 -> add rsp, 256 5326 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5327 * subfunc2 -> sub rsp, 64 5328 * subfunc22 -> sub rsp, 128 5329 * tailcall2 -> add rsp, 128 5330 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5331 * 5332 * tailcall will unwind the current stack frame but it will not get rid 5333 * of caller's stack as shown on the example above. 5334 */ 5335 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5336 verbose(env, 5337 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5338 depth); 5339 return -EACCES; 5340 } 5341 /* round up to 32-bytes, since this is granularity 5342 * of interpreter stack size 5343 */ 5344 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5345 if (depth > MAX_BPF_STACK) { 5346 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5347 frame + 1, depth); 5348 return -EACCES; 5349 } 5350 continue_func: 5351 subprog_end = subprog[idx + 1].start; 5352 for (; i < subprog_end; i++) { 5353 int next_insn; 5354 5355 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5356 continue; 5357 /* remember insn and function to return to */ 5358 ret_insn[frame] = i + 1; 5359 ret_prog[frame] = idx; 5360 5361 /* find the callee */ 5362 next_insn = i + insn[i].imm + 1; 5363 idx = find_subprog(env, next_insn); 5364 if (idx < 0) { 5365 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5366 next_insn); 5367 return -EFAULT; 5368 } 5369 if (subprog[idx].is_async_cb) { 5370 if (subprog[idx].has_tail_call) { 5371 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5372 return -EFAULT; 5373 } 5374 /* async callbacks don't increase bpf prog stack size */ 5375 continue; 5376 } 5377 i = next_insn; 5378 5379 if (subprog[idx].has_tail_call) 5380 tail_call_reachable = true; 5381 5382 frame++; 5383 if (frame >= MAX_CALL_FRAMES) { 5384 verbose(env, "the call stack of %d frames is too deep !\n", 5385 frame); 5386 return -E2BIG; 5387 } 5388 goto process_func; 5389 } 5390 /* if tail call got detected across bpf2bpf calls then mark each of the 5391 * currently present subprog frames as tail call reachable subprogs; 5392 * this info will be utilized by JIT so that we will be preserving the 5393 * tail call counter throughout bpf2bpf calls combined with tailcalls 5394 */ 5395 if (tail_call_reachable) 5396 for (j = 0; j < frame; j++) 5397 subprog[ret_prog[j]].tail_call_reachable = true; 5398 if (subprog[0].tail_call_reachable) 5399 env->prog->aux->tail_call_reachable = true; 5400 5401 /* end of for() loop means the last insn of the 'subprog' 5402 * was reached. Doesn't matter whether it was JA or EXIT 5403 */ 5404 if (frame == 0) 5405 return 0; 5406 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5407 frame--; 5408 i = ret_insn[frame]; 5409 idx = ret_prog[frame]; 5410 goto continue_func; 5411 } 5412 5413 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5414 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5415 const struct bpf_insn *insn, int idx) 5416 { 5417 int start = idx + insn->imm + 1, subprog; 5418 5419 subprog = find_subprog(env, start); 5420 if (subprog < 0) { 5421 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5422 start); 5423 return -EFAULT; 5424 } 5425 return env->subprog_info[subprog].stack_depth; 5426 } 5427 #endif 5428 5429 static int __check_buffer_access(struct bpf_verifier_env *env, 5430 const char *buf_info, 5431 const struct bpf_reg_state *reg, 5432 int regno, int off, int size) 5433 { 5434 if (off < 0) { 5435 verbose(env, 5436 "R%d invalid %s buffer access: off=%d, size=%d\n", 5437 regno, buf_info, off, size); 5438 return -EACCES; 5439 } 5440 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5441 char tn_buf[48]; 5442 5443 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5444 verbose(env, 5445 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5446 regno, off, tn_buf); 5447 return -EACCES; 5448 } 5449 5450 return 0; 5451 } 5452 5453 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5454 const struct bpf_reg_state *reg, 5455 int regno, int off, int size) 5456 { 5457 int err; 5458 5459 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5460 if (err) 5461 return err; 5462 5463 if (off + size > env->prog->aux->max_tp_access) 5464 env->prog->aux->max_tp_access = off + size; 5465 5466 return 0; 5467 } 5468 5469 static int check_buffer_access(struct bpf_verifier_env *env, 5470 const struct bpf_reg_state *reg, 5471 int regno, int off, int size, 5472 bool zero_size_allowed, 5473 u32 *max_access) 5474 { 5475 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5476 int err; 5477 5478 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5479 if (err) 5480 return err; 5481 5482 if (off + size > *max_access) 5483 *max_access = off + size; 5484 5485 return 0; 5486 } 5487 5488 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5489 static void zext_32_to_64(struct bpf_reg_state *reg) 5490 { 5491 reg->var_off = tnum_subreg(reg->var_off); 5492 __reg_assign_32_into_64(reg); 5493 } 5494 5495 /* truncate register to smaller size (in bytes) 5496 * must be called with size < BPF_REG_SIZE 5497 */ 5498 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5499 { 5500 u64 mask; 5501 5502 /* clear high bits in bit representation */ 5503 reg->var_off = tnum_cast(reg->var_off, size); 5504 5505 /* fix arithmetic bounds */ 5506 mask = ((u64)1 << (size * 8)) - 1; 5507 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5508 reg->umin_value &= mask; 5509 reg->umax_value &= mask; 5510 } else { 5511 reg->umin_value = 0; 5512 reg->umax_value = mask; 5513 } 5514 reg->smin_value = reg->umin_value; 5515 reg->smax_value = reg->umax_value; 5516 5517 /* If size is smaller than 32bit register the 32bit register 5518 * values are also truncated so we push 64-bit bounds into 5519 * 32-bit bounds. Above were truncated < 32-bits already. 5520 */ 5521 if (size >= 4) 5522 return; 5523 __reg_combine_64_into_32(reg); 5524 } 5525 5526 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5527 { 5528 /* A map is considered read-only if the following condition are true: 5529 * 5530 * 1) BPF program side cannot change any of the map content. The 5531 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5532 * and was set at map creation time. 5533 * 2) The map value(s) have been initialized from user space by a 5534 * loader and then "frozen", such that no new map update/delete 5535 * operations from syscall side are possible for the rest of 5536 * the map's lifetime from that point onwards. 5537 * 3) Any parallel/pending map update/delete operations from syscall 5538 * side have been completed. Only after that point, it's safe to 5539 * assume that map value(s) are immutable. 5540 */ 5541 return (map->map_flags & BPF_F_RDONLY_PROG) && 5542 READ_ONCE(map->frozen) && 5543 !bpf_map_write_active(map); 5544 } 5545 5546 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5547 { 5548 void *ptr; 5549 u64 addr; 5550 int err; 5551 5552 err = map->ops->map_direct_value_addr(map, &addr, off); 5553 if (err) 5554 return err; 5555 ptr = (void *)(long)addr + off; 5556 5557 switch (size) { 5558 case sizeof(u8): 5559 *val = (u64)*(u8 *)ptr; 5560 break; 5561 case sizeof(u16): 5562 *val = (u64)*(u16 *)ptr; 5563 break; 5564 case sizeof(u32): 5565 *val = (u64)*(u32 *)ptr; 5566 break; 5567 case sizeof(u64): 5568 *val = *(u64 *)ptr; 5569 break; 5570 default: 5571 return -EINVAL; 5572 } 5573 return 0; 5574 } 5575 5576 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5577 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5578 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5579 5580 /* 5581 * Allow list few fields as RCU trusted or full trusted. 5582 * This logic doesn't allow mix tagging and will be removed once GCC supports 5583 * btf_type_tag. 5584 */ 5585 5586 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5587 BTF_TYPE_SAFE_RCU(struct task_struct) { 5588 const cpumask_t *cpus_ptr; 5589 struct css_set __rcu *cgroups; 5590 struct task_struct __rcu *real_parent; 5591 struct task_struct *group_leader; 5592 }; 5593 5594 BTF_TYPE_SAFE_RCU(struct cgroup) { 5595 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5596 struct kernfs_node *kn; 5597 }; 5598 5599 BTF_TYPE_SAFE_RCU(struct css_set) { 5600 struct cgroup *dfl_cgrp; 5601 }; 5602 5603 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5604 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5605 struct file __rcu *exe_file; 5606 }; 5607 5608 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5609 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5610 */ 5611 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5612 struct sock *sk; 5613 }; 5614 5615 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5616 struct sock *sk; 5617 }; 5618 5619 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5620 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5621 struct seq_file *seq; 5622 }; 5623 5624 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5625 struct bpf_iter_meta *meta; 5626 struct task_struct *task; 5627 }; 5628 5629 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5630 struct file *file; 5631 }; 5632 5633 BTF_TYPE_SAFE_TRUSTED(struct file) { 5634 struct inode *f_inode; 5635 }; 5636 5637 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5638 /* no negative dentry-s in places where bpf can see it */ 5639 struct inode *d_inode; 5640 }; 5641 5642 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5643 struct sock *sk; 5644 }; 5645 5646 static bool type_is_rcu(struct bpf_verifier_env *env, 5647 struct bpf_reg_state *reg, 5648 const char *field_name, u32 btf_id) 5649 { 5650 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5651 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5652 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5653 5654 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5655 } 5656 5657 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5658 struct bpf_reg_state *reg, 5659 const char *field_name, u32 btf_id) 5660 { 5661 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5662 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5663 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5664 5665 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5666 } 5667 5668 static bool type_is_trusted(struct bpf_verifier_env *env, 5669 struct bpf_reg_state *reg, 5670 const char *field_name, u32 btf_id) 5671 { 5672 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5673 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5674 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5675 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5676 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5677 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5678 5679 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5680 } 5681 5682 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5683 struct bpf_reg_state *regs, 5684 int regno, int off, int size, 5685 enum bpf_access_type atype, 5686 int value_regno) 5687 { 5688 struct bpf_reg_state *reg = regs + regno; 5689 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5690 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5691 const char *field_name = NULL; 5692 enum bpf_type_flag flag = 0; 5693 u32 btf_id = 0; 5694 int ret; 5695 5696 if (!env->allow_ptr_leaks) { 5697 verbose(env, 5698 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5699 tname); 5700 return -EPERM; 5701 } 5702 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5703 verbose(env, 5704 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5705 tname); 5706 return -EINVAL; 5707 } 5708 if (off < 0) { 5709 verbose(env, 5710 "R%d is ptr_%s invalid negative access: off=%d\n", 5711 regno, tname, off); 5712 return -EACCES; 5713 } 5714 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5715 char tn_buf[48]; 5716 5717 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5718 verbose(env, 5719 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5720 regno, tname, off, tn_buf); 5721 return -EACCES; 5722 } 5723 5724 if (reg->type & MEM_USER) { 5725 verbose(env, 5726 "R%d is ptr_%s access user memory: off=%d\n", 5727 regno, tname, off); 5728 return -EACCES; 5729 } 5730 5731 if (reg->type & MEM_PERCPU) { 5732 verbose(env, 5733 "R%d is ptr_%s access percpu memory: off=%d\n", 5734 regno, tname, off); 5735 return -EACCES; 5736 } 5737 5738 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 5739 if (!btf_is_kernel(reg->btf)) { 5740 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5741 return -EFAULT; 5742 } 5743 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 5744 } else { 5745 /* Writes are permitted with default btf_struct_access for 5746 * program allocated objects (which always have ref_obj_id > 0), 5747 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5748 */ 5749 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5750 verbose(env, "only read is supported\n"); 5751 return -EACCES; 5752 } 5753 5754 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5755 !reg->ref_obj_id) { 5756 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5757 return -EFAULT; 5758 } 5759 5760 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 5761 } 5762 5763 if (ret < 0) 5764 return ret; 5765 5766 if (ret != PTR_TO_BTF_ID) { 5767 /* just mark; */ 5768 5769 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 5770 /* If this is an untrusted pointer, all pointers formed by walking it 5771 * also inherit the untrusted flag. 5772 */ 5773 flag = PTR_UNTRUSTED; 5774 5775 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 5776 /* By default any pointer obtained from walking a trusted pointer is no 5777 * longer trusted, unless the field being accessed has explicitly been 5778 * marked as inheriting its parent's state of trust (either full or RCU). 5779 * For example: 5780 * 'cgroups' pointer is untrusted if task->cgroups dereference 5781 * happened in a sleepable program outside of bpf_rcu_read_lock() 5782 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 5783 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 5784 * 5785 * A regular RCU-protected pointer with __rcu tag can also be deemed 5786 * trusted if we are in an RCU CS. Such pointer can be NULL. 5787 */ 5788 if (type_is_trusted(env, reg, field_name, btf_id)) { 5789 flag |= PTR_TRUSTED; 5790 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 5791 if (type_is_rcu(env, reg, field_name, btf_id)) { 5792 /* ignore __rcu tag and mark it MEM_RCU */ 5793 flag |= MEM_RCU; 5794 } else if (flag & MEM_RCU || 5795 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 5796 /* __rcu tagged pointers can be NULL */ 5797 flag |= MEM_RCU | PTR_MAYBE_NULL; 5798 } else if (flag & (MEM_PERCPU | MEM_USER)) { 5799 /* keep as-is */ 5800 } else { 5801 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 5802 clear_trusted_flags(&flag); 5803 } 5804 } else { 5805 /* 5806 * If not in RCU CS or MEM_RCU pointer can be NULL then 5807 * aggressively mark as untrusted otherwise such 5808 * pointers will be plain PTR_TO_BTF_ID without flags 5809 * and will be allowed to be passed into helpers for 5810 * compat reasons. 5811 */ 5812 flag = PTR_UNTRUSTED; 5813 } 5814 } else { 5815 /* Old compat. Deprecated */ 5816 clear_trusted_flags(&flag); 5817 } 5818 5819 if (atype == BPF_READ && value_regno >= 0) 5820 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5821 5822 return 0; 5823 } 5824 5825 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5826 struct bpf_reg_state *regs, 5827 int regno, int off, int size, 5828 enum bpf_access_type atype, 5829 int value_regno) 5830 { 5831 struct bpf_reg_state *reg = regs + regno; 5832 struct bpf_map *map = reg->map_ptr; 5833 struct bpf_reg_state map_reg; 5834 enum bpf_type_flag flag = 0; 5835 const struct btf_type *t; 5836 const char *tname; 5837 u32 btf_id; 5838 int ret; 5839 5840 if (!btf_vmlinux) { 5841 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5842 return -ENOTSUPP; 5843 } 5844 5845 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5846 verbose(env, "map_ptr access not supported for map type %d\n", 5847 map->map_type); 5848 return -ENOTSUPP; 5849 } 5850 5851 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5852 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5853 5854 if (!env->allow_ptr_leaks) { 5855 verbose(env, 5856 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5857 tname); 5858 return -EPERM; 5859 } 5860 5861 if (off < 0) { 5862 verbose(env, "R%d is %s invalid negative access: off=%d\n", 5863 regno, tname, off); 5864 return -EACCES; 5865 } 5866 5867 if (atype != BPF_READ) { 5868 verbose(env, "only read from %s is supported\n", tname); 5869 return -EACCES; 5870 } 5871 5872 /* Simulate access to a PTR_TO_BTF_ID */ 5873 memset(&map_reg, 0, sizeof(map_reg)); 5874 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 5875 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 5876 if (ret < 0) 5877 return ret; 5878 5879 if (value_regno >= 0) 5880 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 5881 5882 return 0; 5883 } 5884 5885 /* Check that the stack access at the given offset is within bounds. The 5886 * maximum valid offset is -1. 5887 * 5888 * The minimum valid offset is -MAX_BPF_STACK for writes, and 5889 * -state->allocated_stack for reads. 5890 */ 5891 static int check_stack_slot_within_bounds(int off, 5892 struct bpf_func_state *state, 5893 enum bpf_access_type t) 5894 { 5895 int min_valid_off; 5896 5897 if (t == BPF_WRITE) 5898 min_valid_off = -MAX_BPF_STACK; 5899 else 5900 min_valid_off = -state->allocated_stack; 5901 5902 if (off < min_valid_off || off > -1) 5903 return -EACCES; 5904 return 0; 5905 } 5906 5907 /* Check that the stack access at 'regno + off' falls within the maximum stack 5908 * bounds. 5909 * 5910 * 'off' includes `regno->offset`, but not its dynamic part (if any). 5911 */ 5912 static int check_stack_access_within_bounds( 5913 struct bpf_verifier_env *env, 5914 int regno, int off, int access_size, 5915 enum bpf_access_src src, enum bpf_access_type type) 5916 { 5917 struct bpf_reg_state *regs = cur_regs(env); 5918 struct bpf_reg_state *reg = regs + regno; 5919 struct bpf_func_state *state = func(env, reg); 5920 int min_off, max_off; 5921 int err; 5922 char *err_extra; 5923 5924 if (src == ACCESS_HELPER) 5925 /* We don't know if helpers are reading or writing (or both). */ 5926 err_extra = " indirect access to"; 5927 else if (type == BPF_READ) 5928 err_extra = " read from"; 5929 else 5930 err_extra = " write to"; 5931 5932 if (tnum_is_const(reg->var_off)) { 5933 min_off = reg->var_off.value + off; 5934 if (access_size > 0) 5935 max_off = min_off + access_size - 1; 5936 else 5937 max_off = min_off; 5938 } else { 5939 if (reg->smax_value >= BPF_MAX_VAR_OFF || 5940 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5941 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5942 err_extra, regno); 5943 return -EACCES; 5944 } 5945 min_off = reg->smin_value + off; 5946 if (access_size > 0) 5947 max_off = reg->smax_value + off + access_size - 1; 5948 else 5949 max_off = min_off; 5950 } 5951 5952 err = check_stack_slot_within_bounds(min_off, state, type); 5953 if (!err) 5954 err = check_stack_slot_within_bounds(max_off, state, type); 5955 5956 if (err) { 5957 if (tnum_is_const(reg->var_off)) { 5958 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5959 err_extra, regno, off, access_size); 5960 } else { 5961 char tn_buf[48]; 5962 5963 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5964 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5965 err_extra, regno, tn_buf, access_size); 5966 } 5967 } 5968 return err; 5969 } 5970 5971 /* check whether memory at (regno + off) is accessible for t = (read | write) 5972 * if t==write, value_regno is a register which value is stored into memory 5973 * if t==read, value_regno is a register which will receive the value from memory 5974 * if t==write && value_regno==-1, some unknown value is stored into memory 5975 * if t==read && value_regno==-1, don't care what we read from memory 5976 */ 5977 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5978 int off, int bpf_size, enum bpf_access_type t, 5979 int value_regno, bool strict_alignment_once) 5980 { 5981 struct bpf_reg_state *regs = cur_regs(env); 5982 struct bpf_reg_state *reg = regs + regno; 5983 struct bpf_func_state *state; 5984 int size, err = 0; 5985 5986 size = bpf_size_to_bytes(bpf_size); 5987 if (size < 0) 5988 return size; 5989 5990 /* alignment checks will add in reg->off themselves */ 5991 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5992 if (err) 5993 return err; 5994 5995 /* for access checks, reg->off is just part of off */ 5996 off += reg->off; 5997 5998 if (reg->type == PTR_TO_MAP_KEY) { 5999 if (t == BPF_WRITE) { 6000 verbose(env, "write to change key R%d not allowed\n", regno); 6001 return -EACCES; 6002 } 6003 6004 err = check_mem_region_access(env, regno, off, size, 6005 reg->map_ptr->key_size, false); 6006 if (err) 6007 return err; 6008 if (value_regno >= 0) 6009 mark_reg_unknown(env, regs, value_regno); 6010 } else if (reg->type == PTR_TO_MAP_VALUE) { 6011 struct btf_field *kptr_field = NULL; 6012 6013 if (t == BPF_WRITE && value_regno >= 0 && 6014 is_pointer_value(env, value_regno)) { 6015 verbose(env, "R%d leaks addr into map\n", value_regno); 6016 return -EACCES; 6017 } 6018 err = check_map_access_type(env, regno, off, size, t); 6019 if (err) 6020 return err; 6021 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6022 if (err) 6023 return err; 6024 if (tnum_is_const(reg->var_off)) 6025 kptr_field = btf_record_find(reg->map_ptr->record, 6026 off + reg->var_off.value, BPF_KPTR); 6027 if (kptr_field) { 6028 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6029 } else if (t == BPF_READ && value_regno >= 0) { 6030 struct bpf_map *map = reg->map_ptr; 6031 6032 /* if map is read-only, track its contents as scalars */ 6033 if (tnum_is_const(reg->var_off) && 6034 bpf_map_is_rdonly(map) && 6035 map->ops->map_direct_value_addr) { 6036 int map_off = off + reg->var_off.value; 6037 u64 val = 0; 6038 6039 err = bpf_map_direct_read(map, map_off, size, 6040 &val); 6041 if (err) 6042 return err; 6043 6044 regs[value_regno].type = SCALAR_VALUE; 6045 __mark_reg_known(®s[value_regno], val); 6046 } else { 6047 mark_reg_unknown(env, regs, value_regno); 6048 } 6049 } 6050 } else if (base_type(reg->type) == PTR_TO_MEM) { 6051 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6052 6053 if (type_may_be_null(reg->type)) { 6054 verbose(env, "R%d invalid mem access '%s'\n", regno, 6055 reg_type_str(env, reg->type)); 6056 return -EACCES; 6057 } 6058 6059 if (t == BPF_WRITE && rdonly_mem) { 6060 verbose(env, "R%d cannot write into %s\n", 6061 regno, reg_type_str(env, reg->type)); 6062 return -EACCES; 6063 } 6064 6065 if (t == BPF_WRITE && value_regno >= 0 && 6066 is_pointer_value(env, value_regno)) { 6067 verbose(env, "R%d leaks addr into mem\n", value_regno); 6068 return -EACCES; 6069 } 6070 6071 err = check_mem_region_access(env, regno, off, size, 6072 reg->mem_size, false); 6073 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6074 mark_reg_unknown(env, regs, value_regno); 6075 } else if (reg->type == PTR_TO_CTX) { 6076 enum bpf_reg_type reg_type = SCALAR_VALUE; 6077 struct btf *btf = NULL; 6078 u32 btf_id = 0; 6079 6080 if (t == BPF_WRITE && value_regno >= 0 && 6081 is_pointer_value(env, value_regno)) { 6082 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6083 return -EACCES; 6084 } 6085 6086 err = check_ptr_off_reg(env, reg, regno); 6087 if (err < 0) 6088 return err; 6089 6090 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6091 &btf_id); 6092 if (err) 6093 verbose_linfo(env, insn_idx, "; "); 6094 if (!err && t == BPF_READ && value_regno >= 0) { 6095 /* ctx access returns either a scalar, or a 6096 * PTR_TO_PACKET[_META,_END]. In the latter 6097 * case, we know the offset is zero. 6098 */ 6099 if (reg_type == SCALAR_VALUE) { 6100 mark_reg_unknown(env, regs, value_regno); 6101 } else { 6102 mark_reg_known_zero(env, regs, 6103 value_regno); 6104 if (type_may_be_null(reg_type)) 6105 regs[value_regno].id = ++env->id_gen; 6106 /* A load of ctx field could have different 6107 * actual load size with the one encoded in the 6108 * insn. When the dst is PTR, it is for sure not 6109 * a sub-register. 6110 */ 6111 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6112 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6113 regs[value_regno].btf = btf; 6114 regs[value_regno].btf_id = btf_id; 6115 } 6116 } 6117 regs[value_regno].type = reg_type; 6118 } 6119 6120 } else if (reg->type == PTR_TO_STACK) { 6121 /* Basic bounds checks. */ 6122 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6123 if (err) 6124 return err; 6125 6126 state = func(env, reg); 6127 err = update_stack_depth(env, state, off); 6128 if (err) 6129 return err; 6130 6131 if (t == BPF_READ) 6132 err = check_stack_read(env, regno, off, size, 6133 value_regno); 6134 else 6135 err = check_stack_write(env, regno, off, size, 6136 value_regno, insn_idx); 6137 } else if (reg_is_pkt_pointer(reg)) { 6138 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6139 verbose(env, "cannot write into packet\n"); 6140 return -EACCES; 6141 } 6142 if (t == BPF_WRITE && value_regno >= 0 && 6143 is_pointer_value(env, value_regno)) { 6144 verbose(env, "R%d leaks addr into packet\n", 6145 value_regno); 6146 return -EACCES; 6147 } 6148 err = check_packet_access(env, regno, off, size, false); 6149 if (!err && t == BPF_READ && value_regno >= 0) 6150 mark_reg_unknown(env, regs, value_regno); 6151 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6152 if (t == BPF_WRITE && value_regno >= 0 && 6153 is_pointer_value(env, value_regno)) { 6154 verbose(env, "R%d leaks addr into flow keys\n", 6155 value_regno); 6156 return -EACCES; 6157 } 6158 6159 err = check_flow_keys_access(env, off, size); 6160 if (!err && t == BPF_READ && value_regno >= 0) 6161 mark_reg_unknown(env, regs, value_regno); 6162 } else if (type_is_sk_pointer(reg->type)) { 6163 if (t == BPF_WRITE) { 6164 verbose(env, "R%d cannot write into %s\n", 6165 regno, reg_type_str(env, reg->type)); 6166 return -EACCES; 6167 } 6168 err = check_sock_access(env, insn_idx, regno, off, size, t); 6169 if (!err && value_regno >= 0) 6170 mark_reg_unknown(env, regs, value_regno); 6171 } else if (reg->type == PTR_TO_TP_BUFFER) { 6172 err = check_tp_buffer_access(env, reg, regno, off, size); 6173 if (!err && t == BPF_READ && value_regno >= 0) 6174 mark_reg_unknown(env, regs, value_regno); 6175 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6176 !type_may_be_null(reg->type)) { 6177 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6178 value_regno); 6179 } else if (reg->type == CONST_PTR_TO_MAP) { 6180 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6181 value_regno); 6182 } else if (base_type(reg->type) == PTR_TO_BUF) { 6183 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6184 u32 *max_access; 6185 6186 if (rdonly_mem) { 6187 if (t == BPF_WRITE) { 6188 verbose(env, "R%d cannot write into %s\n", 6189 regno, reg_type_str(env, reg->type)); 6190 return -EACCES; 6191 } 6192 max_access = &env->prog->aux->max_rdonly_access; 6193 } else { 6194 max_access = &env->prog->aux->max_rdwr_access; 6195 } 6196 6197 err = check_buffer_access(env, reg, regno, off, size, false, 6198 max_access); 6199 6200 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6201 mark_reg_unknown(env, regs, value_regno); 6202 } else { 6203 verbose(env, "R%d invalid mem access '%s'\n", regno, 6204 reg_type_str(env, reg->type)); 6205 return -EACCES; 6206 } 6207 6208 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6209 regs[value_regno].type == SCALAR_VALUE) { 6210 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6211 coerce_reg_to_size(®s[value_regno], size); 6212 } 6213 return err; 6214 } 6215 6216 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6217 { 6218 int load_reg; 6219 int err; 6220 6221 switch (insn->imm) { 6222 case BPF_ADD: 6223 case BPF_ADD | BPF_FETCH: 6224 case BPF_AND: 6225 case BPF_AND | BPF_FETCH: 6226 case BPF_OR: 6227 case BPF_OR | BPF_FETCH: 6228 case BPF_XOR: 6229 case BPF_XOR | BPF_FETCH: 6230 case BPF_XCHG: 6231 case BPF_CMPXCHG: 6232 break; 6233 default: 6234 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6235 return -EINVAL; 6236 } 6237 6238 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6239 verbose(env, "invalid atomic operand size\n"); 6240 return -EINVAL; 6241 } 6242 6243 /* check src1 operand */ 6244 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6245 if (err) 6246 return err; 6247 6248 /* check src2 operand */ 6249 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6250 if (err) 6251 return err; 6252 6253 if (insn->imm == BPF_CMPXCHG) { 6254 /* Check comparison of R0 with memory location */ 6255 const u32 aux_reg = BPF_REG_0; 6256 6257 err = check_reg_arg(env, aux_reg, SRC_OP); 6258 if (err) 6259 return err; 6260 6261 if (is_pointer_value(env, aux_reg)) { 6262 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6263 return -EACCES; 6264 } 6265 } 6266 6267 if (is_pointer_value(env, insn->src_reg)) { 6268 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6269 return -EACCES; 6270 } 6271 6272 if (is_ctx_reg(env, insn->dst_reg) || 6273 is_pkt_reg(env, insn->dst_reg) || 6274 is_flow_key_reg(env, insn->dst_reg) || 6275 is_sk_reg(env, insn->dst_reg)) { 6276 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6277 insn->dst_reg, 6278 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6279 return -EACCES; 6280 } 6281 6282 if (insn->imm & BPF_FETCH) { 6283 if (insn->imm == BPF_CMPXCHG) 6284 load_reg = BPF_REG_0; 6285 else 6286 load_reg = insn->src_reg; 6287 6288 /* check and record load of old value */ 6289 err = check_reg_arg(env, load_reg, DST_OP); 6290 if (err) 6291 return err; 6292 } else { 6293 /* This instruction accesses a memory location but doesn't 6294 * actually load it into a register. 6295 */ 6296 load_reg = -1; 6297 } 6298 6299 /* Check whether we can read the memory, with second call for fetch 6300 * case to simulate the register fill. 6301 */ 6302 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6303 BPF_SIZE(insn->code), BPF_READ, -1, true); 6304 if (!err && load_reg >= 0) 6305 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6306 BPF_SIZE(insn->code), BPF_READ, load_reg, 6307 true); 6308 if (err) 6309 return err; 6310 6311 /* Check whether we can write into the same memory. */ 6312 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6313 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6314 if (err) 6315 return err; 6316 6317 return 0; 6318 } 6319 6320 /* When register 'regno' is used to read the stack (either directly or through 6321 * a helper function) make sure that it's within stack boundary and, depending 6322 * on the access type, that all elements of the stack are initialized. 6323 * 6324 * 'off' includes 'regno->off', but not its dynamic part (if any). 6325 * 6326 * All registers that have been spilled on the stack in the slots within the 6327 * read offsets are marked as read. 6328 */ 6329 static int check_stack_range_initialized( 6330 struct bpf_verifier_env *env, int regno, int off, 6331 int access_size, bool zero_size_allowed, 6332 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6333 { 6334 struct bpf_reg_state *reg = reg_state(env, regno); 6335 struct bpf_func_state *state = func(env, reg); 6336 int err, min_off, max_off, i, j, slot, spi; 6337 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6338 enum bpf_access_type bounds_check_type; 6339 /* Some accesses can write anything into the stack, others are 6340 * read-only. 6341 */ 6342 bool clobber = false; 6343 6344 if (access_size == 0 && !zero_size_allowed) { 6345 verbose(env, "invalid zero-sized read\n"); 6346 return -EACCES; 6347 } 6348 6349 if (type == ACCESS_HELPER) { 6350 /* The bounds checks for writes are more permissive than for 6351 * reads. However, if raw_mode is not set, we'll do extra 6352 * checks below. 6353 */ 6354 bounds_check_type = BPF_WRITE; 6355 clobber = true; 6356 } else { 6357 bounds_check_type = BPF_READ; 6358 } 6359 err = check_stack_access_within_bounds(env, regno, off, access_size, 6360 type, bounds_check_type); 6361 if (err) 6362 return err; 6363 6364 6365 if (tnum_is_const(reg->var_off)) { 6366 min_off = max_off = reg->var_off.value + off; 6367 } else { 6368 /* Variable offset is prohibited for unprivileged mode for 6369 * simplicity since it requires corresponding support in 6370 * Spectre masking for stack ALU. 6371 * See also retrieve_ptr_limit(). 6372 */ 6373 if (!env->bypass_spec_v1) { 6374 char tn_buf[48]; 6375 6376 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6377 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6378 regno, err_extra, tn_buf); 6379 return -EACCES; 6380 } 6381 /* Only initialized buffer on stack is allowed to be accessed 6382 * with variable offset. With uninitialized buffer it's hard to 6383 * guarantee that whole memory is marked as initialized on 6384 * helper return since specific bounds are unknown what may 6385 * cause uninitialized stack leaking. 6386 */ 6387 if (meta && meta->raw_mode) 6388 meta = NULL; 6389 6390 min_off = reg->smin_value + off; 6391 max_off = reg->smax_value + off; 6392 } 6393 6394 if (meta && meta->raw_mode) { 6395 /* Ensure we won't be overwriting dynptrs when simulating byte 6396 * by byte access in check_helper_call using meta.access_size. 6397 * This would be a problem if we have a helper in the future 6398 * which takes: 6399 * 6400 * helper(uninit_mem, len, dynptr) 6401 * 6402 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6403 * may end up writing to dynptr itself when touching memory from 6404 * arg 1. This can be relaxed on a case by case basis for known 6405 * safe cases, but reject due to the possibilitiy of aliasing by 6406 * default. 6407 */ 6408 for (i = min_off; i < max_off + access_size; i++) { 6409 int stack_off = -i - 1; 6410 6411 spi = __get_spi(i); 6412 /* raw_mode may write past allocated_stack */ 6413 if (state->allocated_stack <= stack_off) 6414 continue; 6415 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6416 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6417 return -EACCES; 6418 } 6419 } 6420 meta->access_size = access_size; 6421 meta->regno = regno; 6422 return 0; 6423 } 6424 6425 for (i = min_off; i < max_off + access_size; i++) { 6426 u8 *stype; 6427 6428 slot = -i - 1; 6429 spi = slot / BPF_REG_SIZE; 6430 if (state->allocated_stack <= slot) 6431 goto err; 6432 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6433 if (*stype == STACK_MISC) 6434 goto mark; 6435 if ((*stype == STACK_ZERO) || 6436 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6437 if (clobber) { 6438 /* helper can write anything into the stack */ 6439 *stype = STACK_MISC; 6440 } 6441 goto mark; 6442 } 6443 6444 if (is_spilled_reg(&state->stack[spi]) && 6445 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6446 env->allow_ptr_leaks)) { 6447 if (clobber) { 6448 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6449 for (j = 0; j < BPF_REG_SIZE; j++) 6450 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6451 } 6452 goto mark; 6453 } 6454 6455 err: 6456 if (tnum_is_const(reg->var_off)) { 6457 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6458 err_extra, regno, min_off, i - min_off, access_size); 6459 } else { 6460 char tn_buf[48]; 6461 6462 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6463 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6464 err_extra, regno, tn_buf, i - min_off, access_size); 6465 } 6466 return -EACCES; 6467 mark: 6468 /* reading any byte out of 8-byte 'spill_slot' will cause 6469 * the whole slot to be marked as 'read' 6470 */ 6471 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6472 state->stack[spi].spilled_ptr.parent, 6473 REG_LIVE_READ64); 6474 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6475 * be sure that whether stack slot is written to or not. Hence, 6476 * we must still conservatively propagate reads upwards even if 6477 * helper may write to the entire memory range. 6478 */ 6479 } 6480 return update_stack_depth(env, state, min_off); 6481 } 6482 6483 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6484 int access_size, bool zero_size_allowed, 6485 struct bpf_call_arg_meta *meta) 6486 { 6487 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6488 u32 *max_access; 6489 6490 switch (base_type(reg->type)) { 6491 case PTR_TO_PACKET: 6492 case PTR_TO_PACKET_META: 6493 return check_packet_access(env, regno, reg->off, access_size, 6494 zero_size_allowed); 6495 case PTR_TO_MAP_KEY: 6496 if (meta && meta->raw_mode) { 6497 verbose(env, "R%d cannot write into %s\n", regno, 6498 reg_type_str(env, reg->type)); 6499 return -EACCES; 6500 } 6501 return check_mem_region_access(env, regno, reg->off, access_size, 6502 reg->map_ptr->key_size, false); 6503 case PTR_TO_MAP_VALUE: 6504 if (check_map_access_type(env, regno, reg->off, access_size, 6505 meta && meta->raw_mode ? BPF_WRITE : 6506 BPF_READ)) 6507 return -EACCES; 6508 return check_map_access(env, regno, reg->off, access_size, 6509 zero_size_allowed, ACCESS_HELPER); 6510 case PTR_TO_MEM: 6511 if (type_is_rdonly_mem(reg->type)) { 6512 if (meta && meta->raw_mode) { 6513 verbose(env, "R%d cannot write into %s\n", regno, 6514 reg_type_str(env, reg->type)); 6515 return -EACCES; 6516 } 6517 } 6518 return check_mem_region_access(env, regno, reg->off, 6519 access_size, reg->mem_size, 6520 zero_size_allowed); 6521 case PTR_TO_BUF: 6522 if (type_is_rdonly_mem(reg->type)) { 6523 if (meta && meta->raw_mode) { 6524 verbose(env, "R%d cannot write into %s\n", regno, 6525 reg_type_str(env, reg->type)); 6526 return -EACCES; 6527 } 6528 6529 max_access = &env->prog->aux->max_rdonly_access; 6530 } else { 6531 max_access = &env->prog->aux->max_rdwr_access; 6532 } 6533 return check_buffer_access(env, reg, regno, reg->off, 6534 access_size, zero_size_allowed, 6535 max_access); 6536 case PTR_TO_STACK: 6537 return check_stack_range_initialized( 6538 env, 6539 regno, reg->off, access_size, 6540 zero_size_allowed, ACCESS_HELPER, meta); 6541 case PTR_TO_BTF_ID: 6542 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6543 access_size, BPF_READ, -1); 6544 case PTR_TO_CTX: 6545 /* in case the function doesn't know how to access the context, 6546 * (because we are in a program of type SYSCALL for example), we 6547 * can not statically check its size. 6548 * Dynamically check it now. 6549 */ 6550 if (!env->ops->convert_ctx_access) { 6551 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6552 int offset = access_size - 1; 6553 6554 /* Allow zero-byte read from PTR_TO_CTX */ 6555 if (access_size == 0) 6556 return zero_size_allowed ? 0 : -EACCES; 6557 6558 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6559 atype, -1, false); 6560 } 6561 6562 fallthrough; 6563 default: /* scalar_value or invalid ptr */ 6564 /* Allow zero-byte read from NULL, regardless of pointer type */ 6565 if (zero_size_allowed && access_size == 0 && 6566 register_is_null(reg)) 6567 return 0; 6568 6569 verbose(env, "R%d type=%s ", regno, 6570 reg_type_str(env, reg->type)); 6571 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6572 return -EACCES; 6573 } 6574 } 6575 6576 static int check_mem_size_reg(struct bpf_verifier_env *env, 6577 struct bpf_reg_state *reg, u32 regno, 6578 bool zero_size_allowed, 6579 struct bpf_call_arg_meta *meta) 6580 { 6581 int err; 6582 6583 /* This is used to refine r0 return value bounds for helpers 6584 * that enforce this value as an upper bound on return values. 6585 * See do_refine_retval_range() for helpers that can refine 6586 * the return value. C type of helper is u32 so we pull register 6587 * bound from umax_value however, if negative verifier errors 6588 * out. Only upper bounds can be learned because retval is an 6589 * int type and negative retvals are allowed. 6590 */ 6591 meta->msize_max_value = reg->umax_value; 6592 6593 /* The register is SCALAR_VALUE; the access check 6594 * happens using its boundaries. 6595 */ 6596 if (!tnum_is_const(reg->var_off)) 6597 /* For unprivileged variable accesses, disable raw 6598 * mode so that the program is required to 6599 * initialize all the memory that the helper could 6600 * just partially fill up. 6601 */ 6602 meta = NULL; 6603 6604 if (reg->smin_value < 0) { 6605 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6606 regno); 6607 return -EACCES; 6608 } 6609 6610 if (reg->umin_value == 0) { 6611 err = check_helper_mem_access(env, regno - 1, 0, 6612 zero_size_allowed, 6613 meta); 6614 if (err) 6615 return err; 6616 } 6617 6618 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6619 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6620 regno); 6621 return -EACCES; 6622 } 6623 err = check_helper_mem_access(env, regno - 1, 6624 reg->umax_value, 6625 zero_size_allowed, meta); 6626 if (!err) 6627 err = mark_chain_precision(env, regno); 6628 return err; 6629 } 6630 6631 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6632 u32 regno, u32 mem_size) 6633 { 6634 bool may_be_null = type_may_be_null(reg->type); 6635 struct bpf_reg_state saved_reg; 6636 struct bpf_call_arg_meta meta; 6637 int err; 6638 6639 if (register_is_null(reg)) 6640 return 0; 6641 6642 memset(&meta, 0, sizeof(meta)); 6643 /* Assuming that the register contains a value check if the memory 6644 * access is safe. Temporarily save and restore the register's state as 6645 * the conversion shouldn't be visible to a caller. 6646 */ 6647 if (may_be_null) { 6648 saved_reg = *reg; 6649 mark_ptr_not_null_reg(reg); 6650 } 6651 6652 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6653 /* Check access for BPF_WRITE */ 6654 meta.raw_mode = true; 6655 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6656 6657 if (may_be_null) 6658 *reg = saved_reg; 6659 6660 return err; 6661 } 6662 6663 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6664 u32 regno) 6665 { 6666 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6667 bool may_be_null = type_may_be_null(mem_reg->type); 6668 struct bpf_reg_state saved_reg; 6669 struct bpf_call_arg_meta meta; 6670 int err; 6671 6672 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6673 6674 memset(&meta, 0, sizeof(meta)); 6675 6676 if (may_be_null) { 6677 saved_reg = *mem_reg; 6678 mark_ptr_not_null_reg(mem_reg); 6679 } 6680 6681 err = check_mem_size_reg(env, reg, regno, true, &meta); 6682 /* Check access for BPF_WRITE */ 6683 meta.raw_mode = true; 6684 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6685 6686 if (may_be_null) 6687 *mem_reg = saved_reg; 6688 return err; 6689 } 6690 6691 /* Implementation details: 6692 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6693 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6694 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6695 * Two separate bpf_obj_new will also have different reg->id. 6696 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6697 * clears reg->id after value_or_null->value transition, since the verifier only 6698 * cares about the range of access to valid map value pointer and doesn't care 6699 * about actual address of the map element. 6700 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6701 * reg->id > 0 after value_or_null->value transition. By doing so 6702 * two bpf_map_lookups will be considered two different pointers that 6703 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6704 * returned from bpf_obj_new. 6705 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6706 * dead-locks. 6707 * Since only one bpf_spin_lock is allowed the checks are simpler than 6708 * reg_is_refcounted() logic. The verifier needs to remember only 6709 * one spin_lock instead of array of acquired_refs. 6710 * cur_state->active_lock remembers which map value element or allocated 6711 * object got locked and clears it after bpf_spin_unlock. 6712 */ 6713 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6714 bool is_lock) 6715 { 6716 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6717 struct bpf_verifier_state *cur = env->cur_state; 6718 bool is_const = tnum_is_const(reg->var_off); 6719 u64 val = reg->var_off.value; 6720 struct bpf_map *map = NULL; 6721 struct btf *btf = NULL; 6722 struct btf_record *rec; 6723 6724 if (!is_const) { 6725 verbose(env, 6726 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6727 regno); 6728 return -EINVAL; 6729 } 6730 if (reg->type == PTR_TO_MAP_VALUE) { 6731 map = reg->map_ptr; 6732 if (!map->btf) { 6733 verbose(env, 6734 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6735 map->name); 6736 return -EINVAL; 6737 } 6738 } else { 6739 btf = reg->btf; 6740 } 6741 6742 rec = reg_btf_record(reg); 6743 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6744 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6745 map ? map->name : "kptr"); 6746 return -EINVAL; 6747 } 6748 if (rec->spin_lock_off != val + reg->off) { 6749 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6750 val + reg->off, rec->spin_lock_off); 6751 return -EINVAL; 6752 } 6753 if (is_lock) { 6754 if (cur->active_lock.ptr) { 6755 verbose(env, 6756 "Locking two bpf_spin_locks are not allowed\n"); 6757 return -EINVAL; 6758 } 6759 if (map) 6760 cur->active_lock.ptr = map; 6761 else 6762 cur->active_lock.ptr = btf; 6763 cur->active_lock.id = reg->id; 6764 } else { 6765 void *ptr; 6766 6767 if (map) 6768 ptr = map; 6769 else 6770 ptr = btf; 6771 6772 if (!cur->active_lock.ptr) { 6773 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6774 return -EINVAL; 6775 } 6776 if (cur->active_lock.ptr != ptr || 6777 cur->active_lock.id != reg->id) { 6778 verbose(env, "bpf_spin_unlock of different lock\n"); 6779 return -EINVAL; 6780 } 6781 6782 invalidate_non_owning_refs(env); 6783 6784 cur->active_lock.ptr = NULL; 6785 cur->active_lock.id = 0; 6786 } 6787 return 0; 6788 } 6789 6790 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6791 struct bpf_call_arg_meta *meta) 6792 { 6793 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6794 bool is_const = tnum_is_const(reg->var_off); 6795 struct bpf_map *map = reg->map_ptr; 6796 u64 val = reg->var_off.value; 6797 6798 if (!is_const) { 6799 verbose(env, 6800 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6801 regno); 6802 return -EINVAL; 6803 } 6804 if (!map->btf) { 6805 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6806 map->name); 6807 return -EINVAL; 6808 } 6809 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6810 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6811 return -EINVAL; 6812 } 6813 if (map->record->timer_off != val + reg->off) { 6814 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6815 val + reg->off, map->record->timer_off); 6816 return -EINVAL; 6817 } 6818 if (meta->map_ptr) { 6819 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6820 return -EFAULT; 6821 } 6822 meta->map_uid = reg->map_uid; 6823 meta->map_ptr = map; 6824 return 0; 6825 } 6826 6827 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6828 struct bpf_call_arg_meta *meta) 6829 { 6830 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6831 struct bpf_map *map_ptr = reg->map_ptr; 6832 struct btf_field *kptr_field; 6833 u32 kptr_off; 6834 6835 if (!tnum_is_const(reg->var_off)) { 6836 verbose(env, 6837 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6838 regno); 6839 return -EINVAL; 6840 } 6841 if (!map_ptr->btf) { 6842 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6843 map_ptr->name); 6844 return -EINVAL; 6845 } 6846 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6847 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6848 return -EINVAL; 6849 } 6850 6851 meta->map_ptr = map_ptr; 6852 kptr_off = reg->off + reg->var_off.value; 6853 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6854 if (!kptr_field) { 6855 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 6856 return -EACCES; 6857 } 6858 if (kptr_field->type != BPF_KPTR_REF) { 6859 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 6860 return -EACCES; 6861 } 6862 meta->kptr_field = kptr_field; 6863 return 0; 6864 } 6865 6866 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 6867 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 6868 * 6869 * In both cases we deal with the first 8 bytes, but need to mark the next 8 6870 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 6871 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 6872 * 6873 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 6874 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 6875 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 6876 * mutate the view of the dynptr and also possibly destroy it. In the latter 6877 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 6878 * memory that dynptr points to. 6879 * 6880 * The verifier will keep track both levels of mutation (bpf_dynptr's in 6881 * reg->type and the memory's in reg->dynptr.type), but there is no support for 6882 * readonly dynptr view yet, hence only the first case is tracked and checked. 6883 * 6884 * This is consistent with how C applies the const modifier to a struct object, 6885 * where the pointer itself inside bpf_dynptr becomes const but not what it 6886 * points to. 6887 * 6888 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 6889 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 6890 */ 6891 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 6892 enum bpf_arg_type arg_type, int clone_ref_obj_id) 6893 { 6894 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6895 int err; 6896 6897 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 6898 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 6899 */ 6900 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 6901 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 6902 return -EFAULT; 6903 } 6904 6905 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 6906 * constructing a mutable bpf_dynptr object. 6907 * 6908 * Currently, this is only possible with PTR_TO_STACK 6909 * pointing to a region of at least 16 bytes which doesn't 6910 * contain an existing bpf_dynptr. 6911 * 6912 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 6913 * mutated or destroyed. However, the memory it points to 6914 * may be mutated. 6915 * 6916 * None - Points to a initialized dynptr that can be mutated and 6917 * destroyed, including mutation of the memory it points 6918 * to. 6919 */ 6920 if (arg_type & MEM_UNINIT) { 6921 int i; 6922 6923 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6924 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6925 return -EINVAL; 6926 } 6927 6928 /* we write BPF_DW bits (8 bytes) at a time */ 6929 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 6930 err = check_mem_access(env, insn_idx, regno, 6931 i, BPF_DW, BPF_WRITE, -1, false); 6932 if (err) 6933 return err; 6934 } 6935 6936 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 6937 } else /* MEM_RDONLY and None case from above */ { 6938 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 6939 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 6940 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 6941 return -EINVAL; 6942 } 6943 6944 if (!is_dynptr_reg_valid_init(env, reg)) { 6945 verbose(env, 6946 "Expected an initialized dynptr as arg #%d\n", 6947 regno); 6948 return -EINVAL; 6949 } 6950 6951 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6952 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6953 verbose(env, 6954 "Expected a dynptr of type %s as arg #%d\n", 6955 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 6956 return -EINVAL; 6957 } 6958 6959 err = mark_dynptr_read(env, reg); 6960 } 6961 return err; 6962 } 6963 6964 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 6965 { 6966 struct bpf_func_state *state = func(env, reg); 6967 6968 return state->stack[spi].spilled_ptr.ref_obj_id; 6969 } 6970 6971 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 6972 { 6973 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 6974 } 6975 6976 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 6977 { 6978 return meta->kfunc_flags & KF_ITER_NEW; 6979 } 6980 6981 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 6982 { 6983 return meta->kfunc_flags & KF_ITER_NEXT; 6984 } 6985 6986 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 6987 { 6988 return meta->kfunc_flags & KF_ITER_DESTROY; 6989 } 6990 6991 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 6992 { 6993 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 6994 * kfunc is iter state pointer 6995 */ 6996 return arg == 0 && is_iter_kfunc(meta); 6997 } 6998 6999 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7000 struct bpf_kfunc_call_arg_meta *meta) 7001 { 7002 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7003 const struct btf_type *t; 7004 const struct btf_param *arg; 7005 int spi, err, i, nr_slots; 7006 u32 btf_id; 7007 7008 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7009 arg = &btf_params(meta->func_proto)[0]; 7010 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7011 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7012 nr_slots = t->size / BPF_REG_SIZE; 7013 7014 if (is_iter_new_kfunc(meta)) { 7015 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7016 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7017 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7018 iter_type_str(meta->btf, btf_id), regno); 7019 return -EINVAL; 7020 } 7021 7022 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7023 err = check_mem_access(env, insn_idx, regno, 7024 i, BPF_DW, BPF_WRITE, -1, false); 7025 if (err) 7026 return err; 7027 } 7028 7029 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7030 if (err) 7031 return err; 7032 } else { 7033 /* iter_next() or iter_destroy() expect initialized iter state*/ 7034 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7035 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7036 iter_type_str(meta->btf, btf_id), regno); 7037 return -EINVAL; 7038 } 7039 7040 spi = iter_get_spi(env, reg, nr_slots); 7041 if (spi < 0) 7042 return spi; 7043 7044 err = mark_iter_read(env, reg, spi, nr_slots); 7045 if (err) 7046 return err; 7047 7048 /* remember meta->iter info for process_iter_next_call() */ 7049 meta->iter.spi = spi; 7050 meta->iter.frameno = reg->frameno; 7051 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7052 7053 if (is_iter_destroy_kfunc(meta)) { 7054 err = unmark_stack_slots_iter(env, reg, nr_slots); 7055 if (err) 7056 return err; 7057 } 7058 } 7059 7060 return 0; 7061 } 7062 7063 /* process_iter_next_call() is called when verifier gets to iterator's next 7064 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7065 * to it as just "iter_next()" in comments below. 7066 * 7067 * BPF verifier relies on a crucial contract for any iter_next() 7068 * implementation: it should *eventually* return NULL, and once that happens 7069 * it should keep returning NULL. That is, once iterator exhausts elements to 7070 * iterate, it should never reset or spuriously return new elements. 7071 * 7072 * With the assumption of such contract, process_iter_next_call() simulates 7073 * a fork in the verifier state to validate loop logic correctness and safety 7074 * without having to simulate infinite amount of iterations. 7075 * 7076 * In current state, we first assume that iter_next() returned NULL and 7077 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7078 * conditions we should not form an infinite loop and should eventually reach 7079 * exit. 7080 * 7081 * Besides that, we also fork current state and enqueue it for later 7082 * verification. In a forked state we keep iterator state as ACTIVE 7083 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7084 * also bump iteration depth to prevent erroneous infinite loop detection 7085 * later on (see iter_active_depths_differ() comment for details). In this 7086 * state we assume that we'll eventually loop back to another iter_next() 7087 * calls (it could be in exactly same location or in some other instruction, 7088 * it doesn't matter, we don't make any unnecessary assumptions about this, 7089 * everything revolves around iterator state in a stack slot, not which 7090 * instruction is calling iter_next()). When that happens, we either will come 7091 * to iter_next() with equivalent state and can conclude that next iteration 7092 * will proceed in exactly the same way as we just verified, so it's safe to 7093 * assume that loop converges. If not, we'll go on another iteration 7094 * simulation with a different input state, until all possible starting states 7095 * are validated or we reach maximum number of instructions limit. 