xref: /openbmc/linux/kernel/bpf/verifier.c (revision a9ca9f9ceff382b58b488248f0c0da9e157f5d06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_timer_set_callback ||
551 	       func_id == BPF_FUNC_find_vma ||
552 	       func_id == BPF_FUNC_loop ||
553 	       func_id == BPF_FUNC_user_ringbuf_drain;
554 }
555 
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557 {
558 	return func_id == BPF_FUNC_timer_set_callback;
559 }
560 
561 static bool is_storage_get_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_sk_storage_get ||
564 	       func_id == BPF_FUNC_inode_storage_get ||
565 	       func_id == BPF_FUNC_task_storage_get ||
566 	       func_id == BPF_FUNC_cgrp_storage_get;
567 }
568 
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 					const struct bpf_map *map)
571 {
572 	int ref_obj_uses = 0;
573 
574 	if (is_ptr_cast_function(func_id))
575 		ref_obj_uses++;
576 	if (is_acquire_function(func_id, map))
577 		ref_obj_uses++;
578 	if (is_dynptr_ref_function(func_id))
579 		ref_obj_uses++;
580 
581 	return ref_obj_uses > 1;
582 }
583 
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_STX &&
587 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
588 	       insn->imm == BPF_CMPXCHG;
589 }
590 
591 /* string representation of 'enum bpf_reg_type'
592  *
593  * Note that reg_type_str() can not appear more than once in a single verbose()
594  * statement.
595  */
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 				enum bpf_reg_type type)
598 {
599 	char postfix[16] = {0}, prefix[64] = {0};
600 	static const char * const str[] = {
601 		[NOT_INIT]		= "?",
602 		[SCALAR_VALUE]		= "scalar",
603 		[PTR_TO_CTX]		= "ctx",
604 		[CONST_PTR_TO_MAP]	= "map_ptr",
605 		[PTR_TO_MAP_VALUE]	= "map_value",
606 		[PTR_TO_STACK]		= "fp",
607 		[PTR_TO_PACKET]		= "pkt",
608 		[PTR_TO_PACKET_META]	= "pkt_meta",
609 		[PTR_TO_PACKET_END]	= "pkt_end",
610 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
611 		[PTR_TO_SOCKET]		= "sock",
612 		[PTR_TO_SOCK_COMMON]	= "sock_common",
613 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
614 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
615 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
616 		[PTR_TO_BTF_ID]		= "ptr_",
617 		[PTR_TO_MEM]		= "mem",
618 		[PTR_TO_BUF]		= "buf",
619 		[PTR_TO_FUNC]		= "func",
620 		[PTR_TO_MAP_KEY]	= "map_key",
621 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
622 	};
623 
624 	if (type & PTR_MAYBE_NULL) {
625 		if (base_type(type) == PTR_TO_BTF_ID)
626 			strncpy(postfix, "or_null_", 16);
627 		else
628 			strncpy(postfix, "_or_null", 16);
629 	}
630 
631 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 		 type & MEM_RDONLY ? "rdonly_" : "",
633 		 type & MEM_RINGBUF ? "ringbuf_" : "",
634 		 type & MEM_USER ? "user_" : "",
635 		 type & MEM_PERCPU ? "percpu_" : "",
636 		 type & MEM_RCU ? "rcu_" : "",
637 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 		 type & PTR_TRUSTED ? "trusted_" : ""
639 	);
640 
641 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 		 prefix, str[base_type(type)], postfix);
643 	return env->tmp_str_buf;
644 }
645 
646 static char slot_type_char[] = {
647 	[STACK_INVALID]	= '?',
648 	[STACK_SPILL]	= 'r',
649 	[STACK_MISC]	= 'm',
650 	[STACK_ZERO]	= '0',
651 	[STACK_DYNPTR]	= 'd',
652 	[STACK_ITER]	= 'i',
653 };
654 
655 static void print_liveness(struct bpf_verifier_env *env,
656 			   enum bpf_reg_liveness live)
657 {
658 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
659 	    verbose(env, "_");
660 	if (live & REG_LIVE_READ)
661 		verbose(env, "r");
662 	if (live & REG_LIVE_WRITTEN)
663 		verbose(env, "w");
664 	if (live & REG_LIVE_DONE)
665 		verbose(env, "D");
666 }
667 
668 static int __get_spi(s32 off)
669 {
670 	return (-off - 1) / BPF_REG_SIZE;
671 }
672 
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 				   const struct bpf_reg_state *reg)
675 {
676 	struct bpf_verifier_state *cur = env->cur_state;
677 
678 	return cur->frame[reg->frameno];
679 }
680 
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682 {
683        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
684 
685        /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 	* within [0, allocated_stack).
687 	*
688 	* Please note that the spi grows downwards. For example, a dynptr
689 	* takes the size of two stack slots; the first slot will be at
690 	* spi and the second slot will be at spi - 1.
691 	*/
692        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
693 }
694 
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 			          const char *obj_kind, int nr_slots)
697 {
698 	int off, spi;
699 
700 	if (!tnum_is_const(reg->var_off)) {
701 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
702 		return -EINVAL;
703 	}
704 
705 	off = reg->off + reg->var_off.value;
706 	if (off % BPF_REG_SIZE) {
707 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
708 		return -EINVAL;
709 	}
710 
711 	spi = __get_spi(off);
712 	if (spi + 1 < nr_slots) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
718 		return -ERANGE;
719 	return spi;
720 }
721 
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723 {
724 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725 }
726 
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728 {
729 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730 }
731 
732 static const char *btf_type_name(const struct btf *btf, u32 id)
733 {
734 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
735 }
736 
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
738 {
739 	switch (type) {
740 	case BPF_DYNPTR_TYPE_LOCAL:
741 		return "local";
742 	case BPF_DYNPTR_TYPE_RINGBUF:
743 		return "ringbuf";
744 	case BPF_DYNPTR_TYPE_SKB:
745 		return "skb";
746 	case BPF_DYNPTR_TYPE_XDP:
747 		return "xdp";
748 	case BPF_DYNPTR_TYPE_INVALID:
749 		return "<invalid>";
750 	default:
751 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 		return "<unknown>";
753 	}
754 }
755 
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757 {
758 	if (!btf || btf_id == 0)
759 		return "<invalid>";
760 
761 	/* we already validated that type is valid and has conforming name */
762 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
763 }
764 
765 static const char *iter_state_str(enum bpf_iter_state state)
766 {
767 	switch (state) {
768 	case BPF_ITER_STATE_ACTIVE:
769 		return "active";
770 	case BPF_ITER_STATE_DRAINED:
771 		return "drained";
772 	case BPF_ITER_STATE_INVALID:
773 		return "<invalid>";
774 	default:
775 		WARN_ONCE(1, "unknown iter state %d\n", state);
776 		return "<unknown>";
777 	}
778 }
779 
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781 {
782 	env->scratched_regs |= 1U << regno;
783 }
784 
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786 {
787 	env->scratched_stack_slots |= 1ULL << spi;
788 }
789 
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791 {
792 	return (env->scratched_regs >> regno) & 1;
793 }
794 
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796 {
797 	return (env->scratched_stack_slots >> regno) & 1;
798 }
799 
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801 {
802 	return env->scratched_regs || env->scratched_stack_slots;
803 }
804 
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806 {
807 	env->scratched_regs = 0U;
808 	env->scratched_stack_slots = 0ULL;
809 }
810 
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813 {
814 	env->scratched_regs = ~0U;
815 	env->scratched_stack_slots = ~0ULL;
816 }
817 
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819 {
820 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 	case DYNPTR_TYPE_LOCAL:
822 		return BPF_DYNPTR_TYPE_LOCAL;
823 	case DYNPTR_TYPE_RINGBUF:
824 		return BPF_DYNPTR_TYPE_RINGBUF;
825 	case DYNPTR_TYPE_SKB:
826 		return BPF_DYNPTR_TYPE_SKB;
827 	case DYNPTR_TYPE_XDP:
828 		return BPF_DYNPTR_TYPE_XDP;
829 	default:
830 		return BPF_DYNPTR_TYPE_INVALID;
831 	}
832 }
833 
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835 {
836 	switch (type) {
837 	case BPF_DYNPTR_TYPE_LOCAL:
838 		return DYNPTR_TYPE_LOCAL;
839 	case BPF_DYNPTR_TYPE_RINGBUF:
840 		return DYNPTR_TYPE_RINGBUF;
841 	case BPF_DYNPTR_TYPE_SKB:
842 		return DYNPTR_TYPE_SKB;
843 	case BPF_DYNPTR_TYPE_XDP:
844 		return DYNPTR_TYPE_XDP;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851 {
852 	return type == BPF_DYNPTR_TYPE_RINGBUF;
853 }
854 
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 			      enum bpf_dynptr_type type,
857 			      bool first_slot, int dynptr_id);
858 
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 				struct bpf_reg_state *reg);
861 
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 				   struct bpf_reg_state *sreg1,
864 				   struct bpf_reg_state *sreg2,
865 				   enum bpf_dynptr_type type)
866 {
867 	int id = ++env->id_gen;
868 
869 	__mark_dynptr_reg(sreg1, type, true, id);
870 	__mark_dynptr_reg(sreg2, type, false, id);
871 }
872 
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 			       struct bpf_reg_state *reg,
875 			       enum bpf_dynptr_type type)
876 {
877 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
878 }
879 
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 				        struct bpf_func_state *state, int spi);
882 
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
885 {
886 	struct bpf_func_state *state = func(env, reg);
887 	enum bpf_dynptr_type type;
888 	int spi, i, err;
889 
890 	spi = dynptr_get_spi(env, reg);
891 	if (spi < 0)
892 		return spi;
893 
894 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 	 * to ensure that for the following example:
897 	 *	[d1][d1][d2][d2]
898 	 * spi    3   2   1   0
899 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 	 * case they do belong to same dynptr, second call won't see slot_type
901 	 * as STACK_DYNPTR and will simply skip destruction.
902 	 */
903 	err = destroy_if_dynptr_stack_slot(env, state, spi);
904 	if (err)
905 		return err;
906 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i < BPF_REG_SIZE; i++) {
911 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 	}
914 
915 	type = arg_to_dynptr_type(arg_type);
916 	if (type == BPF_DYNPTR_TYPE_INVALID)
917 		return -EINVAL;
918 
919 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 			       &state->stack[spi - 1].spilled_ptr, type);
921 
922 	if (dynptr_type_refcounted(type)) {
923 		/* The id is used to track proper releasing */
924 		int id;
925 
926 		if (clone_ref_obj_id)
927 			id = clone_ref_obj_id;
928 		else
929 			id = acquire_reference_state(env, insn_idx);
930 
931 		if (id < 0)
932 			return id;
933 
934 		state->stack[spi].spilled_ptr.ref_obj_id = id;
935 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
936 	}
937 
938 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 
941 	return 0;
942 }
943 
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
945 {
946 	int i;
947 
948 	for (i = 0; i < BPF_REG_SIZE; i++) {
949 		state->stack[spi].slot_type[i] = STACK_INVALID;
950 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 	}
952 
953 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
955 
956 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 	 *
958 	 * While we don't allow reading STACK_INVALID, it is still possible to
959 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 	 * helpers or insns can do partial read of that part without failing,
961 	 * but check_stack_range_initialized, check_stack_read_var_off, and
962 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 	 * the slot conservatively. Hence we need to prevent those liveness
964 	 * marking walks.
965 	 *
966 	 * This was not a problem before because STACK_INVALID is only set by
967 	 * default (where the default reg state has its reg->parent as NULL), or
968 	 * in clean_live_states after REG_LIVE_DONE (at which point
969 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 	 * verifier state exploration (like we did above). Hence, for our case
971 	 * parentage chain will still be live (i.e. reg->parent may be
972 	 * non-NULL), while earlier reg->parent was NULL, so we need
973 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 	 * done later on reads or by mark_dynptr_read as well to unnecessary
975 	 * mark registers in verifier state.
976 	 */
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 }
980 
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982 {
983 	struct bpf_func_state *state = func(env, reg);
984 	int spi, ref_obj_id, i;
985 
986 	spi = dynptr_get_spi(env, reg);
987 	if (spi < 0)
988 		return spi;
989 
990 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 		invalidate_dynptr(env, state, spi);
992 		return 0;
993 	}
994 
995 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996 
997 	/* If the dynptr has a ref_obj_id, then we need to invalidate
998 	 * two things:
999 	 *
1000 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 	 * 2) Any slices derived from this dynptr.
1002 	 */
1003 
1004 	/* Invalidate any slices associated with this dynptr */
1005 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006 
1007 	/* Invalidate any dynptr clones */
1008 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 			continue;
1011 
1012 		/* it should always be the case that if the ref obj id
1013 		 * matches then the stack slot also belongs to a
1014 		 * dynptr
1015 		 */
1016 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 			return -EFAULT;
1019 		}
1020 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 			invalidate_dynptr(env, state, i);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 			       struct bpf_reg_state *reg);
1029 
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031 {
1032 	if (!env->allow_ptr_leaks)
1033 		__mark_reg_not_init(env, reg);
1034 	else
1035 		__mark_reg_unknown(env, reg);
1036 }
1037 
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 				        struct bpf_func_state *state, int spi)
1040 {
1041 	struct bpf_func_state *fstate;
1042 	struct bpf_reg_state *dreg;
1043 	int i, dynptr_id;
1044 
1045 	/* We always ensure that STACK_DYNPTR is never set partially,
1046 	 * hence just checking for slot_type[0] is enough. This is
1047 	 * different for STACK_SPILL, where it may be only set for
1048 	 * 1 byte, so code has to use is_spilled_reg.
1049 	 */
1050 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 		return 0;
1052 
1053 	/* Reposition spi to first slot */
1054 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 		spi = spi + 1;
1056 
1057 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 		verbose(env, "cannot overwrite referenced dynptr\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	mark_stack_slot_scratched(env, spi);
1063 	mark_stack_slot_scratched(env, spi - 1);
1064 
1065 	/* Writing partially to one dynptr stack slot destroys both. */
1066 	for (i = 0; i < BPF_REG_SIZE; i++) {
1067 		state->stack[spi].slot_type[i] = STACK_INVALID;
1068 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1069 	}
1070 
1071 	dynptr_id = state->stack[spi].spilled_ptr.id;
1072 	/* Invalidate any slices associated with this dynptr */
1073 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 			continue;
1077 		if (dreg->dynptr_id == dynptr_id)
1078 			mark_reg_invalid(env, dreg);
1079 	}));
1080 
1081 	/* Do not release reference state, we are destroying dynptr on stack,
1082 	 * not using some helper to release it. Just reset register.
1083 	 */
1084 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086 
1087 	/* Same reason as unmark_stack_slots_dynptr above */
1088 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 
1091 	return 0;
1092 }
1093 
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1095 {
1096 	int spi;
1097 
1098 	if (reg->type == CONST_PTR_TO_DYNPTR)
1099 		return false;
1100 
1101 	spi = dynptr_get_spi(env, reg);
1102 
1103 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 	 * error because this just means the stack state hasn't been updated yet.
1105 	 * We will do check_mem_access to check and update stack bounds later.
1106 	 */
1107 	if (spi < 0 && spi != -ERANGE)
1108 		return false;
1109 
1110 	/* We don't need to check if the stack slots are marked by previous
1111 	 * dynptr initializations because we allow overwriting existing unreferenced
1112 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 	 * touching are completely destructed before we reinitialize them for a new
1115 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 	 * instead of delaying it until the end where the user will get "Unreleased
1117 	 * reference" error.
1118 	 */
1119 	return true;
1120 }
1121 
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1123 {
1124 	struct bpf_func_state *state = func(env, reg);
1125 	int i, spi;
1126 
1127 	/* This already represents first slot of initialized bpf_dynptr.
1128 	 *
1129 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 	 * check_func_arg_reg_off's logic, so we don't need to check its
1131 	 * offset and alignment.
1132 	 */
1133 	if (reg->type == CONST_PTR_TO_DYNPTR)
1134 		return true;
1135 
1136 	spi = dynptr_get_spi(env, reg);
1137 	if (spi < 0)
1138 		return false;
1139 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1140 		return false;
1141 
1142 	for (i = 0; i < BPF_REG_SIZE; i++) {
1143 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 			return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 				    enum bpf_arg_type arg_type)
1153 {
1154 	struct bpf_func_state *state = func(env, reg);
1155 	enum bpf_dynptr_type dynptr_type;
1156 	int spi;
1157 
1158 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 	if (arg_type == ARG_PTR_TO_DYNPTR)
1160 		return true;
1161 
1162 	dynptr_type = arg_to_dynptr_type(arg_type);
1163 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 		return reg->dynptr.type == dynptr_type;
1165 	} else {
1166 		spi = dynptr_get_spi(env, reg);
1167 		if (spi < 0)
1168 			return false;
1169 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 	}
1171 }
1172 
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174 
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 				 struct bpf_reg_state *reg, int insn_idx,
1177 				 struct btf *btf, u32 btf_id, int nr_slots)
1178 {
1179 	struct bpf_func_state *state = func(env, reg);
1180 	int spi, i, j, id;
1181 
1182 	spi = iter_get_spi(env, reg, nr_slots);
1183 	if (spi < 0)
1184 		return spi;
1185 
1186 	id = acquire_reference_state(env, insn_idx);
1187 	if (id < 0)
1188 		return id;
1189 
1190 	for (i = 0; i < nr_slots; i++) {
1191 		struct bpf_stack_state *slot = &state->stack[spi - i];
1192 		struct bpf_reg_state *st = &slot->spilled_ptr;
1193 
1194 		__mark_reg_known_zero(st);
1195 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 		st->live |= REG_LIVE_WRITTEN;
1197 		st->ref_obj_id = i == 0 ? id : 0;
1198 		st->iter.btf = btf;
1199 		st->iter.btf_id = btf_id;
1200 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 		st->iter.depth = 0;
1202 
1203 		for (j = 0; j < BPF_REG_SIZE; j++)
1204 			slot->slot_type[j] = STACK_ITER;
1205 
1206 		mark_stack_slot_scratched(env, spi - i);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 				   struct bpf_reg_state *reg, int nr_slots)
1214 {
1215 	struct bpf_func_state *state = func(env, reg);
1216 	int spi, i, j;
1217 
1218 	spi = iter_get_spi(env, reg, nr_slots);
1219 	if (spi < 0)
1220 		return spi;
1221 
1222 	for (i = 0; i < nr_slots; i++) {
1223 		struct bpf_stack_state *slot = &state->stack[spi - i];
1224 		struct bpf_reg_state *st = &slot->spilled_ptr;
1225 
1226 		if (i == 0)
1227 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228 
1229 		__mark_reg_not_init(env, st);
1230 
1231 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 		st->live |= REG_LIVE_WRITTEN;
1233 
1234 		for (j = 0; j < BPF_REG_SIZE; j++)
1235 			slot->slot_type[j] = STACK_INVALID;
1236 
1237 		mark_stack_slot_scratched(env, spi - i);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 				     struct bpf_reg_state *reg, int nr_slots)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	int spi, i, j;
1248 
1249 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 	 * will do check_mem_access to check and update stack bounds later, so
1251 	 * return true for that case.
1252 	 */
1253 	spi = iter_get_spi(env, reg, nr_slots);
1254 	if (spi == -ERANGE)
1255 		return true;
1256 	if (spi < 0)
1257 		return false;
1258 
1259 	for (i = 0; i < nr_slots; i++) {
1260 		struct bpf_stack_state *slot = &state->stack[spi - i];
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			if (slot->slot_type[j] == STACK_ITER)
1264 				return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 				   struct btf *btf, u32 btf_id, int nr_slots)
1272 {
1273 	struct bpf_func_state *state = func(env, reg);
1274 	int spi, i, j;
1275 
1276 	spi = iter_get_spi(env, reg, nr_slots);
1277 	if (spi < 0)
1278 		return false;
1279 
1280 	for (i = 0; i < nr_slots; i++) {
1281 		struct bpf_stack_state *slot = &state->stack[spi - i];
1282 		struct bpf_reg_state *st = &slot->spilled_ptr;
1283 
1284 		/* only main (first) slot has ref_obj_id set */
1285 		if (i == 0 && !st->ref_obj_id)
1286 			return false;
1287 		if (i != 0 && st->ref_obj_id)
1288 			return false;
1289 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 			return false;
1291 
1292 		for (j = 0; j < BPF_REG_SIZE; j++)
1293 			if (slot->slot_type[j] != STACK_ITER)
1294 				return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if given stack slot is "special":
1301  *   - spilled register state (STACK_SPILL);
1302  *   - dynptr state (STACK_DYNPTR);
1303  *   - iter state (STACK_ITER).
1304  */
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306 {
1307 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308 
1309 	switch (type) {
1310 	case STACK_SPILL:
1311 	case STACK_DYNPTR:
1312 	case STACK_ITER:
1313 		return true;
1314 	case STACK_INVALID:
1315 	case STACK_MISC:
1316 	case STACK_ZERO:
1317 		return false;
1318 	default:
1319 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 		return true;
1321 	}
1322 }
1323 
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325  * it was spilled to the stack.
1326  */
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328 {
1329 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330 }
1331 
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333 {
1334 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 	       stack->spilled_ptr.type == SCALAR_VALUE;
1336 }
1337 
1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 	if (*stype != STACK_INVALID)
1341 		*stype = STACK_MISC;
1342 }
1343 
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 				 const struct bpf_func_state *state,
1346 				 bool print_all)
1347 {
1348 	const struct bpf_reg_state *reg;
1349 	enum bpf_reg_type t;
1350 	int i;
1351 
1352 	if (state->frameno)
1353 		verbose(env, " frame%d:", state->frameno);
1354 	for (i = 0; i < MAX_BPF_REG; i++) {
1355 		reg = &state->regs[i];
1356 		t = reg->type;
1357 		if (t == NOT_INIT)
1358 			continue;
1359 		if (!print_all && !reg_scratched(env, i))
1360 			continue;
1361 		verbose(env, " R%d", i);
1362 		print_liveness(env, reg->live);
1363 		verbose(env, "=");
1364 		if (t == SCALAR_VALUE && reg->precise)
1365 			verbose(env, "P");
1366 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 		    tnum_is_const(reg->var_off)) {
1368 			/* reg->off should be 0 for SCALAR_VALUE */
1369 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 			verbose(env, "%lld", reg->var_off.value + reg->off);
1371 		} else {
1372 			const char *sep = "";
1373 
1374 			verbose(env, "%s", reg_type_str(env, t));
1375 			if (base_type(t) == PTR_TO_BTF_ID)
1376 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1377 			verbose(env, "(");
1378 /*
1379  * _a stands for append, was shortened to avoid multiline statements below.
1380  * This macro is used to output a comma separated list of attributes.
1381  */
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383 
1384 			if (reg->id)
1385 				verbose_a("id=%d", reg->id);
1386 			if (reg->ref_obj_id)
1387 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 			if (type_is_non_owning_ref(reg->type))
1389 				verbose_a("%s", "non_own_ref");
1390 			if (t != SCALAR_VALUE)
1391 				verbose_a("off=%d", reg->off);
1392 			if (type_is_pkt_pointer(t))
1393 				verbose_a("r=%d", reg->range);
1394 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 				 base_type(t) == PTR_TO_MAP_KEY ||
1396 				 base_type(t) == PTR_TO_MAP_VALUE)
1397 				verbose_a("ks=%d,vs=%d",
1398 					  reg->map_ptr->key_size,
1399 					  reg->map_ptr->value_size);
1400 			if (tnum_is_const(reg->var_off)) {
1401 				/* Typically an immediate SCALAR_VALUE, but
1402 				 * could be a pointer whose offset is too big
1403 				 * for reg->off
1404 				 */
1405 				verbose_a("imm=%llx", reg->var_off.value);
1406 			} else {
1407 				if (reg->smin_value != reg->umin_value &&
1408 				    reg->smin_value != S64_MIN)
1409 					verbose_a("smin=%lld", (long long)reg->smin_value);
1410 				if (reg->smax_value != reg->umax_value &&
1411 				    reg->smax_value != S64_MAX)
1412 					verbose_a("smax=%lld", (long long)reg->smax_value);
1413 				if (reg->umin_value != 0)
1414 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 				if (reg->umax_value != U64_MAX)
1416 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 				if (!tnum_is_unknown(reg->var_off)) {
1418 					char tn_buf[48];
1419 
1420 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 					verbose_a("var_off=%s", tn_buf);
1422 				}
1423 				if (reg->s32_min_value != reg->smin_value &&
1424 				    reg->s32_min_value != S32_MIN)
1425 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 				if (reg->s32_max_value != reg->smax_value &&
1427 				    reg->s32_max_value != S32_MAX)
1428 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 				if (reg->u32_min_value != reg->umin_value &&
1430 				    reg->u32_min_value != U32_MIN)
1431 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 				if (reg->u32_max_value != reg->umax_value &&
1433 				    reg->u32_max_value != U32_MAX)
1434 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1435 			}
1436 #undef verbose_a
1437 
1438 			verbose(env, ")");
1439 		}
1440 	}
1441 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 		char types_buf[BPF_REG_SIZE + 1];
1443 		bool valid = false;
1444 		int j;
1445 
1446 		for (j = 0; j < BPF_REG_SIZE; j++) {
1447 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 				valid = true;
1449 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1450 		}
1451 		types_buf[BPF_REG_SIZE] = 0;
1452 		if (!valid)
1453 			continue;
1454 		if (!print_all && !stack_slot_scratched(env, i))
1455 			continue;
1456 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 		case STACK_SPILL:
1458 			reg = &state->stack[i].spilled_ptr;
1459 			t = reg->type;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 			if (t == SCALAR_VALUE && reg->precise)
1465 				verbose(env, "P");
1466 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 				verbose(env, "%lld", reg->var_off.value + reg->off);
1468 			break;
1469 		case STACK_DYNPTR:
1470 			i += BPF_DYNPTR_NR_SLOTS - 1;
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 			print_liveness(env, reg->live);
1475 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 			if (reg->ref_obj_id)
1477 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 			break;
1479 		case STACK_ITER:
1480 			/* only main slot has ref_obj_id set; skip others */
1481 			reg = &state->stack[i].spilled_ptr;
1482 			if (!reg->ref_obj_id)
1483 				continue;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 				reg->iter.depth);
1491 			break;
1492 		case STACK_MISC:
1493 		case STACK_ZERO:
1494 		default:
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			for (j = 0; j < BPF_REG_SIZE; j++)
1498 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 			types_buf[BPF_REG_SIZE] = 0;
1500 
1501 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 			print_liveness(env, reg->live);
1503 			verbose(env, "=%s", types_buf);
1504 			break;
1505 		}
1506 	}
1507 	if (state->acquired_refs && state->refs[0].id) {
1508 		verbose(env, " refs=%d", state->refs[0].id);
1509 		for (i = 1; i < state->acquired_refs; i++)
1510 			if (state->refs[i].id)
1511 				verbose(env, ",%d", state->refs[i].id);
1512 	}
1513 	if (state->in_callback_fn)
1514 		verbose(env, " cb");
1515 	if (state->in_async_callback_fn)
1516 		verbose(env, " async_cb");
1517 	verbose(env, "\n");
1518 	mark_verifier_state_clean(env);
1519 }
1520 
1521 static inline u32 vlog_alignment(u32 pos)
1522 {
1523 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1524 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1525 }
1526 
1527 static void print_insn_state(struct bpf_verifier_env *env,
1528 			     const struct bpf_func_state *state)
1529 {
1530 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1531 		/* remove new line character */
1532 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1533 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1534 	} else {
1535 		verbose(env, "%d:", env->insn_idx);
1536 	}
1537 	print_verifier_state(env, state, false);
1538 }
1539 
1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1541  * small to hold src. This is different from krealloc since we don't want to preserve
1542  * the contents of dst.
1543  *
1544  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1545  * not be allocated.
1546  */
1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1548 {
1549 	size_t alloc_bytes;
1550 	void *orig = dst;
1551 	size_t bytes;
1552 
1553 	if (ZERO_OR_NULL_PTR(src))
1554 		goto out;
1555 
1556 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1557 		return NULL;
1558 
1559 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1560 	dst = krealloc(orig, alloc_bytes, flags);
1561 	if (!dst) {
1562 		kfree(orig);
1563 		return NULL;
1564 	}
1565 
1566 	memcpy(dst, src, bytes);
1567 out:
1568 	return dst ? dst : ZERO_SIZE_PTR;
1569 }
1570 
1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1572  * small to hold new_n items. new items are zeroed out if the array grows.
1573  *
1574  * Contrary to krealloc_array, does not free arr if new_n is zero.
1575  */
1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1577 {
1578 	size_t alloc_size;
1579 	void *new_arr;
1580 
1581 	if (!new_n || old_n == new_n)
1582 		goto out;
1583 
1584 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1585 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1586 	if (!new_arr) {
1587 		kfree(arr);
1588 		return NULL;
1589 	}
1590 	arr = new_arr;
1591 
1592 	if (new_n > old_n)
1593 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1594 
1595 out:
1596 	return arr ? arr : ZERO_SIZE_PTR;
1597 }
1598 
1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1600 {
1601 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1602 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1603 	if (!dst->refs)
1604 		return -ENOMEM;
1605 
1606 	dst->acquired_refs = src->acquired_refs;
1607 	return 0;
1608 }
1609 
1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1611 {
1612 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1613 
1614 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1615 				GFP_KERNEL);
1616 	if (!dst->stack)
1617 		return -ENOMEM;
1618 
1619 	dst->allocated_stack = src->allocated_stack;
1620 	return 0;
1621 }
1622 
1623 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1624 {
1625 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1626 				    sizeof(struct bpf_reference_state));
1627 	if (!state->refs)
1628 		return -ENOMEM;
1629 
1630 	state->acquired_refs = n;
1631 	return 0;
1632 }
1633 
1634 static int grow_stack_state(struct bpf_func_state *state, int size)
1635 {
1636 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1637 
1638 	if (old_n >= n)
1639 		return 0;
1640 
1641 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1642 	if (!state->stack)
1643 		return -ENOMEM;
1644 
1645 	state->allocated_stack = size;
1646 	return 0;
1647 }
1648 
1649 /* Acquire a pointer id from the env and update the state->refs to include
1650  * this new pointer reference.
1651  * On success, returns a valid pointer id to associate with the register
1652  * On failure, returns a negative errno.
1653  */
1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1655 {
1656 	struct bpf_func_state *state = cur_func(env);
1657 	int new_ofs = state->acquired_refs;
1658 	int id, err;
1659 
1660 	err = resize_reference_state(state, state->acquired_refs + 1);
1661 	if (err)
1662 		return err;
1663 	id = ++env->id_gen;
1664 	state->refs[new_ofs].id = id;
1665 	state->refs[new_ofs].insn_idx = insn_idx;
1666 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1667 
1668 	return id;
1669 }
1670 
1671 /* release function corresponding to acquire_reference_state(). Idempotent. */
1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1673 {
1674 	int i, last_idx;
1675 
1676 	last_idx = state->acquired_refs - 1;
1677 	for (i = 0; i < state->acquired_refs; i++) {
1678 		if (state->refs[i].id == ptr_id) {
1679 			/* Cannot release caller references in callbacks */
1680 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1681 				return -EINVAL;
1682 			if (last_idx && i != last_idx)
1683 				memcpy(&state->refs[i], &state->refs[last_idx],
1684 				       sizeof(*state->refs));
1685 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1686 			state->acquired_refs--;
1687 			return 0;
1688 		}
1689 	}
1690 	return -EINVAL;
1691 }
1692 
1693 static void free_func_state(struct bpf_func_state *state)
1694 {
1695 	if (!state)
1696 		return;
1697 	kfree(state->refs);
1698 	kfree(state->stack);
1699 	kfree(state);
1700 }
1701 
1702 static void clear_jmp_history(struct bpf_verifier_state *state)
1703 {
1704 	kfree(state->jmp_history);
1705 	state->jmp_history = NULL;
1706 	state->jmp_history_cnt = 0;
1707 }
1708 
1709 static void free_verifier_state(struct bpf_verifier_state *state,
1710 				bool free_self)
1711 {
1712 	int i;
1713 
1714 	for (i = 0; i <= state->curframe; i++) {
1715 		free_func_state(state->frame[i]);
1716 		state->frame[i] = NULL;
1717 	}
1718 	clear_jmp_history(state);
1719 	if (free_self)
1720 		kfree(state);
1721 }
1722 
1723 /* copy verifier state from src to dst growing dst stack space
1724  * when necessary to accommodate larger src stack
1725  */
1726 static int copy_func_state(struct bpf_func_state *dst,
1727 			   const struct bpf_func_state *src)
1728 {
1729 	int err;
1730 
1731 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1732 	err = copy_reference_state(dst, src);
1733 	if (err)
1734 		return err;
1735 	return copy_stack_state(dst, src);
1736 }
1737 
1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1739 			       const struct bpf_verifier_state *src)
1740 {
1741 	struct bpf_func_state *dst;
1742 	int i, err;
1743 
1744 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1745 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1746 					    GFP_USER);
1747 	if (!dst_state->jmp_history)
1748 		return -ENOMEM;
1749 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1750 
1751 	/* if dst has more stack frames then src frame, free them */
1752 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 		free_func_state(dst_state->frame[i]);
1754 		dst_state->frame[i] = NULL;
1755 	}
1756 	dst_state->speculative = src->speculative;
1757 	dst_state->active_rcu_lock = src->active_rcu_lock;
1758 	dst_state->curframe = src->curframe;
1759 	dst_state->active_lock.ptr = src->active_lock.ptr;
1760 	dst_state->active_lock.id = src->active_lock.id;
1761 	dst_state->branches = src->branches;
1762 	dst_state->parent = src->parent;
1763 	dst_state->first_insn_idx = src->first_insn_idx;
1764 	dst_state->last_insn_idx = src->last_insn_idx;
1765 	for (i = 0; i <= src->curframe; i++) {
1766 		dst = dst_state->frame[i];
1767 		if (!dst) {
1768 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1769 			if (!dst)
1770 				return -ENOMEM;
1771 			dst_state->frame[i] = dst;
1772 		}
1773 		err = copy_func_state(dst, src->frame[i]);
1774 		if (err)
1775 			return err;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1781 {
1782 	while (st) {
1783 		u32 br = --st->branches;
1784 
1785 		/* WARN_ON(br > 1) technically makes sense here,
1786 		 * but see comment in push_stack(), hence:
1787 		 */
1788 		WARN_ONCE((int)br < 0,
1789 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1790 			  br);
1791 		if (br)
1792 			break;
1793 		st = st->parent;
1794 	}
1795 }
1796 
1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1798 		     int *insn_idx, bool pop_log)
1799 {
1800 	struct bpf_verifier_state *cur = env->cur_state;
1801 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1802 	int err;
1803 
1804 	if (env->head == NULL)
1805 		return -ENOENT;
1806 
1807 	if (cur) {
1808 		err = copy_verifier_state(cur, &head->st);
1809 		if (err)
1810 			return err;
1811 	}
1812 	if (pop_log)
1813 		bpf_vlog_reset(&env->log, head->log_pos);
1814 	if (insn_idx)
1815 		*insn_idx = head->insn_idx;
1816 	if (prev_insn_idx)
1817 		*prev_insn_idx = head->prev_insn_idx;
1818 	elem = head->next;
1819 	free_verifier_state(&head->st, false);
1820 	kfree(head);
1821 	env->head = elem;
1822 	env->stack_size--;
1823 	return 0;
1824 }
1825 
1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1827 					     int insn_idx, int prev_insn_idx,
1828 					     bool speculative)
1829 {
1830 	struct bpf_verifier_state *cur = env->cur_state;
1831 	struct bpf_verifier_stack_elem *elem;
1832 	int err;
1833 
1834 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1835 	if (!elem)
1836 		goto err;
1837 
1838 	elem->insn_idx = insn_idx;
1839 	elem->prev_insn_idx = prev_insn_idx;
1840 	elem->next = env->head;
1841 	elem->log_pos = env->log.end_pos;
1842 	env->head = elem;
1843 	env->stack_size++;
1844 	err = copy_verifier_state(&elem->st, cur);
1845 	if (err)
1846 		goto err;
1847 	elem->st.speculative |= speculative;
1848 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1849 		verbose(env, "The sequence of %d jumps is too complex.\n",
1850 			env->stack_size);
1851 		goto err;
1852 	}
1853 	if (elem->st.parent) {
1854 		++elem->st.parent->branches;
1855 		/* WARN_ON(branches > 2) technically makes sense here,
1856 		 * but
1857 		 * 1. speculative states will bump 'branches' for non-branch
1858 		 * instructions
1859 		 * 2. is_state_visited() heuristics may decide not to create
1860 		 * a new state for a sequence of branches and all such current
1861 		 * and cloned states will be pointing to a single parent state
1862 		 * which might have large 'branches' count.
1863 		 */
1864 	}
1865 	return &elem->st;
1866 err:
1867 	free_verifier_state(env->cur_state, true);
1868 	env->cur_state = NULL;
1869 	/* pop all elements and return */
1870 	while (!pop_stack(env, NULL, NULL, false));
1871 	return NULL;
1872 }
1873 
1874 #define CALLER_SAVED_REGS 6
1875 static const int caller_saved[CALLER_SAVED_REGS] = {
1876 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1877 };
1878 
1879 /* This helper doesn't clear reg->id */
1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1881 {
1882 	reg->var_off = tnum_const(imm);
1883 	reg->smin_value = (s64)imm;
1884 	reg->smax_value = (s64)imm;
1885 	reg->umin_value = imm;
1886 	reg->umax_value = imm;
1887 
1888 	reg->s32_min_value = (s32)imm;
1889 	reg->s32_max_value = (s32)imm;
1890 	reg->u32_min_value = (u32)imm;
1891 	reg->u32_max_value = (u32)imm;
1892 }
1893 
1894 /* Mark the unknown part of a register (variable offset or scalar value) as
1895  * known to have the value @imm.
1896  */
1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1898 {
1899 	/* Clear off and union(map_ptr, range) */
1900 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1901 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1902 	reg->id = 0;
1903 	reg->ref_obj_id = 0;
1904 	___mark_reg_known(reg, imm);
1905 }
1906 
1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1908 {
1909 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1910 	reg->s32_min_value = (s32)imm;
1911 	reg->s32_max_value = (s32)imm;
1912 	reg->u32_min_value = (u32)imm;
1913 	reg->u32_max_value = (u32)imm;
1914 }
1915 
1916 /* Mark the 'variable offset' part of a register as zero.  This should be
1917  * used only on registers holding a pointer type.
1918  */
1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1920 {
1921 	__mark_reg_known(reg, 0);
1922 }
1923 
1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1925 {
1926 	__mark_reg_known(reg, 0);
1927 	reg->type = SCALAR_VALUE;
1928 }
1929 
1930 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1931 				struct bpf_reg_state *regs, u32 regno)
1932 {
1933 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1934 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1935 		/* Something bad happened, let's kill all regs */
1936 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1937 			__mark_reg_not_init(env, regs + regno);
1938 		return;
1939 	}
1940 	__mark_reg_known_zero(regs + regno);
1941 }
1942 
1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1944 			      bool first_slot, int dynptr_id)
1945 {
1946 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1947 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1948 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1949 	 */
1950 	__mark_reg_known_zero(reg);
1951 	reg->type = CONST_PTR_TO_DYNPTR;
1952 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1953 	reg->id = dynptr_id;
1954 	reg->dynptr.type = type;
1955 	reg->dynptr.first_slot = first_slot;
1956 }
1957 
1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1959 {
1960 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1961 		const struct bpf_map *map = reg->map_ptr;
1962 
1963 		if (map->inner_map_meta) {
1964 			reg->type = CONST_PTR_TO_MAP;
1965 			reg->map_ptr = map->inner_map_meta;
1966 			/* transfer reg's id which is unique for every map_lookup_elem
1967 			 * as UID of the inner map.
1968 			 */
1969 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1970 				reg->map_uid = reg->id;
1971 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1972 			reg->type = PTR_TO_XDP_SOCK;
1973 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1974 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1975 			reg->type = PTR_TO_SOCKET;
1976 		} else {
1977 			reg->type = PTR_TO_MAP_VALUE;
1978 		}
1979 		return;
1980 	}
1981 
1982 	reg->type &= ~PTR_MAYBE_NULL;
1983 }
1984 
1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1986 				struct btf_field_graph_root *ds_head)
1987 {
1988 	__mark_reg_known_zero(&regs[regno]);
1989 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1990 	regs[regno].btf = ds_head->btf;
1991 	regs[regno].btf_id = ds_head->value_btf_id;
1992 	regs[regno].off = ds_head->node_offset;
1993 }
1994 
1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1996 {
1997 	return type_is_pkt_pointer(reg->type);
1998 }
1999 
2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2001 {
2002 	return reg_is_pkt_pointer(reg) ||
2003 	       reg->type == PTR_TO_PACKET_END;
2004 }
2005 
2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2007 {
2008 	return base_type(reg->type) == PTR_TO_MEM &&
2009 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2010 }
2011 
2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2014 				    enum bpf_reg_type which)
2015 {
2016 	/* The register can already have a range from prior markings.
2017 	 * This is fine as long as it hasn't been advanced from its
2018 	 * origin.
2019 	 */
2020 	return reg->type == which &&
2021 	       reg->id == 0 &&
2022 	       reg->off == 0 &&
2023 	       tnum_equals_const(reg->var_off, 0);
2024 }
2025 
2026 /* Reset the min/max bounds of a register */
2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2028 {
2029 	reg->smin_value = S64_MIN;
2030 	reg->smax_value = S64_MAX;
2031 	reg->umin_value = 0;
2032 	reg->umax_value = U64_MAX;
2033 
2034 	reg->s32_min_value = S32_MIN;
2035 	reg->s32_max_value = S32_MAX;
2036 	reg->u32_min_value = 0;
2037 	reg->u32_max_value = U32_MAX;
2038 }
2039 
2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2041 {
2042 	reg->smin_value = S64_MIN;
2043 	reg->smax_value = S64_MAX;
2044 	reg->umin_value = 0;
2045 	reg->umax_value = U64_MAX;
2046 }
2047 
2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2049 {
2050 	reg->s32_min_value = S32_MIN;
2051 	reg->s32_max_value = S32_MAX;
2052 	reg->u32_min_value = 0;
2053 	reg->u32_max_value = U32_MAX;
2054 }
2055 
2056 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2057 {
2058 	struct tnum var32_off = tnum_subreg(reg->var_off);
2059 
2060 	/* min signed is max(sign bit) | min(other bits) */
2061 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2062 			var32_off.value | (var32_off.mask & S32_MIN));
2063 	/* max signed is min(sign bit) | max(other bits) */
2064 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2065 			var32_off.value | (var32_off.mask & S32_MAX));
2066 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2067 	reg->u32_max_value = min(reg->u32_max_value,
2068 				 (u32)(var32_off.value | var32_off.mask));
2069 }
2070 
2071 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2072 {
2073 	/* min signed is max(sign bit) | min(other bits) */
2074 	reg->smin_value = max_t(s64, reg->smin_value,
2075 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2076 	/* max signed is min(sign bit) | max(other bits) */
2077 	reg->smax_value = min_t(s64, reg->smax_value,
2078 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2079 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2080 	reg->umax_value = min(reg->umax_value,
2081 			      reg->var_off.value | reg->var_off.mask);
2082 }
2083 
2084 static void __update_reg_bounds(struct bpf_reg_state *reg)
2085 {
2086 	__update_reg32_bounds(reg);
2087 	__update_reg64_bounds(reg);
2088 }
2089 
2090 /* Uses signed min/max values to inform unsigned, and vice-versa */
2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2092 {
2093 	/* Learn sign from signed bounds.
2094 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2095 	 * are the same, so combine.  This works even in the negative case, e.g.
2096 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2097 	 */
2098 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2099 		reg->s32_min_value = reg->u32_min_value =
2100 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2101 		reg->s32_max_value = reg->u32_max_value =
2102 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2103 		return;
2104 	}
2105 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2106 	 * boundary, so we must be careful.
2107 	 */
2108 	if ((s32)reg->u32_max_value >= 0) {
2109 		/* Positive.  We can't learn anything from the smin, but smax
2110 		 * is positive, hence safe.
2111 		 */
2112 		reg->s32_min_value = reg->u32_min_value;
2113 		reg->s32_max_value = reg->u32_max_value =
2114 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2115 	} else if ((s32)reg->u32_min_value < 0) {
2116 		/* Negative.  We can't learn anything from the smax, but smin
2117 		 * is negative, hence safe.
2118 		 */
2119 		reg->s32_min_value = reg->u32_min_value =
2120 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2121 		reg->s32_max_value = reg->u32_max_value;
2122 	}
2123 }
2124 
2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2126 {
2127 	/* Learn sign from signed bounds.
2128 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2129 	 * are the same, so combine.  This works even in the negative case, e.g.
2130 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2131 	 */
2132 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2133 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2134 							  reg->umin_value);
2135 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2136 							  reg->umax_value);
2137 		return;
2138 	}
2139 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2140 	 * boundary, so we must be careful.
2141 	 */
2142 	if ((s64)reg->umax_value >= 0) {
2143 		/* Positive.  We can't learn anything from the smin, but smax
2144 		 * is positive, hence safe.
2145 		 */
2146 		reg->smin_value = reg->umin_value;
2147 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2148 							  reg->umax_value);
2149 	} else if ((s64)reg->umin_value < 0) {
2150 		/* Negative.  We can't learn anything from the smax, but smin
2151 		 * is negative, hence safe.
2152 		 */
2153 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2154 							  reg->umin_value);
2155 		reg->smax_value = reg->umax_value;
2156 	}
2157 }
2158 
2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2160 {
2161 	__reg32_deduce_bounds(reg);
2162 	__reg64_deduce_bounds(reg);
2163 }
2164 
2165 /* Attempts to improve var_off based on unsigned min/max information */
2166 static void __reg_bound_offset(struct bpf_reg_state *reg)
2167 {
2168 	struct tnum var64_off = tnum_intersect(reg->var_off,
2169 					       tnum_range(reg->umin_value,
2170 							  reg->umax_value));
2171 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2172 					       tnum_range(reg->u32_min_value,
2173 							  reg->u32_max_value));
2174 
2175 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2176 }
2177 
2178 static void reg_bounds_sync(struct bpf_reg_state *reg)
2179 {
2180 	/* We might have learned new bounds from the var_off. */
2181 	__update_reg_bounds(reg);
2182 	/* We might have learned something about the sign bit. */
2183 	__reg_deduce_bounds(reg);
2184 	/* We might have learned some bits from the bounds. */
2185 	__reg_bound_offset(reg);
2186 	/* Intersecting with the old var_off might have improved our bounds
2187 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2188 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2189 	 */
2190 	__update_reg_bounds(reg);
2191 }
2192 
2193 static bool __reg32_bound_s64(s32 a)
2194 {
2195 	return a >= 0 && a <= S32_MAX;
2196 }
2197 
2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2199 {
2200 	reg->umin_value = reg->u32_min_value;
2201 	reg->umax_value = reg->u32_max_value;
2202 
2203 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2204 	 * be positive otherwise set to worse case bounds and refine later
2205 	 * from tnum.
2206 	 */
2207 	if (__reg32_bound_s64(reg->s32_min_value) &&
2208 	    __reg32_bound_s64(reg->s32_max_value)) {
2209 		reg->smin_value = reg->s32_min_value;
2210 		reg->smax_value = reg->s32_max_value;
2211 	} else {
2212 		reg->smin_value = 0;
2213 		reg->smax_value = U32_MAX;
2214 	}
2215 }
2216 
2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2218 {
2219 	/* special case when 64-bit register has upper 32-bit register
2220 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2221 	 * allowing us to use 32-bit bounds directly,
2222 	 */
2223 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2224 		__reg_assign_32_into_64(reg);
2225 	} else {
2226 		/* Otherwise the best we can do is push lower 32bit known and
2227 		 * unknown bits into register (var_off set from jmp logic)
2228 		 * then learn as much as possible from the 64-bit tnum
2229 		 * known and unknown bits. The previous smin/smax bounds are
2230 		 * invalid here because of jmp32 compare so mark them unknown
2231 		 * so they do not impact tnum bounds calculation.
2232 		 */
2233 		__mark_reg64_unbounded(reg);
2234 	}
2235 	reg_bounds_sync(reg);
2236 }
2237 
2238 static bool __reg64_bound_s32(s64 a)
2239 {
2240 	return a >= S32_MIN && a <= S32_MAX;
2241 }
2242 
2243 static bool __reg64_bound_u32(u64 a)
2244 {
2245 	return a >= U32_MIN && a <= U32_MAX;
2246 }
2247 
2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2249 {
2250 	__mark_reg32_unbounded(reg);
2251 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2252 		reg->s32_min_value = (s32)reg->smin_value;
2253 		reg->s32_max_value = (s32)reg->smax_value;
2254 	}
2255 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2256 		reg->u32_min_value = (u32)reg->umin_value;
2257 		reg->u32_max_value = (u32)reg->umax_value;
2258 	}
2259 	reg_bounds_sync(reg);
2260 }
2261 
2262 /* Mark a register as having a completely unknown (scalar) value. */
2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2264 			       struct bpf_reg_state *reg)
2265 {
2266 	/*
2267 	 * Clear type, off, and union(map_ptr, range) and
2268 	 * padding between 'type' and union
2269 	 */
2270 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2271 	reg->type = SCALAR_VALUE;
2272 	reg->id = 0;
2273 	reg->ref_obj_id = 0;
2274 	reg->var_off = tnum_unknown;
2275 	reg->frameno = 0;
2276 	reg->precise = !env->bpf_capable;
2277 	__mark_reg_unbounded(reg);
2278 }
2279 
2280 static void mark_reg_unknown(struct bpf_verifier_env *env,
2281 			     struct bpf_reg_state *regs, u32 regno)
2282 {
2283 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2284 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2285 		/* Something bad happened, let's kill all regs except FP */
2286 		for (regno = 0; regno < BPF_REG_FP; regno++)
2287 			__mark_reg_not_init(env, regs + regno);
2288 		return;
2289 	}
2290 	__mark_reg_unknown(env, regs + regno);
2291 }
2292 
2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2294 				struct bpf_reg_state *reg)
2295 {
2296 	__mark_reg_unknown(env, reg);
2297 	reg->type = NOT_INIT;
2298 }
2299 
2300 static void mark_reg_not_init(struct bpf_verifier_env *env,
2301 			      struct bpf_reg_state *regs, u32 regno)
2302 {
2303 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2304 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2305 		/* Something bad happened, let's kill all regs except FP */
2306 		for (regno = 0; regno < BPF_REG_FP; regno++)
2307 			__mark_reg_not_init(env, regs + regno);
2308 		return;
2309 	}
2310 	__mark_reg_not_init(env, regs + regno);
2311 }
2312 
2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2314 			    struct bpf_reg_state *regs, u32 regno,
2315 			    enum bpf_reg_type reg_type,
2316 			    struct btf *btf, u32 btf_id,
2317 			    enum bpf_type_flag flag)
2318 {
2319 	if (reg_type == SCALAR_VALUE) {
2320 		mark_reg_unknown(env, regs, regno);
2321 		return;
2322 	}
2323 	mark_reg_known_zero(env, regs, regno);
2324 	regs[regno].type = PTR_TO_BTF_ID | flag;
2325 	regs[regno].btf = btf;
2326 	regs[regno].btf_id = btf_id;
2327 }
2328 
2329 #define DEF_NOT_SUBREG	(0)
2330 static void init_reg_state(struct bpf_verifier_env *env,
2331 			   struct bpf_func_state *state)
2332 {
2333 	struct bpf_reg_state *regs = state->regs;
2334 	int i;
2335 
2336 	for (i = 0; i < MAX_BPF_REG; i++) {
2337 		mark_reg_not_init(env, regs, i);
2338 		regs[i].live = REG_LIVE_NONE;
2339 		regs[i].parent = NULL;
2340 		regs[i].subreg_def = DEF_NOT_SUBREG;
2341 	}
2342 
2343 	/* frame pointer */
2344 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2345 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2346 	regs[BPF_REG_FP].frameno = state->frameno;
2347 }
2348 
2349 #define BPF_MAIN_FUNC (-1)
2350 static void init_func_state(struct bpf_verifier_env *env,
2351 			    struct bpf_func_state *state,
2352 			    int callsite, int frameno, int subprogno)
2353 {
2354 	state->callsite = callsite;
2355 	state->frameno = frameno;
2356 	state->subprogno = subprogno;
2357 	state->callback_ret_range = tnum_range(0, 0);
2358 	init_reg_state(env, state);
2359 	mark_verifier_state_scratched(env);
2360 }
2361 
2362 /* Similar to push_stack(), but for async callbacks */
2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2364 						int insn_idx, int prev_insn_idx,
2365 						int subprog)
2366 {
2367 	struct bpf_verifier_stack_elem *elem;
2368 	struct bpf_func_state *frame;
2369 
2370 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2371 	if (!elem)
2372 		goto err;
2373 
2374 	elem->insn_idx = insn_idx;
2375 	elem->prev_insn_idx = prev_insn_idx;
2376 	elem->next = env->head;
2377 	elem->log_pos = env->log.end_pos;
2378 	env->head = elem;
2379 	env->stack_size++;
2380 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2381 		verbose(env,
2382 			"The sequence of %d jumps is too complex for async cb.\n",
2383 			env->stack_size);
2384 		goto err;
2385 	}
2386 	/* Unlike push_stack() do not copy_verifier_state().
2387 	 * The caller state doesn't matter.
2388 	 * This is async callback. It starts in a fresh stack.
2389 	 * Initialize it similar to do_check_common().
2390 	 */
2391 	elem->st.branches = 1;
2392 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2393 	if (!frame)
2394 		goto err;
2395 	init_func_state(env, frame,
2396 			BPF_MAIN_FUNC /* callsite */,
2397 			0 /* frameno within this callchain */,
2398 			subprog /* subprog number within this prog */);
2399 	elem->st.frame[0] = frame;
2400 	return &elem->st;
2401 err:
2402 	free_verifier_state(env->cur_state, true);
2403 	env->cur_state = NULL;
2404 	/* pop all elements and return */
2405 	while (!pop_stack(env, NULL, NULL, false));
2406 	return NULL;
2407 }
2408 
2409 
2410 enum reg_arg_type {
2411 	SRC_OP,		/* register is used as source operand */
2412 	DST_OP,		/* register is used as destination operand */
2413 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2414 };
2415 
2416 static int cmp_subprogs(const void *a, const void *b)
2417 {
2418 	return ((struct bpf_subprog_info *)a)->start -
2419 	       ((struct bpf_subprog_info *)b)->start;
2420 }
2421 
2422 static int find_subprog(struct bpf_verifier_env *env, int off)
2423 {
2424 	struct bpf_subprog_info *p;
2425 
2426 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2427 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2428 	if (!p)
2429 		return -ENOENT;
2430 	return p - env->subprog_info;
2431 
2432 }
2433 
2434 static int add_subprog(struct bpf_verifier_env *env, int off)
2435 {
2436 	int insn_cnt = env->prog->len;
2437 	int ret;
2438 
2439 	if (off >= insn_cnt || off < 0) {
2440 		verbose(env, "call to invalid destination\n");
2441 		return -EINVAL;
2442 	}
2443 	ret = find_subprog(env, off);
2444 	if (ret >= 0)
2445 		return ret;
2446 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2447 		verbose(env, "too many subprograms\n");
2448 		return -E2BIG;
2449 	}
2450 	/* determine subprog starts. The end is one before the next starts */
2451 	env->subprog_info[env->subprog_cnt++].start = off;
2452 	sort(env->subprog_info, env->subprog_cnt,
2453 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2454 	return env->subprog_cnt - 1;
2455 }
2456 
2457 #define MAX_KFUNC_DESCS 256
2458 #define MAX_KFUNC_BTFS	256
2459 
2460 struct bpf_kfunc_desc {
2461 	struct btf_func_model func_model;
2462 	u32 func_id;
2463 	s32 imm;
2464 	u16 offset;
2465 	unsigned long addr;
2466 };
2467 
2468 struct bpf_kfunc_btf {
2469 	struct btf *btf;
2470 	struct module *module;
2471 	u16 offset;
2472 };
2473 
2474 struct bpf_kfunc_desc_tab {
2475 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2476 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2477 	 * available, therefore at the end of verification do_misc_fixups()
2478 	 * sorts this by imm and offset.
2479 	 */
2480 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2481 	u32 nr_descs;
2482 };
2483 
2484 struct bpf_kfunc_btf_tab {
2485 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2486 	u32 nr_descs;
2487 };
2488 
2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2490 {
2491 	const struct bpf_kfunc_desc *d0 = a;
2492 	const struct bpf_kfunc_desc *d1 = b;
2493 
2494 	/* func_id is not greater than BTF_MAX_TYPE */
2495 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2496 }
2497 
2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2499 {
2500 	const struct bpf_kfunc_btf *d0 = a;
2501 	const struct bpf_kfunc_btf *d1 = b;
2502 
2503 	return d0->offset - d1->offset;
2504 }
2505 
2506 static const struct bpf_kfunc_desc *
2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2508 {
2509 	struct bpf_kfunc_desc desc = {
2510 		.func_id = func_id,
2511 		.offset = offset,
2512 	};
2513 	struct bpf_kfunc_desc_tab *tab;
2514 
2515 	tab = prog->aux->kfunc_tab;
2516 	return bsearch(&desc, tab->descs, tab->nr_descs,
2517 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2518 }
2519 
2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2521 		       u16 btf_fd_idx, u8 **func_addr)
2522 {
2523 	const struct bpf_kfunc_desc *desc;
2524 
2525 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2526 	if (!desc)
2527 		return -EFAULT;
2528 
2529 	*func_addr = (u8 *)desc->addr;
2530 	return 0;
2531 }
2532 
2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2534 					 s16 offset)
2535 {
2536 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2537 	struct bpf_kfunc_btf_tab *tab;
2538 	struct bpf_kfunc_btf *b;
2539 	struct module *mod;
2540 	struct btf *btf;
2541 	int btf_fd;
2542 
2543 	tab = env->prog->aux->kfunc_btf_tab;
2544 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2545 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2546 	if (!b) {
2547 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2548 			verbose(env, "too many different module BTFs\n");
2549 			return ERR_PTR(-E2BIG);
2550 		}
2551 
2552 		if (bpfptr_is_null(env->fd_array)) {
2553 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2554 			return ERR_PTR(-EPROTO);
2555 		}
2556 
2557 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2558 					    offset * sizeof(btf_fd),
2559 					    sizeof(btf_fd)))
2560 			return ERR_PTR(-EFAULT);
2561 
2562 		btf = btf_get_by_fd(btf_fd);
2563 		if (IS_ERR(btf)) {
2564 			verbose(env, "invalid module BTF fd specified\n");
2565 			return btf;
2566 		}
2567 
2568 		if (!btf_is_module(btf)) {
2569 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2570 			btf_put(btf);
2571 			return ERR_PTR(-EINVAL);
2572 		}
2573 
2574 		mod = btf_try_get_module(btf);
2575 		if (!mod) {
2576 			btf_put(btf);
2577 			return ERR_PTR(-ENXIO);
2578 		}
2579 
2580 		b = &tab->descs[tab->nr_descs++];
2581 		b->btf = btf;
2582 		b->module = mod;
2583 		b->offset = offset;
2584 
2585 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2586 		     kfunc_btf_cmp_by_off, NULL);
2587 	}
2588 	return b->btf;
2589 }
2590 
2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2592 {
2593 	if (!tab)
2594 		return;
2595 
2596 	while (tab->nr_descs--) {
2597 		module_put(tab->descs[tab->nr_descs].module);
2598 		btf_put(tab->descs[tab->nr_descs].btf);
2599 	}
2600 	kfree(tab);
2601 }
2602 
2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2604 {
2605 	if (offset) {
2606 		if (offset < 0) {
2607 			/* In the future, this can be allowed to increase limit
2608 			 * of fd index into fd_array, interpreted as u16.
2609 			 */
2610 			verbose(env, "negative offset disallowed for kernel module function call\n");
2611 			return ERR_PTR(-EINVAL);
2612 		}
2613 
2614 		return __find_kfunc_desc_btf(env, offset);
2615 	}
2616 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2617 }
2618 
2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2620 {
2621 	const struct btf_type *func, *func_proto;
2622 	struct bpf_kfunc_btf_tab *btf_tab;
2623 	struct bpf_kfunc_desc_tab *tab;
2624 	struct bpf_prog_aux *prog_aux;
2625 	struct bpf_kfunc_desc *desc;
2626 	const char *func_name;
2627 	struct btf *desc_btf;
2628 	unsigned long call_imm;
2629 	unsigned long addr;
2630 	int err;
2631 
2632 	prog_aux = env->prog->aux;
2633 	tab = prog_aux->kfunc_tab;
2634 	btf_tab = prog_aux->kfunc_btf_tab;
2635 	if (!tab) {
2636 		if (!btf_vmlinux) {
2637 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2638 			return -ENOTSUPP;
2639 		}
2640 
2641 		if (!env->prog->jit_requested) {
2642 			verbose(env, "JIT is required for calling kernel function\n");
2643 			return -ENOTSUPP;
2644 		}
2645 
2646 		if (!bpf_jit_supports_kfunc_call()) {
2647 			verbose(env, "JIT does not support calling kernel function\n");
2648 			return -ENOTSUPP;
2649 		}
2650 
2651 		if (!env->prog->gpl_compatible) {
2652 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2653 			return -EINVAL;
2654 		}
2655 
2656 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2657 		if (!tab)
2658 			return -ENOMEM;
2659 		prog_aux->kfunc_tab = tab;
2660 	}
2661 
2662 	/* func_id == 0 is always invalid, but instead of returning an error, be
2663 	 * conservative and wait until the code elimination pass before returning
2664 	 * error, so that invalid calls that get pruned out can be in BPF programs
2665 	 * loaded from userspace.  It is also required that offset be untouched
2666 	 * for such calls.
2667 	 */
2668 	if (!func_id && !offset)
2669 		return 0;
2670 
2671 	if (!btf_tab && offset) {
2672 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2673 		if (!btf_tab)
2674 			return -ENOMEM;
2675 		prog_aux->kfunc_btf_tab = btf_tab;
2676 	}
2677 
2678 	desc_btf = find_kfunc_desc_btf(env, offset);
2679 	if (IS_ERR(desc_btf)) {
2680 		verbose(env, "failed to find BTF for kernel function\n");
2681 		return PTR_ERR(desc_btf);
2682 	}
2683 
2684 	if (find_kfunc_desc(env->prog, func_id, offset))
2685 		return 0;
2686 
2687 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2688 		verbose(env, "too many different kernel function calls\n");
2689 		return -E2BIG;
2690 	}
2691 
2692 	func = btf_type_by_id(desc_btf, func_id);
2693 	if (!func || !btf_type_is_func(func)) {
2694 		verbose(env, "kernel btf_id %u is not a function\n",
2695 			func_id);
2696 		return -EINVAL;
2697 	}
2698 	func_proto = btf_type_by_id(desc_btf, func->type);
2699 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2700 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2701 			func_id);
2702 		return -EINVAL;
2703 	}
2704 
2705 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2706 	addr = kallsyms_lookup_name(func_name);
2707 	if (!addr) {
2708 		verbose(env, "cannot find address for kernel function %s\n",
2709 			func_name);
2710 		return -EINVAL;
2711 	}
2712 	specialize_kfunc(env, func_id, offset, &addr);
2713 
2714 	if (bpf_jit_supports_far_kfunc_call()) {
2715 		call_imm = func_id;
2716 	} else {
2717 		call_imm = BPF_CALL_IMM(addr);
2718 		/* Check whether the relative offset overflows desc->imm */
2719 		if ((unsigned long)(s32)call_imm != call_imm) {
2720 			verbose(env, "address of kernel function %s is out of range\n",
2721 				func_name);
2722 			return -EINVAL;
2723 		}
2724 	}
2725 
2726 	if (bpf_dev_bound_kfunc_id(func_id)) {
2727 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2728 		if (err)
2729 			return err;
2730 	}
2731 
2732 	desc = &tab->descs[tab->nr_descs++];
2733 	desc->func_id = func_id;
2734 	desc->imm = call_imm;
2735 	desc->offset = offset;
2736 	desc->addr = addr;
2737 	err = btf_distill_func_proto(&env->log, desc_btf,
2738 				     func_proto, func_name,
2739 				     &desc->func_model);
2740 	if (!err)
2741 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2742 		     kfunc_desc_cmp_by_id_off, NULL);
2743 	return err;
2744 }
2745 
2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2747 {
2748 	const struct bpf_kfunc_desc *d0 = a;
2749 	const struct bpf_kfunc_desc *d1 = b;
2750 
2751 	if (d0->imm != d1->imm)
2752 		return d0->imm < d1->imm ? -1 : 1;
2753 	if (d0->offset != d1->offset)
2754 		return d0->offset < d1->offset ? -1 : 1;
2755 	return 0;
2756 }
2757 
2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2759 {
2760 	struct bpf_kfunc_desc_tab *tab;
2761 
2762 	tab = prog->aux->kfunc_tab;
2763 	if (!tab)
2764 		return;
2765 
2766 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2767 	     kfunc_desc_cmp_by_imm_off, NULL);
2768 }
2769 
2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2771 {
2772 	return !!prog->aux->kfunc_tab;
2773 }
2774 
2775 const struct btf_func_model *
2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2777 			 const struct bpf_insn *insn)
2778 {
2779 	const struct bpf_kfunc_desc desc = {
2780 		.imm = insn->imm,
2781 		.offset = insn->off,
2782 	};
2783 	const struct bpf_kfunc_desc *res;
2784 	struct bpf_kfunc_desc_tab *tab;
2785 
2786 	tab = prog->aux->kfunc_tab;
2787 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2788 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2789 
2790 	return res ? &res->func_model : NULL;
2791 }
2792 
2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2794 {
2795 	struct bpf_subprog_info *subprog = env->subprog_info;
2796 	struct bpf_insn *insn = env->prog->insnsi;
2797 	int i, ret, insn_cnt = env->prog->len;
2798 
2799 	/* Add entry function. */
2800 	ret = add_subprog(env, 0);
2801 	if (ret)
2802 		return ret;
2803 
2804 	for (i = 0; i < insn_cnt; i++, insn++) {
2805 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2806 		    !bpf_pseudo_kfunc_call(insn))
2807 			continue;
2808 
2809 		if (!env->bpf_capable) {
2810 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2811 			return -EPERM;
2812 		}
2813 
2814 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2815 			ret = add_subprog(env, i + insn->imm + 1);
2816 		else
2817 			ret = add_kfunc_call(env, insn->imm, insn->off);
2818 
2819 		if (ret < 0)
2820 			return ret;
2821 	}
2822 
2823 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2824 	 * logic. 'subprog_cnt' should not be increased.
2825 	 */
2826 	subprog[env->subprog_cnt].start = insn_cnt;
2827 
2828 	if (env->log.level & BPF_LOG_LEVEL2)
2829 		for (i = 0; i < env->subprog_cnt; i++)
2830 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2831 
2832 	return 0;
2833 }
2834 
2835 static int check_subprogs(struct bpf_verifier_env *env)
2836 {
2837 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2838 	struct bpf_subprog_info *subprog = env->subprog_info;
2839 	struct bpf_insn *insn = env->prog->insnsi;
2840 	int insn_cnt = env->prog->len;
2841 
2842 	/* now check that all jumps are within the same subprog */
2843 	subprog_start = subprog[cur_subprog].start;
2844 	subprog_end = subprog[cur_subprog + 1].start;
2845 	for (i = 0; i < insn_cnt; i++) {
2846 		u8 code = insn[i].code;
2847 
2848 		if (code == (BPF_JMP | BPF_CALL) &&
2849 		    insn[i].src_reg == 0 &&
2850 		    insn[i].imm == BPF_FUNC_tail_call)
2851 			subprog[cur_subprog].has_tail_call = true;
2852 		if (BPF_CLASS(code) == BPF_LD &&
2853 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2854 			subprog[cur_subprog].has_ld_abs = true;
2855 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2856 			goto next;
2857 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2858 			goto next;
2859 		if (code == (BPF_JMP32 | BPF_JA))
2860 			off = i + insn[i].imm + 1;
2861 		else
2862 			off = i + insn[i].off + 1;
2863 		if (off < subprog_start || off >= subprog_end) {
2864 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2865 			return -EINVAL;
2866 		}
2867 next:
2868 		if (i == subprog_end - 1) {
2869 			/* to avoid fall-through from one subprog into another
2870 			 * the last insn of the subprog should be either exit
2871 			 * or unconditional jump back
2872 			 */
2873 			if (code != (BPF_JMP | BPF_EXIT) &&
2874 			    code != (BPF_JMP32 | BPF_JA) &&
2875 			    code != (BPF_JMP | BPF_JA)) {
2876 				verbose(env, "last insn is not an exit or jmp\n");
2877 				return -EINVAL;
2878 			}
2879 			subprog_start = subprog_end;
2880 			cur_subprog++;
2881 			if (cur_subprog < env->subprog_cnt)
2882 				subprog_end = subprog[cur_subprog + 1].start;
2883 		}
2884 	}
2885 	return 0;
2886 }
2887 
2888 /* Parentage chain of this register (or stack slot) should take care of all
2889  * issues like callee-saved registers, stack slot allocation time, etc.
2890  */
2891 static int mark_reg_read(struct bpf_verifier_env *env,
2892 			 const struct bpf_reg_state *state,
2893 			 struct bpf_reg_state *parent, u8 flag)
2894 {
2895 	bool writes = parent == state->parent; /* Observe write marks */
2896 	int cnt = 0;
2897 
2898 	while (parent) {
2899 		/* if read wasn't screened by an earlier write ... */
2900 		if (writes && state->live & REG_LIVE_WRITTEN)
2901 			break;
2902 		if (parent->live & REG_LIVE_DONE) {
2903 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2904 				reg_type_str(env, parent->type),
2905 				parent->var_off.value, parent->off);
2906 			return -EFAULT;
2907 		}
2908 		/* The first condition is more likely to be true than the
2909 		 * second, checked it first.
2910 		 */
2911 		if ((parent->live & REG_LIVE_READ) == flag ||
2912 		    parent->live & REG_LIVE_READ64)
2913 			/* The parentage chain never changes and
2914 			 * this parent was already marked as LIVE_READ.
2915 			 * There is no need to keep walking the chain again and
2916 			 * keep re-marking all parents as LIVE_READ.
2917 			 * This case happens when the same register is read
2918 			 * multiple times without writes into it in-between.
2919 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2920 			 * then no need to set the weak REG_LIVE_READ32.
2921 			 */
2922 			break;
2923 		/* ... then we depend on parent's value */
2924 		parent->live |= flag;
2925 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2926 		if (flag == REG_LIVE_READ64)
2927 			parent->live &= ~REG_LIVE_READ32;
2928 		state = parent;
2929 		parent = state->parent;
2930 		writes = true;
2931 		cnt++;
2932 	}
2933 
2934 	if (env->longest_mark_read_walk < cnt)
2935 		env->longest_mark_read_walk = cnt;
2936 	return 0;
2937 }
2938 
2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2940 {
2941 	struct bpf_func_state *state = func(env, reg);
2942 	int spi, ret;
2943 
2944 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2945 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2946 	 * check_kfunc_call.
2947 	 */
2948 	if (reg->type == CONST_PTR_TO_DYNPTR)
2949 		return 0;
2950 	spi = dynptr_get_spi(env, reg);
2951 	if (spi < 0)
2952 		return spi;
2953 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2954 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2955 	 * read.
2956 	 */
2957 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2958 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2959 	if (ret)
2960 		return ret;
2961 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2962 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2963 }
2964 
2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2966 			  int spi, int nr_slots)
2967 {
2968 	struct bpf_func_state *state = func(env, reg);
2969 	int err, i;
2970 
2971 	for (i = 0; i < nr_slots; i++) {
2972 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2973 
2974 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2975 		if (err)
2976 			return err;
2977 
2978 		mark_stack_slot_scratched(env, spi - i);
2979 	}
2980 
2981 	return 0;
2982 }
2983 
2984 /* This function is supposed to be used by the following 32-bit optimization
2985  * code only. It returns TRUE if the source or destination register operates
2986  * on 64-bit, otherwise return FALSE.
2987  */
2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2989 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2990 {
2991 	u8 code, class, op;
2992 
2993 	code = insn->code;
2994 	class = BPF_CLASS(code);
2995 	op = BPF_OP(code);
2996 	if (class == BPF_JMP) {
2997 		/* BPF_EXIT for "main" will reach here. Return TRUE
2998 		 * conservatively.
2999 		 */
3000 		if (op == BPF_EXIT)
3001 			return true;
3002 		if (op == BPF_CALL) {
3003 			/* BPF to BPF call will reach here because of marking
3004 			 * caller saved clobber with DST_OP_NO_MARK for which we
3005 			 * don't care the register def because they are anyway
3006 			 * marked as NOT_INIT already.
3007 			 */
3008 			if (insn->src_reg == BPF_PSEUDO_CALL)
3009 				return false;
3010 			/* Helper call will reach here because of arg type
3011 			 * check, conservatively return TRUE.
3012 			 */
3013 			if (t == SRC_OP)
3014 				return true;
3015 
3016 			return false;
3017 		}
3018 	}
3019 
3020 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3021 		return false;
3022 
3023 	if (class == BPF_ALU64 || class == BPF_JMP ||
3024 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3025 		return true;
3026 
3027 	if (class == BPF_ALU || class == BPF_JMP32)
3028 		return false;
3029 
3030 	if (class == BPF_LDX) {
3031 		if (t != SRC_OP)
3032 			return BPF_SIZE(code) == BPF_DW;
3033 		/* LDX source must be ptr. */
3034 		return true;
3035 	}
3036 
3037 	if (class == BPF_STX) {
3038 		/* BPF_STX (including atomic variants) has multiple source
3039 		 * operands, one of which is a ptr. Check whether the caller is
3040 		 * asking about it.
3041 		 */
3042 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3043 			return true;
3044 		return BPF_SIZE(code) == BPF_DW;
3045 	}
3046 
3047 	if (class == BPF_LD) {
3048 		u8 mode = BPF_MODE(code);
3049 
3050 		/* LD_IMM64 */
3051 		if (mode == BPF_IMM)
3052 			return true;
3053 
3054 		/* Both LD_IND and LD_ABS return 32-bit data. */
3055 		if (t != SRC_OP)
3056 			return  false;
3057 
3058 		/* Implicit ctx ptr. */
3059 		if (regno == BPF_REG_6)
3060 			return true;
3061 
3062 		/* Explicit source could be any width. */
3063 		return true;
3064 	}
3065 
3066 	if (class == BPF_ST)
3067 		/* The only source register for BPF_ST is a ptr. */
3068 		return true;
3069 
3070 	/* Conservatively return true at default. */
3071 	return true;
3072 }
3073 
3074 /* Return the regno defined by the insn, or -1. */
3075 static int insn_def_regno(const struct bpf_insn *insn)
3076 {
3077 	switch (BPF_CLASS(insn->code)) {
3078 	case BPF_JMP:
3079 	case BPF_JMP32:
3080 	case BPF_ST:
3081 		return -1;
3082 	case BPF_STX:
3083 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3084 		    (insn->imm & BPF_FETCH)) {
3085 			if (insn->imm == BPF_CMPXCHG)
3086 				return BPF_REG_0;
3087 			else
3088 				return insn->src_reg;
3089 		} else {
3090 			return -1;
3091 		}
3092 	default:
3093 		return insn->dst_reg;
3094 	}
3095 }
3096 
3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3099 {
3100 	int dst_reg = insn_def_regno(insn);
3101 
3102 	if (dst_reg == -1)
3103 		return false;
3104 
3105 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3106 }
3107 
3108 static void mark_insn_zext(struct bpf_verifier_env *env,
3109 			   struct bpf_reg_state *reg)
3110 {
3111 	s32 def_idx = reg->subreg_def;
3112 
3113 	if (def_idx == DEF_NOT_SUBREG)
3114 		return;
3115 
3116 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3117 	/* The dst will be zero extended, so won't be sub-register anymore. */
3118 	reg->subreg_def = DEF_NOT_SUBREG;
3119 }
3120 
3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3122 			 enum reg_arg_type t)
3123 {
3124 	struct bpf_verifier_state *vstate = env->cur_state;
3125 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3126 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3127 	struct bpf_reg_state *reg, *regs = state->regs;
3128 	bool rw64;
3129 
3130 	if (regno >= MAX_BPF_REG) {
3131 		verbose(env, "R%d is invalid\n", regno);
3132 		return -EINVAL;
3133 	}
3134 
3135 	mark_reg_scratched(env, regno);
3136 
3137 	reg = &regs[regno];
3138 	rw64 = is_reg64(env, insn, regno, reg, t);
3139 	if (t == SRC_OP) {
3140 		/* check whether register used as source operand can be read */
3141 		if (reg->type == NOT_INIT) {
3142 			verbose(env, "R%d !read_ok\n", regno);
3143 			return -EACCES;
3144 		}
3145 		/* We don't need to worry about FP liveness because it's read-only */
3146 		if (regno == BPF_REG_FP)
3147 			return 0;
3148 
3149 		if (rw64)
3150 			mark_insn_zext(env, reg);
3151 
3152 		return mark_reg_read(env, reg, reg->parent,
3153 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3154 	} else {
3155 		/* check whether register used as dest operand can be written to */
3156 		if (regno == BPF_REG_FP) {
3157 			verbose(env, "frame pointer is read only\n");
3158 			return -EACCES;
3159 		}
3160 		reg->live |= REG_LIVE_WRITTEN;
3161 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3162 		if (t == DST_OP)
3163 			mark_reg_unknown(env, regs, regno);
3164 	}
3165 	return 0;
3166 }
3167 
3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3169 {
3170 	env->insn_aux_data[idx].jmp_point = true;
3171 }
3172 
3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3174 {
3175 	return env->insn_aux_data[insn_idx].jmp_point;
3176 }
3177 
3178 /* for any branch, call, exit record the history of jmps in the given state */
3179 static int push_jmp_history(struct bpf_verifier_env *env,
3180 			    struct bpf_verifier_state *cur)
3181 {
3182 	u32 cnt = cur->jmp_history_cnt;
3183 	struct bpf_idx_pair *p;
3184 	size_t alloc_size;
3185 
3186 	if (!is_jmp_point(env, env->insn_idx))
3187 		return 0;
3188 
3189 	cnt++;
3190 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3191 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3192 	if (!p)
3193 		return -ENOMEM;
3194 	p[cnt - 1].idx = env->insn_idx;
3195 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3196 	cur->jmp_history = p;
3197 	cur->jmp_history_cnt = cnt;
3198 	return 0;
3199 }
3200 
3201 /* Backtrack one insn at a time. If idx is not at the top of recorded
3202  * history then previous instruction came from straight line execution.
3203  */
3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3205 			     u32 *history)
3206 {
3207 	u32 cnt = *history;
3208 
3209 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3210 		i = st->jmp_history[cnt - 1].prev_idx;
3211 		(*history)--;
3212 	} else {
3213 		i--;
3214 	}
3215 	return i;
3216 }
3217 
3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3219 {
3220 	const struct btf_type *func;
3221 	struct btf *desc_btf;
3222 
3223 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3224 		return NULL;
3225 
3226 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3227 	if (IS_ERR(desc_btf))
3228 		return "<error>";
3229 
3230 	func = btf_type_by_id(desc_btf, insn->imm);
3231 	return btf_name_by_offset(desc_btf, func->name_off);
3232 }
3233 
3234 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3235 {
3236 	bt->frame = frame;
3237 }
3238 
3239 static inline void bt_reset(struct backtrack_state *bt)
3240 {
3241 	struct bpf_verifier_env *env = bt->env;
3242 
3243 	memset(bt, 0, sizeof(*bt));
3244 	bt->env = env;
3245 }
3246 
3247 static inline u32 bt_empty(struct backtrack_state *bt)
3248 {
3249 	u64 mask = 0;
3250 	int i;
3251 
3252 	for (i = 0; i <= bt->frame; i++)
3253 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3254 
3255 	return mask == 0;
3256 }
3257 
3258 static inline int bt_subprog_enter(struct backtrack_state *bt)
3259 {
3260 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3261 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3262 		WARN_ONCE(1, "verifier backtracking bug");
3263 		return -EFAULT;
3264 	}
3265 	bt->frame++;
3266 	return 0;
3267 }
3268 
3269 static inline int bt_subprog_exit(struct backtrack_state *bt)
3270 {
3271 	if (bt->frame == 0) {
3272 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3273 		WARN_ONCE(1, "verifier backtracking bug");
3274 		return -EFAULT;
3275 	}
3276 	bt->frame--;
3277 	return 0;
3278 }
3279 
3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3281 {
3282 	bt->reg_masks[frame] |= 1 << reg;
3283 }
3284 
3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3286 {
3287 	bt->reg_masks[frame] &= ~(1 << reg);
3288 }
3289 
3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3291 {
3292 	bt_set_frame_reg(bt, bt->frame, reg);
3293 }
3294 
3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3296 {
3297 	bt_clear_frame_reg(bt, bt->frame, reg);
3298 }
3299 
3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3301 {
3302 	bt->stack_masks[frame] |= 1ull << slot;
3303 }
3304 
3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3306 {
3307 	bt->stack_masks[frame] &= ~(1ull << slot);
3308 }
3309 
3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3311 {
3312 	bt_set_frame_slot(bt, bt->frame, slot);
3313 }
3314 
3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3316 {
3317 	bt_clear_frame_slot(bt, bt->frame, slot);
3318 }
3319 
3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3321 {
3322 	return bt->reg_masks[frame];
3323 }
3324 
3325 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3326 {
3327 	return bt->reg_masks[bt->frame];
3328 }
3329 
3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3331 {
3332 	return bt->stack_masks[frame];
3333 }
3334 
3335 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3336 {
3337 	return bt->stack_masks[bt->frame];
3338 }
3339 
3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3341 {
3342 	return bt->reg_masks[bt->frame] & (1 << reg);
3343 }
3344 
3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3346 {
3347 	return bt->stack_masks[bt->frame] & (1ull << slot);
3348 }
3349 
3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3352 {
3353 	DECLARE_BITMAP(mask, 64);
3354 	bool first = true;
3355 	int i, n;
3356 
3357 	buf[0] = '\0';
3358 
3359 	bitmap_from_u64(mask, reg_mask);
3360 	for_each_set_bit(i, mask, 32) {
3361 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3362 		first = false;
3363 		buf += n;
3364 		buf_sz -= n;
3365 		if (buf_sz < 0)
3366 			break;
3367 	}
3368 }
3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3371 {
3372 	DECLARE_BITMAP(mask, 64);
3373 	bool first = true;
3374 	int i, n;
3375 
3376 	buf[0] = '\0';
3377 
3378 	bitmap_from_u64(mask, stack_mask);
3379 	for_each_set_bit(i, mask, 64) {
3380 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3381 		first = false;
3382 		buf += n;
3383 		buf_sz -= n;
3384 		if (buf_sz < 0)
3385 			break;
3386 	}
3387 }
3388 
3389 /* For given verifier state backtrack_insn() is called from the last insn to
3390  * the first insn. Its purpose is to compute a bitmask of registers and
3391  * stack slots that needs precision in the parent verifier state.
3392  *
3393  * @idx is an index of the instruction we are currently processing;
3394  * @subseq_idx is an index of the subsequent instruction that:
3395  *   - *would be* executed next, if jump history is viewed in forward order;
3396  *   - *was* processed previously during backtracking.
3397  */
3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3399 			  struct backtrack_state *bt)
3400 {
3401 	const struct bpf_insn_cbs cbs = {
3402 		.cb_call	= disasm_kfunc_name,
3403 		.cb_print	= verbose,
3404 		.private_data	= env,
3405 	};
3406 	struct bpf_insn *insn = env->prog->insnsi + idx;
3407 	u8 class = BPF_CLASS(insn->code);
3408 	u8 opcode = BPF_OP(insn->code);
3409 	u8 mode = BPF_MODE(insn->code);
3410 	u32 dreg = insn->dst_reg;
3411 	u32 sreg = insn->src_reg;
3412 	u32 spi, i;
3413 
3414 	if (insn->code == 0)
3415 		return 0;
3416 	if (env->log.level & BPF_LOG_LEVEL2) {
3417 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3418 		verbose(env, "mark_precise: frame%d: regs=%s ",
3419 			bt->frame, env->tmp_str_buf);
3420 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3421 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3422 		verbose(env, "%d: ", idx);
3423 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3424 	}
3425 
3426 	if (class == BPF_ALU || class == BPF_ALU64) {
3427 		if (!bt_is_reg_set(bt, dreg))
3428 			return 0;
3429 		if (opcode == BPF_MOV) {
3430 			if (BPF_SRC(insn->code) == BPF_X) {
3431 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3432 				 * dreg needs precision after this insn
3433 				 * sreg needs precision before this insn
3434 				 */
3435 				bt_clear_reg(bt, dreg);
3436 				bt_set_reg(bt, sreg);
3437 			} else {
3438 				/* dreg = K
3439 				 * dreg needs precision after this insn.
3440 				 * Corresponding register is already marked
3441 				 * as precise=true in this verifier state.
3442 				 * No further markings in parent are necessary
3443 				 */
3444 				bt_clear_reg(bt, dreg);
3445 			}
3446 		} else {
3447 			if (BPF_SRC(insn->code) == BPF_X) {
3448 				/* dreg += sreg
3449 				 * both dreg and sreg need precision
3450 				 * before this insn
3451 				 */
3452 				bt_set_reg(bt, sreg);
3453 			} /* else dreg += K
3454 			   * dreg still needs precision before this insn
3455 			   */
3456 		}
3457 	} else if (class == BPF_LDX) {
3458 		if (!bt_is_reg_set(bt, dreg))
3459 			return 0;
3460 		bt_clear_reg(bt, dreg);
3461 
3462 		/* scalars can only be spilled into stack w/o losing precision.