7096 * 7097 * This way, we will either exhaustively discover all possible input states 7098 * that iterator loop can start with and eventually will converge, or we'll 7099 * effectively regress into bounded loop simulation logic and either reach 7100 * maximum number of instructions if loop is not provably convergent, or there 7101 * is some statically known limit on number of iterations (e.g., if there is 7102 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7103 * 7104 * One very subtle but very important aspect is that we *always* simulate NULL 7105 * condition first (as the current state) before we simulate non-NULL case. 7106 * This has to do with intricacies of scalar precision tracking. By simulating 7107 * "exit condition" of iter_next() returning NULL first, we make sure all the 7108 * relevant precision marks *that will be set **after** we exit iterator loop* 7109 * are propagated backwards to common parent state of NULL and non-NULL 7110 * branches. Thanks to that, state equivalence checks done later in forked 7111 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7112 * precision marks are finalized and won't change. Because simulating another 7113 * ACTIVE iterator iteration won't change them (because given same input 7114 * states we'll end up with exactly same output states which we are currently 7115 * comparing; and verification after the loop already propagated back what 7116 * needs to be **additionally** tracked as precise). It's subtle, grok 7117 * precision tracking for more intuitive understanding. 7118 */ 7119 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7120 struct bpf_kfunc_call_arg_meta *meta) 7121 { 7122 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7123 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7124 struct bpf_reg_state *cur_iter, *queued_iter; 7125 int iter_frameno = meta->iter.frameno; 7126 int iter_spi = meta->iter.spi; 7127 7128 BTF_TYPE_EMIT(struct bpf_iter); 7129 7130 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7131 7132 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7133 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7134 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7135 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7136 return -EFAULT; 7137 } 7138 7139 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7140 /* branch out active iter state */ 7141 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7142 if (!queued_st) 7143 return -ENOMEM; 7144 7145 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7146 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7147 queued_iter->iter.depth++; 7148 7149 queued_fr = queued_st->frame[queued_st->curframe]; 7150 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7151 } 7152 7153 /* switch to DRAINED state, but keep the depth unchanged */ 7154 /* mark current iter state as drained and assume returned NULL */ 7155 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7156 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7157 7158 return 0; 7159 } 7160 7161 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7162 { 7163 return type == ARG_CONST_SIZE || 7164 type == ARG_CONST_SIZE_OR_ZERO; 7165 } 7166 7167 static bool arg_type_is_release(enum bpf_arg_type type) 7168 { 7169 return type & OBJ_RELEASE; 7170 } 7171 7172 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7173 { 7174 return base_type(type) == ARG_PTR_TO_DYNPTR; 7175 } 7176 7177 static int int_ptr_type_to_size(enum bpf_arg_type type) 7178 { 7179 if (type == ARG_PTR_TO_INT) 7180 return sizeof(u32); 7181 else if (type == ARG_PTR_TO_LONG) 7182 return sizeof(u64); 7183 7184 return -EINVAL; 7185 } 7186 7187 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7188 const struct bpf_call_arg_meta *meta, 7189 enum bpf_arg_type *arg_type) 7190 { 7191 if (!meta->map_ptr) { 7192 /* kernel subsystem misconfigured verifier */ 7193 verbose(env, "invalid map_ptr to access map->type\n"); 7194 return -EACCES; 7195 } 7196 7197 switch (meta->map_ptr->map_type) { 7198 case BPF_MAP_TYPE_SOCKMAP: 7199 case BPF_MAP_TYPE_SOCKHASH: 7200 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7201 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7202 } else { 7203 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7204 return -EINVAL; 7205 } 7206 break; 7207 case BPF_MAP_TYPE_BLOOM_FILTER: 7208 if (meta->func_id == BPF_FUNC_map_peek_elem) 7209 *arg_type = ARG_PTR_TO_MAP_VALUE; 7210 break; 7211 default: 7212 break; 7213 } 7214 return 0; 7215 } 7216 7217 struct bpf_reg_types { 7218 const enum bpf_reg_type types[10]; 7219 u32 *btf_id; 7220 }; 7221 7222 static const struct bpf_reg_types sock_types = { 7223 .types = { 7224 PTR_TO_SOCK_COMMON, 7225 PTR_TO_SOCKET, 7226 PTR_TO_TCP_SOCK, 7227 PTR_TO_XDP_SOCK, 7228 }, 7229 }; 7230 7231 #ifdef CONFIG_NET 7232 static const struct bpf_reg_types btf_id_sock_common_types = { 7233 .types = { 7234 PTR_TO_SOCK_COMMON, 7235 PTR_TO_SOCKET, 7236 PTR_TO_TCP_SOCK, 7237 PTR_TO_XDP_SOCK, 7238 PTR_TO_BTF_ID, 7239 PTR_TO_BTF_ID | PTR_TRUSTED, 7240 }, 7241 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7242 }; 7243 #endif 7244 7245 static const struct bpf_reg_types mem_types = { 7246 .types = { 7247 PTR_TO_STACK, 7248 PTR_TO_PACKET, 7249 PTR_TO_PACKET_META, 7250 PTR_TO_MAP_KEY, 7251 PTR_TO_MAP_VALUE, 7252 PTR_TO_MEM, 7253 PTR_TO_MEM | MEM_RINGBUF, 7254 PTR_TO_BUF, 7255 PTR_TO_BTF_ID | PTR_TRUSTED, 7256 }, 7257 }; 7258 7259 static const struct bpf_reg_types int_ptr_types = { 7260 .types = { 7261 PTR_TO_STACK, 7262 PTR_TO_PACKET, 7263 PTR_TO_PACKET_META, 7264 PTR_TO_MAP_KEY, 7265 PTR_TO_MAP_VALUE, 7266 }, 7267 }; 7268 7269 static const struct bpf_reg_types spin_lock_types = { 7270 .types = { 7271 PTR_TO_MAP_VALUE, 7272 PTR_TO_BTF_ID | MEM_ALLOC, 7273 } 7274 }; 7275 7276 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7277 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7278 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7279 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7280 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7281 static const struct bpf_reg_types btf_ptr_types = { 7282 .types = { 7283 PTR_TO_BTF_ID, 7284 PTR_TO_BTF_ID | PTR_TRUSTED, 7285 PTR_TO_BTF_ID | MEM_RCU, 7286 }, 7287 }; 7288 static const struct bpf_reg_types percpu_btf_ptr_types = { 7289 .types = { 7290 PTR_TO_BTF_ID | MEM_PERCPU, 7291 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7292 } 7293 }; 7294 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7295 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7296 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7297 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7298 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7299 static const struct bpf_reg_types dynptr_types = { 7300 .types = { 7301 PTR_TO_STACK, 7302 CONST_PTR_TO_DYNPTR, 7303 } 7304 }; 7305 7306 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7307 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7308 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7309 [ARG_CONST_SIZE] = &scalar_types, 7310 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7311 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7312 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7313 [ARG_PTR_TO_CTX] = &context_types, 7314 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7315 #ifdef CONFIG_NET 7316 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7317 #endif 7318 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7319 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7320 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7321 [ARG_PTR_TO_MEM] = &mem_types, 7322 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7323 [ARG_PTR_TO_INT] = &int_ptr_types, 7324 [ARG_PTR_TO_LONG] = &int_ptr_types, 7325 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7326 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7327 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7328 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7329 [ARG_PTR_TO_TIMER] = &timer_types, 7330 [ARG_PTR_TO_KPTR] = &kptr_types, 7331 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7332 }; 7333 7334 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7335 enum bpf_arg_type arg_type, 7336 const u32 *arg_btf_id, 7337 struct bpf_call_arg_meta *meta) 7338 { 7339 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7340 enum bpf_reg_type expected, type = reg->type; 7341 const struct bpf_reg_types *compatible; 7342 int i, j; 7343 7344 compatible = compatible_reg_types[base_type(arg_type)]; 7345 if (!compatible) { 7346 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7347 return -EFAULT; 7348 } 7349 7350 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7351 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7352 * 7353 * Same for MAYBE_NULL: 7354 * 7355 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7356 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7357 * 7358 * Therefore we fold these flags depending on the arg_type before comparison. 7359 */ 7360 if (arg_type & MEM_RDONLY) 7361 type &= ~MEM_RDONLY; 7362 if (arg_type & PTR_MAYBE_NULL) 7363 type &= ~PTR_MAYBE_NULL; 7364 7365 if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC) 7366 type &= ~MEM_ALLOC; 7367 7368 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7369 expected = compatible->types[i]; 7370 if (expected == NOT_INIT) 7371 break; 7372 7373 if (type == expected) 7374 goto found; 7375 } 7376 7377 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7378 for (j = 0; j + 1 < i; j++) 7379 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7380 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7381 return -EACCES; 7382 7383 found: 7384 if (base_type(reg->type) != PTR_TO_BTF_ID) 7385 return 0; 7386 7387 if (compatible == &mem_types) { 7388 if (!(arg_type & MEM_RDONLY)) { 7389 verbose(env, 7390 "%s() may write into memory pointed by R%d type=%s\n", 7391 func_id_name(meta->func_id), 7392 regno, reg_type_str(env, reg->type)); 7393 return -EACCES; 7394 } 7395 return 0; 7396 } 7397 7398 switch ((int)reg->type) { 7399 case PTR_TO_BTF_ID: 7400 case PTR_TO_BTF_ID | PTR_TRUSTED: 7401 case PTR_TO_BTF_ID | MEM_RCU: 7402 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7403 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7404 { 7405 /* For bpf_sk_release, it needs to match against first member 7406 * 'struct sock_common', hence make an exception for it. This 7407 * allows bpf_sk_release to work for multiple socket types. 7408 */ 7409 bool strict_type_match = arg_type_is_release(arg_type) && 7410 meta->func_id != BPF_FUNC_sk_release; 7411 7412 if (type_may_be_null(reg->type) && 7413 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7414 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7415 return -EACCES; 7416 } 7417 7418 if (!arg_btf_id) { 7419 if (!compatible->btf_id) { 7420 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7421 return -EFAULT; 7422 } 7423 arg_btf_id = compatible->btf_id; 7424 } 7425 7426 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7427 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7428 return -EACCES; 7429 } else { 7430 if (arg_btf_id == BPF_PTR_POISON) { 7431 verbose(env, "verifier internal error:"); 7432 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7433 regno); 7434 return -EACCES; 7435 } 7436 7437 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7438 btf_vmlinux, *arg_btf_id, 7439 strict_type_match)) { 7440 verbose(env, "R%d is of type %s but %s is expected\n", 7441 regno, btf_type_name(reg->btf, reg->btf_id), 7442 btf_type_name(btf_vmlinux, *arg_btf_id)); 7443 return -EACCES; 7444 } 7445 } 7446 break; 7447 } 7448 case PTR_TO_BTF_ID | MEM_ALLOC: 7449 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7450 meta->func_id != BPF_FUNC_kptr_xchg) { 7451 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7452 return -EFAULT; 7453 } 7454 /* Handled by helper specific checks */ 7455 break; 7456 case PTR_TO_BTF_ID | MEM_PERCPU: 7457 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7458 /* Handled by helper specific checks */ 7459 break; 7460 default: 7461 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7462 return -EFAULT; 7463 } 7464 return 0; 7465 } 7466 7467 static struct btf_field * 7468 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7469 { 7470 struct btf_field *field; 7471 struct btf_record *rec; 7472 7473 rec = reg_btf_record(reg); 7474 if (!rec) 7475 return NULL; 7476 7477 field = btf_record_find(rec, off, fields); 7478 if (!field) 7479 return NULL; 7480 7481 return field; 7482 } 7483 7484 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7485 const struct bpf_reg_state *reg, int regno, 7486 enum bpf_arg_type arg_type) 7487 { 7488 u32 type = reg->type; 7489 7490 /* When referenced register is passed to release function, its fixed 7491 * offset must be 0. 7492 * 7493 * We will check arg_type_is_release reg has ref_obj_id when storing 7494 * meta->release_regno. 7495 */ 7496 if (arg_type_is_release(arg_type)) { 7497 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7498 * may not directly point to the object being released, but to 7499 * dynptr pointing to such object, which might be at some offset 7500 * on the stack. In that case, we simply to fallback to the 7501 * default handling. 7502 */ 7503 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7504 return 0; 7505 7506 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7507 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7508 return __check_ptr_off_reg(env, reg, regno, true); 7509 7510 verbose(env, "R%d must have zero offset when passed to release func\n", 7511 regno); 7512 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7513 btf_type_name(reg->btf, reg->btf_id), reg->off); 7514 return -EINVAL; 7515 } 7516 7517 /* Doing check_ptr_off_reg check for the offset will catch this 7518 * because fixed_off_ok is false, but checking here allows us 7519 * to give the user a better error message. 7520 */ 7521 if (reg->off) { 7522 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7523 regno); 7524 return -EINVAL; 7525 } 7526 return __check_ptr_off_reg(env, reg, regno, false); 7527 } 7528 7529 switch (type) { 7530 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7531 case PTR_TO_STACK: 7532 case PTR_TO_PACKET: 7533 case PTR_TO_PACKET_META: 7534 case PTR_TO_MAP_KEY: 7535 case PTR_TO_MAP_VALUE: 7536 case PTR_TO_MEM: 7537 case PTR_TO_MEM | MEM_RDONLY: 7538 case PTR_TO_MEM | MEM_RINGBUF: 7539 case PTR_TO_BUF: 7540 case PTR_TO_BUF | MEM_RDONLY: 7541 case SCALAR_VALUE: 7542 return 0; 7543 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7544 * fixed offset. 7545 */ 7546 case PTR_TO_BTF_ID: 7547 case PTR_TO_BTF_ID | MEM_ALLOC: 7548 case PTR_TO_BTF_ID | PTR_TRUSTED: 7549 case PTR_TO_BTF_ID | MEM_RCU: 7550 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7551 /* When referenced PTR_TO_BTF_ID is passed to release function, 7552 * its fixed offset must be 0. In the other cases, fixed offset 7553 * can be non-zero. This was already checked above. So pass 7554 * fixed_off_ok as true to allow fixed offset for all other 7555 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7556 * still need to do checks instead of returning. 7557 */ 7558 return __check_ptr_off_reg(env, reg, regno, true); 7559 default: 7560 return __check_ptr_off_reg(env, reg, regno, false); 7561 } 7562 } 7563 7564 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7565 const struct bpf_func_proto *fn, 7566 struct bpf_reg_state *regs) 7567 { 7568 struct bpf_reg_state *state = NULL; 7569 int i; 7570 7571 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7572 if (arg_type_is_dynptr(fn->arg_type[i])) { 7573 if (state) { 7574 verbose(env, "verifier internal error: multiple dynptr args\n"); 7575 return NULL; 7576 } 7577 state = ®s[BPF_REG_1 + i]; 7578 } 7579 7580 if (!state) 7581 verbose(env, "verifier internal error: no dynptr arg found\n"); 7582 7583 return state; 7584 } 7585 7586 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7587 { 7588 struct bpf_func_state *state = func(env, reg); 7589 int spi; 7590 7591 if (reg->type == CONST_PTR_TO_DYNPTR) 7592 return reg->id; 7593 spi = dynptr_get_spi(env, reg); 7594 if (spi < 0) 7595 return spi; 7596 return state->stack[spi].spilled_ptr.id; 7597 } 7598 7599 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7600 { 7601 struct bpf_func_state *state = func(env, reg); 7602 int spi; 7603 7604 if (reg->type == CONST_PTR_TO_DYNPTR) 7605 return reg->ref_obj_id; 7606 spi = dynptr_get_spi(env, reg); 7607 if (spi < 0) 7608 return spi; 7609 return state->stack[spi].spilled_ptr.ref_obj_id; 7610 } 7611 7612 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7613 struct bpf_reg_state *reg) 7614 { 7615 struct bpf_func_state *state = func(env, reg); 7616 int spi; 7617 7618 if (reg->type == CONST_PTR_TO_DYNPTR) 7619 return reg->dynptr.type; 7620 7621 spi = __get_spi(reg->off); 7622 if (spi < 0) { 7623 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7624 return BPF_DYNPTR_TYPE_INVALID; 7625 } 7626 7627 return state->stack[spi].spilled_ptr.dynptr.type; 7628 } 7629 7630 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7631 struct bpf_call_arg_meta *meta, 7632 const struct bpf_func_proto *fn, 7633 int insn_idx) 7634 { 7635 u32 regno = BPF_REG_1 + arg; 7636 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7637 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7638 enum bpf_reg_type type = reg->type; 7639 u32 *arg_btf_id = NULL; 7640 int err = 0; 7641 7642 if (arg_type == ARG_DONTCARE) 7643 return 0; 7644 7645 err = check_reg_arg(env, regno, SRC_OP); 7646 if (err) 7647 return err; 7648 7649 if (arg_type == ARG_ANYTHING) { 7650 if (is_pointer_value(env, regno)) { 7651 verbose(env, "R%d leaks addr into helper function\n", 7652 regno); 7653 return -EACCES; 7654 } 7655 return 0; 7656 } 7657 7658 if (type_is_pkt_pointer(type) && 7659 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7660 verbose(env, "helper access to the packet is not allowed\n"); 7661 return -EACCES; 7662 } 7663 7664 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7665 err = resolve_map_arg_type(env, meta, &arg_type); 7666 if (err) 7667 return err; 7668 } 7669 7670 if (register_is_null(reg) && type_may_be_null(arg_type)) 7671 /* A NULL register has a SCALAR_VALUE type, so skip 7672 * type checking. 7673 */ 7674 goto skip_type_check; 7675 7676 /* arg_btf_id and arg_size are in a union. */ 7677 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7678 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7679 arg_btf_id = fn->arg_btf_id[arg]; 7680 7681 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7682 if (err) 7683 return err; 7684 7685 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7686 if (err) 7687 return err; 7688 7689 skip_type_check: 7690 if (arg_type_is_release(arg_type)) { 7691 if (arg_type_is_dynptr(arg_type)) { 7692 struct bpf_func_state *state = func(env, reg); 7693 int spi; 7694 7695 /* Only dynptr created on stack can be released, thus 7696 * the get_spi and stack state checks for spilled_ptr 7697 * should only be done before process_dynptr_func for 7698 * PTR_TO_STACK. 7699 */ 7700 if (reg->type == PTR_TO_STACK) { 7701 spi = dynptr_get_spi(env, reg); 7702 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 7703 verbose(env, "arg %d is an unacquired reference\n", regno); 7704 return -EINVAL; 7705 } 7706 } else { 7707 verbose(env, "cannot release unowned const bpf_dynptr\n"); 7708 return -EINVAL; 7709 } 7710 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 7711 verbose(env, "R%d must be referenced when passed to release function\n", 7712 regno); 7713 return -EINVAL; 7714 } 7715 if (meta->release_regno) { 7716 verbose(env, "verifier internal error: more than one release argument\n"); 7717 return -EFAULT; 7718 } 7719 meta->release_regno = regno; 7720 } 7721 7722 if (reg->ref_obj_id) { 7723 if (meta->ref_obj_id) { 7724 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 7725 regno, reg->ref_obj_id, 7726 meta->ref_obj_id); 7727 return -EFAULT; 7728 } 7729 meta->ref_obj_id = reg->ref_obj_id; 7730 } 7731 7732 switch (base_type(arg_type)) { 7733 case ARG_CONST_MAP_PTR: 7734 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 7735 if (meta->map_ptr) { 7736 /* Use map_uid (which is unique id of inner map) to reject: 7737 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 7738 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 7739 * if (inner_map1 && inner_map2) { 7740 * timer = bpf_map_lookup_elem(inner_map1); 7741 * if (timer) 7742 * // mismatch would have been allowed 7743 * bpf_timer_init(timer, inner_map2); 7744 * } 7745 * 7746 * Comparing map_ptr is enough to distinguish normal and outer maps. 7747 */ 7748 if (meta->map_ptr != reg->map_ptr || 7749 meta->map_uid != reg->map_uid) { 7750 verbose(env, 7751 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 7752 meta->map_uid, reg->map_uid); 7753 return -EINVAL; 7754 } 7755 } 7756 meta->map_ptr = reg->map_ptr; 7757 meta->map_uid = reg->map_uid; 7758 break; 7759 case ARG_PTR_TO_MAP_KEY: 7760 /* bpf_map_xxx(..., map_ptr, ..., key) call: 7761 * check that [key, key + map->key_size) are within 7762 * stack limits and initialized 7763 */ 7764 if (!meta->map_ptr) { 7765 /* in function declaration map_ptr must come before 7766 * map_key, so that it's verified and known before 7767 * we have to check map_key here. Otherwise it means 7768 * that kernel subsystem misconfigured verifier 7769 */ 7770 verbose(env, "invalid map_ptr to access map->key\n"); 7771 return -EACCES; 7772 } 7773 err = check_helper_mem_access(env, regno, 7774 meta->map_ptr->key_size, false, 7775 NULL); 7776 break; 7777 case ARG_PTR_TO_MAP_VALUE: 7778 if (type_may_be_null(arg_type) && register_is_null(reg)) 7779 return 0; 7780 7781 /* bpf_map_xxx(..., map_ptr, ..., value) call: 7782 * check [value, value + map->value_size) validity 7783 */ 7784 if (!meta->map_ptr) { 7785 /* kernel subsystem misconfigured verifier */ 7786 verbose(env, "invalid map_ptr to access map->value\n"); 7787 return -EACCES; 7788 } 7789 meta->raw_mode = arg_type & MEM_UNINIT; 7790 err = check_helper_mem_access(env, regno, 7791 meta->map_ptr->value_size, false, 7792 meta); 7793 break; 7794 case ARG_PTR_TO_PERCPU_BTF_ID: 7795 if (!reg->btf_id) { 7796 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 7797 return -EACCES; 7798 } 7799 meta->ret_btf = reg->btf; 7800 meta->ret_btf_id = reg->btf_id; 7801 break; 7802 case ARG_PTR_TO_SPIN_LOCK: 7803 if (in_rbtree_lock_required_cb(env)) { 7804 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 7805 return -EACCES; 7806 } 7807 if (meta->func_id == BPF_FUNC_spin_lock) { 7808 err = process_spin_lock(env, regno, true); 7809 if (err) 7810 return err; 7811 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 7812 err = process_spin_lock(env, regno, false); 7813 if (err) 7814 return err; 7815 } else { 7816 verbose(env, "verifier internal error\n"); 7817 return -EFAULT; 7818 } 7819 break; 7820 case ARG_PTR_TO_TIMER: 7821 err = process_timer_func(env, regno, meta); 7822 if (err) 7823 return err; 7824 break; 7825 case ARG_PTR_TO_FUNC: 7826 meta->subprogno = reg->subprogno; 7827 break; 7828 case ARG_PTR_TO_MEM: 7829 /* The access to this pointer is only checked when we hit the 7830 * next is_mem_size argument below. 7831 */ 7832 meta->raw_mode = arg_type & MEM_UNINIT; 7833 if (arg_type & MEM_FIXED_SIZE) { 7834 err = check_helper_mem_access(env, regno, 7835 fn->arg_size[arg], false, 7836 meta); 7837 } 7838 break; 7839 case ARG_CONST_SIZE: 7840 err = check_mem_size_reg(env, reg, regno, false, meta); 7841 break; 7842 case ARG_CONST_SIZE_OR_ZERO: 7843 err = check_mem_size_reg(env, reg, regno, true, meta); 7844 break; 7845 case ARG_PTR_TO_DYNPTR: 7846 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 7847 if (err) 7848 return err; 7849 break; 7850 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 7851 if (!tnum_is_const(reg->var_off)) { 7852 verbose(env, "R%d is not a known constant'\n", 7853 regno); 7854 return -EACCES; 7855 } 7856 meta->mem_size = reg->var_off.value; 7857 err = mark_chain_precision(env, regno); 7858 if (err) 7859 return err; 7860 break; 7861 case ARG_PTR_TO_INT: 7862 case ARG_PTR_TO_LONG: 7863 { 7864 int size = int_ptr_type_to_size(arg_type); 7865 7866 err = check_helper_mem_access(env, regno, size, false, meta); 7867 if (err) 7868 return err; 7869 err = check_ptr_alignment(env, reg, 0, size, true); 7870 break; 7871 } 7872 case ARG_PTR_TO_CONST_STR: 7873 { 7874 struct bpf_map *map = reg->map_ptr; 7875 int map_off; 7876 u64 map_addr; 7877 char *str_ptr; 7878 7879 if (!bpf_map_is_rdonly(map)) { 7880 verbose(env, "R%d does not point to a readonly map'\n", regno); 7881 return -EACCES; 7882 } 7883 7884 if (!tnum_is_const(reg->var_off)) { 7885 verbose(env, "R%d is not a constant address'\n", regno); 7886 return -EACCES; 7887 } 7888 7889 if (!map->ops->map_direct_value_addr) { 7890 verbose(env, "no direct value access support for this map type\n"); 7891 return -EACCES; 7892 } 7893 7894 err = check_map_access(env, regno, reg->off, 7895 map->value_size - reg->off, false, 7896 ACCESS_HELPER); 7897 if (err) 7898 return err; 7899 7900 map_off = reg->off + reg->var_off.value; 7901 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 7902 if (err) { 7903 verbose(env, "direct value access on string failed\n"); 7904 return err; 7905 } 7906 7907 str_ptr = (char *)(long)(map_addr); 7908 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 7909 verbose(env, "string is not zero-terminated\n"); 7910 return -EINVAL; 7911 } 7912 break; 7913 } 7914 case ARG_PTR_TO_KPTR: 7915 err = process_kptr_func(env, regno, meta); 7916 if (err) 7917 return err; 7918 break; 7919 } 7920 7921 return err; 7922 } 7923 7924 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 7925 { 7926 enum bpf_attach_type eatype = env->prog->expected_attach_type; 7927 enum bpf_prog_type type = resolve_prog_type(env->prog); 7928 7929 if (func_id != BPF_FUNC_map_update_elem) 7930 return false; 7931 7932 /* It's not possible to get access to a locked struct sock in these 7933 * contexts, so updating is safe. 7934 */ 7935 switch (type) { 7936 case BPF_PROG_TYPE_TRACING: 7937 if (eatype == BPF_TRACE_ITER) 7938 return true; 7939 break; 7940 case BPF_PROG_TYPE_SOCKET_FILTER: 7941 case BPF_PROG_TYPE_SCHED_CLS: 7942 case BPF_PROG_TYPE_SCHED_ACT: 7943 case BPF_PROG_TYPE_XDP: 7944 case BPF_PROG_TYPE_SK_REUSEPORT: 7945 case BPF_PROG_TYPE_FLOW_DISSECTOR: 7946 case BPF_PROG_TYPE_SK_LOOKUP: 7947 return true; 7948 default: 7949 break; 7950 } 7951 7952 verbose(env, "cannot update sockmap in this context\n"); 7953 return false; 7954 } 7955 7956 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 7957 { 7958 return env->prog->jit_requested && 7959 bpf_jit_supports_subprog_tailcalls(); 7960 } 7961 7962 static int check_map_func_compatibility(struct bpf_verifier_env *env, 7963 struct bpf_map *map, int func_id) 7964 { 7965 if (!map) 7966 return 0; 7967 7968 /* We need a two way check, first is from map perspective ... */ 7969 switch (map->map_type) { 7970 case BPF_MAP_TYPE_PROG_ARRAY: 7971 if (func_id != BPF_FUNC_tail_call) 7972 goto error; 7973 break; 7974 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 7975 if (func_id != BPF_FUNC_perf_event_read && 7976 func_id != BPF_FUNC_perf_event_output && 7977 func_id != BPF_FUNC_skb_output && 7978 func_id != BPF_FUNC_perf_event_read_value && 7979 func_id != BPF_FUNC_xdp_output) 7980 goto error; 7981 break; 7982 case BPF_MAP_TYPE_RINGBUF: 7983 if (func_id != BPF_FUNC_ringbuf_output && 7984 func_id != BPF_FUNC_ringbuf_reserve && 7985 func_id != BPF_FUNC_ringbuf_query && 7986 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 7987 func_id != BPF_FUNC_ringbuf_submit_dynptr && 7988 func_id != BPF_FUNC_ringbuf_discard_dynptr) 7989 goto error; 7990 break; 7991 case BPF_MAP_TYPE_USER_RINGBUF: 7992 if (func_id != BPF_FUNC_user_ringbuf_drain) 7993 goto error; 7994 break; 7995 case BPF_MAP_TYPE_STACK_TRACE: 7996 if (func_id != BPF_FUNC_get_stackid) 7997 goto error; 7998 break; 7999 case BPF_MAP_TYPE_CGROUP_ARRAY: 8000 if (func_id != BPF_FUNC_skb_under_cgroup && 8001 func_id != BPF_FUNC_current_task_under_cgroup) 8002 goto error; 8003 break; 8004 case BPF_MAP_TYPE_CGROUP_STORAGE: 8005 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8006 if (func_id != BPF_FUNC_get_local_storage) 8007 goto error; 8008 break; 8009 case BPF_MAP_TYPE_DEVMAP: 8010 case BPF_MAP_TYPE_DEVMAP_HASH: 8011 if (func_id != BPF_FUNC_redirect_map && 8012 func_id != BPF_FUNC_map_lookup_elem) 8013 goto error; 8014 break; 8015 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8016 * appear. 8017 */ 8018 case BPF_MAP_TYPE_CPUMAP: 8019 if (func_id != BPF_FUNC_redirect_map) 8020 goto error; 8021 break; 8022 case BPF_MAP_TYPE_XSKMAP: 8023 if (func_id != BPF_FUNC_redirect_map && 8024 func_id != BPF_FUNC_map_lookup_elem) 8025 goto error; 8026 break; 8027 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8028 case BPF_MAP_TYPE_HASH_OF_MAPS: 8029 if (func_id != BPF_FUNC_map_lookup_elem) 8030 goto error; 8031 break; 8032 case BPF_MAP_TYPE_SOCKMAP: 8033 if (func_id != BPF_FUNC_sk_redirect_map && 8034 func_id != BPF_FUNC_sock_map_update && 8035 func_id != BPF_FUNC_map_delete_elem && 8036 func_id != BPF_FUNC_msg_redirect_map && 8037 func_id != BPF_FUNC_sk_select_reuseport && 8038 func_id != BPF_FUNC_map_lookup_elem && 8039 !may_update_sockmap(env, func_id)) 8040 goto error; 8041 break; 8042 case BPF_MAP_TYPE_SOCKHASH: 8043 if (func_id != BPF_FUNC_sk_redirect_hash && 8044 func_id != BPF_FUNC_sock_hash_update && 8045 func_id != BPF_FUNC_map_delete_elem && 8046 func_id != BPF_FUNC_msg_redirect_hash && 8047 func_id != BPF_FUNC_sk_select_reuseport && 8048 func_id != BPF_FUNC_map_lookup_elem && 8049 !may_update_sockmap(env, func_id)) 8050 goto error; 8051 break; 8052 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8053 if (func_id != BPF_FUNC_sk_select_reuseport) 8054 goto error; 8055 break; 8056 case BPF_MAP_TYPE_QUEUE: 8057 case BPF_MAP_TYPE_STACK: 8058 if (func_id != BPF_FUNC_map_peek_elem && 8059 func_id != BPF_FUNC_map_pop_elem && 8060 func_id != BPF_FUNC_map_push_elem) 8061 goto error; 8062 break; 8063 case BPF_MAP_TYPE_SK_STORAGE: 8064 if (func_id != BPF_FUNC_sk_storage_get && 8065 func_id != BPF_FUNC_sk_storage_delete && 8066 func_id != BPF_FUNC_kptr_xchg) 8067 goto error; 8068 break; 8069 case BPF_MAP_TYPE_INODE_STORAGE: 8070 if (func_id != BPF_FUNC_inode_storage_get && 8071 func_id != BPF_FUNC_inode_storage_delete && 8072 func_id != BPF_FUNC_kptr_xchg) 8073 goto error; 8074 break; 8075 case BPF_MAP_TYPE_TASK_STORAGE: 8076 if (func_id != BPF_FUNC_task_storage_get && 8077 func_id != BPF_FUNC_task_storage_delete && 8078 func_id != BPF_FUNC_kptr_xchg) 8079 goto error; 8080 break; 8081 case BPF_MAP_TYPE_CGRP_STORAGE: 8082 if (func_id != BPF_FUNC_cgrp_storage_get && 8083 func_id != BPF_FUNC_cgrp_storage_delete && 8084 func_id != BPF_FUNC_kptr_xchg) 8085 goto error; 8086 break; 8087 case BPF_MAP_TYPE_BLOOM_FILTER: 8088 if (func_id != BPF_FUNC_map_peek_elem && 8089 func_id != BPF_FUNC_map_push_elem) 8090 goto error; 8091 break; 8092 default: 8093 break; 8094 } 8095 8096 /* ... and second from the function itself. */ 8097 switch (func_id) { 8098 case BPF_FUNC_tail_call: 8099 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8100 goto error; 8101 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8102 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8103 return -EINVAL; 8104 } 8105 break; 8106 case BPF_FUNC_perf_event_read: 8107 case BPF_FUNC_perf_event_output: 8108 case BPF_FUNC_perf_event_read_value: 8109 case BPF_FUNC_skb_output: 8110 case BPF_FUNC_xdp_output: 8111 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8112 goto error; 8113 break; 8114 case BPF_FUNC_ringbuf_output: 8115 case BPF_FUNC_ringbuf_reserve: 8116 case BPF_FUNC_ringbuf_query: 8117 case BPF_FUNC_ringbuf_reserve_dynptr: 8118 case BPF_FUNC_ringbuf_submit_dynptr: 8119 case BPF_FUNC_ringbuf_discard_dynptr: 8120 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8121 goto error; 8122 break; 8123 case BPF_FUNC_user_ringbuf_drain: 8124 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8125 goto error; 8126 break; 8127 case BPF_FUNC_get_stackid: 8128 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8129 goto error; 8130 break; 8131 case BPF_FUNC_current_task_under_cgroup: 8132 case BPF_FUNC_skb_under_cgroup: 8133 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8134 goto error; 8135 break; 8136 case BPF_FUNC_redirect_map: 8137 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8138 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8139 map->map_type != BPF_MAP_TYPE_CPUMAP && 8140 map->map_type != BPF_MAP_TYPE_XSKMAP) 8141 goto error; 8142 break; 8143 case BPF_FUNC_sk_redirect_map: 8144 case BPF_FUNC_msg_redirect_map: 8145 case BPF_FUNC_sock_map_update: 8146 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8147 goto error; 8148 break; 8149 case BPF_FUNC_sk_redirect_hash: 8150 case BPF_FUNC_msg_redirect_hash: 8151 case BPF_FUNC_sock_hash_update: 8152 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8153 goto error; 8154 break; 8155 case BPF_FUNC_get_local_storage: 8156 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8157 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8158 goto error; 8159 break; 8160 case BPF_FUNC_sk_select_reuseport: 8161 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8162 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8163 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8164 goto error; 8165 break; 8166 case BPF_FUNC_map_pop_elem: 8167 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8168 map->map_type != BPF_MAP_TYPE_STACK) 8169 goto error; 8170 break; 8171 case BPF_FUNC_map_peek_elem: 8172 case BPF_FUNC_map_push_elem: 8173 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8174 map->map_type != BPF_MAP_TYPE_STACK && 8175 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8176 goto error; 8177 break; 8178 case BPF_FUNC_map_lookup_percpu_elem: 8179 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8180 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8181 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8182 goto error; 8183 break; 8184 case BPF_FUNC_sk_storage_get: 8185 case BPF_FUNC_sk_storage_delete: 8186 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8187 goto error; 8188 break; 8189 case BPF_FUNC_inode_storage_get: 8190 case BPF_FUNC_inode_storage_delete: 8191 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8192 goto error; 8193 break; 8194 case BPF_FUNC_task_storage_get: 8195 case BPF_FUNC_task_storage_delete: 8196 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8197 goto error; 8198 break; 8199 case BPF_FUNC_cgrp_storage_get: 8200 case BPF_FUNC_cgrp_storage_delete: 8201 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8202 goto error; 8203 break; 8204 default: 8205 break; 8206 } 8207 8208 return 0; 8209 error: 8210 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8211 map->map_type, func_id_name(func_id), func_id); 8212 return -EINVAL; 8213 } 8214 8215 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8216 { 8217 int count = 0; 8218 8219 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8220 count++; 8221 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8222 count++; 8223 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8224 count++; 8225 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8226 count++; 8227 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8228 count++; 8229 8230 /* We only support one arg being in raw mode at the moment, 8231 * which is sufficient for the helper functions we have 8232 * right now. 8233 */ 8234 return count <= 1; 8235 } 8236 8237 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8238 { 8239 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8240 bool has_size = fn->arg_size[arg] != 0; 8241 bool is_next_size = false; 8242 8243 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8244 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8245 8246 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8247 return is_next_size; 8248 8249 return has_size == is_next_size || is_next_size == is_fixed; 8250 } 8251 8252 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8253 { 8254 /* bpf_xxx(..., buf, len) call will access 'len' 8255 * bytes from memory 'buf'. Both arg types need 8256 * to be paired, so make sure there's no buggy 8257 * helper function specification. 8258 */ 8259 if (arg_type_is_mem_size(fn->arg1_type) || 8260 check_args_pair_invalid(fn, 0) || 8261 check_args_pair_invalid(fn, 1) || 8262 check_args_pair_invalid(fn, 2) || 8263 check_args_pair_invalid(fn, 3) || 8264 check_args_pair_invalid(fn, 4)) 8265 return false; 8266 8267 return true; 8268 } 8269 8270 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8271 { 8272 int i; 8273 8274 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8275 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8276 return !!fn->arg_btf_id[i]; 8277 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8278 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8279 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8280 /* arg_btf_id and arg_size are in a union. */ 8281 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8282 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8283 return false; 8284 } 8285 8286 return true; 8287 } 8288 8289 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8290 { 8291 return check_raw_mode_ok(fn) && 8292 check_arg_pair_ok(fn) && 8293 check_btf_id_ok(fn) ? 0 : -EINVAL; 8294 } 8295 8296 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8297 * are now invalid, so turn them into unknown SCALAR_VALUE. 8298 * 8299 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8300 * since these slices point to packet data. 8301 */ 8302 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8303 { 8304 struct bpf_func_state *state; 8305 struct bpf_reg_state *reg; 8306 8307 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8308 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8309 mark_reg_invalid(env, reg); 8310 })); 8311 } 8312 8313 enum { 8314 AT_PKT_END = -1, 8315 BEYOND_PKT_END = -2, 8316 }; 8317 8318 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8319 { 8320 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8321 struct bpf_reg_state *reg = &state->regs[regn]; 8322 8323 if (reg->type != PTR_TO_PACKET) 8324 /* PTR_TO_PACKET_META is not supported yet */ 8325 return; 8326 8327 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8328 * How far beyond pkt_end it goes is unknown. 8329 * if (!range_open) it's the case of pkt >= pkt_end 8330 * if (range_open) it's the case of pkt > pkt_end 8331 * hence this pointer is at least 1 byte bigger than pkt_end 8332 */ 8333 if (range_open) 8334 reg->range = BEYOND_PKT_END; 8335 else 8336 reg->range = AT_PKT_END; 8337 } 8338 8339 /* The pointer with the specified id has released its reference to kernel 8340 * resources. Identify all copies of the same pointer and clear the reference. 8341 */ 8342 static int release_reference(struct bpf_verifier_env *env, 8343 int ref_obj_id) 8344 { 8345 struct bpf_func_state *state; 8346 struct bpf_reg_state *reg; 8347 int err; 8348 8349 err = release_reference_state(cur_func(env), ref_obj_id); 8350 if (err) 8351 return err; 8352 8353 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8354 if (reg->ref_obj_id == ref_obj_id) 8355 mark_reg_invalid(env, reg); 8356 })); 8357 8358 return 0; 8359 } 8360 8361 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8362 { 8363 struct bpf_func_state *unused; 8364 struct bpf_reg_state *reg; 8365 8366 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8367 if (type_is_non_owning_ref(reg->type)) 8368 mark_reg_invalid(env, reg); 8369 })); 8370 } 8371 8372 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8373 struct bpf_reg_state *regs) 8374 { 8375 int i; 8376 8377 /* after the call registers r0 - r5 were scratched */ 8378 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8379 mark_reg_not_init(env, regs, caller_saved[i]); 8380 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8381 } 8382 } 8383 8384 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8385 struct bpf_func_state *caller, 8386 struct bpf_func_state *callee, 8387 int insn_idx); 8388 8389 static int set_callee_state(struct bpf_verifier_env *env, 8390 struct bpf_func_state *caller, 8391 struct bpf_func_state *callee, int insn_idx); 8392 8393 static bool is_callback_calling_kfunc(u32 btf_id); 8394 8395 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8396 int *insn_idx, int subprog, 8397 set_callee_state_fn set_callee_state_cb) 8398 { 8399 struct bpf_verifier_state *state = env->cur_state; 8400 struct bpf_func_info_aux *func_info_aux; 8401 struct bpf_func_state *caller, *callee; 8402 int err; 8403 bool is_global = false; 8404 8405 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8406 verbose(env, "the call stack of %d frames is too deep\n", 8407 state->curframe + 2); 8408 return -E2BIG; 8409 } 8410 8411 caller = state->frame[state->curframe]; 8412 if (state->frame[state->curframe + 1]) { 8413 verbose(env, "verifier bug. Frame %d already allocated\n", 8414 state->curframe + 1); 8415 return -EFAULT; 8416 } 8417 8418 func_info_aux = env->prog->aux->func_info_aux; 8419 if (func_info_aux) 8420 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 8421 err = btf_check_subprog_call(env, subprog, caller->regs); 8422 if (err == -EFAULT) 8423 return err; 8424 if (is_global) { 8425 if (err) { 8426 verbose(env, "Caller passes invalid args into func#%d\n", 8427 subprog); 8428 return err; 8429 } else { 8430 if (env->log.level & BPF_LOG_LEVEL) 8431 verbose(env, 8432 "Func#%d is global and valid. Skipping.\n", 8433 subprog); 8434 clear_caller_saved_regs(env, caller->regs); 8435 8436 /* All global functions return a 64-bit SCALAR_VALUE */ 8437 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8438 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8439 8440 /* continue with next insn after call */ 8441 return 0; 8442 } 8443 } 8444 8445 /* set_callee_state is used for direct subprog calls, but we are 8446 * interested in validating only BPF helpers that can call subprogs as 8447 * callbacks 8448 */ 8449 if (set_callee_state_cb != set_callee_state) { 8450 if (bpf_pseudo_kfunc_call(insn) && 8451 !is_callback_calling_kfunc(insn->imm)) { 8452 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8453 func_id_name(insn->imm), insn->imm); 8454 return -EFAULT; 8455 } else if (!bpf_pseudo_kfunc_call(insn) && 8456 !is_callback_calling_function(insn->imm)) { /* helper */ 8457 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8458 func_id_name(insn->imm), insn->imm); 8459 return -EFAULT; 8460 } 8461 } 8462 8463 if (insn->code == (BPF_JMP | BPF_CALL) && 8464 insn->src_reg == 0 && 8465 insn->imm == BPF_FUNC_timer_set_callback) { 8466 struct bpf_verifier_state *async_cb; 8467 8468 /* there is no real recursion here. timer callbacks are async */ 8469 env->subprog_info[subprog].is_async_cb = true; 8470 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8471 *insn_idx, subprog); 8472 if (!async_cb) 8473 return -EFAULT; 8474 callee = async_cb->frame[0]; 8475 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8476 8477 /* Convert bpf_timer_set_callback() args into timer callback args */ 8478 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8479 if (err) 8480 return err; 8481 8482 clear_caller_saved_regs(env, caller->regs); 8483 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8484 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8485 /* continue with next insn after call */ 8486 return 0; 8487 } 8488 8489 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8490 if (!callee) 8491 return -ENOMEM; 8492 state->frame[state->curframe + 1] = callee; 8493 8494 /* callee cannot access r0, r6 - r9 for reading and has to write 8495 * into its own stack before reading from it. 8496 * callee can read/write into caller's stack 8497 */ 8498 init_func_state(env, callee, 8499 /* remember the callsite, it will be used by bpf_exit */ 8500 *insn_idx /* callsite */, 8501 state->curframe + 1 /* frameno within this callchain */, 8502 subprog /* subprog number within this prog */); 8503 8504 /* Transfer references to the callee */ 8505 err = copy_reference_state(callee, caller); 8506 if (err) 8507 goto err_out; 8508 8509 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8510 if (err) 8511 goto err_out; 8512 8513 clear_caller_saved_regs(env, caller->regs); 8514 8515 /* only increment it after check_reg_arg() finished */ 8516 state->curframe++; 8517 8518 /* and go analyze first insn of the callee */ 8519 *insn_idx = env->subprog_info[subprog].start - 1; 8520 8521 if (env->log.level & BPF_LOG_LEVEL) { 8522 verbose(env, "caller:\n"); 8523 print_verifier_state(env, caller, true); 8524 verbose(env, "callee:\n"); 8525 print_verifier_state(env, callee, true); 8526 } 8527 return 0; 8528 8529 err_out: 8530 free_func_state(callee); 8531 state->frame[state->curframe + 1] = NULL; 8532 return err; 8533 } 8534 8535 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8536 struct bpf_func_state *caller, 8537 struct bpf_func_state *callee) 8538 { 8539 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8540 * void *callback_ctx, u64 flags); 8541 * callback_fn(struct bpf_map *map, void *key, void *value, 8542 * void *callback_ctx); 8543 */ 8544 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8545 8546 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8547 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8548 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8549 8550 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8551 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8552 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8553 8554 /* pointer to stack or null */ 8555 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8556 8557 /* unused */ 8558 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8559 return 0; 8560 } 8561 8562 static int set_callee_state(struct bpf_verifier_env *env, 8563 struct bpf_func_state *caller, 8564 struct bpf_func_state *callee, int insn_idx) 8565 { 8566 int i; 8567 8568 /* copy r1 - r5 args that callee can access. The copy includes parent 8569 * pointers, which connects us up to the liveness chain 8570 */ 8571 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8572 callee->regs[i] = caller->regs[i]; 8573 return 0; 8574 } 8575 8576 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8577 int *insn_idx) 8578 { 8579 int subprog, target_insn; 8580 8581 target_insn = *insn_idx + insn->imm + 1; 8582 subprog = find_subprog(env, target_insn); 8583 if (subprog < 0) { 8584 verbose(env, "verifier bug. No program starts at insn %d\n", 8585 target_insn); 8586 return -EFAULT; 8587 } 8588 8589 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8590 } 8591 8592 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8593 struct bpf_func_state *caller, 8594 struct bpf_func_state *callee, 8595 int insn_idx) 8596 { 8597 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8598 struct bpf_map *map; 8599 int err; 8600 8601 if (bpf_map_ptr_poisoned(insn_aux)) { 8602 verbose(env, "tail_call abusing map_ptr\n"); 8603 return -EINVAL; 8604 } 8605 8606 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8607 if (!map->ops->map_set_for_each_callback_args || 8608 !map->ops->map_for_each_callback) { 8609 verbose(env, "callback function not allowed for map\n"); 8610 return -ENOTSUPP; 8611 } 8612 8613 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8614 if (err) 8615 return err; 8616 8617 callee->in_callback_fn = true; 8618 callee->callback_ret_range = tnum_range(0, 1); 8619 return 0; 8620 } 8621 8622 static int set_loop_callback_state(struct bpf_verifier_env *env, 8623 struct bpf_func_state *caller, 8624 struct bpf_func_state *callee, 8625 int insn_idx) 8626 { 8627 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8628 * u64 flags); 8629 * callback_fn(u32 index, void *callback_ctx); 8630 */ 8631 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8632 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8633 8634 /* unused */ 8635 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8636 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8637 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8638 8639 callee->in_callback_fn = true; 8640 callee->callback_ret_range = tnum_range(0, 1); 8641 return 0; 8642 } 8643 8644 static int set_timer_callback_state(struct bpf_verifier_env *env, 8645 struct bpf_func_state *caller, 8646 struct bpf_func_state *callee, 8647 int insn_idx) 8648 { 8649 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8650 8651 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8652 * callback_fn(struct bpf_map *map, void *key, void *value); 8653 */ 8654 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8655 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8656 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8657 8658 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8659 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8660 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8661 8662 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8663 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8664 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8665 8666 /* unused */ 8667 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8668 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8669 callee->in_async_callback_fn = true; 8670 callee->callback_ret_range = tnum_range(0, 1); 8671 return 0; 8672 } 8673 8674 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8675 struct bpf_func_state *caller, 8676 struct bpf_func_state *callee, 8677 int insn_idx) 8678 { 8679 /* bpf_find_vma(struct task_struct *task, u64 addr, 8680 * void *callback_fn, void *callback_ctx, u64 flags) 8681 * (callback_fn)(struct task_struct *task, 8682 * struct vm_area_struct *vma, void *callback_ctx); 8683 */ 8684 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8685 8686 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8687 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8688 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8689 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8690 8691 /* pointer to stack or null */ 8692 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8693 8694 /* unused */ 8695 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8696 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8697 callee->in_callback_fn = true; 8698 callee->callback_ret_range = tnum_range(0, 1); 8699 return 0; 8700 } 8701 8702 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 8703 struct bpf_func_state *caller, 8704 struct bpf_func_state *callee, 8705 int insn_idx) 8706 { 8707 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 8708 * callback_ctx, u64 flags); 8709 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 8710 */ 8711 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 8712 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 8713 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8714 8715 /* unused */ 8716 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8717 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8718 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8719 8720 callee->in_callback_fn = true; 8721 callee->callback_ret_range = tnum_range(0, 1); 8722 return 0; 8723 } 8724 8725 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 8726 struct bpf_func_state *caller, 8727 struct bpf_func_state *callee, 8728 int insn_idx) 8729 { 8730 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 8731 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 8732 * 8733 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 8734 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 8735 * by this point, so look at 'root' 8736 */ 8737 struct btf_field *field; 8738 8739 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 8740 BPF_RB_ROOT); 8741 if (!field || !field->graph_root.value_btf_id) 8742 return -EFAULT; 8743 8744 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 8745 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 8746 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 8747 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 8748 8749 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8750 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8751 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8752 callee->in_callback_fn = true; 8753 callee->callback_ret_range = tnum_range(0, 1); 8754 return 0; 8755 } 8756 8757 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 8758 8759 /* Are we currently verifying the callback for a rbtree helper that must 8760 * be called with lock held? If so, no need to complain about unreleased 8761 * lock 8762 */ 8763 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 8764 { 8765 struct bpf_verifier_state *state = env->cur_state; 8766 struct bpf_insn *insn = env->prog->insnsi; 8767 struct bpf_func_state *callee; 8768 int kfunc_btf_id; 8769 8770 if (!state->curframe) 8771 return false; 8772 8773 callee = state->frame[state->curframe]; 8774 8775 if (!callee->in_callback_fn) 8776 return false; 8777 8778 kfunc_btf_id = insn[callee->callsite].imm; 8779 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 8780 } 8781 8782 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 8783 { 8784 struct bpf_verifier_state *state = env->cur_state; 8785 struct bpf_func_state *caller, *callee; 8786 struct bpf_reg_state *r0; 8787 int err; 8788 8789 callee = state->frame[state->curframe]; 8790 r0 = &callee->regs[BPF_REG_0]; 8791 if (r0->type == PTR_TO_STACK) { 8792 /* technically it's ok to return caller's stack pointer 8793 * (or caller's caller's pointer) back to the caller, 8794 * since these pointers are valid. Only current stack 8795 * pointer will be invalid as soon as function exits, 8796 * but let's be conservative 8797 */ 8798 verbose(env, "cannot return stack pointer to the caller\n"); 8799 return -EINVAL; 8800 } 8801 8802 caller = state->frame[state->curframe - 1]; 8803 if (callee->in_callback_fn) { 8804 /* enforce R0 return value range [0, 1]. */ 8805 struct tnum range = callee->callback_ret_range; 8806 8807 if (r0->type != SCALAR_VALUE) { 8808 verbose(env, "R0 not a scalar value\n"); 8809 return -EACCES; 8810 } 8811 if (!tnum_in(range, r0->var_off)) { 8812 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 8813 return -EINVAL; 8814 } 8815 } else { 8816 /* return to the caller whatever r0 had in the callee */ 8817 caller->regs[BPF_REG_0] = *r0; 8818 } 8819 8820 /* callback_fn frame should have released its own additions to parent's 8821 * reference state at this point, or check_reference_leak would 8822 * complain, hence it must be the same as the caller. There is no need 8823 * to copy it back. 8824 */ 8825 if (!callee->in_callback_fn) { 8826 /* Transfer references to the caller */ 8827 err = copy_reference_state(caller, callee); 8828 if (err) 8829 return err; 8830 } 8831 8832 *insn_idx = callee->callsite + 1; 8833 if (env->log.level & BPF_LOG_LEVEL) { 8834 verbose(env, "returning from callee:\n"); 8835 print_verifier_state(env, callee, true); 8836 verbose(env, "to caller at %d:\n", *insn_idx); 8837 print_verifier_state(env, caller, true); 8838 } 8839 /* clear everything in the callee */ 8840 free_func_state(callee); 8841 state->frame[state->curframe--] = NULL; 8842 return 0; 8843 } 8844 8845 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 8846 int func_id, 8847 struct bpf_call_arg_meta *meta) 8848 { 8849 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 8850 8851 if (ret_type != RET_INTEGER || 8852 (func_id != BPF_FUNC_get_stack && 8853 func_id != BPF_FUNC_get_task_stack && 8854 func_id != BPF_FUNC_probe_read_str && 8855 func_id != BPF_FUNC_probe_read_kernel_str && 8856 func_id != BPF_FUNC_probe_read_user_str)) 8857 return; 8858 8859 ret_reg->smax_value = meta->msize_max_value; 8860 ret_reg->s32_max_value = meta->msize_max_value; 8861 ret_reg->smin_value = -MAX_ERRNO; 8862 ret_reg->s32_min_value = -MAX_ERRNO; 8863 reg_bounds_sync(ret_reg); 8864 } 8865 8866 static int 8867 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 8868 int func_id, int insn_idx) 8869 { 8870 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 8871 struct bpf_map *map = meta->map_ptr; 8872 8873 if (func_id != BPF_FUNC_tail_call && 8874 func_id != BPF_FUNC_map_lookup_elem && 8875 func_id != BPF_FUNC_map_update_elem && 8876 func_id != BPF_FUNC_map_delete_elem && 8877 func_id != BPF_FUNC_map_push_elem && 8878 func_id != BPF_FUNC_map_pop_elem && 8879 func_id != BPF_FUNC_map_peek_elem && 8880 func_id != BPF_FUNC_for_each_map_elem && 8881 func_id != BPF_FUNC_redirect_map && 8882 func_id != BPF_FUNC_map_lookup_percpu_elem) 8883 return 0; 8884 8885 if (map == NULL) { 8886 verbose(env, "kernel subsystem misconfigured verifier\n"); 8887 return -EINVAL; 8888 } 8889 8890 /* In case of read-only, some additional restrictions 8891 * need to be applied in order to prevent altering the 8892 * state of the map from program side. 8893 */ 8894 if ((map->map_flags & BPF_F_RDONLY_PROG) && 8895 (func_id == BPF_FUNC_map_delete_elem || 8896 func_id == BPF_FUNC_map_update_elem || 8897 func_id == BPF_FUNC_map_push_elem || 8898 func_id == BPF_FUNC_map_pop_elem)) { 8899 verbose(env, "write into map forbidden\n"); 8900 return -EACCES; 8901 } 8902 8903 if (!BPF_MAP_PTR(aux->map_ptr_state)) 8904 bpf_map_ptr_store(aux, meta->map_ptr, 8905 !meta->map_ptr->bypass_spec_v1); 8906 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 8907 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 8908 !meta->map_ptr->bypass_spec_v1); 8909 return 0; 8910 } 8911 8912 static int 8913 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 8914 int func_id, int insn_idx) 8915 { 8916 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 8917 struct bpf_reg_state *regs = cur_regs(env), *reg; 8918 struct bpf_map *map = meta->map_ptr; 8919 u64 val, max; 8920 int err; 8921 8922 if (func_id != BPF_FUNC_tail_call) 8923 return 0; 8924 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 8925 verbose(env, "kernel subsystem misconfigured verifier\n"); 8926 return -EINVAL; 8927 } 8928 8929 reg = ®s[BPF_REG_3]; 8930 val = reg->var_off.value; 8931 max = map->max_entries; 8932 8933 if (!