3463 		 * Load from any other memory can be zero extended.
3464 		 * The desire to keep that precision is already indicated
3465 		 * by 'precise' mark in corresponding register of this state.
3466 		 * No further tracking necessary.
3467 		 */
3468 		if (insn->src_reg != BPF_REG_FP)
3469 			return 0;
3470 
3471 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3472 		 * that [fp - off] slot contains scalar that needs to be
3473 		 * tracked with precision
3474 		 */
3475 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3476 		if (spi >= 64) {
3477 			verbose(env, "BUG spi %d\n", spi);
3478 			WARN_ONCE(1, "verifier backtracking bug");
3479 			return -EFAULT;
3480 		}
3481 		bt_set_slot(bt, spi);
3482 	} else if (class == BPF_STX || class == BPF_ST) {
3483 		if (bt_is_reg_set(bt, dreg))
3484 			/* stx & st shouldn't be using _scalar_ dst_reg
3485 			 * to access memory. It means backtracking
3486 			 * encountered a case of pointer subtraction.
3487 			 */
3488 			return -ENOTSUPP;
3489 		/* scalars can only be spilled into stack */
3490 		if (insn->dst_reg != BPF_REG_FP)
3491 			return 0;
3492 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3493 		if (spi >= 64) {
3494 			verbose(env, "BUG spi %d\n", spi);
3495 			WARN_ONCE(1, "verifier backtracking bug");
3496 			return -EFAULT;
3497 		}
3498 		if (!bt_is_slot_set(bt, spi))
3499 			return 0;
3500 		bt_clear_slot(bt, spi);
3501 		if (class == BPF_STX)
3502 			bt_set_reg(bt, sreg);
3503 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3504 		if (bpf_pseudo_call(insn)) {
3505 			int subprog_insn_idx, subprog;
3506 
3507 			subprog_insn_idx = idx + insn->imm + 1;
3508 			subprog = find_subprog(env, subprog_insn_idx);
3509 			if (subprog < 0)
3510 				return -EFAULT;
3511 
3512 			if (subprog_is_global(env, subprog)) {
3513 				/* check that jump history doesn't have any
3514 				 * extra instructions from subprog; the next
3515 				 * instruction after call to global subprog
3516 				 * should be literally next instruction in
3517 				 * caller program
3518 				 */
3519 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3520 				/* r1-r5 are invalidated after subprog call,
3521 				 * so for global func call it shouldn't be set
3522 				 * anymore
3523 				 */
3524 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3525 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3526 					WARN_ONCE(1, "verifier backtracking bug");
3527 					return -EFAULT;
3528 				}
3529 				/* global subprog always sets R0 */
3530 				bt_clear_reg(bt, BPF_REG_0);
3531 				return 0;
3532 			} else {
3533 				/* static subprog call instruction, which
3534 				 * means that we are exiting current subprog,
3535 				 * so only r1-r5 could be still requested as
3536 				 * precise, r0 and r6-r10 or any stack slot in
3537 				 * the current frame should be zero by now
3538 				 */
3539 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3540 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3541 					WARN_ONCE(1, "verifier backtracking bug");
3542 					return -EFAULT;
3543 				}
3544 				/* we don't track register spills perfectly,
3545 				 * so fallback to force-precise instead of failing */
3546 				if (bt_stack_mask(bt) != 0)
3547 					return -ENOTSUPP;
3548 				/* propagate r1-r5 to the caller */
3549 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3550 					if (bt_is_reg_set(bt, i)) {
3551 						bt_clear_reg(bt, i);
3552 						bt_set_frame_reg(bt, bt->frame - 1, i);
3553 					}
3554 				}
3555 				if (bt_subprog_exit(bt))
3556 					return -EFAULT;
3557 				return 0;
3558 			}
3559 		} else if ((bpf_helper_call(insn) &&
3560 			    is_callback_calling_function(insn->imm) &&
3561 			    !is_async_callback_calling_function(insn->imm)) ||
3562 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3563 			/* callback-calling helper or kfunc call, which means
3564 			 * we are exiting from subprog, but unlike the subprog
3565 			 * call handling above, we shouldn't propagate
3566 			 * precision of r1-r5 (if any requested), as they are
3567 			 * not actually arguments passed directly to callback
3568 			 * subprogs
3569 			 */
3570 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 				WARN_ONCE(1, "verifier backtracking bug");
3573 				return -EFAULT;
3574 			}
3575 			if (bt_stack_mask(bt) != 0)
3576 				return -ENOTSUPP;
3577 			/* clear r1-r5 in callback subprog's mask */
3578 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3579 				bt_clear_reg(bt, i);
3580 			if (bt_subprog_exit(bt))
3581 				return -EFAULT;
3582 			return 0;
3583 		} else if (opcode == BPF_CALL) {
3584 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3585 			 * catch this error later. Make backtracking conservative
3586 			 * with ENOTSUPP.
3587 			 */
3588 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3589 				return -ENOTSUPP;
3590 			/* regular helper call sets R0 */
3591 			bt_clear_reg(bt, BPF_REG_0);
3592 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3593 				/* if backtracing was looking for registers R1-R5
3594 				 * they should have been found already.
3595 				 */
3596 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3597 				WARN_ONCE(1, "verifier backtracking bug");
3598 				return -EFAULT;
3599 			}
3600 		} else if (opcode == BPF_EXIT) {
3601 			bool r0_precise;
3602 
3603 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3604 				/* if backtracing was looking for registers R1-R5
3605 				 * they should have been found already.
3606 				 */
3607 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3608 				WARN_ONCE(1, "verifier backtracking bug");
3609 				return -EFAULT;
3610 			}
3611 
3612 			/* BPF_EXIT in subprog or callback always returns
3613 			 * right after the call instruction, so by checking
3614 			 * whether the instruction at subseq_idx-1 is subprog
3615 			 * call or not we can distinguish actual exit from
3616 			 * *subprog* from exit from *callback*. In the former
3617 			 * case, we need to propagate r0 precision, if
3618 			 * necessary. In the former we never do that.
3619 			 */
3620 			r0_precise = subseq_idx - 1 >= 0 &&
3621 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3622 				     bt_is_reg_set(bt, BPF_REG_0);
3623 
3624 			bt_clear_reg(bt, BPF_REG_0);
3625 			if (bt_subprog_enter(bt))
3626 				return -EFAULT;
3627 
3628 			if (r0_precise)
3629 				bt_set_reg(bt, BPF_REG_0);
3630 			/* r6-r9 and stack slots will stay set in caller frame
3631 			 * bitmasks until we return back from callee(s)
3632 			 */
3633 			return 0;
3634 		} else if (BPF_SRC(insn->code) == BPF_X) {
3635 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3636 				return 0;
3637 			/* dreg <cond> sreg
3638 			 * Both dreg and sreg need precision before
3639 			 * this insn. If only sreg was marked precise
3640 			 * before it would be equally necessary to
3641 			 * propagate it to dreg.
3642 			 */
3643 			bt_set_reg(bt, dreg);
3644 			bt_set_reg(bt, sreg);
3645 			 /* else dreg <cond> K
3646 			  * Only dreg still needs precision before
3647 			  * this insn, so for the K-based conditional
3648 			  * there is nothing new to be marked.
3649 			  */
3650 		}
3651 	} else if (class == BPF_LD) {
3652 		if (!bt_is_reg_set(bt, dreg))
3653 			return 0;
3654 		bt_clear_reg(bt, dreg);
3655 		/* It's ld_imm64 or ld_abs or ld_ind.
3656 		 * For ld_imm64 no further tracking of precision
3657 		 * into parent is necessary
3658 		 */
3659 		if (mode == BPF_IND || mode == BPF_ABS)
3660 			/* to be analyzed */
3661 			return -ENOTSUPP;
3662 	}
3663 	return 0;
3664 }
3665 
3666 /* the scalar precision tracking algorithm:
3667  * . at the start all registers have precise=false.
3668  * . scalar ranges are tracked as normal through alu and jmp insns.
3669  * . once precise value of the scalar register is used in:
3670  *   .  ptr + scalar alu
3671  *   . if (scalar cond K|scalar)
3672  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3673  *   backtrack through the verifier states and mark all registers and
3674  *   stack slots with spilled constants that these scalar regisers
3675  *   should be precise.
3676  * . during state pruning two registers (or spilled stack slots)
3677  *   are equivalent if both are not precise.
3678  *
3679  * Note the verifier cannot simply walk register parentage chain,
3680  * since many different registers and stack slots could have been
3681  * used to compute single precise scalar.
3682  *
3683  * The approach of starting with precise=true for all registers and then
3684  * backtrack to mark a register as not precise when the verifier detects
3685  * that program doesn't care about specific value (e.g., when helper
3686  * takes register as ARG_ANYTHING parameter) is not safe.
3687  *
3688  * It's ok to walk single parentage chain of the verifier states.
3689  * It's possible that this backtracking will go all the way till 1st insn.
3690  * All other branches will be explored for needing precision later.
3691  *
3692  * The backtracking needs to deal with cases like:
3693  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3694  * r9 -= r8
3695  * r5 = r9
3696  * if r5 > 0x79f goto pc+7
3697  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3698  * r5 += 1
3699  * ...
3700  * call bpf_perf_event_output#25
3701  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3702  *
3703  * and this case:
3704  * r6 = 1
3705  * call foo // uses callee's r6 inside to compute r0
3706  * r0 += r6
3707  * if r0 == 0 goto
3708  *
3709  * to track above reg_mask/stack_mask needs to be independent for each frame.
3710  *
3711  * Also if parent's curframe > frame where backtracking started,
3712  * the verifier need to mark registers in both frames, otherwise callees
3713  * may incorrectly prune callers. This is similar to
3714  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3715  *
3716  * For now backtracking falls back into conservative marking.
3717  */
3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3719 				     struct bpf_verifier_state *st)
3720 {
3721 	struct bpf_func_state *func;
3722 	struct bpf_reg_state *reg;
3723 	int i, j;
3724 
3725 	if (env->log.level & BPF_LOG_LEVEL2) {
3726 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3727 			st->curframe);
3728 	}
3729 
3730 	/* big hammer: mark all scalars precise in this path.
3731 	 * pop_stack may still get !precise scalars.
3732 	 * We also skip current state and go straight to first parent state,
3733 	 * because precision markings in current non-checkpointed state are
3734 	 * not needed. See why in the comment in __mark_chain_precision below.
3735 	 */
3736 	for (st = st->parent; st; st = st->parent) {
3737 		for (i = 0; i <= st->curframe; i++) {
3738 			func = st->frame[i];
3739 			for (j = 0; j < BPF_REG_FP; j++) {
3740 				reg = &func->regs[j];
3741 				if (reg->type != SCALAR_VALUE || reg->precise)
3742 					continue;
3743 				reg->precise = true;
3744 				if (env->log.level & BPF_LOG_LEVEL2) {
3745 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3746 						i, j);
3747 				}
3748 			}
3749 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3750 				if (!is_spilled_reg(&func->stack[j]))
3751 					continue;
3752 				reg = &func->stack[j].spilled_ptr;
3753 				if (reg->type != SCALAR_VALUE || reg->precise)
3754 					continue;
3755 				reg->precise = true;
3756 				if (env->log.level & BPF_LOG_LEVEL2) {
3757 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3758 						i, -(j + 1) * 8);
3759 				}
3760 			}
3761 		}
3762 	}
3763 }
3764 
3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3766 {
3767 	struct bpf_func_state *func;
3768 	struct bpf_reg_state *reg;
3769 	int i, j;
3770 
3771 	for (i = 0; i <= st->curframe; i++) {
3772 		func = st->frame[i];
3773 		for (j = 0; j < BPF_REG_FP; j++) {
3774 			reg = &func->regs[j];
3775 			if (reg->type != SCALAR_VALUE)
3776 				continue;
3777 			reg->precise = false;
3778 		}
3779 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3780 			if (!is_spilled_reg(&func->stack[j]))
3781 				continue;
3782 			reg = &func->stack[j].spilled_ptr;
3783 			if (reg->type != SCALAR_VALUE)
3784 				continue;
3785 			reg->precise = false;
3786 		}
3787 	}
3788 }
3789 
3790 static bool idset_contains(struct bpf_idset *s, u32 id)
3791 {
3792 	u32 i;
3793 
3794 	for (i = 0; i < s->count; ++i)
3795 		if (s->ids[i] == id)
3796 			return true;
3797 
3798 	return false;
3799 }
3800 
3801 static int idset_push(struct bpf_idset *s, u32 id)
3802 {
3803 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3804 		return -EFAULT;
3805 	s->ids[s->count++] = id;
3806 	return 0;
3807 }
3808 
3809 static void idset_reset(struct bpf_idset *s)
3810 {
3811 	s->count = 0;
3812 }
3813 
3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3815  * Mark all registers with these IDs as precise.
3816  */
3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3818 {
3819 	struct bpf_idset *precise_ids = &env->idset_scratch;
3820 	struct backtrack_state *bt = &env->bt;
3821 	struct bpf_func_state *func;
3822 	struct bpf_reg_state *reg;
3823 	DECLARE_BITMAP(mask, 64);
3824 	int i, fr;
3825 
3826 	idset_reset(precise_ids);
3827 
3828 	for (fr = bt->frame; fr >= 0; fr--) {
3829 		func = st->frame[fr];
3830 
3831 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3832 		for_each_set_bit(i, mask, 32) {
3833 			reg = &func->regs[i];
3834 			if (!reg->id || reg->type != SCALAR_VALUE)
3835 				continue;
3836 			if (idset_push(precise_ids, reg->id))
3837 				return -EFAULT;
3838 		}
3839 
3840 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3841 		for_each_set_bit(i, mask, 64) {
3842 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3843 				break;
3844 			if (!is_spilled_scalar_reg(&func->stack[i]))
3845 				continue;
3846 			reg = &func->stack[i].spilled_ptr;
3847 			if (!reg->id)
3848 				continue;
3849 			if (idset_push(precise_ids, reg->id))
3850 				return -EFAULT;
3851 		}
3852 	}
3853 
3854 	for (fr = 0; fr <= st->curframe; ++fr) {
3855 		func = st->frame[fr];
3856 
3857 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3858 			reg = &func->regs[i];
3859 			if (!reg->id)
3860 				continue;
3861 			if (!idset_contains(precise_ids, reg->id))
3862 				continue;
3863 			bt_set_frame_reg(bt, fr, i);
3864 		}
3865 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3866 			if (!is_spilled_scalar_reg(&func->stack[i]))
3867 				continue;
3868 			reg = &func->stack[i].spilled_ptr;
3869 			if (!reg->id)
3870 				continue;
3871 			if (!idset_contains(precise_ids, reg->id))
3872 				continue;
3873 			bt_set_frame_slot(bt, fr, i);
3874 		}
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 /*
3881  * __mark_chain_precision() backtracks BPF program instruction sequence and
3882  * chain of verifier states making sure that register *regno* (if regno >= 0)
3883  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3884  * SCALARS, as well as any other registers and slots that contribute to
3885  * a tracked state of given registers/stack slots, depending on specific BPF
3886  * assembly instructions (see backtrack_insns() for exact instruction handling
3887  * logic). This backtracking relies on recorded jmp_history and is able to
3888  * traverse entire chain of parent states. This process ends only when all the
3889  * necessary registers/slots and their transitive dependencies are marked as
3890  * precise.
3891  *
3892  * One important and subtle aspect is that precise marks *do not matter* in
3893  * the currently verified state (current state). It is important to understand
3894  * why this is the case.
3895  *
3896  * First, note that current state is the state that is not yet "checkpointed",
3897  * i.e., it is not yet put into env->explored_states, and it has no children
3898  * states as well. It's ephemeral, and can end up either a) being discarded if
3899  * compatible explored state is found at some point or BPF_EXIT instruction is
3900  * reached or b) checkpointed and put into env->explored_states, branching out
3901  * into one or more children states.
3902  *
3903  * In the former case, precise markings in current state are completely
3904  * ignored by state comparison code (see regsafe() for details). Only
3905  * checkpointed ("old") state precise markings are important, and if old
3906  * state's register/slot is precise, regsafe() assumes current state's
3907  * register/slot as precise and checks value ranges exactly and precisely. If
3908  * states turn out to be compatible, current state's necessary precise
3909  * markings and any required parent states' precise markings are enforced
3910  * after the fact with propagate_precision() logic, after the fact. But it's
3911  * important to realize that in this case, even after marking current state
3912  * registers/slots as precise, we immediately discard current state. So what
3913  * actually matters is any of the precise markings propagated into current
3914  * state's parent states, which are always checkpointed (due to b) case above).
3915  * As such, for scenario a) it doesn't matter if current state has precise
3916  * markings set or not.
3917  *
3918  * Now, for the scenario b), checkpointing and forking into child(ren)
3919  * state(s). Note that before current state gets to checkpointing step, any
3920  * processed instruction always assumes precise SCALAR register/slot
3921  * knowledge: if precise value or range is useful to prune jump branch, BPF
3922  * verifier takes this opportunity enthusiastically. Similarly, when
3923  * register's value is used to calculate offset or memory address, exact
3924  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3925  * what we mentioned above about state comparison ignoring precise markings
3926  * during state comparison, BPF verifier ignores and also assumes precise
3927  * markings *at will* during instruction verification process. But as verifier
3928  * assumes precision, it also propagates any precision dependencies across
3929  * parent states, which are not yet finalized, so can be further restricted
3930  * based on new knowledge gained from restrictions enforced by their children
3931  * states. This is so that once those parent states are finalized, i.e., when
3932  * they have no more active children state, state comparison logic in
3933  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3934  * required for correctness.
3935  *
3936  * To build a bit more intuition, note also that once a state is checkpointed,
3937  * the path we took to get to that state is not important. This is crucial
3938  * property for state pruning. When state is checkpointed and finalized at
3939  * some instruction index, it can be correctly and safely used to "short
3940  * circuit" any *compatible* state that reaches exactly the same instruction
3941  * index. I.e., if we jumped to that instruction from a completely different
3942  * code path than original finalized state was derived from, it doesn't
3943  * matter, current state can be discarded because from that instruction
3944  * forward having a compatible state will ensure we will safely reach the
3945  * exit. States describe preconditions for further exploration, but completely
3946  * forget the history of how we got here.
3947  *
3948  * This also means that even if we needed precise SCALAR range to get to
3949  * finalized state, but from that point forward *that same* SCALAR register is
3950  * never used in a precise context (i.e., it's precise value is not needed for
3951  * correctness), it's correct and safe to mark such register as "imprecise"
3952  * (i.e., precise marking set to false). This is what we rely on when we do
3953  * not set precise marking in current state. If no child state requires
3954  * precision for any given SCALAR register, it's safe to dictate that it can
3955  * be imprecise. If any child state does require this register to be precise,
3956  * we'll mark it precise later retroactively during precise markings
3957  * propagation from child state to parent states.
3958  *
3959  * Skipping precise marking setting in current state is a mild version of
3960  * relying on the above observation. But we can utilize this property even
3961  * more aggressively by proactively forgetting any precise marking in the
3962  * current state (which we inherited from the parent state), right before we
3963  * checkpoint it and branch off into new child state. This is done by
3964  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3965  * finalized states which help in short circuiting more future states.
3966  */
3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3968 {
3969 	struct backtrack_state *bt = &env->bt;
3970 	struct bpf_verifier_state *st = env->cur_state;
3971 	int first_idx = st->first_insn_idx;
3972 	int last_idx = env->insn_idx;
3973 	int subseq_idx = -1;
3974 	struct bpf_func_state *func;
3975 	struct bpf_reg_state *reg;
3976 	bool skip_first = true;
3977 	int i, fr, err;
3978 
3979 	if (!env->bpf_capable)
3980 		return 0;
3981 
3982 	/* set frame number from which we are starting to backtrack */
3983 	bt_init(bt, env->cur_state->curframe);
3984 
3985 	/* Do sanity checks against current state of register and/or stack
3986 	 * slot, but don't set precise flag in current state, as precision
3987 	 * tracking in the current state is unnecessary.
3988 	 */
3989 	func = st->frame[bt->frame];
3990 	if (regno >= 0) {
3991 		reg = &func->regs[regno];
3992 		if (reg->type != SCALAR_VALUE) {
3993 			WARN_ONCE(1, "backtracing misuse");
3994 			return -EFAULT;
3995 		}
3996 		bt_set_reg(bt, regno);
3997 	}
3998 
3999 	if (bt_empty(bt))
4000 		return 0;
4001 
4002 	for (;;) {
4003 		DECLARE_BITMAP(mask, 64);
4004 		u32 history = st->jmp_history_cnt;
4005 
4006 		if (env->log.level & BPF_LOG_LEVEL2) {
4007 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4008 				bt->frame, last_idx, first_idx, subseq_idx);
4009 		}
4010 
4011 		/* If some register with scalar ID is marked as precise,
4012 		 * make sure that all registers sharing this ID are also precise.
4013 		 * This is needed to estimate effect of find_equal_scalars().
4014 		 * Do this at the last instruction of each state,
4015 		 * bpf_reg_state::id fields are valid for these instructions.
4016 		 *
4017 		 * Allows to track precision in situation like below:
4018 		 *
4019 		 *     r2 = unknown value
4020 		 *     ...
4021 		 *   --- state #0 ---
4022 		 *     ...
4023 		 *     r1 = r2                 // r1 and r2 now share the same ID
4024 		 *     ...
4025 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4026 		 *     ...
4027 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4028 		 *     ...
4029 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4030 		 *     r3 = r10
4031 		 *     r3 += r1                // need to mark both r1 and r2
4032 		 */
4033 		if (mark_precise_scalar_ids(env, st))
4034 			return -EFAULT;
4035 
4036 		if (last_idx < 0) {
4037 			/* we are at the entry into subprog, which
4038 			 * is expected for global funcs, but only if
4039 			 * requested precise registers are R1-R5
4040 			 * (which are global func's input arguments)
4041 			 */
4042 			if (st->curframe == 0 &&
4043 			    st->frame[0]->subprogno > 0 &&
4044 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4045 			    bt_stack_mask(bt) == 0 &&
4046 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4047 				bitmap_from_u64(mask, bt_reg_mask(bt));
4048 				for_each_set_bit(i, mask, 32) {
4049 					reg = &st->frame[0]->regs[i];
4050 					if (reg->type != SCALAR_VALUE) {
4051 						bt_clear_reg(bt, i);
4052 						continue;
4053 					}
4054 					reg->precise = true;
4055 				}
4056 				return 0;
4057 			}
4058 
4059 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4060 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4061 			WARN_ONCE(1, "verifier backtracking bug");
4062 			return -EFAULT;
4063 		}
4064 
4065 		for (i = last_idx;;) {
4066 			if (skip_first) {
4067 				err = 0;
4068 				skip_first = false;
4069 			} else {
4070 				err = backtrack_insn(env, i, subseq_idx, bt);
4071 			}
4072 			if (err == -ENOTSUPP) {
4073 				mark_all_scalars_precise(env, env->cur_state);
4074 				bt_reset(bt);
4075 				return 0;
4076 			} else if (err) {
4077 				return err;
4078 			}
4079 			if (bt_empty(bt))
4080 				/* Found assignment(s) into tracked register in this state.
4081 				 * Since this state is already marked, just return.
4082 				 * Nothing to be tracked further in the parent state.
4083 				 */
4084 				return 0;
4085 			if (i == first_idx)
4086 				break;
4087 			subseq_idx = i;
4088 			i = get_prev_insn_idx(st, i, &history);
4089 			if (i >= env->prog->len) {
4090 				/* This can happen if backtracking reached insn 0
4091 				 * and there are still reg_mask or stack_mask
4092 				 * to backtrack.
4093 				 * It means the backtracking missed the spot where
4094 				 * particular register was initialized with a constant.
4095 				 */
4096 				verbose(env, "BUG backtracking idx %d\n", i);
4097 				WARN_ONCE(1, "verifier backtracking bug");
4098 				return -EFAULT;
4099 			}
4100 		}
4101 		st = st->parent;
4102 		if (!st)
4103 			break;
4104 
4105 		for (fr = bt->frame; fr >= 0; fr--) {
4106 			func = st->frame[fr];
4107 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4108 			for_each_set_bit(i, mask, 32) {
4109 				reg = &func->regs[i];
4110 				if (reg->type != SCALAR_VALUE) {
4111 					bt_clear_frame_reg(bt, fr, i);
4112 					continue;
4113 				}
4114 				if (reg->precise)
4115 					bt_clear_frame_reg(bt, fr, i);
4116 				else
4117 					reg->precise = true;
4118 			}
4119 
4120 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4121 			for_each_set_bit(i, mask, 64) {
4122 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4123 					/* the sequence of instructions:
4124 					 * 2: (bf) r3 = r10
4125 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4126 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4127 					 * doesn't contain jmps. It's backtracked
4128 					 * as a single block.
4129 					 * During backtracking insn 3 is not recognized as
4130 					 * stack access, so at the end of backtracking
4131 					 * stack slot fp-8 is still marked in stack_mask.
4132 					 * However the parent state may not have accessed
4133 					 * fp-8 and it's "unallocated" stack space.
4134 					 * In such case fallback to conservative.
4135 					 */
4136 					mark_all_scalars_precise(env, env->cur_state);
4137 					bt_reset(bt);
4138 					return 0;
4139 				}
4140 
4141 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4142 					bt_clear_frame_slot(bt, fr, i);
4143 					continue;
4144 				}
4145 				reg = &func->stack[i].spilled_ptr;
4146 				if (reg->precise)
4147 					bt_clear_frame_slot(bt, fr, i);
4148 				else
4149 					reg->precise = true;
4150 			}
4151 			if (env->log.level & BPF_LOG_LEVEL2) {
4152 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4153 					     bt_frame_reg_mask(bt, fr));
4154 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4155 					fr, env->tmp_str_buf);
4156 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4157 					       bt_frame_stack_mask(bt, fr));
4158 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4159 				print_verifier_state(env, func, true);
4160 			}
4161 		}
4162 
4163 		if (bt_empty(bt))
4164 			return 0;
4165 
4166 		subseq_idx = first_idx;
4167 		last_idx = st->last_insn_idx;
4168 		first_idx = st->first_insn_idx;
4169 	}
4170 
4171 	/* if we still have requested precise regs or slots, we missed
4172 	 * something (e.g., stack access through non-r10 register), so
4173 	 * fallback to marking all precise
4174 	 */
4175 	if (!bt_empty(bt)) {
4176 		mark_all_scalars_precise(env, env->cur_state);
4177 		bt_reset(bt);
4178 	}
4179 
4180 	return 0;
4181 }
4182 
4183 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4184 {
4185 	return __mark_chain_precision(env, regno);
4186 }
4187 
4188 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4189  * desired reg and stack masks across all relevant frames
4190  */
4191 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4192 {
4193 	return __mark_chain_precision(env, -1);
4194 }
4195 
4196 static bool is_spillable_regtype(enum bpf_reg_type type)
4197 {
4198 	switch (base_type(type)) {
4199 	case PTR_TO_MAP_VALUE:
4200 	case PTR_TO_STACK:
4201 	case PTR_TO_CTX:
4202 	case PTR_TO_PACKET:
4203 	case PTR_TO_PACKET_META:
4204 	case PTR_TO_PACKET_END:
4205 	case PTR_TO_FLOW_KEYS:
4206 	case CONST_PTR_TO_MAP:
4207 	case PTR_TO_SOCKET:
4208 	case PTR_TO_SOCK_COMMON:
4209 	case PTR_TO_TCP_SOCK:
4210 	case PTR_TO_XDP_SOCK:
4211 	case PTR_TO_BTF_ID:
4212 	case PTR_TO_BUF:
4213 	case PTR_TO_MEM:
4214 	case PTR_TO_FUNC:
4215 	case PTR_TO_MAP_KEY:
4216 		return true;
4217 	default:
4218 		return false;
4219 	}
4220 }
4221 
4222 /* Does this register contain a constant zero? */
4223 static bool register_is_null(struct bpf_reg_state *reg)
4224 {
4225 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4226 }
4227 
4228 static bool register_is_const(struct bpf_reg_state *reg)
4229 {
4230 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4231 }
4232 
4233 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4234 {
4235 	return tnum_is_unknown(reg->var_off) &&
4236 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4237 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4238 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4239 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4240 }
4241 
4242 static bool register_is_bounded(struct bpf_reg_state *reg)
4243 {
4244 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4245 }
4246 
4247 static bool __is_pointer_value(bool allow_ptr_leaks,
4248 			       const struct bpf_reg_state *reg)
4249 {
4250 	if (allow_ptr_leaks)
4251 		return false;
4252 
4253 	return reg->type != SCALAR_VALUE;
4254 }
4255 
4256 /* Copy src state preserving dst->parent and dst->live fields */
4257 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4258 {
4259 	struct bpf_reg_state *parent = dst->parent;
4260 	enum bpf_reg_liveness live = dst->live;
4261 
4262 	*dst = *src;
4263 	dst->parent = parent;
4264 	dst->live = live;
4265 }
4266 
4267 static void save_register_state(struct bpf_func_state *state,
4268 				int spi, struct bpf_reg_state *reg,
4269 				int size)
4270 {
4271 	int i;
4272 
4273 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4274 	if (size == BPF_REG_SIZE)
4275 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4276 
4277 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4278 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4279 
4280 	/* size < 8 bytes spill */
4281 	for (; i; i--)
4282 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4283 }
4284 
4285 static bool is_bpf_st_mem(struct bpf_insn *insn)
4286 {
4287 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4288 }
4289 
4290 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4291  * stack boundary and alignment are checked in check_mem_access()
4292  */
4293 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4294 				       /* stack frame we're writing to */
4295 				       struct bpf_func_state *state,
4296 				       int off, int size, int value_regno,
4297 				       int insn_idx)
4298 {
4299 	struct bpf_func_state *cur; /* state of the current function */
4300 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4301 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4302 	struct bpf_reg_state *reg = NULL;
4303 	u32 dst_reg = insn->dst_reg;
4304 
4305 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4306 	if (err)
4307 		return err;
4308 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4309 	 * so it's aligned access and [off, off + size) are within stack limits
4310 	 */
4311 	if (!env->allow_ptr_leaks &&
4312 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4313 	    size != BPF_REG_SIZE) {
4314 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4315 		return -EACCES;
4316 	}
4317 
4318 	cur = env->cur_state->frame[env->cur_state->curframe];
4319 	if (value_regno >= 0)
4320 		reg = &cur->regs[value_regno];
4321 	if (!env->bypass_spec_v4) {
4322 		bool sanitize = reg && is_spillable_regtype(reg->type);
4323 
4324 		for (i = 0; i < size; i++) {
4325 			u8 type = state->stack[spi].slot_type[i];
4326 
4327 			if (type != STACK_MISC && type != STACK_ZERO) {
4328 				sanitize = true;
4329 				break;
4330 			}
4331 		}
4332 
4333 		if (sanitize)
4334 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4335 	}
4336 
4337 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4338 	if (err)
4339 		return err;
4340 
4341 	mark_stack_slot_scratched(env, spi);
4342 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4343 	    !register_is_null(reg) && env->bpf_capable) {
4344 		if (dst_reg != BPF_REG_FP) {
4345 			/* The backtracking logic can only recognize explicit
4346 			 * stack slot address like [fp - 8]. Other spill of
4347 			 * scalar via different register has to be conservative.
4348 			 * Backtrack from here and mark all registers as precise
4349 			 * that contributed into 'reg' being a constant.
4350 			 */
4351 			err = mark_chain_precision(env, value_regno);
4352 			if (err)
4353 				return err;
4354 		}
4355 		save_register_state(state, spi, reg, size);
4356 		/* Break the relation on a narrowing spill. */
4357 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4358 			state->stack[spi].spilled_ptr.id = 0;
4359 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4360 		   insn->imm != 0 && env->bpf_capable) {
4361 		struct bpf_reg_state fake_reg = {};
4362 
4363 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4364 		fake_reg.type = SCALAR_VALUE;
4365 		save_register_state(state, spi, &fake_reg, size);
4366 	} else if (reg && is_spillable_regtype(reg->type)) {
4367 		/* register containing pointer is being spilled into stack */
4368 		if (size != BPF_REG_SIZE) {
4369 			verbose_linfo(env, insn_idx, "; ");
4370 			verbose(env, "invalid size of register spill\n");
4371 			return -EACCES;
4372 		}
4373 		if (state != cur && reg->type == PTR_TO_STACK) {
4374 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4375 			return -EINVAL;
4376 		}
4377 		save_register_state(state, spi, reg, size);
4378 	} else {
4379 		u8 type = STACK_MISC;
4380 
4381 		/* regular write of data into stack destroys any spilled ptr */
4382 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4383 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4384 		if (is_stack_slot_special(&state->stack[spi]))
4385 			for (i = 0; i < BPF_REG_SIZE; i++)
4386 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4387 
4388 		/* only mark the slot as written if all 8 bytes were written
4389 		 * otherwise read propagation may incorrectly stop too soon
4390 		 * when stack slots are partially written.
4391 		 * This heuristic means that read propagation will be
4392 		 * conservative, since it will add reg_live_read marks
4393 		 * to stack slots all the way to first state when programs
4394 		 * writes+reads less than 8 bytes
4395 		 */
4396 		if (size == BPF_REG_SIZE)
4397 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4398 
4399 		/* when we zero initialize stack slots mark them as such */
4400 		if ((reg && register_is_null(reg)) ||
4401 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4402 			/* backtracking doesn't work for STACK_ZERO yet. */
4403 			err = mark_chain_precision(env, value_regno);
4404 			if (err)
4405 				return err;
4406 			type = STACK_ZERO;
4407 		}
4408 
4409 		/* Mark slots affected by this stack write. */
4410 		for (i = 0; i < size; i++)
4411 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4412 				type;
4413 	}
4414 	return 0;
4415 }
4416 
4417 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4418  * known to contain a variable offset.
4419  * This function checks whether the write is permitted and conservatively
4420  * tracks the effects of the write, considering that each stack slot in the
4421  * dynamic range is potentially written to.
4422  *
4423  * 'off' includes 'regno->off'.
4424  * 'value_regno' can be -1, meaning that an unknown value is being written to
4425  * the stack.
4426  *
4427  * Spilled pointers in range are not marked as written because we don't know
4428  * what's going to be actually written. This means that read propagation for
4429  * future reads cannot be terminated by this write.
4430  *
4431  * For privileged programs, uninitialized stack slots are considered
4432  * initialized by this write (even though we don't know exactly what offsets
4433  * are going to be written to). The idea is that we don't want the verifier to
4434  * reject future reads that access slots written to through variable offsets.
4435  */
4436 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4437 				     /* func where register points to */
4438 				     struct bpf_func_state *state,
4439 				     int ptr_regno, int off, int size,
4440 				     int value_regno, int insn_idx)
4441 {
4442 	struct bpf_func_state *cur; /* state of the current function */
4443 	int min_off, max_off;
4444 	int i, err;
4445 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4446 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4447 	bool writing_zero = false;
4448 	/* set if the fact that we're writing a zero is used to let any
4449 	 * stack slots remain STACK_ZERO
4450 	 */
4451 	bool zero_used = false;
4452 
4453 	cur = env->cur_state->frame[env->cur_state->curframe];
4454 	ptr_reg = &cur->regs[ptr_regno];
4455 	min_off = ptr_reg->smin_value + off;
4456 	max_off = ptr_reg->smax_value + off + size;
4457 	if (value_regno >= 0)
4458 		value_reg = &cur->regs[value_regno];
4459 	if ((value_reg && register_is_null(value_reg)) ||
4460 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4461 		writing_zero = true;
4462 
4463 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4464 	if (err)
4465 		return err;
4466 
4467 	for (i = min_off; i < max_off; i++) {
4468 		int spi;
4469 
4470 		spi = __get_spi(i);
4471 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4472 		if (err)
4473 			return err;
4474 	}
4475 
4476 	/* Variable offset writes destroy any spilled pointers in range. */
4477 	for (i = min_off; i < max_off; i++) {
4478 		u8 new_type, *stype;
4479 		int slot, spi;
4480 
4481 		slot = -i - 1;
4482 		spi = slot / BPF_REG_SIZE;
4483 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4484 		mark_stack_slot_scratched(env, spi);
4485 
4486 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4487 			/* Reject the write if range we may write to has not
4488 			 * been initialized beforehand. If we didn't reject
4489 			 * here, the ptr status would be erased below (even
4490 			 * though not all slots are actually overwritten),
4491 			 * possibly opening the door to leaks.
4492 			 *
4493 			 * We do however catch STACK_INVALID case below, and
4494 			 * only allow reading possibly uninitialized memory
4495 			 * later for CAP_PERFMON, as the write may not happen to
4496 			 * that slot.
4497 			 */
4498 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4499 				insn_idx, i);
4500 			return -EINVAL;
4501 		}
4502 
4503 		/* Erase all spilled pointers. */
4504 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4505 
4506 		/* Update the slot type. */
4507 		new_type = STACK_MISC;
4508 		if (writing_zero && *stype == STACK_ZERO) {
4509 			new_type = STACK_ZERO;
4510 			zero_used = true;
4511 		}
4512 		/* If the slot is STACK_INVALID, we check whether it's OK to
4513 		 * pretend that it will be initialized by this write. The slot
4514 		 * might not actually be written to, and so if we mark it as
4515 		 * initialized future reads might leak uninitialized memory.
4516 		 * For privileged programs, we will accept such reads to slots
4517 		 * that may or may not be written because, if we're reject
4518 		 * them, the error would be too confusing.
4519 		 */
4520 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4521 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4522 					insn_idx, i);
4523 			return -EINVAL;
4524 		}
4525 		*stype = new_type;
4526 	}
4527 	if (zero_used) {
4528 		/* backtracking doesn't work for STACK_ZERO yet. */
4529 		err = mark_chain_precision(env, value_regno);
4530 		if (err)
4531 			return err;
4532 	}
4533 	return 0;
4534 }
4535 
4536 /* When register 'dst_regno' is assigned some values from stack[min_off,
4537  * max_off), we set the register's type according to the types of the
4538  * respective stack slots. If all the stack values are known to be zeros, then
4539  * so is the destination reg. Otherwise, the register is considered to be
4540  * SCALAR. This function does not deal with register filling; the caller must
4541  * ensure that all spilled registers in the stack range have been marked as
4542  * read.
4543  */
4544 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4545 				/* func where src register points to */
4546 				struct bpf_func_state *ptr_state,
4547 				int min_off, int max_off, int dst_regno)
4548 {
4549 	struct bpf_verifier_state *vstate = env->cur_state;
4550 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4551 	int i, slot, spi;
4552 	u8 *stype;
4553 	int zeros = 0;
4554 
4555 	for (i = min_off; i < max_off; i++) {
4556 		slot = -i - 1;
4557 		spi = slot / BPF_REG_SIZE;
4558 		mark_stack_slot_scratched(env, spi);
4559 		stype = ptr_state->stack[spi].slot_type;
4560 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4561 			break;
4562 		zeros++;
4563 	}
4564 	if (zeros == max_off - min_off) {
4565 		/* any access_size read into register is zero extended,
4566 		 * so the whole register == const_zero
4567 		 */
4568 		__mark_reg_const_zero(&state->regs[dst_regno]);
4569 		/* backtracking doesn't support STACK_ZERO yet,
4570 		 * so mark it precise here, so that later
4571 		 * backtracking can stop here.
4572 		 * Backtracking may not need this if this register
4573 		 * doesn't participate in pointer adjustment.
4574 		 * Forward propagation of precise flag is not
4575 		 * necessary either. This mark is only to stop
4576 		 * backtracking. Any register that contributed
4577 		 * to const 0 was marked precise before spill.
4578 		 */
4579 		state->regs[dst_regno].precise = true;
4580 	} else {
4581 		/* have read misc data from the stack */
4582 		mark_reg_unknown(env, state->regs, dst_regno);
4583 	}
4584 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4585 }
4586 
4587 /* Read the stack at 'off' and put the results into the register indicated by
4588  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4589  * spilled reg.
4590  *
4591  * 'dst_regno' can be -1, meaning that the read value is not going to a
4592  * register.
4593  *
4594  * The access is assumed to be within the current stack bounds.
4595  */
4596 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4597 				      /* func where src register points to */
4598 				      struct bpf_func_state *reg_state,
4599 				      int off, int size, int dst_regno)
4600 {
4601 	struct bpf_verifier_state *vstate = env->cur_state;
4602 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4603 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4604 	struct bpf_reg_state *reg;
4605 	u8 *stype, type;
4606 
4607 	stype = reg_state->stack[spi].slot_type;
4608 	reg = &reg_state->stack[spi].spilled_ptr;
4609 
4610 	mark_stack_slot_scratched(env, spi);
4611 
4612 	if (is_spilled_reg(&reg_state->stack[spi])) {
4613 		u8 spill_size = 1;
4614 
4615 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4616 			spill_size++;
4617 
4618 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4619 			if (reg->type != SCALAR_VALUE) {
4620 				verbose_linfo(env, env->insn_idx, "; ");
4621 				verbose(env, "invalid size of register fill\n");
4622 				return -EACCES;
4623 			}
4624 
4625 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4626 			if (dst_regno < 0)
4627 				return 0;
4628 
4629 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4630 				/* The earlier check_reg_arg() has decided the
4631 				 * subreg_def for this insn.  Save it first.
4632 				 */
4633 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4634 
4635 				copy_register_state(&state->regs[dst_regno], reg);
4636 				state->regs[dst_regno].subreg_def = subreg_def;
4637 			} else {
4638 				for (i = 0; i < size; i++) {
4639 					type = stype[(slot - i) % BPF_REG_SIZE];
4640 					if (type == STACK_SPILL)
4641 						continue;
4642 					if (type == STACK_MISC)
4643 						continue;
4644 					if (type == STACK_INVALID && env->allow_uninit_stack)
4645 						continue;
4646 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4647 						off, i, size);
4648 					return -EACCES;
4649 				}
4650 				mark_reg_unknown(env, state->regs, dst_regno);
4651 			}
4652 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4653 			return 0;
4654 		}
4655 
4656 		if (dst_regno >= 0) {
4657 			/* restore register state from stack */
4658 			copy_register_state(&state->regs[dst_regno], reg);
4659 			/* mark reg as written since spilled pointer state likely
4660 			 * has its liveness marks cleared by is_state_visited()
4661 			 * which resets stack/reg liveness for state transitions
4662 			 */
4663 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4664 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4665 			/* If dst_regno==-1, the caller is asking us whether
4666 			 * it is acceptable to use this value as a SCALAR_VALUE
4667 			 * (e.g. for XADD).
4668 			 * We must not allow unprivileged callers to do that
4669 			 * with spilled pointers.