(register_is_const(reg) && val < max)) { 8934 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8935 return 0; 8936 } 8937 8938 err = mark_chain_precision(env, BPF_REG_3); 8939 if (err) 8940 return err; 8941 if (bpf_map_key_unseen(aux)) 8942 bpf_map_key_store(aux, val); 8943 else if (!bpf_map_key_poisoned(aux) && 8944 bpf_map_key_immediate(aux) != val) 8945 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8946 return 0; 8947 } 8948 8949 static int check_reference_leak(struct bpf_verifier_env *env) 8950 { 8951 struct bpf_func_state *state = cur_func(env); 8952 bool refs_lingering = false; 8953 int i; 8954 8955 if (state->frameno && !state->in_callback_fn) 8956 return 0; 8957 8958 for (i = 0; i < state->acquired_refs; i++) { 8959 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 8960 continue; 8961 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 8962 state->refs[i].id, state->refs[i].insn_idx); 8963 refs_lingering = true; 8964 } 8965 return refs_lingering ? -EINVAL : 0; 8966 } 8967 8968 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 8969 struct bpf_reg_state *regs) 8970 { 8971 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 8972 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 8973 struct bpf_map *fmt_map = fmt_reg->map_ptr; 8974 struct bpf_bprintf_data data = {}; 8975 int err, fmt_map_off, num_args; 8976 u64 fmt_addr; 8977 char *fmt; 8978 8979 /* data must be an array of u64 */ 8980 if (data_len_reg->var_off.value % 8) 8981 return -EINVAL; 8982 num_args = data_len_reg->var_off.value / 8; 8983 8984 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 8985 * and map_direct_value_addr is set. 8986 */ 8987 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 8988 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 8989 fmt_map_off); 8990 if (err) { 8991 verbose(env, "verifier bug\n"); 8992 return -EFAULT; 8993 } 8994 fmt = (char *)(long)fmt_addr + fmt_map_off; 8995 8996 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 8997 * can focus on validating the format specifiers. 8998 */ 8999 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9000 if (err < 0) 9001 verbose(env, "Invalid format string\n"); 9002 9003 return err; 9004 } 9005 9006 static int check_get_func_ip(struct bpf_verifier_env *env) 9007 { 9008 enum bpf_prog_type type = resolve_prog_type(env->prog); 9009 int func_id = BPF_FUNC_get_func_ip; 9010 9011 if (type == BPF_PROG_TYPE_TRACING) { 9012 if (!bpf_prog_has_trampoline(env->prog)) { 9013 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9014 func_id_name(func_id), func_id); 9015 return -ENOTSUPP; 9016 } 9017 return 0; 9018 } else if (type == BPF_PROG_TYPE_KPROBE) { 9019 return 0; 9020 } 9021 9022 verbose(env, "func %s#%d not supported for program type %d\n", 9023 func_id_name(func_id), func_id, type); 9024 return -ENOTSUPP; 9025 } 9026 9027 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9028 { 9029 return &env->insn_aux_data[env->insn_idx]; 9030 } 9031 9032 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9033 { 9034 struct bpf_reg_state *regs = cur_regs(env); 9035 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9036 bool reg_is_null = register_is_null(reg); 9037 9038 if (reg_is_null) 9039 mark_chain_precision(env, BPF_REG_4); 9040 9041 return reg_is_null; 9042 } 9043 9044 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9045 { 9046 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9047 9048 if (!state->initialized) { 9049 state->initialized = 1; 9050 state->fit_for_inline = loop_flag_is_zero(env); 9051 state->callback_subprogno = subprogno; 9052 return; 9053 } 9054 9055 if (!state->fit_for_inline) 9056 return; 9057 9058 state->fit_for_inline = (loop_flag_is_zero(env) && 9059 state->callback_subprogno == subprogno); 9060 } 9061 9062 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9063 int *insn_idx_p) 9064 { 9065 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9066 const struct bpf_func_proto *fn = NULL; 9067 enum bpf_return_type ret_type; 9068 enum bpf_type_flag ret_flag; 9069 struct bpf_reg_state *regs; 9070 struct bpf_call_arg_meta meta; 9071 int insn_idx = *insn_idx_p; 9072 bool changes_data; 9073 int i, err, func_id; 9074 9075 /* find function prototype */ 9076 func_id = insn->imm; 9077 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9078 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9079 func_id); 9080 return -EINVAL; 9081 } 9082 9083 if (env->ops->get_func_proto) 9084 fn = env->ops->get_func_proto(func_id, env->prog); 9085 if (!fn) { 9086 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9087 func_id); 9088 return -EINVAL; 9089 } 9090 9091 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9092 if (!env->prog->gpl_compatible && fn->gpl_only) { 9093 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9094 return -EINVAL; 9095 } 9096 9097 if (fn->allowed && !fn->allowed(env->prog)) { 9098 verbose(env, "helper call is not allowed in probe\n"); 9099 return -EINVAL; 9100 } 9101 9102 if (!env->prog->aux->sleepable && fn->might_sleep) { 9103 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9104 return -EINVAL; 9105 } 9106 9107 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9108 changes_data = bpf_helper_changes_pkt_data(fn->func); 9109 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9110 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9111 func_id_name(func_id), func_id); 9112 return -EINVAL; 9113 } 9114 9115 memset(&meta, 0, sizeof(meta)); 9116 meta.pkt_access = fn->pkt_access; 9117 9118 err = check_func_proto(fn, func_id); 9119 if (err) { 9120 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9121 func_id_name(func_id), func_id); 9122 return err; 9123 } 9124 9125 if (env->cur_state->active_rcu_lock) { 9126 if (fn->might_sleep) { 9127 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9128 func_id_name(func_id), func_id); 9129 return -EINVAL; 9130 } 9131 9132 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9133 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9134 } 9135 9136 meta.func_id = func_id; 9137 /* check args */ 9138 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9139 err = check_func_arg(env, i, &meta, fn, insn_idx); 9140 if (err) 9141 return err; 9142 } 9143 9144 err = record_func_map(env, &meta, func_id, insn_idx); 9145 if (err) 9146 return err; 9147 9148 err = record_func_key(env, &meta, func_id, insn_idx); 9149 if (err) 9150 return err; 9151 9152 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9153 * is inferred from register state. 9154 */ 9155 for (i = 0; i < meta.access_size; i++) { 9156 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9157 BPF_WRITE, -1, false); 9158 if (err) 9159 return err; 9160 } 9161 9162 regs = cur_regs(env); 9163 9164 if (meta.release_regno) { 9165 err = -EINVAL; 9166 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9167 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9168 * is safe to do directly. 9169 */ 9170 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9171 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9172 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9173 return -EFAULT; 9174 } 9175 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9176 } else if (meta.ref_obj_id) { 9177 err = release_reference(env, meta.ref_obj_id); 9178 } else if (register_is_null(®s[meta.release_regno])) { 9179 /* meta.ref_obj_id can only be 0 if register that is meant to be 9180 * released is NULL, which must be > R0. 9181 */ 9182 err = 0; 9183 } 9184 if (err) { 9185 verbose(env, "func %s#%d reference has not been acquired before\n", 9186 func_id_name(func_id), func_id); 9187 return err; 9188 } 9189 } 9190 9191 switch (func_id) { 9192 case BPF_FUNC_tail_call: 9193 err = check_reference_leak(env); 9194 if (err) { 9195 verbose(env, "tail_call would lead to reference leak\n"); 9196 return err; 9197 } 9198 break; 9199 case BPF_FUNC_get_local_storage: 9200 /* check that flags argument in get_local_storage(map, flags) is 0, 9201 * this is required because get_local_storage() can't return an error. 9202 */ 9203 if (!register_is_null(®s[BPF_REG_2])) { 9204 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9205 return -EINVAL; 9206 } 9207 break; 9208 case BPF_FUNC_for_each_map_elem: 9209 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9210 set_map_elem_callback_state); 9211 break; 9212 case BPF_FUNC_timer_set_callback: 9213 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9214 set_timer_callback_state); 9215 break; 9216 case BPF_FUNC_find_vma: 9217 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9218 set_find_vma_callback_state); 9219 break; 9220 case BPF_FUNC_snprintf: 9221 err = check_bpf_snprintf_call(env, regs); 9222 break; 9223 case BPF_FUNC_loop: 9224 update_loop_inline_state(env, meta.subprogno); 9225 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9226 set_loop_callback_state); 9227 break; 9228 case BPF_FUNC_dynptr_from_mem: 9229 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9230 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9231 reg_type_str(env, regs[BPF_REG_1].type)); 9232 return -EACCES; 9233 } 9234 break; 9235 case BPF_FUNC_set_retval: 9236 if (prog_type == BPF_PROG_TYPE_LSM && 9237 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9238 if (!env->prog->aux->attach_func_proto->type) { 9239 /* Make sure programs that attach to void 9240 * hooks don't try to modify return value. 9241 */ 9242 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9243 return -EINVAL; 9244 } 9245 } 9246 break; 9247 case BPF_FUNC_dynptr_data: 9248 { 9249 struct bpf_reg_state *reg; 9250 int id, ref_obj_id; 9251 9252 reg = get_dynptr_arg_reg(env, fn, regs); 9253 if (!reg) 9254 return -EFAULT; 9255 9256 9257 if (meta.dynptr_id) { 9258 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9259 return -EFAULT; 9260 } 9261 if (meta.ref_obj_id) { 9262 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9263 return -EFAULT; 9264 } 9265 9266 id = dynptr_id(env, reg); 9267 if (id < 0) { 9268 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9269 return id; 9270 } 9271 9272 ref_obj_id = dynptr_ref_obj_id(env, reg); 9273 if (ref_obj_id < 0) { 9274 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9275 return ref_obj_id; 9276 } 9277 9278 meta.dynptr_id = id; 9279 meta.ref_obj_id = ref_obj_id; 9280 9281 break; 9282 } 9283 case BPF_FUNC_dynptr_write: 9284 { 9285 enum bpf_dynptr_type dynptr_type; 9286 struct bpf_reg_state *reg; 9287 9288 reg = get_dynptr_arg_reg(env, fn, regs); 9289 if (!reg) 9290 return -EFAULT; 9291 9292 dynptr_type = dynptr_get_type(env, reg); 9293 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9294 return -EFAULT; 9295 9296 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9297 /* this will trigger clear_all_pkt_pointers(), which will 9298 * invalidate all dynptr slices associated with the skb 9299 */ 9300 changes_data = true; 9301 9302 break; 9303 } 9304 case BPF_FUNC_user_ringbuf_drain: 9305 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9306 set_user_ringbuf_callback_state); 9307 break; 9308 } 9309 9310 if (err) 9311 return err; 9312 9313 /* reset caller saved regs */ 9314 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9315 mark_reg_not_init(env, regs, caller_saved[i]); 9316 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9317 } 9318 9319 /* helper call returns 64-bit value. */ 9320 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9321 9322 /* update return register (already marked as written above) */ 9323 ret_type = fn->ret_type; 9324 ret_flag = type_flag(ret_type); 9325 9326 switch (base_type(ret_type)) { 9327 case RET_INTEGER: 9328 /* sets type to SCALAR_VALUE */ 9329 mark_reg_unknown(env, regs, BPF_REG_0); 9330 break; 9331 case RET_VOID: 9332 regs[BPF_REG_0].type = NOT_INIT; 9333 break; 9334 case RET_PTR_TO_MAP_VALUE: 9335 /* There is no offset yet applied, variable or fixed */ 9336 mark_reg_known_zero(env, regs, BPF_REG_0); 9337 /* remember map_ptr, so that check_map_access() 9338 * can check 'value_size' boundary of memory access 9339 * to map element returned from bpf_map_lookup_elem() 9340 */ 9341 if (meta.map_ptr == NULL) { 9342 verbose(env, 9343 "kernel subsystem misconfigured verifier\n"); 9344 return -EINVAL; 9345 } 9346 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9347 regs[BPF_REG_0].map_uid = meta.map_uid; 9348 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9349 if (!type_may_be_null(ret_type) && 9350 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9351 regs[BPF_REG_0].id = ++env->id_gen; 9352 } 9353 break; 9354 case RET_PTR_TO_SOCKET: 9355 mark_reg_known_zero(env, regs, BPF_REG_0); 9356 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9357 break; 9358 case RET_PTR_TO_SOCK_COMMON: 9359 mark_reg_known_zero(env, regs, BPF_REG_0); 9360 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9361 break; 9362 case RET_PTR_TO_TCP_SOCK: 9363 mark_reg_known_zero(env, regs, BPF_REG_0); 9364 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9365 break; 9366 case RET_PTR_TO_MEM: 9367 mark_reg_known_zero(env, regs, BPF_REG_0); 9368 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9369 regs[BPF_REG_0].mem_size = meta.mem_size; 9370 break; 9371 case RET_PTR_TO_MEM_OR_BTF_ID: 9372 { 9373 const struct btf_type *t; 9374 9375 mark_reg_known_zero(env, regs, BPF_REG_0); 9376 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9377 if (!btf_type_is_struct(t)) { 9378 u32 tsize; 9379 const struct btf_type *ret; 9380 const char *tname; 9381 9382 /* resolve the type size of ksym. */ 9383 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9384 if (IS_ERR(ret)) { 9385 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9386 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9387 tname, PTR_ERR(ret)); 9388 return -EINVAL; 9389 } 9390 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9391 regs[BPF_REG_0].mem_size = tsize; 9392 } else { 9393 /* MEM_RDONLY may be carried from ret_flag, but it 9394 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9395 * it will confuse the check of PTR_TO_BTF_ID in 9396 * check_mem_access(). 9397 */ 9398 ret_flag &= ~MEM_RDONLY; 9399 9400 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9401 regs[BPF_REG_0].btf = meta.ret_btf; 9402 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9403 } 9404 break; 9405 } 9406 case RET_PTR_TO_BTF_ID: 9407 { 9408 struct btf *ret_btf; 9409 int ret_btf_id; 9410 9411 mark_reg_known_zero(env, regs, BPF_REG_0); 9412 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9413 if (func_id == BPF_FUNC_kptr_xchg) { 9414 ret_btf = meta.kptr_field->kptr.btf; 9415 ret_btf_id = meta.kptr_field->kptr.btf_id; 9416 if (!btf_is_kernel(ret_btf)) 9417 regs[BPF_REG_0].type |= MEM_ALLOC; 9418 } else { 9419 if (fn->ret_btf_id == BPF_PTR_POISON) { 9420 verbose(env, "verifier internal error:"); 9421 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9422 func_id_name(func_id)); 9423 return -EINVAL; 9424 } 9425 ret_btf = btf_vmlinux; 9426 ret_btf_id = *fn->ret_btf_id; 9427 } 9428 if (ret_btf_id == 0) { 9429 verbose(env, "invalid return type %u of func %s#%d\n", 9430 base_type(ret_type), func_id_name(func_id), 9431 func_id); 9432 return -EINVAL; 9433 } 9434 regs[BPF_REG_0].btf = ret_btf; 9435 regs[BPF_REG_0].btf_id = ret_btf_id; 9436 break; 9437 } 9438 default: 9439 verbose(env, "unknown return type %u of func %s#%d\n", 9440 base_type(ret_type), func_id_name(func_id), func_id); 9441 return -EINVAL; 9442 } 9443 9444 if (type_may_be_null(regs[BPF_REG_0].type)) 9445 regs[BPF_REG_0].id = ++env->id_gen; 9446 9447 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9448 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9449 func_id_name(func_id), func_id); 9450 return -EFAULT; 9451 } 9452 9453 if (is_dynptr_ref_function(func_id)) 9454 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9455 9456 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9457 /* For release_reference() */ 9458 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9459 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9460 int id = acquire_reference_state(env, insn_idx); 9461 9462 if (id < 0) 9463 return id; 9464 /* For mark_ptr_or_null_reg() */ 9465 regs[BPF_REG_0].id = id; 9466 /* For release_reference() */ 9467 regs[BPF_REG_0].ref_obj_id = id; 9468 } 9469 9470 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9471 9472 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9473 if (err) 9474 return err; 9475 9476 if ((func_id == BPF_FUNC_get_stack || 9477 func_id == BPF_FUNC_get_task_stack) && 9478 !env->prog->has_callchain_buf) { 9479 const char *err_str; 9480 9481 #ifdef CONFIG_PERF_EVENTS 9482 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9483 err_str = "cannot get callchain buffer for func %s#%d\n"; 9484 #else 9485 err = -ENOTSUPP; 9486 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9487 #endif 9488 if (err) { 9489 verbose(env, err_str, func_id_name(func_id), func_id); 9490 return err; 9491 } 9492 9493 env->prog->has_callchain_buf = true; 9494 } 9495 9496 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9497 env->prog->call_get_stack = true; 9498 9499 if (func_id == BPF_FUNC_get_func_ip) { 9500 if (check_get_func_ip(env)) 9501 return -ENOTSUPP; 9502 env->prog->call_get_func_ip = true; 9503 } 9504 9505 if (changes_data) 9506 clear_all_pkt_pointers(env); 9507 return 0; 9508 } 9509 9510 /* mark_btf_func_reg_size() is used when the reg size is determined by 9511 * the BTF func_proto's return value size and argument. 9512 */ 9513 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9514 size_t reg_size) 9515 { 9516 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9517 9518 if (regno == BPF_REG_0) { 9519 /* Function return value */ 9520 reg->live |= REG_LIVE_WRITTEN; 9521 reg->subreg_def = reg_size == sizeof(u64) ? 9522 DEF_NOT_SUBREG : env->insn_idx + 1; 9523 } else { 9524 /* Function argument */ 9525 if (reg_size == sizeof(u64)) { 9526 mark_insn_zext(env, reg); 9527 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9528 } else { 9529 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9530 } 9531 } 9532 } 9533 9534 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9535 { 9536 return meta->kfunc_flags & KF_ACQUIRE; 9537 } 9538 9539 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 9540 { 9541 return meta->kfunc_flags & KF_RET_NULL; 9542 } 9543 9544 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9545 { 9546 return meta->kfunc_flags & KF_RELEASE; 9547 } 9548 9549 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9550 { 9551 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9552 } 9553 9554 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9555 { 9556 return meta->kfunc_flags & KF_SLEEPABLE; 9557 } 9558 9559 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9560 { 9561 return meta->kfunc_flags & KF_DESTRUCTIVE; 9562 } 9563 9564 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9565 { 9566 return meta->kfunc_flags & KF_RCU; 9567 } 9568 9569 static bool __kfunc_param_match_suffix(const struct btf *btf, 9570 const struct btf_param *arg, 9571 const char *suffix) 9572 { 9573 int suffix_len = strlen(suffix), len; 9574 const char *param_name; 9575 9576 /* In the future, this can be ported to use BTF tagging */ 9577 param_name = btf_name_by_offset(btf, arg->name_off); 9578 if (str_is_empty(param_name)) 9579 return false; 9580 len = strlen(param_name); 9581 if (len < suffix_len) 9582 return false; 9583 param_name += len - suffix_len; 9584 return !strncmp(param_name, suffix, suffix_len); 9585 } 9586 9587 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9588 const struct btf_param *arg, 9589 const struct bpf_reg_state *reg) 9590 { 9591 const struct btf_type *t; 9592 9593 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9594 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9595 return false; 9596 9597 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9598 } 9599 9600 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9601 const struct btf_param *arg, 9602 const struct bpf_reg_state *reg) 9603 { 9604 const struct btf_type *t; 9605 9606 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9607 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9608 return false; 9609 9610 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9611 } 9612 9613 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9614 { 9615 return __kfunc_param_match_suffix(btf, arg, "__k"); 9616 } 9617 9618 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9619 { 9620 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9621 } 9622 9623 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9624 { 9625 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9626 } 9627 9628 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9629 { 9630 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9631 } 9632 9633 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9634 { 9635 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9636 } 9637 9638 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9639 const struct btf_param *arg, 9640 const char *name) 9641 { 9642 int len, target_len = strlen(name); 9643 const char *param_name; 9644 9645 param_name = btf_name_by_offset(btf, arg->name_off); 9646 if (str_is_empty(param_name)) 9647 return false; 9648 len = strlen(param_name); 9649 if (len != target_len) 9650 return false; 9651 if (strcmp(param_name, name)) 9652 return false; 9653 9654 return true; 9655 } 9656 9657 enum { 9658 KF_ARG_DYNPTR_ID, 9659 KF_ARG_LIST_HEAD_ID, 9660 KF_ARG_LIST_NODE_ID, 9661 KF_ARG_RB_ROOT_ID, 9662 KF_ARG_RB_NODE_ID, 9663 }; 9664 9665 BTF_ID_LIST(kf_arg_btf_ids) 9666 BTF_ID(struct, bpf_dynptr_kern) 9667 BTF_ID(struct, bpf_list_head) 9668 BTF_ID(struct, bpf_list_node) 9669 BTF_ID(struct, bpf_rb_root) 9670 BTF_ID(struct, bpf_rb_node) 9671 9672 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9673 const struct btf_param *arg, int type) 9674 { 9675 const struct btf_type *t; 9676 u32 res_id; 9677 9678 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9679 if (!t) 9680 return false; 9681 if (!btf_type_is_ptr(t)) 9682 return false; 9683 t = btf_type_skip_modifiers(btf, t->type, &res_id); 9684 if (!t) 9685 return false; 9686 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 9687 } 9688 9689 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 9690 { 9691 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 9692 } 9693 9694 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 9695 { 9696 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 9697 } 9698 9699 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 9700 { 9701 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 9702 } 9703 9704 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 9705 { 9706 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 9707 } 9708 9709 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 9710 { 9711 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 9712 } 9713 9714 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 9715 const struct btf_param *arg) 9716 { 9717 const struct btf_type *t; 9718 9719 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 9720 if (!t) 9721 return false; 9722 9723 return true; 9724 } 9725 9726 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 9727 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 9728 const struct btf *btf, 9729 const struct btf_type *t, int rec) 9730 { 9731 const struct btf_type *member_type; 9732 const struct btf_member *member; 9733 u32 i; 9734 9735 if (!btf_type_is_struct(t)) 9736 return false; 9737 9738 for_each_member(i, t, member) { 9739 const struct btf_array *array; 9740 9741 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 9742 if (btf_type_is_struct(member_type)) { 9743 if (rec >= 3) { 9744 verbose(env, "max struct nesting depth exceeded\n"); 9745 return false; 9746 } 9747 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 9748 return false; 9749 continue; 9750 } 9751 if (btf_type_is_array(member_type)) { 9752 array = btf_array(member_type); 9753 if (!array->nelems) 9754 return false; 9755 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 9756 if (!btf_type_is_scalar(member_type)) 9757 return false; 9758 continue; 9759 } 9760 if (!btf_type_is_scalar(member_type)) 9761 return false; 9762 } 9763 return true; 9764 } 9765 9766 9767 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 9768 #ifdef CONFIG_NET 9769 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 9770 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9771 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 9772 #endif 9773 }; 9774 9775 enum kfunc_ptr_arg_type { 9776 KF_ARG_PTR_TO_CTX, 9777 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 9778 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 9779 KF_ARG_PTR_TO_DYNPTR, 9780 KF_ARG_PTR_TO_ITER, 9781 KF_ARG_PTR_TO_LIST_HEAD, 9782 KF_ARG_PTR_TO_LIST_NODE, 9783 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 9784 KF_ARG_PTR_TO_MEM, 9785 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 9786 KF_ARG_PTR_TO_CALLBACK, 9787 KF_ARG_PTR_TO_RB_ROOT, 9788 KF_ARG_PTR_TO_RB_NODE, 9789 }; 9790 9791 enum special_kfunc_type { 9792 KF_bpf_obj_new_impl, 9793 KF_bpf_obj_drop_impl, 9794 KF_bpf_refcount_acquire_impl, 9795 KF_bpf_list_push_front_impl, 9796 KF_bpf_list_push_back_impl, 9797 KF_bpf_list_pop_front, 9798 KF_bpf_list_pop_back, 9799 KF_bpf_cast_to_kern_ctx, 9800 KF_bpf_rdonly_cast, 9801 KF_bpf_rcu_read_lock, 9802 KF_bpf_rcu_read_unlock, 9803 KF_bpf_rbtree_remove, 9804 KF_bpf_rbtree_add_impl, 9805 KF_bpf_rbtree_first, 9806 KF_bpf_dynptr_from_skb, 9807 KF_bpf_dynptr_from_xdp, 9808 KF_bpf_dynptr_slice, 9809 KF_bpf_dynptr_slice_rdwr, 9810 KF_bpf_dynptr_clone, 9811 }; 9812 9813 BTF_SET_START(special_kfunc_set) 9814 BTF_ID(func, bpf_obj_new_impl) 9815 BTF_ID(func, bpf_obj_drop_impl) 9816 BTF_ID(func, bpf_refcount_acquire_impl) 9817 BTF_ID(func, bpf_list_push_front_impl) 9818 BTF_ID(func, bpf_list_push_back_impl) 9819 BTF_ID(func, bpf_list_pop_front) 9820 BTF_ID(func, bpf_list_pop_back) 9821 BTF_ID(func, bpf_cast_to_kern_ctx) 9822 BTF_ID(func, bpf_rdonly_cast) 9823 BTF_ID(func, bpf_rbtree_remove) 9824 BTF_ID(func, bpf_rbtree_add_impl) 9825 BTF_ID(func, bpf_rbtree_first) 9826 BTF_ID(func, bpf_dynptr_from_skb) 9827 BTF_ID(func, bpf_dynptr_from_xdp) 9828 BTF_ID(func, bpf_dynptr_slice) 9829 BTF_ID(func, bpf_dynptr_slice_rdwr) 9830 BTF_ID(func, bpf_dynptr_clone) 9831 BTF_SET_END(special_kfunc_set) 9832 9833 BTF_ID_LIST(special_kfunc_list) 9834 BTF_ID(func, bpf_obj_new_impl) 9835 BTF_ID(func, bpf_obj_drop_impl) 9836 BTF_ID(func, bpf_refcount_acquire_impl) 9837 BTF_ID(func, bpf_list_push_front_impl) 9838 BTF_ID(func, bpf_list_push_back_impl) 9839 BTF_ID(func, bpf_list_pop_front) 9840 BTF_ID(func, bpf_list_pop_back) 9841 BTF_ID(func, bpf_cast_to_kern_ctx) 9842 BTF_ID(func, bpf_rdonly_cast) 9843 BTF_ID(func, bpf_rcu_read_lock) 9844 BTF_ID(func, bpf_rcu_read_unlock) 9845 BTF_ID(func, bpf_rbtree_remove) 9846 BTF_ID(func, bpf_rbtree_add_impl) 9847 BTF_ID(func, bpf_rbtree_first) 9848 BTF_ID(func, bpf_dynptr_from_skb) 9849 BTF_ID(func, bpf_dynptr_from_xdp) 9850 BTF_ID(func, bpf_dynptr_slice) 9851 BTF_ID(func, bpf_dynptr_slice_rdwr) 9852 BTF_ID(func, bpf_dynptr_clone) 9853 9854 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 9855 { 9856 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 9857 } 9858 9859 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 9860 { 9861 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 9862 } 9863 9864 static enum kfunc_ptr_arg_type 9865 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 9866 struct bpf_kfunc_call_arg_meta *meta, 9867 const struct btf_type *t, const struct btf_type *ref_t, 9868 const char *ref_tname, const struct btf_param *args, 9869 int argno, int nargs) 9870 { 9871 u32 regno = argno + 1; 9872 struct bpf_reg_state *regs = cur_regs(env); 9873 struct bpf_reg_state *reg = ®s[regno]; 9874 bool arg_mem_size = false; 9875 9876 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 9877 return KF_ARG_PTR_TO_CTX; 9878 9879 /* In this function, we verify the kfunc's BTF as per the argument type, 9880 * leaving the rest of the verification with respect to the register 9881 * type to our caller. When a set of conditions hold in the BTF type of 9882 * arguments, we resolve it to a known kfunc_ptr_arg_type. 9883 */ 9884 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 9885 return KF_ARG_PTR_TO_CTX; 9886 9887 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 9888 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 9889 9890 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 9891 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 9892 9893 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 9894 return KF_ARG_PTR_TO_DYNPTR; 9895 9896 if (is_kfunc_arg_iter(meta, argno)) 9897 return KF_ARG_PTR_TO_ITER; 9898 9899 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 9900 return KF_ARG_PTR_TO_LIST_HEAD; 9901 9902 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 9903 return KF_ARG_PTR_TO_LIST_NODE; 9904 9905 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 9906 return KF_ARG_PTR_TO_RB_ROOT; 9907 9908 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 9909 return KF_ARG_PTR_TO_RB_NODE; 9910 9911 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 9912 if (!btf_type_is_struct(ref_t)) { 9913 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 9914 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9915 return -EINVAL; 9916 } 9917 return KF_ARG_PTR_TO_BTF_ID; 9918 } 9919 9920 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 9921 return KF_ARG_PTR_TO_CALLBACK; 9922 9923 9924 if (argno + 1 < nargs && 9925 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 9926 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 9927 arg_mem_size = true; 9928 9929 /* This is the catch all argument type of register types supported by 9930 * check_helper_mem_access. However, we only allow when argument type is 9931 * pointer to scalar, or struct composed (recursively) of scalars. When 9932 * arg_mem_size is true, the pointer can be void *. 9933 */ 9934 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 9935 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 9936 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 9937 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 9938 return -EINVAL; 9939 } 9940 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 9941 } 9942 9943 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 9944 struct bpf_reg_state *reg, 9945 const struct btf_type *ref_t, 9946 const char *ref_tname, u32 ref_id, 9947 struct bpf_kfunc_call_arg_meta *meta, 9948 int argno) 9949 { 9950 const struct btf_type *reg_ref_t; 9951 bool strict_type_match = false; 9952 const struct btf *reg_btf; 9953 const char *reg_ref_tname; 9954 u32 reg_ref_id; 9955 9956 if (base_type(reg->type) == PTR_TO_BTF_ID) { 9957 reg_btf = reg->btf; 9958 reg_ref_id = reg->btf_id; 9959 } else { 9960 reg_btf = btf_vmlinux; 9961 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 9962 } 9963 9964 /* Enforce strict type matching for calls to kfuncs that are acquiring 9965 * or releasing a reference, or are no-cast aliases. We do _not_ 9966 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 9967 * as we want to enable BPF programs to pass types that are bitwise 9968 * equivalent without forcing them to explicitly cast with something 9969 * like bpf_cast_to_kern_ctx(). 9970 * 9971 * For example, say we had a type like the following: 9972 * 9973 * struct bpf_cpumask { 9974 * cpumask_t cpumask; 9975 * refcount_t usage; 9976 * }; 9977 * 9978 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 9979 * to a struct cpumask, so it would be safe to pass a struct 9980 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 9981 * 9982 * The philosophy here is similar to how we allow scalars of different 9983 * types to be passed to kfuncs as long as the size is the same. The 9984 * only difference here is that we're simply allowing 9985 * btf_struct_ids_match() to walk the struct at the 0th offset, and 9986 * resolve types. 9987 */ 9988 if (is_kfunc_acquire(meta) || 9989 (is_kfunc_release(meta) && reg->ref_obj_id) || 9990 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 9991 strict_type_match = true; 9992 9993 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 9994 9995 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 9996 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 9997 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 9998 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 9999 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10000 btf_type_str(reg_ref_t), reg_ref_tname); 10001 return -EINVAL; 10002 } 10003 return 0; 10004 } 10005 10006 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10007 { 10008 struct bpf_verifier_state *state = env->cur_state; 10009 10010 if (!state->active_lock.ptr) { 10011 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10012 return -EFAULT; 10013 } 10014 10015 if (type_flag(reg->type) & NON_OWN_REF) { 10016 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10017 return -EFAULT; 10018 } 10019 10020 reg->type |= NON_OWN_REF; 10021 return 0; 10022 } 10023 10024 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10025 { 10026 struct bpf_func_state *state, *unused; 10027 struct bpf_reg_state *reg; 10028 int i; 10029 10030 state = cur_func(env); 10031 10032 if (!ref_obj_id) { 10033 verbose(env, "verifier internal error: ref_obj_id is zero for " 10034 "owning -> non-owning conversion\n"); 10035 return -EFAULT; 10036 } 10037 10038 for (i = 0; i < state->acquired_refs; i++) { 10039 if (state->refs[i].id != ref_obj_id) 10040 continue; 10041 10042 /* Clear ref_obj_id here so release_reference doesn't clobber 10043 * the whole reg 10044 */ 10045 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10046 if (reg->ref_obj_id == ref_obj_id) { 10047 reg->ref_obj_id = 0; 10048 ref_set_non_owning(env, reg); 10049 } 10050 })); 10051 return 0; 10052 } 10053 10054 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10055 return -EFAULT; 10056 } 10057 10058 /* Implementation details: 10059 * 10060 * Each register points to some region of memory, which we define as an 10061 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10062 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10063 * allocation. The lock and the data it protects are colocated in the same 10064 * memory region. 10065 * 10066 * Hence, everytime a register holds a pointer value pointing to such 10067 * allocation, the verifier preserves a unique reg->id for it. 10068 * 10069 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10070 * bpf_spin_lock is called. 10071 * 10072 * To enable this, lock state in the verifier captures two values: 10073 * active_lock.ptr = Register's type specific pointer 10074 * active_lock.id = A unique ID for each register pointer value 10075 * 10076 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10077 * supported register types. 10078 * 10079 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10080 * allocated objects is the reg->btf pointer. 10081 * 10082 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10083 * can establish the provenance of the map value statically for each distinct 10084 * lookup into such maps. They always contain a single map value hence unique 10085 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10086 * 10087 * So, in case of global variables, they use array maps with max_entries = 1, 10088 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10089 * into the same map value as max_entries is 1, as described above). 10090 * 10091 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10092 * outer map pointer (in verifier context), but each lookup into an inner map 10093 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10094 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10095 * will get different reg->id assigned to each lookup, hence different 10096 * active_lock.id. 10097 * 10098 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10099 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10100 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10101 */ 10102 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10103 { 10104 void *ptr; 10105 u32 id; 10106 10107 switch ((int)reg->type) { 10108 case PTR_TO_MAP_VALUE: 10109 ptr = reg->map_ptr; 10110 break; 10111 case PTR_TO_BTF_ID | MEM_ALLOC: 10112 ptr = reg->btf; 10113 break; 10114 default: 10115 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10116 return -EFAULT; 10117 } 10118 id = reg->id; 10119 10120 if (!env->cur_state->active_lock.ptr) 10121 return -EINVAL; 10122 if (env->cur_state->active_lock.ptr != ptr || 10123 env->cur_state->active_lock.id != id) { 10124 verbose(env, "held lock and object are not in the same allocation\n"); 10125 return -EINVAL; 10126 } 10127 return 0; 10128 } 10129 10130 static bool is_bpf_list_api_kfunc(u32 btf_id) 10131 { 10132 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10133 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10134 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10135 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10136 } 10137 10138 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10139 { 10140 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10141 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10142 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10143 } 10144 10145 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10146 { 10147 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10148 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10149 } 10150 10151 static bool is_callback_calling_kfunc(u32 btf_id) 10152 { 10153 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10154 } 10155 10156 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10157 { 10158 return is_bpf_rbtree_api_kfunc(btf_id); 10159 } 10160 10161 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10162 enum btf_field_type head_field_type, 10163 u32 kfunc_btf_id) 10164 { 10165 bool ret; 10166 10167 switch (head_field_type) { 10168 case BPF_LIST_HEAD: 10169 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10170 break; 10171 case BPF_RB_ROOT: 10172 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10173 break; 10174 default: 10175 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10176 btf_field_type_name(head_field_type)); 10177 return false; 10178 } 10179 10180 if (!ret) 10181 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10182 btf_field_type_name(head_field_type)); 10183 return ret; 10184 } 10185 10186 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10187 enum btf_field_type node_field_type, 10188 u32 kfunc_btf_id) 10189 { 10190 bool ret; 10191 10192 switch (node_field_type) { 10193 case BPF_LIST_NODE: 10194 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10195 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10196 break; 10197 case BPF_RB_NODE: 10198 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10199 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10200 break; 10201 default: 10202 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10203 btf_field_type_name(node_field_type)); 10204 return false; 10205 } 10206 10207 if (!ret) 10208 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10209 btf_field_type_name(node_field_type)); 10210 return ret; 10211 } 10212 10213 static int 10214 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10215 struct bpf_reg_state *reg, u32 regno, 10216 struct bpf_kfunc_call_arg_meta *meta, 10217 enum btf_field_type head_field_type, 10218 struct btf_field **head_field) 10219 { 10220 const char *head_type_name; 10221 struct btf_field *field; 10222 struct btf_record *rec; 10223 u32 head_off; 10224 10225 if (meta->btf != btf_vmlinux) { 10226 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10227 return -EFAULT; 10228 } 10229 10230 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10231 return -EFAULT; 10232 10233 head_type_name = btf_field_type_name(head_field_type); 10234 if (!tnum_is_const(reg->var_off)) { 10235 verbose(env, 10236 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10237 regno, head_type_name); 10238 return -EINVAL; 10239 } 10240 10241 rec = reg_btf_record(reg); 10242 head_off = reg->off + reg->var_off.value; 10243 field = btf_record_find(rec, head_off, head_field_type); 10244 if (!field) { 10245 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10246 return -EINVAL; 10247 } 10248 10249 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10250 if (check_reg_allocation_locked(env, reg)) { 10251 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10252 rec->spin_lock_off, head_type_name); 10253 return -EINVAL; 10254 } 10255 10256 if (*head_field) { 10257 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10258 return -EFAULT; 10259 } 10260 *head_field = field; 10261 return 0; 10262 } 10263 10264 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10265 struct bpf_reg_state *reg, u32 regno, 10266 struct bpf_kfunc_call_arg_meta *meta) 10267 { 10268 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10269 &meta->arg_list_head.field); 10270 } 10271 10272 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10273 struct bpf_reg_state *reg, u32 regno, 10274 struct bpf_kfunc_call_arg_meta *meta) 10275 { 10276 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10277 &meta->arg_rbtree_root.field); 10278 } 10279 10280 static int 10281 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10282 struct bpf_reg_state *reg, u32 regno, 10283 struct bpf_kfunc_call_arg_meta *meta, 10284 enum btf_field_type head_field_type, 10285 enum btf_field_type node_field_type, 10286 struct btf_field **node_field) 10287 { 10288 const char *node_type_name; 10289 const struct btf_type *et, *t; 10290 struct btf_field *field; 10291 u32 node_off; 10292 10293 if (meta->btf != btf_vmlinux) { 10294 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10295 return -EFAULT; 10296 } 10297 10298 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10299 return -EFAULT; 10300 10301 node_type_name = btf_field_type_name(node_field_type); 10302 if (!tnum_is_const(reg->var_off)) { 10303 verbose(env, 10304 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10305 regno, node_type_name); 10306 return -EINVAL; 10307 } 10308 10309 node_off = reg->off + reg->var_off.value; 10310 field = reg_find_field_offset(reg, node_off, node_field_type); 10311 if (!field || field->offset != node_off) { 10312 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10313 return -EINVAL; 10314 } 10315 10316 field = *node_field; 10317 10318 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10319 t = btf_type_by_id(reg->btf, reg->btf_id); 10320 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10321 field->graph_root.value_btf_id, true)) { 10322 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10323 "in struct %s, but arg is at offset=%d in struct %s\n", 10324 btf_field_type_name(head_field_type), 10325 btf_field_type_name(node_field_type), 10326 field->graph_root.node_offset, 10327 btf_name_by_offset(field->graph_root.btf, et->name_off), 10328 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10329 return -EINVAL; 10330 } 10331 10332 if (node_off != field->graph_root.node_offset) { 10333 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10334 node_off, btf_field_type_name(node_field_type), 10335 field->graph_root.node_offset, 10336 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10337 return -EINVAL; 10338 } 10339 10340 return 0; 10341 } 10342 10343 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10344 struct bpf_reg_state *reg, u32 regno, 10345 struct bpf_kfunc_call_arg_meta *meta) 10346 { 10347 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10348 BPF_LIST_HEAD, BPF_LIST_NODE, 10349 &meta->arg_list_head.field); 10350 } 10351 10352 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10353 struct bpf_reg_state *reg, u32 regno, 10354 struct bpf_kfunc_call_arg_meta *meta) 10355 { 10356 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10357 BPF_RB_ROOT, BPF_RB_NODE, 10358 &meta->arg_rbtree_root.field); 10359 } 10360 10361 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10362 int insn_idx) 10363 { 10364 const char *func_name = meta->func_name, *ref_tname; 10365 const struct btf *btf = meta->btf; 10366 const struct btf_param *args; 10367 struct btf_record *rec; 10368 u32 i, nargs; 10369 int ret; 10370 10371 args = (const struct btf_param *)(meta->func_proto + 1); 10372 nargs = btf_type_vlen(meta->func_proto); 10373 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10374 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10375 MAX_BPF_FUNC_REG_ARGS); 10376 return -EINVAL; 10377 } 10378 10379 /* Check that BTF function arguments match actual types that the 10380 * verifier sees. 10381 */ 10382 for (i = 0; i < nargs; i++) { 10383 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10384 const struct btf_type *t, *ref_t, *resolve_ret; 10385 enum bpf_arg_type arg_type = ARG_DONTCARE; 10386 u32 regno = i + 1, ref_id, type_size; 10387 bool is_ret_buf_sz = false; 10388 int kf_arg_type; 10389 10390 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10391 10392 if (is_kfunc_arg_ignore(btf, &args[i])) 10393 continue; 10394 10395 if (btf_type_is_scalar(t)) { 10396 if (reg->type != SCALAR_VALUE) { 10397 verbose(env, "R%d is not a scalar\n", regno); 10398 return -EINVAL; 10399 } 10400 10401 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10402 if (meta->arg_constant.found) { 10403 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10404 return -EFAULT; 10405 } 10406 if (!tnum_is_const(reg->var_off)) { 10407 verbose(env, "R%d must be a known constant\n", regno); 10408 return -EINVAL; 10409 } 10410 ret = mark_chain_precision(env, regno); 10411 if (ret < 0) 10412 return ret; 10413 meta->arg_constant.found = true; 10414 meta->arg_constant.value = reg->var_off.value; 10415 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10416 meta->r0_rdonly = true; 10417 is_ret_buf_sz = true; 10418 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10419 is_ret_buf_sz = true; 10420 } 10421 10422 if (is_ret_buf_sz) { 10423 if (meta->r0_size) { 10424 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10425 return -EINVAL; 10426 } 10427 10428 if (!tnum_is_const(reg->var_off)) { 10429 verbose(env, "R%d is not a const\n", regno); 10430 return -EINVAL; 10431 } 10432 10433 meta->r0_size = reg->var_off.value; 10434 ret = mark_chain_precision(env, regno); 10435 if (ret) 10436 return ret; 10437 } 10438 continue; 10439 } 10440 10441 if (!btf_type_is_ptr(t)) { 10442 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10443 return -EINVAL; 10444 } 10445 10446 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10447 (register_is_null(reg) || type_may_be_null(reg->type))) { 10448 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10449 return -EACCES; 10450 } 10451 10452 if (reg->ref_obj_id) { 10453 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10454 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10455 regno, reg->ref_obj_id, 10456 meta->ref_obj_id); 10457 return -EFAULT; 10458 } 10459 meta->ref_obj_id = reg->ref_obj_id; 10460 if (is_kfunc_release(meta)) 10461 meta->release_regno = regno; 10462 } 10463 10464 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10465 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10466 10467 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10468 if (kf_arg_type < 0) 10469 return kf_arg_type; 10470 10471 switch (kf_arg_type) { 10472 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10473 case KF_ARG_PTR_TO_BTF_ID: 10474 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10475 break; 10476 10477 if (!is_trusted_reg(reg)) { 10478 if (!is_kfunc_rcu(meta)) { 10479 verbose(env, "R%d must be referenced or trusted\n", regno); 10480 return -EINVAL; 10481 } 10482 if (!is_rcu_reg(reg)) { 10483 verbose(env, "R%d must be a rcu pointer\n", regno); 10484 return -EINVAL; 10485 } 10486 } 10487 10488 fallthrough; 10489 case KF_ARG_PTR_TO_CTX: 10490 /* Trusted arguments have the same offset checks as release arguments */ 10491 arg_type |= OBJ_RELEASE; 10492 break; 10493 case KF_ARG_PTR_TO_DYNPTR: 10494 case KF_ARG_PTR_TO_ITER: 10495 case KF_ARG_PTR_TO_LIST_HEAD: 10496 case KF_ARG_PTR_TO_LIST_NODE: 10497 case KF_ARG_PTR_TO_RB_ROOT: 10498 case KF_ARG_PTR_TO_RB_NODE: 10499 case KF_ARG_PTR_TO_MEM: 10500 case KF_ARG_PTR_TO_MEM_SIZE: 10501 case KF_ARG_PTR_TO_CALLBACK: 10502 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10503 /* Trusted by default */ 10504 break; 10505 default: 10506 WARN_ON_ONCE(1); 10507 return -EFAULT; 10508 } 10509 10510 if (is_kfunc_release(meta) && reg->ref_obj_id) 10511 arg_type |= OBJ_RELEASE; 10512 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10513 if (ret < 0) 10514 return ret; 10515 10516 switch (kf_arg_type) { 10517 case KF_ARG_PTR_TO_CTX: 10518 if (reg->type != PTR_TO_CTX) { 10519 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10520 return -EINVAL; 10521 } 10522 10523 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10524 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10525 if (ret < 0) 10526 return -EINVAL; 10527 meta->ret_btf_id = ret; 10528 } 10529 break; 10530 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10531 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10532 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10533 return -EINVAL; 10534 } 10535 if (!reg->ref_obj_id) { 10536 verbose(env, "allocated object must be referenced\n"); 10537 return -EINVAL; 10538 } 10539 if (meta->btf == btf_vmlinux && 10540 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10541 meta->arg_obj_drop.btf = reg->btf; 10542 meta->arg_obj_drop.btf_id = reg->btf_id; 10543 } 10544 break; 10545 case KF_ARG_PTR_TO_DYNPTR: 10546 { 10547 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10548 int clone_ref_obj_id = 0; 10549 10550 if (reg->type != PTR_TO_STACK && 10551 reg->type != CONST_PTR_TO_DYNPTR) { 10552 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10553 return -EINVAL; 10554 } 10555 10556 if (reg->type == CONST_PTR_TO_DYNPTR) 10557 dynptr_arg_type |= MEM_RDONLY; 10558 10559 if (is_kfunc_arg_uninit(btf, &args[i])) 10560 dynptr_arg_type |= MEM_UNINIT; 10561 10562 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10563 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10564 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10565 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10566 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10567 (dynptr_arg_type & MEM_UNINIT)) { 10568 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10569 10570 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10571 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10572 return -EFAULT; 10573 } 10574 10575 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10576 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10577 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10578 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10579 return -EFAULT; 10580 } 10581 } 10582 10583 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10584 if (ret < 0) 10585 return ret; 10586 10587 if (!