4670 			 */
4671 			verbose(env, "leaking pointer from stack off %d\n",
4672 				off);
4673 			return -EACCES;
4674 		}
4675 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4676 	} else {
4677 		for (i = 0; i < size; i++) {
4678 			type = stype[(slot - i) % BPF_REG_SIZE];
4679 			if (type == STACK_MISC)
4680 				continue;
4681 			if (type == STACK_ZERO)
4682 				continue;
4683 			if (type == STACK_INVALID && env->allow_uninit_stack)
4684 				continue;
4685 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4686 				off, i, size);
4687 			return -EACCES;
4688 		}
4689 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4690 		if (dst_regno >= 0)
4691 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4692 	}
4693 	return 0;
4694 }
4695 
4696 enum bpf_access_src {
4697 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4698 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4699 };
4700 
4701 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4702 					 int regno, int off, int access_size,
4703 					 bool zero_size_allowed,
4704 					 enum bpf_access_src type,
4705 					 struct bpf_call_arg_meta *meta);
4706 
4707 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4708 {
4709 	return cur_regs(env) + regno;
4710 }
4711 
4712 /* Read the stack at 'ptr_regno + off' and put the result into the register
4713  * 'dst_regno'.
4714  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4715  * but not its variable offset.
4716  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4717  *
4718  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4719  * filling registers (i.e. reads of spilled register cannot be detected when
4720  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4721  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4722  * offset; for a fixed offset check_stack_read_fixed_off should be used
4723  * instead.
4724  */
4725 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4726 				    int ptr_regno, int off, int size, int dst_regno)
4727 {
4728 	/* The state of the source register. */
4729 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4730 	struct bpf_func_state *ptr_state = func(env, reg);
4731 	int err;
4732 	int min_off, max_off;
4733 
4734 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4735 	 */
4736 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4737 					    false, ACCESS_DIRECT, NULL);
4738 	if (err)
4739 		return err;
4740 
4741 	min_off = reg->smin_value + off;
4742 	max_off = reg->smax_value + off;
4743 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4744 	return 0;
4745 }
4746 
4747 /* check_stack_read dispatches to check_stack_read_fixed_off or
4748  * check_stack_read_var_off.
4749  *
4750  * The caller must ensure that the offset falls within the allocated stack
4751  * bounds.
4752  *
4753  * 'dst_regno' is a register which will receive the value from the stack. It
4754  * can be -1, meaning that the read value is not going to a register.
4755  */
4756 static int check_stack_read(struct bpf_verifier_env *env,
4757 			    int ptr_regno, int off, int size,
4758 			    int dst_regno)
4759 {
4760 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4761 	struct bpf_func_state *state = func(env, reg);
4762 	int err;
4763 	/* Some accesses are only permitted with a static offset. */
4764 	bool var_off = !tnum_is_const(reg->var_off);
4765 
4766 	/* The offset is required to be static when reads don't go to a
4767 	 * register, in order to not leak pointers (see
4768 	 * check_stack_read_fixed_off).
4769 	 */
4770 	if (dst_regno < 0 && var_off) {
4771 		char tn_buf[48];
4772 
4773 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4774 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4775 			tn_buf, off, size);
4776 		return -EACCES;
4777 	}
4778 	/* Variable offset is prohibited for unprivileged mode for simplicity
4779 	 * since it requires corresponding support in Spectre masking for stack
4780 	 * ALU. See also retrieve_ptr_limit(). The check in
4781 	 * check_stack_access_for_ptr_arithmetic() called by
4782 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4783 	 * with variable offsets, therefore no check is required here. Further,
4784 	 * just checking it here would be insufficient as speculative stack
4785 	 * writes could still lead to unsafe speculative behaviour.
4786 	 */
4787 	if (!var_off) {
4788 		off += reg->var_off.value;
4789 		err = check_stack_read_fixed_off(env, state, off, size,
4790 						 dst_regno);
4791 	} else {
4792 		/* Variable offset stack reads need more conservative handling
4793 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4794 		 * branch.
4795 		 */
4796 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4797 					       dst_regno);
4798 	}
4799 	return err;
4800 }
4801 
4802 
4803 /* check_stack_write dispatches to check_stack_write_fixed_off or
4804  * check_stack_write_var_off.
4805  *
4806  * 'ptr_regno' is the register used as a pointer into the stack.
4807  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4808  * 'value_regno' is the register whose value we're writing to the stack. It can
4809  * be -1, meaning that we're not writing from a register.
4810  *
4811  * The caller must ensure that the offset falls within the maximum stack size.
4812  */
4813 static int check_stack_write(struct bpf_verifier_env *env,
4814 			     int ptr_regno, int off, int size,
4815 			     int value_regno, int insn_idx)
4816 {
4817 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4818 	struct bpf_func_state *state = func(env, reg);
4819 	int err;
4820 
4821 	if (tnum_is_const(reg->var_off)) {
4822 		off += reg->var_off.value;
4823 		err = check_stack_write_fixed_off(env, state, off, size,
4824 						  value_regno, insn_idx);
4825 	} else {
4826 		/* Variable offset stack reads need more conservative handling
4827 		 * than fixed offset ones.
4828 		 */
4829 		err = check_stack_write_var_off(env, state,
4830 						ptr_regno, off, size,
4831 						value_regno, insn_idx);
4832 	}
4833 	return err;
4834 }
4835 
4836 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4837 				 int off, int size, enum bpf_access_type type)
4838 {
4839 	struct bpf_reg_state *regs = cur_regs(env);
4840 	struct bpf_map *map = regs[regno].map_ptr;
4841 	u32 cap = bpf_map_flags_to_cap(map);
4842 
4843 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4844 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4845 			map->value_size, off, size);
4846 		return -EACCES;
4847 	}
4848 
4849 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4850 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4851 			map->value_size, off, size);
4852 		return -EACCES;
4853 	}
4854 
4855 	return 0;
4856 }
4857 
4858 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4859 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4860 			      int off, int size, u32 mem_size,
4861 			      bool zero_size_allowed)
4862 {
4863 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4864 	struct bpf_reg_state *reg;
4865 
4866 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4867 		return 0;
4868 
4869 	reg = &cur_regs(env)[regno];
4870 	switch (reg->type) {
4871 	case PTR_TO_MAP_KEY:
4872 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4873 			mem_size, off, size);
4874 		break;
4875 	case PTR_TO_MAP_VALUE:
4876 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4877 			mem_size, off, size);
4878 		break;
4879 	case PTR_TO_PACKET:
4880 	case PTR_TO_PACKET_META:
4881 	case PTR_TO_PACKET_END:
4882 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4883 			off, size, regno, reg->id, off, mem_size);
4884 		break;
4885 	case PTR_TO_MEM:
4886 	default:
4887 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4888 			mem_size, off, size);
4889 	}
4890 
4891 	return -EACCES;
4892 }
4893 
4894 /* check read/write into a memory region with possible variable offset */
4895 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4896 				   int off, int size, u32 mem_size,
4897 				   bool zero_size_allowed)
4898 {
4899 	struct bpf_verifier_state *vstate = env->cur_state;
4900 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4901 	struct bpf_reg_state *reg = &state->regs[regno];
4902 	int err;
4903 
4904 	/* We may have adjusted the register pointing to memory region, so we
4905 	 * need to try adding each of min_value and max_value to off
4906 	 * to make sure our theoretical access will be safe.
4907 	 *
4908 	 * The minimum value is only important with signed
4909 	 * comparisons where we can't assume the floor of a
4910 	 * value is 0.  If we are using signed variables for our
4911 	 * index'es we need to make sure that whatever we use
4912 	 * will have a set floor within our range.
4913 	 */
4914 	if (reg->smin_value < 0 &&
4915 	    (reg->smin_value == S64_MIN ||
4916 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4917 	      reg->smin_value + off < 0)) {
4918 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4919 			regno);
4920 		return -EACCES;
4921 	}
4922 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4923 				 mem_size, zero_size_allowed);
4924 	if (err) {
4925 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4926 			regno);
4927 		return err;
4928 	}
4929 
4930 	/* If we haven't set a max value then we need to bail since we can't be
4931 	 * sure we won't do bad things.
4932 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4933 	 */
4934 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4935 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4936 			regno);
4937 		return -EACCES;
4938 	}
4939 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4940 				 mem_size, zero_size_allowed);
4941 	if (err) {
4942 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4943 			regno);
4944 		return err;
4945 	}
4946 
4947 	return 0;
4948 }
4949 
4950 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4951 			       const struct bpf_reg_state *reg, int regno,
4952 			       bool fixed_off_ok)
4953 {
4954 	/* Access to this pointer-typed register or passing it to a helper
4955 	 * is only allowed in its original, unmodified form.
4956 	 */
4957 
4958 	if (reg->off < 0) {
4959 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4960 			reg_type_str(env, reg->type), regno, reg->off);
4961 		return -EACCES;
4962 	}
4963 
4964 	if (!fixed_off_ok && reg->off) {
4965 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4966 			reg_type_str(env, reg->type), regno, reg->off);
4967 		return -EACCES;
4968 	}
4969 
4970 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4971 		char tn_buf[48];
4972 
4973 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4974 		verbose(env, "variable %s access var_off=%s disallowed\n",
4975 			reg_type_str(env, reg->type), tn_buf);
4976 		return -EACCES;
4977 	}
4978 
4979 	return 0;
4980 }
4981 
4982 int check_ptr_off_reg(struct bpf_verifier_env *env,
4983 		      const struct bpf_reg_state *reg, int regno)
4984 {
4985 	return __check_ptr_off_reg(env, reg, regno, false);
4986 }
4987 
4988 static int map_kptr_match_type(struct bpf_verifier_env *env,
4989 			       struct btf_field *kptr_field,
4990 			       struct bpf_reg_state *reg, u32 regno)
4991 {
4992 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4993 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4994 	const char *reg_name = "";
4995 
4996 	/* Only unreferenced case accepts untrusted pointers */
4997 	if (kptr_field->type == BPF_KPTR_UNREF)
4998 		perm_flags |= PTR_UNTRUSTED;
4999 
5000 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5001 		goto bad_type;
5002 
5003 	if (!btf_is_kernel(reg->btf)) {
5004 		verbose(env, "R%d must point to kernel BTF\n", regno);
5005 		return -EINVAL;
5006 	}
5007 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5008 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5009 
5010 	/* For ref_ptr case, release function check should ensure we get one
5011 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5012 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5013 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5014 	 * reg->off and reg->ref_obj_id are not needed here.
5015 	 */
5016 	if (__check_ptr_off_reg(env, reg, regno, true))
5017 		return -EACCES;
5018 
5019 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
5020 	 * we also need to take into account the reg->off.
5021 	 *
5022 	 * We want to support cases like:
5023 	 *
5024 	 * struct foo {
5025 	 *         struct bar br;
5026 	 *         struct baz bz;
5027 	 * };
5028 	 *
5029 	 * struct foo *v;
5030 	 * v = func();	      // PTR_TO_BTF_ID
5031 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5032 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5033 	 *                    // first member type of struct after comparison fails
5034 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5035 	 *                    // to match type
5036 	 *
5037 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5038 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5039 	 * the struct to match type against first member of struct, i.e. reject
5040 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5041 	 * strict mode to true for type match.
5042 	 */
5043 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5044 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5045 				  kptr_field->type == BPF_KPTR_REF))
5046 		goto bad_type;
5047 	return 0;
5048 bad_type:
5049 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5050 		reg_type_str(env, reg->type), reg_name);
5051 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5052 	if (kptr_field->type == BPF_KPTR_UNREF)
5053 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5054 			targ_name);
5055 	else
5056 		verbose(env, "\n");
5057 	return -EINVAL;
5058 }
5059 
5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5061  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5062  */
5063 static bool in_rcu_cs(struct bpf_verifier_env *env)
5064 {
5065 	return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
5066 }
5067 
5068 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5069 BTF_SET_START(rcu_protected_types)
5070 BTF_ID(struct, prog_test_ref_kfunc)
5071 BTF_ID(struct, cgroup)
5072 BTF_ID(struct, bpf_cpumask)
5073 BTF_ID(struct, task_struct)
5074 BTF_SET_END(rcu_protected_types)
5075 
5076 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5077 {
5078 	if (!btf_is_kernel(btf))
5079 		return false;
5080 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5081 }
5082 
5083 static bool rcu_safe_kptr(const struct btf_field *field)
5084 {
5085 	const struct btf_field_kptr *kptr = &field->kptr;
5086 
5087 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5088 }
5089 
5090 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5091 				 int value_regno, int insn_idx,
5092 				 struct btf_field *kptr_field)
5093 {
5094 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5095 	int class = BPF_CLASS(insn->code);
5096 	struct bpf_reg_state *val_reg;
5097 
5098 	/* Things we already checked for in check_map_access and caller:
5099 	 *  - Reject cases where variable offset may touch kptr
5100 	 *  - size of access (must be BPF_DW)
5101 	 *  - tnum_is_const(reg->var_off)
5102 	 *  - kptr_field->offset == off + reg->var_off.value
5103 	 */
5104 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5105 	if (BPF_MODE(insn->code) != BPF_MEM) {
5106 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5107 		return -EACCES;
5108 	}
5109 
5110 	/* We only allow loading referenced kptr, since it will be marked as
5111 	 * untrusted, similar to unreferenced kptr.
5112 	 */
5113 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5114 		verbose(env, "store to referenced kptr disallowed\n");
5115 		return -EACCES;
5116 	}
5117 
5118 	if (class == BPF_LDX) {
5119 		val_reg = reg_state(env, value_regno);
5120 		/* We can simply mark the value_regno receiving the pointer
5121 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5122 		 */
5123 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5124 				kptr_field->kptr.btf_id,
5125 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5126 				PTR_MAYBE_NULL | MEM_RCU :
5127 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5128 		/* For mark_ptr_or_null_reg */
5129 		val_reg->id = ++env->id_gen;
5130 	} else if (class == BPF_STX) {
5131 		val_reg = reg_state(env, value_regno);
5132 		if (!register_is_null(val_reg) &&
5133 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5134 			return -EACCES;
5135 	} else if (class == BPF_ST) {
5136 		if (insn->imm) {
5137 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5138 				kptr_field->offset);
5139 			return -EACCES;
5140 		}
5141 	} else {
5142 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5143 		return -EACCES;
5144 	}
5145 	return 0;
5146 }
5147 
5148 /* check read/write into a map element with possible variable offset */
5149 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5150 			    int off, int size, bool zero_size_allowed,
5151 			    enum bpf_access_src src)
5152 {
5153 	struct bpf_verifier_state *vstate = env->cur_state;
5154 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5155 	struct bpf_reg_state *reg = &state->regs[regno];
5156 	struct bpf_map *map = reg->map_ptr;
5157 	struct btf_record *rec;
5158 	int err, i;
5159 
5160 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5161 				      zero_size_allowed);
5162 	if (err)
5163 		return err;
5164 
5165 	if (IS_ERR_OR_NULL(map->record))
5166 		return 0;
5167 	rec = map->record;
5168 	for (i = 0; i < rec->cnt; i++) {
5169 		struct btf_field *field = &rec->fields[i];
5170 		u32 p = field->offset;
5171 
5172 		/* If any part of a field  can be touched by load/store, reject
5173 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5174 		 * it is sufficient to check x1 < y2 && y1 < x2.
5175 		 */
5176 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5177 		    p < reg->umax_value + off + size) {
5178 			switch (field->type) {
5179 			case BPF_KPTR_UNREF:
5180 			case BPF_KPTR_REF:
5181 				if (src != ACCESS_DIRECT) {
5182 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5183 					return -EACCES;
5184 				}
5185 				if (!tnum_is_const(reg->var_off)) {
5186 					verbose(env, "kptr access cannot have variable offset\n");
5187 					return -EACCES;
5188 				}
5189 				if (p != off + reg->var_off.value) {
5190 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5191 						p, off + reg->var_off.value);
5192 					return -EACCES;
5193 				}
5194 				if (size != bpf_size_to_bytes(BPF_DW)) {
5195 					verbose(env, "kptr access size must be BPF_DW\n");
5196 					return -EACCES;
5197 				}
5198 				break;
5199 			default:
5200 				verbose(env, "%s cannot be accessed directly by load/store\n",
5201 					btf_field_type_name(field->type));
5202 				return -EACCES;
5203 			}
5204 		}
5205 	}
5206 	return 0;
5207 }
5208 
5209 #define MAX_PACKET_OFF 0xffff
5210 
5211 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5212 				       const struct bpf_call_arg_meta *meta,
5213 				       enum bpf_access_type t)
5214 {
5215 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5216 
5217 	switch (prog_type) {
5218 	/* Program types only with direct read access go here! */
5219 	case BPF_PROG_TYPE_LWT_IN:
5220 	case BPF_PROG_TYPE_LWT_OUT:
5221 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5222 	case BPF_PROG_TYPE_SK_REUSEPORT:
5223 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5224 	case BPF_PROG_TYPE_CGROUP_SKB:
5225 		if (t == BPF_WRITE)
5226 			return false;
5227 		fallthrough;
5228 
5229 	/* Program types with direct read + write access go here! */
5230 	case BPF_PROG_TYPE_SCHED_CLS:
5231 	case BPF_PROG_TYPE_SCHED_ACT:
5232 	case BPF_PROG_TYPE_XDP:
5233 	case BPF_PROG_TYPE_LWT_XMIT:
5234 	case BPF_PROG_TYPE_SK_SKB:
5235 	case BPF_PROG_TYPE_SK_MSG:
5236 		if (meta)
5237 			return meta->pkt_access;
5238 
5239 		env->seen_direct_write = true;
5240 		return true;
5241 
5242 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5243 		if (t == BPF_WRITE)
5244 			env->seen_direct_write = true;
5245 
5246 		return true;
5247 
5248 	default:
5249 		return false;
5250 	}
5251 }
5252 
5253 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5254 			       int size, bool zero_size_allowed)
5255 {
5256 	struct bpf_reg_state *regs = cur_regs(env);
5257 	struct bpf_reg_state *reg = &regs[regno];
5258 	int err;
5259 
5260 	/* We may have added a variable offset to the packet pointer; but any
5261 	 * reg->range we have comes after that.  We are only checking the fixed
5262 	 * offset.
5263 	 */
5264 
5265 	/* We don't allow negative numbers, because we aren't tracking enough
5266 	 * detail to prove they're safe.
5267 	 */
5268 	if (reg->smin_value < 0) {
5269 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5270 			regno);
5271 		return -EACCES;
5272 	}
5273 
5274 	err = reg->range < 0 ? -EINVAL :
5275 	      __check_mem_access(env, regno, off, size, reg->range,
5276 				 zero_size_allowed);
5277 	if (err) {
5278 		verbose(env, "R%d offset is outside of the packet\n", regno);
5279 		return err;
5280 	}
5281 
5282 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5283 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5284 	 * otherwise find_good_pkt_pointers would have refused to set range info
5285 	 * that __check_mem_access would have rejected this pkt access.
5286 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5287 	 */
5288 	env->prog->aux->max_pkt_offset =
5289 		max_t(u32, env->prog->aux->max_pkt_offset,
5290 		      off + reg->umax_value + size - 1);
5291 
5292 	return err;
5293 }
5294 
5295 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5296 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5297 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5298 			    struct btf **btf, u32 *btf_id)
5299 {
5300 	struct bpf_insn_access_aux info = {
5301 		.reg_type = *reg_type,
5302 		.log = &env->log,
5303 	};
5304 
5305 	if (env->ops->is_valid_access &&
5306 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5307 		/* A non zero info.ctx_field_size indicates that this field is a
5308 		 * candidate for later verifier transformation to load the whole
5309 		 * field and then apply a mask when accessed with a narrower
5310 		 * access than actual ctx access size. A zero info.ctx_field_size
5311 		 * will only allow for whole field access and rejects any other
5312 		 * type of narrower access.
5313 		 */
5314 		*reg_type = info.reg_type;
5315 
5316 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5317 			*btf = info.btf;
5318 			*btf_id = info.btf_id;
5319 		} else {
5320 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5321 		}
5322 		/* remember the offset of last byte accessed in ctx */
5323 		if (env->prog->aux->max_ctx_offset < off + size)
5324 			env->prog->aux->max_ctx_offset = off + size;
5325 		return 0;
5326 	}
5327 
5328 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5329 	return -EACCES;
5330 }
5331 
5332 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5333 				  int size)
5334 {
5335 	if (size < 0 || off < 0 ||
5336 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5337 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5338 			off, size);
5339 		return -EACCES;
5340 	}
5341 	return 0;
5342 }
5343 
5344 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5345 			     u32 regno, int off, int size,
5346 			     enum bpf_access_type t)
5347 {
5348 	struct bpf_reg_state *regs = cur_regs(env);
5349 	struct bpf_reg_state *reg = &regs[regno];
5350 	struct bpf_insn_access_aux info = {};
5351 	bool valid;
5352 
5353 	if (reg->smin_value < 0) {
5354 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5355 			regno);
5356 		return -EACCES;
5357 	}
5358 
5359 	switch (reg->type) {
5360 	case PTR_TO_SOCK_COMMON:
5361 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5362 		break;
5363 	case PTR_TO_SOCKET:
5364 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5365 		break;
5366 	case PTR_TO_TCP_SOCK:
5367 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5368 		break;
5369 	case PTR_TO_XDP_SOCK:
5370 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5371 		break;
5372 	default:
5373 		valid = false;
5374 	}
5375 
5376 
5377 	if (valid) {
5378 		env->insn_aux_data[insn_idx].ctx_field_size =
5379 			info.ctx_field_size;
5380 		return 0;
5381 	}
5382 
5383 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5384 		regno, reg_type_str(env, reg->type), off, size);
5385 
5386 	return -EACCES;
5387 }
5388 
5389 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5390 {
5391 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5392 }
5393 
5394 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5395 {
5396 	const struct bpf_reg_state *reg = reg_state(env, regno);
5397 
5398 	return reg->type == PTR_TO_CTX;
5399 }
5400 
5401 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5402 {
5403 	const struct bpf_reg_state *reg = reg_state(env, regno);
5404 
5405 	return type_is_sk_pointer(reg->type);
5406 }
5407 
5408 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5409 {
5410 	const struct bpf_reg_state *reg = reg_state(env, regno);
5411 
5412 	return type_is_pkt_pointer(reg->type);
5413 }
5414 
5415 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5416 {
5417 	const struct bpf_reg_state *reg = reg_state(env, regno);
5418 
5419 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5420 	return reg->type == PTR_TO_FLOW_KEYS;
5421 }
5422 
5423 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5424 #ifdef CONFIG_NET
5425 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5426 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5427 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5428 #endif
5429 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5430 };
5431 
5432 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5433 {
5434 	/* A referenced register is always trusted. */
5435 	if (reg->ref_obj_id)
5436 		return true;
5437 
5438 	/* Types listed in the reg2btf_ids are always trusted */
5439 	if (reg2btf_ids[base_type(reg->type)])
5440 		return true;
5441 
5442 	/* If a register is not referenced, it is trusted if it has the
5443 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5444 	 * other type modifiers may be safe, but we elect to take an opt-in
5445 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5446 	 * not.
5447 	 *
5448 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5449 	 * for whether a register is trusted.
5450 	 */
5451 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5452 	       !bpf_type_has_unsafe_modifiers(reg->type);
5453 }
5454 
5455 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5456 {
5457 	return reg->type & MEM_RCU;
5458 }
5459 
5460 static void clear_trusted_flags(enum bpf_type_flag *flag)
5461 {
5462 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5463 }
5464 
5465 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5466 				   const struct bpf_reg_state *reg,
5467 				   int off, int size, bool strict)
5468 {
5469 	struct tnum reg_off;
5470 	int ip_align;
5471 
5472 	/* Byte size accesses are always allowed. */
5473 	if (!strict || size == 1)
5474 		return 0;
5475 
5476 	/* For platforms that do not have a Kconfig enabling
5477 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5478 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5479 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5480 	 * to this code only in strict mode where we want to emulate
5481 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5482 	 * unconditional IP align value of '2'.
5483 	 */
5484 	ip_align = 2;
5485 
5486 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5487 	if (!tnum_is_aligned(reg_off, size)) {
5488 		char tn_buf[48];
5489 
5490 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5491 		verbose(env,
5492 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5493 			ip_align, tn_buf, reg->off, off, size);
5494 		return -EACCES;
5495 	}
5496 
5497 	return 0;
5498 }
5499 
5500 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5501 				       const struct bpf_reg_state *reg,
5502 				       const char *pointer_desc,
5503 				       int off, int size, bool strict)
5504 {
5505 	struct tnum reg_off;
5506 
5507 	/* Byte size accesses are always allowed. */
5508 	if (!strict || size == 1)
5509 		return 0;
5510 
5511 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5512 	if (!tnum_is_aligned(reg_off, size)) {
5513 		char tn_buf[48];
5514 
5515 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5516 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5517 			pointer_desc, tn_buf, reg->off, off, size);
5518 		return -EACCES;
5519 	}
5520 
5521 	return 0;
5522 }
5523 
5524 static int check_ptr_alignment(struct bpf_verifier_env *env,
5525 			       const struct bpf_reg_state *reg, int off,
5526 			       int size, bool strict_alignment_once)
5527 {
5528 	bool strict = env->strict_alignment || strict_alignment_once;
5529 	const char *pointer_desc = "";
5530 
5531 	switch (reg->type) {
5532 	case PTR_TO_PACKET:
5533 	case PTR_TO_PACKET_META:
5534 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5535 		 * right in front, treat it the very same way.
5536 		 */
5537 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5538 	case PTR_TO_FLOW_KEYS:
5539 		pointer_desc = "flow keys ";
5540 		break;
5541 	case PTR_TO_MAP_KEY:
5542 		pointer_desc = "key ";
5543 		break;
5544 	case PTR_TO_MAP_VALUE:
5545 		pointer_desc = "value ";
5546 		break;
5547 	case PTR_TO_CTX:
5548 		pointer_desc = "context ";
5549 		break;
5550 	case PTR_TO_STACK:
5551 		pointer_desc = "stack ";
5552 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5553 		 * and check_stack_read_fixed_off() relies on stack accesses being
5554 		 * aligned.
5555 		 */
5556 		strict = true;
5557 		break;
5558 	case PTR_TO_SOCKET:
5559 		pointer_desc = "sock ";
5560 		break;
5561 	case PTR_TO_SOCK_COMMON:
5562 		pointer_desc = "sock_common ";
5563 		break;
5564 	case PTR_TO_TCP_SOCK:
5565 		pointer_desc = "tcp_sock ";
5566 		break;
5567 	case PTR_TO_XDP_SOCK:
5568 		pointer_desc = "xdp_sock ";
5569 		break;
5570 	default:
5571 		break;
5572 	}
5573 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5574 					   strict);
5575 }
5576 
5577 static int update_stack_depth(struct bpf_verifier_env *env,
5578 			      const struct bpf_func_state *func,
5579 			      int off)
5580 {
5581 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5582 
5583 	if (stack >= -off)
5584 		return 0;
5585 
5586 	/* update known max for given subprogram */
5587 	env->subprog_info[func->subprogno].stack_depth = -off;
5588 	return 0;
5589 }
5590 
5591 /* starting from main bpf function walk all instructions of the function
5592  * and recursively walk all callees that given function can call.
5593  * Ignore jump and exit insns.
5594  * Since recursion is prevented by check_cfg() this algorithm
5595  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5596  */
5597 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5598 {
5599 	struct bpf_subprog_info *subprog = env->subprog_info;
5600 	struct bpf_insn *insn = env->prog->insnsi;
5601 	int depth = 0, frame = 0, i, subprog_end;
5602 	bool tail_call_reachable = false;
5603 	int ret_insn[MAX_CALL_FRAMES];
5604 	int ret_prog[MAX_CALL_FRAMES];
5605 	int j;
5606 
5607 	i = subprog[idx].start;
5608 process_func:
5609 	/* protect against potential stack overflow that might happen when
5610 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5611 	 * depth for such case down to 256 so that the worst case scenario
5612 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5613 	 * 8k).
5614 	 *
5615 	 * To get the idea what might happen, see an example:
5616 	 * func1 -> sub rsp, 128
5617 	 *  subfunc1 -> sub rsp, 256
5618 	 *  tailcall1 -> add rsp, 256
5619 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5620 	 *   subfunc2 -> sub rsp, 64
5621 	 *   subfunc22 -> sub rsp, 128
5622 	 *   tailcall2 -> add rsp, 128
5623 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5624 	 *
5625 	 * tailcall will unwind the current stack frame but it will not get rid
5626 	 * of caller's stack as shown on the example above.
5627 	 */
5628 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5629 		verbose(env,
5630 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5631 			depth);
5632 		return -EACCES;
5633 	}
5634 	/* round up to 32-bytes, since this is granularity
5635 	 * of interpreter stack size
5636 	 */
5637 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5638 	if (depth > MAX_BPF_STACK) {
5639 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5640 			frame + 1, depth);
5641 		return -EACCES;
5642 	}
5643 continue_func:
5644 	subprog_end = subprog[idx + 1].start;
5645 	for (; i < subprog_end; i++) {
5646 		int next_insn, sidx;
5647 
5648 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5649 			continue;
5650 		/* remember insn and function to return to */
5651 		ret_insn[frame] = i + 1;
5652 		ret_prog[frame] = idx;
5653 
5654 		/* find the callee */
5655 		next_insn = i + insn[i].imm + 1;
5656 		sidx = find_subprog(env, next_insn);
5657 		if (sidx < 0) {
5658 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5659 				  next_insn);
5660 			return -EFAULT;
5661 		}
5662 		if (subprog[sidx].is_async_cb) {
5663 			if (subprog[sidx].has_tail_call) {
5664 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5665 				return -EFAULT;
5666 			}
5667 			/* async callbacks don't increase bpf prog stack size unless called directly */
5668 			if (!bpf_pseudo_call(insn + i))
5669 				continue;
5670 		}
5671 		i = next_insn;
5672 		idx = sidx;
5673 
5674 		if (subprog[idx].has_tail_call)
5675 			tail_call_reachable = true;
5676 
5677 		frame++;
5678 		if (frame >= MAX_CALL_FRAMES) {
5679 			verbose(env, "the call stack of %d frames is too deep !\n",
5680 				frame);
5681 			return -E2BIG;
5682 		}
5683 		goto process_func;
5684 	}
5685 	/* if tail call got detected across bpf2bpf calls then mark each of the
5686 	 * currently present subprog frames as tail call reachable subprogs;
5687 	 * this info will be utilized by JIT so that we will be preserving the
5688 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5689 	 */
5690 	if (tail_call_reachable)
5691 		for (j = 0; j < frame; j++)
5692 			subprog[ret_prog[j]].tail_call_reachable = true;
5693 	if (subprog[0].tail_call_reachable)
5694 		env->prog->aux->tail_call_reachable = true;
5695 
5696 	/* end of for() loop means the last insn of the 'subprog'
5697 	 * was reached. Doesn't matter whether it was JA or EXIT
5698 	 */
5699 	if (frame == 0)
5700 		return 0;
5701 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5702 	frame--;
5703 	i = ret_insn[frame];
5704 	idx = ret_prog[frame];
5705 	goto continue_func;
5706 }
5707 
5708 static int check_max_stack_depth(struct bpf_verifier_env *env)
5709 {
5710 	struct bpf_subprog_info *si = env->subprog_info;
5711 	int ret;
5712 
5713 	for (int i = 0; i < env->subprog_cnt; i++) {
5714 		if (!i || si[i].is_async_cb) {
5715 			ret = check_max_stack_depth_subprog(env, i);
5716 			if (ret < 0)
5717 				return ret;
5718 		}
5719 		continue;
5720 	}
5721 	return 0;
5722 }
5723 
5724 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5725 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5726 				  const struct bpf_insn *insn, int idx)
5727 {
5728 	int start = idx + insn->imm + 1, subprog;
5729 
5730 	subprog = find_subprog(env, start);
5731 	if (subprog < 0) {
5732 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5733 			  start);
5734 		return -EFAULT;
5735 	}
5736 	return env->subprog_info[subprog].stack_depth;
5737 }
5738 #endif
5739 
5740 static int __check_buffer_access(struct bpf_verifier_env *env,
5741 				 const char *buf_info,
5742 				 const struct bpf_reg_state *reg,
5743 				 int regno, int off, int size)
5744 {
5745 	if (off < 0) {
5746 		verbose(env,
5747 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5748 			regno, buf_info, off, size);
5749 		return -EACCES;
5750 	}
5751 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5752 		char tn_buf[48];
5753 
5754 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5755 		verbose(env,
5756 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5757 			regno, off, tn_buf);
5758 		return -EACCES;
5759 	}
5760 
5761 	return 0;
5762 }
5763 
5764 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5765 				  const struct bpf_reg_state *reg,
5766 				  int regno, int off, int size)
5767 {
5768 	int err;
5769 
5770 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5771 	if (err)
5772 		return err;
5773 
5774 	if (off + size > env->prog->aux->max_tp_access)
5775 		env->prog->aux->max_tp_access = off + size;
5776 
5777 	return 0;
5778 }
5779 
5780 static int check_buffer_access(struct bpf_verifier_env *env,
5781 			       const struct bpf_reg_state *reg,
5782 			       int regno, int off, int size,
5783 			       bool zero_size_allowed,
5784 			       u32 *max_access)
5785 {
5786 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5787 	int err;
5788 
5789 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5790 	if (err)
5791 		return err;
5792 
5793 	if (off + size > *max_access)
5794 		*max_access = off + size;
5795 
5796 	return 0;
5797 }
5798 
5799 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5800 static void zext_32_to_64(struct bpf_reg_state *reg)
5801 {
5802 	reg->var_off = tnum_subreg(reg->var_off);
5803 	__reg_assign_32_into_64(reg);
5804 }
5805 
5806 /* truncate register to smaller size (in bytes)
5807  * must be called with size < BPF_REG_SIZE
5808  */
5809 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5810 {
5811 	u64 mask;
5812 
5813 	/* clear high bits in bit representation */
5814 	reg->var_off = tnum_cast(reg->var_off, size);
5815 
5816 	/* fix arithmetic bounds */
5817 	mask = ((u64)1 << (size * 8)) - 1;
5818 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5819 		reg->umin_value &= mask;
5820 		reg->umax_value &= mask;
5821 	} else {
5822 		reg->umin_value = 0;
5823 		reg->umax_value = mask;
5824 	}
5825 	reg->smin_value = reg->umin_value;
5826 	reg->smax_value = reg->umax_value;
5827 
5828 	/* If size is smaller than 32bit register the 32bit register
5829 	 * values are also truncated so we push 64-bit bounds into
5830 	 * 32-bit bounds. Above were truncated < 32-bits already.
5831 	 */
5832 	if (size >= 4)
5833 		return;
5834 	__reg_combine_64_into_32(reg);
5835 }
5836 
5837 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5838 {
5839 	if (size == 1) {
5840 		reg->smin_value = reg->s32_min_value = S8_MIN;
5841 		reg->smax_value = reg->s32_max_value = S8_MAX;
5842 	} else if (size == 2) {
5843 		reg->smin_value = reg->s32_min_value = S16_MIN;
5844 		reg->smax_value = reg->s32_max_value = S16_MAX;
5845 	} else {
5846 		/* size == 4 */
5847 		reg->smin_value = reg->s32_min_value = S32_MIN;
5848 		reg->smax_value = reg->s32_max_value = S32_MAX;
5849 	}
5850 	reg->umin_value = reg->u32_min_value = 0;
5851 	reg->umax_value = U64_MAX;
5852 	reg->u32_max_value = U32_MAX;
5853 	reg->var_off = tnum_unknown;
5854 }
5855 
5856 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5857 {
5858 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5859 	u64 top_smax_value, top_smin_value;
5860 	u64 num_bits = size * 8;
5861 
5862 	if (tnum_is_const(reg->var_off)) {
5863 		u64_cval = reg->var_off.value;
5864 		if (size == 1)
5865 			reg->var_off = tnum_const((s8)u64_cval);
5866 		else if (size == 2)
5867 			reg->var_off = tnum_const((s16)u64_cval);
5868 		else
5869 			/* size == 4 */
5870 			reg->var_off = tnum_const((s32)u64_cval);
5871 
5872 		u64_cval = reg->var_off.value;
5873 		reg->smax_value = reg->smin_value = u64_cval;
5874 		reg->umax_value = reg->umin_value = u64_cval;
5875 		reg->s32_max_value = reg->s32_min_value = u64_cval;
5876 		reg->u32_max_value = reg->u32_min_value = u64_cval;
5877 		return;
5878 	}
5879 
5880 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5881 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5882 
5883 	if (top_smax_value != top_smin_value)
5884 		goto out;
5885 
5886 	/* find the s64_min and s64_min after sign extension */
5887 	if (size == 1) {
5888 		init_s64_max = (s8)reg->smax_value;
5889 		init_s64_min = (s8)reg->smin_value;
5890 	} else if (size == 2) {
5891 		init_s64_max = (s16)reg->smax_value;
5892 		init_s64_min = (s16)reg->smin_value;
5893 	} else {
5894 		init_s64_max = (s32)reg->smax_value;
5895 		init_s64_min = (s32)reg->smin_value;
5896 	}
5897 
5898 	s64_max = max(init_s64_max, init_s64_min);
5899 	s64_min = min(init_s64_max, init_s64_min);
5900 
5901 	/* both of s64_max/s64_min positive or negative */
5902 	if ((s64_max >= 0) == (s64_min >= 0)) {
5903 		reg->smin_value = reg->s32_min_value = s64_min;
5904 		reg->smax_value = reg->s32_max_value = s64_max;
5905 		reg->umin_value = reg->u32_min_value = s64_min;
5906 		reg->umax_value = reg->u32_max_value = s64_max;
5907 		reg->var_off = tnum_range(s64_min, s64_max);
5908 		return;
5909 	}
5910 
5911 out:
5912 	set_sext64_default_val(reg, size);
5913 }
5914 
5915 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5916 {
5917 	if (size == 1) {
5918 		reg->s32_min_value = S8_MIN;
5919 		reg->s32_max_value = S8_MAX;
5920 	} else {
5921 		/* size == 2 */
5922 		reg->s32_min_value = S16_MIN;
5923 		reg->s32_max_value = S16_MAX;
5924 	}
5925 	reg->u32_min_value = 0;
5926 	reg->u32_max_value = U32_MAX;
5927 }
5928 
5929 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5930 {
5931 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5932 	u32 top_smax_value, top_smin_value;
5933 	u32 num_bits = size * 8;
5934 
5935 	if (tnum_is_const(reg->var_off)) {
5936 		u32_val = reg->var_off.value;
5937 		if (size == 1)
5938 			reg->var_off = tnum_const((s8)u32_val);
5939 		else
5940 			reg->var_off = tnum_const((s16)u32_val);
5941 
5942 		u32_val = reg->var_off.value;
5943 		reg->s32_min_value = reg->s32_max_value = u32_val;
5944 		reg->u32_min_value = reg->u32_max_value = u32_val;
5945 		return;
5946 	}
5947 
5948 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5949 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5950 
5951 	if (top_smax_value != top_smin_value)
5952 		goto out;
5953 
5954 	/* find the s32_min and s32_min after sign extension */
5955 	if (size == 1) {
5956 		init_s32_max = (s8)reg->s32_max_value;
5957 		init_s32_min = (s8)reg->s32_min_value;
5958 	} else {
5959 		/* size == 2 */
5960 		init_s32_max = (s16)reg->s32_max_value;
5961 		init_s32_min = (s16)reg->s32_min_value;
5962 	}
5963 	s32_max = max(init_s32_max, init_s32_min);
5964 	s32_min = min(init_s32_max, init_s32_min);
5965 
5966 	if ((s32_min >= 0) == (s32_max >= 0)) {
5967 		reg->s32_min_value = s32_min;
5968 		reg->s32_max_value = s32_max;
5969 		reg->u32_min_value = (u32)s32_min;
5970 		reg->u32_max_value = (u32)s32_max;
5971 		return;
5972 	}
5973 
5974 out:
5975 	set_sext32_default_val(reg, size);
5976 }
5977 
5978 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5979 {
5980 	/* A map is considered read-only if the following condition are true:
5981 	 *
5982 	 * 1) BPF program side cannot change any of the map content. The
5983 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5984 	 *    and was set at map creation time.
5985 	 * 2) The map value(s) have been initialized from user space by a
5986 	 *    loader and then "frozen", such that no new map update/delete
5987 	 *    operations from syscall side are possible for the rest of
5988 	 *    the map's lifetime from that point onwards.
5989 	 * 3) Any parallel/pending map update/delete operations from syscall
5990 	 *    side have been completed. Only after that point, it's safe to
5991 	 *    assume that map value(s) are immutable.
5992 	 */
5993 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5994 	       READ_ONCE(map->frozen) &&
5995 	       !bpf_map_write_active(map);
5996 }
5997 
5998 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
5999 			       bool is_ldsx)
6000 {
6001 	void *ptr;
6002 	u64 addr;
6003 	int err;
6004 
6005 	err = map->ops->map_direct_value_addr(map, &addr, off);
6006 	if (err)
6007 		return err;
6008 	ptr = (void *)(long)addr + off;
6009 
6010 	switch (size) {
6011 	case sizeof(u8):
6012 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6013 		break;
6014 	case sizeof(u16):
6015 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6016 		break;
6017 	case sizeof(u32):
6018 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6019 		break;
6020 	case sizeof(u64):
6021 		*val = *(u64 *)ptr;
6022 		break;
6023 	default:
6024 		return -EINVAL;
6025 	}
6026 	return 0;
6027 }
6028 
6029 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6030 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6031 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6032 
6033 /*
6034  * Allow list few fields as RCU trusted or full trusted.
6035  * This logic doesn't allow mix tagging and will be removed once GCC supports
6036  * btf_type_tag.