(dynptr_arg_type & MEM_UNINIT)) { 10588 int id = dynptr_id(env, reg); 10589 10590 if (id < 0) { 10591 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10592 return id; 10593 } 10594 meta->initialized_dynptr.id = id; 10595 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10596 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10597 } 10598 10599 break; 10600 } 10601 case KF_ARG_PTR_TO_ITER: 10602 ret = process_iter_arg(env, regno, insn_idx, meta); 10603 if (ret < 0) 10604 return ret; 10605 break; 10606 case KF_ARG_PTR_TO_LIST_HEAD: 10607 if (reg->type != PTR_TO_MAP_VALUE && 10608 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10609 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10610 return -EINVAL; 10611 } 10612 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10613 verbose(env, "allocated object must be referenced\n"); 10614 return -EINVAL; 10615 } 10616 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10617 if (ret < 0) 10618 return ret; 10619 break; 10620 case KF_ARG_PTR_TO_RB_ROOT: 10621 if (reg->type != PTR_TO_MAP_VALUE && 10622 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10623 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10624 return -EINVAL; 10625 } 10626 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10627 verbose(env, "allocated object must be referenced\n"); 10628 return -EINVAL; 10629 } 10630 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10631 if (ret < 0) 10632 return ret; 10633 break; 10634 case KF_ARG_PTR_TO_LIST_NODE: 10635 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10636 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10637 return -EINVAL; 10638 } 10639 if (!reg->ref_obj_id) { 10640 verbose(env, "allocated object must be referenced\n"); 10641 return -EINVAL; 10642 } 10643 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10644 if (ret < 0) 10645 return ret; 10646 break; 10647 case KF_ARG_PTR_TO_RB_NODE: 10648 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10649 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10650 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10651 return -EINVAL; 10652 } 10653 if (in_rbtree_lock_required_cb(env)) { 10654 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10655 return -EINVAL; 10656 } 10657 } else { 10658 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10659 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10660 return -EINVAL; 10661 } 10662 if (!reg->ref_obj_id) { 10663 verbose(env, "allocated object must be referenced\n"); 10664 return -EINVAL; 10665 } 10666 } 10667 10668 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10669 if (ret < 0) 10670 return ret; 10671 break; 10672 case KF_ARG_PTR_TO_BTF_ID: 10673 /* Only base_type is checked, further checks are done here */ 10674 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10675 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10676 !reg2btf_ids[base_type(reg->type)]) { 10677 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 10678 verbose(env, "expected %s or socket\n", 10679 reg_type_str(env, base_type(reg->type) | 10680 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 10681 return -EINVAL; 10682 } 10683 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 10684 if (ret < 0) 10685 return ret; 10686 break; 10687 case KF_ARG_PTR_TO_MEM: 10688 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 10689 if (IS_ERR(resolve_ret)) { 10690 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 10691 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 10692 return -EINVAL; 10693 } 10694 ret = check_mem_reg(env, reg, regno, type_size); 10695 if (ret < 0) 10696 return ret; 10697 break; 10698 case KF_ARG_PTR_TO_MEM_SIZE: 10699 { 10700 struct bpf_reg_state *size_reg = ®s[regno + 1]; 10701 const struct btf_param *size_arg = &args[i + 1]; 10702 10703 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 10704 if (ret < 0) { 10705 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 10706 return ret; 10707 } 10708 10709 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 10710 if (meta->arg_constant.found) { 10711 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10712 return -EFAULT; 10713 } 10714 if (!tnum_is_const(size_reg->var_off)) { 10715 verbose(env, "R%d must be a known constant\n", regno + 1); 10716 return -EINVAL; 10717 } 10718 meta->arg_constant.found = true; 10719 meta->arg_constant.value = size_reg->var_off.value; 10720 } 10721 10722 /* Skip next '__sz' or '__szk' argument */ 10723 i++; 10724 break; 10725 } 10726 case KF_ARG_PTR_TO_CALLBACK: 10727 meta->subprogno = reg->subprogno; 10728 break; 10729 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10730 if (!type_is_ptr_alloc_obj(reg->type) && !type_is_non_owning_ref(reg->type)) { 10731 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 10732 return -EINVAL; 10733 } 10734 10735 rec = reg_btf_record(reg); 10736 if (!rec) { 10737 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 10738 return -EFAULT; 10739 } 10740 10741 if (rec->refcount_off < 0) { 10742 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 10743 return -EINVAL; 10744 } 10745 if (rec->refcount_off >= 0) { 10746 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 10747 return -EINVAL; 10748 } 10749 meta->arg_refcount_acquire.btf = reg->btf; 10750 meta->arg_refcount_acquire.btf_id = reg->btf_id; 10751 break; 10752 } 10753 } 10754 10755 if (is_kfunc_release(meta) && !meta->release_regno) { 10756 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 10757 func_name); 10758 return -EINVAL; 10759 } 10760 10761 return 0; 10762 } 10763 10764 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 10765 struct bpf_insn *insn, 10766 struct bpf_kfunc_call_arg_meta *meta, 10767 const char **kfunc_name) 10768 { 10769 const struct btf_type *func, *func_proto; 10770 u32 func_id, *kfunc_flags; 10771 const char *func_name; 10772 struct btf *desc_btf; 10773 10774 if (kfunc_name) 10775 *kfunc_name = NULL; 10776 10777 if (!insn->imm) 10778 return -EINVAL; 10779 10780 desc_btf = find_kfunc_desc_btf(env, insn->off); 10781 if (IS_ERR(desc_btf)) 10782 return PTR_ERR(desc_btf); 10783 10784 func_id = insn->imm; 10785 func = btf_type_by_id(desc_btf, func_id); 10786 func_name = btf_name_by_offset(desc_btf, func->name_off); 10787 if (kfunc_name) 10788 *kfunc_name = func_name; 10789 func_proto = btf_type_by_id(desc_btf, func->type); 10790 10791 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 10792 if (!kfunc_flags) { 10793 return -EACCES; 10794 } 10795 10796 memset(meta, 0, sizeof(*meta)); 10797 meta->btf = desc_btf; 10798 meta->func_id = func_id; 10799 meta->kfunc_flags = *kfunc_flags; 10800 meta->func_proto = func_proto; 10801 meta->func_name = func_name; 10802 10803 return 0; 10804 } 10805 10806 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10807 int *insn_idx_p) 10808 { 10809 const struct btf_type *t, *ptr_type; 10810 u32 i, nargs, ptr_type_id, release_ref_obj_id; 10811 struct bpf_reg_state *regs = cur_regs(env); 10812 const char *func_name, *ptr_type_name; 10813 bool sleepable, rcu_lock, rcu_unlock; 10814 struct bpf_kfunc_call_arg_meta meta; 10815 struct bpf_insn_aux_data *insn_aux; 10816 int err, insn_idx = *insn_idx_p; 10817 const struct btf_param *args; 10818 const struct btf_type *ret_t; 10819 struct btf *desc_btf; 10820 10821 /* skip for now, but return error when we find this in fixup_kfunc_call */ 10822 if (!insn->imm) 10823 return 0; 10824 10825 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 10826 if (err == -EACCES && func_name) 10827 verbose(env, "calling kernel function %s is not allowed\n", func_name); 10828 if (err) 10829 return err; 10830 desc_btf = meta.btf; 10831 insn_aux = &env->insn_aux_data[insn_idx]; 10832 10833 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 10834 10835 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 10836 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 10837 return -EACCES; 10838 } 10839 10840 sleepable = is_kfunc_sleepable(&meta); 10841 if (sleepable && !env->prog->aux->sleepable) { 10842 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 10843 return -EACCES; 10844 } 10845 10846 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 10847 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 10848 10849 if (env->cur_state->active_rcu_lock) { 10850 struct bpf_func_state *state; 10851 struct bpf_reg_state *reg; 10852 10853 if (rcu_lock) { 10854 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 10855 return -EINVAL; 10856 } else if (rcu_unlock) { 10857 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10858 if (reg->type & MEM_RCU) { 10859 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 10860 reg->type |= PTR_UNTRUSTED; 10861 } 10862 })); 10863 env->cur_state->active_rcu_lock = false; 10864 } else if (sleepable) { 10865 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 10866 return -EACCES; 10867 } 10868 } else if (rcu_lock) { 10869 env->cur_state->active_rcu_lock = true; 10870 } else if (rcu_unlock) { 10871 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 10872 return -EINVAL; 10873 } 10874 10875 /* Check the arguments */ 10876 err = check_kfunc_args(env, &meta, insn_idx); 10877 if (err < 0) 10878 return err; 10879 /* In case of release function, we get register number of refcounted 10880 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 10881 */ 10882 if (meta.release_regno) { 10883 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 10884 if (err) { 10885 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 10886 func_name, meta.func_id); 10887 return err; 10888 } 10889 } 10890 10891 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10892 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10893 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 10894 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 10895 insn_aux->insert_off = regs[BPF_REG_2].off; 10896 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 10897 if (err) { 10898 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 10899 func_name, meta.func_id); 10900 return err; 10901 } 10902 10903 err = release_reference(env, release_ref_obj_id); 10904 if (err) { 10905 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 10906 func_name, meta.func_id); 10907 return err; 10908 } 10909 } 10910 10911 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 10912 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 10913 set_rbtree_add_callback_state); 10914 if (err) { 10915 verbose(env, "kfunc %s#%d failed callback verification\n", 10916 func_name, meta.func_id); 10917 return err; 10918 } 10919 } 10920 10921 for (i = 0; i < CALLER_SAVED_REGS; i++) 10922 mark_reg_not_init(env, regs, caller_saved[i]); 10923 10924 /* Check return type */ 10925 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 10926 10927 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 10928 /* Only exception is bpf_obj_new_impl */ 10929 if (meta.btf != btf_vmlinux || 10930 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 10931 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 10932 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 10933 return -EINVAL; 10934 } 10935 } 10936 10937 if (btf_type_is_scalar(t)) { 10938 mark_reg_unknown(env, regs, BPF_REG_0); 10939 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 10940 } else if (btf_type_is_ptr(t)) { 10941 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 10942 10943 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 10944 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 10945 struct btf *ret_btf; 10946 u32 ret_btf_id; 10947 10948 if (unlikely(!bpf_global_ma_set)) 10949 return -ENOMEM; 10950 10951 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 10952 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 10953 return -EINVAL; 10954 } 10955 10956 ret_btf = env->prog->aux->btf; 10957 ret_btf_id = meta.arg_constant.value; 10958 10959 /* This may be NULL due to user not supplying a BTF */ 10960 if (!ret_btf) { 10961 verbose(env, "bpf_obj_new requires prog BTF\n"); 10962 return -EINVAL; 10963 } 10964 10965 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 10966 if (!ret_t || !__btf_type_is_struct(ret_t)) { 10967 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 10968 return -EINVAL; 10969 } 10970 10971 mark_reg_known_zero(env, regs, BPF_REG_0); 10972 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 10973 regs[BPF_REG_0].btf = ret_btf; 10974 regs[BPF_REG_0].btf_id = ret_btf_id; 10975 10976 insn_aux->obj_new_size = ret_t->size; 10977 insn_aux->kptr_struct_meta = 10978 btf_find_struct_meta(ret_btf, ret_btf_id); 10979 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 10980 mark_reg_known_zero(env, regs, BPF_REG_0); 10981 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 10982 regs[BPF_REG_0].btf = meta.arg_refcount_acquire.btf; 10983 regs[BPF_REG_0].btf_id = meta.arg_refcount_acquire.btf_id; 10984 10985 insn_aux->kptr_struct_meta = 10986 btf_find_struct_meta(meta.arg_refcount_acquire.btf, 10987 meta.arg_refcount_acquire.btf_id); 10988 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 10989 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 10990 struct btf_field *field = meta.arg_list_head.field; 10991 10992 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 10993 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10994 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10995 struct btf_field *field = meta.arg_rbtree_root.field; 10996 10997 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 10998 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10999 mark_reg_known_zero(env, regs, BPF_REG_0); 11000 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11001 regs[BPF_REG_0].btf = desc_btf; 11002 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11003 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11004 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11005 if (!ret_t || !btf_type_is_struct(ret_t)) { 11006 verbose(env, 11007 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11008 return -EINVAL; 11009 } 11010 11011 mark_reg_known_zero(env, regs, BPF_REG_0); 11012 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11013 regs[BPF_REG_0].btf = desc_btf; 11014 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11015 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11016 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11017 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11018 11019 mark_reg_known_zero(env, regs, BPF_REG_0); 11020 11021 if (!meta.arg_constant.found) { 11022 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11023 return -EFAULT; 11024 } 11025 11026 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11027 11028 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11029 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11030 11031 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11032 regs[BPF_REG_0].type |= MEM_RDONLY; 11033 } else { 11034 /* this will set env->seen_direct_write to true */ 11035 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11036 verbose(env, "the prog does not allow writes to packet data\n"); 11037 return -EINVAL; 11038 } 11039 } 11040 11041 if (!meta.initialized_dynptr.id) { 11042 verbose(env, "verifier internal error: no dynptr id\n"); 11043 return -EFAULT; 11044 } 11045 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11046 11047 /* we don't need to set BPF_REG_0's ref obj id 11048 * because packet slices are not refcounted (see 11049 * dynptr_type_refcounted) 11050 */ 11051 } else { 11052 verbose(env, "kernel function %s unhandled dynamic return type\n", 11053 meta.func_name); 11054 return -EFAULT; 11055 } 11056 } else if (!__btf_type_is_struct(ptr_type)) { 11057 if (!meta.r0_size) { 11058 __u32 sz; 11059 11060 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11061 meta.r0_size = sz; 11062 meta.r0_rdonly = true; 11063 } 11064 } 11065 if (!meta.r0_size) { 11066 ptr_type_name = btf_name_by_offset(desc_btf, 11067 ptr_type->name_off); 11068 verbose(env, 11069 "kernel function %s returns pointer type %s %s is not supported\n", 11070 func_name, 11071 btf_type_str(ptr_type), 11072 ptr_type_name); 11073 return -EINVAL; 11074 } 11075 11076 mark_reg_known_zero(env, regs, BPF_REG_0); 11077 regs[BPF_REG_0].type = PTR_TO_MEM; 11078 regs[BPF_REG_0].mem_size = meta.r0_size; 11079 11080 if (meta.r0_rdonly) 11081 regs[BPF_REG_0].type |= MEM_RDONLY; 11082 11083 /* Ensures we don't access the memory after a release_reference() */ 11084 if (meta.ref_obj_id) 11085 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11086 } else { 11087 mark_reg_known_zero(env, regs, BPF_REG_0); 11088 regs[BPF_REG_0].btf = desc_btf; 11089 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11090 regs[BPF_REG_0].btf_id = ptr_type_id; 11091 } 11092 11093 if (is_kfunc_ret_null(&meta)) { 11094 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11095 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11096 regs[BPF_REG_0].id = ++env->id_gen; 11097 } 11098 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11099 if (is_kfunc_acquire(&meta)) { 11100 int id = acquire_reference_state(env, insn_idx); 11101 11102 if (id < 0) 11103 return id; 11104 if (is_kfunc_ret_null(&meta)) 11105 regs[BPF_REG_0].id = id; 11106 regs[BPF_REG_0].ref_obj_id = id; 11107 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11108 ref_set_non_owning(env, ®s[BPF_REG_0]); 11109 } 11110 11111 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11112 regs[BPF_REG_0].id = ++env->id_gen; 11113 } else if (btf_type_is_void(t)) { 11114 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11115 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11116 insn_aux->kptr_struct_meta = 11117 btf_find_struct_meta(meta.arg_obj_drop.btf, 11118 meta.arg_obj_drop.btf_id); 11119 } 11120 } 11121 } 11122 11123 nargs = btf_type_vlen(meta.func_proto); 11124 args = (const struct btf_param *)(meta.func_proto + 1); 11125 for (i = 0; i < nargs; i++) { 11126 u32 regno = i + 1; 11127 11128 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11129 if (btf_type_is_ptr(t)) 11130 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11131 else 11132 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11133 mark_btf_func_reg_size(env, regno, t->size); 11134 } 11135 11136 if (is_iter_next_kfunc(&meta)) { 11137 err = process_iter_next_call(env, insn_idx, &meta); 11138 if (err) 11139 return err; 11140 } 11141 11142 return 0; 11143 } 11144 11145 static bool signed_add_overflows(s64 a, s64 b) 11146 { 11147 /* Do the add in u64, where overflow is well-defined */ 11148 s64 res = (s64)((u64)a + (u64)b); 11149 11150 if (b < 0) 11151 return res > a; 11152 return res < a; 11153 } 11154 11155 static bool signed_add32_overflows(s32 a, s32 b) 11156 { 11157 /* Do the add in u32, where overflow is well-defined */ 11158 s32 res = (s32)((u32)a + (u32)b); 11159 11160 if (b < 0) 11161 return res > a; 11162 return res < a; 11163 } 11164 11165 static bool signed_sub_overflows(s64 a, s64 b) 11166 { 11167 /* Do the sub in u64, where overflow is well-defined */ 11168 s64 res = (s64)((u64)a - (u64)b); 11169 11170 if (b < 0) 11171 return res < a; 11172 return res > a; 11173 } 11174 11175 static bool signed_sub32_overflows(s32 a, s32 b) 11176 { 11177 /* Do the sub in u32, where overflow is well-defined */ 11178 s32 res = (s32)((u32)a - (u32)b); 11179 11180 if (b < 0) 11181 return res < a; 11182 return res > a; 11183 } 11184 11185 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11186 const struct bpf_reg_state *reg, 11187 enum bpf_reg_type type) 11188 { 11189 bool known = tnum_is_const(reg->var_off); 11190 s64 val = reg->var_off.value; 11191 s64 smin = reg->smin_value; 11192 11193 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11194 verbose(env, "math between %s pointer and %lld is not allowed\n", 11195 reg_type_str(env, type), val); 11196 return false; 11197 } 11198 11199 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11200 verbose(env, "%s pointer offset %d is not allowed\n", 11201 reg_type_str(env, type), reg->off); 11202 return false; 11203 } 11204 11205 if (smin == S64_MIN) { 11206 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11207 reg_type_str(env, type)); 11208 return false; 11209 } 11210 11211 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11212 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11213 smin, reg_type_str(env, type)); 11214 return false; 11215 } 11216 11217 return true; 11218 } 11219 11220 enum { 11221 REASON_BOUNDS = -1, 11222 REASON_TYPE = -2, 11223 REASON_PATHS = -3, 11224 REASON_LIMIT = -4, 11225 REASON_STACK = -5, 11226 }; 11227 11228 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11229 u32 *alu_limit, bool mask_to_left) 11230 { 11231 u32 max = 0, ptr_limit = 0; 11232 11233 switch (ptr_reg->type) { 11234 case PTR_TO_STACK: 11235 /* Offset 0 is out-of-bounds, but acceptable start for the 11236 * left direction, see BPF_REG_FP. Also, unknown scalar 11237 * offset where we would need to deal with min/max bounds is 11238 * currently prohibited for unprivileged. 11239 */ 11240 max = MAX_BPF_STACK + mask_to_left; 11241 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11242 break; 11243 case PTR_TO_MAP_VALUE: 11244 max = ptr_reg->map_ptr->value_size; 11245 ptr_limit = (mask_to_left ? 11246 ptr_reg->smin_value : 11247 ptr_reg->umax_value) + ptr_reg->off; 11248 break; 11249 default: 11250 return REASON_TYPE; 11251 } 11252 11253 if (ptr_limit >= max) 11254 return REASON_LIMIT; 11255 *alu_limit = ptr_limit; 11256 return 0; 11257 } 11258 11259 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11260 const struct bpf_insn *insn) 11261 { 11262 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11263 } 11264 11265 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11266 u32 alu_state, u32 alu_limit) 11267 { 11268 /* If we arrived here from different branches with different 11269 * state or limits to sanitize, then this won't work. 11270 */ 11271 if (aux->alu_state && 11272 (aux->alu_state != alu_state || 11273 aux->alu_limit != alu_limit)) 11274 return REASON_PATHS; 11275 11276 /* Corresponding fixup done in do_misc_fixups(). */ 11277 aux->alu_state = alu_state; 11278 aux->alu_limit = alu_limit; 11279 return 0; 11280 } 11281 11282 static int sanitize_val_alu(struct bpf_verifier_env *env, 11283 struct bpf_insn *insn) 11284 { 11285 struct bpf_insn_aux_data *aux = cur_aux(env); 11286 11287 if (can_skip_alu_sanitation(env, insn)) 11288 return 0; 11289 11290 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11291 } 11292 11293 static bool sanitize_needed(u8 opcode) 11294 { 11295 return opcode == BPF_ADD || opcode == BPF_SUB; 11296 } 11297 11298 struct bpf_sanitize_info { 11299 struct bpf_insn_aux_data aux; 11300 bool mask_to_left; 11301 }; 11302 11303 static struct bpf_verifier_state * 11304 sanitize_speculative_path(struct bpf_verifier_env *env, 11305 const struct bpf_insn *insn, 11306 u32 next_idx, u32 curr_idx) 11307 { 11308 struct bpf_verifier_state *branch; 11309 struct bpf_reg_state *regs; 11310 11311 branch = push_stack(env, next_idx, curr_idx, true); 11312 if (branch && insn) { 11313 regs = branch->frame[branch->curframe]->regs; 11314 if (BPF_SRC(insn->code) == BPF_K) { 11315 mark_reg_unknown(env, regs, insn->dst_reg); 11316 } else if (BPF_SRC(insn->code) == BPF_X) { 11317 mark_reg_unknown(env, regs, insn->dst_reg); 11318 mark_reg_unknown(env, regs, insn->src_reg); 11319 } 11320 } 11321 return branch; 11322 } 11323 11324 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11325 struct bpf_insn *insn, 11326 const struct bpf_reg_state *ptr_reg, 11327 const struct bpf_reg_state *off_reg, 11328 struct bpf_reg_state *dst_reg, 11329 struct bpf_sanitize_info *info, 11330 const bool commit_window) 11331 { 11332 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11333 struct bpf_verifier_state *vstate = env->cur_state; 11334 bool off_is_imm = tnum_is_const(off_reg->var_off); 11335 bool off_is_neg = off_reg->smin_value < 0; 11336 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11337 u8 opcode = BPF_OP(insn->code); 11338 u32 alu_state, alu_limit; 11339 struct bpf_reg_state tmp; 11340 bool ret; 11341 int err; 11342 11343 if (can_skip_alu_sanitation(env, insn)) 11344 return 0; 11345 11346 /* We already marked aux for masking from non-speculative 11347 * paths, thus we got here in the first place. We only care 11348 * to explore bad access from here. 11349 */ 11350 if (vstate->speculative) 11351 goto do_sim; 11352 11353 if (!commit_window) { 11354 if (!tnum_is_const(off_reg->var_off) && 11355 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11356 return REASON_BOUNDS; 11357 11358 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11359 (opcode == BPF_SUB && !off_is_neg); 11360 } 11361 11362 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11363 if (err < 0) 11364 return err; 11365 11366 if (commit_window) { 11367 /* In commit phase we narrow the masking window based on 11368 * the observed pointer move after the simulated operation. 11369 */ 11370 alu_state = info->aux.alu_state; 11371 alu_limit = abs(info->aux.alu_limit - alu_limit); 11372 } else { 11373 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11374 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11375 alu_state |= ptr_is_dst_reg ? 11376 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11377 11378 /* Limit pruning on unknown scalars to enable deep search for 11379 * potential masking differences from other program paths. 11380 */ 11381 if (!off_is_imm) 11382 env->explore_alu_limits = true; 11383 } 11384 11385 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11386 if (err < 0) 11387 return err; 11388 do_sim: 11389 /* If we're in commit phase, we're done here given we already 11390 * pushed the truncated dst_reg into the speculative verification 11391 * stack. 11392 * 11393 * Also, when register is a known constant, we rewrite register-based 11394 * operation to immediate-based, and thus do not need masking (and as 11395 * a consequence, do not need to simulate the zero-truncation either). 11396 */ 11397 if (commit_window || off_is_imm) 11398 return 0; 11399 11400 /* Simulate and find potential out-of-bounds access under 11401 * speculative execution from truncation as a result of 11402 * masking when off was not within expected range. If off 11403 * sits in dst, then we temporarily need to move ptr there 11404 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11405 * for cases where we use K-based arithmetic in one direction 11406 * and truncated reg-based in the other in order to explore 11407 * bad access. 11408 */ 11409 if (!ptr_is_dst_reg) { 11410 tmp = *dst_reg; 11411 copy_register_state(dst_reg, ptr_reg); 11412 } 11413 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11414 env->insn_idx); 11415 if (!ptr_is_dst_reg && ret) 11416 *dst_reg = tmp; 11417 return !ret ? REASON_STACK : 0; 11418 } 11419 11420 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11421 { 11422 struct bpf_verifier_state *vstate = env->cur_state; 11423 11424 /* If we simulate paths under speculation, we don't update the 11425 * insn as 'seen' such that when we verify unreachable paths in 11426 * the non-speculative domain, sanitize_dead_code() can still 11427 * rewrite/sanitize them. 11428 */ 11429 if (!vstate->speculative) 11430 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11431 } 11432 11433 static int sanitize_err(struct bpf_verifier_env *env, 11434 const struct bpf_insn *insn, int reason, 11435 const struct bpf_reg_state *off_reg, 11436 const struct bpf_reg_state *dst_reg) 11437 { 11438 static const char *err = "pointer arithmetic with it prohibited for !root"; 11439 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11440 u32 dst = insn->dst_reg, src = insn->src_reg; 11441 11442 switch (reason) { 11443 case REASON_BOUNDS: 11444 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11445 off_reg == dst_reg ? dst : src, err); 11446 break; 11447 case REASON_TYPE: 11448 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11449 off_reg == dst_reg ? src : dst, err); 11450 break; 11451 case REASON_PATHS: 11452 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11453 dst, op, err); 11454 break; 11455 case REASON_LIMIT: 11456 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11457 dst, op, err); 11458 break; 11459 case REASON_STACK: 11460 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11461 dst, err); 11462 break; 11463 default: 11464 verbose(env, "verifier internal error: unknown reason (%d)\n", 11465 reason); 11466 break; 11467 } 11468 11469 return -EACCES; 11470 } 11471 11472 /* check that stack access falls within stack limits and that 'reg' doesn't 11473 * have a variable offset. 11474 * 11475 * Variable offset is prohibited for unprivileged mode for simplicity since it 11476 * requires corresponding support in Spectre masking for stack ALU. See also 11477 * retrieve_ptr_limit(). 11478 * 11479 * 11480 * 'off' includes 'reg->off'. 11481 */ 11482 static int check_stack_access_for_ptr_arithmetic( 11483 struct bpf_verifier_env *env, 11484 int regno, 11485 const struct bpf_reg_state *reg, 11486 int off) 11487 { 11488 if (!tnum_is_const(reg->var_off)) { 11489 char tn_buf[48]; 11490 11491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11492 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11493 regno, tn_buf, off); 11494 return -EACCES; 11495 } 11496 11497 if (off >= 0 || off < -MAX_BPF_STACK) { 11498 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11499 "prohibited for !root; off=%d\n", regno, off); 11500 return -EACCES; 11501 } 11502 11503 return 0; 11504 } 11505 11506 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11507 const struct bpf_insn *insn, 11508 const struct bpf_reg_state *dst_reg) 11509 { 11510 u32 dst = insn->dst_reg; 11511 11512 /* For unprivileged we require that resulting offset must be in bounds 11513 * in order to be able to sanitize access later on. 11514 */ 11515 if (env->bypass_spec_v1) 11516 return 0; 11517 11518 switch (dst_reg->type) { 11519 case PTR_TO_STACK: 11520 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11521 dst_reg->off + dst_reg->var_off.value)) 11522 return -EACCES; 11523 break; 11524 case PTR_TO_MAP_VALUE: 11525 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11526 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11527 "prohibited for !root\n", dst); 11528 return -EACCES; 11529 } 11530 break; 11531 default: 11532 break; 11533 } 11534 11535 return 0; 11536 } 11537 11538 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11539 * Caller should also handle BPF_MOV case separately. 11540 * If we return -EACCES, caller may want to try again treating pointer as a 11541 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11542 */ 11543 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11544 struct bpf_insn *insn, 11545 const struct bpf_reg_state *ptr_reg, 11546 const struct bpf_reg_state *off_reg) 11547 { 11548 struct bpf_verifier_state *vstate = env->cur_state; 11549 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11550 struct bpf_reg_state *regs = state->regs, *dst_reg; 11551 bool known = tnum_is_const(off_reg->var_off); 11552 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11553 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11554 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11555 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11556 struct bpf_sanitize_info info = {}; 11557 u8 opcode = BPF_OP(insn->code); 11558 u32 dst = insn->dst_reg; 11559 int ret; 11560 11561 dst_reg = ®s[dst]; 11562 11563 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11564 smin_val > smax_val || umin_val > umax_val) { 11565 /* Taint dst register if offset had invalid bounds derived from 11566 * e.g. dead branches. 11567 */ 11568 __mark_reg_unknown(env, dst_reg); 11569 return 0; 11570 } 11571 11572 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11573 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11574 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11575 __mark_reg_unknown(env, dst_reg); 11576 return 0; 11577 } 11578 11579 verbose(env, 11580 "R%d 32-bit pointer arithmetic prohibited\n", 11581 dst); 11582 return -EACCES; 11583 } 11584 11585 if (ptr_reg->type & PTR_MAYBE_NULL) { 11586 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11587 dst, reg_type_str(env, ptr_reg->type)); 11588 return -EACCES; 11589 } 11590 11591 switch (base_type(ptr_reg->type)) { 11592 case CONST_PTR_TO_MAP: 11593 /* smin_val represents the known value */ 11594 if (known && smin_val == 0 && opcode == BPF_ADD) 11595 break; 11596 fallthrough; 11597 case PTR_TO_PACKET_END: 11598 case PTR_TO_SOCKET: 11599 case PTR_TO_SOCK_COMMON: 11600 case PTR_TO_TCP_SOCK: 11601 case PTR_TO_XDP_SOCK: 11602 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11603 dst, reg_type_str(env, ptr_reg->type)); 11604 return -EACCES; 11605 default: 11606 break; 11607 } 11608 11609 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11610 * The id may be overwritten later if we create a new variable offset. 11611 */ 11612 dst_reg->type = ptr_reg->type; 11613 dst_reg->id = ptr_reg->id; 11614 11615 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11616 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11617 return -EINVAL; 11618 11619 /* pointer types do not carry 32-bit bounds at the moment. */ 11620 __mark_reg32_unbounded(dst_reg); 11621 11622 if (sanitize_needed(opcode)) { 11623 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11624 &info, false); 11625 if (ret < 0) 11626 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11627 } 11628 11629 switch (opcode) { 11630 case BPF_ADD: 11631 /* We can take a fixed offset as long as it doesn't overflow 11632 * the s32 'off' field 11633 */ 11634 if (known && (ptr_reg->off + smin_val == 11635 (s64)(s32)(ptr_reg->off + smin_val))) { 11636 /* pointer += K. Accumulate it into fixed offset */ 11637 dst_reg->smin_value = smin_ptr; 11638 dst_reg->smax_value = smax_ptr; 11639 dst_reg->umin_value = umin_ptr; 11640 dst_reg->umax_value = umax_ptr; 11641 dst_reg->var_off = ptr_reg->var_off; 11642 dst_reg->off = ptr_reg->off + smin_val; 11643 dst_reg->raw = ptr_reg->raw; 11644 break; 11645 } 11646 /* A new variable offset is created. Note that off_reg->off 11647 * == 0, since it's a scalar. 11648 * dst_reg gets the pointer type and since some positive 11649 * integer value was added to the pointer, give it a new 'id' 11650 * if it's a PTR_TO_PACKET. 11651 * this creates a new 'base' pointer, off_reg (variable) gets 11652 * added into the variable offset, and we copy the fixed offset 11653 * from ptr_reg. 11654 */ 11655 if (signed_add_overflows(smin_ptr, smin_val) || 11656 signed_add_overflows(smax_ptr, smax_val)) { 11657 dst_reg->smin_value = S64_MIN; 11658 dst_reg->smax_value = S64_MAX; 11659 } else { 11660 dst_reg->smin_value = smin_ptr + smin_val; 11661 dst_reg->smax_value = smax_ptr + smax_val; 11662 } 11663 if (umin_ptr + umin_val < umin_ptr || 11664 umax_ptr + umax_val < umax_ptr) { 11665 dst_reg->umin_value = 0; 11666 dst_reg->umax_value = U64_MAX; 11667 } else { 11668 dst_reg->umin_value = umin_ptr + umin_val; 11669 dst_reg->umax_value = umax_ptr + umax_val; 11670 } 11671 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 11672 dst_reg->off = ptr_reg->off; 11673 dst_reg->raw = ptr_reg->raw; 11674 if (reg_is_pkt_pointer(ptr_reg)) { 11675 dst_reg->id = ++env->id_gen; 11676 /* something was added to pkt_ptr, set range to zero */ 11677 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11678 } 11679 break; 11680 case BPF_SUB: 11681 if (dst_reg == off_reg) { 11682 /* scalar -= pointer. Creates an unknown scalar */ 11683 verbose(env, "R%d tried to subtract pointer from scalar\n", 11684 dst); 11685 return -EACCES; 11686 } 11687 /* We don't allow subtraction from FP, because (according to 11688 * test_verifier.c test "invalid fp arithmetic", JITs might not 11689 * be able to deal with it. 11690 */ 11691 if (ptr_reg->type == PTR_TO_STACK) { 11692 verbose(env, "R%d subtraction from stack pointer prohibited\n", 11693 dst); 11694 return -EACCES; 11695 } 11696 if (known && (ptr_reg->off - smin_val == 11697 (s64)(s32)(ptr_reg->off - smin_val))) { 11698 /* pointer -= K. Subtract it from fixed offset */ 11699 dst_reg->smin_value = smin_ptr; 11700 dst_reg->smax_value = smax_ptr; 11701 dst_reg->umin_value = umin_ptr; 11702 dst_reg->umax_value = umax_ptr; 11703 dst_reg->var_off = ptr_reg->var_off; 11704 dst_reg->id = ptr_reg->id; 11705 dst_reg->off = ptr_reg->off - smin_val; 11706 dst_reg->raw = ptr_reg->raw; 11707 break; 11708 } 11709 /* A new variable offset is created. If the subtrahend is known 11710 * nonnegative, then any reg->range we had before is still good. 11711 */ 11712 if (signed_sub_overflows(smin_ptr, smax_val) || 11713 signed_sub_overflows(smax_ptr, smin_val)) { 11714 /* Overflow possible, we know nothing */ 11715 dst_reg->smin_value = S64_MIN; 11716 dst_reg->smax_value = S64_MAX; 11717 } else { 11718 dst_reg->smin_value = smin_ptr - smax_val; 11719 dst_reg->smax_value = smax_ptr - smin_val; 11720 } 11721 if (umin_ptr < umax_val) { 11722 /* Overflow possible, we know nothing */ 11723 dst_reg->umin_value = 0; 11724 dst_reg->umax_value = U64_MAX; 11725 } else { 11726 /* Cannot overflow (as long as bounds are consistent) */ 11727 dst_reg->umin_value = umin_ptr - umax_val; 11728 dst_reg->umax_value = umax_ptr - umin_val; 11729 } 11730 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 11731 dst_reg->off = ptr_reg->off; 11732 dst_reg->raw = ptr_reg->raw; 11733 if (reg_is_pkt_pointer(ptr_reg)) { 11734 dst_reg->id = ++env->id_gen; 11735 /* something was added to pkt_ptr, set range to zero */ 11736 if (smin_val < 0) 11737 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 11738 } 11739 break; 11740 case BPF_AND: 11741 case BPF_OR: 11742 case BPF_XOR: 11743 /* bitwise ops on pointers are troublesome, prohibit. */ 11744 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 11745 dst, bpf_alu_string[opcode >> 4]); 11746 return -EACCES; 11747 default: 11748 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 11749 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 11750 dst, bpf_alu_string[opcode >> 4]); 11751 return -EACCES; 11752 } 11753 11754 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 11755 return -EINVAL; 11756 reg_bounds_sync(dst_reg); 11757 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 11758 return -EACCES; 11759 if (sanitize_needed(opcode)) { 11760 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 11761 &info, true); 11762 if (ret < 0) 11763 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11764 } 11765 11766 return 0; 11767 } 11768 11769 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 11770 struct bpf_reg_state *src_reg) 11771 { 11772 s32 smin_val = src_reg->s32_min_value; 11773 s32 smax_val = src_reg->s32_max_value; 11774 u32 umin_val = src_reg->u32_min_value; 11775 u32 umax_val = src_reg->u32_max_value; 11776 11777 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 11778 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 11779 dst_reg->s32_min_value = S32_MIN; 11780 dst_reg->s32_max_value = S32_MAX; 11781 } else { 11782 dst_reg->s32_min_value += smin_val; 11783 dst_reg->s32_max_value += smax_val; 11784 } 11785 if (dst_reg->u32_min_value + umin_val < umin_val || 11786 dst_reg->u32_max_value + umax_val < umax_val) { 11787 dst_reg->u32_min_value = 0; 11788 dst_reg->u32_max_value = U32_MAX; 11789 } else { 11790 dst_reg->u32_min_value += umin_val; 11791 dst_reg->u32_max_value += umax_val; 11792 } 11793 } 11794 11795 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 11796 struct bpf_reg_state *src_reg) 11797 { 11798 s64 smin_val = src_reg->smin_value; 11799 s64 smax_val = src_reg->smax_value; 11800 u64 umin_val = src_reg->umin_value; 11801 u64 umax_val = src_reg->umax_value; 11802 11803 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 11804 signed_add_overflows(dst_reg->smax_value, smax_val)) { 11805 dst_reg->smin_value = S64_MIN; 11806 dst_reg->smax_value = S64_MAX; 11807 } else { 11808 dst_reg->smin_value += smin_val; 11809 dst_reg->smax_value += smax_val; 11810 } 11811 if (dst_reg->umin_value + umin_val < umin_val || 11812 dst_reg->umax_value + umax_val < umax_val) { 11813 dst_reg->umin_value = 0; 11814 dst_reg->umax_value = U64_MAX; 11815 } else { 11816 dst_reg->umin_value += umin_val; 11817 dst_reg->umax_value += umax_val; 11818 } 11819 } 11820 11821 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 11822 struct bpf_reg_state *src_reg) 11823 { 11824 s32 smin_val = src_reg->s32_min_value; 11825 s32 smax_val = src_reg->s32_max_value; 11826 u32 umin_val = src_reg->u32_min_value; 11827 u32 umax_val = src_reg->u32_max_value; 11828 11829 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 11830 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 11831 /* Overflow possible, we know nothing */ 11832 dst_reg->s32_min_value = S32_MIN; 11833 dst_reg->s32_max_value = S32_MAX; 11834 } else { 11835 dst_reg->s32_min_value -= smax_val; 11836 dst_reg->s32_max_value -= smin_val; 11837 } 11838 if (dst_reg->u32_min_value < umax_val) { 11839 /* Overflow possible, we know nothing */ 11840 dst_reg->u32_min_value = 0; 11841 dst_reg->u32_max_value = U32_MAX; 11842 } else { 11843 /* Cannot overflow (as long as bounds are consistent) */ 11844 dst_reg->u32_min_value -= umax_val; 11845 dst_reg->u32_max_value -= umin_val; 11846 } 11847 } 11848 11849 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 11850 struct bpf_reg_state *src_reg) 11851 { 11852 s64 smin_val = src_reg->smin_value; 11853 s64 smax_val = src_reg->smax_value; 11854 u64 umin_val = src_reg->umin_value; 11855 u64 umax_val = src_reg->umax_value; 11856 11857 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 11858 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 11859 /* Overflow possible, we know nothing */ 11860 dst_reg->smin_value = S64_MIN; 11861 dst_reg->smax_value = S64_MAX; 11862 } else { 11863 dst_reg->smin_value -= smax_val; 11864 dst_reg->smax_value -= smin_val; 11865 } 11866 if (dst_reg->umin_value < umax_val) { 11867 /* Overflow possible, we know nothing */ 11868 dst_reg->umin_value = 0; 11869 dst_reg->umax_value = U64_MAX; 11870 } else { 11871 /* Cannot overflow (as long as bounds are consistent) */ 11872 dst_reg->umin_value -= umax_val; 11873 dst_reg->umax_value -= umin_val; 11874 } 11875 } 11876 11877 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 11878 struct bpf_reg_state *src_reg) 11879 { 11880 s32 smin_val = src_reg->s32_min_value; 11881 u32 umin_val = src_reg->u32_min_value; 11882 u32 umax_val = src_reg->u32_max_value; 11883 11884 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 11885 /* Ain't nobody got time to multiply that sign */ 11886 __mark_reg32_unbounded(dst_reg); 11887 return; 11888 } 11889 /* Both values are positive, so we can work with unsigned and 11890 * copy the result to signed (unless it exceeds S32_MAX). 11891 */ 11892 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 11893 /* Potential overflow, we know nothing */ 11894 __mark_reg32_unbounded(dst_reg); 11895 return; 11896 } 11897 dst_reg->u32_min_value *= umin_val; 11898 dst_reg->u32_max_value *= umax_val; 11899 if (dst_reg->u32_max_value > S32_MAX) { 11900 /* Overflow possible, we know nothing */ 11901 dst_reg->s32_min_value = S32_MIN; 11902 dst_reg->s32_max_value = S32_MAX; 11903 } else { 11904 dst_reg->s32_min_value = dst_reg->u32_min_value; 11905 dst_reg->s32_max_value = dst_reg->u32_max_value; 11906 } 11907 } 11908 11909 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 11910 struct bpf_reg_state *src_reg) 11911 { 11912 s64 smin_val = src_reg->smin_value; 11913 u64 umin_val = src_reg->umin_value; 11914 u64 umax_val = src_reg->umax_value; 11915 11916 if (smin_val < 0 || dst_reg->smin_value < 0) { 11917 /* Ain't nobody got time to multiply that sign */ 11918 __mark_reg64_unbounded(dst_reg); 11919 return; 11920 } 11921 /* Both values are positive, so we can work with unsigned and 11922 * copy the result to signed (unless it exceeds S64_MAX). 11923 */ 11924 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 11925 /* Potential overflow, we know nothing */ 11926 __mark_reg64_unbounded(dst_reg); 11927 return; 11928 } 11929 dst_reg->umin_value *= umin_val; 11930 dst_reg->umax_value *= umax_val; 11931 if (dst_reg->umax_value > S64_MAX) { 11932 /* Overflow possible, we know nothing */ 11933 dst_reg->smin_value = S64_MIN; 11934 dst_reg->smax_value = S64_MAX; 11935 } else { 11936 dst_reg->smin_value = dst_reg->umin_value; 11937 dst_reg->smax_value = dst_reg->umax_value; 11938 } 11939 } 11940 11941 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 11942 struct bpf_reg_state *src_reg) 11943 { 11944 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11945 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11946 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11947 s32 smin_val = src_reg->s32_min_value; 11948 u32 umax_val = src_reg->u32_max_value; 11949 11950 if (src_known && dst_known) { 11951 __mark_reg32_known(dst_reg, var32_off.value); 11952 return; 11953 } 11954 11955 /* We get our minimum from the var_off, since that's inherently 11956 * bitwise. Our maximum is the minimum of the operands' maxima. 11957 */ 11958 dst_reg->u32_min_value = var32_off.value; 11959 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 11960 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 11961 /* Lose signed bounds when ANDing negative numbers, 11962 * ain't nobody got time for that. 11963 */ 11964 dst_reg->s32_min_value = S32_MIN; 11965 dst_reg->s32_max_value = S32_MAX; 11966 } else { 11967 /* ANDing two positives gives a positive, so safe to 11968 * cast result into s64. 11969 */ 11970 dst_reg->s32_min_value = dst_reg->u32_min_value; 11971 dst_reg->s32_max_value = dst_reg->u32_max_value; 11972 } 11973 } 11974 11975 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 11976 struct bpf_reg_state *src_reg) 11977 { 11978 bool src_known = tnum_is_const(src_reg->var_off); 11979 bool dst_known = tnum_is_const(dst_reg->var_off); 11980 s64 smin_val = src_reg->smin_value; 11981 u64 umax_val = src_reg->umax_value; 11982 11983 if (src_known && dst_known) { 11984 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11985 return; 11986 } 11987 11988 /* We get our minimum from the var_off, since that's inherently 11989 * bitwise. Our maximum is the minimum of the operands' maxima. 11990 */ 11991 dst_reg->umin_value = dst_reg->var_off.value; 11992 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 11993 if (dst_reg->smin_value < 0 || smin_val < 0) { 11994 /* Lose signed bounds when ANDing negative numbers, 11995 * ain't nobody got time for that. 11996 */ 11997 dst_reg->smin_value = S64_MIN; 11998 dst_reg->smax_value = S64_MAX; 11999 } else { 12000 /* ANDing two positives gives a positive, so safe to 12001 * cast result into s64. 12002 */ 12003 dst_reg->smin_value = dst_reg->umin_value; 12004 dst_reg->smax_value = dst_reg->umax_value; 12005 } 12006 /* We may learn something more from the var_off */ 12007 __update_reg_bounds(dst_reg); 12008 } 12009 12010 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12011 struct bpf_reg_state *src_reg) 12012 { 12013 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12014 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12015 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12016 s32 smin_val = src_reg->s32_min_value; 12017 u32 umin_val = src_reg->u32_min_value; 12018 12019 if (src_known && dst_known) { 12020 __mark_reg32_known(dst_reg, var32_off.value); 12021 return; 12022 } 12023 12024 /* We get our maximum from the var_off, and our minimum is the 12025 * maximum of the operands' minima 12026 */ 12027 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12028 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12029 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12030 /* Lose signed bounds when ORing negative numbers, 12031 * ain't nobody got time for that. 12032 */ 12033 dst_reg->s32_min_value = S32_MIN; 12034 dst_reg->s32_max_value = S32_MAX; 12035 } else { 12036 /* ORing two positives gives a positive, so safe to 12037 * cast result into s64. 12038 */ 12039 dst_reg->s32_min_value = dst_reg->u32_min_value; 12040 dst_reg->s32_max_value = dst_reg->u32_max_value; 12041 } 12042 } 12043 12044 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12045 struct bpf_reg_state *src_reg) 12046 { 12047 bool src_known = tnum_is_const(src_reg->var_off); 12048 bool dst_known = tnum_is_const(dst_reg->var_off); 12049 s64 smin_val = src_reg->smin_value; 12050 u64 umin_val = src_reg->umin_value; 12051 12052 if (src_known && dst_known) { 12053 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12054 return; 12055 } 12056 12057 /* We get our maximum from the var_off, and our minimum is the 12058 * maximum of the operands' minima 12059 */ 12060 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12061 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12062 if (dst_reg->smin_value < 0 || smin_val < 0) { 12063 /* Lose signed bounds when ORing negative numbers, 12064 * ain't nobody got time for that. 12065 */ 12066 dst_reg->smin_value = S64_MIN; 12067 dst_reg->smax_value = S64_MAX; 12068 } else { 12069 /* ORing two positives gives a positive, so safe to 12070 * cast result into s64. 12071 */ 12072 dst_reg->smin_value = dst_reg->umin_value; 12073 dst_reg->smax_value = dst_reg->umax_value; 12074 } 12075 /* We may learn something more from the var_off */ 12076 __update_reg_bounds(dst_reg); 12077 } 12078 12079 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12080 struct bpf_reg_state *src_reg) 12081 { 12082 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12083 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12084 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12085 s32 smin_val = src_reg->s32_min_value; 12086 12087 if (src_known && dst_known) { 12088 __mark_reg32_known(dst_reg, var32_off.value); 12089 return; 12090 } 12091 12092 /* We get both minimum and maximum from the var32_off. */ 12093 dst_reg->u32_min_value = var32_off.value; 12094 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12095 12096 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12097 /* XORing two positive sign numbers gives a positive, 12098 * so safe to cast u32 result into s32. 12099 */ 12100 dst_reg->s32_min_value = dst_reg->u32_min_value; 12101 dst_reg->s32_max_value = dst_reg->u32_max_value; 12102 } else { 12103 dst_reg->s32_min_value = S32_MIN; 12104 dst_reg->s32_max_value = S32_MAX; 12105 } 12106 } 12107 12108 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12109 struct bpf_reg_state *src_reg) 12110 { 12111 bool src_known = tnum_is_const(src_reg->var_off); 12112 bool dst_known = tnum_is_const(dst_reg->var_off); 12113 s64 smin_val = src_reg->smin_value; 12114 12115 if (src_known && dst_known) { 12116 /* dst_reg->var_off.value has been updated earlier */ 12117 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12118 return; 12119 } 12120 12121 /* We get both minimum and maximum from the var_off. */ 12122 dst_reg->umin_value = dst_reg->var_off.value; 12123 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12124 12125 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12126 /* XORing two positive sign numbers gives a positive, 12127 * so safe to cast u64 result into s64. 12128 */ 12129 dst_reg->smin_value = dst_reg->umin_value; 12130 dst_reg->smax_value = dst_reg->umax_value; 12131 } else { 12132 dst_reg->smin_value = S64_MIN; 12133 dst_reg->smax_value = S64_MAX; 12134 } 12135 12136 __update_reg_bounds(dst_reg); 12137 } 12138 12139 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12140 u64 umin_val, u64 umax_val) 12141 { 12142 /* We lose all sign bit information (except what we can pick 12143 * up from var_off) 12144 */ 12145 dst_reg->s32_min_value = S32_MIN; 12146 dst_reg->s32_max_value = S32_MAX; 12147 /* If we might shift our top bit out, then we know nothing */ 12148 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12149 dst_reg->u32_min_value = 0; 12150 dst_reg->u32_max_value = U32_MAX; 12151 } else { 12152 dst_reg->u32_min_value <<= umin_val; 12153 dst_reg->u32_max_value <<= umax_val; 12154 } 12155 } 12156 12157 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12158 struct bpf_reg_state *src_reg) 12159 { 12160 u32 umax_val = src_reg->u32_max_value; 12161 u32 umin_val = src_reg->u32_min_value; 12162 /* u32 alu operation will zext upper bits */ 12163 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12164 12165 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12166 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12167 /* Not required but being careful mark reg64 bounds as unknown so 12168 * that we are forced to pick them up from tnum and zext later and 12169 * if some path skips this step we are still safe. 12170 */ 12171 __mark_reg64_unbounded(dst_reg); 12172 __update_reg32_bounds(dst_reg); 12173 } 12174 12175 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12176 u64 umin_val, u64 umax_val) 12177 { 12178 /* Special case <<32 because it is a common compiler pattern to sign 12179 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12180 * positive we know this shift will also be positive so we can track 12181 * bounds correctly. Otherwise we lose all sign bit information except 12182 * what we can pick up from var_off. Perhaps we can generalize this 12183 * later to shifts of any length. 12184 */ 12185 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12186 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12187 else 12188 dst_reg->smax_value = S64_MAX; 12189 12190 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12191 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12192 else 12193 dst_reg->smin_value = S64_MIN; 12194 12195 /* If we might shift our top bit out, then we know nothing */ 12196 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12197 dst_reg->umin_value = 0; 12198 dst_reg->umax_value = U64_MAX; 12199 } else { 12200 dst_reg->umin_value <<= umin_val; 12201 dst_reg->umax_value <<= umax_val; 12202 } 12203 } 12204 12205 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12206 struct bpf_reg_state *src_reg) 12207 { 12208 u64 umax_val = src_reg->umax_value; 12209 u64 umin_val = src_reg->umin_value; 12210 12211 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12212 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12213 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12214 12215 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12216 /* We may learn something more from the var_off */ 12217 __update_reg_bounds(dst_reg); 12218 } 12219 12220 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12221 struct bpf_reg_state *src_reg) 12222 { 12223 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12224 u32 umax_val = src_reg->u32_max_value; 12225 u32 umin_val = src_reg->u32_min_value; 12226 12227 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12228 * be negative, then either: 12229 * 1) src_reg might be zero, so the sign bit of the result is 12230 * unknown, so we lose our signed bounds 12231 * 2) it's known negative, thus the unsigned bounds capture the 12232 * signed bounds 12233 * 3) the signed bounds cross zero, so they tell us nothing 12234 * about the result 12235 * If the value in dst_reg is known nonnegative, then again the 12236 * unsigned bounds capture the signed bounds. 12237 * Thus, in all cases it suffices to blow away our signed bounds 12238 * and rely on inferring new ones from the unsigned bounds and 12239 * var_off of the result. 12240 */ 12241 dst_reg->s32_min_value = S32_MIN; 12242 dst_reg->s32_max_value = S32_MAX; 12243 12244 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12245 dst_reg->u32_min_value >>= umax_val; 12246 dst_reg->u32_max_value >>= umin_val; 12247 12248 __mark_reg64_unbounded(dst_reg); 12249 __update_reg32_bounds(dst_reg); 12250 } 12251 12252 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12253 struct bpf_reg_state *src_reg) 12254 { 12255 u64 umax_val = src_reg->umax_value; 12256 u64 umin_val = src_reg->umin_value; 12257 12258 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12259 * be negative, then either: 12260 * 1) src_reg might be zero, so the sign bit of the result is 12261 * unknown, so we lose our signed bounds 12262 * 2) it's known negative, thus the unsigned bounds capture the 12263 * signed bounds 12264 * 3) the signed bounds cross zero, so they tell us nothing 12265 * about the result 12266 * If the value in dst_reg is known nonnegative, then again the 12267 * unsigned bounds capture the signed bounds. 12268 * Thus, in all cases it suffices to blow away our signed bounds 12269 * and rely on inferring new ones from the unsigned bounds and 12270 * var_off of the result. 12271 */ 12272 dst_reg->smin_value = S64_MIN; 12273 dst_reg->smax_value = S64_MAX; 12274 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12275 dst_reg->umin_value >>= umax_val; 12276 dst_reg->umax_value >>= umin_val; 12277 12278 /* Its not easy to operate on alu32 bounds here because it depends 12279 * on bits being shifted in. Take easy way out and mark unbounded 12280 * so we can recalculate later from tnum. 12281 */ 12282 __mark_reg32_unbounded(dst_reg); 12283 __update_reg_bounds(dst_reg); 12284 } 12285 12286 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12287 struct bpf_reg_state *src_reg) 12288 { 12289 u64 umin_val = src_reg->u32_min_value; 12290 12291 /* Upon reaching here, src_known is true and 12292 * umax_val is equal to umin_val. 12293 */ 12294 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12295 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12296 12297 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12298 12299 /* blow away the dst_reg umin_value/umax_value and rely on 12300 * dst_reg var_off to refine the result. 