6037  */
6038 
6039 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6040 BTF_TYPE_SAFE_RCU(struct task_struct) {
6041 	const cpumask_t *cpus_ptr;
6042 	struct css_set __rcu *cgroups;
6043 	struct task_struct __rcu *real_parent;
6044 	struct task_struct *group_leader;
6045 };
6046 
6047 BTF_TYPE_SAFE_RCU(struct cgroup) {
6048 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6049 	struct kernfs_node *kn;
6050 };
6051 
6052 BTF_TYPE_SAFE_RCU(struct css_set) {
6053 	struct cgroup *dfl_cgrp;
6054 };
6055 
6056 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6057 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6058 	struct file __rcu *exe_file;
6059 };
6060 
6061 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6062  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6063  */
6064 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6065 	struct sock *sk;
6066 };
6067 
6068 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6069 	struct sock *sk;
6070 };
6071 
6072 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6073 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6074 	struct seq_file *seq;
6075 };
6076 
6077 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6078 	struct bpf_iter_meta *meta;
6079 	struct task_struct *task;
6080 };
6081 
6082 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6083 	struct file *file;
6084 };
6085 
6086 BTF_TYPE_SAFE_TRUSTED(struct file) {
6087 	struct inode *f_inode;
6088 };
6089 
6090 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6091 	/* no negative dentry-s in places where bpf can see it */
6092 	struct inode *d_inode;
6093 };
6094 
6095 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6096 	struct sock *sk;
6097 };
6098 
6099 static bool type_is_rcu(struct bpf_verifier_env *env,
6100 			struct bpf_reg_state *reg,
6101 			const char *field_name, u32 btf_id)
6102 {
6103 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6104 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6105 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6106 
6107 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6108 }
6109 
6110 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6111 				struct bpf_reg_state *reg,
6112 				const char *field_name, u32 btf_id)
6113 {
6114 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6115 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6116 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6117 
6118 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6119 }
6120 
6121 static bool type_is_trusted(struct bpf_verifier_env *env,
6122 			    struct bpf_reg_state *reg,
6123 			    const char *field_name, u32 btf_id)
6124 {
6125 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6126 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6127 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6128 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6129 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6130 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6131 
6132 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6133 }
6134 
6135 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6136 				   struct bpf_reg_state *regs,
6137 				   int regno, int off, int size,
6138 				   enum bpf_access_type atype,
6139 				   int value_regno)
6140 {
6141 	struct bpf_reg_state *reg = regs + regno;
6142 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6143 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6144 	const char *field_name = NULL;
6145 	enum bpf_type_flag flag = 0;
6146 	u32 btf_id = 0;
6147 	int ret;
6148 
6149 	if (!env->allow_ptr_leaks) {
6150 		verbose(env,
6151 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6152 			tname);
6153 		return -EPERM;
6154 	}
6155 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6156 		verbose(env,
6157 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6158 			tname);
6159 		return -EINVAL;
6160 	}
6161 	if (off < 0) {
6162 		verbose(env,
6163 			"R%d is ptr_%s invalid negative access: off=%d\n",
6164 			regno, tname, off);
6165 		return -EACCES;
6166 	}
6167 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6168 		char tn_buf[48];
6169 
6170 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6171 		verbose(env,
6172 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6173 			regno, tname, off, tn_buf);
6174 		return -EACCES;
6175 	}
6176 
6177 	if (reg->type & MEM_USER) {
6178 		verbose(env,
6179 			"R%d is ptr_%s access user memory: off=%d\n",
6180 			regno, tname, off);
6181 		return -EACCES;
6182 	}
6183 
6184 	if (reg->type & MEM_PERCPU) {
6185 		verbose(env,
6186 			"R%d is ptr_%s access percpu memory: off=%d\n",
6187 			regno, tname, off);
6188 		return -EACCES;
6189 	}
6190 
6191 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6192 		if (!btf_is_kernel(reg->btf)) {
6193 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6194 			return -EFAULT;
6195 		}
6196 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6197 	} else {
6198 		/* Writes are permitted with default btf_struct_access for
6199 		 * program allocated objects (which always have ref_obj_id > 0),
6200 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6201 		 */
6202 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6203 			verbose(env, "only read is supported\n");
6204 			return -EACCES;
6205 		}
6206 
6207 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6208 		    !reg->ref_obj_id) {
6209 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6210 			return -EFAULT;
6211 		}
6212 
6213 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6214 	}
6215 
6216 	if (ret < 0)
6217 		return ret;
6218 
6219 	if (ret != PTR_TO_BTF_ID) {
6220 		/* just mark; */
6221 
6222 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6223 		/* If this is an untrusted pointer, all pointers formed by walking it
6224 		 * also inherit the untrusted flag.
6225 		 */
6226 		flag = PTR_UNTRUSTED;
6227 
6228 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6229 		/* By default any pointer obtained from walking a trusted pointer is no
6230 		 * longer trusted, unless the field being accessed has explicitly been
6231 		 * marked as inheriting its parent's state of trust (either full or RCU).
6232 		 * For example:
6233 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6234 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6235 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6236 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6237 		 *
6238 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6239 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6240 		 */
6241 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6242 			flag |= PTR_TRUSTED;
6243 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6244 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6245 				/* ignore __rcu tag and mark it MEM_RCU */
6246 				flag |= MEM_RCU;
6247 			} else if (flag & MEM_RCU ||
6248 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6249 				/* __rcu tagged pointers can be NULL */
6250 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6251 
6252 				/* We always trust them */
6253 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6254 				    flag & PTR_UNTRUSTED)
6255 					flag &= ~PTR_UNTRUSTED;
6256 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6257 				/* keep as-is */
6258 			} else {
6259 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6260 				clear_trusted_flags(&flag);
6261 			}
6262 		} else {
6263 			/*
6264 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6265 			 * aggressively mark as untrusted otherwise such
6266 			 * pointers will be plain PTR_TO_BTF_ID without flags
6267 			 * and will be allowed to be passed into helpers for
6268 			 * compat reasons.
6269 			 */
6270 			flag = PTR_UNTRUSTED;
6271 		}
6272 	} else {
6273 		/* Old compat. Deprecated */
6274 		clear_trusted_flags(&flag);
6275 	}
6276 
6277 	if (atype == BPF_READ && value_regno >= 0)
6278 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6279 
6280 	return 0;
6281 }
6282 
6283 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6284 				   struct bpf_reg_state *regs,
6285 				   int regno, int off, int size,
6286 				   enum bpf_access_type atype,
6287 				   int value_regno)
6288 {
6289 	struct bpf_reg_state *reg = regs + regno;
6290 	struct bpf_map *map = reg->map_ptr;
6291 	struct bpf_reg_state map_reg;
6292 	enum bpf_type_flag flag = 0;
6293 	const struct btf_type *t;
6294 	const char *tname;
6295 	u32 btf_id;
6296 	int ret;
6297 
6298 	if (!btf_vmlinux) {
6299 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6300 		return -ENOTSUPP;
6301 	}
6302 
6303 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6304 		verbose(env, "map_ptr access not supported for map type %d\n",
6305 			map->map_type);
6306 		return -ENOTSUPP;
6307 	}
6308 
6309 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6310 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6311 
6312 	if (!env->allow_ptr_leaks) {
6313 		verbose(env,
6314 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6315 			tname);
6316 		return -EPERM;
6317 	}
6318 
6319 	if (off < 0) {
6320 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6321 			regno, tname, off);
6322 		return -EACCES;
6323 	}
6324 
6325 	if (atype != BPF_READ) {
6326 		verbose(env, "only read from %s is supported\n", tname);
6327 		return -EACCES;
6328 	}
6329 
6330 	/* Simulate access to a PTR_TO_BTF_ID */
6331 	memset(&map_reg, 0, sizeof(map_reg));
6332 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6333 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6334 	if (ret < 0)
6335 		return ret;
6336 
6337 	if (value_regno >= 0)
6338 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6339 
6340 	return 0;
6341 }
6342 
6343 /* Check that the stack access at the given offset is within bounds. The
6344  * maximum valid offset is -1.
6345  *
6346  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6347  * -state->allocated_stack for reads.
6348  */
6349 static int check_stack_slot_within_bounds(int off,
6350 					  struct bpf_func_state *state,
6351 					  enum bpf_access_type t)
6352 {
6353 	int min_valid_off;
6354 
6355 	if (t == BPF_WRITE)
6356 		min_valid_off = -MAX_BPF_STACK;
6357 	else
6358 		min_valid_off = -state->allocated_stack;
6359 
6360 	if (off < min_valid_off || off > -1)
6361 		return -EACCES;
6362 	return 0;
6363 }
6364 
6365 /* Check that the stack access at 'regno + off' falls within the maximum stack
6366  * bounds.
6367  *
6368  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6369  */
6370 static int check_stack_access_within_bounds(
6371 		struct bpf_verifier_env *env,
6372 		int regno, int off, int access_size,
6373 		enum bpf_access_src src, enum bpf_access_type type)
6374 {
6375 	struct bpf_reg_state *regs = cur_regs(env);
6376 	struct bpf_reg_state *reg = regs + regno;
6377 	struct bpf_func_state *state = func(env, reg);
6378 	int min_off, max_off;
6379 	int err;
6380 	char *err_extra;
6381 
6382 	if (src == ACCESS_HELPER)
6383 		/* We don't know if helpers are reading or writing (or both). */
6384 		err_extra = " indirect access to";
6385 	else if (type == BPF_READ)
6386 		err_extra = " read from";
6387 	else
6388 		err_extra = " write to";
6389 
6390 	if (tnum_is_const(reg->var_off)) {
6391 		min_off = reg->var_off.value + off;
6392 		if (access_size > 0)
6393 			max_off = min_off + access_size - 1;
6394 		else
6395 			max_off = min_off;
6396 	} else {
6397 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6398 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6399 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6400 				err_extra, regno);
6401 			return -EACCES;
6402 		}
6403 		min_off = reg->smin_value + off;
6404 		if (access_size > 0)
6405 			max_off = reg->smax_value + off + access_size - 1;
6406 		else
6407 			max_off = min_off;
6408 	}
6409 
6410 	err = check_stack_slot_within_bounds(min_off, state, type);
6411 	if (!err)
6412 		err = check_stack_slot_within_bounds(max_off, state, type);
6413 
6414 	if (err) {
6415 		if (tnum_is_const(reg->var_off)) {
6416 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6417 				err_extra, regno, off, access_size);
6418 		} else {
6419 			char tn_buf[48];
6420 
6421 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6422 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6423 				err_extra, regno, tn_buf, access_size);
6424 		}
6425 	}
6426 	return err;
6427 }
6428 
6429 /* check whether memory at (regno + off) is accessible for t = (read | write)
6430  * if t==write, value_regno is a register which value is stored into memory
6431  * if t==read, value_regno is a register which will receive the value from memory
6432  * if t==write && value_regno==-1, some unknown value is stored into memory
6433  * if t==read && value_regno==-1, don't care what we read from memory
6434  */
6435 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6436 			    int off, int bpf_size, enum bpf_access_type t,
6437 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6438 {
6439 	struct bpf_reg_state *regs = cur_regs(env);
6440 	struct bpf_reg_state *reg = regs + regno;
6441 	struct bpf_func_state *state;
6442 	int size, err = 0;
6443 
6444 	size = bpf_size_to_bytes(bpf_size);
6445 	if (size < 0)
6446 		return size;
6447 
6448 	/* alignment checks will add in reg->off themselves */
6449 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6450 	if (err)
6451 		return err;
6452 
6453 	/* for access checks, reg->off is just part of off */
6454 	off += reg->off;
6455 
6456 	if (reg->type == PTR_TO_MAP_KEY) {
6457 		if (t == BPF_WRITE) {
6458 			verbose(env, "write to change key R%d not allowed\n", regno);
6459 			return -EACCES;
6460 		}
6461 
6462 		err = check_mem_region_access(env, regno, off, size,
6463 					      reg->map_ptr->key_size, false);
6464 		if (err)
6465 			return err;
6466 		if (value_regno >= 0)
6467 			mark_reg_unknown(env, regs, value_regno);
6468 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6469 		struct btf_field *kptr_field = NULL;
6470 
6471 		if (t == BPF_WRITE && value_regno >= 0 &&
6472 		    is_pointer_value(env, value_regno)) {
6473 			verbose(env, "R%d leaks addr into map\n", value_regno);
6474 			return -EACCES;
6475 		}
6476 		err = check_map_access_type(env, regno, off, size, t);
6477 		if (err)
6478 			return err;
6479 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6480 		if (err)
6481 			return err;
6482 		if (tnum_is_const(reg->var_off))
6483 			kptr_field = btf_record_find(reg->map_ptr->record,
6484 						     off + reg->var_off.value, BPF_KPTR);
6485 		if (kptr_field) {
6486 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6487 		} else if (t == BPF_READ && value_regno >= 0) {
6488 			struct bpf_map *map = reg->map_ptr;
6489 
6490 			/* if map is read-only, track its contents as scalars */
6491 			if (tnum_is_const(reg->var_off) &&
6492 			    bpf_map_is_rdonly(map) &&
6493 			    map->ops->map_direct_value_addr) {
6494 				int map_off = off + reg->var_off.value;
6495 				u64 val = 0;
6496 
6497 				err = bpf_map_direct_read(map, map_off, size,
6498 							  &val, is_ldsx);
6499 				if (err)
6500 					return err;
6501 
6502 				regs[value_regno].type = SCALAR_VALUE;
6503 				__mark_reg_known(&regs[value_regno], val);
6504 			} else {
6505 				mark_reg_unknown(env, regs, value_regno);
6506 			}
6507 		}
6508 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6509 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6510 
6511 		if (type_may_be_null(reg->type)) {
6512 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6513 				reg_type_str(env, reg->type));
6514 			return -EACCES;
6515 		}
6516 
6517 		if (t == BPF_WRITE && rdonly_mem) {
6518 			verbose(env, "R%d cannot write into %s\n",
6519 				regno, reg_type_str(env, reg->type));
6520 			return -EACCES;
6521 		}
6522 
6523 		if (t == BPF_WRITE && value_regno >= 0 &&
6524 		    is_pointer_value(env, value_regno)) {
6525 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6526 			return -EACCES;
6527 		}
6528 
6529 		err = check_mem_region_access(env, regno, off, size,
6530 					      reg->mem_size, false);
6531 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6532 			mark_reg_unknown(env, regs, value_regno);
6533 	} else if (reg->type == PTR_TO_CTX) {
6534 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6535 		struct btf *btf = NULL;
6536 		u32 btf_id = 0;
6537 
6538 		if (t == BPF_WRITE && value_regno >= 0 &&
6539 		    is_pointer_value(env, value_regno)) {
6540 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6541 			return -EACCES;
6542 		}
6543 
6544 		err = check_ptr_off_reg(env, reg, regno);
6545 		if (err < 0)
6546 			return err;
6547 
6548 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6549 				       &btf_id);
6550 		if (err)
6551 			verbose_linfo(env, insn_idx, "; ");
6552 		if (!err && t == BPF_READ && value_regno >= 0) {
6553 			/* ctx access returns either a scalar, or a
6554 			 * PTR_TO_PACKET[_META,_END]. In the latter
6555 			 * case, we know the offset is zero.
6556 			 */
6557 			if (reg_type == SCALAR_VALUE) {
6558 				mark_reg_unknown(env, regs, value_regno);
6559 			} else {
6560 				mark_reg_known_zero(env, regs,
6561 						    value_regno);
6562 				if (type_may_be_null(reg_type))
6563 					regs[value_regno].id = ++env->id_gen;
6564 				/* A load of ctx field could have different
6565 				 * actual load size with the one encoded in the
6566 				 * insn. When the dst is PTR, it is for sure not
6567 				 * a sub-register.
6568 				 */
6569 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6570 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6571 					regs[value_regno].btf = btf;
6572 					regs[value_regno].btf_id = btf_id;
6573 				}
6574 			}
6575 			regs[value_regno].type = reg_type;
6576 		}
6577 
6578 	} else if (reg->type == PTR_TO_STACK) {
6579 		/* Basic bounds checks. */
6580 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6581 		if (err)
6582 			return err;
6583 
6584 		state = func(env, reg);
6585 		err = update_stack_depth(env, state, off);
6586 		if (err)
6587 			return err;
6588 
6589 		if (t == BPF_READ)
6590 			err = check_stack_read(env, regno, off, size,
6591 					       value_regno);
6592 		else
6593 			err = check_stack_write(env, regno, off, size,
6594 						value_regno, insn_idx);
6595 	} else if (reg_is_pkt_pointer(reg)) {
6596 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6597 			verbose(env, "cannot write into packet\n");
6598 			return -EACCES;
6599 		}
6600 		if (t == BPF_WRITE && value_regno >= 0 &&
6601 		    is_pointer_value(env, value_regno)) {
6602 			verbose(env, "R%d leaks addr into packet\n",
6603 				value_regno);
6604 			return -EACCES;
6605 		}
6606 		err = check_packet_access(env, regno, off, size, false);
6607 		if (!err && t == BPF_READ && value_regno >= 0)
6608 			mark_reg_unknown(env, regs, value_regno);
6609 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6610 		if (t == BPF_WRITE && value_regno >= 0 &&
6611 		    is_pointer_value(env, value_regno)) {
6612 			verbose(env, "R%d leaks addr into flow keys\n",
6613 				value_regno);
6614 			return -EACCES;
6615 		}
6616 
6617 		err = check_flow_keys_access(env, off, size);
6618 		if (!err && t == BPF_READ && value_regno >= 0)
6619 			mark_reg_unknown(env, regs, value_regno);
6620 	} else if (type_is_sk_pointer(reg->type)) {
6621 		if (t == BPF_WRITE) {
6622 			verbose(env, "R%d cannot write into %s\n",
6623 				regno, reg_type_str(env, reg->type));
6624 			return -EACCES;
6625 		}
6626 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6627 		if (!err && value_regno >= 0)
6628 			mark_reg_unknown(env, regs, value_regno);
6629 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6630 		err = check_tp_buffer_access(env, reg, regno, off, size);
6631 		if (!err && t == BPF_READ && value_regno >= 0)
6632 			mark_reg_unknown(env, regs, value_regno);
6633 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6634 		   !type_may_be_null(reg->type)) {
6635 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6636 					      value_regno);
6637 	} else if (reg->type == CONST_PTR_TO_MAP) {
6638 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6639 					      value_regno);
6640 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6641 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6642 		u32 *max_access;
6643 
6644 		if (rdonly_mem) {
6645 			if (t == BPF_WRITE) {
6646 				verbose(env, "R%d cannot write into %s\n",
6647 					regno, reg_type_str(env, reg->type));
6648 				return -EACCES;
6649 			}
6650 			max_access = &env->prog->aux->max_rdonly_access;
6651 		} else {
6652 			max_access = &env->prog->aux->max_rdwr_access;
6653 		}
6654 
6655 		err = check_buffer_access(env, reg, regno, off, size, false,
6656 					  max_access);
6657 
6658 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6659 			mark_reg_unknown(env, regs, value_regno);
6660 	} else {
6661 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6662 			reg_type_str(env, reg->type));
6663 		return -EACCES;
6664 	}
6665 
6666 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6667 	    regs[value_regno].type == SCALAR_VALUE) {
6668 		if (!is_ldsx)
6669 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6670 			coerce_reg_to_size(&regs[value_regno], size);
6671 		else
6672 			coerce_reg_to_size_sx(&regs[value_regno], size);
6673 	}
6674 	return err;
6675 }
6676 
6677 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6678 {
6679 	int load_reg;
6680 	int err;
6681 
6682 	switch (insn->imm) {
6683 	case BPF_ADD:
6684 	case BPF_ADD | BPF_FETCH:
6685 	case BPF_AND:
6686 	case BPF_AND | BPF_FETCH:
6687 	case BPF_OR:
6688 	case BPF_OR | BPF_FETCH:
6689 	case BPF_XOR:
6690 	case BPF_XOR | BPF_FETCH:
6691 	case BPF_XCHG:
6692 	case BPF_CMPXCHG:
6693 		break;
6694 	default:
6695 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6696 		return -EINVAL;
6697 	}
6698 
6699 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6700 		verbose(env, "invalid atomic operand size\n");
6701 		return -EINVAL;
6702 	}
6703 
6704 	/* check src1 operand */
6705 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6706 	if (err)
6707 		return err;
6708 
6709 	/* check src2 operand */
6710 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6711 	if (err)
6712 		return err;
6713 
6714 	if (insn->imm == BPF_CMPXCHG) {
6715 		/* Check comparison of R0 with memory location */
6716 		const u32 aux_reg = BPF_REG_0;
6717 
6718 		err = check_reg_arg(env, aux_reg, SRC_OP);
6719 		if (err)
6720 			return err;
6721 
6722 		if (is_pointer_value(env, aux_reg)) {
6723 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6724 			return -EACCES;
6725 		}
6726 	}
6727 
6728 	if (is_pointer_value(env, insn->src_reg)) {
6729 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6730 		return -EACCES;
6731 	}
6732 
6733 	if (is_ctx_reg(env, insn->dst_reg) ||
6734 	    is_pkt_reg(env, insn->dst_reg) ||
6735 	    is_flow_key_reg(env, insn->dst_reg) ||
6736 	    is_sk_reg(env, insn->dst_reg)) {
6737 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6738 			insn->dst_reg,
6739 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6740 		return -EACCES;
6741 	}
6742 
6743 	if (insn->imm & BPF_FETCH) {
6744 		if (insn->imm == BPF_CMPXCHG)
6745 			load_reg = BPF_REG_0;
6746 		else
6747 			load_reg = insn->src_reg;
6748 
6749 		/* check and record load of old value */
6750 		err = check_reg_arg(env, load_reg, DST_OP);
6751 		if (err)
6752 			return err;
6753 	} else {
6754 		/* This instruction accesses a memory location but doesn't
6755 		 * actually load it into a register.
6756 		 */
6757 		load_reg = -1;
6758 	}
6759 
6760 	/* Check whether we can read the memory, with second call for fetch
6761 	 * case to simulate the register fill.
6762 	 */
6763 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6764 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6765 	if (!err && load_reg >= 0)
6766 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6767 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6768 				       true, false);
6769 	if (err)
6770 		return err;
6771 
6772 	/* Check whether we can write into the same memory. */
6773 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6774 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6775 	if (err)
6776 		return err;
6777 
6778 	return 0;
6779 }
6780 
6781 /* When register 'regno' is used to read the stack (either directly or through
6782  * a helper function) make sure that it's within stack boundary and, depending
6783  * on the access type, that all elements of the stack are initialized.
6784  *
6785  * 'off' includes 'regno->off', but not its dynamic part (if any).
6786  *
6787  * All registers that have been spilled on the stack in the slots within the
6788  * read offsets are marked as read.
6789  */
6790 static int check_stack_range_initialized(
6791 		struct bpf_verifier_env *env, int regno, int off,
6792 		int access_size, bool zero_size_allowed,
6793 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6794 {
6795 	struct bpf_reg_state *reg = reg_state(env, regno);
6796 	struct bpf_func_state *state = func(env, reg);
6797 	int err, min_off, max_off, i, j, slot, spi;
6798 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6799 	enum bpf_access_type bounds_check_type;
6800 	/* Some accesses can write anything into the stack, others are
6801 	 * read-only.
6802 	 */
6803 	bool clobber = false;
6804 
6805 	if (access_size == 0 && !zero_size_allowed) {
6806 		verbose(env, "invalid zero-sized read\n");
6807 		return -EACCES;
6808 	}
6809 
6810 	if (type == ACCESS_HELPER) {
6811 		/* The bounds checks for writes are more permissive than for
6812 		 * reads. However, if raw_mode is not set, we'll do extra
6813 		 * checks below.
6814 		 */
6815 		bounds_check_type = BPF_WRITE;
6816 		clobber = true;
6817 	} else {
6818 		bounds_check_type = BPF_READ;
6819 	}
6820 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6821 					       type, bounds_check_type);
6822 	if (err)
6823 		return err;
6824 
6825 
6826 	if (tnum_is_const(reg->var_off)) {
6827 		min_off = max_off = reg->var_off.value + off;
6828 	} else {
6829 		/* Variable offset is prohibited for unprivileged mode for
6830 		 * simplicity since it requires corresponding support in
6831 		 * Spectre masking for stack ALU.
6832 		 * See also retrieve_ptr_limit().
6833 		 */
6834 		if (!env->bypass_spec_v1) {
6835 			char tn_buf[48];
6836 
6837 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6838 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6839 				regno, err_extra, tn_buf);
6840 			return -EACCES;
6841 		}
6842 		/* Only initialized buffer on stack is allowed to be accessed
6843 		 * with variable offset. With uninitialized buffer it's hard to
6844 		 * guarantee that whole memory is marked as initialized on
6845 		 * helper return since specific bounds are unknown what may
6846 		 * cause uninitialized stack leaking.
6847 		 */
6848 		if (meta && meta->raw_mode)
6849 			meta = NULL;
6850 
6851 		min_off = reg->smin_value + off;
6852 		max_off = reg->smax_value + off;
6853 	}
6854 
6855 	if (meta && meta->raw_mode) {
6856 		/* Ensure we won't be overwriting dynptrs when simulating byte
6857 		 * by byte access in check_helper_call using meta.access_size.
6858 		 * This would be a problem if we have a helper in the future
6859 		 * which takes:
6860 		 *
6861 		 *	helper(uninit_mem, len, dynptr)
6862 		 *
6863 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6864 		 * may end up writing to dynptr itself when touching memory from
6865 		 * arg 1. This can be relaxed on a case by case basis for known
6866 		 * safe cases, but reject due to the possibilitiy of aliasing by
6867 		 * default.
6868 		 */
6869 		for (i = min_off; i < max_off + access_size; i++) {
6870 			int stack_off = -i - 1;
6871 
6872 			spi = __get_spi(i);
6873 			/* raw_mode may write past allocated_stack */
6874 			if (state->allocated_stack <= stack_off)
6875 				continue;
6876 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6877 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6878 				return -EACCES;
6879 			}
6880 		}
6881 		meta->access_size = access_size;
6882 		meta->regno = regno;
6883 		return 0;
6884 	}
6885 
6886 	for (i = min_off; i < max_off + access_size; i++) {
6887 		u8 *stype;
6888 
6889 		slot = -i - 1;
6890 		spi = slot / BPF_REG_SIZE;
6891 		if (state->allocated_stack <= slot)
6892 			goto err;
6893 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6894 		if (*stype == STACK_MISC)
6895 			goto mark;
6896 		if ((*stype == STACK_ZERO) ||
6897 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6898 			if (clobber) {
6899 				/* helper can write anything into the stack */
6900 				*stype = STACK_MISC;
6901 			}
6902 			goto mark;
6903 		}
6904 
6905 		if (is_spilled_reg(&state->stack[spi]) &&
6906 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6907 		     env->allow_ptr_leaks)) {
6908 			if (clobber) {
6909 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6910 				for (j = 0; j < BPF_REG_SIZE; j++)
6911 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6912 			}
6913 			goto mark;
6914 		}
6915 
6916 err:
6917 		if (tnum_is_const(reg->var_off)) {
6918 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6919 				err_extra, regno, min_off, i - min_off, access_size);
6920 		} else {
6921 			char tn_buf[48];
6922 
6923 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6924 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6925 				err_extra, regno, tn_buf, i - min_off, access_size);
6926 		}
6927 		return -EACCES;
6928 mark:
6929 		/* reading any byte out of 8-byte 'spill_slot' will cause
6930 		 * the whole slot to be marked as 'read'
6931 		 */
6932 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6933 			      state->stack[spi].spilled_ptr.parent,
6934 			      REG_LIVE_READ64);
6935 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6936 		 * be sure that whether stack slot is written to or not. Hence,
6937 		 * we must still conservatively propagate reads upwards even if
6938 		 * helper may write to the entire memory range.
6939 		 */
6940 	}
6941 	return update_stack_depth(env, state, min_off);
6942 }
6943 
6944 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6945 				   int access_size, bool zero_size_allowed,
6946 				   struct bpf_call_arg_meta *meta)
6947 {
6948 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6949 	u32 *max_access;
6950 
6951 	switch (base_type(reg->type)) {
6952 	case PTR_TO_PACKET:
6953 	case PTR_TO_PACKET_META:
6954 		return check_packet_access(env, regno, reg->off, access_size,
6955 					   zero_size_allowed);
6956 	case PTR_TO_MAP_KEY:
6957 		if (meta && meta->raw_mode) {
6958 			verbose(env, "R%d cannot write into %s\n", regno,
6959 				reg_type_str(env, reg->type));
6960 			return -EACCES;
6961 		}
6962 		return check_mem_region_access(env, regno, reg->off, access_size,
6963 					       reg->map_ptr->key_size, false);
6964 	case PTR_TO_MAP_VALUE:
6965 		if (check_map_access_type(env, regno, reg->off, access_size,
6966 					  meta && meta->raw_mode ? BPF_WRITE :
6967 					  BPF_READ))
6968 			return -EACCES;
6969 		return check_map_access(env, regno, reg->off, access_size,
6970 					zero_size_allowed, ACCESS_HELPER);
6971 	case PTR_TO_MEM:
6972 		if (type_is_rdonly_mem(reg->type)) {
6973 			if (meta && meta->raw_mode) {
6974 				verbose(env, "R%d cannot write into %s\n", regno,
6975 					reg_type_str(env, reg->type));
6976 				return -EACCES;
6977 			}
6978 		}
6979 		return check_mem_region_access(env, regno, reg->off,
6980 					       access_size, reg->mem_size,
6981 					       zero_size_allowed);
6982 	case PTR_TO_BUF:
6983 		if (type_is_rdonly_mem(reg->type)) {
6984 			if (meta && meta->raw_mode) {
6985 				verbose(env, "R%d cannot write into %s\n", regno,
6986 					reg_type_str(env, reg->type));
6987 				return -EACCES;
6988 			}
6989 
6990 			max_access = &env->prog->aux->max_rdonly_access;
6991 		} else {
6992 			max_access = &env->prog->aux->max_rdwr_access;
6993 		}
6994 		return check_buffer_access(env, reg, regno, reg->off,
6995 					   access_size, zero_size_allowed,
6996 					   max_access);
6997 	case PTR_TO_STACK:
6998 		return check_stack_range_initialized(
6999 				env,
7000 				regno, reg->off, access_size,
7001 				zero_size_allowed, ACCESS_HELPER, meta);
7002 	case PTR_TO_BTF_ID:
7003 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7004 					       access_size, BPF_READ, -1);
7005 	case PTR_TO_CTX:
7006 		/* in case the function doesn't know how to access the context,
7007 		 * (because we are in a program of type SYSCALL for example), we
7008 		 * can not statically check its size.
7009 		 * Dynamically check it now.
7010 		 */
7011 		if (!env->ops->convert_ctx_access) {
7012 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7013 			int offset = access_size - 1;
7014 
7015 			/* Allow zero-byte read from PTR_TO_CTX */
7016 			if (access_size == 0)
7017 				return zero_size_allowed ? 0 : -EACCES;
7018 
7019 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7020 						atype, -1, false, false);
7021 		}
7022 
7023 		fallthrough;
7024 	default: /* scalar_value or invalid ptr */
7025 		/* Allow zero-byte read from NULL, regardless of pointer type */
7026 		if (zero_size_allowed && access_size == 0 &&
7027 		    register_is_null(reg))
7028 			return 0;
7029 
7030 		verbose(env, "R%d type=%s ", regno,
7031 			reg_type_str(env, reg->type));
7032 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7033 		return -EACCES;
7034 	}
7035 }
7036 
7037 static int check_mem_size_reg(struct bpf_verifier_env *env,
7038 			      struct bpf_reg_state *reg, u32 regno,
7039 			      bool zero_size_allowed,
7040 			      struct bpf_call_arg_meta *meta)
7041 {
7042 	int err;
7043 
7044 	/* This is used to refine r0 return value bounds for helpers
7045 	 * that enforce this value as an upper bound on return values.
7046 	 * See do_refine_retval_range() for helpers that can refine
7047 	 * the return value. C type of helper is u32 so we pull register
7048 	 * bound from umax_value however, if negative verifier errors
7049 	 * out. Only upper bounds can be learned because retval is an
7050 	 * int type and negative retvals are allowed.
7051 	 */
7052 	meta->msize_max_value = reg->umax_value;
7053 
7054 	/* The register is SCALAR_VALUE; the access check
7055 	 * happens using its boundaries.
7056 	 */
7057 	if (!tnum_is_const(reg->var_off))
7058 		/* For unprivileged variable accesses, disable raw
7059 		 * mode so that the program is required to
7060 		 * initialize all the memory that the helper could
7061 		 * just partially fill up.
7062 		 */
7063 		meta = NULL;
7064 
7065 	if (reg->smin_value < 0) {
7066 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7067 			regno);
7068 		return -EACCES;
7069 	}
7070 
7071 	if (reg->umin_value == 0) {
7072 		err = check_helper_mem_access(env, regno - 1, 0,
7073 					      zero_size_allowed,
7074 					      meta);
7075 		if (err)
7076 			return err;
7077 	}
7078 
7079 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7080 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7081 			regno);
7082 		return -EACCES;
7083 	}
7084 	err = check_helper_mem_access(env, regno - 1,
7085 				      reg->umax_value,
7086 				      zero_size_allowed, meta);
7087 	if (!err)
7088 		err = mark_chain_precision(env, regno);
7089 	return err;
7090 }
7091 
7092 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7093 		   u32 regno, u32 mem_size)
7094 {
7095 	bool may_be_null = type_may_be_null(reg->type);
7096 	struct bpf_reg_state saved_reg;
7097 	struct bpf_call_arg_meta meta;
7098 	int err;
7099 
7100 	if (register_is_null(reg))
7101 		return 0;
7102 
7103 	memset(&meta, 0, sizeof(meta));
7104 	/* Assuming that the register contains a value check if the memory
7105 	 * access is safe. Temporarily save and restore the register's state as
7106 	 * the conversion shouldn't be visible to a caller.
7107 	 */
7108 	if (may_be_null) {
7109 		saved_reg = *reg;
7110 		mark_ptr_not_null_reg(reg);
7111 	}
7112 
7113 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7114 	/* Check access for BPF_WRITE */
7115 	meta.raw_mode = true;
7116 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7117 
7118 	if (may_be_null)
7119 		*reg = saved_reg;
7120 
7121 	return err;
7122 }
7123 
7124 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7125 				    u32 regno)
7126 {
7127 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7128 	bool may_be_null = type_may_be_null(mem_reg->type);
7129 	struct bpf_reg_state saved_reg;
7130 	struct bpf_call_arg_meta meta;
7131 	int err;
7132 
7133 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7134 
7135 	memset(&meta, 0, sizeof(meta));
7136 
7137 	if (may_be_null) {
7138 		saved_reg = *mem_reg;
7139 		mark_ptr_not_null_reg(mem_reg);
7140 	}
7141 
7142 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7143 	/* Check access for BPF_WRITE */
7144 	meta.raw_mode = true;
7145 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7146 
7147 	if (may_be_null)
7148 		*mem_reg = saved_reg;
7149 	return err;
7150 }
7151 
7152 /* Implementation details:
7153  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7154  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7155  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7156  * Two separate bpf_obj_new will also have different reg->id.
7157  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7158  * clears reg->id after value_or_null->value transition, since the verifier only
7159  * cares about the range of access to valid map value pointer and doesn't care
7160  * about actual address of the map element.
7161  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7162  * reg->id > 0 after value_or_null->value transition. By doing so
7163  * two bpf_map_lookups will be considered two different pointers that
7164  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7165  * returned from bpf_obj_new.
7166  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7167  * dead-locks.
7168  * Since only one bpf_spin_lock is allowed the checks are simpler than
7169  * reg_is_refcounted() logic. The verifier needs to remember only
7170  * one spin_lock instead of array of acquired_refs.
7171  * cur_state->active_lock remembers which map value element or allocated
7172  * object got locked and clears it after bpf_spin_unlock.
7173  */
7174 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7175 			     bool is_lock)
7176 {
7177 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7178 	struct bpf_verifier_state *cur = env->cur_state;
7179 	bool is_const = tnum_is_const(reg->var_off);
7180 	u64 val = reg->var_off.value;
7181 	struct bpf_map *map = NULL;
7182 	struct btf *btf = NULL;
7183 	struct btf_record *rec;
7184 
7185 	if (!is_const) {
7186 		verbose(env,
7187 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7188 			regno);
7189 		return -EINVAL;
7190 	}
7191 	if (reg->type == PTR_TO_MAP_VALUE) {
7192 		map = reg->map_ptr;
7193 		if (!map->btf) {
7194 			verbose(env,
7195 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7196 				map->name);
7197 			return -EINVAL;
7198 		}
7199 	} else {
7200 		btf = reg->btf;
7201 	}
7202 
7203 	rec = reg_btf_record(reg);
7204 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7205 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7206 			map ? map->name : "kptr");
7207 		return -EINVAL;
7208 	}
7209 	if (rec->spin_lock_off != val + reg->off) {
7210 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7211 			val + reg->off, rec->spin_lock_off);
7212 		return -EINVAL;
7213 	}
7214 	if (is_lock) {
7215 		if (cur->active_lock.ptr) {
7216 			verbose(env,
7217 				"Locking two bpf_spin_locks are not allowed\n");
7218 			return -EINVAL;
7219 		}
7220 		if (map)
7221 			cur->active_lock.ptr = map;
7222 		else
7223 			cur->active_lock.ptr = btf;
7224 		cur->active_lock.id = reg->id;
7225 	} else {
7226 		void *ptr;
7227 
7228 		if (map)
7229 			ptr = map;
7230 		else
7231 			ptr = btf;
7232 
7233 		if (!cur->active_lock.ptr) {
7234 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7235 			return -EINVAL;
7236 		}
7237 		if (cur->active_lock.ptr != ptr ||
7238 		    cur->active_lock.id != reg->id) {
7239 			verbose(env, "bpf_spin_unlock of different lock\n");
7240 			return -EINVAL;
7241 		}
7242 
7243 		invalidate_non_owning_refs(env);
7244 
7245 		cur->active_lock.ptr = NULL;
7246 		cur->active_lock.id = 0;
7247 	}
7248 	return 0;
7249 }
7250 
7251 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7252 			      struct bpf_call_arg_meta *meta)
7253 {
7254 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7255 	bool is_const = tnum_is_const(reg->var_off);
7256 	struct bpf_map *map = reg->map_ptr;
7257 	u64 val = reg->var_off.value;
7258 
7259 	if (!is_const) {
7260 		verbose(env,
7261 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7262 			regno);
7263 		return -EINVAL;
7264 	}
7265 	if (!map->btf) {
7266 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7267 			map->name);
7268 		return -EINVAL;
7269 	}
7270 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7271 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7272 		return -EINVAL;
7273 	}
7274 	if (map->record->timer_off != val + reg->off) {
7275 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7276 			val + reg->off, map->record->timer_off);
7277 		return -EINVAL;
7278 	}
7279 	if (meta->map_ptr) {
7280 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7281 		return -EFAULT;
7282 	}
7283 	meta->map_uid = reg->map_uid;
7284 	meta->map_ptr = map;
7285 	return 0;
7286 }
7287 
7288 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7289 			     struct bpf_call_arg_meta *meta)
7290 {
7291 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7292 	struct bpf_map *map_ptr = reg->map_ptr;
7293 	struct btf_field *kptr_field;
7294 	u32 kptr_off;
7295 
7296 	if (!tnum_is_const(reg->var_off)) {
7297 		verbose(env,
7298 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7299 			regno);
7300 		return -EINVAL;
7301 	}
7302 	if (!map_ptr->btf) {
7303 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7304 			map_ptr->name);
7305 		return -EINVAL;
7306 	}
7307 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7308 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7309 		return -EINVAL;
7310 	}
7311 
7312 	meta->map_ptr = map_ptr;
7313 	kptr_off = reg->off + reg->var_off.value;
7314 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7315 	if (!kptr_field) {
7316 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7317 		return -EACCES;
7318 	}
7319 	if (kptr_field->type != BPF_KPTR_REF) {
7320 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7321 		return -EACCES;
7322 	}
7323 	meta->kptr_field = kptr_field;
7324 	return 0;
7325 }
7326 
7327 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7328  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7329  *
7330  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7331  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7332  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7333  *
7334  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7335  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7336  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7337  * mutate the view of the dynptr and also possibly destroy it. In the latter
7338  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7339  * memory that dynptr points to.
7340  *
7341  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7342  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7343  * readonly dynptr view yet, hence only the first case is tracked and checked.
7344  *
7345  * This is consistent with how C applies the const modifier to a struct object,
7346  * where the pointer itself inside bpf_dynptr becomes const but not what it
7347  * points to.
7348  *
7349  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7350  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7351  */
7352 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7353 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7354 {
7355 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7356 	int err;
7357 
7358 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7359 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7360 	 */
7361 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7362 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7363 		return -EFAULT;
7364 	}
7365 
7366 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7367 	 *		 constructing a mutable bpf_dynptr object.
7368 	 *
7369 	 *		 Currently, this is only possible with PTR_TO_STACK
7370 	 *		 pointing to a region of at least 16 bytes which doesn't
7371 	 *		 contain an existing bpf_dynptr.
7372 	 *
7373 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7374 	 *		 mutated or destroyed. However, the memory it points to
7375 	 *		 may be mutated.
7376 	 *
7377 	 *  None       - Points to a initialized dynptr that can be mutated and
7378 	 *		 destroyed, including mutation of the memory it points
7379 	 *		 to.
7380 	 */
7381 	if (arg_type & MEM_UNINIT) {
7382 		int i;
7383 
7384 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7385 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7386 			return -EINVAL;
7387 		}
7388 
7389 		/* we write BPF_DW bits (8 bytes) at a time */
7390 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7391 			err = check_mem_access(env, insn_idx, regno,
7392 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7393 			if (err)
7394 				return err;
7395 		}
7396 
7397 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7398 	} else /* MEM_RDONLY and None case from above */ {
7399 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7400 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7401 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7402 			return -EINVAL;
7403 		}
7404 
7405 		if (!is_dynptr_reg_valid_init(env, reg)) {
7406 			verbose(env,
7407 				"Expected an initialized dynptr as arg #%d\n",
7408 				regno);
7409 			return -EINVAL;
7410 		}
7411 
7412 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7413 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7414 			verbose(env,
7415 				"Expected a dynptr of type %s as arg #%d\n",
7416 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7417 			return -EINVAL;
7418 		}
7419 
7420 		err = mark_dynptr_read(env, reg);
7421 	}
7422 	return err;
7423 }
7424 
7425 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7426 {
7427 	struct bpf_func_state *state = func(env, reg);
7428 
7429 	return state->stack[spi].spilled_ptr.ref_obj_id;
7430 }
7431 
7432 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7433 {
7434 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7435 }
7436 
7437 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7438 {
7439 	return meta->kfunc_flags & KF_ITER_NEW;
7440 }
7441 
7442 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7443 {
7444 	return meta->kfunc_flags & KF_ITER_NEXT;
7445 }
7446 
7447 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7448 {
7449 	return meta->kfunc_flags & KF_ITER_DESTROY;
7450 }
7451 
7452 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7453 {
7454 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7455 	 * kfunc is iter state pointer
7456 	 */
7457 	return arg == 0 && is_iter_kfunc(meta);
7458 }
7459 
7460 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7461 			    struct bpf_kfunc_call_arg_meta *meta)
7462 {
7463 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7464 	const struct btf_type *t;
7465 	const struct btf_param *arg;
7466 	int spi, err, i, nr_slots;
7467 	u32 btf_id;
7468 
7469 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7470 	arg = &btf_params(meta->func_proto)[0];
7471 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7472 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7473 	nr_slots = t->size / BPF_REG_SIZE;
7474 
7475 	if (is_iter_new_kfunc(meta)) {
7476 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7477 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7478 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7479 				iter_type_str(meta->btf, btf_id), regno);
7480 			return -EINVAL;
7481 		}
7482 
7483 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7484 			err = check_mem_access(env, insn_idx, regno,
7485 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7486 			if (err)
7487 				return err;
7488 		}
7489 
7490 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7491 		if (err)
7492 			return err;
7493 	} else {
7494 		/* iter_next() or iter_destroy() expect initialized iter state*/
7495 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7496 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7497 				iter_type_str(meta->btf, btf_id), regno);
7498 			return -EINVAL;
7499 		}
7500 
7501 		spi = iter_get_spi(env, reg, nr_slots);
7502 		if (spi < 0)
7503 			return spi;
7504 
7505 		err = mark_iter_read(env, reg, spi, nr_slots);
7506 		if (err)
7507 			return err;
7508 
7509 		/* remember meta->iter info for process_iter_next_call() */
7510 		meta->iter.spi = spi;
7511 		meta->iter.frameno = reg->frameno;
7512 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7513 
7514 		if (is_iter_destroy_kfunc(meta)) {
7515 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7516 			if (err)
7517 				return err;
7518 		}
7519 	}
7520 
7521 	return 0;
7522 }
7523 
7524 /* process_iter_next_call() is called when verifier gets to iterator's next
7525  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7526  * to it as just "iter_next()" in comments below.
7527  *
7528  * BPF verifier relies on a crucial contract for any iter_next()
7529  * implementation: it should *eventually* return NULL, and once that happens
7530  * it should keep returning NULL. That is, once iterator exhausts elements to
7531  * iterate, it should never reset or spuriously return new elements.
7532  *
7533  * With the assumption of such contract, process_iter_next_call() simulates
7534  * a fork in the verifier state to validate loop logic correctness and safety
7535  * without having to simulate infinite amount of iterations.
7536  *
7537  * In current state, we first assume that iter_next() returned NULL and
7538  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7539  * conditions we should not form an infinite loop and should eventually reach
7540  * exit.
7541  *
7542  * Besides that, we also fork current state and enqueue it for later
7543  * verification. In a forked state we keep iterator state as ACTIVE
7544  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7545  * also bump iteration depth to prevent erroneous infinite loop detection
7546  * later on (see iter_active_depths_differ() comment for details). In this
7547  * state we assume that we'll eventually loop back to another iter_next()
7548  * calls (it could be in exactly same location or in some other instruction,
7549  * it doesn't matter, we don't make any unnecessary assumptions about this,
7550  * everything revolves around iterator state in a stack slot, not which
7551  * instruction is calling iter_next()). When that happens, we either will come
7552  * to iter_next() with equivalent state and can conclude that next iteration
7553  * will proceed in exactly the same way as we just verified, so it's safe to
7554  * assume that loop converges. If not, we'll go on another iteration
7555  * simulation with a different input state, until all possible starting states
7556  * are validated or we reach maximum number of instructions limit.
7557  *
7558  * This way, we will either exhaustively discover all possible input states
7559  * that iterator loop can start with and eventually will converge, or we'll
7560  * effectively regress into bounded loop simulation logic and either reach
7561  * maximum number of instructions if loop is not provably convergent, or there
7562  * is some statically known limit on number of iterations (e.g., if there is
7563  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7564  *
7565  * One very subtle but very important aspect is that we *always* simulate NULL
7566  * condition first (as the current state) before we simulate non-NULL case.
7567  * This has to do with intricacies of scalar precision tracking. By simulating
7568  * "exit condition" of iter_next() returning NULL first, we make sure all the
7569  * relevant precision marks *that will be set **after** we exit iterator loop*
7570  * are propagated backwards to common parent state of NULL and non-NULL
7571  * branches. Thanks to that, state equivalence checks done later in forked
7572  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7573  * precision marks are finalized and won't change. Because simulating another
7574  * ACTIVE iterator iteration won't change them (because given same input
7575  * states we'll end up with exactly same output states which we are currently
7576  * comparing; and verification after the loop already propagated back what
7577  * needs to be **additionally** tracked as precise). It's subtle, grok
7578  * precision tracking for more intuitive understanding.
7579  */
7580 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7581 				  struct bpf_kfunc_call_arg_meta *meta)
7582 {
7583 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7584 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7585 	struct bpf_reg_state *cur_iter, *queued_iter;
7586 	int iter_frameno = meta->iter.frameno;
7587 	int iter_spi = meta->iter.spi;
7588 
7589 	BTF_TYPE_EMIT(struct bpf_iter);
7590 
7591 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7592 
7593 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7594 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7595 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7596 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7597 		return -EFAULT;
7598 	}
7599 
7600 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7601 		/* branch out active iter state */
7602 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7603 		if (!queued_st)
7604 			return -ENOMEM;
7605 
7606 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7607 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7608 		queued_iter->iter.depth++;
7609 
7610 		queued_fr = queued_st->frame[queued_st->curframe];
7611 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7612 	}
7613 
7614 	/* switch to DRAINED state, but keep the depth unchanged */
7615 	/* mark current iter state as drained and assume returned NULL */
7616 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7617 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7618 
7619 	return 0;
7620 }
7621 
7622 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7623 {
7624 	return type == ARG_CONST_SIZE ||
7625 	       type == ARG_CONST_SIZE_OR_ZERO;
7626 }
7627 
7628 static bool arg_type_is_release(enum bpf_arg_type type)
7629 {
7630 	return type & OBJ_RELEASE;
7631 }
7632 
7633 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7634 {
7635 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7636 }
7637 
7638 static int int_ptr_type_to_size(enum bpf_arg_type type)
7639 {
7640 	if (type == ARG_PTR_TO_INT)
7641 		return sizeof(u32);
7642 	else if (type == ARG_PTR_TO_LONG)
7643 		return sizeof(u64);
7644 
7645 	return -EINVAL;
7646 }
7647 
7648 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7649 				 const struct bpf_call_arg_meta *meta,
7650 				 enum bpf_arg_type *arg_type)
7651 {
7652 	if (!meta->map_ptr) {
7653 		/* kernel subsystem misconfigured verifier */
7654 		verbose(env, "invalid map_ptr to access map->type\n");
7655 		return -EACCES;
7656 	}
7657 
7658 	switch (meta->map_ptr->map_type) {
7659 	case BPF_MAP_TYPE_SOCKMAP:
7660 	case BPF_MAP_TYPE_SOCKHASH:
7661 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7662 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7663 		} else {
7664 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7665 			return -EINVAL;
7666 		}
7667 		break;
7668 	case BPF_MAP_TYPE_BLOOM_FILTER:
7669 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7670 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7671 		break;
7672 	default:
7673 		break;
7674 	}
7675 	return 0;
7676 }
7677 
7678 struct bpf_reg_types {
7679 	const enum bpf_reg_type types[10];
7680 	u32 *btf_id;
7681 };
7682 
7683 static const struct bpf_reg_types sock_types = {
7684 	.types = {
7685 		PTR_TO_SOCK_COMMON,
7686 		PTR_TO_SOCKET,
7687 		PTR_TO_TCP_SOCK,
7688 		PTR_TO_XDP_SOCK,
7689 	},
7690 };
7691 
7692 #ifdef CONFIG_NET
7693 static const struct bpf_reg_types btf_id_sock_common_types = {
7694 	.types = {
7695 		PTR_TO_SOCK_COMMON,
7696 		PTR_TO_SOCKET,
7697 		PTR_TO_TCP_SOCK,
7698 		PTR_TO_XDP_SOCK,
7699 		PTR_TO_BTF_ID,
7700 		PTR_TO_BTF_ID | PTR_TRUSTED,
7701 	},
7702 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7703 };
7704 #endif
7705 
7706 static const struct bpf_reg_types mem_types = {
7707 	.types = {
7708 		PTR_TO_STACK,
7709 		PTR_TO_PACKET,
7710 		PTR_TO_PACKET_META,
7711 		PTR_TO_MAP_KEY,
7712 		PTR_TO_MAP_VALUE,
7713 		PTR_TO_MEM,
7714 		PTR_TO_MEM | MEM_RINGBUF,
7715 		PTR_TO_BUF,
7716 		PTR_TO_BTF_ID | PTR_TRUSTED,
7717 	},
7718 };
7719 
7720 static const struct bpf_reg_types int_ptr_types = {
7721 	.types = {
7722 		PTR_TO_STACK,
7723 		PTR_TO_PACKET,
7724 		PTR_TO_PACKET_META,
7725 		PTR_TO_MAP_KEY,
7726 		PTR_TO_MAP_VALUE,
7727 	},
7728 };
7729 
7730 static const struct bpf_reg_types spin_lock_types = {
7731 	.types = {
7732 		PTR_TO_MAP_VALUE,
7733 		PTR_TO_BTF_ID | MEM_ALLOC,
7734 	}
7735 };
7736 
7737 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7738 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7739 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7740 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7741 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7742 static const struct bpf_reg_types btf_ptr_types = {
7743 	.types = {
7744 		PTR_TO_BTF_ID,
7745 		PTR_TO_BTF_ID | PTR_TRUSTED,
7746 		PTR_TO_BTF_ID | MEM_RCU,
7747 	},
7748 };
7749 static const struct bpf_reg_types percpu_btf_ptr_types = {
7750 	.types = {
7751 		PTR_TO_BTF_ID | MEM_PERCPU,
7752 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7753 	}
7754 };
7755 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7756 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7757 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7758 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7759 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7760 static const struct bpf_reg_types dynptr_types = {
7761 	.types = {
7762 		PTR_TO_STACK,
7763 		CONST_PTR_TO_DYNPTR,
7764 	}
7765 };
7766 
7767 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7768 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7769 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7770 	[ARG_CONST_SIZE]		= &scalar_types,
7771 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7772 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7773 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7774 	[ARG_PTR_TO_CTX]		= &context_types,
7775 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7776 #ifdef CONFIG_NET
7777 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7778 #endif
7779 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7780 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7781 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7782 	[ARG_PTR_TO_MEM]		= &mem_types,
7783 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7784 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7785 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7786 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7787 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7788 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7789 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7790 	[ARG_PTR_TO_TIMER]		= &timer_types,
7791 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7792 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7793 };
7794 
7795 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7796 			  enum bpf_arg_type arg_type,
7797 			  const u32 *arg_btf_id,
7798 			  struct bpf_call_arg_meta *meta)
7799 {
7800 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7801 	enum bpf_reg_type expected, type = reg->type;
7802 	const struct bpf_reg_types *compatible;
7803 	int i, j;
7804 
7805 	compatible = compatible_reg_types[base_type(arg_type)];
7806 	if (!compatible) {
7807 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7808 		return -EFAULT;
7809 	}
7810 
7811 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7812 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7813 	 *
7814 	 * Same for MAYBE_NULL:
7815 	 *
7816 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7817 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7818 	 *
7819 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7820 	 *
7821 	 * Therefore we fold these flags depending on the arg_type before comparison.
7822 	 */
7823 	if (arg_type & MEM_RDONLY)
7824 		type &= ~MEM_RDONLY;
7825 	if (arg_type & PTR_MAYBE_NULL)
7826 		type &= ~PTR_MAYBE_NULL;
7827 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7828 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7829 
7830 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7831 		type &= ~MEM_ALLOC;
7832 
7833 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7834 		expected = compatible->types[i];
7835 		if (expected == NOT_INIT)
7836 			break;
7837 
7838 		if (type == expected)
7839 			goto found;
7840 	}
7841 
7842 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7843 	for (j = 0; j + 1 < i; j++)
7844 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7845 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7846 	return -EACCES;
7847 
7848 found:
7849 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7850 		return 0;
7851 
7852 	if (compatible == &mem_types) {
7853 		if (!(arg_type & MEM_RDONLY)) {
7854 			verbose(env,
7855 				"%s() may write into memory pointed by R%d type=%s\n",
7856 				func_id_name(meta->func_id),
7857 				regno, reg_type_str(env, reg->type));
7858 			return -EACCES;
7859 		}
7860 		return 0;
7861 	}
7862 
7863 	switch ((int)reg->type) {
7864 	case PTR_TO_BTF_ID:
7865 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7866 	case PTR_TO_BTF_ID | MEM_RCU:
7867 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7868 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7869 	{
7870 		/* For bpf_sk_release, it needs to match against first member
7871 		 * 'struct sock_common', hence make an exception for it. This
7872 		 * allows bpf_sk_release to work for multiple socket types.
7873 		 */
7874 		bool strict_type_match = arg_type_is_release(arg_type) &&
7875 					 meta->func_id != BPF_FUNC_sk_release;
7876 
7877 		if (type_may_be_null(reg->type) &&
7878 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7879 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7880 			return -EACCES;
7881 		}
7882 
7883 		if (!arg_btf_id) {
7884 			if (!compatible->btf_id) {
7885 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7886 				return -EFAULT;
7887 			}
7888 			arg_btf_id = compatible->btf_id;
7889 		}
7890 
7891 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7892 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7893 				return -EACCES;
7894 		} else {
7895 			if (arg_btf_id == BPF_PTR_POISON) {
7896 				verbose(env, "verifier internal error:");
7897 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7898 					regno);
7899 				return -EACCES;
7900 			}
7901 
7902 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7903 						  btf_vmlinux, *arg_btf_id,
7904 						  strict_type_match)) {
7905 				verbose(env, "R%d is of type %s but %s is expected\n",
7906 					regno, btf_type_name(reg->btf, reg->btf_id),
7907 					btf_type_name(btf_vmlinux, *arg_btf_id));
7908 				return -EACCES;
7909 			}
7910 		}
7911 		break;
7912 	}
7913 	case PTR_TO_BTF_ID | MEM_ALLOC:
7914 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7915 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7916 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7917 			return -EFAULT;
7918 		}
7919 		/* Handled by helper specific checks */
7920 		break;
7921 	case PTR_TO_BTF_ID | MEM_PERCPU:
7922 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7923 		/* Handled by helper specific checks */
7924 		break;
7925 	default:
7926 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7927 		return -EFAULT;
7928 	}
7929 	return 0;
7930 }
7931 
7932 static struct btf_field *
7933 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7934 {
7935 	struct btf_field *field;
7936 	struct btf_record *rec;
7937 
7938 	rec = reg_btf_record(reg);
7939 	if (!rec)
7940 		return NULL;
7941 
7942 	field = btf_record_find(rec, off, fields);
7943 	if (!field)
7944 		return NULL;
7945 
7946 	return field;
7947 }
7948 
7949 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7950 			   const struct bpf_reg_state *reg, int regno,
7951 			   enum bpf_arg_type arg_type)
7952 {
7953 	u32 type = reg->type;
7954 
7955 	/* When referenced register is passed to release function, its fixed
7956 	 * offset must be 0.
7957 	 *
7958 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7959 	 * meta->release_regno.
7960 	 */
7961 	if (arg_type_is_release(arg_type)) {
7962 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7963 		 * may not directly point to the object being released, but to
7964 		 * dynptr pointing to such object, which might be at some offset
7965 		 * on the stack. In that case, we simply to fallback to the
7966 		 * default handling.
7967 		 */
7968 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7969 			return 0;
7970 
7971 		if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7972 			if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7973 				return __check_ptr_off_reg(env, reg, regno, true);
7974 
7975 			verbose(env, "R%d must have zero offset when passed to release func\n",
7976 				regno);
7977 			verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
7978 				btf_type_name(reg->btf, reg->btf_id), reg->off);
7979 			return -EINVAL;
7980 		}
7981 
7982 		/* Doing check_ptr_off_reg check for the offset will catch this
7983 		 * because fixed_off_ok is false, but checking here allows us
7984 		 * to give the user a better error message.
7985 		 */
7986 		if (reg->off) {
7987 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7988 				regno);
7989 			return -EINVAL;
7990 		}
7991 		return __check_ptr_off_reg(env, reg, regno, false);
7992 	}
7993 
7994 	switch (type) {
7995 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7996 	case PTR_TO_STACK:
7997 	case PTR_TO_PACKET:
7998 	case PTR_TO_PACKET_META:
7999 	case PTR_TO_MAP_KEY:
8000 	case PTR_TO_MAP_VALUE:
8001 	case PTR_TO_MEM:
8002 	case PTR_TO_MEM | MEM_RDONLY:
8003 	case PTR_TO_MEM | MEM_RINGBUF:
8004 	case PTR_TO_BUF:
8005 	case PTR_TO_BUF | MEM_RDONLY:
8006 	case SCALAR_VALUE:
8007 		return 0;
8008 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8009 	 * fixed offset.
8010 	 */
8011 	case PTR_TO_BTF_ID:
8012 	case PTR_TO_BTF_ID | MEM_ALLOC:
8013 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8014 	case PTR_TO_BTF_ID | MEM_RCU:
8015 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8016 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8017 		 * its fixed offset must be 0. In the other cases, fixed offset
8018 		 * can be non-zero. This was already checked above. So pass
8019 		 * fixed_off_ok as true to allow fixed offset for all other
8020 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8021 		 * still need to do checks instead of returning.
8022 		 */
8023 		return __check_ptr_off_reg(env, reg, regno, true);
8024 	default:
8025 		return __check_ptr_off_reg(env, reg, regno, false);
8026 	}
8027 }
8028 
8029 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8030 						const struct bpf_func_proto *fn,
8031 						struct bpf_reg_state *regs)
8032 {
8033 	struct bpf_reg_state *state = NULL;
8034 	int i;
8035 
8036 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8037 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8038 			if (state) {
8039 				verbose(env, "verifier internal error: multiple dynptr args\n");
8040 				return NULL;
8041 			}
8042 			state = &regs[BPF_REG_1 + i];
8043 		}
8044 
8045 	if (!state)
8046 		verbose(env, "verifier internal error: no dynptr arg found\n");
8047 
8048 	return state;
8049 }
8050 
8051 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8052 {
8053 	struct bpf_func_state *state = func(env, reg);
8054 	int spi;
8055 
8056 	if (reg->type == CONST_PTR_TO_DYNPTR)
8057 		return reg->id;
8058 	spi = dynptr_get_spi(env, reg);
8059 	if (spi < 0)
8060 		return spi;
8061 	return state->stack[spi].spilled_ptr.id;
8062 }
8063 
8064 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8065 {
8066 	struct bpf_func_state *state = func(env, reg);
8067 	int spi;
8068 
8069 	if (reg->type == CONST_PTR_TO_DYNPTR)
8070 		return reg->ref_obj_id;
8071 	spi = dynptr_get_spi(env, reg);
8072 	if (spi < 0)
8073 		return spi;
8074 	return state->stack[spi].spilled_ptr.ref_obj_id;
8075 }
8076 
8077 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8078 					    struct bpf_reg_state *reg)
8079 {
8080 	struct bpf_func_state *state = func(env, reg);
8081 	int spi;
8082 
8083 	if (reg->type == CONST_PTR_TO_DYNPTR)
8084 		return reg->dynptr.type;
8085 
8086 	spi = __get_spi(reg->off);
8087 	if (spi < 0) {
8088 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8089 		return BPF_DYNPTR_TYPE_INVALID;
8090 	}
8091 
8092 	return state->stack[spi].spilled_ptr.dynptr.type;
8093 }
8094 
8095 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8096 			  struct bpf_call_arg_meta *meta,
8097 			  const struct bpf_func_proto *fn,
8098 			  int insn_idx)
8099 {
8100 	u32 regno = BPF_REG_1 + arg;
8101 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8102 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8103 	enum bpf_reg_type type = reg->type;
8104 	u32 *arg_btf_id = NULL;
8105 	int err = 0;
8106 
8107 	if (arg_type == ARG_DONTCARE)
8108 		return 0;
8109 
8110 	err = check_reg_arg(env, regno, SRC_OP);
8111 	if (err)
8112 		return err;
8113 
8114 	if (arg_type == ARG_ANYTHING) {
8115 		if (is_pointer_value(env, regno)) {
8116 			verbose(env, "R%d leaks addr into helper function\n",
8117 				regno);
8118 			return -EACCES;
8119 		}
8120 		return 0;
8121 	}
8122 
8123 	if (type_is_pkt_pointer(type) &&
8124 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8125 		verbose(env, "helper access to the packet is not allowed\n");
8126 		return -EACCES;
8127 	}
8128 
8129 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8130 		err = resolve_map_arg_type(env, meta, &arg_type);
8131 		if (err)
8132 			return err;
8133 	}
8134 
8135 	if (register_is_null(reg) && type_may_be_null(arg_type))
8136 		/* A NULL register has a SCALAR_VALUE type, so skip
8137 		 * type checking.
8138 		 */
8139 		goto skip_type_check;
8140 
8141 	/* arg_btf_id and arg_size are in a union. */
8142 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8143 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8144 		arg_btf_id = fn->arg_btf_id[arg];
8145 
8146 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8147 	if (err)
8148 		return err;
8149 
8150 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8151 	if (err)
8152 		return err;
8153 
8154 skip_type_check:
8155 	if (arg_type_is_release(arg_type)) {
8156 		if (arg_type_is_dynptr(arg_type)) {
8157 			struct bpf_func_state *state = func(env, reg);
8158 			int spi;
8159 
8160 			/* Only dynptr created on stack can be released, thus
8161 			 * the get_spi and stack state checks for spilled_ptr
8162 			 * should only be done before process_dynptr_func for
8163 			 * PTR_TO_STACK.
8164 			 */
8165 			if (reg->type == PTR_TO_STACK) {
8166 				spi = dynptr_get_spi(env, reg);
8167 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8168 					verbose(env, "arg %d is an unacquired reference\n", regno);
8169 					return -EINVAL;
8170 				}
8171 			} else {
8172 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8173 				return -EINVAL;
8174 			}
8175 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8176 			verbose(env, "R%d must be referenced when passed to release function\n",
8177 				regno);
8178 			return -EINVAL;
8179 		}
8180 		if (meta->release_regno) {
8181 			verbose(env, "verifier internal error: more than one release argument\n");
8182 			return -EFAULT;
8183 		}
8184 		meta->release_regno = regno;
8185 	}
8186 
8187 	if (reg->ref_obj_id) {
8188 		if (meta->ref_obj_id) {
8189 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8190 				regno, reg->ref_obj_id,
8191 				meta->ref_obj_id);
8192 			return -EFAULT;
8193 		}
8194 		meta->ref_obj_id = reg->ref_obj_id;
8195 	}
8196 
8197 	switch (base_type(arg_type)) {
8198 	case ARG_CONST_MAP_PTR:
8199 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8200 		if (meta->map_ptr) {
8201 			/* Use map_uid (which is unique id of inner map) to reject:
8202 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8203 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8204 			 * if (inner_map1 && inner_map2) {
8205 			 *     timer = bpf_map_lookup_elem(inner_map1);
8206 			 *     if (timer)
8207 			 *         // mismatch would have been allowed
8208 			 *         bpf_timer_init(timer, inner_map2);
8209 			 * }
8210 			 *
8211 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8212 			 */
8213 			if (meta->map_ptr != reg->map_ptr ||
8214 			    meta->map_uid != reg->map_uid) {
8215 				verbose(env,
8216 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8217 					meta->map_uid, reg->map_uid);
8218 				return -EINVAL;
8219 			}
8220 		}
8221 		meta->map_ptr = reg->map_ptr;
8222 		meta->map_uid = reg->map_uid;
8223 		break;
8224 	case ARG_PTR_TO_MAP_KEY:
8225 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8226 		 * check that [key, key + map->key_size) are within
8227 		 * stack limits and initialized
8228 		 */
8229 		if (!meta->map_ptr) {
8230 			/* in function declaration map_ptr must come before
8231 			 * map_key, so that it's verified and known before
8232 			 * we have to check map_key here. Otherwise it means
8233 			 * that kernel subsystem misconfigured verifier
8234 			 */
8235 			verbose(env, "invalid map_ptr to access map->key\n");
8236 			return -EACCES;
8237 		}
8238 		err = check_helper_mem_access(env, regno,
8239 					      meta->map_ptr->key_size, false,
8240 					      NULL);
8241 		break;
8242 	case ARG_PTR_TO_MAP_VALUE:
8243 		if (type_may_be_null(arg_type) && register_is_null(reg))
8244 			return 0;
8245 
8246 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8247 		 * check [value, value + map->value_size) validity
8248 		 */
8249 		if (!meta->map_ptr) {
8250 			/* kernel subsystem misconfigured verifier */
8251 			verbose(env, "invalid map_ptr to access map->value\n");
8252 			return -EACCES;
8253 		}
8254 		meta->raw_mode = arg_type & MEM_UNINIT;
8255 		err = check_helper_mem_access(env, regno,
8256 					      meta->map_ptr->value_size, false,
8257 					      meta);
8258 		break;
8259 	case ARG_PTR_TO_PERCPU_BTF_ID:
8260 		if (!reg->btf_id) {
8261 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8262 			return -EACCES;
8263 		}
8264 		meta->ret_btf = reg->btf;
8265 		meta->ret_btf_id = reg->btf_id;
8266 		break;
8267 	case ARG_PTR_TO_SPIN_LOCK:
8268 		if (in_rbtree_lock_required_cb(env)) {
8269 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8270 			return -EACCES;
8271 		}
8272 		if (meta->func_id == BPF_FUNC_spin_lock) {
8273 			err = process_spin_lock(env, regno, true);
8274 			if (err)
8275 				return err;
8276 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8277 			err = process_spin_lock(env, regno, false);
8278 			if (err)
8279 				return err;
8280 		} else {
8281 			verbose(env, "verifier internal error\n");
8282 			return -EFAULT;
8283 		}
8284 		break;
8285 	case ARG_PTR_TO_TIMER:
8286 		err = process_timer_func(env, regno, meta);
8287 		if (err)
8288 			return err;
8289 		break;
8290 	case ARG_PTR_TO_FUNC:
8291 		meta->subprogno = reg->subprogno;
8292 		break;
8293 	case ARG_PTR_TO_MEM:
8294 		/* The access to this pointer is only checked when we hit the
8295 		 * next is_mem_size argument below.
8296 		 */
8297 		meta->raw_mode = arg_type & MEM_UNINIT;
8298 		if (arg_type & MEM_FIXED_SIZE) {
8299 			err = check_helper_mem_access(env, regno,
8300 						      fn->arg_size[arg], false,
8301 						      meta);
8302 		}
8303 		break;
8304 	case ARG_CONST_SIZE:
8305 		err = check_mem_size_reg(env, reg, regno, false, meta);
8306 		break;
8307 	case ARG_CONST_SIZE_OR_ZERO:
8308 		err = check_mem_size_reg(env, reg, regno, true, meta);
8309 		break;
8310 	case ARG_PTR_TO_DYNPTR:
8311 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8312 		if (err)
8313 			return err;
8314 		break;
8315 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8316 		if (!tnum_is_const(reg->var_off)) {
8317 			verbose(env, "R%d is not a known constant'\n",
8318 				regno);
8319 			return -EACCES;
8320 		}
8321 		meta->mem_size = reg->var_off.value;
8322 		err = mark_chain_precision(env, regno);
8323 		if (err)
8324 			return err;
8325 		break;
8326 	case ARG_PTR_TO_INT:
8327 	case ARG_PTR_TO_LONG:
8328 	{
8329 		int size = int_ptr_type_to_size(arg_type);
8330 
8331 		err = check_helper_mem_access(env, regno, size, false, meta);
8332 		if (err)
8333 			return err;
8334 		err = check_ptr_alignment(env, reg, 0, size, true);
8335 		break;
8336 	}
8337 	case ARG_PTR_TO_CONST_STR:
8338 	{
8339 		struct bpf_map *map = reg->map_ptr;
8340 		int map_off;
8341 		u64 map_addr;
8342 		char *str_ptr;
8343 
8344 		if (!bpf_map_is_rdonly(map)) {
8345 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8346 			return -EACCES;
8347 		}
8348 
8349 		if (!tnum_is_const(reg->var_off)) {
8350 			verbose(env, "R%d is not a constant address'\n", regno);
8351 			return -EACCES;
8352 		}
8353 
8354 		if (!map->ops->map_direct_value_addr) {
8355 			verbose(env, "no direct value access support for this map type\n");
8356 			return -EACCES;
8357 		}
8358 
8359 		err = check_map_access(env, regno, reg->off,
8360 				       map->value_size - reg->off, false,
8361 				       ACCESS_HELPER);
8362 		if (err)
8363 			return err;
8364 
8365 		map_off = reg->off + reg->var_off.value;
8366 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8367 		if (err) {
8368 			verbose(env, "direct value access on string failed\n");
8369 			return err;
8370 		}
8371 
8372 		str_ptr = (char *)(long)(map_addr);
8373 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8374 			verbose(env, "string is not zero-terminated\n");
8375 			return -EINVAL;
8376 		}
8377 		break;
8378 	}
8379 	case ARG_PTR_TO_KPTR:
8380 		err = process_kptr_func(env, regno, meta);
8381 		if (err)
8382 			return err;
8383 		break;
8384 	}
8385 
8386 	return err;
8387 }
8388 
8389 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8390 {
8391 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8392 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8393 
8394 	if (func_id != BPF_FUNC_map_update_elem)
8395 		return false;
8396 
8397 	/* It's not possible to get access to a locked struct sock in these
8398 	 * contexts, so updating is safe.
8399 	 */
8400 	switch (type) {
8401 	case BPF_PROG_TYPE_TRACING:
8402 		if (eatype == BPF_TRACE_ITER)
8403 			return true;
8404 		break;
8405 	case BPF_PROG_TYPE_SOCKET_FILTER:
8406 	case BPF_PROG_TYPE_SCHED_CLS:
8407 	case BPF_PROG_TYPE_SCHED_ACT:
8408 	case BPF_PROG_TYPE_XDP:
8409 	case BPF_PROG_TYPE_SK_REUSEPORT:
8410 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8411 	case BPF_PROG_TYPE_SK_LOOKUP:
8412 		return true;
8413 	default:
8414 		break;
8415 	}
8416 
8417 	verbose(env, "cannot update sockmap in this context\n");
8418 	return false;
8419 }
8420 
8421 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8422 {
8423 	return env->prog->jit_requested &&
8424 	       bpf_jit_supports_subprog_tailcalls();
8425 }
8426 
8427 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8428 					struct bpf_map *map, int func_id)
8429 {
8430 	if (!map)
8431 		return 0;
8432 
8433 	/* We need a two way check, first is from map perspective ... */
8434 	switch (map->map_type) {
8435 	case BPF_MAP_TYPE_PROG_ARRAY:
8436 		if (func_id != BPF_FUNC_tail_call)
8437 			goto error;
8438 		break;
8439 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8440 		if (func_id != BPF_FUNC_perf_event_read &&
8441 		    func_id != BPF_FUNC_perf_event_output &&
8442 		    func_id != BPF_FUNC_skb_output &&
8443 		    func_id != BPF_FUNC_perf_event_read_value &&
8444 		    func_id != BPF_FUNC_xdp_output)
8445 			goto error;
8446 		break;
8447 	case BPF_MAP_TYPE_RINGBUF:
8448 		if (func_id != BPF_FUNC_ringbuf_output &&
8449 		    func_id != BPF_FUNC_ringbuf_reserve &&
8450 		    func_id != BPF_FUNC_ringbuf_query &&
8451 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8452 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8453 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8454 			goto error;
8455 		break;
8456 	case BPF_MAP_TYPE_USER_RINGBUF:
8457 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8458 			goto error;
8459 		break;
8460 	case BPF_MAP_TYPE_STACK_TRACE:
8461 		if (func_id != BPF_FUNC_get_stackid)
8462 			goto error;
8463 		break;
8464 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8465 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8466 		    func_id != BPF_FUNC_current_task_under_cgroup)
8467 			goto error;
8468 		break;
8469 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8470 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8471 		if (func_id != BPF_FUNC_get_local_storage)
8472 			goto error;
8473 		break;
8474 	case BPF_MAP_TYPE_DEVMAP:
8475 	case BPF_MAP_TYPE_DEVMAP_HASH:
8476 		if (func_id != BPF_FUNC_redirect_map &&
8477 		    func_id != BPF_FUNC_map_lookup_elem)
8478 			goto error;
8479 		break;
8480 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8481 	 * appear.
8482 	 */
8483 	case BPF_MAP_TYPE_CPUMAP:
8484 		if (func_id != BPF_FUNC_redirect_map)
8485 			goto error;
8486 		break;
8487 	case BPF_MAP_TYPE_XSKMAP:
8488 		if (func_id != BPF_FUNC_redirect_map &&
8489 		    func_id != BPF_FUNC_map_lookup_elem)
8490 			goto error;
8491 		break;
8492 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8493 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8494 		if (func_id != BPF_FUNC_map_lookup_elem)
8495 			goto error;
8496 		break;
8497 	case BPF_MAP_TYPE_SOCKMAP:
8498 		if (func_id != BPF_FUNC_sk_redirect_map &&
8499 		    func_id != BPF_FUNC_sock_map_update &&
8500 		    func_id != BPF_FUNC_map_delete_elem &&
8501 		    func_id != BPF_FUNC_msg_redirect_map &&
8502 		    func_id != BPF_FUNC_sk_select_reuseport &&
8503 		    func_id != BPF_FUNC_map_lookup_elem &&
8504 		    !may_update_sockmap(env, func_id))
8505 			goto error;
8506 		break;
8507 	case BPF_MAP_TYPE_SOCKHASH:
8508 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8509 		    func_id != BPF_FUNC_sock_hash_update &&
8510 		    func_id != BPF_FUNC_map_delete_elem &&
8511 		    func_id != BPF_FUNC_msg_redirect_hash &&
8512 		    func_id != BPF_FUNC_sk_select_reuseport &&
8513 		    func_id != BPF_FUNC_map_lookup_elem &&
8514 		    !may_update_sockmap(env, func_id))
8515 			goto error;
8516 		break;
8517 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8518 		if (func_id != BPF_FUNC_sk_select_reuseport)
8519 			goto error;
8520 		break;
8521 	case BPF_MAP_TYPE_QUEUE:
8522 	case BPF_MAP_TYPE_STACK:
8523 		if (func_id != BPF_FUNC_map_peek_elem &&
8524 		    func_id != BPF_FUNC_map_pop_elem &&
8525 		    func_id != BPF_FUNC_map_push_elem)
8526 			goto error;
8527 		break;
8528 	case BPF_MAP_TYPE_SK_STORAGE:
8529 		if (func_id != BPF_FUNC_sk_storage_get &&
8530 		    func_id != BPF_FUNC_sk_storage_delete &&
8531 		    func_id != BPF_FUNC_kptr_xchg)
8532 			goto error;
8533 		break;
8534 	case BPF_MAP_TYPE_INODE_STORAGE:
8535 		if (func_id != BPF_FUNC_inode_storage_get &&
8536 		    func_id != BPF_FUNC_inode_storage_delete &&
8537 		    func_id != BPF_FUNC_kptr_xchg)
8538 			goto error;
8539 		break;
8540 	case BPF_MAP_TYPE_TASK_STORAGE:
8541 		if (func_id != BPF_FUNC_task_storage_get &&
8542 		    func_id != BPF_FUNC_task_storage_delete &&
8543 		    func_id != BPF_FUNC_kptr_xchg)
8544 			goto error;
8545 		break;
8546 	case BPF_MAP_TYPE_CGRP_STORAGE:
8547 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8548 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8549 		    func_id != BPF_FUNC_kptr_xchg)
8550 			goto error;
8551 		break;
8552 	case BPF_MAP_TYPE_BLOOM_FILTER:
8553 		if (func_id != BPF_FUNC_map_peek_elem &&
8554 		    func_id != BPF_FUNC_map_push_elem)
8555 			goto error;
8556 		break;
8557 	default:
8558 		break;
8559 	}
8560 
8561 	/* ... and second from the function itself. */
8562 	switch (func_id) {
8563 	case BPF_FUNC_tail_call:
8564 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8565 			goto error;
8566 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8567 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8568 			return -EINVAL;
8569 		}
8570 		break;
8571 	case BPF_FUNC_perf_event_read:
8572 	case BPF_FUNC_perf_event_output:
8573 	case BPF_FUNC_perf_event_read_value:
8574 	case BPF_FUNC_skb_output:
8575 	case BPF_FUNC_xdp_output:
8576 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8577 			goto error;
8578 		break;
8579 	case BPF_FUNC_ringbuf_output:
8580 	case BPF_FUNC_ringbuf_reserve:
8581 	case BPF_FUNC_ringbuf_query:
8582 	case BPF_FUNC_ringbuf_reserve_dynptr:
8583 	case BPF_FUNC_ringbuf_submit_dynptr:
8584 	case BPF_FUNC_ringbuf_discard_dynptr:
8585 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8586 			goto error;
8587 		break;
8588 	case BPF_FUNC_user_ringbuf_drain:
8589 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8590 			goto error;
8591 		break;
8592 	case BPF_FUNC_get_stackid:
8593 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8594 			goto error;
8595 		break;
8596 	case BPF_FUNC_current_task_under_cgroup:
8597 	case BPF_FUNC_skb_under_cgroup:
8598 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8599 			goto error;
8600 		break;
8601 	case BPF_FUNC_redirect_map:
8602 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8603 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8604 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8605 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8606 			goto error;
8607 		break;
8608 	case BPF_FUNC_sk_redirect_map:
8609 	case BPF_FUNC_msg_redirect_map:
8610 	case BPF_FUNC_sock_map_update:
8611 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8612 			goto error;
8613 		break;
8614 	case BPF_FUNC_sk_redirect_hash:
8615 	case BPF_FUNC_msg_redirect_hash:
8616 	case BPF_FUNC_sock_hash_update:
8617 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8618 			goto error;
8619 		break;
8620 	case BPF_FUNC_get_local_storage:
8621 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8622 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8623 			goto error;
8624 		break;
8625 	case BPF_FUNC_sk_select_reuseport:
8626 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8627 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8628 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8629 			goto error;
8630 		break;
8631 	case BPF_FUNC_map_pop_elem:
8632 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8633 		    map->map_type != BPF_MAP_TYPE_STACK)
8634 			goto error;
8635 		break;
8636 	case BPF_FUNC_map_peek_elem:
8637 	case BPF_FUNC_map_push_elem:
8638 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8639 		    map->map_type != BPF_MAP_TYPE_STACK &&
8640 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8641 			goto error;
8642 		break;
8643 	case BPF_FUNC_map_lookup_percpu_elem:
8644 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8645 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8646 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8647 			goto error;
8648 		break;
8649 	case BPF_FUNC_sk_storage_get:
8650 	case BPF_FUNC_sk_storage_delete:
8651 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8652 			goto error;
8653 		break;
8654 	case BPF_FUNC_inode_storage_get:
8655 	case BPF_FUNC_inode_storage_delete:
8656 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8657 			goto error;
8658 		break;
8659 	case BPF_FUNC_task_storage_get:
8660 	case BPF_FUNC_task_storage_delete:
8661 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8662 			goto error;
8663 		break;
8664 	case BPF_FUNC_cgrp_storage_get:
8665 	case BPF_FUNC_cgrp_storage_delete:
8666 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8667 			goto error;
8668 		break;
8669 	default:
8670 		break;
8671 	}
8672 
8673 	return 0;
8674 error:
8675 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8676 		map->map_type, func_id_name(func_id), func_id);
8677 	return -EINVAL;
8678 }
8679 
8680 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8681 {
8682 	int count = 0;
8683 
8684 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8685 		count++;
8686 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8687 		count++;
8688 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8689 		count++;
8690 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8691 		count++;
8692 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8693 		count++;
8694 
8695 	/* We only support one arg being in raw mode at the moment,
8696 	 * which is sufficient for the helper functions we have
8697 	 * right now.
8698 	 */
8699 	return count <= 1;
8700 }
8701 
8702 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8703 {
8704 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8705 	bool has_size = fn->arg_size[arg] != 0;
8706 	bool is_next_size = false;
8707 
8708 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8709 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8710 
8711 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8712 		return is_next_size;
8713 
8714 	return has_size == is_next_size || is_next_size == is_fixed;
8715 }
8716 
8717 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8718 {
8719 	/* bpf_xxx(..., buf, len) call will access 'len'
8720 	 * bytes from memory 'buf'. Both arg types need
8721 	 * to be paired, so make sure there's no buggy
8722 	 * helper function specification.
8723 	 */
8724 	if (arg_type_is_mem_size(fn->arg1_type) ||
8725 	    check_args_pair_invalid(fn, 0) ||
8726 	    check_args_pair_invalid(fn, 1) ||
8727 	    check_args_pair_invalid(fn, 2) ||
8728 	    check_args_pair_invalid(fn, 3) ||
8729 	    check_args_pair_invalid(fn, 4))
8730 		return false;
8731 
8732 	return true;
8733 }
8734 
8735 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8736 {
8737 	int i;
8738 
8739 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8740 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8741 			return !!fn->arg_btf_id[i];
8742 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8743 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8744 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8745 		    /* arg_btf_id and arg_size are in a union. */
8746 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8747 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8748 			return false;
8749 	}
8750 
8751 	return true;
8752 }
8753 
8754 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8755 {
8756 	return check_raw_mode_ok(fn) &&
8757 	       check_arg_pair_ok(fn) &&
8758 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8759 }
8760 
8761 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8762  * are now invalid, so turn them into unknown SCALAR_VALUE.
8763  *
8764  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8765  * since these slices point to packet data.
8766  */
8767 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8768 {
8769 	struct bpf_func_state *state;
8770 	struct bpf_reg_state *reg;
8771 
8772 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8773 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8774 			mark_reg_invalid(env, reg);
8775 	}));
8776 }
8777 
8778 enum {
8779 	AT_PKT_END = -1,
8780 	BEYOND_PKT_END = -2,
8781 };
8782 
8783 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8784 {
8785 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8786 	struct bpf_reg_state *reg = &state->regs[regn];
8787 
8788 	if (reg->type != PTR_TO_PACKET)
8789 		/* PTR_TO_PACKET_META is not supported yet */
8790 		return;
8791 
8792 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8793 	 * How far beyond pkt_end it goes is unknown.
8794 	 * if (!range_open) it's the case of pkt >= pkt_end
8795 	 * if (range_open) it's the case of pkt > pkt_end
8796 	 * hence this pointer is at least 1 byte bigger than pkt_end
8797 	 */
8798 	if (range_open)
8799 		reg->range = BEYOND_PKT_END;
8800 	else
8801 		reg->range = AT_PKT_END;
8802 }
8803 
8804 /* The pointer with the specified id has released its reference to kernel
8805  * resources. Identify all copies of the same pointer and clear the reference.