12301 */ 12302 dst_reg->u32_min_value = 0; 12303 dst_reg->u32_max_value = U32_MAX; 12304 12305 __mark_reg64_unbounded(dst_reg); 12306 __update_reg32_bounds(dst_reg); 12307 } 12308 12309 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12310 struct bpf_reg_state *src_reg) 12311 { 12312 u64 umin_val = src_reg->umin_value; 12313 12314 /* Upon reaching here, src_known is true and umax_val is equal 12315 * to umin_val. 12316 */ 12317 dst_reg->smin_value >>= umin_val; 12318 dst_reg->smax_value >>= umin_val; 12319 12320 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12321 12322 /* blow away the dst_reg umin_value/umax_value and rely on 12323 * dst_reg var_off to refine the result. 12324 */ 12325 dst_reg->umin_value = 0; 12326 dst_reg->umax_value = U64_MAX; 12327 12328 /* Its not easy to operate on alu32 bounds here because it depends 12329 * on bits being shifted in from upper 32-bits. Take easy way out 12330 * and mark unbounded so we can recalculate later from tnum. 12331 */ 12332 __mark_reg32_unbounded(dst_reg); 12333 __update_reg_bounds(dst_reg); 12334 } 12335 12336 /* WARNING: This function does calculations on 64-bit values, but the actual 12337 * execution may occur on 32-bit values. Therefore, things like bitshifts 12338 * need extra checks in the 32-bit case. 12339 */ 12340 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12341 struct bpf_insn *insn, 12342 struct bpf_reg_state *dst_reg, 12343 struct bpf_reg_state src_reg) 12344 { 12345 struct bpf_reg_state *regs = cur_regs(env); 12346 u8 opcode = BPF_OP(insn->code); 12347 bool src_known; 12348 s64 smin_val, smax_val; 12349 u64 umin_val, umax_val; 12350 s32 s32_min_val, s32_max_val; 12351 u32 u32_min_val, u32_max_val; 12352 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12353 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12354 int ret; 12355 12356 smin_val = src_reg.smin_value; 12357 smax_val = src_reg.smax_value; 12358 umin_val = src_reg.umin_value; 12359 umax_val = src_reg.umax_value; 12360 12361 s32_min_val = src_reg.s32_min_value; 12362 s32_max_val = src_reg.s32_max_value; 12363 u32_min_val = src_reg.u32_min_value; 12364 u32_max_val = src_reg.u32_max_value; 12365 12366 if (alu32) { 12367 src_known = tnum_subreg_is_const(src_reg.var_off); 12368 if ((src_known && 12369 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12370 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12371 /* Taint dst register if offset had invalid bounds 12372 * derived from e.g. dead branches. 12373 */ 12374 __mark_reg_unknown(env, dst_reg); 12375 return 0; 12376 } 12377 } else { 12378 src_known = tnum_is_const(src_reg.var_off); 12379 if ((src_known && 12380 (smin_val != smax_val || umin_val != umax_val)) || 12381 smin_val > smax_val || umin_val > umax_val) { 12382 /* Taint dst register if offset had invalid bounds 12383 * derived from e.g. dead branches. 12384 */ 12385 __mark_reg_unknown(env, dst_reg); 12386 return 0; 12387 } 12388 } 12389 12390 if (!src_known && 12391 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12392 __mark_reg_unknown(env, dst_reg); 12393 return 0; 12394 } 12395 12396 if (sanitize_needed(opcode)) { 12397 ret = sanitize_val_alu(env, insn); 12398 if (ret < 0) 12399 return sanitize_err(env, insn, ret, NULL, NULL); 12400 } 12401 12402 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12403 * There are two classes of instructions: The first class we track both 12404 * alu32 and alu64 sign/unsigned bounds independently this provides the 12405 * greatest amount of precision when alu operations are mixed with jmp32 12406 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12407 * and BPF_OR. This is possible because these ops have fairly easy to 12408 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12409 * See alu32 verifier tests for examples. The second class of 12410 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12411 * with regards to tracking sign/unsigned bounds because the bits may 12412 * cross subreg boundaries in the alu64 case. When this happens we mark 12413 * the reg unbounded in the subreg bound space and use the resulting 12414 * tnum to calculate an approximation of the sign/unsigned bounds. 12415 */ 12416 switch (opcode) { 12417 case BPF_ADD: 12418 scalar32_min_max_add(dst_reg, &src_reg); 12419 scalar_min_max_add(dst_reg, &src_reg); 12420 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12421 break; 12422 case BPF_SUB: 12423 scalar32_min_max_sub(dst_reg, &src_reg); 12424 scalar_min_max_sub(dst_reg, &src_reg); 12425 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12426 break; 12427 case BPF_MUL: 12428 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12429 scalar32_min_max_mul(dst_reg, &src_reg); 12430 scalar_min_max_mul(dst_reg, &src_reg); 12431 break; 12432 case BPF_AND: 12433 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12434 scalar32_min_max_and(dst_reg, &src_reg); 12435 scalar_min_max_and(dst_reg, &src_reg); 12436 break; 12437 case BPF_OR: 12438 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12439 scalar32_min_max_or(dst_reg, &src_reg); 12440 scalar_min_max_or(dst_reg, &src_reg); 12441 break; 12442 case BPF_XOR: 12443 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12444 scalar32_min_max_xor(dst_reg, &src_reg); 12445 scalar_min_max_xor(dst_reg, &src_reg); 12446 break; 12447 case BPF_LSH: 12448 if (umax_val >= insn_bitness) { 12449 /* Shifts greater than 31 or 63 are undefined. 12450 * This includes shifts by a negative number. 12451 */ 12452 mark_reg_unknown(env, regs, insn->dst_reg); 12453 break; 12454 } 12455 if (alu32) 12456 scalar32_min_max_lsh(dst_reg, &src_reg); 12457 else 12458 scalar_min_max_lsh(dst_reg, &src_reg); 12459 break; 12460 case BPF_RSH: 12461 if (umax_val >= insn_bitness) { 12462 /* Shifts greater than 31 or 63 are undefined. 12463 * This includes shifts by a negative number. 12464 */ 12465 mark_reg_unknown(env, regs, insn->dst_reg); 12466 break; 12467 } 12468 if (alu32) 12469 scalar32_min_max_rsh(dst_reg, &src_reg); 12470 else 12471 scalar_min_max_rsh(dst_reg, &src_reg); 12472 break; 12473 case BPF_ARSH: 12474 if (umax_val >= insn_bitness) { 12475 /* Shifts greater than 31 or 63 are undefined. 12476 * This includes shifts by a negative number. 12477 */ 12478 mark_reg_unknown(env, regs, insn->dst_reg); 12479 break; 12480 } 12481 if (alu32) 12482 scalar32_min_max_arsh(dst_reg, &src_reg); 12483 else 12484 scalar_min_max_arsh(dst_reg, &src_reg); 12485 break; 12486 default: 12487 mark_reg_unknown(env, regs, insn->dst_reg); 12488 break; 12489 } 12490 12491 /* ALU32 ops are zero extended into 64bit register */ 12492 if (alu32) 12493 zext_32_to_64(dst_reg); 12494 reg_bounds_sync(dst_reg); 12495 return 0; 12496 } 12497 12498 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12499 * and var_off. 12500 */ 12501 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12502 struct bpf_insn *insn) 12503 { 12504 struct bpf_verifier_state *vstate = env->cur_state; 12505 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12506 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12507 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12508 u8 opcode = BPF_OP(insn->code); 12509 int err; 12510 12511 dst_reg = ®s[insn->dst_reg]; 12512 src_reg = NULL; 12513 if (dst_reg->type != SCALAR_VALUE) 12514 ptr_reg = dst_reg; 12515 else 12516 /* Make sure ID is cleared otherwise dst_reg min/max could be 12517 * incorrectly propagated into other registers by find_equal_scalars() 12518 */ 12519 dst_reg->id = 0; 12520 if (BPF_SRC(insn->code) == BPF_X) { 12521 src_reg = ®s[insn->src_reg]; 12522 if (src_reg->type != SCALAR_VALUE) { 12523 if (dst_reg->type != SCALAR_VALUE) { 12524 /* Combining two pointers by any ALU op yields 12525 * an arbitrary scalar. Disallow all math except 12526 * pointer subtraction 12527 */ 12528 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12529 mark_reg_unknown(env, regs, insn->dst_reg); 12530 return 0; 12531 } 12532 verbose(env, "R%d pointer %s pointer prohibited\n", 12533 insn->dst_reg, 12534 bpf_alu_string[opcode >> 4]); 12535 return -EACCES; 12536 } else { 12537 /* scalar += pointer 12538 * This is legal, but we have to reverse our 12539 * src/dest handling in computing the range 12540 */ 12541 err = mark_chain_precision(env, insn->dst_reg); 12542 if (err) 12543 return err; 12544 return adjust_ptr_min_max_vals(env, insn, 12545 src_reg, dst_reg); 12546 } 12547 } else if (ptr_reg) { 12548 /* pointer += scalar */ 12549 err = mark_chain_precision(env, insn->src_reg); 12550 if (err) 12551 return err; 12552 return adjust_ptr_min_max_vals(env, insn, 12553 dst_reg, src_reg); 12554 } else if (dst_reg->precise) { 12555 /* if dst_reg is precise, src_reg should be precise as well */ 12556 err = mark_chain_precision(env, insn->src_reg); 12557 if (err) 12558 return err; 12559 } 12560 } else { 12561 /* Pretend the src is a reg with a known value, since we only 12562 * need to be able to read from this state. 12563 */ 12564 off_reg.type = SCALAR_VALUE; 12565 __mark_reg_known(&off_reg, insn->imm); 12566 src_reg = &off_reg; 12567 if (ptr_reg) /* pointer += K */ 12568 return adjust_ptr_min_max_vals(env, insn, 12569 ptr_reg, src_reg); 12570 } 12571 12572 /* Got here implies adding two SCALAR_VALUEs */ 12573 if (WARN_ON_ONCE(ptr_reg)) { 12574 print_verifier_state(env, state, true); 12575 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12576 return -EINVAL; 12577 } 12578 if (WARN_ON(!src_reg)) { 12579 print_verifier_state(env, state, true); 12580 verbose(env, "verifier internal error: no src_reg\n"); 12581 return -EINVAL; 12582 } 12583 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12584 } 12585 12586 /* check validity of 32-bit and 64-bit arithmetic operations */ 12587 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12588 { 12589 struct bpf_reg_state *regs = cur_regs(env); 12590 u8 opcode = BPF_OP(insn->code); 12591 int err; 12592 12593 if (opcode == BPF_END || opcode == BPF_NEG) { 12594 if (opcode == BPF_NEG) { 12595 if (BPF_SRC(insn->code) != BPF_K || 12596 insn->src_reg != BPF_REG_0 || 12597 insn->off != 0 || insn->imm != 0) { 12598 verbose(env, "BPF_NEG uses reserved fields\n"); 12599 return -EINVAL; 12600 } 12601 } else { 12602 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12603 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12604 BPF_CLASS(insn->code) == BPF_ALU64) { 12605 verbose(env, "BPF_END uses reserved fields\n"); 12606 return -EINVAL; 12607 } 12608 } 12609 12610 /* check src operand */ 12611 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12612 if (err) 12613 return err; 12614 12615 if (is_pointer_value(env, insn->dst_reg)) { 12616 verbose(env, "R%d pointer arithmetic prohibited\n", 12617 insn->dst_reg); 12618 return -EACCES; 12619 } 12620 12621 /* check dest operand */ 12622 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12623 if (err) 12624 return err; 12625 12626 } else if (opcode == BPF_MOV) { 12627 12628 if (BPF_SRC(insn->code) == BPF_X) { 12629 if (insn->imm != 0 || insn->off != 0) { 12630 verbose(env, "BPF_MOV uses reserved fields\n"); 12631 return -EINVAL; 12632 } 12633 12634 /* check src operand */ 12635 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12636 if (err) 12637 return err; 12638 } else { 12639 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12640 verbose(env, "BPF_MOV uses reserved fields\n"); 12641 return -EINVAL; 12642 } 12643 } 12644 12645 /* check dest operand, mark as required later */ 12646 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12647 if (err) 12648 return err; 12649 12650 if (BPF_SRC(insn->code) == BPF_X) { 12651 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12652 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12653 12654 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12655 /* case: R1 = R2 12656 * copy register state to dest reg 12657 */ 12658 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 12659 /* Assign src and dst registers the same ID 12660 * that will be used by find_equal_scalars() 12661 * to propagate min/max range. 12662 */ 12663 src_reg->id = ++env->id_gen; 12664 copy_register_state(dst_reg, src_reg); 12665 dst_reg->live |= REG_LIVE_WRITTEN; 12666 dst_reg->subreg_def = DEF_NOT_SUBREG; 12667 } else { 12668 /* R1 = (u32) R2 */ 12669 if (is_pointer_value(env, insn->src_reg)) { 12670 verbose(env, 12671 "R%d partial copy of pointer\n", 12672 insn->src_reg); 12673 return -EACCES; 12674 } else if (src_reg->type == SCALAR_VALUE) { 12675 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 12676 12677 if (is_src_reg_u32 && !src_reg->id) 12678 src_reg->id = ++env->id_gen; 12679 copy_register_state(dst_reg, src_reg); 12680 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 12681 * dst_reg min/max could be incorrectly 12682 * propagated into src_reg by find_equal_scalars() 12683 */ 12684 if (!is_src_reg_u32) 12685 dst_reg->id = 0; 12686 dst_reg->live |= REG_LIVE_WRITTEN; 12687 dst_reg->subreg_def = env->insn_idx + 1; 12688 } else { 12689 mark_reg_unknown(env, regs, 12690 insn->dst_reg); 12691 } 12692 zext_32_to_64(dst_reg); 12693 reg_bounds_sync(dst_reg); 12694 } 12695 } else { 12696 /* case: R = imm 12697 * remember the value we stored into this reg 12698 */ 12699 /* clear any state __mark_reg_known doesn't set */ 12700 mark_reg_unknown(env, regs, insn->dst_reg); 12701 regs[insn->dst_reg].type = SCALAR_VALUE; 12702 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12703 __mark_reg_known(regs + insn->dst_reg, 12704 insn->imm); 12705 } else { 12706 __mark_reg_known(regs + insn->dst_reg, 12707 (u32)insn->imm); 12708 } 12709 } 12710 12711 } else if (opcode > BPF_END) { 12712 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 12713 return -EINVAL; 12714 12715 } else { /* all other ALU ops: and, sub, xor, add, ... */ 12716 12717 if (BPF_SRC(insn->code) == BPF_X) { 12718 if (insn->imm != 0 || insn->off != 0) { 12719 verbose(env, "BPF_ALU uses reserved fields\n"); 12720 return -EINVAL; 12721 } 12722 /* check src1 operand */ 12723 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12724 if (err) 12725 return err; 12726 } else { 12727 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12728 verbose(env, "BPF_ALU uses reserved fields\n"); 12729 return -EINVAL; 12730 } 12731 } 12732 12733 /* check src2 operand */ 12734 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12735 if (err) 12736 return err; 12737 12738 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 12739 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 12740 verbose(env, "div by zero\n"); 12741 return -EINVAL; 12742 } 12743 12744 if ((opcode == BPF_LSH || opcode == BPF_RSH || 12745 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 12746 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 12747 12748 if (insn->imm < 0 || insn->imm >= size) { 12749 verbose(env, "invalid shift %d\n", insn->imm); 12750 return -EINVAL; 12751 } 12752 } 12753 12754 /* check dest operand */ 12755 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12756 if (err) 12757 return err; 12758 12759 return adjust_reg_min_max_vals(env, insn); 12760 } 12761 12762 return 0; 12763 } 12764 12765 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 12766 struct bpf_reg_state *dst_reg, 12767 enum bpf_reg_type type, 12768 bool range_right_open) 12769 { 12770 struct bpf_func_state *state; 12771 struct bpf_reg_state *reg; 12772 int new_range; 12773 12774 if (dst_reg->off < 0 || 12775 (dst_reg->off == 0 && range_right_open)) 12776 /* This doesn't give us any range */ 12777 return; 12778 12779 if (dst_reg->umax_value > MAX_PACKET_OFF || 12780 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 12781 /* Risk of overflow. For instance, ptr + (1<<63) may be less 12782 * than pkt_end, but that's because it's also less than pkt. 12783 */ 12784 return; 12785 12786 new_range = dst_reg->off; 12787 if (range_right_open) 12788 new_range++; 12789 12790 /* Examples for register markings: 12791 * 12792 * pkt_data in dst register: 12793 * 12794 * r2 = r3; 12795 * r2 += 8; 12796 * if (r2 > pkt_end) goto <handle exception> 12797 * <access okay> 12798 * 12799 * r2 = r3; 12800 * r2 += 8; 12801 * if (r2 < pkt_end) goto <access okay> 12802 * <handle exception> 12803 * 12804 * Where: 12805 * r2 == dst_reg, pkt_end == src_reg 12806 * r2=pkt(id=n,off=8,r=0) 12807 * r3=pkt(id=n,off=0,r=0) 12808 * 12809 * pkt_data in src register: 12810 * 12811 * r2 = r3; 12812 * r2 += 8; 12813 * if (pkt_end >= r2) goto <access okay> 12814 * <handle exception> 12815 * 12816 * r2 = r3; 12817 * r2 += 8; 12818 * if (pkt_end <= r2) goto <handle exception> 12819 * <access okay> 12820 * 12821 * Where: 12822 * pkt_end == dst_reg, r2 == src_reg 12823 * r2=pkt(id=n,off=8,r=0) 12824 * r3=pkt(id=n,off=0,r=0) 12825 * 12826 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 12827 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 12828 * and [r3, r3 + 8-1) respectively is safe to access depending on 12829 * the check. 12830 */ 12831 12832 /* If our ids match, then we must have the same max_value. And we 12833 * don't care about the other reg's fixed offset, since if it's too big 12834 * the range won't allow anything. 12835 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 12836 */ 12837 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12838 if (reg->type == type && reg->id == dst_reg->id) 12839 /* keep the maximum range already checked */ 12840 reg->range = max(reg->range, new_range); 12841 })); 12842 } 12843 12844 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 12845 { 12846 struct tnum subreg = tnum_subreg(reg->var_off); 12847 s32 sval = (s32)val; 12848 12849 switch (opcode) { 12850 case BPF_JEQ: 12851 if (tnum_is_const(subreg)) 12852 return !!tnum_equals_const(subreg, val); 12853 else if (val < reg->u32_min_value || val > reg->u32_max_value) 12854 return 0; 12855 break; 12856 case BPF_JNE: 12857 if (tnum_is_const(subreg)) 12858 return !tnum_equals_const(subreg, val); 12859 else if (val < reg->u32_min_value || val > reg->u32_max_value) 12860 return 1; 12861 break; 12862 case BPF_JSET: 12863 if ((~subreg.mask & subreg.value) & val) 12864 return 1; 12865 if (!((subreg.mask | subreg.value) & val)) 12866 return 0; 12867 break; 12868 case BPF_JGT: 12869 if (reg->u32_min_value > val) 12870 return 1; 12871 else if (reg->u32_max_value <= val) 12872 return 0; 12873 break; 12874 case BPF_JSGT: 12875 if (reg->s32_min_value > sval) 12876 return 1; 12877 else if (reg->s32_max_value <= sval) 12878 return 0; 12879 break; 12880 case BPF_JLT: 12881 if (reg->u32_max_value < val) 12882 return 1; 12883 else if (reg->u32_min_value >= val) 12884 return 0; 12885 break; 12886 case BPF_JSLT: 12887 if (reg->s32_max_value < sval) 12888 return 1; 12889 else if (reg->s32_min_value >= sval) 12890 return 0; 12891 break; 12892 case BPF_JGE: 12893 if (reg->u32_min_value >= val) 12894 return 1; 12895 else if (reg->u32_max_value < val) 12896 return 0; 12897 break; 12898 case BPF_JSGE: 12899 if (reg->s32_min_value >= sval) 12900 return 1; 12901 else if (reg->s32_max_value < sval) 12902 return 0; 12903 break; 12904 case BPF_JLE: 12905 if (reg->u32_max_value <= val) 12906 return 1; 12907 else if (reg->u32_min_value > val) 12908 return 0; 12909 break; 12910 case BPF_JSLE: 12911 if (reg->s32_max_value <= sval) 12912 return 1; 12913 else if (reg->s32_min_value > sval) 12914 return 0; 12915 break; 12916 } 12917 12918 return -1; 12919 } 12920 12921 12922 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 12923 { 12924 s64 sval = (s64)val; 12925 12926 switch (opcode) { 12927 case BPF_JEQ: 12928 if (tnum_is_const(reg->var_off)) 12929 return !!tnum_equals_const(reg->var_off, val); 12930 else if (val < reg->umin_value || val > reg->umax_value) 12931 return 0; 12932 break; 12933 case BPF_JNE: 12934 if (tnum_is_const(reg->var_off)) 12935 return !tnum_equals_const(reg->var_off, val); 12936 else if (val < reg->umin_value || val > reg->umax_value) 12937 return 1; 12938 break; 12939 case BPF_JSET: 12940 if ((~reg->var_off.mask & reg->var_off.value) & val) 12941 return 1; 12942 if (!((reg->var_off.mask | reg->var_off.value) & val)) 12943 return 0; 12944 break; 12945 case BPF_JGT: 12946 if (reg->umin_value > val) 12947 return 1; 12948 else if (reg->umax_value <= val) 12949 return 0; 12950 break; 12951 case BPF_JSGT: 12952 if (reg->smin_value > sval) 12953 return 1; 12954 else if (reg->smax_value <= sval) 12955 return 0; 12956 break; 12957 case BPF_JLT: 12958 if (reg->umax_value < val) 12959 return 1; 12960 else if (reg->umin_value >= val) 12961 return 0; 12962 break; 12963 case BPF_JSLT: 12964 if (reg->smax_value < sval) 12965 return 1; 12966 else if (reg->smin_value >= sval) 12967 return 0; 12968 break; 12969 case BPF_JGE: 12970 if (reg->umin_value >= val) 12971 return 1; 12972 else if (reg->umax_value < val) 12973 return 0; 12974 break; 12975 case BPF_JSGE: 12976 if (reg->smin_value >= sval) 12977 return 1; 12978 else if (reg->smax_value < sval) 12979 return 0; 12980 break; 12981 case BPF_JLE: 12982 if (reg->umax_value <= val) 12983 return 1; 12984 else if (reg->umin_value > val) 12985 return 0; 12986 break; 12987 case BPF_JSLE: 12988 if (reg->smax_value <= sval) 12989 return 1; 12990 else if (reg->smin_value > sval) 12991 return 0; 12992 break; 12993 } 12994 12995 return -1; 12996 } 12997 12998 /* compute branch direction of the expression "if (reg opcode val) goto target;" 12999 * and return: 13000 * 1 - branch will be taken and "goto target" will be executed 13001 * 0 - branch will not be taken and fall-through to next insn 13002 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13003 * range [0,10] 13004 */ 13005 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13006 bool is_jmp32) 13007 { 13008 if (__is_pointer_value(false, reg)) { 13009 if (!reg_type_not_null(reg->type)) 13010 return -1; 13011 13012 /* If pointer is valid tests against zero will fail so we can 13013 * use this to direct branch taken. 13014 */ 13015 if (val != 0) 13016 return -1; 13017 13018 switch (opcode) { 13019 case BPF_JEQ: 13020 return 0; 13021 case BPF_JNE: 13022 return 1; 13023 default: 13024 return -1; 13025 } 13026 } 13027 13028 if (is_jmp32) 13029 return is_branch32_taken(reg, val, opcode); 13030 return is_branch64_taken(reg, val, opcode); 13031 } 13032 13033 static int flip_opcode(u32 opcode) 13034 { 13035 /* How can we transform "a <op> b" into "b <op> a"? */ 13036 static const u8 opcode_flip[16] = { 13037 /* these stay the same */ 13038 [BPF_JEQ >> 4] = BPF_JEQ, 13039 [BPF_JNE >> 4] = BPF_JNE, 13040 [BPF_JSET >> 4] = BPF_JSET, 13041 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13042 [BPF_JGE >> 4] = BPF_JLE, 13043 [BPF_JGT >> 4] = BPF_JLT, 13044 [BPF_JLE >> 4] = BPF_JGE, 13045 [BPF_JLT >> 4] = BPF_JGT, 13046 [BPF_JSGE >> 4] = BPF_JSLE, 13047 [BPF_JSGT >> 4] = BPF_JSLT, 13048 [BPF_JSLE >> 4] = BPF_JSGE, 13049 [BPF_JSLT >> 4] = BPF_JSGT 13050 }; 13051 return opcode_flip[opcode >> 4]; 13052 } 13053 13054 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13055 struct bpf_reg_state *src_reg, 13056 u8 opcode) 13057 { 13058 struct bpf_reg_state *pkt; 13059 13060 if (src_reg->type == PTR_TO_PACKET_END) { 13061 pkt = dst_reg; 13062 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13063 pkt = src_reg; 13064 opcode = flip_opcode(opcode); 13065 } else { 13066 return -1; 13067 } 13068 13069 if (pkt->range >= 0) 13070 return -1; 13071 13072 switch (opcode) { 13073 case BPF_JLE: 13074 /* pkt <= pkt_end */ 13075 fallthrough; 13076 case BPF_JGT: 13077 /* pkt > pkt_end */ 13078 if (pkt->range == BEYOND_PKT_END) 13079 /* pkt has at last one extra byte beyond pkt_end */ 13080 return opcode == BPF_JGT; 13081 break; 13082 case BPF_JLT: 13083 /* pkt < pkt_end */ 13084 fallthrough; 13085 case BPF_JGE: 13086 /* pkt >= pkt_end */ 13087 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13088 return opcode == BPF_JGE; 13089 break; 13090 } 13091 return -1; 13092 } 13093 13094 /* Adjusts the register min/max values in the case that the dst_reg is the 13095 * variable register that we are working on, and src_reg is a constant or we're 13096 * simply doing a BPF_K check. 13097 * In JEQ/JNE cases we also adjust the var_off values. 13098 */ 13099 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13100 struct bpf_reg_state *false_reg, 13101 u64 val, u32 val32, 13102 u8 opcode, bool is_jmp32) 13103 { 13104 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13105 struct tnum false_64off = false_reg->var_off; 13106 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13107 struct tnum true_64off = true_reg->var_off; 13108 s64 sval = (s64)val; 13109 s32 sval32 = (s32)val32; 13110 13111 /* If the dst_reg is a pointer, we can't learn anything about its 13112 * variable offset from the compare (unless src_reg were a pointer into 13113 * the same object, but we don't bother with that. 13114 * Since false_reg and true_reg have the same type by construction, we 13115 * only need to check one of them for pointerness. 13116 */ 13117 if (__is_pointer_value(false, false_reg)) 13118 return; 13119 13120 switch (opcode) { 13121 /* JEQ/JNE comparison doesn't change the register equivalence. 13122 * 13123 * r1 = r2; 13124 * if (r1 == 42) goto label; 13125 * ... 13126 * label: // here both r1 and r2 are known to be 42. 13127 * 13128 * Hence when marking register as known preserve it's ID. 13129 */ 13130 case BPF_JEQ: 13131 if (is_jmp32) { 13132 __mark_reg32_known(true_reg, val32); 13133 true_32off = tnum_subreg(true_reg->var_off); 13134 } else { 13135 ___mark_reg_known(true_reg, val); 13136 true_64off = true_reg->var_off; 13137 } 13138 break; 13139 case BPF_JNE: 13140 if (is_jmp32) { 13141 __mark_reg32_known(false_reg, val32); 13142 false_32off = tnum_subreg(false_reg->var_off); 13143 } else { 13144 ___mark_reg_known(false_reg, val); 13145 false_64off = false_reg->var_off; 13146 } 13147 break; 13148 case BPF_JSET: 13149 if (is_jmp32) { 13150 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13151 if (is_power_of_2(val32)) 13152 true_32off = tnum_or(true_32off, 13153 tnum_const(val32)); 13154 } else { 13155 false_64off = tnum_and(false_64off, tnum_const(~val)); 13156 if (is_power_of_2(val)) 13157 true_64off = tnum_or(true_64off, 13158 tnum_const(val)); 13159 } 13160 break; 13161 case BPF_JGE: 13162 case BPF_JGT: 13163 { 13164 if (is_jmp32) { 13165 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13166 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13167 13168 false_reg->u32_max_value = min(false_reg->u32_max_value, 13169 false_umax); 13170 true_reg->u32_min_value = max(true_reg->u32_min_value, 13171 true_umin); 13172 } else { 13173 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13174 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13175 13176 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13177 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13178 } 13179 break; 13180 } 13181 case BPF_JSGE: 13182 case BPF_JSGT: 13183 { 13184 if (is_jmp32) { 13185 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13186 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13187 13188 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13189 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13190 } else { 13191 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13192 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13193 13194 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13195 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13196 } 13197 break; 13198 } 13199 case BPF_JLE: 13200 case BPF_JLT: 13201 { 13202 if (is_jmp32) { 13203 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13204 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13205 13206 false_reg->u32_min_value = max(false_reg->u32_min_value, 13207 false_umin); 13208 true_reg->u32_max_value = min(true_reg->u32_max_value, 13209 true_umax); 13210 } else { 13211 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13212 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13213 13214 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13215 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13216 } 13217 break; 13218 } 13219 case BPF_JSLE: 13220 case BPF_JSLT: 13221 { 13222 if (is_jmp32) { 13223 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13224 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13225 13226 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13227 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13228 } else { 13229 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13230 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13231 13232 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13233 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13234 } 13235 break; 13236 } 13237 default: 13238 return; 13239 } 13240 13241 if (is_jmp32) { 13242 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13243 tnum_subreg(false_32off)); 13244 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13245 tnum_subreg(true_32off)); 13246 __reg_combine_32_into_64(false_reg); 13247 __reg_combine_32_into_64(true_reg); 13248 } else { 13249 false_reg->var_off = false_64off; 13250 true_reg->var_off = true_64off; 13251 __reg_combine_64_into_32(false_reg); 13252 __reg_combine_64_into_32(true_reg); 13253 } 13254 } 13255 13256 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13257 * the variable reg. 13258 */ 13259 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13260 struct bpf_reg_state *false_reg, 13261 u64 val, u32 val32, 13262 u8 opcode, bool is_jmp32) 13263 { 13264 opcode = flip_opcode(opcode); 13265 /* This uses zero as "not present in table"; luckily the zero opcode, 13266 * BPF_JA, can't get here. 13267 */ 13268 if (opcode) 13269 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13270 } 13271 13272 /* Regs are known to be equal, so intersect their min/max/var_off */ 13273 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13274 struct bpf_reg_state *dst_reg) 13275 { 13276 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13277 dst_reg->umin_value); 13278 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13279 dst_reg->umax_value); 13280 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13281 dst_reg->smin_value); 13282 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13283 dst_reg->smax_value); 13284 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13285 dst_reg->var_off); 13286 reg_bounds_sync(src_reg); 13287 reg_bounds_sync(dst_reg); 13288 } 13289 13290 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13291 struct bpf_reg_state *true_dst, 13292 struct bpf_reg_state *false_src, 13293 struct bpf_reg_state *false_dst, 13294 u8 opcode) 13295 { 13296 switch (opcode) { 13297 case BPF_JEQ: 13298 __reg_combine_min_max(true_src, true_dst); 13299 break; 13300 case BPF_JNE: 13301 __reg_combine_min_max(false_src, false_dst); 13302 break; 13303 } 13304 } 13305 13306 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13307 struct bpf_reg_state *reg, u32 id, 13308 bool is_null) 13309 { 13310 if (type_may_be_null(reg->type) && reg->id == id && 13311 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13312 /* Old offset (both fixed and variable parts) should have been 13313 * known-zero, because we don't allow pointer arithmetic on 13314 * pointers that might be NULL. If we see this happening, don't 13315 * convert the register. 13316 * 13317 * But in some cases, some helpers that return local kptrs 13318 * advance offset for the returned pointer. In those cases, it 13319 * is fine to expect to see reg->off. 13320 */ 13321 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13322 return; 13323 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13324 WARN_ON_ONCE(reg->off)) 13325 return; 13326 13327 if (is_null) { 13328 reg->type = SCALAR_VALUE; 13329 /* We don't need id and ref_obj_id from this point 13330 * onwards anymore, thus we should better reset it, 13331 * so that state pruning has chances to take effect. 13332 */ 13333 reg->id = 0; 13334 reg->ref_obj_id = 0; 13335 13336 return; 13337 } 13338 13339 mark_ptr_not_null_reg(reg); 13340 13341 if (!reg_may_point_to_spin_lock(reg)) { 13342 /* For not-NULL ptr, reg->ref_obj_id will be reset 13343 * in release_reference(). 13344 * 13345 * reg->id is still used by spin_lock ptr. Other 13346 * than spin_lock ptr type, reg->id can be reset. 13347 */ 13348 reg->id = 0; 13349 } 13350 } 13351 } 13352 13353 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13354 * be folded together at some point. 13355 */ 13356 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13357 bool is_null) 13358 { 13359 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13360 struct bpf_reg_state *regs = state->regs, *reg; 13361 u32 ref_obj_id = regs[regno].ref_obj_id; 13362 u32 id = regs[regno].id; 13363 13364 if (ref_obj_id && ref_obj_id == id && is_null) 13365 /* regs[regno] is in the " == NULL" branch. 13366 * No one could have freed the reference state before 13367 * doing the NULL check. 13368 */ 13369 WARN_ON_ONCE(release_reference_state(state, id)); 13370 13371 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13372 mark_ptr_or_null_reg(state, reg, id, is_null); 13373 })); 13374 } 13375 13376 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13377 struct bpf_reg_state *dst_reg, 13378 struct bpf_reg_state *src_reg, 13379 struct bpf_verifier_state *this_branch, 13380 struct bpf_verifier_state *other_branch) 13381 { 13382 if (BPF_SRC(insn->code) != BPF_X) 13383 return false; 13384 13385 /* Pointers are always 64-bit. */ 13386 if (BPF_CLASS(insn->code) == BPF_JMP32) 13387 return false; 13388 13389 switch (BPF_OP(insn->code)) { 13390 case BPF_JGT: 13391 if ((dst_reg->type == PTR_TO_PACKET && 13392 src_reg->type == PTR_TO_PACKET_END) || 13393 (dst_reg->type == PTR_TO_PACKET_META && 13394 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13395 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13396 find_good_pkt_pointers(this_branch, dst_reg, 13397 dst_reg->type, false); 13398 mark_pkt_end(other_branch, insn->dst_reg, true); 13399 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13400 src_reg->type == PTR_TO_PACKET) || 13401 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13402 src_reg->type == PTR_TO_PACKET_META)) { 13403 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13404 find_good_pkt_pointers(other_branch, src_reg, 13405 src_reg->type, true); 13406 mark_pkt_end(this_branch, insn->src_reg, false); 13407 } else { 13408 return false; 13409 } 13410 break; 13411 case BPF_JLT: 13412 if ((dst_reg->type == PTR_TO_PACKET && 13413 src_reg->type == PTR_TO_PACKET_END) || 13414 (dst_reg->type == PTR_TO_PACKET_META && 13415 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13416 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13417 find_good_pkt_pointers(other_branch, dst_reg, 13418 dst_reg->type, true); 13419 mark_pkt_end(this_branch, insn->dst_reg, false); 13420 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13421 src_reg->type == PTR_TO_PACKET) || 13422 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13423 src_reg->type == PTR_TO_PACKET_META)) { 13424 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13425 find_good_pkt_pointers(this_branch, src_reg, 13426 src_reg->type, false); 13427 mark_pkt_end(other_branch, insn->src_reg, true); 13428 } else { 13429 return false; 13430 } 13431 break; 13432 case BPF_JGE: 13433 if ((dst_reg->type == PTR_TO_PACKET && 13434 src_reg->type == PTR_TO_PACKET_END) || 13435 (dst_reg->type == PTR_TO_PACKET_META && 13436 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13437 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13438 find_good_pkt_pointers(this_branch, dst_reg, 13439 dst_reg->type, true); 13440 mark_pkt_end(other_branch, insn->dst_reg, false); 13441 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13442 src_reg->type == PTR_TO_PACKET) || 13443 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13444 src_reg->type == PTR_TO_PACKET_META)) { 13445 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13446 find_good_pkt_pointers(other_branch, src_reg, 13447 src_reg->type, false); 13448 mark_pkt_end(this_branch, insn->src_reg, true); 13449 } else { 13450 return false; 13451 } 13452 break; 13453 case BPF_JLE: 13454 if ((dst_reg->type == PTR_TO_PACKET && 13455 src_reg->type == PTR_TO_PACKET_END) || 13456 (dst_reg->type == PTR_TO_PACKET_META && 13457 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13458 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13459 find_good_pkt_pointers(other_branch, dst_reg, 13460 dst_reg->type, false); 13461 mark_pkt_end(this_branch, insn->dst_reg, true); 13462 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13463 src_reg->type == PTR_TO_PACKET) || 13464 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13465 src_reg->type == PTR_TO_PACKET_META)) { 13466 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13467 find_good_pkt_pointers(this_branch, src_reg, 13468 src_reg->type, true); 13469 mark_pkt_end(other_branch, insn->src_reg, false); 13470 } else { 13471 return false; 13472 } 13473 break; 13474 default: 13475 return false; 13476 } 13477 13478 return true; 13479 } 13480 13481 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13482 struct bpf_reg_state *known_reg) 13483 { 13484 struct bpf_func_state *state; 13485 struct bpf_reg_state *reg; 13486 13487 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13488 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13489 copy_register_state(reg, known_reg); 13490 })); 13491 } 13492 13493 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13494 struct bpf_insn *insn, int *insn_idx) 13495 { 13496 struct bpf_verifier_state *this_branch = env->cur_state; 13497 struct bpf_verifier_state *other_branch; 13498 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13499 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13500 struct bpf_reg_state *eq_branch_regs; 13501 u8 opcode = BPF_OP(insn->code); 13502 bool is_jmp32; 13503 int pred = -1; 13504 int err; 13505 13506 /* Only conditional jumps are expected to reach here. */ 13507 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13508 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13509 return -EINVAL; 13510 } 13511 13512 if (BPF_SRC(insn->code) == BPF_X) { 13513 if (insn->imm != 0) { 13514 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13515 return -EINVAL; 13516 } 13517 13518 /* check src1 operand */ 13519 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13520 if (err) 13521 return err; 13522 13523 if (is_pointer_value(env, insn->src_reg)) { 13524 verbose(env, "R%d pointer comparison prohibited\n", 13525 insn->src_reg); 13526 return -EACCES; 13527 } 13528 src_reg = ®s[insn->src_reg]; 13529 } else { 13530 if (insn->src_reg != BPF_REG_0) { 13531 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13532 return -EINVAL; 13533 } 13534 } 13535 13536 /* check src2 operand */ 13537 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13538 if (err) 13539 return err; 13540 13541 dst_reg = ®s[insn->dst_reg]; 13542 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13543 13544 if (BPF_SRC(insn->code) == BPF_K) { 13545 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13546 } else if (src_reg->type == SCALAR_VALUE && 13547 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13548 pred = is_branch_taken(dst_reg, 13549 tnum_subreg(src_reg->var_off).value, 13550 opcode, 13551 is_jmp32); 13552 } else if (src_reg->type == SCALAR_VALUE && 13553 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13554 pred = is_branch_taken(dst_reg, 13555 src_reg->var_off.value, 13556 opcode, 13557 is_jmp32); 13558 } else if (dst_reg->type == SCALAR_VALUE && 13559 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13560 pred = is_branch_taken(src_reg, 13561 tnum_subreg(dst_reg->var_off).value, 13562 flip_opcode(opcode), 13563 is_jmp32); 13564 } else if (dst_reg->type == SCALAR_VALUE && 13565 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13566 pred = is_branch_taken(src_reg, 13567 dst_reg->var_off.value, 13568 flip_opcode(opcode), 13569 is_jmp32); 13570 } else if (reg_is_pkt_pointer_any(dst_reg) && 13571 reg_is_pkt_pointer_any(src_reg) && 13572 !is_jmp32) { 13573 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13574 } 13575 13576 if (pred >= 0) { 13577 /* If we get here with a dst_reg pointer type it is because 13578 * above is_branch_taken() special cased the 0 comparison. 13579 */ 13580 if (!__is_pointer_value(false, dst_reg)) 13581 err = mark_chain_precision(env, insn->dst_reg); 13582 if (BPF_SRC(insn->code) == BPF_X && !err && 13583 !__is_pointer_value(false, src_reg)) 13584 err = mark_chain_precision(env, insn->src_reg); 13585 if (err) 13586 return err; 13587 } 13588 13589 if (pred == 1) { 13590 /* Only follow the goto, ignore fall-through. If needed, push 13591 * the fall-through branch for simulation under speculative 13592 * execution. 13593 */ 13594 if (!env->bypass_spec_v1 && 13595 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13596 *insn_idx)) 13597 return -EFAULT; 13598 *insn_idx += insn->off; 13599 return 0; 13600 } else if (pred == 0) { 13601 /* Only follow the fall-through branch, since that's where the 13602 * program will go. If needed, push the goto branch for 13603 * simulation under speculative execution. 13604 */ 13605 if (!env->bypass_spec_v1 && 13606 !sanitize_speculative_path(env, insn, 13607 *insn_idx + insn->off + 1, 13608 *insn_idx)) 13609 return -EFAULT; 13610 return 0; 13611 } 13612 13613 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13614 false); 13615 if (!other_branch) 13616 return -EFAULT; 13617 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13618 13619 /* detect if we are comparing against a constant value so we can adjust 13620 * our min/max values for our dst register. 13621 * this is only legit if both are scalars (or pointers to the same 13622 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13623 * because otherwise the different base pointers mean the offsets aren't 13624 * comparable. 13625 */ 13626 if (BPF_SRC(insn->code) == BPF_X) { 13627 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13628 13629 if (dst_reg->type == SCALAR_VALUE && 13630 src_reg->type == SCALAR_VALUE) { 13631 if (tnum_is_const(src_reg->var_off) || 13632 (is_jmp32 && 13633 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13634 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13635 dst_reg, 13636 src_reg->var_off.value, 13637 tnum_subreg(src_reg->var_off).value, 13638 opcode, is_jmp32); 13639 else if (tnum_is_const(dst_reg->var_off) || 13640 (is_jmp32 && 13641 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13642 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13643 src_reg, 13644 dst_reg->var_off.value, 13645 tnum_subreg(dst_reg->var_off).value, 13646 opcode, is_jmp32); 13647 else if (!is_jmp32 && 13648 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13649 /* Comparing for equality, we can combine knowledge */ 13650 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13651 &other_branch_regs[insn->dst_reg], 13652 src_reg, dst_reg, opcode); 13653 if (src_reg->id && 13654 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13655 find_equal_scalars(this_branch, src_reg); 13656 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13657 } 13658 13659 } 13660 } else if (dst_reg->type == SCALAR_VALUE) { 13661 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13662 dst_reg, insn->imm, (u32)insn->imm, 13663 opcode, is_jmp32); 13664 } 13665 13666 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13667 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 13668 find_equal_scalars(this_branch, dst_reg); 13669 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 13670 } 13671 13672 /* if one pointer register is compared to another pointer 13673 * register check if PTR_MAYBE_NULL could be lifted. 13674 * E.g. register A - maybe null 13675 * register B - not null 13676 * for JNE A, B, ... - A is not null in the false branch; 13677 * for JEQ A, B, ... - A is not null in the true branch. 13678 * 13679 * Since PTR_TO_BTF_ID points to a kernel struct that does 13680 * not need to be null checked by the BPF program, i.e., 13681 * could be null even without PTR_MAYBE_NULL marking, so 13682 * only propagate nullness when neither reg is that type. 13683 */ 13684 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 13685 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 13686 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 13687 base_type(src_reg->type) != PTR_TO_BTF_ID && 13688 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 13689 eq_branch_regs = NULL; 13690 switch (opcode) { 13691 case BPF_JEQ: 13692 eq_branch_regs = other_branch_regs; 13693 break; 13694 case BPF_JNE: 13695 eq_branch_regs = regs; 13696 break; 13697 default: 13698 /* do nothing */ 13699 break; 13700 } 13701 if (eq_branch_regs) { 13702 if (type_may_be_null(src_reg->type)) 13703 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 13704 else 13705 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 13706 } 13707 } 13708 13709 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 13710 * NOTE: these optimizations below are related with pointer comparison 13711 * which will never be JMP32. 13712 */ 13713 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 13714 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 13715 type_may_be_null(dst_reg->type)) { 13716 /* Mark all identical registers in each branch as either 13717 * safe or unknown depending R == 0 or R != 0 conditional. 13718 */ 13719 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 13720 opcode == BPF_JNE); 13721 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 13722 opcode == BPF_JEQ); 13723 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 13724 this_branch, other_branch) && 13725 is_pointer_value(env, insn->dst_reg)) { 13726 verbose(env, "R%d pointer comparison prohibited\n", 13727 insn->dst_reg); 13728 return -EACCES; 13729 } 13730 if (env->log.level & BPF_LOG_LEVEL) 13731 print_insn_state(env, this_branch->frame[this_branch->curframe]); 13732 return 0; 13733 } 13734 13735 /* verify BPF_LD_IMM64 instruction */ 13736 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 13737 { 13738 struct bpf_insn_aux_data *aux = cur_aux(env); 13739 struct bpf_reg_state *regs = cur_regs(env); 13740 struct bpf_reg_state *dst_reg; 13741 struct bpf_map *map; 13742 int err; 13743 13744 if (BPF_SIZE(insn->code) != BPF_DW) { 13745 verbose(env, "invalid BPF_LD_IMM insn\n"); 13746 return -EINVAL; 13747 } 13748 if (insn->off != 0) { 13749 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 13750 return -EINVAL; 13751 } 13752 13753 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13754 if (err) 13755 return err; 13756 13757 dst_reg = ®s[insn->dst_reg]; 13758 if (insn->src_reg == 0) { 13759 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 13760 13761 dst_reg->type = SCALAR_VALUE; 13762 __mark_reg_known(®s[insn->dst_reg], imm); 13763 return 0; 13764 } 13765 13766 /* All special src_reg cases are listed below. From this point onwards 13767 * we either succeed and assign a corresponding dst_reg->type after 13768 * zeroing the offset, or fail and reject the program. 13769 */ 13770 mark_reg_known_zero(env, regs, insn->dst_reg); 13771 13772 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 13773 dst_reg->type = aux->btf_var.reg_type; 13774 switch (base_type(dst_reg->type)) { 13775 case PTR_TO_MEM: 13776 dst_reg->mem_size = aux->btf_var.mem_size; 13777 break; 13778 case PTR_TO_BTF_ID: 13779 dst_reg->btf = aux->btf_var.btf; 13780 dst_reg->btf_id = aux->btf_var.btf_id; 13781 break; 13782 default: 13783 verbose(env, "bpf verifier is misconfigured\n"); 13784 return -EFAULT; 13785 } 13786 return 0; 13787 } 13788 13789 if (insn->src_reg == BPF_PSEUDO_FUNC) { 13790 struct bpf_prog_aux *aux = env->prog->aux; 13791 u32 subprogno = find_subprog(env, 13792 env->insn_idx + insn->imm + 1); 13793 13794 if (!aux->func_info) { 13795 verbose(env, "missing btf func_info\n"); 13796 return -EINVAL; 13797 } 13798 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 13799 verbose(env, "callback function not static\n"); 13800 return -EINVAL; 13801 } 13802 13803 dst_reg->type = PTR_TO_FUNC; 13804 dst_reg->subprogno = subprogno; 13805 return 0; 13806 } 13807 13808 map = env->used_maps[aux->map_index]; 13809 dst_reg->map_ptr = map; 13810 13811 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 13812 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 13813 dst_reg->type = PTR_TO_MAP_VALUE; 13814 dst_reg->off = aux->map_off; 13815 WARN_ON_ONCE(map->max_entries != 1); 13816 /* We want reg->id to be same (0) as map_value is not distinct */ 13817 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 13818 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 13819 dst_reg->type = CONST_PTR_TO_MAP; 13820 } else { 13821 verbose(env, "bpf verifier is misconfigured\n"); 13822 return -EINVAL; 13823 } 13824 13825 return 0; 13826 } 13827 13828 static bool may_access_skb(enum bpf_prog_type type) 13829 { 13830 switch (type) { 13831 case BPF_PROG_TYPE_SOCKET_FILTER: 13832 case BPF_PROG_TYPE_SCHED_CLS: 13833 case BPF_PROG_TYPE_SCHED_ACT: 13834 return true; 13835 default: 13836 return false; 13837 } 13838 } 13839 13840 /* verify safety of LD_ABS|LD_IND instructions: 13841 * - they can only appear in the programs where ctx == skb 13842 * - since they are wrappers of function calls, they scratch R1-R5 registers, 13843 * preserve R6-R9, and store return value into R0 13844 * 13845 * Implicit input: 13846 * ctx == skb == R6 == CTX 13847 * 13848 * Explicit input: 13849 * SRC == any register 13850 * IMM == 32-bit immediate 13851 * 13852 * Output: 13853 * R0 - 8/16/32-bit skb data converted to cpu endianness 13854 */ 13855 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 13856 { 13857 struct bpf_reg_state *regs = cur_regs(env); 13858 static const int ctx_reg = BPF_REG_6; 13859 u8 mode = BPF_MODE(insn->code); 13860 int i, err; 13861 13862 if (!may_access_skb(resolve_prog_type(env->prog))) { 13863 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 13864 return -EINVAL; 13865 } 13866 13867 if (!env->ops->gen_ld_abs) { 13868 verbose(env, "bpf verifier is misconfigured\n"); 13869 return -EINVAL; 13870 } 13871 13872 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 13873 BPF_SIZE(insn->code) == BPF_DW || 13874 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 13875 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 13876 return -EINVAL; 13877 } 13878 13879 /* check whether implicit source operand (register R6) is readable */ 13880 err = check_reg_arg(env, ctx_reg, SRC_OP); 13881 if (err) 13882 return err; 13883 13884 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 13885 * gen_ld_abs() may terminate the program at runtime, leading to 13886 * reference leak. 13887 */ 13888 err = check_reference_leak(env); 13889 if (err) { 13890 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 13891 return err; 13892 } 13893 13894 if (env->cur_state->active_lock.ptr) { 13895 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 13896 return -EINVAL; 13897 } 13898 13899 if (env->cur_state->active_rcu_lock) { 13900 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 13901 return -EINVAL; 13902 } 13903 13904 if (regs[ctx_reg].type != PTR_TO_CTX) { 13905 verbose(env, 13906 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 13907 return -EINVAL; 13908 } 13909 13910 if (mode == BPF_IND) { 13911 /* check explicit source operand */ 13912 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13913 if (err) 13914 return err; 13915 } 13916 13917 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 13918 if (err < 0) 13919 return err; 13920 13921 /* reset caller saved regs to unreadable */ 13922 for (i = 0; i < CALLER_SAVED_REGS; i++) { 13923 mark_reg_not_init(env, regs, caller_saved[i]); 13924 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 13925 } 13926 13927 /* mark destination R0 register as readable, since it contains 13928 * the value fetched from the packet. 13929 * Already marked as written above. 13930 */ 13931 mark_reg_unknown(env, regs, BPF_REG_0); 13932 /* ld_abs load up to 32-bit skb data. */ 13933 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 13934 return 0; 13935 } 13936 13937 static int check_return_code(struct bpf_verifier_env *env) 13938 { 13939 struct tnum enforce_attach_type_range = tnum_unknown; 13940 const struct bpf_prog *prog = env->prog; 13941 struct bpf_reg_state *reg; 13942 struct tnum range = tnum_range(0, 1); 13943 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13944 int err; 13945 struct bpf_func_state *frame = env->cur_state->frame[0]; 13946 const bool is_subprog = frame->subprogno; 13947 13948 /* LSM and struct_ops func-ptr's return type could be "void" */ 13949 if (!is_subprog) { 13950 switch (prog_type) { 13951 case BPF_PROG_TYPE_LSM: 13952 if (prog->expected_attach_type == BPF_LSM_CGROUP) 13953 /* See below, can be 0 or 0-1 depending on hook. */ 13954 break; 13955 fallthrough; 13956 case BPF_PROG_TYPE_STRUCT_OPS: 13957 if (!prog->aux->attach_func_proto->type) 13958 return 0; 13959 break; 13960 default: 13961 break; 13962 } 13963 } 13964 13965 /* eBPF calling convention is such that R0 is used 13966 * to return the value from eBPF program. 13967 * Make sure that it's readable at this time 13968 * of bpf_exit, which means that program wrote 13969 * something into it earlier 13970 */ 13971 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 13972 if (err) 13973 return err; 13974 13975 if (is_pointer_value(env, BPF_REG_0)) { 13976 verbose(env, "R0 leaks addr as return value\n"); 13977 return -EACCES; 13978 } 13979 13980 reg = cur_regs(env) + BPF_REG_0; 13981 13982 if (frame->in_async_callback_fn) { 13983 /* enforce return zero from async callbacks like timer */ 13984 if (reg->type != SCALAR_VALUE) { 13985 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 13986 reg_type_str(env, reg->type)); 13987 return -EINVAL; 13988 } 13989 13990 if (!tnum_in(tnum_const(0), reg->var_off)) { 13991 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 13992 return -EINVAL; 13993 } 13994 return 0; 13995 } 13996 13997 if (is_subprog) { 13998 if (reg->type != SCALAR_VALUE) { 13999 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14000 reg_type_str(env, reg->type)); 14001 return -EINVAL; 14002 } 14003 return 0; 14004 } 14005 14006 switch (prog_type) { 14007 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14008 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14009 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14010 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14011 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14012 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14013 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14014 range = tnum_range(1, 1); 14015 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14016 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14017 range = tnum_range(0, 3); 14018 break; 14019 case BPF_PROG_TYPE_CGROUP_SKB: 14020 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14021 range = tnum_range(0, 3); 14022 enforce_attach_type_range = tnum_range(2, 3); 14023 } 14024 break; 14025 case BPF_PROG_TYPE_CGROUP_SOCK: 14026 case BPF_PROG_TYPE_SOCK_OPS: 14027 case BPF_PROG_TYPE_CGROUP_DEVICE: 14028 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14029 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14030 break; 14031 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14032 if (!env->prog->aux->attach_btf_id) 14033 return 0; 14034 range = tnum_const(0); 14035 break; 14036 case BPF_PROG_TYPE_TRACING: 14037 switch (env->prog->expected_attach_type) { 14038 case BPF_TRACE_FENTRY: 14039 case BPF_TRACE_FEXIT: 14040 range = tnum_const(0); 14041 break; 14042 case BPF_TRACE_RAW_TP: 14043 case BPF_MODIFY_RETURN: 14044 return 0; 14045 case BPF_TRACE_ITER: 14046 break; 14047 default: 14048 return -ENOTSUPP; 14049 } 14050 break; 14051 case BPF_PROG_TYPE_SK_LOOKUP: 14052 range = tnum_range(SK_DROP, SK_PASS); 14053 break; 14054 14055 case BPF_PROG_TYPE_LSM: 14056 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14057 /* Regular BPF_PROG_TYPE_LSM programs can return 14058 * any value. 14059 */ 14060 return 0; 14061 } 14062 if (!env->prog->aux->attach_func_proto->type) { 14063 /* Make sure programs that attach to void 14064 * hooks don't try to modify return value. 14065 */ 14066 range = tnum_range(1, 1); 14067 } 14068 break; 14069 14070 case BPF_PROG_TYPE_NETFILTER: 14071 range = tnum_range(NF_DROP, NF_ACCEPT); 14072 break; 14073 case BPF_PROG_TYPE_EXT: 14074 /* freplace program can return anything as its return value 14075 * depends on the to-be-replaced kernel func or bpf program. 14076 */ 14077 default: 14078 return 0; 14079 } 14080 14081 if (reg->type != SCALAR_VALUE) { 14082 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14083 reg_type_str(env, reg->type)); 14084 return -EINVAL; 14085 } 14086 14087 if (!tnum_in(range, reg->var_off)) { 14088 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14089 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14090 prog_type == BPF_PROG_TYPE_LSM && 14091 !prog->aux->attach_func_proto->type) 14092 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14093 return -EINVAL; 14094 } 14095 14096 if (!tnum_is_unknown(enforce_attach_type_range) && 14097 tnum_in(enforce_attach_type_range, reg->var_off)) 14098 env->prog->enforce_expected_attach_type = 1; 14099 return 0; 14100 } 14101 14102 /* non-recursive DFS pseudo code 14103 * 1 procedure DFS-iterative(G,v): 14104 * 2 label v as discovered 14105 * 3 let S be a stack 14106 * 4 S.push(v) 14107 * 5 while S is not empty 14108 * 6 t <- S.peek() 14109 * 7 if t is what we're looking for: 14110 * 8 return t 14111 * 9 for all edges e in G.adjacentEdges(t) do 14112 * 10 if edge e is already labelled 14113 * 11 continue with the next edge 14114 * 12 w <- G.adjacentVertex(t,e) 14115 * 13 if vertex w is not discovered and not explored 14116 * 14 label e as tree-edge 14117 * 15 label w as discovered 14118 * 16 S.push(w) 14119 * 17 continue at 5 14120 * 18 else if vertex w is discovered 14121 * 19 label e as back-edge 14122 * 20 else 14123 * 21 // vertex w is explored 14124 * 22 label e as forward- or cross-edge 14125 * 23 label t as explored 14126 * 24 S.pop() 14127 * 14128 * convention: 14129 * 0x10 - discovered 14130 * 0x11 - discovered and fall-through edge labelled 14131 * 0x12 - discovered and fall-through and branch edges labelled 14132 * 0x20 - explored 14133 */ 14134 14135 enum { 14136 DISCOVERED = 0x10, 14137 EXPLORED = 0x20, 14138 FALLTHROUGH = 1, 14139 BRANCH = 2, 14140 }; 14141 14142 static u32 state_htab_size(struct bpf_verifier_env *env) 14143 { 14144 return env->prog->len; 14145 } 14146 14147 static struct bpf_verifier_state_list **explored_state( 14148 struct bpf_verifier_env *env, 14149 int idx) 14150 { 14151 struct bpf_verifier_state *cur = env->cur_state; 14152 struct bpf_func_state *state = cur->frame[cur->curframe]; 14153 14154 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14155 } 14156 14157 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14158 { 14159 env->insn_aux_data[idx].prune_point = true; 14160 } 14161 14162 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14163 { 14164 return env->insn_aux_data[insn_idx].prune_point; 14165 } 14166 14167 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14168 { 14169 env->insn_aux_data[idx].force_checkpoint = true; 14170 } 14171 14172 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14173 { 14174 return env->insn_aux_data[insn_idx].force_checkpoint; 14175 } 14176 14177 14178 enum { 14179 DONE_EXPLORING = 0, 14180 KEEP_EXPLORING = 1, 14181 }; 14182 14183 /* t, w, e - match pseudo-code above: 14184 * t - index of current instruction 14185 * w - next instruction 14186 * e - edge 14187 */ 14188 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14189 bool loop_ok) 14190 { 14191 int *insn_stack = env->cfg.insn_stack; 14192 int *insn_state = env->cfg.insn_state; 14193 14194 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14195 return DONE_EXPLORING; 14196 14197 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14198 return DONE_EXPLORING; 14199 14200 if (w < 0 || w >= env->prog->len) { 14201 verbose_linfo(env, t, "%d: ", t); 14202 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14203 return -EINVAL; 14204 } 14205 14206 if (e == BRANCH) { 14207 /* mark branch target for state pruning */ 14208 mark_prune_point(env, w); 14209 mark_jmp_point(env, w); 14210 } 14211 14212 if (insn_state[w] == 0) { 14213 /* tree-edge */ 14214 insn_state[t] = DISCOVERED | e; 14215 insn_state[w] = DISCOVERED; 14216 if (env->cfg.cur_stack >= env->prog->len) 14217 return -E2BIG; 14218 insn_stack[env->cfg.cur_stack++] = w; 14219 return KEEP_EXPLORING; 14220 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14221 if (loop_ok && env->bpf_capable) 14222 return DONE_EXPLORING; 14223 verbose_linfo(env, t, "%d: ", t); 14224 verbose_linfo(env, w, "%d: ", w); 14225 verbose(env, "back-edge from insn %d to %d\n", t, w); 14226 return -EINVAL; 14227 } else if (insn_state[w] == EXPLORED) { 14228 /* forward- or cross-edge */ 14229 insn_state[t] = DISCOVERED | e; 14230 } else { 14231 verbose(env, "insn state internal bug\n"); 14232 return -EFAULT; 14233 } 14234 return DONE_EXPLORING; 14235 } 14236 14237 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14238 struct bpf_verifier_env *env, 14239 bool visit_callee) 14240 { 14241 int ret; 14242 14243 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14244 if (ret) 14245 return ret; 14246 14247 mark_prune_point(env, t + 1); 14248 /* when we exit from subprog, we need to record non-linear history */ 14249 mark_jmp_point(env, t + 1); 14250 14251 if (visit_callee) { 14252 mark_prune_point(env, t); 14253 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14254 /* It's ok to allow recursion from CFG point of 14255 * view. __check_func_call() will do the actual 14256 * check. 14257 */ 14258 bpf_pseudo_func(insns + t)); 14259 } 14260 return ret; 14261 } 14262 14263 /* Visits the instruction at index t and returns one of the following: 14264 * < 0 - an error occurred 14265 * DONE_EXPLORING - the instruction was fully explored 14266 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14267 */ 14268 static int visit_insn(int t, struct bpf_verifier_env *env) 14269 { 14270 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14271 int ret; 14272 14273 if (bpf_pseudo_func(insn)) 14274 return visit_func_call_insn(t, insns, env, true); 14275 14276 /* All non-branch instructions have a single fall-through edge. */ 14277 if (BPF_CLASS(insn->code) != BPF_JMP && 14278 BPF_CLASS(insn->code) != BPF_JMP32) 14279 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14280 14281 switch (BPF_OP(insn->code)) { 14282 case BPF_EXIT: 14283 return DONE_EXPLORING; 14284 14285 case BPF_CALL: 14286 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14287 /* Mark this call insn as a prune point to trigger 14288 * is_state_visited() check before call itself is 14289 * processed by __check_func_call(). Otherwise new 14290 * async state will be pushed for further exploration. 14291 */ 14292 mark_prune_point(env, t); 14293 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14294 struct bpf_kfunc_call_arg_meta meta; 14295 14296 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14297 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14298 mark_prune_point(env, t); 14299 /* Checking and saving state checkpoints at iter_next() call 14300 * is crucial for fast convergence of open-coded iterator loop 14301 * logic, so we need to force it. If we don't do that, 14302 * is_state_visited() might skip saving a checkpoint, causing 14303 * unnecessarily long sequence of not checkpointed 14304 * instructions and jumps, leading to exhaustion of jump 14305 * history buffer, and potentially other undesired outcomes. 14306 * It is expected that with correct open-coded iterators 14307 * convergence will happen quickly, so we don't run a risk of 14308 * exhausting memory. 14309 */ 14310 mark_force_checkpoint(env, t); 14311 } 14312 } 14313 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14314 14315 case BPF_JA: 14316 if (BPF_SRC(insn->code) != BPF_K) 14317 return -EINVAL; 14318 14319 /* unconditional jump with single edge */ 14320 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14321 true); 14322 if (ret) 14323 return ret; 14324 14325 mark_prune_point(env, t + insn->off + 1); 14326 mark_jmp_point(env, t + insn->off + 1); 14327 14328 return ret; 14329 14330 default: 14331 /* conditional jump with two edges */ 14332 mark_prune_point(env, t); 14333 14334 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14335 if (ret) 14336 return ret; 14337 14338 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14339 } 14340 } 14341 14342 /* non-recursive depth-first-search to detect loops in BPF program 14343 * loop == back-edge in directed graph 14344 */ 14345 static int check_cfg(struct bpf_verifier_env *env) 14346 { 14347 int insn_cnt = env->prog->len; 14348 int *insn_stack, *insn_state; 14349 int ret = 0; 14350 int i; 14351 14352 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14353 if (!insn_state) 14354 return -ENOMEM; 14355 14356 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14357 if (!insn_stack) { 14358 kvfree(insn_state); 14359 return -ENOMEM; 14360 } 14361 14362 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14363 insn_stack[0] = 0; /* 0 is the first instruction */ 14364 env->cfg.cur_stack = 1; 14365 14366 while (env->cfg.cur_stack > 0) { 14367 int t = insn_stack[env->cfg.cur_stack - 1]; 14368 14369 ret = visit_insn(t, env); 14370 switch (ret) { 14371 case DONE_EXPLORING: 14372 insn_state[t] = EXPLORED; 14373 env->cfg.cur_stack--; 14374 break; 14375 case KEEP_EXPLORING: 14376 break; 14377 default: 14378 if (ret > 0) { 14379 verbose(env, "visit_insn internal bug\n"); 14380 ret = -EFAULT; 14381 } 14382 goto err_free; 14383 } 14384 } 14385 14386 if (env->cfg.cur_stack < 0) { 14387 verbose(env, "pop stack internal bug\n"); 14388 ret = -EFAULT; 14389 goto err_free; 14390 } 14391 14392 for (i = 0; i < insn_cnt; i++) { 14393 if (insn_state[i] != EXPLORED) { 14394 verbose(env, "unreachable insn %d\n", i); 14395 ret = -EINVAL; 14396 goto err_free; 14397 } 14398 } 14399 ret = 0; /* cfg looks good */ 14400 14401 err_free: 14402 kvfree(insn_state); 14403 kvfree(insn_stack); 14404 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14405 return ret; 14406 } 14407 14408 static int check_abnormal_return(struct bpf_verifier_env *env) 14409 { 14410 int i; 14411 14412 for (i = 1; i < env->subprog_cnt; i++) { 14413 if (env->subprog_info[i].has_ld_abs) { 14414 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14415 return -EINVAL; 14416 } 14417 if (env->subprog_info[i].has_tail_call) { 14418 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14419 return -EINVAL; 14420 } 14421 } 14422 return 0; 14423 } 14424 14425 /* The minimum supported BTF func info size */ 14426 #define MIN_BPF_FUNCINFO_SIZE 8 14427 #define MAX_FUNCINFO_REC_SIZE 252 14428 14429 static int check_btf_func(struct bpf_verifier_env *env, 14430 const union bpf_attr *attr, 14431 bpfptr_t uattr) 14432 { 14433 const struct btf_type *type, *func_proto, *ret_type; 14434 u32 i, nfuncs, urec_size, min_size; 14435 u32 krec_size = sizeof(struct bpf_func_info); 14436 struct bpf_func_info *krecord; 14437 struct bpf_func_info_aux *info_aux = NULL; 14438 struct bpf_prog *prog; 14439 const struct btf *btf; 14440 bpfptr_t urecord; 14441 u32 prev_offset = 0; 14442 bool scalar_return; 14443 int ret = -ENOMEM; 14444 14445 nfuncs = attr->func_info_cnt; 14446 if (!nfuncs) { 14447 if (check_abnormal_return(env)) 14448 return -EINVAL; 14449 return 0; 14450 } 14451 14452 if (nfuncs != env->subprog_cnt) { 14453 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14454 return -EINVAL; 14455 } 14456 14457 urec_size = attr->func_info_rec_size; 14458 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14459 urec_size > MAX_FUNCINFO_REC_SIZE || 14460 urec_size % sizeof(u32)) { 14461 verbose(env, "invalid func info rec size %u\n", urec_size); 14462 return -EINVAL; 14463 } 14464 14465 prog = env->prog; 14466 btf = prog->aux->btf; 14467 14468 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14469 min_size = min_t(u32, krec_size, urec_size); 14470 14471 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14472 if (!krecord) 14473 return -ENOMEM; 14474 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14475 if (!info_aux) 14476 goto err_free; 14477 14478 for (i = 0; i < nfuncs; i++) { 14479 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14480 if (ret) { 14481 if (ret == -E2BIG) { 14482 verbose(env, "nonzero tailing record in func info"); 14483 /* set the size kernel expects so loader can zero 14484 * out the rest of the record. 14485 */ 14486 if (copy_to_bpfptr_offset(uattr, 14487 offsetof(union bpf_attr, func_info_rec_size), 14488 &min_size, sizeof(min_size))) 14489 ret = -EFAULT; 14490 } 14491 goto err_free; 14492 } 14493 14494 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14495 ret = -EFAULT; 14496 goto err_free; 14497 } 14498 14499 /* check insn_off */ 14500 ret = -EINVAL; 14501 if (i == 0) { 14502 if (krecord[i].insn_off) { 14503 verbose(env, 14504 "nonzero insn_off %u for the first func info record", 14505 krecord[i].insn_off); 14506 goto err_free; 14507 } 14508 } else if (krecord[i].insn_off <= prev_offset) { 14509 verbose(env, 14510 "same or smaller insn offset (%u) than previous func info record (%u)", 14511 krecord[i].insn_off, prev_offset); 14512 goto err_free; 14513 } 14514 14515 if (env->subprog_info[i].start != krecord[i].insn_off) { 14516 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14517 goto err_free; 14518 } 14519 14520 /* check type_id */ 14521 type = btf_type_by_id(btf, krecord[i].type_id); 14522 if (!type || !btf_type_is_func(type)) { 14523 verbose(env, "invalid type id %d in func info", 14524 krecord[i].type_id); 14525 goto err_free; 14526 } 14527 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14528 14529 func_proto = btf_type_by_id(btf, type->type); 14530 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14531 /* btf_func_check() already verified it during BTF load */ 14532 goto err_free; 14533 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14534 scalar_return = 14535 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14536 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14537 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14538 goto err_free; 14539 } 14540 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14541 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14542 goto err_free; 14543 } 14544 14545 prev_offset = krecord[i].insn_off; 14546 bpfptr_add(&urecord, urec_size); 14547 } 14548 14549 prog->aux->func_info = krecord; 14550 prog->aux->func_info_cnt = nfuncs; 14551 prog->aux->func_info_aux = info_aux; 14552 return 0; 14553 14554 err_free: 14555 kvfree(krecord); 14556 kfree(info_aux); 14557 return ret; 14558 } 14559 14560 static void adjust_btf_func(struct bpf_verifier_env *env) 14561 { 14562 struct bpf_prog_aux *aux = env->prog->aux; 14563 int i; 14564 14565 if (!aux->func_info) 14566 return; 14567 14568 for (i = 0; i < env->subprog_cnt; i++) 14569 aux->func_info[i].insn_off = env->subprog_info[i].start; 14570 } 14571 14572 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14573 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14574 14575 static int check_btf_line(struct bpf_verifier_env *env, 14576 const union bpf_attr *attr, 14577 bpfptr_t uattr) 14578 { 14579 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14580 struct bpf_subprog_info *sub; 14581 struct bpf_line_info *linfo; 14582 struct bpf_prog *prog; 14583 const struct btf *btf; 14584 bpfptr_t ulinfo; 14585 int err; 14586 14587 nr_linfo = attr->line_info_cnt; 14588 if (!nr_linfo) 14589 return 0; 14590 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14591 return -EINVAL; 14592 14593 rec_size = attr->line_info_rec_size; 14594 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14595 rec_size > MAX_LINEINFO_REC_SIZE || 14596 rec_size & (sizeof(u32) - 1)) 14597 return -EINVAL; 14598 14599 /* Need to zero it in case the userspace may 14600 * pass in a smaller bpf_line_info object. 14601 */ 14602 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14603 GFP_KERNEL | __GFP_NOWARN); 14604 if (!linfo) 14605 return -ENOMEM; 14606 14607 prog = env->prog; 14608 btf = prog->aux->btf; 14609 14610 s = 0; 14611 sub = env->subprog_info; 14612 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14613 expected_size = sizeof(struct bpf_line_info); 14614 ncopy = min_t(u32, expected_size, rec_size); 14615 for (i = 0; i < nr_linfo; i++) { 14616 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14617 if (err) { 14618 if (err == -E2BIG) { 14619 verbose(env, "nonzero tailing record in line_info"); 14620 if (copy_to_bpfptr_offset(uattr, 14621 offsetof(union bpf_attr, line_info_rec_size), 14622 &expected_size, sizeof(expected_size))) 14623 err = -EFAULT; 14624 } 14625 goto err_free; 14626 } 14627 14628 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14629 err = -EFAULT; 14630 goto err_free; 14631 } 14632 14633 /* 14634 * Check insn_off to ensure 14635 * 1) strictly increasing AND 14636 * 2) bounded by prog->len 14637 * 14638 * The linfo[0].insn_off == 0 check logically falls into 14639 * the later "missing bpf_line_info for func..." case 14640 * because the first linfo[0].insn_off must be the 14641 * first sub also and the first sub must have 14642 * subprog_info[0].start == 0. 14643 */ 14644 if ((i && linfo[i].insn_off <= prev_offset) || 14645 linfo[i].insn_off >= prog->len) { 14646 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14647 i, linfo[i].insn_off, prev_offset, 14648 prog->len); 14649 err = -EINVAL; 14650 goto err_free; 14651 } 14652 14653 if (!prog->insnsi[linfo[i].insn_off].code) { 14654 verbose(env, 14655 "Invalid insn code at line_info[%u].insn_off\n", 14656 i); 14657 err = -EINVAL; 14658 goto err_free; 14659 } 14660 14661 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14662 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14663 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14664 err = -EINVAL; 14665 goto err_free; 14666 } 14667 14668 if (s != env->subprog_cnt) { 14669 if (linfo[i].insn_off == sub[s].start) { 14670 sub[s].linfo_idx = i; 14671 s++; 14672 } else if (sub[s].start < linfo[i].insn_off) { 14673 verbose(env, "missing bpf_line_info for func#%u\n", s); 14674 err = -EINVAL; 14675 goto err_free; 14676 } 14677 } 14678 14679 prev_offset = linfo[i].insn_off; 14680 bpfptr_add(&ulinfo, rec_size); 14681 } 14682 14683 if (s != env->subprog_cnt) { 14684 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 14685 env->subprog_cnt - s, s); 14686 err = -EINVAL; 14687 goto err_free; 14688 } 14689 14690 prog->aux->linfo = linfo; 14691 prog->aux->nr_linfo = nr_linfo; 14692 14693 return 0; 14694 14695 err_free: 14696 kvfree(linfo); 14697 return err; 14698 } 14699 14700 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 14701 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 14702 14703 static int check_core_relo(struct bpf_verifier_env *env, 14704 const union bpf_attr *attr, 14705 bpfptr_t uattr) 14706 { 14707 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 14708 struct bpf_core_relo core_relo = {}; 14709 struct bpf_prog *prog = env->prog; 14710 const struct btf *btf = prog->aux->btf; 14711 struct bpf_core_ctx ctx = { 14712 .log = &env->log, 14713 .btf = btf, 14714 }; 14715 bpfptr_t u_core_relo; 14716 int err; 14717 14718 nr_core_relo = attr->core_relo_cnt; 14719 if (!nr_core_relo) 14720 return 0; 14721 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 14722 return -EINVAL; 14723 14724 rec_size = attr->core_relo_rec_size; 14725 if (rec_size < MIN_CORE_RELO_SIZE || 14726 rec_size > MAX_CORE_RELO_SIZE || 14727 rec_size % sizeof(u32)) 14728 return -EINVAL; 14729 14730 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 14731 expected_size = sizeof(struct bpf_core_relo); 14732 ncopy = min_t(u32, expected_size, rec_size); 14733 14734 /* Unlike func_info and line_info, copy and apply each CO-RE 14735 * relocation record one at a time. 14736 */ 14737 for (i = 0; i < nr_core_relo; i++) { 14738 /* future proofing when sizeof(bpf_core_relo) changes */ 14739 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 14740 if (err) { 14741 if (err == -E2BIG) { 14742 verbose(env, "nonzero tailing record in core_relo"); 14743 if (copy_to_bpfptr_offset(uattr, 14744 offsetof(union bpf_attr, core_relo_rec_size), 14745 &expected_size, sizeof(expected_size))) 14746 err = -EFAULT; 14747 } 14748 break; 14749 } 14750 14751 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 14752 err = -EFAULT; 14753 break; 14754 } 14755 14756 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 14757 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 14758 i, core_relo.insn_off, prog->len); 14759 err = -EINVAL; 14760 break; 14761 } 14762 14763 err = bpf_core_apply(&ctx, &core_relo, i, 14764 &prog->insnsi[core_relo.insn_off / 8]); 14765 if (err) 14766 break; 14767 bpfptr_add(&u_core_relo, rec_size); 14768 } 14769 return err; 14770 } 14771 14772 static int check_btf_info(struct bpf_verifier_env *env, 14773 const union bpf_attr *attr, 14774 bpfptr_t uattr) 14775 { 14776 struct btf *btf; 14777 int err; 14778 14779 if (!attr->func_info_cnt && !attr->line_info_cnt) { 14780 if (check_abnormal_return(env)) 14781 return -EINVAL; 14782 return 0; 14783 } 14784 14785 btf = btf_get_by_fd(attr->prog_btf_fd); 14786 if (IS_ERR(btf)) 14787 return PTR_ERR(btf); 14788 if (btf_is_kernel(btf)) { 14789 btf_put(btf); 14790 return -EACCES; 14791 } 14792 env->prog->aux->btf = btf; 14793 14794 err = check_btf_func(env, attr, uattr); 14795 if (err) 14796 return err; 14797 14798 err = check_btf_line(env, attr, uattr); 14799 if (err) 14800 return err; 14801 14802 err = check_core_relo(env, attr, uattr); 14803 if (err) 14804 return err; 14805 14806 return 0; 14807 } 14808 14809 /* check %cur's range satisfies %old's */ 14810 static bool range_within(struct bpf_reg_state *old, 14811 struct bpf_reg_state *cur) 14812 { 14813 return old->umin_value <= cur->umin_value && 14814 old->umax_value >= cur->umax_value && 14815 old->smin_value <= cur->smin_value && 14816 old->smax_value >= cur->smax_value && 14817 old->u32_min_value <= cur->u32_min_value && 14818 old->u32_max_value >= cur->u32_max_value && 14819 old->s32_min_value <= cur->s32_min_value && 14820 old->s32_max_value >= cur->s32_max_value; 14821 } 14822 14823 /* If in the old state two registers had the same id, then they need to have 14824 * the same id in the new state as well. But that id could be different from 14825 * the old state, so we need to track the mapping from old to new ids. 14826 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 14827 * regs with old id 5 must also have new id 9 for the new state to be safe. But 14828 * regs with a different old id could still have new id 9, we don't care about 14829 * that. 14830 * So we look through our idmap to see if this old id has been seen before. If 14831 * so, we require the new id to match; otherwise, we add the id pair to the map. 14832 */ 14833 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 14834 { 14835 unsigned int i; 14836 14837 /* either both IDs should be set or both should be zero */ 14838 if (!!old_id != !!cur_id) 14839 return false; 14840 14841 if (old_id == 0) /* cur_id == 0 as well */ 14842 return true; 14843 14844 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 14845 if (!idmap[i].old) { 14846 /* Reached an empty slot; haven't seen this id before */ 14847 idmap[i].old = old_id; 14848 idmap[i].cur = cur_id; 14849 return true; 14850 } 14851 if (idmap[i].old == old_id) 14852 return idmap[i].cur == cur_id; 14853 } 14854 /* We ran out of idmap slots, which should be impossible */ 14855 WARN_ON_ONCE(1); 14856 return false; 14857 } 14858 14859 static void clean_func_state(struct bpf_verifier_env *env, 14860 struct bpf_func_state *st) 14861 { 14862 enum bpf_reg_liveness live; 14863 int i, j; 14864 14865 for (i = 0; i < BPF_REG_FP; i++) { 14866 live = st->regs[i].live; 14867 /* liveness must not touch this register anymore */ 14868 st->regs[i].live |= REG_LIVE_DONE; 14869 if (!(live & REG_LIVE_READ)) 14870 /* since the register is unused, clear its state 14871 * to make further comparison simpler 14872 */ 14873 __mark_reg_not_init(env, &st->regs[i]); 14874 } 14875 14876 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 14877 live = st->stack[i].spilled_ptr.live; 14878 /* liveness must not touch this stack slot anymore */ 14879 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 14880 if (!(live & REG_LIVE_READ)) { 14881 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 14882 for (j = 0; j < BPF_REG_SIZE; j++) 14883 st->stack[i].slot_type[j] = STACK_INVALID; 14884 } 14885 } 14886 } 14887 14888 static void clean_verifier_state(struct bpf_verifier_env *env, 14889 struct bpf_verifier_state *st) 14890 { 14891 int i; 14892 14893 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 14894 /* all regs in this state in all frames were already marked */ 14895 return; 14896 14897 for (i = 0; i <= st->curframe; i++) 14898 clean_func_state(env, st->frame[i]); 14899 } 14900 14901 /* the parentage chains form a tree. 14902 * the verifier states are added to state lists at given insn and 14903 * pushed into state stack for future exploration. 14904 * when the verifier reaches bpf_exit insn some of the verifer states 14905 * stored in the state lists have their final liveness state already, 14906 * but a lot of states will get revised from liveness point of view when 14907 * the verifier explores other branches. 14908 * Example: 14909 * 1: r0 = 1 14910 * 2: if r1 == 100 goto pc+1 14911 * 3: r0 = 2 14912 * 4: exit 14913 * when the verifier reaches exit insn the register r0 in the state list of 14914 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 14915 * of insn 2 and goes exploring further. At the insn 4 it will walk the 14916 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 14917 * 14918 * Since the verifier pushes the branch states as it sees them while exploring 14919 * the program the condition of walking the branch instruction for the second 14920 * time means that all states below this branch were already explored and 14921 * their final liveness marks are already propagated. 14922 * Hence when the verifier completes the search of state list in is_state_visited() 14923 * we can call this clean_live_states() function to mark all liveness states 14924 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 14925 * will not be used. 14926 * This function also clears the registers and stack for states that !READ 14927 * to simplify state merging. 14928 * 14929 * Important note here that walking the same branch instruction in the callee 14930 * doesn't meant that the states are DONE. The verifier has to compare 14931 * the callsites 14932 */ 14933 static void clean_live_states(struct bpf_verifier_env *env, int insn, 14934 struct bpf_verifier_state *cur) 14935 { 14936 struct bpf_verifier_state_list *sl; 14937 int i; 14938 14939 sl = *explored_state(env, insn); 14940 while (sl) { 14941 if (sl->state.branches) 14942 goto next; 14943 if (sl->state.insn_idx != insn || 14944 sl->state.curframe != cur->curframe) 14945 goto next; 14946 for (i = 0; i <= cur->curframe; i++) 14947 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 14948 goto next; 14949 clean_verifier_state(env, &sl->state); 14950 next: 14951 sl = sl->next; 14952 } 14953 } 14954 14955 static bool regs_exact(const struct bpf_reg_state *rold, 14956 const struct bpf_reg_state *rcur, 14957 struct bpf_id_pair *idmap) 14958 { 14959 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 14960 check_ids(rold->id, rcur->id, idmap) && 14961 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 14962 } 14963 14964 /* Returns true if (rold safe implies rcur safe) */ 14965 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 14966 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 14967 { 14968 if (!(rold->live & REG_LIVE_READ)) 14969 /* explored state didn't use this */ 14970 return true; 14971 if (rold->type == NOT_INIT) 14972 /* explored state can't have used this */ 14973 return true; 14974 if (rcur->type == NOT_INIT) 14975 return false; 14976 14977 /* Enforce that register types have to match exactly, including their 14978 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 14979 * rule. 14980 * 14981 * One can make a point that using a pointer register as unbounded 14982 * SCALAR would be technically acceptable, but this could lead to 14983 * pointer leaks because scalars are allowed to leak while pointers 14984 * are not. We could make this safe in special cases if root is 14985 * calling us, but it's probably not worth the hassle. 14986 * 14987 * Also, register types that are *not* MAYBE_NULL could technically be 14988 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 14989 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 14990 * to the same map). 14991 * However, if the old MAYBE_NULL register then got NULL checked, 14992 * doing so could have affected others with the same id, and we can't 14993 * check for that because we lost the id when we converted to 14994 * a non-MAYBE_NULL variant. 14995 * So, as a general rule we don't allow mixing MAYBE_NULL and 14996 * non-MAYBE_NULL registers as well. 14997 */ 14998 if (rold->type != rcur->type) 14999 return false; 15000 15001 switch (base_type(rold->type)) { 15002 case SCALAR_VALUE: 15003 if (regs_exact(rold, rcur, idmap)) 15004 return true; 15005 if (env->explore_alu_limits) 15006 return false; 15007 if (!rold->precise) 15008 return true; 15009 /* new val must satisfy old val knowledge */ 15010 return range_within(rold, rcur) && 15011 tnum_in(rold->var_off, rcur->var_off); 15012 case PTR_TO_MAP_KEY: 15013 case PTR_TO_MAP_VALUE: 15014 case PTR_TO_MEM: 15015 case PTR_TO_BUF: 15016 case PTR_TO_TP_BUFFER: 15017 /* If the new min/max/var_off satisfy the old ones and 15018 * everything else matches, we are OK. 15019 */ 15020 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15021 range_within(rold, rcur) && 15022 tnum_in(rold->var_off, rcur->var_off) && 15023 check_ids(rold->id, rcur->id, idmap) && 15024 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15025 case PTR_TO_PACKET_META: 15026 case PTR_TO_PACKET: 15027 /* We must have at least as much range as the old ptr 15028 * did, so that any accesses which were safe before are 15029 * still safe. This is true even if old range < old off, 15030 * since someone could have accessed through (ptr - k), or 15031 * even done ptr -= k in a register, to get a safe access. 15032 */ 15033 if (rold->range > rcur->range) 15034 return false; 15035 /* If the offsets don't match, we can't trust our alignment; 15036 * nor can we be sure that we won't fall out of range. 15037 */ 15038 if (rold->off != rcur->off) 15039 return false; 15040 /* id relations must be preserved */ 15041 if (!check_ids(rold->id, rcur->id, idmap)) 15042 return false; 15043 /* new val must satisfy old val knowledge */ 15044 return range_within(rold, rcur) && 15045 tnum_in(rold->var_off, rcur->var_off); 15046 case PTR_TO_STACK: 15047 /* two stack pointers are equal only if they're pointing to 15048 * the same stack frame, since fp-8 in foo != fp-8 in bar 15049 */ 15050 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15051 default: 15052 return regs_exact(rold, rcur, idmap); 15053 } 15054 } 15055 15056 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15057 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 15058 { 15059 int i, spi; 15060 15061 /* walk slots of the explored stack and ignore any additional 15062 * slots in the current stack, since explored(safe) state 15063 * didn't use them 15064 */ 15065 for (i = 0; i < old->allocated_stack; i++) { 15066 struct bpf_reg_state *old_reg, *cur_reg; 15067 15068 spi = i / BPF_REG_SIZE; 15069 15070 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15071 i += BPF_REG_SIZE - 1; 15072 /* explored state didn't use this */ 15073 continue; 15074 } 15075 15076 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15077 continue; 15078 15079 if (env->allow_uninit_stack && 15080 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15081 continue; 15082 15083 /* explored stack has more populated slots than current stack 15084 * and these slots were used 15085 */ 15086 if (i >= cur->allocated_stack) 15087 return false; 15088 15089 /* if old state was safe with misc data in the stack 15090 * it will be safe with zero-initialized stack. 15091 * The opposite is not true 15092 */ 15093 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15094 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15095 continue; 15096 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15097 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15098 /* Ex: old explored (safe) state has STACK_SPILL in 15099 * this stack slot, but current has STACK_MISC -> 15100 * this verifier states are not equivalent, 15101 * return false to continue verification of this path 15102 */ 15103 return false; 15104 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15105 continue; 15106 /* Both old and cur are having same slot_type */ 15107 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15108 case STACK_SPILL: 15109 /* when explored and current stack slot are both storing 15110 * spilled registers, check that stored pointers types 15111 * are the same as well. 15112 * Ex: explored safe path could have stored 15113 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15114 * but current path has stored: 15115 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15116 * such verifier states are not equivalent. 15117 * return false to continue verification of this path 15118 */ 15119 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15120 &cur->stack[spi].spilled_ptr, idmap)) 15121 return false; 15122 break; 15123 case STACK_DYNPTR: 15124 old_reg = &old->stack[spi].spilled_ptr; 15125 cur_reg = &cur->stack[spi].spilled_ptr; 15126 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15127 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15128 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15129 return false; 15130 break; 15131 case STACK_ITER: 15132 old_reg = &old->stack[spi].spilled_ptr; 15133 cur_reg = &cur->stack[spi].spilled_ptr; 15134 /* iter.depth is not compared between states as it 15135 * doesn't matter for correctness and would otherwise 15136 * prevent convergence; we maintain it only to prevent 15137 * infinite loop check triggering, see 15138 * iter_active_depths_differ() 15139 */ 15140 if (old_reg->iter.btf != cur_reg->iter.btf || 15141 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15142 old_reg->iter.state != cur_reg->iter.state || 15143 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15144 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15145 return false; 15146 break; 15147 case STACK_MISC: 15148 case STACK_ZERO: 15149 case STACK_INVALID: 15150 continue; 15151 /* Ensure that new unhandled slot types return false by default */ 15152 default: 15153 return false; 15154 } 15155 } 15156 return true; 15157 } 15158 15159 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15160 struct bpf_id_pair *idmap) 15161 { 15162 int i; 15163 15164 if (old->acquired_refs != cur->acquired_refs) 15165 return false; 15166 15167 for (i = 0; i < old->acquired_refs; i++) { 15168 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15169 return false; 15170 } 15171 15172 return true; 15173 } 15174 15175 /* compare two verifier states 15176 * 15177 * all states stored in state_list are known to be valid, since 15178 * verifier reached 'bpf_exit' instruction through them 15179 * 15180 * this function is called when verifier exploring different branches of 15181 * execution popped from the state stack. If it sees an old state that has 15182 * more strict register state and more strict stack state then this execution 15183 * branch doesn't need to be explored further, since verifier already 15184 * concluded that more strict state leads to valid finish. 15185 * 15186 * Therefore two states are equivalent if register state is more conservative 15187 * and explored stack state is more conservative than the current one. 15188 * Example: 15189 * explored current 15190 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15191 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15192 * 15193 * In other words if current stack state (one being explored) has more 15194 * valid slots than old one that already passed validation, it means 15195 * the verifier can stop exploring and conclude that current state is valid too 15196 * 15197 * Similarly with registers. If explored state has register type as invalid 15198 * whereas register type in current state is meaningful, it means that 15199 * the current state will reach 'bpf_exit' instruction safely 15200 */ 15201 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15202 struct bpf_func_state *cur) 15203 { 15204 int i; 15205 15206 for (i = 0; i < MAX_BPF_REG; i++) 15207 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15208 env->idmap_scratch)) 15209 return false; 15210 15211 if (!stacksafe(env, old, cur, env->idmap_scratch)) 15212 return false; 15213 15214 if (!refsafe(old, cur, env->idmap_scratch)) 15215 return false; 15216 15217 return true; 15218 } 15219 15220 static bool states_equal(struct bpf_verifier_env *env, 15221 struct bpf_verifier_state *old, 15222 struct bpf_verifier_state *cur) 15223 { 15224 int i; 15225 15226 if (old->curframe != cur->curframe) 15227 return false; 15228 15229 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 15230 15231 /* Verification state from speculative execution simulation 15232 * must never prune a non-speculative execution one. 15233 */ 15234 if (old->speculative && !cur->speculative) 15235 return false; 15236 15237 if (old->active_lock.ptr != cur->active_lock.ptr) 15238 return false; 15239 15240 /* Old and cur active_lock's have to be either both present 15241 * or both absent. 15242 */ 15243 if (!!old->active_lock.id != !!cur->active_lock.id) 15244 return false; 15245 15246 if (old->active_lock.id && 15247 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 15248 return false; 15249 15250 if (old->active_rcu_lock != cur->active_rcu_lock) 15251 return false; 15252 15253 /* for states to be equal callsites have to be the same 15254 * and all frame states need to be equivalent 15255 */ 15256 for (i = 0; i <= old->curframe; i++) { 15257 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15258 return false; 15259 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15260 return false; 15261 } 15262 return true; 15263 } 15264 15265 /* Return 0 if no propagation happened. Return negative error code if error 15266 * happened. Otherwise, return the propagated bit. 15267 */ 15268 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15269 struct bpf_reg_state *reg, 15270 struct bpf_reg_state *parent_reg) 15271 { 15272 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15273 u8 flag = reg->live & REG_LIVE_READ; 15274 int err; 15275 15276 /* When comes here, read flags of PARENT_REG or REG could be any of 15277 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15278 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15279 */ 15280 if (parent_flag == REG_LIVE_READ64 || 15281 /* Or if there is no read flag from REG. */ 15282 !flag || 15283 /* Or if the read flag from REG is the same as PARENT_REG. */ 15284 parent_flag == flag) 15285 return 0; 15286 15287 err = mark_reg_read(env, reg, parent_reg, flag); 15288 if (err) 15289 return err; 15290 15291 return flag; 15292 } 15293 15294 /* A write screens off any subsequent reads; but write marks come from the 15295 * straight-line code between a state and its parent. When we arrive at an 15296 * equivalent state (jump target or such) we didn't arrive by the straight-line 15297 * code, so read marks in the state must propagate to the parent regardless 15298 * of the state's write marks. That's what 'parent == state->parent' comparison 15299 * in mark_reg_read() is for. 15300 */ 15301 static int propagate_liveness(struct bpf_verifier_env *env, 15302 const struct bpf_verifier_state *vstate, 15303 struct bpf_verifier_state *vparent) 15304 { 15305 struct bpf_reg_state *state_reg, *parent_reg; 15306 struct bpf_func_state *state, *parent; 15307 int i, frame, err = 0; 15308 15309 if (vparent->curframe != vstate->curframe) { 15310 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15311 vparent->curframe, vstate->curframe); 15312 return -EFAULT; 15313 } 15314 /* Propagate read liveness of registers... */ 15315 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15316 for (frame = 0; frame <= vstate->curframe; frame++) { 15317 parent = vparent->frame[frame]; 15318 state = vstate->frame[frame]; 15319 parent_reg = parent->regs; 15320 state_reg = state->regs; 15321 /* We don't need to worry about FP liveness, it's read-only */ 15322 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15323 err = propagate_liveness_reg(env, &state_reg[i], 15324 &parent_reg[i]); 15325 if (err < 0) 15326 return err; 15327 if (err == REG_LIVE_READ64) 15328 mark_insn_zext(env, &parent_reg[i]); 15329 } 15330 15331 /* Propagate stack slots. */ 15332 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15333 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15334 parent_reg = &parent->stack[i].spilled_ptr; 15335 state_reg = &state->stack[i].spilled_ptr; 15336 err = propagate_liveness_reg(env, state_reg, 15337 parent_reg); 15338 if (err < 0) 15339 return err; 15340 } 15341 } 15342 return 0; 15343 } 15344 15345 /* find precise scalars in the previous equivalent state and 15346 * propagate them into the current state 15347 */ 15348 static int propagate_precision(struct bpf_verifier_env *env, 15349 const struct bpf_verifier_state *old) 15350 { 15351 struct bpf_reg_state *state_reg; 15352 struct bpf_func_state *state; 15353 int i, err = 0, fr; 15354 bool first; 15355 15356 for (fr = old->curframe; fr >= 0; fr--) { 15357 state = old->frame[fr]; 15358 state_reg = state->regs; 15359 first = true; 15360 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15361 if (state_reg->type != SCALAR_VALUE || 15362 !state_reg->precise || 15363 !(state_reg->live & REG_LIVE_READ)) 15364 continue; 15365 if (env->log.level & BPF_LOG_LEVEL2) { 15366 if (first) 15367 verbose(env, "frame %d: propagating r%d", fr, i); 15368 else 15369 verbose(env, ",r%d", i); 15370 } 15371 bt_set_frame_reg(&env->bt, fr, i); 15372 first = false; 15373 } 15374 15375 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15376 if (!is_spilled_reg(&state->stack[i])) 15377 continue; 15378 state_reg = &state->stack[i].spilled_ptr; 15379 if (state_reg->type != SCALAR_VALUE || 15380 !state_reg->precise || 15381 !(state_reg->live & REG_LIVE_READ)) 15382 continue; 15383 if (env->log.level & BPF_LOG_LEVEL2) { 15384 if (first) 15385 verbose(env, "frame %d: propagating fp%d", 15386 fr, (-i - 1) * BPF_REG_SIZE); 15387 else 15388 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15389 } 15390 bt_set_frame_slot(&env->bt, fr, i); 15391 first = false; 15392 } 15393 if (!first) 15394 verbose(env, "\n"); 15395 } 15396 15397 err = mark_chain_precision_batch(env); 15398 if (err < 0) 15399 return err; 15400 15401 return 0; 15402 } 15403 15404 static bool states_maybe_looping(struct bpf_verifier_state *old, 15405 struct bpf_verifier_state *cur) 15406 { 15407 struct bpf_func_state *fold, *fcur; 15408 int i, fr = cur->curframe; 15409 15410 if (old->curframe != fr) 15411 return false; 15412 15413 fold = old->frame[fr]; 15414 fcur = cur->frame[fr]; 15415 for (i = 0; i < MAX_BPF_REG; i++) 15416 if (memcmp(&fold->regs[i], &fcur->regs[i], 15417 offsetof(struct bpf_reg_state, parent))) 15418 return false; 15419 return true; 15420 } 15421 15422 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15423 { 15424 return env->insn_aux_data[insn_idx].is_iter_next; 15425 } 15426 15427 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15428 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15429 * states to match, which otherwise would look like an infinite loop. So while 15430 * iter_next() calls are taken care of, we still need to be careful and 15431 * prevent erroneous and too eager declaration of "ininite loop", when 15432 * iterators are involved. 15433 * 15434 * Here's a situation in pseudo-BPF assembly form: 15435 * 15436 * 0: again: ; set up iter_next() call args 15437 * 1: r1 = &it ; <CHECKPOINT HERE> 15438 * 2: call bpf_iter_num_next ; this is iter_next() call 15439 * 3: if r0 == 0 goto done 15440 * 4: ... something useful here ... 15441 * 5: goto again ; another iteration 15442 * 6: done: 15443 * 7: r1 = &it 15444 * 8: call bpf_iter_num_destroy ; clean up iter state 15445 * 9: exit 15446 * 15447 * This is a typical loop. Let's assume that we have a prune point at 1:, 15448 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15449 * again`, assuming other heuristics don't get in a way). 15450 * 15451 * When we first time come to 1:, let's say we have some state X. We proceed 15452 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15453 * Now we come back to validate that forked ACTIVE state. We proceed through 15454 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15455 * are converging. But the problem is that we don't know that yet, as this 15456 * convergence has to happen at iter_next() call site only. So if nothing is 15457 * done, at 1: verifier will use bounded loop logic and declare infinite 15458 * looping (and would be *technically* correct, if not for iterator's 15459 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15460 * don't want that. So what we do in process_iter_next_call() when we go on 15461 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15462 * a different iteration. So when we suspect an infinite loop, we additionally 15463 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15464 * pretend we are not looping and wait for next iter_next() call. 15465 * 15466 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15467 * loop, because that would actually mean infinite loop, as DRAINED state is 15468 * "sticky", and so we'll keep returning into the same instruction with the 15469 * same state (at least in one of possible code paths). 15470 * 15471 * This approach allows to keep infinite loop heuristic even in the face of 15472 * active iterator. E.g., C snippet below is and will be detected as 15473 * inifintely looping: 15474 * 15475 * struct bpf_iter_num it; 15476 * int *p, x; 15477 * 15478 * bpf_iter_num_new(&it, 0, 10); 15479 * while ((p = bpf_iter_num_next(&t))) { 15480 * x = p; 15481 * while (x--) {} // <<-- infinite loop here 15482 * } 15483 * 15484 */ 15485 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15486 { 15487 struct bpf_reg_state *slot, *cur_slot; 15488 struct bpf_func_state *state; 15489 int i, fr; 15490 15491 for (fr = old->curframe; fr >= 0; fr--) { 15492 state = old->frame[fr]; 15493 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15494 if (state->stack[i].slot_type[0] != STACK_ITER) 15495 continue; 15496 15497 slot = &state->stack[i].spilled_ptr; 15498 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15499 continue; 15500 15501 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15502 if (cur_slot->iter.depth != slot->iter.depth) 15503 return true; 15504 } 15505 } 15506 return false; 15507 } 15508 15509 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15510 { 15511 struct bpf_verifier_state_list *new_sl; 15512 struct bpf_verifier_state_list *sl, **pprev; 15513 struct bpf_verifier_state *cur = env->cur_state, *new; 15514 int i, j, err, states_cnt = 0; 15515 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15516 bool add_new_state = force_new_state; 15517 15518 /* bpf progs typically have pruning point every 4 instructions 15519 * http://vger.kernel.org/bpfconf2019.html#session-1 15520 * Do not add new state for future pruning if the verifier hasn't seen 15521 * at least 2 jumps and at least 8 instructions. 15522 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15523 * In tests that amounts to up to 50% reduction into total verifier 15524 * memory consumption and 20% verifier time speedup. 15525 */ 15526 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15527 env->insn_processed - env->prev_insn_processed >= 8) 15528 add_new_state = true; 15529 15530 pprev = explored_state(env, insn_idx); 15531 sl = *pprev; 15532 15533 clean_live_states(env, insn_idx, cur); 15534 15535 while (sl) { 15536 states_cnt++; 15537 if (sl->state.insn_idx != insn_idx) 15538 goto next; 15539 15540 if (sl->state.branches) { 15541 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15542 15543 if (frame->in_async_callback_fn && 15544 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15545 /* Different async_entry_cnt means that the verifier is 15546 * processing another entry into async callback. 15547 * Seeing the same state is not an indication of infinite 15548 * loop or infinite recursion. 15549 * But finding the same state doesn't mean that it's safe 15550 * to stop processing the current state. The previous state 15551 * hasn't yet reached bpf_exit, since state.branches > 0. 15552 * Checking in_async_callback_fn alone is not enough either. 15553 * Since the verifier still needs to catch infinite loops 15554 * inside async callbacks. 15555 */ 15556 goto skip_inf_loop_check; 15557 } 15558 /* BPF open-coded iterators loop detection is special. 15559 * states_maybe_looping() logic is too simplistic in detecting 15560 * states that *might* be equivalent, because it doesn't know 15561 * about ID remapping, so don't even perform it. 15562 * See process_iter_next_call() and iter_active_depths_differ() 15563 * for overview of the logic. When current and one of parent 15564 * states are detected as equivalent, it's a good thing: we prove 15565 * convergence and can stop simulating further iterations. 15566 * It's safe to assume that iterator loop will finish, taking into 15567 * account iter_next() contract of eventually returning 15568 * sticky NULL result. 15569 */ 15570 if (is_iter_next_insn(env, insn_idx)) { 15571 if (states_equal(env, &sl->state, cur)) { 15572 struct bpf_func_state *cur_frame; 15573 struct bpf_reg_state *iter_state, *iter_reg; 15574 int spi; 15575 15576 cur_frame = cur->frame[cur->curframe]; 15577 /* btf_check_iter_kfuncs() enforces that 15578 * iter state pointer is always the first arg 15579 */ 15580 iter_reg = &cur_frame->regs[BPF_REG_1]; 15581 /* current state is valid due to states_equal(), 15582 * so we can assume valid iter and reg state, 15583 * no need for extra (re-)validations 15584 */ 15585 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15586 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15587 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15588 goto hit; 15589 } 15590 goto skip_inf_loop_check; 15591 } 15592 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15593 if (states_maybe_looping(&sl->state, cur) && 15594 states_equal(env, &sl->state, cur) && 15595 !iter_active_depths_differ(&sl->state, cur)) { 15596 verbose_linfo(env, insn_idx, "; "); 15597 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15598 return -EINVAL; 15599 } 15600 /* if the verifier is processing a loop, avoid adding new state 15601 * too often, since different loop iterations have distinct 15602 * states and may not help future pruning. 15603 * This threshold shouldn't be too low to make sure that 15604 * a loop with large bound will be rejected quickly. 15605 * The most abusive loop will be: 15606 * r1 += 1 15607 * if r1 < 1000000 goto pc-2 15608 * 1M insn_procssed limit / 100 == 10k peak states. 15609 * This threshold shouldn't be too high either, since states 15610 * at the end of the loop are likely to be useful in pruning. 15611 */ 15612 skip_inf_loop_check: 15613 if (!force_new_state && 15614 env->jmps_processed - env->prev_jmps_processed < 20 && 15615 env->insn_processed - env->prev_insn_processed < 100) 15616 add_new_state = false; 15617 goto miss; 15618 } 15619 if (states_equal(env, &sl->state, cur)) { 15620 hit: 15621 sl->hit_cnt++; 15622 /* reached equivalent register/stack state, 15623 * prune the search. 15624 * Registers read by the continuation are read by us. 15625 * If we have any write marks in env->cur_state, they 15626 * will prevent corresponding reads in the continuation 15627 * from reaching our parent (an explored_state). Our 15628 * own state will get the read marks recorded, but 15629 * they'll be immediately forgotten as we're pruning 15630 * this state and will pop a new one. 15631 */ 15632 err = propagate_liveness(env, &sl->state, cur); 15633 15634 /* if previous state reached the exit with precision and 15635 * current state is equivalent to it (except precsion marks) 15636 * the precision needs to be propagated back in 15637 * the current state. 15638 */ 15639 err = err ? : push_jmp_history(env, cur); 15640 err = err ? : propagate_precision(env, &sl->state); 15641 if (err) 15642 return err; 15643 return 1; 15644 } 15645 miss: 15646 /* when new state is not going to be added do not increase miss count. 15647 * Otherwise several loop iterations will remove the state 15648 * recorded earlier. The goal of these heuristics is to have 15649 * states from some iterations of the loop (some in the beginning 15650 * and some at the end) to help pruning. 15651 */ 15652 if (add_new_state) 15653 sl->miss_cnt++; 15654 /* heuristic to determine whether this state is beneficial 15655 * to keep checking from state equivalence point of view. 15656 * Higher numbers increase max_states_per_insn and verification time, 15657 * but do not meaningfully decrease insn_processed. 15658 */ 15659 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 15660 /* the state is unlikely to be useful. Remove it to 15661 * speed up verification 15662 */ 15663 *pprev = sl->next; 15664 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 15665 u32 br = sl->state.branches; 15666 15667 WARN_ONCE(br, 15668 "BUG live_done but branches_to_explore %d\n", 15669 br); 15670 free_verifier_state(&sl->state, false); 15671 kfree(sl); 15672 env->peak_states--; 15673 } else { 15674 /* cannot free this state, since parentage chain may 15675 * walk it later. Add it for free_list instead to 15676 * be freed at the end of verification 15677 */ 15678 sl->next = env->free_list; 15679 env->free_list = sl; 15680 } 15681 sl = *pprev; 15682 continue; 15683 } 15684 next: 15685 pprev = &sl->next; 15686 sl = *pprev; 15687 } 15688 15689 if (env->max_states_per_insn < states_cnt) 15690 env->max_states_per_insn = states_cnt; 15691 15692 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 15693 return 0; 15694 15695 if (!add_new_state) 15696 return 0; 15697 15698 /* There were no equivalent states, remember the current one. 15699 * Technically the current state is not proven to be safe yet, 15700 * but it will either reach outer most bpf_exit (which means it's safe) 15701 * or it will be rejected. When there are no loops the verifier won't be 15702 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 15703 * again on the way to bpf_exit. 15704 * When looping the sl->state.branches will be > 0 and this state 15705 * will not be considered for equivalence until branches == 0. 