8806  */
8807 static int release_reference(struct bpf_verifier_env *env,
8808 			     int ref_obj_id)
8809 {
8810 	struct bpf_func_state *state;
8811 	struct bpf_reg_state *reg;
8812 	int err;
8813 
8814 	err = release_reference_state(cur_func(env), ref_obj_id);
8815 	if (err)
8816 		return err;
8817 
8818 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8819 		if (reg->ref_obj_id == ref_obj_id)
8820 			mark_reg_invalid(env, reg);
8821 	}));
8822 
8823 	return 0;
8824 }
8825 
8826 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8827 {
8828 	struct bpf_func_state *unused;
8829 	struct bpf_reg_state *reg;
8830 
8831 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8832 		if (type_is_non_owning_ref(reg->type))
8833 			mark_reg_invalid(env, reg);
8834 	}));
8835 }
8836 
8837 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8838 				    struct bpf_reg_state *regs)
8839 {
8840 	int i;
8841 
8842 	/* after the call registers r0 - r5 were scratched */
8843 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8844 		mark_reg_not_init(env, regs, caller_saved[i]);
8845 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8846 	}
8847 }
8848 
8849 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8850 				   struct bpf_func_state *caller,
8851 				   struct bpf_func_state *callee,
8852 				   int insn_idx);
8853 
8854 static int set_callee_state(struct bpf_verifier_env *env,
8855 			    struct bpf_func_state *caller,
8856 			    struct bpf_func_state *callee, int insn_idx);
8857 
8858 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8859 			     int *insn_idx, int subprog,
8860 			     set_callee_state_fn set_callee_state_cb)
8861 {
8862 	struct bpf_verifier_state *state = env->cur_state;
8863 	struct bpf_func_state *caller, *callee;
8864 	int err;
8865 
8866 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8867 		verbose(env, "the call stack of %d frames is too deep\n",
8868 			state->curframe + 2);
8869 		return -E2BIG;
8870 	}
8871 
8872 	caller = state->frame[state->curframe];
8873 	if (state->frame[state->curframe + 1]) {
8874 		verbose(env, "verifier bug. Frame %d already allocated\n",
8875 			state->curframe + 1);
8876 		return -EFAULT;
8877 	}
8878 
8879 	err = btf_check_subprog_call(env, subprog, caller->regs);
8880 	if (err == -EFAULT)
8881 		return err;
8882 	if (subprog_is_global(env, subprog)) {
8883 		if (err) {
8884 			verbose(env, "Caller passes invalid args into func#%d\n",
8885 				subprog);
8886 			return err;
8887 		} else {
8888 			if (env->log.level & BPF_LOG_LEVEL)
8889 				verbose(env,
8890 					"Func#%d is global and valid. Skipping.\n",
8891 					subprog);
8892 			clear_caller_saved_regs(env, caller->regs);
8893 
8894 			/* All global functions return a 64-bit SCALAR_VALUE */
8895 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8896 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8897 
8898 			/* continue with next insn after call */
8899 			return 0;
8900 		}
8901 	}
8902 
8903 	/* set_callee_state is used for direct subprog calls, but we are
8904 	 * interested in validating only BPF helpers that can call subprogs as
8905 	 * callbacks
8906 	 */
8907 	if (set_callee_state_cb != set_callee_state) {
8908 		if (bpf_pseudo_kfunc_call(insn) &&
8909 		    !is_callback_calling_kfunc(insn->imm)) {
8910 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8911 				func_id_name(insn->imm), insn->imm);
8912 			return -EFAULT;
8913 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8914 			   !is_callback_calling_function(insn->imm)) { /* helper */
8915 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8916 				func_id_name(insn->imm), insn->imm);
8917 			return -EFAULT;
8918 		}
8919 	}
8920 
8921 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8922 	    insn->src_reg == 0 &&
8923 	    insn->imm == BPF_FUNC_timer_set_callback) {
8924 		struct bpf_verifier_state *async_cb;
8925 
8926 		/* there is no real recursion here. timer callbacks are async */
8927 		env->subprog_info[subprog].is_async_cb = true;
8928 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8929 					 *insn_idx, subprog);
8930 		if (!async_cb)
8931 			return -EFAULT;
8932 		callee = async_cb->frame[0];
8933 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8934 
8935 		/* Convert bpf_timer_set_callback() args into timer callback args */
8936 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8937 		if (err)
8938 			return err;
8939 
8940 		clear_caller_saved_regs(env, caller->regs);
8941 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8942 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8943 		/* continue with next insn after call */
8944 		return 0;
8945 	}
8946 
8947 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8948 	if (!callee)
8949 		return -ENOMEM;
8950 	state->frame[state->curframe + 1] = callee;
8951 
8952 	/* callee cannot access r0, r6 - r9 for reading and has to write
8953 	 * into its own stack before reading from it.
8954 	 * callee can read/write into caller's stack
8955 	 */
8956 	init_func_state(env, callee,
8957 			/* remember the callsite, it will be used by bpf_exit */
8958 			*insn_idx /* callsite */,
8959 			state->curframe + 1 /* frameno within this callchain */,
8960 			subprog /* subprog number within this prog */);
8961 
8962 	/* Transfer references to the callee */
8963 	err = copy_reference_state(callee, caller);
8964 	if (err)
8965 		goto err_out;
8966 
8967 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8968 	if (err)
8969 		goto err_out;
8970 
8971 	clear_caller_saved_regs(env, caller->regs);
8972 
8973 	/* only increment it after check_reg_arg() finished */
8974 	state->curframe++;
8975 
8976 	/* and go analyze first insn of the callee */
8977 	*insn_idx = env->subprog_info[subprog].start - 1;
8978 
8979 	if (env->log.level & BPF_LOG_LEVEL) {
8980 		verbose(env, "caller:\n");
8981 		print_verifier_state(env, caller, true);
8982 		verbose(env, "callee:\n");
8983 		print_verifier_state(env, callee, true);
8984 	}
8985 	return 0;
8986 
8987 err_out:
8988 	free_func_state(callee);
8989 	state->frame[state->curframe + 1] = NULL;
8990 	return err;
8991 }
8992 
8993 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8994 				   struct bpf_func_state *caller,
8995 				   struct bpf_func_state *callee)
8996 {
8997 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8998 	 *      void *callback_ctx, u64 flags);
8999 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9000 	 *      void *callback_ctx);
9001 	 */
9002 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9003 
9004 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9005 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9006 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9007 
9008 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9009 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9010 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9011 
9012 	/* pointer to stack or null */
9013 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9014 
9015 	/* unused */
9016 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9017 	return 0;
9018 }
9019 
9020 static int set_callee_state(struct bpf_verifier_env *env,
9021 			    struct bpf_func_state *caller,
9022 			    struct bpf_func_state *callee, int insn_idx)
9023 {
9024 	int i;
9025 
9026 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9027 	 * pointers, which connects us up to the liveness chain
9028 	 */
9029 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9030 		callee->regs[i] = caller->regs[i];
9031 	return 0;
9032 }
9033 
9034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9035 			   int *insn_idx)
9036 {
9037 	int subprog, target_insn;
9038 
9039 	target_insn = *insn_idx + insn->imm + 1;
9040 	subprog = find_subprog(env, target_insn);
9041 	if (subprog < 0) {
9042 		verbose(env, "verifier bug. No program starts at insn %d\n",
9043 			target_insn);
9044 		return -EFAULT;
9045 	}
9046 
9047 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9048 }
9049 
9050 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9051 				       struct bpf_func_state *caller,
9052 				       struct bpf_func_state *callee,
9053 				       int insn_idx)
9054 {
9055 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9056 	struct bpf_map *map;
9057 	int err;
9058 
9059 	if (bpf_map_ptr_poisoned(insn_aux)) {
9060 		verbose(env, "tail_call abusing map_ptr\n");
9061 		return -EINVAL;
9062 	}
9063 
9064 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9065 	if (!map->ops->map_set_for_each_callback_args ||
9066 	    !map->ops->map_for_each_callback) {
9067 		verbose(env, "callback function not allowed for map\n");
9068 		return -ENOTSUPP;
9069 	}
9070 
9071 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9072 	if (err)
9073 		return err;
9074 
9075 	callee->in_callback_fn = true;
9076 	callee->callback_ret_range = tnum_range(0, 1);
9077 	return 0;
9078 }
9079 
9080 static int set_loop_callback_state(struct bpf_verifier_env *env,
9081 				   struct bpf_func_state *caller,
9082 				   struct bpf_func_state *callee,
9083 				   int insn_idx)
9084 {
9085 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9086 	 *	    u64 flags);
9087 	 * callback_fn(u32 index, void *callback_ctx);
9088 	 */
9089 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9090 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9091 
9092 	/* unused */
9093 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9094 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9095 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9096 
9097 	callee->in_callback_fn = true;
9098 	callee->callback_ret_range = tnum_range(0, 1);
9099 	return 0;
9100 }
9101 
9102 static int set_timer_callback_state(struct bpf_verifier_env *env,
9103 				    struct bpf_func_state *caller,
9104 				    struct bpf_func_state *callee,
9105 				    int insn_idx)
9106 {
9107 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9108 
9109 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9110 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9111 	 */
9112 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9113 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9114 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9115 
9116 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9117 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9118 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9119 
9120 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9121 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9122 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9123 
9124 	/* unused */
9125 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9126 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9127 	callee->in_async_callback_fn = true;
9128 	callee->callback_ret_range = tnum_range(0, 1);
9129 	return 0;
9130 }
9131 
9132 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9133 				       struct bpf_func_state *caller,
9134 				       struct bpf_func_state *callee,
9135 				       int insn_idx)
9136 {
9137 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9138 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9139 	 * (callback_fn)(struct task_struct *task,
9140 	 *               struct vm_area_struct *vma, void *callback_ctx);
9141 	 */
9142 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9143 
9144 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9145 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9146 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9147 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9148 
9149 	/* pointer to stack or null */
9150 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9151 
9152 	/* unused */
9153 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9154 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9155 	callee->in_callback_fn = true;
9156 	callee->callback_ret_range = tnum_range(0, 1);
9157 	return 0;
9158 }
9159 
9160 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9161 					   struct bpf_func_state *caller,
9162 					   struct bpf_func_state *callee,
9163 					   int insn_idx)
9164 {
9165 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9166 	 *			  callback_ctx, u64 flags);
9167 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9168 	 */
9169 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9170 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9171 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9172 
9173 	/* unused */
9174 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9175 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9176 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9177 
9178 	callee->in_callback_fn = true;
9179 	callee->callback_ret_range = tnum_range(0, 1);
9180 	return 0;
9181 }
9182 
9183 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9184 					 struct bpf_func_state *caller,
9185 					 struct bpf_func_state *callee,
9186 					 int insn_idx)
9187 {
9188 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9189 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9190 	 *
9191 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9192 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9193 	 * by this point, so look at 'root'
9194 	 */
9195 	struct btf_field *field;
9196 
9197 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9198 				      BPF_RB_ROOT);
9199 	if (!field || !field->graph_root.value_btf_id)
9200 		return -EFAULT;
9201 
9202 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9203 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9204 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9205 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9206 
9207 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9208 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9209 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9210 	callee->in_callback_fn = true;
9211 	callee->callback_ret_range = tnum_range(0, 1);
9212 	return 0;
9213 }
9214 
9215 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9216 
9217 /* Are we currently verifying the callback for a rbtree helper that must
9218  * be called with lock held? If so, no need to complain about unreleased
9219  * lock
9220  */
9221 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9222 {
9223 	struct bpf_verifier_state *state = env->cur_state;
9224 	struct bpf_insn *insn = env->prog->insnsi;
9225 	struct bpf_func_state *callee;
9226 	int kfunc_btf_id;
9227 
9228 	if (!state->curframe)
9229 		return false;
9230 
9231 	callee = state->frame[state->curframe];
9232 
9233 	if (!callee->in_callback_fn)
9234 		return false;
9235 
9236 	kfunc_btf_id = insn[callee->callsite].imm;
9237 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9238 }
9239 
9240 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9241 {
9242 	struct bpf_verifier_state *state = env->cur_state;
9243 	struct bpf_func_state *caller, *callee;
9244 	struct bpf_reg_state *r0;
9245 	int err;
9246 
9247 	callee = state->frame[state->curframe];
9248 	r0 = &callee->regs[BPF_REG_0];
9249 	if (r0->type == PTR_TO_STACK) {
9250 		/* technically it's ok to return caller's stack pointer
9251 		 * (or caller's caller's pointer) back to the caller,
9252 		 * since these pointers are valid. Only current stack
9253 		 * pointer will be invalid as soon as function exits,
9254 		 * but let's be conservative
9255 		 */
9256 		verbose(env, "cannot return stack pointer to the caller\n");
9257 		return -EINVAL;
9258 	}
9259 
9260 	caller = state->frame[state->curframe - 1];
9261 	if (callee->in_callback_fn) {
9262 		/* enforce R0 return value range [0, 1]. */
9263 		struct tnum range = callee->callback_ret_range;
9264 
9265 		if (r0->type != SCALAR_VALUE) {
9266 			verbose(env, "R0 not a scalar value\n");
9267 			return -EACCES;
9268 		}
9269 		if (!tnum_in(range, r0->var_off)) {
9270 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9271 			return -EINVAL;
9272 		}
9273 	} else {
9274 		/* return to the caller whatever r0 had in the callee */
9275 		caller->regs[BPF_REG_0] = *r0;
9276 	}
9277 
9278 	/* callback_fn frame should have released its own additions to parent's
9279 	 * reference state at this point, or check_reference_leak would
9280 	 * complain, hence it must be the same as the caller. There is no need
9281 	 * to copy it back.
9282 	 */
9283 	if (!callee->in_callback_fn) {
9284 		/* Transfer references to the caller */
9285 		err = copy_reference_state(caller, callee);
9286 		if (err)
9287 			return err;
9288 	}
9289 
9290 	*insn_idx = callee->callsite + 1;
9291 	if (env->log.level & BPF_LOG_LEVEL) {
9292 		verbose(env, "returning from callee:\n");
9293 		print_verifier_state(env, callee, true);
9294 		verbose(env, "to caller at %d:\n", *insn_idx);
9295 		print_verifier_state(env, caller, true);
9296 	}
9297 	/* clear everything in the callee */
9298 	free_func_state(callee);
9299 	state->frame[state->curframe--] = NULL;
9300 	return 0;
9301 }
9302 
9303 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9304 				   int func_id,
9305 				   struct bpf_call_arg_meta *meta)
9306 {
9307 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9308 
9309 	if (ret_type != RET_INTEGER)
9310 		return;
9311 
9312 	switch (func_id) {
9313 	case BPF_FUNC_get_stack:
9314 	case BPF_FUNC_get_task_stack:
9315 	case BPF_FUNC_probe_read_str:
9316 	case BPF_FUNC_probe_read_kernel_str:
9317 	case BPF_FUNC_probe_read_user_str:
9318 		ret_reg->smax_value = meta->msize_max_value;
9319 		ret_reg->s32_max_value = meta->msize_max_value;
9320 		ret_reg->smin_value = -MAX_ERRNO;
9321 		ret_reg->s32_min_value = -MAX_ERRNO;
9322 		reg_bounds_sync(ret_reg);
9323 		break;
9324 	case BPF_FUNC_get_smp_processor_id:
9325 		ret_reg->umax_value = nr_cpu_ids - 1;
9326 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9327 		ret_reg->smax_value = nr_cpu_ids - 1;
9328 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9329 		ret_reg->umin_value = 0;
9330 		ret_reg->u32_min_value = 0;
9331 		ret_reg->smin_value = 0;
9332 		ret_reg->s32_min_value = 0;
9333 		reg_bounds_sync(ret_reg);
9334 		break;
9335 	}
9336 }
9337 
9338 static int
9339 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9340 		int func_id, int insn_idx)
9341 {
9342 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9343 	struct bpf_map *map = meta->map_ptr;
9344 
9345 	if (func_id != BPF_FUNC_tail_call &&
9346 	    func_id != BPF_FUNC_map_lookup_elem &&
9347 	    func_id != BPF_FUNC_map_update_elem &&
9348 	    func_id != BPF_FUNC_map_delete_elem &&
9349 	    func_id != BPF_FUNC_map_push_elem &&
9350 	    func_id != BPF_FUNC_map_pop_elem &&
9351 	    func_id != BPF_FUNC_map_peek_elem &&
9352 	    func_id != BPF_FUNC_for_each_map_elem &&
9353 	    func_id != BPF_FUNC_redirect_map &&
9354 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9355 		return 0;
9356 
9357 	if (map == NULL) {
9358 		verbose(env, "kernel subsystem misconfigured verifier\n");
9359 		return -EINVAL;
9360 	}
9361 
9362 	/* In case of read-only, some additional restrictions
9363 	 * need to be applied in order to prevent altering the
9364 	 * state of the map from program side.
9365 	 */
9366 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9367 	    (func_id == BPF_FUNC_map_delete_elem ||
9368 	     func_id == BPF_FUNC_map_update_elem ||
9369 	     func_id == BPF_FUNC_map_push_elem ||
9370 	     func_id == BPF_FUNC_map_pop_elem)) {
9371 		verbose(env, "write into map forbidden\n");
9372 		return -EACCES;
9373 	}
9374 
9375 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9376 		bpf_map_ptr_store(aux, meta->map_ptr,
9377 				  !meta->map_ptr->bypass_spec_v1);
9378 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9379 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9380 				  !meta->map_ptr->bypass_spec_v1);
9381 	return 0;
9382 }
9383 
9384 static int
9385 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9386 		int func_id, int insn_idx)
9387 {
9388 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9389 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9390 	struct bpf_map *map = meta->map_ptr;
9391 	u64 val, max;
9392 	int err;
9393 
9394 	if (func_id != BPF_FUNC_tail_call)
9395 		return 0;
9396 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9397 		verbose(env, "kernel subsystem misconfigured verifier\n");
9398 		return -EINVAL;
9399 	}
9400 
9401 	reg = &regs[BPF_REG_3];
9402 	val = reg->var_off.value;
9403 	max = map->max_entries;
9404 
9405 	if (!(register_is_const(reg) && val < max)) {
9406 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9407 		return 0;
9408 	}
9409 
9410 	err = mark_chain_precision(env, BPF_REG_3);
9411 	if (err)
9412 		return err;
9413 	if (bpf_map_key_unseen(aux))
9414 		bpf_map_key_store(aux, val);
9415 	else if (!bpf_map_key_poisoned(aux) &&
9416 		  bpf_map_key_immediate(aux) != val)
9417 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9418 	return 0;
9419 }
9420 
9421 static int check_reference_leak(struct bpf_verifier_env *env)
9422 {
9423 	struct bpf_func_state *state = cur_func(env);
9424 	bool refs_lingering = false;
9425 	int i;
9426 
9427 	if (state->frameno && !state->in_callback_fn)
9428 		return 0;
9429 
9430 	for (i = 0; i < state->acquired_refs; i++) {
9431 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9432 			continue;
9433 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9434 			state->refs[i].id, state->refs[i].insn_idx);
9435 		refs_lingering = true;
9436 	}
9437 	return refs_lingering ? -EINVAL : 0;
9438 }
9439 
9440 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9441 				   struct bpf_reg_state *regs)
9442 {
9443 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9444 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9445 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9446 	struct bpf_bprintf_data data = {};
9447 	int err, fmt_map_off, num_args;
9448 	u64 fmt_addr;
9449 	char *fmt;
9450 
9451 	/* data must be an array of u64 */
9452 	if (data_len_reg->var_off.value % 8)
9453 		return -EINVAL;
9454 	num_args = data_len_reg->var_off.value / 8;
9455 
9456 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9457 	 * and map_direct_value_addr is set.
9458 	 */
9459 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9460 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9461 						  fmt_map_off);
9462 	if (err) {
9463 		verbose(env, "verifier bug\n");
9464 		return -EFAULT;
9465 	}
9466 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9467 
9468 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9469 	 * can focus on validating the format specifiers.
9470 	 */
9471 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9472 	if (err < 0)
9473 		verbose(env, "Invalid format string\n");
9474 
9475 	return err;
9476 }
9477 
9478 static int check_get_func_ip(struct bpf_verifier_env *env)
9479 {
9480 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9481 	int func_id = BPF_FUNC_get_func_ip;
9482 
9483 	if (type == BPF_PROG_TYPE_TRACING) {
9484 		if (!bpf_prog_has_trampoline(env->prog)) {
9485 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9486 				func_id_name(func_id), func_id);
9487 			return -ENOTSUPP;
9488 		}
9489 		return 0;
9490 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9491 		return 0;
9492 	}
9493 
9494 	verbose(env, "func %s#%d not supported for program type %d\n",
9495 		func_id_name(func_id), func_id, type);
9496 	return -ENOTSUPP;
9497 }
9498 
9499 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9500 {
9501 	return &env->insn_aux_data[env->insn_idx];
9502 }
9503 
9504 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9505 {
9506 	struct bpf_reg_state *regs = cur_regs(env);
9507 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9508 	bool reg_is_null = register_is_null(reg);
9509 
9510 	if (reg_is_null)
9511 		mark_chain_precision(env, BPF_REG_4);
9512 
9513 	return reg_is_null;
9514 }
9515 
9516 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9517 {
9518 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9519 
9520 	if (!state->initialized) {
9521 		state->initialized = 1;
9522 		state->fit_for_inline = loop_flag_is_zero(env);
9523 		state->callback_subprogno = subprogno;
9524 		return;
9525 	}
9526 
9527 	if (!state->fit_for_inline)
9528 		return;
9529 
9530 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9531 				 state->callback_subprogno == subprogno);
9532 }
9533 
9534 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9535 			     int *insn_idx_p)
9536 {
9537 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9538 	const struct bpf_func_proto *fn = NULL;
9539 	enum bpf_return_type ret_type;
9540 	enum bpf_type_flag ret_flag;
9541 	struct bpf_reg_state *regs;
9542 	struct bpf_call_arg_meta meta;
9543 	int insn_idx = *insn_idx_p;
9544 	bool changes_data;
9545 	int i, err, func_id;
9546 
9547 	/* find function prototype */
9548 	func_id = insn->imm;
9549 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9550 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9551 			func_id);
9552 		return -EINVAL;
9553 	}
9554 
9555 	if (env->ops->get_func_proto)
9556 		fn = env->ops->get_func_proto(func_id, env->prog);
9557 	if (!fn) {
9558 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9559 			func_id);
9560 		return -EINVAL;
9561 	}
9562 
9563 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9564 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9565 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9566 		return -EINVAL;
9567 	}
9568 
9569 	if (fn->allowed && !fn->allowed(env->prog)) {
9570 		verbose(env, "helper call is not allowed in probe\n");
9571 		return -EINVAL;
9572 	}
9573 
9574 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9575 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9576 		return -EINVAL;
9577 	}
9578 
9579 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9580 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9581 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9582 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9583 			func_id_name(func_id), func_id);
9584 		return -EINVAL;
9585 	}
9586 
9587 	memset(&meta, 0, sizeof(meta));
9588 	meta.pkt_access = fn->pkt_access;
9589 
9590 	err = check_func_proto(fn, func_id);
9591 	if (err) {
9592 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9593 			func_id_name(func_id), func_id);
9594 		return err;
9595 	}
9596 
9597 	if (env->cur_state->active_rcu_lock) {
9598 		if (fn->might_sleep) {
9599 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9600 				func_id_name(func_id), func_id);
9601 			return -EINVAL;
9602 		}
9603 
9604 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9605 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9606 	}
9607 
9608 	meta.func_id = func_id;
9609 	/* check args */
9610 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9611 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9612 		if (err)
9613 			return err;
9614 	}
9615 
9616 	err = record_func_map(env, &meta, func_id, insn_idx);
9617 	if (err)
9618 		return err;
9619 
9620 	err = record_func_key(env, &meta, func_id, insn_idx);
9621 	if (err)
9622 		return err;
9623 
9624 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9625 	 * is inferred from register state.
9626 	 */
9627 	for (i = 0; i < meta.access_size; i++) {
9628 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9629 				       BPF_WRITE, -1, false, false);
9630 		if (err)
9631 			return err;
9632 	}
9633 
9634 	regs = cur_regs(env);
9635 
9636 	if (meta.release_regno) {
9637 		err = -EINVAL;
9638 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9639 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9640 		 * is safe to do directly.
9641 		 */
9642 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9643 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9644 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9645 				return -EFAULT;
9646 			}
9647 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9648 		} else if (meta.ref_obj_id) {
9649 			err = release_reference(env, meta.ref_obj_id);
9650 		} else if (register_is_null(&regs[meta.release_regno])) {
9651 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9652 			 * released is NULL, which must be > R0.
9653 			 */
9654 			err = 0;
9655 		}
9656 		if (err) {
9657 			verbose(env, "func %s#%d reference has not been acquired before\n",
9658 				func_id_name(func_id), func_id);
9659 			return err;
9660 		}
9661 	}
9662 
9663 	switch (func_id) {
9664 	case BPF_FUNC_tail_call:
9665 		err = check_reference_leak(env);
9666 		if (err) {
9667 			verbose(env, "tail_call would lead to reference leak\n");
9668 			return err;
9669 		}
9670 		break;
9671 	case BPF_FUNC_get_local_storage:
9672 		/* check that flags argument in get_local_storage(map, flags) is 0,
9673 		 * this is required because get_local_storage() can't return an error.
9674 		 */
9675 		if (!register_is_null(&regs[BPF_REG_2])) {
9676 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9677 			return -EINVAL;
9678 		}
9679 		break;
9680 	case BPF_FUNC_for_each_map_elem:
9681 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9682 					set_map_elem_callback_state);
9683 		break;
9684 	case BPF_FUNC_timer_set_callback:
9685 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9686 					set_timer_callback_state);
9687 		break;
9688 	case BPF_FUNC_find_vma:
9689 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9690 					set_find_vma_callback_state);
9691 		break;
9692 	case BPF_FUNC_snprintf:
9693 		err = check_bpf_snprintf_call(env, regs);
9694 		break;
9695 	case BPF_FUNC_loop:
9696 		update_loop_inline_state(env, meta.subprogno);
9697 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9698 					set_loop_callback_state);
9699 		break;
9700 	case BPF_FUNC_dynptr_from_mem:
9701 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9702 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9703 				reg_type_str(env, regs[BPF_REG_1].type));
9704 			return -EACCES;
9705 		}
9706 		break;
9707 	case BPF_FUNC_set_retval:
9708 		if (prog_type == BPF_PROG_TYPE_LSM &&
9709 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9710 			if (!env->prog->aux->attach_func_proto->type) {
9711 				/* Make sure programs that attach to void
9712 				 * hooks don't try to modify return value.
9713 				 */
9714 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9715 				return -EINVAL;
9716 			}
9717 		}
9718 		break;
9719 	case BPF_FUNC_dynptr_data:
9720 	{
9721 		struct bpf_reg_state *reg;
9722 		int id, ref_obj_id;
9723 
9724 		reg = get_dynptr_arg_reg(env, fn, regs);
9725 		if (!reg)
9726 			return -EFAULT;
9727 
9728 
9729 		if (meta.dynptr_id) {
9730 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9731 			return -EFAULT;
9732 		}
9733 		if (meta.ref_obj_id) {
9734 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9735 			return -EFAULT;
9736 		}
9737 
9738 		id = dynptr_id(env, reg);
9739 		if (id < 0) {
9740 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9741 			return id;
9742 		}
9743 
9744 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9745 		if (ref_obj_id < 0) {
9746 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9747 			return ref_obj_id;
9748 		}
9749 
9750 		meta.dynptr_id = id;
9751 		meta.ref_obj_id = ref_obj_id;
9752 
9753 		break;
9754 	}
9755 	case BPF_FUNC_dynptr_write:
9756 	{
9757 		enum bpf_dynptr_type dynptr_type;
9758 		struct bpf_reg_state *reg;
9759 
9760 		reg = get_dynptr_arg_reg(env, fn, regs);
9761 		if (!reg)
9762 			return -EFAULT;
9763 
9764 		dynptr_type = dynptr_get_type(env, reg);
9765 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9766 			return -EFAULT;
9767 
9768 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9769 			/* this will trigger clear_all_pkt_pointers(), which will
9770 			 * invalidate all dynptr slices associated with the skb
9771 			 */
9772 			changes_data = true;
9773 
9774 		break;
9775 	}
9776 	case BPF_FUNC_user_ringbuf_drain:
9777 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9778 					set_user_ringbuf_callback_state);
9779 		break;
9780 	}
9781 
9782 	if (err)
9783 		return err;
9784 
9785 	/* reset caller saved regs */
9786 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9787 		mark_reg_not_init(env, regs, caller_saved[i]);
9788 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9789 	}
9790 
9791 	/* helper call returns 64-bit value. */
9792 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9793 
9794 	/* update return register (already marked as written above) */
9795 	ret_type = fn->ret_type;
9796 	ret_flag = type_flag(ret_type);
9797 
9798 	switch (base_type(ret_type)) {
9799 	case RET_INTEGER:
9800 		/* sets type to SCALAR_VALUE */
9801 		mark_reg_unknown(env, regs, BPF_REG_0);
9802 		break;
9803 	case RET_VOID:
9804 		regs[BPF_REG_0].type = NOT_INIT;
9805 		break;
9806 	case RET_PTR_TO_MAP_VALUE:
9807 		/* There is no offset yet applied, variable or fixed */
9808 		mark_reg_known_zero(env, regs, BPF_REG_0);
9809 		/* remember map_ptr, so that check_map_access()
9810 		 * can check 'value_size' boundary of memory access
9811 		 * to map element returned from bpf_map_lookup_elem()
9812 		 */
9813 		if (meta.map_ptr == NULL) {
9814 			verbose(env,
9815 				"kernel subsystem misconfigured verifier\n");
9816 			return -EINVAL;
9817 		}
9818 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9819 		regs[BPF_REG_0].map_uid = meta.map_uid;
9820 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9821 		if (!type_may_be_null(ret_type) &&
9822 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9823 			regs[BPF_REG_0].id = ++env->id_gen;
9824 		}
9825 		break;
9826 	case RET_PTR_TO_SOCKET:
9827 		mark_reg_known_zero(env, regs, BPF_REG_0);
9828 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9829 		break;
9830 	case RET_PTR_TO_SOCK_COMMON:
9831 		mark_reg_known_zero(env, regs, BPF_REG_0);
9832 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9833 		break;
9834 	case RET_PTR_TO_TCP_SOCK:
9835 		mark_reg_known_zero(env, regs, BPF_REG_0);
9836 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9837 		break;
9838 	case RET_PTR_TO_MEM:
9839 		mark_reg_known_zero(env, regs, BPF_REG_0);
9840 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9841 		regs[BPF_REG_0].mem_size = meta.mem_size;
9842 		break;
9843 	case RET_PTR_TO_MEM_OR_BTF_ID:
9844 	{
9845 		const struct btf_type *t;
9846 
9847 		mark_reg_known_zero(env, regs, BPF_REG_0);
9848 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9849 		if (!btf_type_is_struct(t)) {
9850 			u32 tsize;
9851 			const struct btf_type *ret;
9852 			const char *tname;
9853 
9854 			/* resolve the type size of ksym. */
9855 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9856 			if (IS_ERR(ret)) {
9857 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9858 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9859 					tname, PTR_ERR(ret));
9860 				return -EINVAL;
9861 			}
9862 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9863 			regs[BPF_REG_0].mem_size = tsize;
9864 		} else {
9865 			/* MEM_RDONLY may be carried from ret_flag, but it
9866 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9867 			 * it will confuse the check of PTR_TO_BTF_ID in
9868 			 * check_mem_access().
9869 			 */
9870 			ret_flag &= ~MEM_RDONLY;
9871 
9872 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9873 			regs[BPF_REG_0].btf = meta.ret_btf;
9874 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9875 		}
9876 		break;
9877 	}
9878 	case RET_PTR_TO_BTF_ID:
9879 	{
9880 		struct btf *ret_btf;
9881 		int ret_btf_id;
9882 
9883 		mark_reg_known_zero(env, regs, BPF_REG_0);
9884 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9885 		if (func_id == BPF_FUNC_kptr_xchg) {
9886 			ret_btf = meta.kptr_field->kptr.btf;
9887 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9888 			if (!btf_is_kernel(ret_btf))
9889 				regs[BPF_REG_0].type |= MEM_ALLOC;
9890 		} else {
9891 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9892 				verbose(env, "verifier internal error:");
9893 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9894 					func_id_name(func_id));
9895 				return -EINVAL;
9896 			}
9897 			ret_btf = btf_vmlinux;
9898 			ret_btf_id = *fn->ret_btf_id;
9899 		}
9900 		if (ret_btf_id == 0) {
9901 			verbose(env, "invalid return type %u of func %s#%d\n",
9902 				base_type(ret_type), func_id_name(func_id),
9903 				func_id);
9904 			return -EINVAL;
9905 		}
9906 		regs[BPF_REG_0].btf = ret_btf;
9907 		regs[BPF_REG_0].btf_id = ret_btf_id;
9908 		break;
9909 	}
9910 	default:
9911 		verbose(env, "unknown return type %u of func %s#%d\n",
9912 			base_type(ret_type), func_id_name(func_id), func_id);
9913 		return -EINVAL;
9914 	}
9915 
9916 	if (type_may_be_null(regs[BPF_REG_0].type))
9917 		regs[BPF_REG_0].id = ++env->id_gen;
9918 
9919 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9920 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9921 			func_id_name(func_id), func_id);
9922 		return -EFAULT;
9923 	}
9924 
9925 	if (is_dynptr_ref_function(func_id))
9926 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9927 
9928 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9929 		/* For release_reference() */
9930 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9931 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9932 		int id = acquire_reference_state(env, insn_idx);
9933 
9934 		if (id < 0)
9935 			return id;
9936 		/* For mark_ptr_or_null_reg() */
9937 		regs[BPF_REG_0].id = id;
9938 		/* For release_reference() */
9939 		regs[BPF_REG_0].ref_obj_id = id;
9940 	}
9941 
9942 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9943 
9944 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9945 	if (err)
9946 		return err;
9947 
9948 	if ((func_id == BPF_FUNC_get_stack ||
9949 	     func_id == BPF_FUNC_get_task_stack) &&
9950 	    !env->prog->has_callchain_buf) {
9951 		const char *err_str;
9952 
9953 #ifdef CONFIG_PERF_EVENTS
9954 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9955 		err_str = "cannot get callchain buffer for func %s#%d\n";
9956 #else
9957 		err = -ENOTSUPP;
9958 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9959 #endif
9960 		if (err) {
9961 			verbose(env, err_str, func_id_name(func_id), func_id);
9962 			return err;
9963 		}
9964 
9965 		env->prog->has_callchain_buf = true;
9966 	}
9967 
9968 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9969 		env->prog->call_get_stack = true;
9970 
9971 	if (func_id == BPF_FUNC_get_func_ip) {
9972 		if (check_get_func_ip(env))
9973 			return -ENOTSUPP;
9974 		env->prog->call_get_func_ip = true;
9975 	}
9976 
9977 	if (changes_data)
9978 		clear_all_pkt_pointers(env);
9979 	return 0;
9980 }
9981 
9982 /* mark_btf_func_reg_size() is used when the reg size is determined by
9983  * the BTF func_proto's return value size and argument.
9984  */
9985 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9986 				   size_t reg_size)
9987 {
9988 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9989 
9990 	if (regno == BPF_REG_0) {
9991 		/* Function return value */
9992 		reg->live |= REG_LIVE_WRITTEN;
9993 		reg->subreg_def = reg_size == sizeof(u64) ?
9994 			DEF_NOT_SUBREG : env->insn_idx + 1;
9995 	} else {
9996 		/* Function argument */
9997 		if (reg_size == sizeof(u64)) {
9998 			mark_insn_zext(env, reg);
9999 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10000 		} else {
10001 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10002 		}
10003 	}
10004 }
10005 
10006 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10007 {
10008 	return meta->kfunc_flags & KF_ACQUIRE;
10009 }
10010 
10011 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10012 {
10013 	return meta->kfunc_flags & KF_RELEASE;
10014 }
10015 
10016 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10017 {
10018 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10019 }
10020 
10021 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10022 {
10023 	return meta->kfunc_flags & KF_SLEEPABLE;
10024 }
10025 
10026 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10027 {
10028 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10029 }
10030 
10031 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10032 {
10033 	return meta->kfunc_flags & KF_RCU;
10034 }
10035 
10036 static bool __kfunc_param_match_suffix(const struct btf *btf,
10037 				       const struct btf_param *arg,
10038 				       const char *suffix)
10039 {
10040 	int suffix_len = strlen(suffix), len;
10041 	const char *param_name;
10042 
10043 	/* In the future, this can be ported to use BTF tagging */
10044 	param_name = btf_name_by_offset(btf, arg->name_off);
10045 	if (str_is_empty(param_name))
10046 		return false;
10047 	len = strlen(param_name);
10048 	if (len < suffix_len)
10049 		return false;
10050 	param_name += len - suffix_len;
10051 	return !strncmp(param_name, suffix, suffix_len);
10052 }
10053 
10054 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10055 				  const struct btf_param *arg,
10056 				  const struct bpf_reg_state *reg)
10057 {
10058 	const struct btf_type *t;
10059 
10060 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10061 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10062 		return false;
10063 
10064 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10065 }
10066 
10067 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10068 					const struct btf_param *arg,
10069 					const struct bpf_reg_state *reg)
10070 {
10071 	const struct btf_type *t;
10072 
10073 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10074 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10075 		return false;
10076 
10077 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10078 }
10079 
10080 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10081 {
10082 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10083 }
10084 
10085 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10086 {
10087 	return __kfunc_param_match_suffix(btf, arg, "__k");
10088 }
10089 
10090 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10091 {
10092 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10093 }
10094 
10095 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10096 {
10097 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10098 }
10099 
10100 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10101 {
10102 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10103 }
10104 
10105 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10106 {
10107 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10108 }
10109 
10110 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10111 					  const struct btf_param *arg,
10112 					  const char *name)
10113 {
10114 	int len, target_len = strlen(name);
10115 	const char *param_name;
10116 
10117 	param_name = btf_name_by_offset(btf, arg->name_off);
10118 	if (str_is_empty(param_name))
10119 		return false;
10120 	len = strlen(param_name);
10121 	if (len != target_len)
10122 		return false;
10123 	if (strcmp(param_name, name))
10124 		return false;
10125 
10126 	return true;
10127 }
10128 
10129 enum {
10130 	KF_ARG_DYNPTR_ID,
10131 	KF_ARG_LIST_HEAD_ID,
10132 	KF_ARG_LIST_NODE_ID,
10133 	KF_ARG_RB_ROOT_ID,
10134 	KF_ARG_RB_NODE_ID,
10135 };
10136 
10137 BTF_ID_LIST(kf_arg_btf_ids)
10138 BTF_ID(struct, bpf_dynptr_kern)
10139 BTF_ID(struct, bpf_list_head)
10140 BTF_ID(struct, bpf_list_node)
10141 BTF_ID(struct, bpf_rb_root)
10142 BTF_ID(struct, bpf_rb_node)
10143 
10144 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10145 				    const struct btf_param *arg, int type)
10146 {
10147 	const struct btf_type *t;
10148 	u32 res_id;
10149 
10150 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10151 	if (!t)
10152 		return false;
10153 	if (!btf_type_is_ptr(t))
10154 		return false;
10155 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10156 	if (!t)
10157 		return false;
10158 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10159 }
10160 
10161 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10162 {
10163 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10164 }
10165 
10166 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10167 {
10168 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10169 }
10170 
10171 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10172 {
10173 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10174 }
10175 
10176 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10177 {
10178 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10179 }
10180 
10181 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10182 {
10183 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10184 }
10185 
10186 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10187 				  const struct btf_param *arg)
10188 {
10189 	const struct btf_type *t;
10190 
10191 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10192 	if (!t)
10193 		return false;
10194 
10195 	return true;
10196 }
10197 
10198 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10199 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10200 					const struct btf *btf,
10201 					const struct btf_type *t, int rec)
10202 {
10203 	const struct btf_type *member_type;
10204 	const struct btf_member *member;
10205 	u32 i;
10206 
10207 	if (!btf_type_is_struct(t))
10208 		return false;
10209 
10210 	for_each_member(i, t, member) {
10211 		const struct btf_array *array;
10212 
10213 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10214 		if (btf_type_is_struct(member_type)) {
10215 			if (rec >= 3) {
10216 				verbose(env, "max struct nesting depth exceeded\n");
10217 				return false;
10218 			}
10219 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10220 				return false;
10221 			continue;
10222 		}
10223 		if (btf_type_is_array(member_type)) {
10224 			array = btf_array(member_type);
10225 			if (!array->nelems)
10226 				return false;
10227 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10228 			if (!btf_type_is_scalar(member_type))
10229 				return false;
10230 			continue;
10231 		}
10232 		if (!btf_type_is_scalar(member_type))
10233 			return false;
10234 	}
10235 	return true;
10236 }
10237 
10238 enum kfunc_ptr_arg_type {
10239 	KF_ARG_PTR_TO_CTX,
10240 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10241 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10242 	KF_ARG_PTR_TO_DYNPTR,
10243 	KF_ARG_PTR_TO_ITER,
10244 	KF_ARG_PTR_TO_LIST_HEAD,
10245 	KF_ARG_PTR_TO_LIST_NODE,
10246 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10247 	KF_ARG_PTR_TO_MEM,
10248 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10249 	KF_ARG_PTR_TO_CALLBACK,
10250 	KF_ARG_PTR_TO_RB_ROOT,
10251 	KF_ARG_PTR_TO_RB_NODE,
10252 };
10253 
10254 enum special_kfunc_type {
10255 	KF_bpf_obj_new_impl,
10256 	KF_bpf_obj_drop_impl,
10257 	KF_bpf_refcount_acquire_impl,
10258 	KF_bpf_list_push_front_impl,
10259 	KF_bpf_list_push_back_impl,
10260 	KF_bpf_list_pop_front,
10261 	KF_bpf_list_pop_back,
10262 	KF_bpf_cast_to_kern_ctx,
10263 	KF_bpf_rdonly_cast,
10264 	KF_bpf_rcu_read_lock,
10265 	KF_bpf_rcu_read_unlock,
10266 	KF_bpf_rbtree_remove,
10267 	KF_bpf_rbtree_add_impl,
10268 	KF_bpf_rbtree_first,
10269 	KF_bpf_dynptr_from_skb,
10270 	KF_bpf_dynptr_from_xdp,
10271 	KF_bpf_dynptr_slice,
10272 	KF_bpf_dynptr_slice_rdwr,
10273 	KF_bpf_dynptr_clone,
10274 };
10275 
10276 BTF_SET_START(special_kfunc_set)
10277 BTF_ID(func, bpf_obj_new_impl)
10278 BTF_ID(func, bpf_obj_drop_impl)
10279 BTF_ID(func, bpf_refcount_acquire_impl)
10280 BTF_ID(func, bpf_list_push_front_impl)
10281 BTF_ID(func, bpf_list_push_back_impl)
10282 BTF_ID(func, bpf_list_pop_front)
10283 BTF_ID(func, bpf_list_pop_back)
10284 BTF_ID(func, bpf_cast_to_kern_ctx)
10285 BTF_ID(func, bpf_rdonly_cast)
10286 BTF_ID(func, bpf_rbtree_remove)
10287 BTF_ID(func, bpf_rbtree_add_impl)
10288 BTF_ID(func, bpf_rbtree_first)
10289 BTF_ID(func, bpf_dynptr_from_skb)
10290 BTF_ID(func, bpf_dynptr_from_xdp)
10291 BTF_ID(func, bpf_dynptr_slice)
10292 BTF_ID(func, bpf_dynptr_slice_rdwr)
10293 BTF_ID(func, bpf_dynptr_clone)
10294 BTF_SET_END(special_kfunc_set)
10295 
10296 BTF_ID_LIST(special_kfunc_list)
10297 BTF_ID(func, bpf_obj_new_impl)
10298 BTF_ID(func, bpf_obj_drop_impl)
10299 BTF_ID(func, bpf_refcount_acquire_impl)
10300 BTF_ID(func, bpf_list_push_front_impl)
10301 BTF_ID(func, bpf_list_push_back_impl)
10302 BTF_ID(func, bpf_list_pop_front)
10303 BTF_ID(func, bpf_list_pop_back)
10304 BTF_ID(func, bpf_cast_to_kern_ctx)
10305 BTF_ID(func, bpf_rdonly_cast)
10306 BTF_ID(func, bpf_rcu_read_lock)
10307 BTF_ID(func, bpf_rcu_read_unlock)
10308 BTF_ID(func, bpf_rbtree_remove)
10309 BTF_ID(func, bpf_rbtree_add_impl)
10310 BTF_ID(func, bpf_rbtree_first)
10311 BTF_ID(func, bpf_dynptr_from_skb)
10312 BTF_ID(func, bpf_dynptr_from_xdp)
10313 BTF_ID(func, bpf_dynptr_slice)
10314 BTF_ID(func, bpf_dynptr_slice_rdwr)
10315 BTF_ID(func, bpf_dynptr_clone)
10316 
10317 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10318 {
10319 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10320 	    meta->arg_owning_ref) {
10321 		return false;
10322 	}
10323 
10324 	return meta->kfunc_flags & KF_RET_NULL;
10325 }
10326 
10327 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10328 {
10329 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10330 }
10331 
10332 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10333 {
10334 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10335 }
10336 
10337 static enum kfunc_ptr_arg_type
10338 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10339 		       struct bpf_kfunc_call_arg_meta *meta,
10340 		       const struct btf_type *t, const struct btf_type *ref_t,
10341 		       const char *ref_tname, const struct btf_param *args,
10342 		       int argno, int nargs)
10343 {
10344 	u32 regno = argno + 1;
10345 	struct bpf_reg_state *regs = cur_regs(env);
10346 	struct bpf_reg_state *reg = &regs[regno];
10347 	bool arg_mem_size = false;
10348 
10349 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10350 		return KF_ARG_PTR_TO_CTX;
10351 
10352 	/* In this function, we verify the kfunc's BTF as per the argument type,
10353 	 * leaving the rest of the verification with respect to the register
10354 	 * type to our caller. When a set of conditions hold in the BTF type of
10355 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10356 	 */
10357 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10358 		return KF_ARG_PTR_TO_CTX;
10359 
10360 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10361 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10362 
10363 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10364 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10365 
10366 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10367 		return KF_ARG_PTR_TO_DYNPTR;
10368 
10369 	if (is_kfunc_arg_iter(meta, argno))
10370 		return KF_ARG_PTR_TO_ITER;
10371 
10372 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10373 		return KF_ARG_PTR_TO_LIST_HEAD;
10374 
10375 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10376 		return KF_ARG_PTR_TO_LIST_NODE;
10377 
10378 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10379 		return KF_ARG_PTR_TO_RB_ROOT;
10380 
10381 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10382 		return KF_ARG_PTR_TO_RB_NODE;
10383 
10384 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10385 		if (!btf_type_is_struct(ref_t)) {
10386 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10387 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10388 			return -EINVAL;
10389 		}
10390 		return KF_ARG_PTR_TO_BTF_ID;
10391 	}
10392 
10393 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10394 		return KF_ARG_PTR_TO_CALLBACK;
10395 
10396 
10397 	if (argno + 1 < nargs &&
10398 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10399 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10400 		arg_mem_size = true;
10401 
10402 	/* This is the catch all argument type of register types supported by
10403 	 * check_helper_mem_access. However, we only allow when argument type is
10404 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10405 	 * arg_mem_size is true, the pointer can be void *.