15706 */ 15707 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 15708 if (!new_sl) 15709 return -ENOMEM; 15710 env->total_states++; 15711 env->peak_states++; 15712 env->prev_jmps_processed = env->jmps_processed; 15713 env->prev_insn_processed = env->insn_processed; 15714 15715 /* forget precise markings we inherited, see __mark_chain_precision */ 15716 if (env->bpf_capable) 15717 mark_all_scalars_imprecise(env, cur); 15718 15719 /* add new state to the head of linked list */ 15720 new = &new_sl->state; 15721 err = copy_verifier_state(new, cur); 15722 if (err) { 15723 free_verifier_state(new, false); 15724 kfree(new_sl); 15725 return err; 15726 } 15727 new->insn_idx = insn_idx; 15728 WARN_ONCE(new->branches != 1, 15729 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 15730 15731 cur->parent = new; 15732 cur->first_insn_idx = insn_idx; 15733 clear_jmp_history(cur); 15734 new_sl->next = *explored_state(env, insn_idx); 15735 *explored_state(env, insn_idx) = new_sl; 15736 /* connect new state to parentage chain. Current frame needs all 15737 * registers connected. Only r6 - r9 of the callers are alive (pushed 15738 * to the stack implicitly by JITs) so in callers' frames connect just 15739 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 15740 * the state of the call instruction (with WRITTEN set), and r0 comes 15741 * from callee with its full parentage chain, anyway. 15742 */ 15743 /* clear write marks in current state: the writes we did are not writes 15744 * our child did, so they don't screen off its reads from us. 15745 * (There are no read marks in current state, because reads always mark 15746 * their parent and current state never has children yet. Only 15747 * explored_states can get read marks.) 15748 */ 15749 for (j = 0; j <= cur->curframe; j++) { 15750 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 15751 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 15752 for (i = 0; i < BPF_REG_FP; i++) 15753 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 15754 } 15755 15756 /* all stack frames are accessible from callee, clear them all */ 15757 for (j = 0; j <= cur->curframe; j++) { 15758 struct bpf_func_state *frame = cur->frame[j]; 15759 struct bpf_func_state *newframe = new->frame[j]; 15760 15761 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 15762 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 15763 frame->stack[i].spilled_ptr.parent = 15764 &newframe->stack[i].spilled_ptr; 15765 } 15766 } 15767 return 0; 15768 } 15769 15770 /* Return true if it's OK to have the same insn return a different type. */ 15771 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 15772 { 15773 switch (base_type(type)) { 15774 case PTR_TO_CTX: 15775 case PTR_TO_SOCKET: 15776 case PTR_TO_SOCK_COMMON: 15777 case PTR_TO_TCP_SOCK: 15778 case PTR_TO_XDP_SOCK: 15779 case PTR_TO_BTF_ID: 15780 return false; 15781 default: 15782 return true; 15783 } 15784 } 15785 15786 /* If an instruction was previously used with particular pointer types, then we 15787 * need to be careful to avoid cases such as the below, where it may be ok 15788 * for one branch accessing the pointer, but not ok for the other branch: 15789 * 15790 * R1 = sock_ptr 15791 * goto X; 15792 * ... 15793 * R1 = some_other_valid_ptr; 15794 * goto X; 15795 * ... 15796 * R2 = *(u32 *)(R1 + 0); 15797 */ 15798 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 15799 { 15800 return src != prev && (!reg_type_mismatch_ok(src) || 15801 !reg_type_mismatch_ok(prev)); 15802 } 15803 15804 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 15805 bool allow_trust_missmatch) 15806 { 15807 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 15808 15809 if (*prev_type == NOT_INIT) { 15810 /* Saw a valid insn 15811 * dst_reg = *(u32 *)(src_reg + off) 15812 * save type to validate intersecting paths 15813 */ 15814 *prev_type = type; 15815 } else if (reg_type_mismatch(type, *prev_type)) { 15816 /* Abuser program is trying to use the same insn 15817 * dst_reg = *(u32*) (src_reg + off) 15818 * with different pointer types: 15819 * src_reg == ctx in one branch and 15820 * src_reg == stack|map in some other branch. 15821 * Reject it. 15822 */ 15823 if (allow_trust_missmatch && 15824 base_type(type) == PTR_TO_BTF_ID && 15825 base_type(*prev_type) == PTR_TO_BTF_ID) { 15826 /* 15827 * Have to support a use case when one path through 15828 * the program yields TRUSTED pointer while another 15829 * is UNTRUSTED. Fallback to UNTRUSTED to generate 15830 * BPF_PROBE_MEM. 15831 */ 15832 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 15833 } else { 15834 verbose(env, "same insn cannot be used with different pointers\n"); 15835 return -EINVAL; 15836 } 15837 } 15838 15839 return 0; 15840 } 15841 15842 static int do_check(struct bpf_verifier_env *env) 15843 { 15844 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 15845 struct bpf_verifier_state *state = env->cur_state; 15846 struct bpf_insn *insns = env->prog->insnsi; 15847 struct bpf_reg_state *regs; 15848 int insn_cnt = env->prog->len; 15849 bool do_print_state = false; 15850 int prev_insn_idx = -1; 15851 15852 for (;;) { 15853 struct bpf_insn *insn; 15854 u8 class; 15855 int err; 15856 15857 env->prev_insn_idx = prev_insn_idx; 15858 if (env->insn_idx >= insn_cnt) { 15859 verbose(env, "invalid insn idx %d insn_cnt %d\n", 15860 env->insn_idx, insn_cnt); 15861 return -EFAULT; 15862 } 15863 15864 insn = &insns[env->insn_idx]; 15865 class = BPF_CLASS(insn->code); 15866 15867 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 15868 verbose(env, 15869 "BPF program is too large. Processed %d insn\n", 15870 env->insn_processed); 15871 return -E2BIG; 15872 } 15873 15874 state->last_insn_idx = env->prev_insn_idx; 15875 15876 if (is_prune_point(env, env->insn_idx)) { 15877 err = is_state_visited(env, env->insn_idx); 15878 if (err < 0) 15879 return err; 15880 if (err == 1) { 15881 /* found equivalent state, can prune the search */ 15882 if (env->log.level & BPF_LOG_LEVEL) { 15883 if (do_print_state) 15884 verbose(env, "\nfrom %d to %d%s: safe\n", 15885 env->prev_insn_idx, env->insn_idx, 15886 env->cur_state->speculative ? 15887 " (speculative execution)" : ""); 15888 else 15889 verbose(env, "%d: safe\n", env->insn_idx); 15890 } 15891 goto process_bpf_exit; 15892 } 15893 } 15894 15895 if (is_jmp_point(env, env->insn_idx)) { 15896 err = push_jmp_history(env, state); 15897 if (err) 15898 return err; 15899 } 15900 15901 if (signal_pending(current)) 15902 return -EAGAIN; 15903 15904 if (need_resched()) 15905 cond_resched(); 15906 15907 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 15908 verbose(env, "\nfrom %d to %d%s:", 15909 env->prev_insn_idx, env->insn_idx, 15910 env->cur_state->speculative ? 15911 " (speculative execution)" : ""); 15912 print_verifier_state(env, state->frame[state->curframe], true); 15913 do_print_state = false; 15914 } 15915 15916 if (env->log.level & BPF_LOG_LEVEL) { 15917 const struct bpf_insn_cbs cbs = { 15918 .cb_call = disasm_kfunc_name, 15919 .cb_print = verbose, 15920 .private_data = env, 15921 }; 15922 15923 if (verifier_state_scratched(env)) 15924 print_insn_state(env, state->frame[state->curframe]); 15925 15926 verbose_linfo(env, env->insn_idx, "; "); 15927 env->prev_log_pos = env->log.end_pos; 15928 verbose(env, "%d: ", env->insn_idx); 15929 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 15930 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 15931 env->prev_log_pos = env->log.end_pos; 15932 } 15933 15934 if (bpf_prog_is_offloaded(env->prog->aux)) { 15935 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 15936 env->prev_insn_idx); 15937 if (err) 15938 return err; 15939 } 15940 15941 regs = cur_regs(env); 15942 sanitize_mark_insn_seen(env); 15943 prev_insn_idx = env->insn_idx; 15944 15945 if (class == BPF_ALU || class == BPF_ALU64) { 15946 err = check_alu_op(env, insn); 15947 if (err) 15948 return err; 15949 15950 } else if (class == BPF_LDX) { 15951 enum bpf_reg_type src_reg_type; 15952 15953 /* check for reserved fields is already done */ 15954 15955 /* check src operand */ 15956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15957 if (err) 15958 return err; 15959 15960 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15961 if (err) 15962 return err; 15963 15964 src_reg_type = regs[insn->src_reg].type; 15965 15966 /* check that memory (src_reg + off) is readable, 15967 * the state of dst_reg will be updated by this func 15968 */ 15969 err = check_mem_access(env, env->insn_idx, insn->src_reg, 15970 insn->off, BPF_SIZE(insn->code), 15971 BPF_READ, insn->dst_reg, false); 15972 if (err) 15973 return err; 15974 15975 err = save_aux_ptr_type(env, src_reg_type, true); 15976 if (err) 15977 return err; 15978 } else if (class == BPF_STX) { 15979 enum bpf_reg_type dst_reg_type; 15980 15981 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 15982 err = check_atomic(env, env->insn_idx, insn); 15983 if (err) 15984 return err; 15985 env->insn_idx++; 15986 continue; 15987 } 15988 15989 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 15990 verbose(env, "BPF_STX uses reserved fields\n"); 15991 return -EINVAL; 15992 } 15993 15994 /* check src1 operand */ 15995 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15996 if (err) 15997 return err; 15998 /* check src2 operand */ 15999 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16000 if (err) 16001 return err; 16002 16003 dst_reg_type = regs[insn->dst_reg].type; 16004 16005 /* check that memory (dst_reg + off) is writeable */ 16006 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16007 insn->off, BPF_SIZE(insn->code), 16008 BPF_WRITE, insn->src_reg, false); 16009 if (err) 16010 return err; 16011 16012 err = save_aux_ptr_type(env, dst_reg_type, false); 16013 if (err) 16014 return err; 16015 } else if (class == BPF_ST) { 16016 enum bpf_reg_type dst_reg_type; 16017 16018 if (BPF_MODE(insn->code) != BPF_MEM || 16019 insn->src_reg != BPF_REG_0) { 16020 verbose(env, "BPF_ST uses reserved fields\n"); 16021 return -EINVAL; 16022 } 16023 /* check src operand */ 16024 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16025 if (err) 16026 return err; 16027 16028 dst_reg_type = regs[insn->dst_reg].type; 16029 16030 /* check that memory (dst_reg + off) is writeable */ 16031 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16032 insn->off, BPF_SIZE(insn->code), 16033 BPF_WRITE, -1, false); 16034 if (err) 16035 return err; 16036 16037 err = save_aux_ptr_type(env, dst_reg_type, false); 16038 if (err) 16039 return err; 16040 } else if (class == BPF_JMP || class == BPF_JMP32) { 16041 u8 opcode = BPF_OP(insn->code); 16042 16043 env->jmps_processed++; 16044 if (opcode == BPF_CALL) { 16045 if (BPF_SRC(insn->code) != BPF_K || 16046 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16047 && insn->off != 0) || 16048 (insn->src_reg != BPF_REG_0 && 16049 insn->src_reg != BPF_PSEUDO_CALL && 16050 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16051 insn->dst_reg != BPF_REG_0 || 16052 class == BPF_JMP32) { 16053 verbose(env, "BPF_CALL uses reserved fields\n"); 16054 return -EINVAL; 16055 } 16056 16057 if (env->cur_state->active_lock.ptr) { 16058 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16059 (insn->src_reg == BPF_PSEUDO_CALL) || 16060 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16061 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16062 verbose(env, "function calls are not allowed while holding a lock\n"); 16063 return -EINVAL; 16064 } 16065 } 16066 if (insn->src_reg == BPF_PSEUDO_CALL) 16067 err = check_func_call(env, insn, &env->insn_idx); 16068 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16069 err = check_kfunc_call(env, insn, &env->insn_idx); 16070 else 16071 err = check_helper_call(env, insn, &env->insn_idx); 16072 if (err) 16073 return err; 16074 16075 mark_reg_scratched(env, BPF_REG_0); 16076 } else if (opcode == BPF_JA) { 16077 if (BPF_SRC(insn->code) != BPF_K || 16078 insn->imm != 0 || 16079 insn->src_reg != BPF_REG_0 || 16080 insn->dst_reg != BPF_REG_0 || 16081 class == BPF_JMP32) { 16082 verbose(env, "BPF_JA uses reserved fields\n"); 16083 return -EINVAL; 16084 } 16085 16086 env->insn_idx += insn->off + 1; 16087 continue; 16088 16089 } else if (opcode == BPF_EXIT) { 16090 if (BPF_SRC(insn->code) != BPF_K || 16091 insn->imm != 0 || 16092 insn->src_reg != BPF_REG_0 || 16093 insn->dst_reg != BPF_REG_0 || 16094 class == BPF_JMP32) { 16095 verbose(env, "BPF_EXIT uses reserved fields\n"); 16096 return -EINVAL; 16097 } 16098 16099 if (env->cur_state->active_lock.ptr && 16100 !in_rbtree_lock_required_cb(env)) { 16101 verbose(env, "bpf_spin_unlock is missing\n"); 16102 return -EINVAL; 16103 } 16104 16105 if (env->cur_state->active_rcu_lock) { 16106 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16107 return -EINVAL; 16108 } 16109 16110 /* We must do check_reference_leak here before 16111 * prepare_func_exit to handle the case when 16112 * state->curframe > 0, it may be a callback 16113 * function, for which reference_state must 16114 * match caller reference state when it exits. 16115 */ 16116 err = check_reference_leak(env); 16117 if (err) 16118 return err; 16119 16120 if (state->curframe) { 16121 /* exit from nested function */ 16122 err = prepare_func_exit(env, &env->insn_idx); 16123 if (err) 16124 return err; 16125 do_print_state = true; 16126 continue; 16127 } 16128 16129 err = check_return_code(env); 16130 if (err) 16131 return err; 16132 process_bpf_exit: 16133 mark_verifier_state_scratched(env); 16134 update_branch_counts(env, env->cur_state); 16135 err = pop_stack(env, &prev_insn_idx, 16136 &env->insn_idx, pop_log); 16137 if (err < 0) { 16138 if (err != -ENOENT) 16139 return err; 16140 break; 16141 } else { 16142 do_print_state = true; 16143 continue; 16144 } 16145 } else { 16146 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16147 if (err) 16148 return err; 16149 } 16150 } else if (class == BPF_LD) { 16151 u8 mode = BPF_MODE(insn->code); 16152 16153 if (mode == BPF_ABS || mode == BPF_IND) { 16154 err = check_ld_abs(env, insn); 16155 if (err) 16156 return err; 16157 16158 } else if (mode == BPF_IMM) { 16159 err = check_ld_imm(env, insn); 16160 if (err) 16161 return err; 16162 16163 env->insn_idx++; 16164 sanitize_mark_insn_seen(env); 16165 } else { 16166 verbose(env, "invalid BPF_LD mode\n"); 16167 return -EINVAL; 16168 } 16169 } else { 16170 verbose(env, "unknown insn class %d\n", class); 16171 return -EINVAL; 16172 } 16173 16174 env->insn_idx++; 16175 } 16176 16177 return 0; 16178 } 16179 16180 static int find_btf_percpu_datasec(struct btf *btf) 16181 { 16182 const struct btf_type *t; 16183 const char *tname; 16184 int i, n; 16185 16186 /* 16187 * Both vmlinux and module each have their own ".data..percpu" 16188 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16189 * types to look at only module's own BTF types. 16190 */ 16191 n = btf_nr_types(btf); 16192 if (btf_is_module(btf)) 16193 i = btf_nr_types(btf_vmlinux); 16194 else 16195 i = 1; 16196 16197 for(; i < n; i++) { 16198 t = btf_type_by_id(btf, i); 16199 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16200 continue; 16201 16202 tname = btf_name_by_offset(btf, t->name_off); 16203 if (!strcmp(tname, ".data..percpu")) 16204 return i; 16205 } 16206 16207 return -ENOENT; 16208 } 16209 16210 /* replace pseudo btf_id with kernel symbol address */ 16211 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16212 struct bpf_insn *insn, 16213 struct bpf_insn_aux_data *aux) 16214 { 16215 const struct btf_var_secinfo *vsi; 16216 const struct btf_type *datasec; 16217 struct btf_mod_pair *btf_mod; 16218 const struct btf_type *t; 16219 const char *sym_name; 16220 bool percpu = false; 16221 u32 type, id = insn->imm; 16222 struct btf *btf; 16223 s32 datasec_id; 16224 u64 addr; 16225 int i, btf_fd, err; 16226 16227 btf_fd = insn[1].imm; 16228 if (btf_fd) { 16229 btf = btf_get_by_fd(btf_fd); 16230 if (IS_ERR(btf)) { 16231 verbose(env, "invalid module BTF object FD specified.\n"); 16232 return -EINVAL; 16233 } 16234 } else { 16235 if (!btf_vmlinux) { 16236 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16237 return -EINVAL; 16238 } 16239 btf = btf_vmlinux; 16240 btf_get(btf); 16241 } 16242 16243 t = btf_type_by_id(btf, id); 16244 if (!t) { 16245 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16246 err = -ENOENT; 16247 goto err_put; 16248 } 16249 16250 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16251 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16252 err = -EINVAL; 16253 goto err_put; 16254 } 16255 16256 sym_name = btf_name_by_offset(btf, t->name_off); 16257 addr = kallsyms_lookup_name(sym_name); 16258 if (!addr) { 16259 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16260 sym_name); 16261 err = -ENOENT; 16262 goto err_put; 16263 } 16264 insn[0].imm = (u32)addr; 16265 insn[1].imm = addr >> 32; 16266 16267 if (btf_type_is_func(t)) { 16268 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16269 aux->btf_var.mem_size = 0; 16270 goto check_btf; 16271 } 16272 16273 datasec_id = find_btf_percpu_datasec(btf); 16274 if (datasec_id > 0) { 16275 datasec = btf_type_by_id(btf, datasec_id); 16276 for_each_vsi(i, datasec, vsi) { 16277 if (vsi->type == id) { 16278 percpu = true; 16279 break; 16280 } 16281 } 16282 } 16283 16284 type = t->type; 16285 t = btf_type_skip_modifiers(btf, type, NULL); 16286 if (percpu) { 16287 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16288 aux->btf_var.btf = btf; 16289 aux->btf_var.btf_id = type; 16290 } else if (!btf_type_is_struct(t)) { 16291 const struct btf_type *ret; 16292 const char *tname; 16293 u32 tsize; 16294 16295 /* resolve the type size of ksym. */ 16296 ret = btf_resolve_size(btf, t, &tsize); 16297 if (IS_ERR(ret)) { 16298 tname = btf_name_by_offset(btf, t->name_off); 16299 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16300 tname, PTR_ERR(ret)); 16301 err = -EINVAL; 16302 goto err_put; 16303 } 16304 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16305 aux->btf_var.mem_size = tsize; 16306 } else { 16307 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16308 aux->btf_var.btf = btf; 16309 aux->btf_var.btf_id = type; 16310 } 16311 check_btf: 16312 /* check whether we recorded this BTF (and maybe module) already */ 16313 for (i = 0; i < env->used_btf_cnt; i++) { 16314 if (env->used_btfs[i].btf == btf) { 16315 btf_put(btf); 16316 return 0; 16317 } 16318 } 16319 16320 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16321 err = -E2BIG; 16322 goto err_put; 16323 } 16324 16325 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16326 btf_mod->btf = btf; 16327 btf_mod->module = NULL; 16328 16329 /* if we reference variables from kernel module, bump its refcount */ 16330 if (btf_is_module(btf)) { 16331 btf_mod->module = btf_try_get_module(btf); 16332 if (!btf_mod->module) { 16333 err = -ENXIO; 16334 goto err_put; 16335 } 16336 } 16337 16338 env->used_btf_cnt++; 16339 16340 return 0; 16341 err_put: 16342 btf_put(btf); 16343 return err; 16344 } 16345 16346 static bool is_tracing_prog_type(enum bpf_prog_type type) 16347 { 16348 switch (type) { 16349 case BPF_PROG_TYPE_KPROBE: 16350 case BPF_PROG_TYPE_TRACEPOINT: 16351 case BPF_PROG_TYPE_PERF_EVENT: 16352 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16353 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16354 return true; 16355 default: 16356 return false; 16357 } 16358 } 16359 16360 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16361 struct bpf_map *map, 16362 struct bpf_prog *prog) 16363 16364 { 16365 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16366 16367 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16368 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16369 if (is_tracing_prog_type(prog_type)) { 16370 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16371 return -EINVAL; 16372 } 16373 } 16374 16375 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16376 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16377 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16378 return -EINVAL; 16379 } 16380 16381 if (is_tracing_prog_type(prog_type)) { 16382 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16383 return -EINVAL; 16384 } 16385 16386 if (prog->aux->sleepable) { 16387 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16388 return -EINVAL; 16389 } 16390 } 16391 16392 if (btf_record_has_field(map->record, BPF_TIMER)) { 16393 if (is_tracing_prog_type(prog_type)) { 16394 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16395 return -EINVAL; 16396 } 16397 } 16398 16399 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16400 !bpf_offload_prog_map_match(prog, map)) { 16401 verbose(env, "offload device mismatch between prog and map\n"); 16402 return -EINVAL; 16403 } 16404 16405 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16406 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16407 return -EINVAL; 16408 } 16409 16410 if (prog->aux->sleepable) 16411 switch (map->map_type) { 16412 case BPF_MAP_TYPE_HASH: 16413 case BPF_MAP_TYPE_LRU_HASH: 16414 case BPF_MAP_TYPE_ARRAY: 16415 case BPF_MAP_TYPE_PERCPU_HASH: 16416 case BPF_MAP_TYPE_PERCPU_ARRAY: 16417 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16418 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16419 case BPF_MAP_TYPE_HASH_OF_MAPS: 16420 case BPF_MAP_TYPE_RINGBUF: 16421 case BPF_MAP_TYPE_USER_RINGBUF: 16422 case BPF_MAP_TYPE_INODE_STORAGE: 16423 case BPF_MAP_TYPE_SK_STORAGE: 16424 case BPF_MAP_TYPE_TASK_STORAGE: 16425 case BPF_MAP_TYPE_CGRP_STORAGE: 16426 break; 16427 default: 16428 verbose(env, 16429 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16430 return -EINVAL; 16431 } 16432 16433 return 0; 16434 } 16435 16436 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16437 { 16438 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16439 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16440 } 16441 16442 /* find and rewrite pseudo imm in ld_imm64 instructions: 16443 * 16444 * 1. if it accesses map FD, replace it with actual map pointer. 16445 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16446 * 16447 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16448 */ 16449 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16450 { 16451 struct bpf_insn *insn = env->prog->insnsi; 16452 int insn_cnt = env->prog->len; 16453 int i, j, err; 16454 16455 err = bpf_prog_calc_tag(env->prog); 16456 if (err) 16457 return err; 16458 16459 for (i = 0; i < insn_cnt; i++, insn++) { 16460 if (BPF_CLASS(insn->code) == BPF_LDX && 16461 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16462 verbose(env, "BPF_LDX uses reserved fields\n"); 16463 return -EINVAL; 16464 } 16465 16466 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16467 struct bpf_insn_aux_data *aux; 16468 struct bpf_map *map; 16469 struct fd f; 16470 u64 addr; 16471 u32 fd; 16472 16473 if (i == insn_cnt - 1 || insn[1].code != 0 || 16474 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16475 insn[1].off != 0) { 16476 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16477 return -EINVAL; 16478 } 16479 16480 if (insn[0].src_reg == 0) 16481 /* valid generic load 64-bit imm */ 16482 goto next_insn; 16483 16484 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16485 aux = &env->insn_aux_data[i]; 16486 err = check_pseudo_btf_id(env, insn, aux); 16487 if (err) 16488 return err; 16489 goto next_insn; 16490 } 16491 16492 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16493 aux = &env->insn_aux_data[i]; 16494 aux->ptr_type = PTR_TO_FUNC; 16495 goto next_insn; 16496 } 16497 16498 /* In final convert_pseudo_ld_imm64() step, this is 16499 * converted into regular 64-bit imm load insn. 16500 */ 16501 switch (insn[0].src_reg) { 16502 case BPF_PSEUDO_MAP_VALUE: 16503 case BPF_PSEUDO_MAP_IDX_VALUE: 16504 break; 16505 case BPF_PSEUDO_MAP_FD: 16506 case BPF_PSEUDO_MAP_IDX: 16507 if (insn[1].imm == 0) 16508 break; 16509 fallthrough; 16510 default: 16511 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16512 return -EINVAL; 16513 } 16514 16515 switch (insn[0].src_reg) { 16516 case BPF_PSEUDO_MAP_IDX_VALUE: 16517 case BPF_PSEUDO_MAP_IDX: 16518 if (bpfptr_is_null(env->fd_array)) { 16519 verbose(env, "fd_idx without fd_array is invalid\n"); 16520 return -EPROTO; 16521 } 16522 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16523 insn[0].imm * sizeof(fd), 16524 sizeof(fd))) 16525 return -EFAULT; 16526 break; 16527 default: 16528 fd = insn[0].imm; 16529 break; 16530 } 16531 16532 f = fdget(fd); 16533 map = __bpf_map_get(f); 16534 if (IS_ERR(map)) { 16535 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16536 insn[0].imm); 16537 return PTR_ERR(map); 16538 } 16539 16540 err = check_map_prog_compatibility(env, map, env->prog); 16541 if (err) { 16542 fdput(f); 16543 return err; 16544 } 16545 16546 aux = &env->insn_aux_data[i]; 16547 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16548 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16549 addr = (unsigned long)map; 16550 } else { 16551 u32 off = insn[1].imm; 16552 16553 if (off >= BPF_MAX_VAR_OFF) { 16554 verbose(env, "direct value offset of %u is not allowed\n", off); 16555 fdput(f); 16556 return -EINVAL; 16557 } 16558 16559 if (!map->ops->map_direct_value_addr) { 16560 verbose(env, "no direct value access support for this map type\n"); 16561 fdput(f); 16562 return -EINVAL; 16563 } 16564 16565 err = map->ops->map_direct_value_addr(map, &addr, off); 16566 if (err) { 16567 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16568 map->value_size, off); 16569 fdput(f); 16570 return err; 16571 } 16572 16573 aux->map_off = off; 16574 addr += off; 16575 } 16576 16577 insn[0].imm = (u32)addr; 16578 insn[1].imm = addr >> 32; 16579 16580 /* check whether we recorded this map already */ 16581 for (j = 0; j < env->used_map_cnt; j++) { 16582 if (env->used_maps[j] == map) { 16583 aux->map_index = j; 16584 fdput(f); 16585 goto next_insn; 16586 } 16587 } 16588 16589 if (env->used_map_cnt >= MAX_USED_MAPS) { 16590 fdput(f); 16591 return -E2BIG; 16592 } 16593 16594 /* hold the map. If the program is rejected by verifier, 16595 * the map will be released by release_maps() or it 16596 * will be used by the valid program until it's unloaded 16597 * and all maps are released in free_used_maps() 16598 */ 16599 bpf_map_inc(map); 16600 16601 aux->map_index = env->used_map_cnt; 16602 env->used_maps[env->used_map_cnt++] = map; 16603 16604 if (bpf_map_is_cgroup_storage(map) && 16605 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16606 verbose(env, "only one cgroup storage of each type is allowed\n"); 16607 fdput(f); 16608 return -EBUSY; 16609 } 16610 16611 fdput(f); 16612 next_insn: 16613 insn++; 16614 i++; 16615 continue; 16616 } 16617 16618 /* Basic sanity check before we invest more work here. */ 16619 if (!bpf_opcode_in_insntable(insn->code)) { 16620 verbose(env, "unknown opcode %02x\n", insn->code); 16621 return -EINVAL; 16622 } 16623 } 16624 16625 /* now all pseudo BPF_LD_IMM64 instructions load valid 16626 * 'struct bpf_map *' into a register instead of user map_fd. 16627 * These pointers will be used later by verifier to validate map access. 16628 */ 16629 return 0; 16630 } 16631 16632 /* drop refcnt of maps used by the rejected program */ 16633 static void release_maps(struct bpf_verifier_env *env) 16634 { 16635 __bpf_free_used_maps(env->prog->aux, env->used_maps, 16636 env->used_map_cnt); 16637 } 16638 16639 /* drop refcnt of maps used by the rejected program */ 16640 static void release_btfs(struct bpf_verifier_env *env) 16641 { 16642 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 16643 env->used_btf_cnt); 16644 } 16645 16646 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 16647 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 16648 { 16649 struct bpf_insn *insn = env->prog->insnsi; 16650 int insn_cnt = env->prog->len; 16651 int i; 16652 16653 for (i = 0; i < insn_cnt; i++, insn++) { 16654 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 16655 continue; 16656 if (insn->src_reg == BPF_PSEUDO_FUNC) 16657 continue; 16658 insn->src_reg = 0; 16659 } 16660 } 16661 16662 /* single env->prog->insni[off] instruction was replaced with the range 16663 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 16664 * [0, off) and [off, end) to new locations, so the patched range stays zero 16665 */ 16666 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 16667 struct bpf_insn_aux_data *new_data, 16668 struct bpf_prog *new_prog, u32 off, u32 cnt) 16669 { 16670 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 16671 struct bpf_insn *insn = new_prog->insnsi; 16672 u32 old_seen = old_data[off].seen; 16673 u32 prog_len; 16674 int i; 16675 16676 /* aux info at OFF always needs adjustment, no matter fast path 16677 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 16678 * original insn at old prog. 16679 */ 16680 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 16681 16682 if (cnt == 1) 16683 return; 16684 prog_len = new_prog->len; 16685 16686 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 16687 memcpy(new_data + off + cnt - 1, old_data + off, 16688 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 16689 for (i = off; i < off + cnt - 1; i++) { 16690 /* Expand insni[off]'s seen count to the patched range. */ 16691 new_data[i].seen = old_seen; 16692 new_data[i].zext_dst = insn_has_def32(env, insn + i); 16693 } 16694 env->insn_aux_data = new_data; 16695 vfree(old_data); 16696 } 16697 16698 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 16699 { 16700 int i; 16701 16702 if (len == 1) 16703 return; 16704 /* NOTE: fake 'exit' subprog should be updated as well. */ 16705 for (i = 0; i <= env->subprog_cnt; i++) { 16706 if (env->subprog_info[i].start <= off) 16707 continue; 16708 env->subprog_info[i].start += len - 1; 16709 } 16710 } 16711 16712 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 16713 { 16714 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 16715 int i, sz = prog->aux->size_poke_tab; 16716 struct bpf_jit_poke_descriptor *desc; 16717 16718 for (i = 0; i < sz; i++) { 16719 desc = &tab[i]; 16720 if (desc->insn_idx <= off) 16721 continue; 16722 desc->insn_idx += len - 1; 16723 } 16724 } 16725 16726 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 16727 const struct bpf_insn *patch, u32 len) 16728 { 16729 struct bpf_prog *new_prog; 16730 struct bpf_insn_aux_data *new_data = NULL; 16731 16732 if (len > 1) { 16733 new_data = vzalloc(array_size(env->prog->len + len - 1, 16734 sizeof(struct bpf_insn_aux_data))); 16735 if (!new_data) 16736 return NULL; 16737 } 16738 16739 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 16740 if (IS_ERR(new_prog)) { 16741 if (PTR_ERR(new_prog) == -ERANGE) 16742 verbose(env, 16743 "insn %d cannot be patched due to 16-bit range\n", 16744 env->insn_aux_data[off].orig_idx); 16745 vfree(new_data); 16746 return NULL; 16747 } 16748 adjust_insn_aux_data(env, new_data, new_prog, off, len); 16749 adjust_subprog_starts(env, off, len); 16750 adjust_poke_descs(new_prog, off, len); 16751 return new_prog; 16752 } 16753 16754 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 16755 u32 off, u32 cnt) 16756 { 16757 int i, j; 16758 16759 /* find first prog starting at or after off (first to remove) */ 16760 for (i = 0; i < env->subprog_cnt; i++) 16761 if (env->subprog_info[i].start >= off) 16762 break; 16763 /* find first prog starting at or after off + cnt (first to stay) */ 16764 for (j = i; j < env->subprog_cnt; j++) 16765 if (env->subprog_info[j].start >= off + cnt) 16766 break; 16767 /* if j doesn't start exactly at off + cnt, we are just removing 16768 * the front of previous prog 16769 */ 16770 if (env->subprog_info[j].start != off + cnt) 16771 j--; 16772 16773 if (j > i) { 16774 struct bpf_prog_aux *aux = env->prog->aux; 16775 int move; 16776 16777 /* move fake 'exit' subprog as well */ 16778 move = env->subprog_cnt + 1 - j; 16779 16780 memmove(env->subprog_info + i, 16781 env->subprog_info + j, 16782 sizeof(*env->subprog_info) * move); 16783 env->subprog_cnt -= j - i; 16784 16785 /* remove func_info */ 16786 if (aux->func_info) { 16787 move = aux->func_info_cnt - j; 16788 16789 memmove(aux->func_info + i, 16790 aux->func_info + j, 16791 sizeof(*aux->func_info) * move); 16792 aux->func_info_cnt -= j - i; 16793 /* func_info->insn_off is set after all code rewrites, 16794 * in adjust_btf_func() - no need to adjust 16795 */ 16796 } 16797 } else { 16798 /* convert i from "first prog to remove" to "first to adjust" */ 16799 if (env->subprog_info[i].start == off) 16800 i++; 16801 } 16802 16803 /* update fake 'exit' subprog as well */ 16804 for (; i <= env->subprog_cnt; i++) 16805 env->subprog_info[i].start -= cnt; 16806 16807 return 0; 16808 } 16809 16810 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 16811 u32 cnt) 16812 { 16813 struct bpf_prog *prog = env->prog; 16814 u32 i, l_off, l_cnt, nr_linfo; 16815 struct bpf_line_info *linfo; 16816 16817 nr_linfo = prog->aux->nr_linfo; 16818 if (!nr_linfo) 16819 return 0; 16820 16821 linfo = prog->aux->linfo; 16822 16823 /* find first line info to remove, count lines to be removed */ 16824 for (i = 0; i < nr_linfo; i++) 16825 if (linfo[i].insn_off >= off) 16826 break; 16827 16828 l_off = i; 16829 l_cnt = 0; 16830 for (; i < nr_linfo; i++) 16831 if (linfo[i].insn_off < off + cnt) 16832 l_cnt++; 16833 else 16834 break; 16835 16836 /* First live insn doesn't match first live linfo, it needs to "inherit" 16837 * last removed linfo. prog is already modified, so prog->len == off 16838 * means no live instructions after (tail of the program was removed). 16839 */ 16840 if (prog->len != off && l_cnt && 16841 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 16842 l_cnt--; 16843 linfo[--i].insn_off = off + cnt; 16844 } 16845 16846 /* remove the line info which refer to the removed instructions */ 16847 if (l_cnt) { 16848 memmove(linfo + l_off, linfo + i, 16849 sizeof(*linfo) * (nr_linfo - i)); 16850 16851 prog->aux->nr_linfo -= l_cnt; 16852 nr_linfo = prog->aux->nr_linfo; 16853 } 16854 16855 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 16856 for (i = l_off; i < nr_linfo; i++) 16857 linfo[i].insn_off -= cnt; 16858 16859 /* fix up all subprogs (incl. 'exit') which start >= off */ 16860 for (i = 0; i <= env->subprog_cnt; i++) 16861 if (env->subprog_info[i].linfo_idx > l_off) { 16862 /* program may have started in the removed region but 16863 * may not be fully removed 16864 */ 16865 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 16866 env->subprog_info[i].linfo_idx -= l_cnt; 16867 else 16868 env->subprog_info[i].linfo_idx = l_off; 16869 } 16870 16871 return 0; 16872 } 16873 16874 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 16875 { 16876 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 16877 unsigned int orig_prog_len = env->prog->len; 16878 int err; 16879 16880 if (bpf_prog_is_offloaded(env->prog->aux)) 16881 bpf_prog_offload_remove_insns(env, off, cnt); 16882 16883 err = bpf_remove_insns(env->prog, off, cnt); 16884 if (err) 16885 return err; 16886 16887 err = adjust_subprog_starts_after_remove(env, off, cnt); 16888 if (err) 16889 return err; 16890 16891 err = bpf_adj_linfo_after_remove(env, off, cnt); 16892 if (err) 16893 return err; 16894 16895 memmove(aux_data + off, aux_data + off + cnt, 16896 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 16897 16898 return 0; 16899 } 16900 16901 /* The verifier does more data flow analysis than llvm and will not 16902 * explore branches that are dead at run time. Malicious programs can 16903 * have dead code too. Therefore replace all dead at-run-time code 16904 * with 'ja -1'. 16905 * 16906 * Just nops are not optimal, e.g. if they would sit at the end of the 16907 * program and through another bug we would manage to jump there, then 16908 * we'd execute beyond program memory otherwise. Returning exception 16909 * code also wouldn't work since we can have subprogs where the dead 16910 * code could be located. 16911 */ 16912 static void sanitize_dead_code(struct bpf_verifier_env *env) 16913 { 16914 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 16915 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 16916 struct bpf_insn *insn = env->prog->insnsi; 16917 const int insn_cnt = env->prog->len; 16918 int i; 16919 16920 for (i = 0; i < insn_cnt; i++) { 16921 if (aux_data[i].seen) 16922 continue; 16923 memcpy(insn + i, &trap, sizeof(trap)); 16924 aux_data[i].zext_dst = false; 16925 } 16926 } 16927 16928 static bool insn_is_cond_jump(u8 code) 16929 { 16930 u8 op; 16931 16932 if (BPF_CLASS(code) == BPF_JMP32) 16933 return true; 16934 16935 if (BPF_CLASS(code) != BPF_JMP) 16936 return false; 16937 16938 op = BPF_OP(code); 16939 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 16940 } 16941 16942 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 16943 { 16944 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 16945 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 16946 struct bpf_insn *insn = env->prog->insnsi; 16947 const int insn_cnt = env->prog->len; 16948 int i; 16949 16950 for (i = 0; i < insn_cnt; i++, insn++) { 16951 if (!insn_is_cond_jump(insn->code)) 16952 continue; 16953 16954 if (!aux_data[i + 1].seen) 16955 ja.off = insn->off; 16956 else if (!aux_data[i + 1 + insn->off].seen) 16957 ja.off = 0; 16958 else 16959 continue; 16960 16961 if (bpf_prog_is_offloaded(env->prog->aux)) 16962 bpf_prog_offload_replace_insn(env, i, &ja); 16963 16964 memcpy(insn, &ja, sizeof(ja)); 16965 } 16966 } 16967 16968 static int opt_remove_dead_code(struct bpf_verifier_env *env) 16969 { 16970 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 16971 int insn_cnt = env->prog->len; 16972 int i, err; 16973 16974 for (i = 0; i < insn_cnt; i++) { 16975 int j; 16976 16977 j = 0; 16978 while (i + j < insn_cnt && !aux_data[i + j].seen) 16979 j++; 16980 if (!j) 16981 continue; 16982 16983 err = verifier_remove_insns(env, i, j); 16984 if (err) 16985 return err; 16986 insn_cnt = env->prog->len; 16987 } 16988 16989 return 0; 16990 } 16991 16992 static int opt_remove_nops(struct bpf_verifier_env *env) 16993 { 16994 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 16995 struct bpf_insn *insn = env->prog->insnsi; 16996 int insn_cnt = env->prog->len; 16997 int i, err; 16998 16999 for (i = 0; i < insn_cnt; i++) { 17000 if (memcmp(&insn[i], &ja, sizeof(ja))) 17001 continue; 17002 17003 err = verifier_remove_insns(env, i, 1); 17004 if (err) 17005 return err; 17006 insn_cnt--; 17007 i--; 17008 } 17009 17010 return 0; 17011 } 17012 17013 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17014 const union bpf_attr *attr) 17015 { 17016 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17017 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17018 int i, patch_len, delta = 0, len = env->prog->len; 17019 struct bpf_insn *insns = env->prog->insnsi; 17020 struct bpf_prog *new_prog; 17021 bool rnd_hi32; 17022 17023 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17024 zext_patch[1] = BPF_ZEXT_REG(0); 17025 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17026 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17027 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17028 for (i = 0; i < len; i++) { 17029 int adj_idx = i + delta; 17030 struct bpf_insn insn; 17031 int load_reg; 17032 17033 insn = insns[adj_idx]; 17034 load_reg = insn_def_regno(&insn); 17035 if (!aux[adj_idx].zext_dst) { 17036 u8 code, class; 17037 u32 imm_rnd; 17038 17039 if (!rnd_hi32) 17040 continue; 17041 17042 code = insn.code; 17043 class = BPF_CLASS(code); 17044 if (load_reg == -1) 17045 continue; 17046 17047 /* NOTE: arg "reg" (the fourth one) is only used for 17048 * BPF_STX + SRC_OP, so it is safe to pass NULL 17049 * here. 17050 */ 17051 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17052 if (class == BPF_LD && 17053 BPF_MODE(code) == BPF_IMM) 17054 i++; 17055 continue; 17056 } 17057 17058 /* ctx load could be transformed into wider load. */ 17059 if (class == BPF_LDX && 17060 aux[adj_idx].ptr_type == PTR_TO_CTX) 17061 continue; 17062 17063 imm_rnd = get_random_u32(); 17064 rnd_hi32_patch[0] = insn; 17065 rnd_hi32_patch[1].imm = imm_rnd; 17066 rnd_hi32_patch[3].dst_reg = load_reg; 17067 patch = rnd_hi32_patch; 17068 patch_len = 4; 17069 goto apply_patch_buffer; 17070 } 17071 17072 /* Add in an zero-extend instruction if a) the JIT has requested 17073 * it or b) it's a CMPXCHG. 17074 * 17075 * The latter is because: BPF_CMPXCHG always loads a value into 17076 * R0, therefore always zero-extends. However some archs' 17077 * equivalent instruction only does this load when the 17078 * comparison is successful. This detail of CMPXCHG is 17079 * orthogonal to the general zero-extension behaviour of the 17080 * CPU, so it's treated independently of bpf_jit_needs_zext. 17081 */ 17082 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17083 continue; 17084 17085 /* Zero-extension is done by the caller. */ 17086 if (bpf_pseudo_kfunc_call(&insn)) 17087 continue; 17088 17089 if (WARN_ON(load_reg == -1)) { 17090 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17091 return -EFAULT; 17092 } 17093 17094 zext_patch[0] = insn; 17095 zext_patch[1].dst_reg = load_reg; 17096 zext_patch[1].src_reg = load_reg; 17097 patch = zext_patch; 17098 patch_len = 2; 17099 apply_patch_buffer: 17100 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17101 if (!new_prog) 17102 return -ENOMEM; 17103 env->prog = new_prog; 17104 insns = new_prog->insnsi; 17105 aux = env->insn_aux_data; 17106 delta += patch_len - 1; 17107 } 17108 17109 return 0; 17110 } 17111 17112 /* convert load instructions that access fields of a context type into a 17113 * sequence of instructions that access fields of the underlying structure: 17114 * struct __sk_buff -> struct sk_buff 17115 * struct bpf_sock_ops -> struct sock 17116 */ 17117 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17118 { 17119 const struct bpf_verifier_ops *ops = env->ops; 17120 int i, cnt, size, ctx_field_size, delta = 0; 17121 const int insn_cnt = env->prog->len; 17122 struct bpf_insn insn_buf[16], *insn; 17123 u32 target_size, size_default, off; 17124 struct bpf_prog *new_prog; 17125 enum bpf_access_type type; 17126 bool is_narrower_load; 17127 17128 if (ops->gen_prologue || env->seen_direct_write) { 17129 if (!ops->gen_prologue) { 17130 verbose(env, "bpf verifier is misconfigured\n"); 17131 return -EINVAL; 17132 } 17133 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17134 env->prog); 17135 if (cnt >= ARRAY_SIZE(insn_buf)) { 17136 verbose(env, "bpf verifier is misconfigured\n"); 17137 return -EINVAL; 17138 } else if (cnt) { 17139 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17140 if (!new_prog) 17141 return -ENOMEM; 17142 17143 env->prog = new_prog; 17144 delta += cnt - 1; 17145 } 17146 } 17147 17148 if (bpf_prog_is_offloaded(env->prog->aux)) 17149 return 0; 17150 17151 insn = env->prog->insnsi + delta; 17152 17153 for (i = 0; i < insn_cnt; i++, insn++) { 17154 bpf_convert_ctx_access_t convert_ctx_access; 17155 17156 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17157 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17158 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17159 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17160 type = BPF_READ; 17161 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17162 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17163 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17164 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17165 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17166 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17167 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17168 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17169 type = BPF_WRITE; 17170 } else { 17171 continue; 17172 } 17173 17174 if (type == BPF_WRITE && 17175 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17176 struct bpf_insn patch[] = { 17177 *insn, 17178 BPF_ST_NOSPEC(), 17179 }; 17180 17181 cnt = ARRAY_SIZE(patch); 17182 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17183 if (!new_prog) 17184 return -ENOMEM; 17185 17186 delta += cnt - 1; 17187 env->prog = new_prog; 17188 insn = new_prog->insnsi + i + delta; 17189 continue; 17190 } 17191 17192 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17193 case PTR_TO_CTX: 17194 if (!ops->convert_ctx_access) 17195 continue; 17196 convert_ctx_access = ops->convert_ctx_access; 17197 break; 17198 case PTR_TO_SOCKET: 17199 case PTR_TO_SOCK_COMMON: 17200 convert_ctx_access = bpf_sock_convert_ctx_access; 17201 break; 17202 case PTR_TO_TCP_SOCK: 17203 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17204 break; 17205 case PTR_TO_XDP_SOCK: 17206 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17207 break; 17208 case PTR_TO_BTF_ID: 17209 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17210 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17211 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17212 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17213 * any faults for loads into such types. BPF_WRITE is disallowed 17214 * for this case. 17215 */ 17216 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17217 if (type == BPF_READ) { 17218 insn->code = BPF_LDX | BPF_PROBE_MEM | 17219 BPF_SIZE((insn)->code); 17220 env->prog->aux->num_exentries++; 17221 } 17222 continue; 17223 default: 17224 continue; 17225 } 17226 17227 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17228 size = BPF_LDST_BYTES(insn); 17229 17230 /* If the read access is a narrower load of the field, 17231 * convert to a 4/8-byte load, to minimum program type specific 17232 * convert_ctx_access changes. If conversion is successful, 17233 * we will apply proper mask to the result. 17234 */ 17235 is_narrower_load = size < ctx_field_size; 17236 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17237 off = insn->off; 17238 if (is_narrower_load) { 17239 u8 size_code; 17240 17241 if (type == BPF_WRITE) { 17242 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17243 return -EINVAL; 17244 } 17245 17246 size_code = BPF_H; 17247 if (ctx_field_size == 4) 17248 size_code = BPF_W; 17249 else if (ctx_field_size == 8) 17250 size_code = BPF_DW; 17251 17252 insn->off = off & ~(size_default - 1); 17253 insn->code = BPF_LDX | BPF_MEM | size_code; 17254 } 17255 17256 target_size = 0; 17257 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17258 &target_size); 17259 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17260 (ctx_field_size && !target_size)) { 17261 verbose(env, "bpf verifier is misconfigured\n"); 17262 return -EINVAL; 17263 } 17264 17265 if (is_narrower_load && size < target_size) { 17266 u8 shift = bpf_ctx_narrow_access_offset( 17267 off, size, size_default) * 8; 17268 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17269 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17270 return -EINVAL; 17271 } 17272 if (ctx_field_size <= 4) { 17273 if (shift) 17274 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17275 insn->dst_reg, 17276 shift); 17277 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17278 (1 << size * 8) - 1); 17279 } else { 17280 if (shift) 17281 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17282 insn->dst_reg, 17283 shift); 17284 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 17285 (1ULL << size * 8) - 1); 17286 } 17287 } 17288 17289 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17290 if (!new_prog) 17291 return -ENOMEM; 17292 17293 delta += cnt - 1; 17294 17295 /* keep walking new program and skip insns we just inserted */ 17296 env->prog = new_prog; 17297 insn = new_prog->insnsi + i + delta; 17298 } 17299 17300 return 0; 17301 } 17302 17303 static int jit_subprogs(struct bpf_verifier_env *env) 17304 { 17305 struct bpf_prog *prog = env->prog, **func, *tmp; 17306 int i, j, subprog_start, subprog_end = 0, len, subprog; 17307 struct bpf_map *map_ptr; 17308 struct bpf_insn *insn; 17309 void *old_bpf_func; 17310 int err, num_exentries; 17311 17312 if (env->subprog_cnt <= 1) 17313 return 0; 17314 17315 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17316 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17317 continue; 17318 17319 /* Upon error here we cannot fall back to interpreter but 17320 * need a hard reject of the program. Thus -EFAULT is 17321 * propagated in any case. 17322 */ 17323 subprog = find_subprog(env, i + insn->imm + 1); 17324 if (subprog < 0) { 17325 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17326 i + insn->imm + 1); 17327 return -EFAULT; 17328 } 17329 /* temporarily remember subprog id inside insn instead of 17330 * aux_data, since next loop will split up all insns into funcs 17331 */ 17332 insn->off = subprog; 17333 /* remember original imm in case JIT fails and fallback 17334 * to interpreter will be needed 17335 */ 17336 env->insn_aux_data[i].call_imm = insn->imm; 17337 /* point imm to __bpf_call_base+1 from JITs point of view */ 17338 insn->imm = 1; 17339 if (bpf_pseudo_func(insn)) 17340 /* jit (e.g. x86_64) may emit fewer instructions 17341 * if it learns a u32 imm is the same as a u64 imm. 17342 * Force a non zero here. 17343 */ 17344 insn[1].imm = 1; 17345 } 17346 17347 err = bpf_prog_alloc_jited_linfo(prog); 17348 if (err) 17349 goto out_undo_insn; 17350 17351 err = -ENOMEM; 17352 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17353 if (!func) 17354 goto out_undo_insn; 17355 17356 for (i = 0; i < env->subprog_cnt; i++) { 17357 subprog_start = subprog_end; 17358 subprog_end = env->subprog_info[i + 1].start; 17359 17360 len = subprog_end - subprog_start; 17361 /* bpf_prog_run() doesn't call subprogs directly, 17362 * hence main prog stats include the runtime of subprogs. 17363 * subprogs don't have IDs and not reachable via prog_get_next_id 17364 * func[i]->stats will never be accessed and stays NULL 17365 */ 17366 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17367 if (!func[i]) 17368 goto out_free; 17369 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17370 len * sizeof(struct bpf_insn)); 17371 func[i]->type = prog->type; 17372 func[i]->len = len; 17373 if (bpf_prog_calc_tag(func[i])) 17374 goto out_free; 17375 func[i]->is_func = 1; 17376 func[i]->aux->func_idx = i; 17377 /* Below members will be freed only at prog->aux */ 17378 func[i]->aux->btf = prog->aux->btf; 17379 func[i]->aux->func_info = prog->aux->func_info; 17380 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17381 func[i]->aux->poke_tab = prog->aux->poke_tab; 17382 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17383 17384 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17385 struct bpf_jit_poke_descriptor *poke; 17386 17387 poke = &prog->aux->poke_tab[j]; 17388 if (poke->insn_idx < subprog_end && 17389 poke->insn_idx >= subprog_start) 17390 poke->aux = func[i]->aux; 17391 } 17392 17393 func[i]->aux->name[0] = 'F'; 17394 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17395 func[i]->jit_requested = 1; 17396 func[i]->blinding_requested = prog->blinding_requested; 17397 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17398 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17399 func[i]->aux->linfo = prog->aux->linfo; 17400 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17401 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17402 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17403 num_exentries = 0; 17404 insn = func[i]->insnsi; 17405 for (j = 0; j < func[i]->len; j++, insn++) { 17406 if (BPF_CLASS(insn->code) == BPF_LDX && 17407 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17408 num_exentries++; 17409 } 17410 func[i]->aux->num_exentries = num_exentries; 17411 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17412 func[i] = bpf_int_jit_compile(func[i]); 17413 if (!func[i]->jited) { 17414 err = -ENOTSUPP; 17415 goto out_free; 17416 } 17417 cond_resched(); 17418 } 17419 17420 /* at this point all bpf functions were successfully JITed 17421 * now populate all bpf_calls with correct addresses and 17422 * run last pass of JIT 17423 */ 17424 for (i = 0; i < env->subprog_cnt; i++) { 17425 insn = func[i]->insnsi; 17426 for (j = 0; j < func[i]->len; j++, insn++) { 17427 if (bpf_pseudo_func(insn)) { 17428 subprog = insn->off; 17429 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17430 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17431 continue; 17432 } 17433 if (!bpf_pseudo_call(insn)) 17434 continue; 17435 subprog = insn->off; 17436 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17437 } 17438 17439 /* we use the aux data to keep a list of the start addresses 17440 * of the JITed images for each function in the program 17441 * 17442 * for some architectures, such as powerpc64, the imm field 17443 * might not be large enough to hold the offset of the start 17444 * address of the callee's JITed image from __bpf_call_base 17445 * 17446 * in such cases, we can lookup the start address of a callee 17447 * by using its subprog id, available from the off field of 17448 * the call instruction, as an index for this list 17449 */ 17450 func[i]->aux->func = func; 17451 func[i]->aux->func_cnt = env->subprog_cnt; 17452 } 17453 for (i = 0; i < env->subprog_cnt; i++) { 17454 old_bpf_func = func[i]->bpf_func; 17455 tmp = bpf_int_jit_compile(func[i]); 17456 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17457 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17458 err = -ENOTSUPP; 17459 goto out_free; 17460 } 17461 cond_resched(); 17462 } 17463 17464 /* finally lock prog and jit images for all functions and 17465 * populate kallsysm 17466 */ 17467 for (i = 0; i < env->subprog_cnt; i++) { 17468 bpf_prog_lock_ro(func[i]); 17469 bpf_prog_kallsyms_add(func[i]); 17470 } 17471 17472 /* Last step: make now unused interpreter insns from main 17473 * prog consistent for later dump requests, so they can 17474 * later look the same as if they were interpreted only. 17475 */ 17476 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17477 if (bpf_pseudo_func(insn)) { 17478 insn[0].imm = env->insn_aux_data[i].call_imm; 17479 insn[1].imm = insn->off; 17480 insn->off = 0; 17481 continue; 17482 } 17483 if (!bpf_pseudo_call(insn)) 17484 continue; 17485 insn->off = env->insn_aux_data[i].call_imm; 17486 subprog = find_subprog(env, i + insn->off + 1); 17487 insn->imm = subprog; 17488 } 17489 17490 prog->jited = 1; 17491 prog->bpf_func = func[0]->bpf_func; 17492 prog->jited_len = func[0]->jited_len; 17493 prog->aux->func = func; 17494 prog->aux->func_cnt = env->subprog_cnt; 17495 bpf_prog_jit_attempt_done(prog); 17496 return 0; 17497 out_free: 17498 /* We failed JIT'ing, so at this point we need to unregister poke 17499 * descriptors from subprogs, so that kernel is not attempting to 17500 * patch it anymore as we're freeing the subprog JIT memory. 17501 */ 17502 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17503 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17504 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17505 } 17506 /* At this point we're guaranteed that poke descriptors are not 17507 * live anymore. We can just unlink its descriptor table as it's 17508 * released with the main prog. 17509 */ 17510 for (i = 0; i < env->subprog_cnt; i++) { 17511 if (!func[i]) 17512 continue; 17513 func[i]->aux->poke_tab = NULL; 17514 bpf_jit_free(func[i]); 17515 } 17516 kfree(func); 17517 out_undo_insn: 17518 /* cleanup main prog to be interpreted */ 17519 prog->jit_requested = 0; 17520 prog->blinding_requested = 0; 17521 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17522 if (!bpf_pseudo_call(insn)) 17523 continue; 17524 insn->off = 0; 17525 insn->imm = env->insn_aux_data[i].call_imm; 17526 } 17527 bpf_prog_jit_attempt_done(prog); 17528 return err; 17529 } 17530 17531 static int fixup_call_args(struct bpf_verifier_env *env) 17532 { 17533 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17534 struct bpf_prog *prog = env->prog; 17535 struct bpf_insn *insn = prog->insnsi; 17536 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17537 int i, depth; 17538 #endif 17539 int err = 0; 17540 17541 if (env->prog->jit_requested && 17542 !bpf_prog_is_offloaded(env->prog->aux)) { 17543 err = jit_subprogs(env); 17544 if (err == 0) 17545 return 0; 17546 if (err == -EFAULT) 17547 return err; 17548 } 17549 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17550 if (has_kfunc_call) { 17551 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17552 return -EINVAL; 17553 } 17554 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17555 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17556 * have to be rejected, since interpreter doesn't support them yet. 17557 */ 17558 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17559 return -EINVAL; 17560 } 17561 for (i = 0; i < prog->len; i++, insn++) { 17562 if (bpf_pseudo_func(insn)) { 17563 /* When JIT fails the progs with callback calls 17564 * have to be rejected, since interpreter doesn't support them yet. 17565 */ 17566 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17567 return -EINVAL; 17568 } 17569 17570 if (!bpf_pseudo_call(insn)) 17571 continue; 17572 depth = get_callee_stack_depth(env, insn, i); 17573 if (depth < 0) 17574 return depth; 17575 bpf_patch_call_args(insn, depth); 17576 } 17577 err = 0; 17578 #endif 17579 return err; 17580 } 17581 17582 /* replace a generic kfunc with a specialized version if necessary */ 17583 static void specialize_kfunc(struct bpf_verifier_env *env, 17584 u32 func_id, u16 offset, unsigned long *addr) 17585 { 17586 struct bpf_prog *prog = env->prog; 17587 bool seen_direct_write; 17588 void *xdp_kfunc; 17589 bool is_rdonly; 17590 17591 if (bpf_dev_bound_kfunc_id(func_id)) { 17592 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17593 if (xdp_kfunc) { 17594 *addr = (unsigned long)xdp_kfunc; 17595 return; 17596 } 17597 /* fallback to default kfunc when not supported by netdev */ 17598 } 17599 17600 if (offset) 17601 return; 17602 17603 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17604 seen_direct_write = env->seen_direct_write; 17605 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17606 17607 if (is_rdonly) 17608 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17609 17610 /* restore env->seen_direct_write to its original value, since 17611 * may_access_direct_pkt_data mutates it 17612 */ 17613 env->seen_direct_write = seen_direct_write; 17614 } 17615 } 17616 17617 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17618 u16 struct_meta_reg, 17619 u16 node_offset_reg, 17620 struct bpf_insn *insn, 17621 struct bpf_insn *insn_buf, 17622 int *cnt) 17623 { 17624 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 17625 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 17626 17627 insn_buf[0] = addr[0]; 17628 insn_buf[1] = addr[1]; 17629 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 17630 insn_buf[3] = *insn; 17631 *cnt = 4; 17632 } 17633 17634 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 17635 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 17636 { 17637 const struct bpf_kfunc_desc *desc; 17638 17639 if (!insn->imm) { 17640 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 17641 return -EINVAL; 17642 } 17643 17644 *cnt = 0; 17645 17646 /* insn->imm has the btf func_id. Replace it with an offset relative to 17647 * __bpf_call_base, unless the JIT needs to call functions that are 17648 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 17649 */ 17650 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 17651 if (!desc) { 17652 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 17653 insn->imm); 17654 return -EFAULT; 17655 } 17656 17657 if (!bpf_jit_supports_far_kfunc_call()) 17658 insn->imm = BPF_CALL_IMM(desc->addr); 17659 if (insn->off) 17660 return 0; 17661 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 17662 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17663 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17664 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 17665 17666 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 17667 insn_buf[1] = addr[0]; 17668 insn_buf[2] = addr[1]; 17669 insn_buf[3] = *insn; 17670 *cnt = 4; 17671 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 17672 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 17673 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 17674 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 17675 17676 insn_buf[0] = addr[0]; 17677 insn_buf[1] = addr[1]; 17678 insn_buf[2] = *insn; 17679 *cnt = 3; 17680 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 17681 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 17682 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17683 int struct_meta_reg = BPF_REG_3; 17684 int node_offset_reg = BPF_REG_4; 17685 17686 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 17687 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 17688 struct_meta_reg = BPF_REG_4; 17689 node_offset_reg = BPF_REG_5; 17690 } 17691 17692 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 17693 node_offset_reg, insn, insn_buf, cnt); 17694 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 17695 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 17696 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 17697 *cnt = 1; 17698 } 17699 return 0; 17700 } 17701 17702 /* Do various post-verification rewrites in a single program pass. 17703 * These rewrites simplify JIT and interpreter implementations. 17704 */ 17705 static int do_misc_fixups(struct bpf_verifier_env *env) 17706 { 17707 struct bpf_prog *prog = env->prog; 17708 enum bpf_attach_type eatype = prog->expected_attach_type; 17709 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17710 struct bpf_insn *insn = prog->insnsi; 17711 const struct bpf_func_proto *fn; 17712 const int insn_cnt = prog->len; 17713 const struct bpf_map_ops *ops; 17714 struct bpf_insn_aux_data *aux; 17715 struct bpf_insn insn_buf[16]; 17716 struct bpf_prog *new_prog; 17717 struct bpf_map *map_ptr; 17718 int i, ret, cnt, delta = 0; 17719 17720 for (i = 0; i < insn_cnt; i++, insn++) { 17721 /* Make divide-by-zero exceptions impossible. */ 17722 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 17723 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 17724 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 17725 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 17726 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 17727 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 17728 struct bpf_insn *patchlet; 17729 struct bpf_insn chk_and_div[] = { 17730 /* [R,W]x div 0 -> 0 */ 17731 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17732 BPF_JNE | BPF_K, insn->src_reg, 17733 0, 2, 0), 17734 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 17735 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17736 *insn, 17737 }; 17738 struct bpf_insn chk_and_mod[] = { 17739 /* [R,W]x mod 0 -> [R,W]x */ 17740 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 17741 BPF_JEQ | BPF_K, insn->src_reg, 17742 0, 1 + (is64 ? 0 : 1), 0), 17743 *insn, 17744 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 17745 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 17746 }; 17747 17748 patchlet = isdiv ? chk_and_div : chk_and_mod; 17749 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 17750 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 17751 17752 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 17753 if (!new_prog) 17754 return -ENOMEM; 17755 17756 delta += cnt - 1; 17757 env->prog = prog = new_prog; 17758 insn = new_prog->insnsi + i + delta; 17759 continue; 17760 } 17761 17762 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 17763 if (BPF_CLASS(insn->code) == BPF_LD && 17764 (BPF_MODE(insn->code) == BPF_ABS || 17765 BPF_MODE(insn->code) == BPF_IND)) { 17766 cnt = env->ops->gen_ld_abs(insn, insn_buf); 17767 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 17768 verbose(env, "bpf verifier is misconfigured\n"); 17769 return -EINVAL; 17770 } 17771 17772 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17773 if (!new_prog) 17774 return -ENOMEM; 17775 17776 delta += cnt - 1; 17777 env->prog = prog = new_prog; 17778 insn = new_prog->insnsi + i + delta; 17779 continue; 17780 } 17781 17782 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 17783 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 17784 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 17785 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 17786 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 17787 struct bpf_insn *patch = &insn_buf[0]; 17788 bool issrc, isneg, isimm; 17789 u32 off_reg; 17790 17791 aux = &env->insn_aux_data[i + delta]; 17792 if (!aux->alu_state || 17793 aux->alu_state == BPF_ALU_NON_POINTER) 17794 continue; 17795 17796 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 17797 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 17798 BPF_ALU_SANITIZE_SRC; 17799 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 17800 17801 off_reg = issrc ? insn->src_reg : insn->dst_reg; 17802 if (isimm) { 17803 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17804 } else { 17805 if (isneg) 17806 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17807 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 17808 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 17809 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 17810 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 17811 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 17812 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 17813 } 17814 if (!issrc) 17815 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 17816 insn->src_reg = BPF_REG_AX; 17817 if (isneg) 17818 insn->code = insn->code == code_add ? 17819 code_sub : code_add; 17820 *patch++ = *insn; 17821 if (issrc && isneg && !isimm) 17822 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 17823 cnt = patch - insn_buf; 17824 17825 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17826 if (!new_prog) 17827 return -ENOMEM; 17828 17829 delta += cnt - 1; 17830 env->prog = prog = new_prog; 17831 insn = new_prog->insnsi + i + delta; 17832 continue; 17833 } 17834 17835 if (insn->code != (BPF_JMP | BPF_CALL)) 17836 continue; 17837 if (insn->src_reg == BPF_PSEUDO_CALL) 17838 continue; 17839 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17840 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 17841 if (ret) 17842 return ret; 17843 if (cnt == 0) 17844 continue; 17845 17846 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17847 if (!new_prog) 17848 return -ENOMEM; 17849 17850 delta += cnt - 1; 17851 env->prog = prog = new_prog; 17852 insn = new_prog->insnsi + i + delta; 17853 continue; 17854 } 17855 17856 if (insn->imm == BPF_FUNC_get_route_realm) 17857 prog->dst_needed = 1; 17858 if (insn->imm == BPF_FUNC_get_prandom_u32) 17859 bpf_user_rnd_init_once(); 17860 if (insn->imm == BPF_FUNC_override_return) 17861 prog->kprobe_override = 1; 17862 if (insn->imm == BPF_FUNC_tail_call) { 17863 /* If we tail call into other programs, we 17864 * cannot make any assumptions since they can 17865 * be replaced dynamically during runtime in 17866 * the program array. 17867 */ 17868 prog->cb_access = 1; 17869 if (!allow_tail_call_in_subprogs(env)) 17870 prog->aux->stack_depth = MAX_BPF_STACK; 17871 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 17872 17873 /* mark bpf_tail_call as different opcode to avoid 17874 * conditional branch in the interpreter for every normal 17875 * call and to prevent accidental JITing by JIT compiler 17876 * that doesn't support bpf_tail_call yet 17877 */ 17878 insn->imm = 0; 17879 insn->code = BPF_JMP | BPF_TAIL_CALL; 17880 17881 aux = &env->insn_aux_data[i + delta]; 17882 if (env->bpf_capable && !prog->blinding_requested && 17883 prog->jit_requested && 17884 !bpf_map_key_poisoned(aux) && 17885 !bpf_map_ptr_poisoned(aux) && 17886 !bpf_map_ptr_unpriv(aux)) { 17887 struct bpf_jit_poke_descriptor desc = { 17888 .reason = BPF_POKE_REASON_TAIL_CALL, 17889 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 17890 .tail_call.key = bpf_map_key_immediate(aux), 17891 .insn_idx = i + delta, 17892 }; 17893 17894 ret = bpf_jit_add_poke_descriptor(prog, &desc); 17895 if (ret < 0) { 17896 verbose(env, "adding tail call poke descriptor failed\n"); 17897 return ret; 17898 } 17899 17900 insn->imm = ret + 1; 17901 continue; 17902 } 17903 17904 if (!bpf_map_ptr_unpriv(aux)) 17905 continue; 17906 17907 /* instead of changing every JIT dealing with tail_call 17908 * emit two extra insns: 17909 * if (index >= max_entries) goto out; 17910 * index &= array->index_mask; 17911 * to avoid out-of-bounds cpu speculation 17912 */ 17913 if (bpf_map_ptr_poisoned(aux)) { 17914 verbose(env, "tail_call abusing map_ptr\n"); 17915 return -EINVAL; 17916 } 17917 17918 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 17919 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 17920 map_ptr->max_entries, 2); 17921 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 17922 container_of(map_ptr, 17923 struct bpf_array, 17924 map)->index_mask); 17925 insn_buf[2] = *insn; 17926 cnt = 3; 17927 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17928 if (!new_prog) 17929 return -ENOMEM; 17930 17931 delta += cnt - 1; 17932 env->prog = prog = new_prog; 17933 insn = new_prog->insnsi + i + delta; 17934 continue; 17935 } 17936 17937 if (insn->imm == BPF_FUNC_timer_set_callback) { 17938 /* The verifier will process callback_fn as many times as necessary 17939 * with different maps and the register states prepared by 17940 * set_timer_callback_state will be accurate. 17941 * 17942 * The following use case is valid: 17943 * map1 is shared by prog1, prog2, prog3. 17944 * prog1 calls bpf_timer_init for some map1 elements 17945 * prog2 calls bpf_timer_set_callback for some map1 elements. 17946 * Those that were not bpf_timer_init-ed will return -EINVAL. 17947 * prog3 calls bpf_timer_start for some map1 elements. 17948 * Those that were not both bpf_timer_init-ed and 17949 * bpf_timer_set_callback-ed will return -EINVAL. 17950 */ 17951 struct bpf_insn ld_addrs[2] = { 17952 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 17953 }; 17954 17955 insn_buf[0] = ld_addrs[0]; 17956 insn_buf[1] = ld_addrs[1]; 17957 insn_buf[2] = *insn; 17958 cnt = 3; 17959 17960 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17961 if (!new_prog) 17962 return -ENOMEM; 17963 17964 delta += cnt - 1; 17965 env->prog = prog = new_prog; 17966 insn = new_prog->insnsi + i + delta; 17967 goto patch_call_imm; 17968 } 17969 17970 if (is_storage_get_function(insn->imm)) { 17971 if (!env->prog->aux->sleepable || 17972 env->insn_aux_data[i + delta].storage_get_func_atomic) 17973 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 17974 else 17975 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 17976 insn_buf[1] = *insn; 17977 cnt = 2; 17978 17979 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17980 if (!new_prog) 17981 return -ENOMEM; 17982 17983 delta += cnt - 1; 17984 env->prog = prog = new_prog; 17985 insn = new_prog->insnsi + i + delta; 17986 goto patch_call_imm; 17987 } 17988 17989 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 17990 * and other inlining handlers are currently limited to 64 bit 17991 * only. 17992 */ 17993 if (prog->jit_requested && BITS_PER_LONG == 64 && 17994 (insn->imm == BPF_FUNC_map_lookup_elem || 17995 insn->imm == BPF_FUNC_map_update_elem || 17996 insn->imm == BPF_FUNC_map_delete_elem || 17997 insn->imm == BPF_FUNC_map_push_elem || 17998 insn->imm == BPF_FUNC_map_pop_elem || 17999 insn->imm == BPF_FUNC_map_peek_elem || 18000 insn->imm == BPF_FUNC_redirect_map || 18001 insn->imm == BPF_FUNC_for_each_map_elem || 18002 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18003 aux = &env->insn_aux_data[i + delta]; 18004 if (bpf_map_ptr_poisoned(aux)) 18005 goto patch_call_imm; 18006 18007 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18008 ops = map_ptr->ops; 18009 if (insn->imm == BPF_FUNC_map_lookup_elem && 18010 ops->map_gen_lookup) { 18011 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18012 if (cnt == -EOPNOTSUPP) 18013 goto patch_map_ops_generic; 18014 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18015 verbose(env, "bpf verifier is misconfigured\n"); 18016 return -EINVAL; 18017 } 18018 18019 new_prog = bpf_patch_insn_data(env, i + delta, 18020 insn_buf, cnt); 18021 if (!new_prog) 18022 return -ENOMEM; 18023 18024 delta += cnt - 1; 18025 env->prog = prog = new_prog; 18026 insn = new_prog->insnsi + i + delta; 18027 continue; 18028 } 18029 18030 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18031 (void *(*)(struct bpf_map *map, void *key))NULL)); 18032 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18033 (long (*)(struct bpf_map *map, void *key))NULL)); 18034 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18035 (long (*)(struct bpf_map *map, void *key, void *value, 18036 u64 flags))NULL)); 18037 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18038 (long (*)(struct bpf_map *map, void *value, 18039 u64 flags))NULL)); 18040 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18041 (long (*)(struct bpf_map *map, void *value))NULL)); 18042 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18043 (long (*)(struct bpf_map *map, void *value))NULL)); 18044 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18045 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18046 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18047 (long (*)(struct bpf_map *map, 18048 bpf_callback_t callback_fn, 18049 void *callback_ctx, 18050 u64 flags))NULL)); 18051 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18052 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18053 18054 patch_map_ops_generic: 18055 switch (insn->imm) { 18056 case BPF_FUNC_map_lookup_elem: 18057 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18058 continue; 18059 case BPF_FUNC_map_update_elem: 18060 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18061 continue; 18062 case BPF_FUNC_map_delete_elem: 18063 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18064 continue; 18065 case BPF_FUNC_map_push_elem: 18066 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18067 continue; 18068 case BPF_FUNC_map_pop_elem: 18069 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18070 continue; 18071 case BPF_FUNC_map_peek_elem: 18072 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18073 continue; 18074 case BPF_FUNC_redirect_map: 18075 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18076 continue; 18077 case BPF_FUNC_for_each_map_elem: 18078 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18079 continue; 18080 case BPF_FUNC_map_lookup_percpu_elem: 18081 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18082 continue; 18083 } 18084 18085 goto patch_call_imm; 18086 } 18087 18088 /* Implement bpf_jiffies64 inline. */ 18089 if (prog->jit_requested && BITS_PER_LONG == 64 && 18090 insn->imm == BPF_FUNC_jiffies64) { 18091 struct bpf_insn ld_jiffies_addr[2] = { 18092 BPF_LD_IMM64(BPF_REG_0, 18093 (unsigned long)&jiffies), 18094 }; 18095 18096 insn_buf[0] = ld_jiffies_addr[0]; 18097 insn_buf[1] = ld_jiffies_addr[1]; 18098 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18099 BPF_REG_0, 0); 18100 cnt = 3; 18101 18102 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18103 cnt); 18104 if (!new_prog) 18105 return -ENOMEM; 18106 18107 delta += cnt - 1; 18108 env->prog = prog = new_prog; 18109 insn = new_prog->insnsi + i + delta; 18110 continue; 18111 } 18112 18113 /* Implement bpf_get_func_arg inline. */ 18114 if (prog_type == BPF_PROG_TYPE_TRACING && 18115 insn->imm == BPF_FUNC_get_func_arg) { 18116 /* Load nr_args from ctx - 8 */ 18117 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18118 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18119 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18120 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18121 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18122 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18123 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18124 insn_buf[7] = BPF_JMP_A(1); 18125 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18126 cnt = 9; 18127 18128 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18129 if (!new_prog) 18130 return -ENOMEM; 18131 18132 delta += cnt - 1; 18133 env->prog = prog = new_prog; 18134 insn = new_prog->insnsi + i + delta; 18135 continue; 18136 } 18137 18138 /* Implement bpf_get_func_ret inline. */ 18139 if (prog_type == BPF_PROG_TYPE_TRACING && 18140 insn->imm == BPF_FUNC_get_func_ret) { 18141 if (eatype == BPF_TRACE_FEXIT || 18142 eatype == BPF_MODIFY_RETURN) { 18143 /* Load nr_args from ctx - 8 */ 18144 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18145 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18146 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18147 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18148 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18149 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18150 cnt = 6; 18151 } else { 18152 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18153 cnt = 1; 18154 } 18155 18156 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18157 if (!new_prog) 18158 return -ENOMEM; 18159 18160 delta += cnt - 1; 18161 env->prog = prog = new_prog; 18162 insn = new_prog->insnsi + i + delta; 18163 continue; 18164 } 18165 18166 /* Implement get_func_arg_cnt inline. */ 18167 if (prog_type == BPF_PROG_TYPE_TRACING && 18168 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18169 /* Load nr_args from ctx - 8 */ 18170 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18171 18172 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18173 if (!new_prog) 18174 return -ENOMEM; 18175 18176 env->prog = prog = new_prog; 18177 insn = new_prog->insnsi + i + delta; 18178 continue; 18179 } 18180 18181 /* Implement bpf_get_func_ip inline. */ 18182 if (prog_type == BPF_PROG_TYPE_TRACING && 18183 insn->imm == BPF_FUNC_get_func_ip) { 18184 /* Load IP address from ctx - 16 */ 18185 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18186 18187 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18188 if (!new_prog) 18189 return -ENOMEM; 18190 18191 env->prog = prog = new_prog; 18192 insn = new_prog->insnsi + i + delta; 18193 continue; 18194 } 18195 18196 patch_call_imm: 18197 fn = env->ops->get_func_proto(insn->imm, env->prog); 18198 /* all functions that have prototype and verifier allowed 18199 * programs to call them, must be real in-kernel functions 18200 */ 18201 if (!fn->func) { 18202 verbose(env, 18203 "kernel subsystem misconfigured func %s#%d\n", 18204 func_id_name(insn->imm), insn->imm); 18205 return -EFAULT; 18206 } 18207 insn->imm = fn->func - __bpf_call_base; 18208 } 18209 18210 /* Since poke tab is now finalized, publish aux to tracker. */ 18211 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18212 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18213 if (!map_ptr->ops->map_poke_track || 18214 !map_ptr->ops->map_poke_untrack || 18215 !map_ptr->ops->map_poke_run) { 18216 verbose(env, "bpf verifier is misconfigured\n"); 18217 return -EINVAL; 18218 } 18219 18220 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18221 if (ret < 0) { 18222 verbose(env, "tracking tail call prog failed\n"); 18223 return ret; 18224 } 18225 } 18226 18227 sort_kfunc_descs_by_imm_off(env->prog); 18228 18229 return 0; 18230 } 18231 18232 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18233 int position, 18234 s32 stack_base, 18235 u32 callback_subprogno, 18236 u32 *cnt) 18237 { 18238 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18239 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18240 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18241 int reg_loop_max = BPF_REG_6; 18242 int reg_loop_cnt = BPF_REG_7; 18243 int reg_loop_ctx = BPF_REG_8; 18244 18245 struct bpf_prog *new_prog; 18246 u32 callback_start; 18247 u32 call_insn_offset; 18248 s32 callback_offset; 18249 18250 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18251 * be careful to modify this code in sync. 18252 */ 18253 struct bpf_insn insn_buf[] = { 18254 /* Return error and jump to the end of the patch if 18255 * expected number of iterations is too big. 18256 */ 18257 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18258 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18259 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18260 /* spill R6, R7, R8 to use these as loop vars */ 18261 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18262 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18263 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18264 /* initialize loop vars */ 18265 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18266 BPF_MOV32_IMM(reg_loop_cnt, 0), 18267 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18268 /* loop header, 18269 * if reg_loop_cnt >= reg_loop_max skip the loop body 18270 */ 18271 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18272 /* callback call, 18273 * correct callback offset would be set after patching 18274 */ 18275 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18276 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18277 BPF_CALL_REL(0), 18278 /* increment loop counter */ 18279 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18280 /* jump to loop header if callback returned 0 */ 18281 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18282 /* return value of bpf_loop, 18283 * set R0 to the number of iterations 18284 */ 18285 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18286 /* restore original values of R6, R7, R8 */ 18287 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18288 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18289 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18290 }; 18291 18292 *cnt = ARRAY_SIZE(insn_buf); 18293 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18294 if (!new_prog) 18295 return new_prog; 18296 18297 /* callback start is known only after patching */ 18298 callback_start = env->subprog_info[callback_subprogno].start; 18299 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18300 call_insn_offset = position + 12; 18301 callback_offset = callback_start - call_insn_offset - 1; 18302 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18303 18304 return new_prog; 18305 } 18306 18307 static bool is_bpf_loop_call(struct bpf_insn *insn) 18308 { 18309 return insn->code == (BPF_JMP | BPF_CALL) && 18310 insn->src_reg == 0 && 18311 insn->imm == BPF_FUNC_loop; 18312 } 18313 18314 /* For all sub-programs in the program (including main) check 18315 * insn_aux_data to see if there are bpf_loop calls that require 18316 * inlining. If such calls are found the calls are replaced with a 18317 * sequence of instructions produced by `inline_bpf_loop` function and 18318 * subprog stack_depth is increased by the size of 3 registers. 18319 * This stack space is used to spill values of the R6, R7, R8. These 18320 * registers are used to store the loop bound, counter and context 18321 * variables. 18322 */ 18323 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18324 { 18325 struct bpf_subprog_info *subprogs = env->subprog_info; 18326 int i, cur_subprog = 0, cnt, delta = 0; 18327 struct bpf_insn *insn = env->prog->insnsi; 18328 int insn_cnt = env->prog->len; 18329 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18330 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18331 u16 stack_depth_extra = 0; 18332 18333 for (i = 0; i < insn_cnt; i++, insn++) { 18334 struct bpf_loop_inline_state *inline_state = 18335 &env->insn_aux_data[i + delta].loop_inline_state; 18336 18337 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18338 struct bpf_prog *new_prog; 18339 18340 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18341 new_prog = inline_bpf_loop(env, 18342 i + delta, 18343 -(stack_depth + stack_depth_extra), 18344 inline_state->callback_subprogno, 18345 &cnt); 18346 if (!new_prog) 18347 return -ENOMEM; 18348 18349 delta += cnt - 1; 18350 env->prog = new_prog; 18351 insn = new_prog->insnsi + i + delta; 18352 } 18353 18354 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18355 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18356 cur_subprog++; 18357 stack_depth = subprogs[cur_subprog].stack_depth; 18358 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18359 stack_depth_extra = 0; 18360 } 18361 } 18362 18363 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18364 18365 return 0; 18366 } 18367 18368 static void free_states(struct bpf_verifier_env *env) 18369 { 18370 struct bpf_verifier_state_list *sl, *sln; 18371 int i; 18372 18373 sl = env->free_list; 18374 while (sl) { 18375 sln = sl->next; 18376 free_verifier_state(&sl->state, false); 18377 kfree(sl); 18378 sl = sln; 18379 } 18380 env->free_list = NULL; 18381 18382 if (!env->explored_states) 18383 return; 18384 18385 for (i = 0; i < state_htab_size(env); i++) { 18386 sl = env->explored_states[i]; 18387 18388 while (sl) { 18389 sln = sl->next; 18390 free_verifier_state(&sl->state, false); 18391 kfree(sl); 18392 sl = sln; 18393 } 18394 env->explored_states[i] = NULL; 18395 } 18396 } 18397 18398 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18399 { 18400 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18401 struct bpf_verifier_state *state; 18402 struct bpf_reg_state *regs; 18403 int ret, i; 18404 18405 env->prev_linfo = NULL; 18406 env->pass_cnt++; 18407 18408 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18409 if (!state) 18410 return -ENOMEM; 18411 state->curframe = 0; 18412 state->speculative = false; 18413 state->branches = 1; 18414 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18415 if (!state->frame[0]) { 18416 kfree(state); 18417 return -ENOMEM; 18418 } 18419 env->cur_state = state; 18420 init_func_state(env, state->frame[0], 18421 BPF_MAIN_FUNC /* callsite */, 18422 0 /* frameno */, 18423 subprog); 18424 state->first_insn_idx = env->subprog_info[subprog].start; 18425 state->last_insn_idx = -1; 18426 18427 regs = state->frame[state->curframe]->regs; 18428 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18429 ret = btf_prepare_func_args(env, subprog, regs); 18430 if (ret) 18431 goto out; 18432 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18433 if (regs[i].type == PTR_TO_CTX) 18434 mark_reg_known_zero(env, regs, i); 18435 else if (regs[i].type == SCALAR_VALUE) 18436 mark_reg_unknown(env, regs, i); 18437 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18438 const u32 mem_size = regs[i].mem_size; 18439 18440 mark_reg_known_zero(env, regs, i); 18441 regs[i].mem_size = mem_size; 18442 regs[i].id = ++env->id_gen; 18443 } 18444 } 18445 } else { 18446 /* 1st arg to a function */ 18447 regs[BPF_REG_1].type = PTR_TO_CTX; 18448 mark_reg_known_zero(env, regs, BPF_REG_1); 18449 ret = btf_check_subprog_arg_match(env, subprog, regs); 18450 if (ret == -EFAULT) 18451 /* unlikely verifier bug. abort. 18452 * ret == 0 and ret < 0 are sadly acceptable for 18453 * main() function due to backward compatibility. 18454 * Like socket filter program may be written as: 18455 * int bpf_prog(struct pt_regs *ctx) 18456 * and never dereference that ctx in the program. 18457 * 'struct pt_regs' is a type mismatch for socket 18458 * filter that should be using 'struct __sk_buff'. 18459 */ 18460 goto out; 18461 } 18462 18463 ret = do_check(env); 18464 out: 18465 /* check for NULL is necessary, since cur_state can be freed inside 18466 * do_check() under memory pressure. 18467 */ 18468 if (env->cur_state) { 18469 free_verifier_state(env->cur_state, true); 18470 env->cur_state = NULL; 18471 } 18472 while (!pop_stack(env, NULL, NULL, false)); 18473 if (!ret && pop_log) 18474 bpf_vlog_reset(&env->log, 0); 18475 free_states(env); 18476 return ret; 18477 } 18478 18479 /* Verify all global functions in a BPF program one by one based on their BTF. 18480 * All global functions must pass verification. Otherwise the whole program is rejected. 18481 * Consider: 18482 * int bar(int); 18483 * int foo(int f) 18484 * { 18485 * return bar(f); 18486 * } 18487 * int bar(int b) 18488 * { 18489 * ... 18490 * } 18491 * foo() will be verified first for R1=any_scalar_value. During verification it 18492 * will be assumed that bar() already verified successfully and call to bar() 18493 * from foo() will be checked for type match only. Later bar() will be verified 18494 * independently to check that it's safe for R1=any_scalar_value. 18495 */ 18496 static int do_check_subprogs(struct bpf_verifier_env *env) 18497 { 18498 struct bpf_prog_aux *aux = env->prog->aux; 18499 int i, ret; 18500 18501 if (!aux->func_info) 18502 return 0; 18503 18504 for (i = 1; i < env->subprog_cnt; i++) { 18505 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18506 continue; 18507 env->insn_idx = env->subprog_info[i].start; 18508 WARN_ON_ONCE(env->insn_idx == 0); 18509 ret = do_check_common(env, i); 18510 if (ret) { 18511 return ret; 18512 } else if (env->log.level & BPF_LOG_LEVEL) { 18513 verbose(env, 18514 "Func#%d is safe for any args that match its prototype\n", 18515 i); 18516 } 18517 } 18518 return 0; 18519 } 18520 18521 static int do_check_main(struct bpf_verifier_env *env) 18522 { 18523 int ret; 18524 18525 env->insn_idx = 0; 18526 ret = do_check_common(env, 0); 18527 if (!ret) 18528 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18529 return ret; 18530 } 18531 18532 18533 static void print_verification_stats(struct bpf_verifier_env *env) 18534 { 18535 int i; 18536 18537 if (env->log.level & BPF_LOG_STATS) { 18538 verbose(env, "verification time %lld usec\n", 18539 div_u64(env->verification_time, 1000)); 18540 verbose(env, "stack depth "); 18541 for (i = 0; i < env->subprog_cnt; i++) { 18542 u32 depth = env->subprog_info[i].stack_depth; 18543 18544 verbose(env, "%d", depth); 18545 if (i + 1 < env->subprog_cnt) 18546 verbose(env, "+"); 18547 } 18548 verbose(env, "\n"); 18549 } 18550 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18551 "total_states %d peak_states %d mark_read %d\n", 18552 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18553 env->max_states_per_insn, env->total_states, 18554 env->peak_states, env->longest_mark_read_walk); 18555 } 18556 18557 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18558 { 18559 const struct btf_type *t, *func_proto; 18560 const struct bpf_struct_ops *st_ops; 18561 const struct btf_member *member; 18562 struct bpf_prog *prog = env->prog; 18563 u32 btf_id, member_idx; 18564 const char *mname; 18565 18566 if (!prog->gpl_compatible) { 18567 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18568 return -EINVAL; 18569 } 18570 18571 btf_id = prog->aux->attach_btf_id; 18572 st_ops = bpf_struct_ops_find(btf_id); 18573 if (!st_ops) { 18574 verbose(env, "attach_btf_id %u is not a supported struct\n", 18575 btf_id); 18576 return -ENOTSUPP; 18577 } 18578 18579 t = st_ops->type; 18580 member_idx = prog->expected_attach_type; 18581 if (member_idx >= btf_type_vlen(t)) { 18582 verbose(env, "attach to invalid member idx %u of struct %s\n", 18583 member_idx, st_ops->name); 18584 return -EINVAL; 18585 } 18586 18587 member = &btf_type_member(t)[member_idx]; 18588 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18589 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18590 NULL); 18591 if (!func_proto) { 18592 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18593 mname, member_idx, st_ops->name); 18594 return -EINVAL; 18595 } 18596 18597 if (st_ops->check_member) { 18598 int err = st_ops->check_member(t, member, prog); 18599 18600 if (err) { 18601 verbose(env, "attach to unsupported member %s of struct %s\n", 18602 mname, st_ops->name); 18603 return err; 18604 } 18605 } 18606 18607 prog->aux->attach_func_proto = func_proto; 18608 prog->aux->attach_func_name = mname; 18609 env->ops = st_ops->verifier_ops; 18610 18611 return 0; 18612 } 18613 #define SECURITY_PREFIX "security_" 18614 18615 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18616 { 18617 if (within_error_injection_list(addr) || 18618 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18619 return 0; 18620 18621 return -EINVAL; 18622 } 18623 18624 /* list of non-sleepable functions that are otherwise on 18625 * ALLOW_ERROR_INJECTION list 18626 */ 18627 BTF_SET_START(btf_non_sleepable_error_inject) 18628 /* Three functions below can be called from sleepable and non-sleepable context. 18629 * Assume non-sleepable from bpf safety point of view. 18630 */ 18631 BTF_ID(func, __filemap_add_folio) 18632 BTF_ID(func, should_fail_alloc_page) 18633 BTF_ID(func, should_failslab) 18634 BTF_SET_END(btf_non_sleepable_error_inject) 18635 18636 static int check_non_sleepable_error_inject(u32 btf_id) 18637 { 18638 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 18639 } 18640 18641 int bpf_check_attach_target(struct bpf_verifier_log *log, 18642 const struct bpf_prog *prog, 18643 const struct bpf_prog *tgt_prog, 18644 u32 btf_id, 18645 struct bpf_attach_target_info *tgt_info) 18646 { 18647 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 18648 const char prefix[] = "btf_trace_"; 18649 int ret = 0, subprog = -1, i; 18650 const struct btf_type *t; 18651 bool conservative = true; 18652 const char *tname; 18653 struct btf *btf; 18654 long addr = 0; 18655 struct module *mod = NULL; 18656 18657 if (!btf_id) { 18658 bpf_log(log, "Tracing programs must provide btf_id\n"); 18659 return -EINVAL; 18660 } 18661 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 18662 if (!btf) { 18663 bpf_log(log, 18664 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 18665 return -EINVAL; 18666 } 18667 t = btf_type_by_id(btf, btf_id); 18668 if (!t) { 18669 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 18670 return -EINVAL; 18671 } 18672 tname = btf_name_by_offset(btf, t->name_off); 18673 if (!tname) { 18674 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 18675 return -EINVAL; 18676 } 18677 if (tgt_prog) { 18678 struct bpf_prog_aux *aux = tgt_prog->aux; 18679 18680 if (bpf_prog_is_dev_bound(prog->aux) && 18681 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 18682 bpf_log(log, "Target program bound device mismatch"); 18683 return -EINVAL; 18684 } 18685 18686 for (i = 0; i < aux->func_info_cnt; i++) 18687 if (aux->func_info[i].type_id == btf_id) { 18688 subprog = i; 18689 break; 18690 } 18691 if (subprog == -1) { 18692 bpf_log(log, "Subprog %s doesn't exist\n", tname); 18693 return -EINVAL; 18694 } 18695 conservative = aux->func_info_aux[subprog].unreliable; 18696 if (prog_extension) { 18697 if (conservative) { 18698 bpf_log(log, 18699 "Cannot replace static functions\n"); 18700 return -EINVAL; 18701 } 18702 if (!prog->jit_requested) { 18703 bpf_log(log, 18704 "Extension programs should be JITed\n"); 18705 return -EINVAL; 18706 } 18707 } 18708 if (!tgt_prog->jited) { 18709 bpf_log(log, "Can attach to only JITed progs\n"); 18710 return -EINVAL; 18711 } 18712 if (tgt_prog->type == prog->type) { 18713 /* Cannot fentry/fexit another fentry/fexit program. 18714 * Cannot attach program extension to another extension. 18715 * It's ok to attach fentry/fexit to extension program. 18716 */ 18717 bpf_log(log, "Cannot recursively attach\n"); 18718 return -EINVAL; 18719 } 18720 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 18721 prog_extension && 18722 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 18723 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 18724 /* Program extensions can extend all program types 18725 * except fentry/fexit. The reason is the following. 18726 * The fentry/fexit programs are used for performance 18727 * analysis, stats and can be attached to any program 18728 * type except themselves. When extension program is 18729 * replacing XDP function it is necessary to allow 18730 * performance analysis of all functions. Both original 18731 * XDP program and its program extension. Hence 18732 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 18733 * allowed. If extending of fentry/fexit was allowed it 18734 * would be possible to create long call chain 18735 * fentry->extension->fentry->extension beyond 18736 * reasonable stack size. Hence extending fentry is not 18737 * allowed. 18738 */ 18739 bpf_log(log, "Cannot extend fentry/fexit\n"); 18740 return -EINVAL; 18741 } 18742 } else { 18743 if (prog_extension) { 18744 bpf_log(log, "Cannot replace kernel functions\n"); 18745 return -EINVAL; 18746 } 18747 } 18748 18749 switch (prog->expected_attach_type) { 18750 case BPF_TRACE_RAW_TP: 18751 if (tgt_prog) { 18752 bpf_log(log, 18753 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 18754 return -EINVAL; 18755 } 18756 if (!btf_type_is_typedef(t)) { 18757 bpf_log(log, "attach_btf_id %u is not a typedef\n", 18758 btf_id); 18759 return -EINVAL; 18760 } 18761 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 18762 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 18763 btf_id, tname); 18764 return -EINVAL; 18765 } 18766 tname += sizeof(prefix) - 1; 18767 t = btf_type_by_id(btf, t->type); 18768 if (!btf_type_is_ptr(t)) 18769 /* should never happen in valid vmlinux build */ 18770 return -EINVAL; 18771 t = btf_type_by_id(btf, t->type); 18772 if (!btf_type_is_func_proto(t)) 18773 /* should never happen in valid vmlinux build */ 18774 return -EINVAL; 18775 18776 break; 18777 case BPF_TRACE_ITER: 18778 if (!btf_type_is_func(t)) { 18779 bpf_log(log, "attach_btf_id %u is not a function\n", 18780 btf_id); 18781 return -EINVAL; 18782 } 18783 t = btf_type_by_id(btf, t->type); 18784 if (!btf_type_is_func_proto(t)) 18785 return -EINVAL; 18786 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18787 if (ret) 18788 return ret; 18789 break; 18790 default: 18791 if (!prog_extension) 18792 return -EINVAL; 18793 fallthrough; 18794 case BPF_MODIFY_RETURN: 18795 case BPF_LSM_MAC: 18796 case BPF_LSM_CGROUP: 18797 case BPF_TRACE_FENTRY: 18798 case BPF_TRACE_FEXIT: 18799 if (!btf_type_is_func(t)) { 18800 bpf_log(log, "attach_btf_id %u is not a function\n", 18801 btf_id); 18802 return -EINVAL; 18803 } 18804 if (prog_extension && 18805 btf_check_type_match(log, prog, btf, t)) 18806 return -EINVAL; 18807 t = btf_type_by_id(btf, t->type); 18808 if (!btf_type_is_func_proto(t)) 18809 return -EINVAL; 18810 18811 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 18812 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 18813 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 18814 return -EINVAL; 18815 18816 if (tgt_prog && conservative) 18817 t = NULL; 18818 18819 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 18820 if (ret < 0) 18821 return ret; 18822 18823 if (tgt_prog) { 18824 if (subprog == 0) 18825 addr = (long) tgt_prog->bpf_func; 18826 else 18827 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 18828 } else { 18829 if (btf_is_module(btf)) { 18830 mod = btf_try_get_module(btf); 18831 if (mod) 18832 addr = find_kallsyms_symbol_value(mod, tname); 18833 else 18834 addr = 0; 18835 } else { 18836 addr = kallsyms_lookup_name(tname); 18837 } 18838 if (!addr) { 18839 module_put(mod); 18840 bpf_log(log, 18841 "The address of function %s cannot be found\n", 18842 tname); 18843 return -ENOENT; 18844 } 18845 } 18846 18847 if (prog->aux->sleepable) { 18848 ret = -EINVAL; 18849 switch (prog->type) { 18850 case BPF_PROG_TYPE_TRACING: 18851 18852 /* fentry/fexit/fmod_ret progs can be sleepable if they are 18853 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 18854 */ 18855 if (!check_non_sleepable_error_inject(btf_id) && 18856 within_error_injection_list(addr)) 18857 ret = 0; 18858 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 18859 * in the fmodret id set with the KF_SLEEPABLE flag. 18860 */ 18861 else { 18862 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 18863 18864 if (flags && (*flags & KF_SLEEPABLE)) 18865 ret = 0; 18866 } 18867 break; 18868 case BPF_PROG_TYPE_LSM: 18869 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 18870 * Only some of them are sleepable. 18871 */ 18872 if (bpf_lsm_is_sleepable_hook(btf_id)) 18873 ret = 0; 18874 break; 18875 default: 18876 break; 18877 } 18878 if (ret) { 18879 module_put(mod); 18880 bpf_log(log, "%s is not sleepable\n", tname); 18881 return ret; 18882 } 18883 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 18884 if (tgt_prog) { 18885 module_put(mod); 18886 bpf_log(log, "can't modify return codes of BPF programs\n"); 18887 return -EINVAL; 18888 } 18889 ret = -EINVAL; 18890 if (btf_kfunc_is_modify_return(btf, btf_id) || 18891 !check_attach_modify_return(addr, tname)) 18892 ret = 0; 18893 if (ret) { 18894 module_put(mod); 18895 bpf_log(log, "%s() is not modifiable\n", tname); 18896 return ret; 18897 } 18898 } 18899 18900 break; 18901 } 18902 tgt_info->tgt_addr = addr; 18903 tgt_info->tgt_name = tname; 18904 tgt_info->tgt_type = t; 18905 tgt_info->tgt_mod = mod; 18906 return 0; 18907 } 18908 18909 BTF_SET_START(btf_id_deny) 18910 BTF_ID_UNUSED 18911 #ifdef CONFIG_SMP 18912 BTF_ID(func, migrate_disable) 18913 BTF_ID(func, migrate_enable) 18914 #endif 18915 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 18916 BTF_ID(func, rcu_read_unlock_strict) 18917 #endif 18918 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 18919 BTF_ID(func, preempt_count_add) 18920 BTF_ID(func, preempt_count_sub) 18921 #endif 18922 #ifdef CONFIG_PREEMPT_RCU 18923 BTF_ID(func, __rcu_read_lock) 18924 BTF_ID(func, __rcu_read_unlock) 18925 #endif 18926 BTF_SET_END(btf_id_deny) 18927 18928 static bool can_be_sleepable(struct bpf_prog *prog) 18929 { 18930 if (prog->type == BPF_PROG_TYPE_TRACING) { 18931 switch (prog->expected_attach_type) { 18932 case BPF_TRACE_FENTRY: 18933 case BPF_TRACE_FEXIT: 18934 case BPF_MODIFY_RETURN: 18935 case BPF_TRACE_ITER: 18936 return true; 18937 default: 18938 return false; 18939 } 18940 } 18941 return prog->type == BPF_PROG_TYPE_LSM || 18942 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 18943 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 18944 } 18945 18946 static int check_attach_btf_id(struct bpf_verifier_env *env) 18947 { 18948 struct bpf_prog *prog = env->prog; 18949 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 18950 struct bpf_attach_target_info tgt_info = {}; 18951 u32 btf_id = prog->aux->attach_btf_id; 18952 struct bpf_trampoline *tr; 18953 int ret; 18954 u64 key; 18955 18956 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 18957 if (prog->aux->sleepable) 18958 /* attach_btf_id checked to be zero already */ 18959 return 0; 18960 verbose(env, "Syscall programs can only be sleepable\n"); 18961 return -EINVAL; 18962 } 18963 18964 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 18965 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 18966 return -EINVAL; 18967 } 18968 18969 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 18970 return check_struct_ops_btf_id(env); 18971 18972 if (prog->type != BPF_PROG_TYPE_TRACING && 18973 prog->type != BPF_PROG_TYPE_LSM && 18974 prog->type != BPF_PROG_TYPE_EXT) 18975 return 0; 18976 18977 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 18978 if (ret) 18979 return ret; 18980 18981 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 18982 /* to make freplace equivalent to their targets, they need to 18983 * inherit env->ops and expected_attach_type for the rest of the 18984 * verification 18985 */ 18986 env->ops = bpf_verifier_ops[tgt_prog->type]; 18987 prog->expected_attach_type = tgt_prog->expected_attach_type; 18988 } 18989 18990 /* store info about the attachment target that will be used later */ 18991 prog->aux->attach_func_proto = tgt_info.tgt_type; 18992 prog->aux->attach_func_name = tgt_info.tgt_name; 18993 prog->aux->mod = tgt_info.tgt_mod; 18994 18995 if (tgt_prog) { 18996 prog->aux->saved_dst_prog_type = tgt_prog->type; 18997 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 18998 } 18999 19000 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19001 prog->aux->attach_btf_trace = true; 19002 return 0; 19003 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19004 if (!bpf_iter_prog_supported(prog)) 19005 return -EINVAL; 19006 return 0; 19007 } 19008 19009 if (prog->type == BPF_PROG_TYPE_LSM) { 19010 ret = bpf_lsm_verify_prog(&env->log, prog); 19011 if (ret < 0) 19012 return ret; 19013 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19014 btf_id_set_contains(&btf_id_deny, btf_id)) { 19015 return -EINVAL; 19016 } 19017 19018 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19019 tr = bpf_trampoline_get(key, &tgt_info); 19020 if (!tr) 19021 return -ENOMEM; 19022 19023 prog->aux->dst_trampoline = tr; 19024 return 0; 19025 } 19026 19027 struct btf *bpf_get_btf_vmlinux(void) 19028 { 19029 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19030 mutex_lock(&bpf_verifier_lock); 19031 if (!btf_vmlinux) 19032 btf_vmlinux = btf_parse_vmlinux(); 19033 mutex_unlock(&bpf_verifier_lock); 19034 } 19035 return btf_vmlinux; 19036 } 19037 19038 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19039 { 19040 u64 start_time = ktime_get_ns(); 19041 struct bpf_verifier_env *env; 19042 int i, len, ret = -EINVAL, err; 19043 u32 log_true_size; 19044 bool is_priv; 19045 19046 /* no program is valid */ 19047 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19048 return -EINVAL; 19049 19050 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19051 * allocate/free it every time bpf_check() is called 19052 */ 19053 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19054 if (!env) 19055 return -ENOMEM; 19056 19057 env->bt.env = env; 19058 19059 len = (*prog)->len; 19060 env->insn_aux_data = 19061 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19062 ret = -ENOMEM; 19063 if (!env->insn_aux_data) 19064 goto err_free_env; 19065 for (i = 0; i < len; i++) 19066 env->insn_aux_data[i].orig_idx = i; 19067 env->prog = *prog; 19068 env->ops = bpf_verifier_ops[env->prog->type]; 19069 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19070 is_priv = bpf_capable(); 19071 19072 bpf_get_btf_vmlinux(); 19073 19074 /* grab the mutex to protect few globals used by verifier */ 19075 if (!is_priv) 19076 mutex_lock(&bpf_verifier_lock); 19077 19078 /* user could have requested verbose verifier output 19079 * and supplied buffer to store the verification trace 19080 */ 19081 ret = bpf_vlog_init(&env->log, attr->log_level, 19082 (char __user *) (unsigned long) attr->log_buf, 19083 attr->log_size); 19084 if (ret) 19085 goto err_unlock; 19086 19087 mark_verifier_state_clean(env); 19088 19089 if (IS_ERR(btf_vmlinux)) { 19090 /* Either gcc or pahole or kernel are broken. */ 19091 verbose(env, "in-kernel BTF is malformed\n"); 19092 ret = PTR_ERR(btf_vmlinux); 19093 goto skip_full_check; 19094 } 19095 19096 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19097 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19098 env->strict_alignment = true; 19099 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19100 env->strict_alignment = false; 19101 19102 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19103 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19104 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19105 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19106 env->bpf_capable = bpf_capable(); 19107 19108 if (is_priv) 19109 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19110 19111 env->explored_states = kvcalloc(state_htab_size(env), 19112 sizeof(struct bpf_verifier_state_list *), 19113 GFP_USER); 19114 ret = -ENOMEM; 19115 if (!env->explored_states) 19116 goto skip_full_check; 19117 19118 ret = add_subprog_and_kfunc(env); 19119 if (ret < 0) 19120 goto skip_full_check; 19121 19122 ret = check_subprogs(env); 19123 if (ret < 0) 19124 goto skip_full_check; 19125 19126 ret = check_btf_info(env, attr, uattr); 19127 if (ret < 0) 19128 goto skip_full_check; 19129 19130 ret = check_attach_btf_id(env); 19131 if (ret) 19132 goto skip_full_check; 19133 19134 ret = resolve_pseudo_ldimm64(env); 19135 if (ret < 0) 19136 goto skip_full_check; 19137 19138 if (bpf_prog_is_offloaded(env->prog->aux)) { 19139 ret = bpf_prog_offload_verifier_prep(env->prog); 19140 if (ret) 19141 goto skip_full_check; 19142 } 19143 19144 ret = check_cfg(env); 19145 if (ret < 0) 19146 goto skip_full_check; 19147 19148 ret = do_check_subprogs(env); 19149 ret = ret ?: do_check_main(env); 19150 19151 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19152 ret = bpf_prog_offload_finalize(env); 19153 19154 skip_full_check: 19155 kvfree(env->explored_states); 19156 19157 if (ret == 0) 19158 ret = check_max_stack_depth(env); 19159 19160 /* instruction rewrites happen after this point */ 19161 if (ret == 0) 19162 ret = optimize_bpf_loop(env); 19163 19164 if (is_priv) { 19165 if (ret == 0) 19166 opt_hard_wire_dead_code_branches(env); 19167 if (ret == 0) 19168 ret = opt_remove_dead_code(env); 19169 if (ret == 0) 19170 ret = opt_remove_nops(env); 19171 } else { 19172 if (ret == 0) 19173 sanitize_dead_code(env); 19174 } 19175 19176 if (ret == 0) 19177 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19178 ret = convert_ctx_accesses(env); 19179 19180 if (ret == 0) 19181 ret = do_misc_fixups(env); 19182 19183 /* do 32-bit optimization after insn patching has done so those patched 19184 * insns could be handled correctly. 19185 */ 19186 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19187 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19188 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19189 : false; 19190 } 19191 19192 if (ret == 0) 19193 ret = fixup_call_args(env); 19194 19195 env->verification_time = ktime_get_ns() - start_time; 19196 print_verification_stats(env); 19197 env->prog->aux->verified_insns = env->insn_processed; 19198 19199 /* preserve original error even if log finalization is successful */ 19200 err = bpf_vlog_finalize(&env->log, &log_true_size); 19201 if (err) 19202 ret = err; 19203 19204 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19205 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19206 &log_true_size, sizeof(log_true_size))) { 19207 ret = -EFAULT; 19208 goto err_release_maps; 19209 } 19210 19211 if (ret) 19212 goto err_release_maps; 19213 19214 if (env->used_map_cnt) { 19215 /* if program passed verifier, update used_maps in bpf_prog_info */ 19216 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19217 sizeof(env->used_maps[0]), 19218 GFP_KERNEL); 19219 19220 if (!env->prog->aux->used_maps) { 19221 ret = -ENOMEM; 19222 goto err_release_maps; 19223 } 19224 19225 memcpy(env->prog->aux->used_maps, env->used_maps, 19226 sizeof(env->used_maps[0]) * env->used_map_cnt); 19227 env->prog->aux->used_map_cnt = env->used_map_cnt; 19228 } 19229 if (env->used_btf_cnt) { 19230 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19231 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19232 sizeof(env->used_btfs[0]), 19233 GFP_KERNEL); 19234 if (!env->prog->aux->used_btfs) { 19235 ret = -ENOMEM; 19236 goto err_release_maps; 19237 } 19238 19239 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19240 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19241 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19242 } 19243 if (env->used_map_cnt || env->used_btf_cnt) { 19244 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19245 * bpf_ld_imm64 instructions 19246 */ 19247 convert_pseudo_ld_imm64(env); 19248 } 19249 19250 adjust_btf_func(env); 19251 19252 err_release_maps: 19253 if (!env->prog->aux->used_maps) 19254 /* if we didn't copy map pointers into bpf_prog_info, release 19255 * them now. Otherwise free_used_maps() will release them. 19256 */ 19257 release_maps(env); 19258 if (!env->prog->aux->used_btfs) 19259 release_btfs(env); 19260 19261 /* extension progs temporarily inherit the attach_type of their targets 19262 for verification purposes, so set it back to zero before returning 19263 */ 19264 if (env->prog->type == BPF_PROG_TYPE_EXT) 19265 env->prog->expected_attach_type = 0; 19266 19267 *prog = env->prog; 19268 err_unlock: 19269 if (!is_priv) 19270 mutex_unlock(&bpf_verifier_lock); 19271 vfree(env->insn_aux_data); 19272 err_free_env: 19273 kfree(env); 19274 return ret; 19275 } 19276