10406 	 */
10407 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10408 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10409 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10410 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10411 		return -EINVAL;
10412 	}
10413 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10414 }
10415 
10416 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10417 					struct bpf_reg_state *reg,
10418 					const struct btf_type *ref_t,
10419 					const char *ref_tname, u32 ref_id,
10420 					struct bpf_kfunc_call_arg_meta *meta,
10421 					int argno)
10422 {
10423 	const struct btf_type *reg_ref_t;
10424 	bool strict_type_match = false;
10425 	const struct btf *reg_btf;
10426 	const char *reg_ref_tname;
10427 	u32 reg_ref_id;
10428 
10429 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10430 		reg_btf = reg->btf;
10431 		reg_ref_id = reg->btf_id;
10432 	} else {
10433 		reg_btf = btf_vmlinux;
10434 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10435 	}
10436 
10437 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10438 	 * or releasing a reference, or are no-cast aliases. We do _not_
10439 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10440 	 * as we want to enable BPF programs to pass types that are bitwise
10441 	 * equivalent without forcing them to explicitly cast with something
10442 	 * like bpf_cast_to_kern_ctx().
10443 	 *
10444 	 * For example, say we had a type like the following:
10445 	 *
10446 	 * struct bpf_cpumask {
10447 	 *	cpumask_t cpumask;
10448 	 *	refcount_t usage;
10449 	 * };
10450 	 *
10451 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10452 	 * to a struct cpumask, so it would be safe to pass a struct
10453 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10454 	 *
10455 	 * The philosophy here is similar to how we allow scalars of different
10456 	 * types to be passed to kfuncs as long as the size is the same. The
10457 	 * only difference here is that we're simply allowing
10458 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10459 	 * resolve types.
10460 	 */
10461 	if (is_kfunc_acquire(meta) ||
10462 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10463 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10464 		strict_type_match = true;
10465 
10466 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10467 
10468 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10469 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10470 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10471 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10472 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10473 			btf_type_str(reg_ref_t), reg_ref_tname);
10474 		return -EINVAL;
10475 	}
10476 	return 0;
10477 }
10478 
10479 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10480 {
10481 	struct bpf_verifier_state *state = env->cur_state;
10482 
10483 	if (!state->active_lock.ptr) {
10484 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10485 		return -EFAULT;
10486 	}
10487 
10488 	if (type_flag(reg->type) & NON_OWN_REF) {
10489 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10490 		return -EFAULT;
10491 	}
10492 
10493 	reg->type |= NON_OWN_REF;
10494 	return 0;
10495 }
10496 
10497 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10498 {
10499 	struct bpf_func_state *state, *unused;
10500 	struct bpf_reg_state *reg;
10501 	int i;
10502 
10503 	state = cur_func(env);
10504 
10505 	if (!ref_obj_id) {
10506 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10507 			     "owning -> non-owning conversion\n");
10508 		return -EFAULT;
10509 	}
10510 
10511 	for (i = 0; i < state->acquired_refs; i++) {
10512 		if (state->refs[i].id != ref_obj_id)
10513 			continue;
10514 
10515 		/* Clear ref_obj_id here so release_reference doesn't clobber
10516 		 * the whole reg
10517 		 */
10518 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10519 			if (reg->ref_obj_id == ref_obj_id) {
10520 				reg->ref_obj_id = 0;
10521 				ref_set_non_owning(env, reg);
10522 			}
10523 		}));
10524 		return 0;
10525 	}
10526 
10527 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10528 	return -EFAULT;
10529 }
10530 
10531 /* Implementation details:
10532  *
10533  * Each register points to some region of memory, which we define as an
10534  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10535  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10536  * allocation. The lock and the data it protects are colocated in the same
10537  * memory region.
10538  *
10539  * Hence, everytime a register holds a pointer value pointing to such
10540  * allocation, the verifier preserves a unique reg->id for it.
10541  *
10542  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10543  * bpf_spin_lock is called.
10544  *
10545  * To enable this, lock state in the verifier captures two values:
10546  *	active_lock.ptr = Register's type specific pointer
10547  *	active_lock.id  = A unique ID for each register pointer value
10548  *
10549  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10550  * supported register types.
10551  *
10552  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10553  * allocated objects is the reg->btf pointer.
10554  *
10555  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10556  * can establish the provenance of the map value statically for each distinct
10557  * lookup into such maps. They always contain a single map value hence unique
10558  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10559  *
10560  * So, in case of global variables, they use array maps with max_entries = 1,
10561  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10562  * into the same map value as max_entries is 1, as described above).
10563  *
10564  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10565  * outer map pointer (in verifier context), but each lookup into an inner map
10566  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10567  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10568  * will get different reg->id assigned to each lookup, hence different
10569  * active_lock.id.
10570  *
10571  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10572  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10573  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10574  */
10575 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10576 {
10577 	void *ptr;
10578 	u32 id;
10579 
10580 	switch ((int)reg->type) {
10581 	case PTR_TO_MAP_VALUE:
10582 		ptr = reg->map_ptr;
10583 		break;
10584 	case PTR_TO_BTF_ID | MEM_ALLOC:
10585 		ptr = reg->btf;
10586 		break;
10587 	default:
10588 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10589 		return -EFAULT;
10590 	}
10591 	id = reg->id;
10592 
10593 	if (!env->cur_state->active_lock.ptr)
10594 		return -EINVAL;
10595 	if (env->cur_state->active_lock.ptr != ptr ||
10596 	    env->cur_state->active_lock.id != id) {
10597 		verbose(env, "held lock and object are not in the same allocation\n");
10598 		return -EINVAL;
10599 	}
10600 	return 0;
10601 }
10602 
10603 static bool is_bpf_list_api_kfunc(u32 btf_id)
10604 {
10605 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10606 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10607 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10608 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10609 }
10610 
10611 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10612 {
10613 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10614 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10615 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10616 }
10617 
10618 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10619 {
10620 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10621 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10622 }
10623 
10624 static bool is_callback_calling_kfunc(u32 btf_id)
10625 {
10626 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10627 }
10628 
10629 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10630 {
10631 	return is_bpf_rbtree_api_kfunc(btf_id);
10632 }
10633 
10634 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10635 					  enum btf_field_type head_field_type,
10636 					  u32 kfunc_btf_id)
10637 {
10638 	bool ret;
10639 
10640 	switch (head_field_type) {
10641 	case BPF_LIST_HEAD:
10642 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10643 		break;
10644 	case BPF_RB_ROOT:
10645 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10646 		break;
10647 	default:
10648 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10649 			btf_field_type_name(head_field_type));
10650 		return false;
10651 	}
10652 
10653 	if (!ret)
10654 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10655 			btf_field_type_name(head_field_type));
10656 	return ret;
10657 }
10658 
10659 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10660 					  enum btf_field_type node_field_type,
10661 					  u32 kfunc_btf_id)
10662 {
10663 	bool ret;
10664 
10665 	switch (node_field_type) {
10666 	case BPF_LIST_NODE:
10667 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10668 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10669 		break;
10670 	case BPF_RB_NODE:
10671 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10672 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10673 		break;
10674 	default:
10675 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10676 			btf_field_type_name(node_field_type));
10677 		return false;
10678 	}
10679 
10680 	if (!ret)
10681 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10682 			btf_field_type_name(node_field_type));
10683 	return ret;
10684 }
10685 
10686 static int
10687 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10688 				   struct bpf_reg_state *reg, u32 regno,
10689 				   struct bpf_kfunc_call_arg_meta *meta,
10690 				   enum btf_field_type head_field_type,
10691 				   struct btf_field **head_field)
10692 {
10693 	const char *head_type_name;
10694 	struct btf_field *field;
10695 	struct btf_record *rec;
10696 	u32 head_off;
10697 
10698 	if (meta->btf != btf_vmlinux) {
10699 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10700 		return -EFAULT;
10701 	}
10702 
10703 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10704 		return -EFAULT;
10705 
10706 	head_type_name = btf_field_type_name(head_field_type);
10707 	if (!tnum_is_const(reg->var_off)) {
10708 		verbose(env,
10709 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10710 			regno, head_type_name);
10711 		return -EINVAL;
10712 	}
10713 
10714 	rec = reg_btf_record(reg);
10715 	head_off = reg->off + reg->var_off.value;
10716 	field = btf_record_find(rec, head_off, head_field_type);
10717 	if (!field) {
10718 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10719 		return -EINVAL;
10720 	}
10721 
10722 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10723 	if (check_reg_allocation_locked(env, reg)) {
10724 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10725 			rec->spin_lock_off, head_type_name);
10726 		return -EINVAL;
10727 	}
10728 
10729 	if (*head_field) {
10730 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10731 		return -EFAULT;
10732 	}
10733 	*head_field = field;
10734 	return 0;
10735 }
10736 
10737 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10738 					   struct bpf_reg_state *reg, u32 regno,
10739 					   struct bpf_kfunc_call_arg_meta *meta)
10740 {
10741 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10742 							  &meta->arg_list_head.field);
10743 }
10744 
10745 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10746 					     struct bpf_reg_state *reg, u32 regno,
10747 					     struct bpf_kfunc_call_arg_meta *meta)
10748 {
10749 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10750 							  &meta->arg_rbtree_root.field);
10751 }
10752 
10753 static int
10754 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10755 				   struct bpf_reg_state *reg, u32 regno,
10756 				   struct bpf_kfunc_call_arg_meta *meta,
10757 				   enum btf_field_type head_field_type,
10758 				   enum btf_field_type node_field_type,
10759 				   struct btf_field **node_field)
10760 {
10761 	const char *node_type_name;
10762 	const struct btf_type *et, *t;
10763 	struct btf_field *field;
10764 	u32 node_off;
10765 
10766 	if (meta->btf != btf_vmlinux) {
10767 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10768 		return -EFAULT;
10769 	}
10770 
10771 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10772 		return -EFAULT;
10773 
10774 	node_type_name = btf_field_type_name(node_field_type);
10775 	if (!tnum_is_const(reg->var_off)) {
10776 		verbose(env,
10777 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10778 			regno, node_type_name);
10779 		return -EINVAL;
10780 	}
10781 
10782 	node_off = reg->off + reg->var_off.value;
10783 	field = reg_find_field_offset(reg, node_off, node_field_type);
10784 	if (!field || field->offset != node_off) {
10785 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10786 		return -EINVAL;
10787 	}
10788 
10789 	field = *node_field;
10790 
10791 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10792 	t = btf_type_by_id(reg->btf, reg->btf_id);
10793 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10794 				  field->graph_root.value_btf_id, true)) {
10795 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10796 			"in struct %s, but arg is at offset=%d in struct %s\n",
10797 			btf_field_type_name(head_field_type),
10798 			btf_field_type_name(node_field_type),
10799 			field->graph_root.node_offset,
10800 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10801 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10802 		return -EINVAL;
10803 	}
10804 	meta->arg_btf = reg->btf;
10805 	meta->arg_btf_id = reg->btf_id;
10806 
10807 	if (node_off != field->graph_root.node_offset) {
10808 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10809 			node_off, btf_field_type_name(node_field_type),
10810 			field->graph_root.node_offset,
10811 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10812 		return -EINVAL;
10813 	}
10814 
10815 	return 0;
10816 }
10817 
10818 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10819 					   struct bpf_reg_state *reg, u32 regno,
10820 					   struct bpf_kfunc_call_arg_meta *meta)
10821 {
10822 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10823 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10824 						  &meta->arg_list_head.field);
10825 }
10826 
10827 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10828 					     struct bpf_reg_state *reg, u32 regno,
10829 					     struct bpf_kfunc_call_arg_meta *meta)
10830 {
10831 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10832 						  BPF_RB_ROOT, BPF_RB_NODE,
10833 						  &meta->arg_rbtree_root.field);
10834 }
10835 
10836 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10837 			    int insn_idx)
10838 {
10839 	const char *func_name = meta->func_name, *ref_tname;
10840 	const struct btf *btf = meta->btf;
10841 	const struct btf_param *args;
10842 	struct btf_record *rec;
10843 	u32 i, nargs;
10844 	int ret;
10845 
10846 	args = (const struct btf_param *)(meta->func_proto + 1);
10847 	nargs = btf_type_vlen(meta->func_proto);
10848 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10849 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10850 			MAX_BPF_FUNC_REG_ARGS);
10851 		return -EINVAL;
10852 	}
10853 
10854 	/* Check that BTF function arguments match actual types that the
10855 	 * verifier sees.
10856 	 */
10857 	for (i = 0; i < nargs; i++) {
10858 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10859 		const struct btf_type *t, *ref_t, *resolve_ret;
10860 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10861 		u32 regno = i + 1, ref_id, type_size;
10862 		bool is_ret_buf_sz = false;
10863 		int kf_arg_type;
10864 
10865 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10866 
10867 		if (is_kfunc_arg_ignore(btf, &args[i]))
10868 			continue;
10869 
10870 		if (btf_type_is_scalar(t)) {
10871 			if (reg->type != SCALAR_VALUE) {
10872 				verbose(env, "R%d is not a scalar\n", regno);
10873 				return -EINVAL;
10874 			}
10875 
10876 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10877 				if (meta->arg_constant.found) {
10878 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10879 					return -EFAULT;
10880 				}
10881 				if (!tnum_is_const(reg->var_off)) {
10882 					verbose(env, "R%d must be a known constant\n", regno);
10883 					return -EINVAL;
10884 				}
10885 				ret = mark_chain_precision(env, regno);
10886 				if (ret < 0)
10887 					return ret;
10888 				meta->arg_constant.found = true;
10889 				meta->arg_constant.value = reg->var_off.value;
10890 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10891 				meta->r0_rdonly = true;
10892 				is_ret_buf_sz = true;
10893 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10894 				is_ret_buf_sz = true;
10895 			}
10896 
10897 			if (is_ret_buf_sz) {
10898 				if (meta->r0_size) {
10899 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10900 					return -EINVAL;
10901 				}
10902 
10903 				if (!tnum_is_const(reg->var_off)) {
10904 					verbose(env, "R%d is not a const\n", regno);
10905 					return -EINVAL;
10906 				}
10907 
10908 				meta->r0_size = reg->var_off.value;
10909 				ret = mark_chain_precision(env, regno);
10910 				if (ret)
10911 					return ret;
10912 			}
10913 			continue;
10914 		}
10915 
10916 		if (!btf_type_is_ptr(t)) {
10917 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10918 			return -EINVAL;
10919 		}
10920 
10921 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10922 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10923 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10924 			return -EACCES;
10925 		}
10926 
10927 		if (reg->ref_obj_id) {
10928 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10929 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10930 					regno, reg->ref_obj_id,
10931 					meta->ref_obj_id);
10932 				return -EFAULT;
10933 			}
10934 			meta->ref_obj_id = reg->ref_obj_id;
10935 			if (is_kfunc_release(meta))
10936 				meta->release_regno = regno;
10937 		}
10938 
10939 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10940 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10941 
10942 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10943 		if (kf_arg_type < 0)
10944 			return kf_arg_type;
10945 
10946 		switch (kf_arg_type) {
10947 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10948 		case KF_ARG_PTR_TO_BTF_ID:
10949 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10950 				break;
10951 
10952 			if (!is_trusted_reg(reg)) {
10953 				if (!is_kfunc_rcu(meta)) {
10954 					verbose(env, "R%d must be referenced or trusted\n", regno);
10955 					return -EINVAL;
10956 				}
10957 				if (!is_rcu_reg(reg)) {
10958 					verbose(env, "R%d must be a rcu pointer\n", regno);
10959 					return -EINVAL;
10960 				}
10961 			}
10962 
10963 			fallthrough;
10964 		case KF_ARG_PTR_TO_CTX:
10965 			/* Trusted arguments have the same offset checks as release arguments */
10966 			arg_type |= OBJ_RELEASE;
10967 			break;
10968 		case KF_ARG_PTR_TO_DYNPTR:
10969 		case KF_ARG_PTR_TO_ITER:
10970 		case KF_ARG_PTR_TO_LIST_HEAD:
10971 		case KF_ARG_PTR_TO_LIST_NODE:
10972 		case KF_ARG_PTR_TO_RB_ROOT:
10973 		case KF_ARG_PTR_TO_RB_NODE:
10974 		case KF_ARG_PTR_TO_MEM:
10975 		case KF_ARG_PTR_TO_MEM_SIZE:
10976 		case KF_ARG_PTR_TO_CALLBACK:
10977 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10978 			/* Trusted by default */
10979 			break;
10980 		default:
10981 			WARN_ON_ONCE(1);
10982 			return -EFAULT;
10983 		}
10984 
10985 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10986 			arg_type |= OBJ_RELEASE;
10987 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10988 		if (ret < 0)
10989 			return ret;
10990 
10991 		switch (kf_arg_type) {
10992 		case KF_ARG_PTR_TO_CTX:
10993 			if (reg->type != PTR_TO_CTX) {
10994 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10995 				return -EINVAL;
10996 			}
10997 
10998 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10999 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11000 				if (ret < 0)
11001 					return -EINVAL;
11002 				meta->ret_btf_id  = ret;
11003 			}
11004 			break;
11005 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11006 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11007 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11008 				return -EINVAL;
11009 			}
11010 			if (!reg->ref_obj_id) {
11011 				verbose(env, "allocated object must be referenced\n");
11012 				return -EINVAL;
11013 			}
11014 			if (meta->btf == btf_vmlinux &&
11015 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11016 				meta->arg_btf = reg->btf;
11017 				meta->arg_btf_id = reg->btf_id;
11018 			}
11019 			break;
11020 		case KF_ARG_PTR_TO_DYNPTR:
11021 		{
11022 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11023 			int clone_ref_obj_id = 0;
11024 
11025 			if (reg->type != PTR_TO_STACK &&
11026 			    reg->type != CONST_PTR_TO_DYNPTR) {
11027 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11028 				return -EINVAL;
11029 			}
11030 
11031 			if (reg->type == CONST_PTR_TO_DYNPTR)
11032 				dynptr_arg_type |= MEM_RDONLY;
11033 
11034 			if (is_kfunc_arg_uninit(btf, &args[i]))
11035 				dynptr_arg_type |= MEM_UNINIT;
11036 
11037 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11038 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11039 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11040 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11041 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11042 				   (dynptr_arg_type & MEM_UNINIT)) {
11043 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11044 
11045 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11046 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11047 					return -EFAULT;
11048 				}
11049 
11050 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11051 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11052 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11053 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11054 					return -EFAULT;
11055 				}
11056 			}
11057 
11058 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11059 			if (ret < 0)
11060 				return ret;
11061 
11062 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11063 				int id = dynptr_id(env, reg);
11064 
11065 				if (id < 0) {
11066 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11067 					return id;
11068 				}
11069 				meta->initialized_dynptr.id = id;
11070 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11071 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11072 			}
11073 
11074 			break;
11075 		}
11076 		case KF_ARG_PTR_TO_ITER:
11077 			ret = process_iter_arg(env, regno, insn_idx, meta);
11078 			if (ret < 0)
11079 				return ret;
11080 			break;
11081 		case KF_ARG_PTR_TO_LIST_HEAD:
11082 			if (reg->type != PTR_TO_MAP_VALUE &&
11083 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11084 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11085 				return -EINVAL;
11086 			}
11087 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11088 				verbose(env, "allocated object must be referenced\n");
11089 				return -EINVAL;
11090 			}
11091 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11092 			if (ret < 0)
11093 				return ret;
11094 			break;
11095 		case KF_ARG_PTR_TO_RB_ROOT:
11096 			if (reg->type != PTR_TO_MAP_VALUE &&
11097 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11098 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11099 				return -EINVAL;
11100 			}
11101 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11102 				verbose(env, "allocated object must be referenced\n");
11103 				return -EINVAL;
11104 			}
11105 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11106 			if (ret < 0)
11107 				return ret;
11108 			break;
11109 		case KF_ARG_PTR_TO_LIST_NODE:
11110 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11111 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11112 				return -EINVAL;
11113 			}
11114 			if (!reg->ref_obj_id) {
11115 				verbose(env, "allocated object must be referenced\n");
11116 				return -EINVAL;
11117 			}
11118 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11119 			if (ret < 0)
11120 				return ret;
11121 			break;
11122 		case KF_ARG_PTR_TO_RB_NODE:
11123 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11124 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11125 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11126 					return -EINVAL;
11127 				}
11128 				if (in_rbtree_lock_required_cb(env)) {
11129 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11130 					return -EINVAL;
11131 				}
11132 			} else {
11133 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11134 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11135 					return -EINVAL;
11136 				}
11137 				if (!reg->ref_obj_id) {
11138 					verbose(env, "allocated object must be referenced\n");
11139 					return -EINVAL;
11140 				}
11141 			}
11142 
11143 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11144 			if (ret < 0)
11145 				return ret;
11146 			break;
11147 		case KF_ARG_PTR_TO_BTF_ID:
11148 			/* Only base_type is checked, further checks are done here */
11149 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11150 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11151 			    !reg2btf_ids[base_type(reg->type)]) {
11152 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11153 				verbose(env, "expected %s or socket\n",
11154 					reg_type_str(env, base_type(reg->type) |
11155 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11156 				return -EINVAL;
11157 			}
11158 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11159 			if (ret < 0)
11160 				return ret;
11161 			break;
11162 		case KF_ARG_PTR_TO_MEM:
11163 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11164 			if (IS_ERR(resolve_ret)) {
11165 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11166 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11167 				return -EINVAL;
11168 			}
11169 			ret = check_mem_reg(env, reg, regno, type_size);
11170 			if (ret < 0)
11171 				return ret;
11172 			break;
11173 		case KF_ARG_PTR_TO_MEM_SIZE:
11174 		{
11175 			struct bpf_reg_state *buff_reg = &regs[regno];
11176 			const struct btf_param *buff_arg = &args[i];
11177 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11178 			const struct btf_param *size_arg = &args[i + 1];
11179 
11180 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11181 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11182 				if (ret < 0) {
11183 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11184 					return ret;
11185 				}
11186 			}
11187 
11188 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11189 				if (meta->arg_constant.found) {
11190 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11191 					return -EFAULT;
11192 				}
11193 				if (!tnum_is_const(size_reg->var_off)) {
11194 					verbose(env, "R%d must be a known constant\n", regno + 1);
11195 					return -EINVAL;
11196 				}
11197 				meta->arg_constant.found = true;
11198 				meta->arg_constant.value = size_reg->var_off.value;
11199 			}
11200 
11201 			/* Skip next '__sz' or '__szk' argument */
11202 			i++;
11203 			break;
11204 		}
11205 		case KF_ARG_PTR_TO_CALLBACK:
11206 			meta->subprogno = reg->subprogno;
11207 			break;
11208 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11209 			if (!type_is_ptr_alloc_obj(reg->type)) {
11210 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11211 				return -EINVAL;
11212 			}
11213 			if (!type_is_non_owning_ref(reg->type))
11214 				meta->arg_owning_ref = true;
11215 
11216 			rec = reg_btf_record(reg);
11217 			if (!rec) {
11218 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11219 				return -EFAULT;
11220 			}
11221 
11222 			if (rec->refcount_off < 0) {
11223 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11224 				return -EINVAL;
11225 			}
11226 			if (rec->refcount_off >= 0) {
11227 				verbose(env, "bpf_refcount_acquire calls are disabled for now\n");
11228 				return -EINVAL;
11229 			}
11230 			meta->arg_btf = reg->btf;
11231 			meta->arg_btf_id = reg->btf_id;
11232 			break;
11233 		}
11234 	}
11235 
11236 	if (is_kfunc_release(meta) && !meta->release_regno) {
11237 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11238 			func_name);
11239 		return -EINVAL;
11240 	}
11241 
11242 	return 0;
11243 }
11244 
11245 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11246 			    struct bpf_insn *insn,
11247 			    struct bpf_kfunc_call_arg_meta *meta,
11248 			    const char **kfunc_name)
11249 {
11250 	const struct btf_type *func, *func_proto;
11251 	u32 func_id, *kfunc_flags;
11252 	const char *func_name;
11253 	struct btf *desc_btf;
11254 
11255 	if (kfunc_name)
11256 		*kfunc_name = NULL;
11257 
11258 	if (!insn->imm)
11259 		return -EINVAL;
11260 
11261 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11262 	if (IS_ERR(desc_btf))
11263 		return PTR_ERR(desc_btf);
11264 
11265 	func_id = insn->imm;
11266 	func = btf_type_by_id(desc_btf, func_id);
11267 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11268 	if (kfunc_name)
11269 		*kfunc_name = func_name;
11270 	func_proto = btf_type_by_id(desc_btf, func->type);
11271 
11272 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11273 	if (!kfunc_flags) {
11274 		return -EACCES;
11275 	}
11276 
11277 	memset(meta, 0, sizeof(*meta));
11278 	meta->btf = desc_btf;
11279 	meta->func_id = func_id;
11280 	meta->kfunc_flags = *kfunc_flags;
11281 	meta->func_proto = func_proto;
11282 	meta->func_name = func_name;
11283 
11284 	return 0;
11285 }
11286 
11287 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11288 			    int *insn_idx_p)
11289 {
11290 	const struct btf_type *t, *ptr_type;
11291 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11292 	struct bpf_reg_state *regs = cur_regs(env);
11293 	const char *func_name, *ptr_type_name;
11294 	bool sleepable, rcu_lock, rcu_unlock;
11295 	struct bpf_kfunc_call_arg_meta meta;
11296 	struct bpf_insn_aux_data *insn_aux;
11297 	int err, insn_idx = *insn_idx_p;
11298 	const struct btf_param *args;
11299 	const struct btf_type *ret_t;
11300 	struct btf *desc_btf;
11301 
11302 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11303 	if (!insn->imm)
11304 		return 0;
11305 
11306 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11307 	if (err == -EACCES && func_name)
11308 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11309 	if (err)
11310 		return err;
11311 	desc_btf = meta.btf;
11312 	insn_aux = &env->insn_aux_data[insn_idx];
11313 
11314 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11315 
11316 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11317 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11318 		return -EACCES;
11319 	}
11320 
11321 	sleepable = is_kfunc_sleepable(&meta);
11322 	if (sleepable && !env->prog->aux->sleepable) {
11323 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11324 		return -EACCES;
11325 	}
11326 
11327 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11328 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11329 
11330 	if (env->cur_state->active_rcu_lock) {
11331 		struct bpf_func_state *state;
11332 		struct bpf_reg_state *reg;
11333 
11334 		if (rcu_lock) {
11335 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11336 			return -EINVAL;
11337 		} else if (rcu_unlock) {
11338 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11339 				if (reg->type & MEM_RCU) {
11340 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11341 					reg->type |= PTR_UNTRUSTED;
11342 				}
11343 			}));
11344 			env->cur_state->active_rcu_lock = false;
11345 		} else if (sleepable) {
11346 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11347 			return -EACCES;
11348 		}
11349 	} else if (rcu_lock) {
11350 		env->cur_state->active_rcu_lock = true;
11351 	} else if (rcu_unlock) {
11352 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11353 		return -EINVAL;
11354 	}
11355 
11356 	/* Check the arguments */
11357 	err = check_kfunc_args(env, &meta, insn_idx);
11358 	if (err < 0)
11359 		return err;
11360 	/* In case of release function, we get register number of refcounted
11361 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11362 	 */
11363 	if (meta.release_regno) {
11364 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11365 		if (err) {
11366 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11367 				func_name, meta.func_id);
11368 			return err;
11369 		}
11370 	}
11371 
11372 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11373 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11374 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11375 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11376 		insn_aux->insert_off = regs[BPF_REG_2].off;
11377 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11378 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11379 		if (err) {
11380 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11381 				func_name, meta.func_id);
11382 			return err;
11383 		}
11384 
11385 		err = release_reference(env, release_ref_obj_id);
11386 		if (err) {
11387 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11388 				func_name, meta.func_id);
11389 			return err;
11390 		}
11391 	}
11392 
11393 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11394 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11395 					set_rbtree_add_callback_state);
11396 		if (err) {
11397 			verbose(env, "kfunc %s#%d failed callback verification\n",
11398 				func_name, meta.func_id);
11399 			return err;
11400 		}
11401 	}
11402 
11403 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11404 		mark_reg_not_init(env, regs, caller_saved[i]);
11405 
11406 	/* Check return type */
11407 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11408 
11409 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11410 		/* Only exception is bpf_obj_new_impl */
11411 		if (meta.btf != btf_vmlinux ||
11412 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11413 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11414 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11415 			return -EINVAL;
11416 		}
11417 	}
11418 
11419 	if (btf_type_is_scalar(t)) {
11420 		mark_reg_unknown(env, regs, BPF_REG_0);
11421 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11422 	} else if (btf_type_is_ptr(t)) {
11423 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11424 
11425 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11426 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11427 				struct btf *ret_btf;
11428 				u32 ret_btf_id;
11429 
11430 				if (unlikely(!bpf_global_ma_set))
11431 					return -ENOMEM;
11432 
11433 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11434 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11435 					return -EINVAL;
11436 				}
11437 
11438 				ret_btf = env->prog->aux->btf;
11439 				ret_btf_id = meta.arg_constant.value;
11440 
11441 				/* This may be NULL due to user not supplying a BTF */
11442 				if (!ret_btf) {
11443 					verbose(env, "bpf_obj_new requires prog BTF\n");
11444 					return -EINVAL;
11445 				}
11446 
11447 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11448 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11449 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11450 					return -EINVAL;
11451 				}
11452 
11453 				mark_reg_known_zero(env, regs, BPF_REG_0);
11454 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11455 				regs[BPF_REG_0].btf = ret_btf;
11456 				regs[BPF_REG_0].btf_id = ret_btf_id;
11457 
11458 				insn_aux->obj_new_size = ret_t->size;
11459 				insn_aux->kptr_struct_meta =
11460 					btf_find_struct_meta(ret_btf, ret_btf_id);
11461 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11462 				mark_reg_known_zero(env, regs, BPF_REG_0);
11463 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11464 				regs[BPF_REG_0].btf = meta.arg_btf;
11465 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11466 
11467 				insn_aux->kptr_struct_meta =
11468 					btf_find_struct_meta(meta.arg_btf,
11469 							     meta.arg_btf_id);
11470 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11471 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11472 				struct btf_field *field = meta.arg_list_head.field;
11473 
11474 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11475 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11476 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11477 				struct btf_field *field = meta.arg_rbtree_root.field;
11478 
11479 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11480 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11481 				mark_reg_known_zero(env, regs, BPF_REG_0);
11482 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11483 				regs[BPF_REG_0].btf = desc_btf;
11484 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11485 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11486 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11487 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11488 					verbose(env,
11489 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11490 					return -EINVAL;
11491 				}
11492 
11493 				mark_reg_known_zero(env, regs, BPF_REG_0);
11494 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11495 				regs[BPF_REG_0].btf = desc_btf;
11496 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11497 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11498 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11499 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11500 
11501 				mark_reg_known_zero(env, regs, BPF_REG_0);
11502 
11503 				if (!meta.arg_constant.found) {
11504 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11505 					return -EFAULT;
11506 				}
11507 
11508 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11509 
11510 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11511 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11512 
11513 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11514 					regs[BPF_REG_0].type |= MEM_RDONLY;
11515 				} else {
11516 					/* this will set env->seen_direct_write to true */
11517 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11518 						verbose(env, "the prog does not allow writes to packet data\n");
11519 						return -EINVAL;
11520 					}
11521 				}
11522 
11523 				if (!meta.initialized_dynptr.id) {
11524 					verbose(env, "verifier internal error: no dynptr id\n");
11525 					return -EFAULT;
11526 				}
11527 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11528 
11529 				/* we don't need to set BPF_REG_0's ref obj id
11530 				 * because packet slices are not refcounted (see
11531 				 * dynptr_type_refcounted)
11532 				 */
11533 			} else {
11534 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11535 					meta.func_name);
11536 				return -EFAULT;
11537 			}
11538 		} else if (!__btf_type_is_struct(ptr_type)) {
11539 			if (!meta.r0_size) {
11540 				__u32 sz;
11541 
11542 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11543 					meta.r0_size = sz;
11544 					meta.r0_rdonly = true;
11545 				}
11546 			}
11547 			if (!meta.r0_size) {
11548 				ptr_type_name = btf_name_by_offset(desc_btf,
11549 								   ptr_type->name_off);
11550 				verbose(env,
11551 					"kernel function %s returns pointer type %s %s is not supported\n",
11552 					func_name,
11553 					btf_type_str(ptr_type),
11554 					ptr_type_name);
11555 				return -EINVAL;
11556 			}
11557 
11558 			mark_reg_known_zero(env, regs, BPF_REG_0);
11559 			regs[BPF_REG_0].type = PTR_TO_MEM;
11560 			regs[BPF_REG_0].mem_size = meta.r0_size;
11561 
11562 			if (meta.r0_rdonly)
11563 				regs[BPF_REG_0].type |= MEM_RDONLY;
11564 
11565 			/* Ensures we don't access the memory after a release_reference() */
11566 			if (meta.ref_obj_id)
11567 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11568 		} else {
11569 			mark_reg_known_zero(env, regs, BPF_REG_0);
11570 			regs[BPF_REG_0].btf = desc_btf;
11571 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11572 			regs[BPF_REG_0].btf_id = ptr_type_id;
11573 		}
11574 
11575 		if (is_kfunc_ret_null(&meta)) {
11576 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11577 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11578 			regs[BPF_REG_0].id = ++env->id_gen;
11579 		}
11580 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11581 		if (is_kfunc_acquire(&meta)) {
11582 			int id = acquire_reference_state(env, insn_idx);
11583 
11584 			if (id < 0)
11585 				return id;
11586 			if (is_kfunc_ret_null(&meta))
11587 				regs[BPF_REG_0].id = id;
11588 			regs[BPF_REG_0].ref_obj_id = id;
11589 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11590 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11591 		}
11592 
11593 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11594 			regs[BPF_REG_0].id = ++env->id_gen;
11595 	} else if (btf_type_is_void(t)) {
11596 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11597 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11598 				insn_aux->kptr_struct_meta =
11599 					btf_find_struct_meta(meta.arg_btf,
11600 							     meta.arg_btf_id);
11601 			}
11602 		}
11603 	}
11604 
11605 	nargs = btf_type_vlen(meta.func_proto);
11606 	args = (const struct btf_param *)(meta.func_proto + 1);
11607 	for (i = 0; i < nargs; i++) {
11608 		u32 regno = i + 1;
11609 
11610 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11611 		if (btf_type_is_ptr(t))
11612 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11613 		else
11614 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11615 			mark_btf_func_reg_size(env, regno, t->size);
11616 	}
11617 
11618 	if (is_iter_next_kfunc(&meta)) {
11619 		err = process_iter_next_call(env, insn_idx, &meta);
11620 		if (err)
11621 			return err;
11622 	}
11623 
11624 	return 0;
11625 }
11626 
11627 static bool signed_add_overflows(s64 a, s64 b)
11628 {
11629 	/* Do the add in u64, where overflow is well-defined */
11630 	s64 res = (s64)((u64)a + (u64)b);
11631 
11632 	if (b < 0)
11633 		return res > a;
11634 	return res < a;
11635 }
11636 
11637 static bool signed_add32_overflows(s32 a, s32 b)
11638 {
11639 	/* Do the add in u32, where overflow is well-defined */
11640 	s32 res = (s32)((u32)a + (u32)b);
11641 
11642 	if (b < 0)
11643 		return res > a;
11644 	return res < a;
11645 }
11646 
11647 static bool signed_sub_overflows(s64 a, s64 b)
11648 {
11649 	/* Do the sub in u64, where overflow is well-defined */
11650 	s64 res = (s64)((u64)a - (u64)b);
11651 
11652 	if (b < 0)
11653 		return res < a;
11654 	return res > a;
11655 }
11656 
11657 static bool signed_sub32_overflows(s32 a, s32 b)
11658 {
11659 	/* Do the sub in u32, where overflow is well-defined */
11660 	s32 res = (s32)((u32)a - (u32)b);
11661 
11662 	if (b < 0)
11663 		return res < a;
11664 	return res > a;
11665 }
11666 
11667 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11668 				  const struct bpf_reg_state *reg,
11669 				  enum bpf_reg_type type)
11670 {
11671 	bool known = tnum_is_const(reg->var_off);
11672 	s64 val = reg->var_off.value;
11673 	s64 smin = reg->smin_value;
11674 
11675 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11676 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11677 			reg_type_str(env, type), val);
11678 		return false;
11679 	}
11680 
11681 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11682 		verbose(env, "%s pointer offset %d is not allowed\n",
11683 			reg_type_str(env, type), reg->off);
11684 		return false;
11685 	}
11686 
11687 	if (smin == S64_MIN) {
11688 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11689 			reg_type_str(env, type));
11690 		return false;
11691 	}
11692 
11693 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11694 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11695 			smin, reg_type_str(env, type));
11696 		return false;
11697 	}
11698 
11699 	return true;
11700 }
11701 
11702 enum {
11703 	REASON_BOUNDS	= -1,
11704 	REASON_TYPE	= -2,
11705 	REASON_PATHS	= -3,
11706 	REASON_LIMIT	= -4,
11707 	REASON_STACK	= -5,
11708 };
11709 
11710 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11711 			      u32 *alu_limit, bool mask_to_left)
11712 {
11713 	u32 max = 0, ptr_limit = 0;
11714 
11715 	switch (ptr_reg->type) {
11716 	case PTR_TO_STACK:
11717 		/* Offset 0 is out-of-bounds, but acceptable start for the
11718 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11719 		 * offset where we would need to deal with min/max bounds is
11720 		 * currently prohibited for unprivileged.
11721 		 */
11722 		max = MAX_BPF_STACK + mask_to_left;
11723 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11724 		break;
11725 	case PTR_TO_MAP_VALUE:
11726 		max = ptr_reg->map_ptr->value_size;
11727 		ptr_limit = (mask_to_left ?
11728 			     ptr_reg->smin_value :
11729 			     ptr_reg->umax_value) + ptr_reg->off;
11730 		break;
11731 	default:
11732 		return REASON_TYPE;
11733 	}
11734 
11735 	if (ptr_limit >= max)
11736 		return REASON_LIMIT;
11737 	*alu_limit = ptr_limit;
11738 	return 0;
11739 }
11740 
11741 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11742 				    const struct bpf_insn *insn)
11743 {
11744 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11745 }
11746 
11747 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11748 				       u32 alu_state, u32 alu_limit)
11749 {
11750 	/* If we arrived here from different branches with different
11751 	 * state or limits to sanitize, then this won't work.
11752 	 */
11753 	if (aux->alu_state &&
11754 	    (aux->alu_state != alu_state ||
11755 	     aux->alu_limit != alu_limit))
11756 		return REASON_PATHS;
11757 
11758 	/* Corresponding fixup done in do_misc_fixups(). */
11759 	aux->alu_state = alu_state;
11760 	aux->alu_limit = alu_limit;
11761 	return 0;
11762 }
11763 
11764 static int sanitize_val_alu(struct bpf_verifier_env *env,
11765 			    struct bpf_insn *insn)
11766 {
11767 	struct bpf_insn_aux_data *aux = cur_aux(env);
11768 
11769 	if (can_skip_alu_sanitation(env, insn))
11770 		return 0;
11771 
11772 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11773 }
11774 
11775 static bool sanitize_needed(u8 opcode)
11776 {
11777 	return opcode == BPF_ADD || opcode == BPF_SUB;
11778 }
11779 
11780 struct bpf_sanitize_info {
11781 	struct bpf_insn_aux_data aux;
11782 	bool mask_to_left;
11783 };
11784 
11785 static struct bpf_verifier_state *
11786 sanitize_speculative_path(struct bpf_verifier_env *env,
11787 			  const struct bpf_insn *insn,
11788 			  u32 next_idx, u32 curr_idx)
11789 {
11790 	struct bpf_verifier_state *branch;
11791 	struct bpf_reg_state *regs;
11792 
11793 	branch = push_stack(env, next_idx, curr_idx, true);
11794 	if (branch && insn) {
11795 		regs = branch->frame[branch->curframe]->regs;
11796 		if (BPF_SRC(insn->code) == BPF_K) {
11797 			mark_reg_unknown(env, regs, insn->dst_reg);
11798 		} else if (BPF_SRC(insn->code) == BPF_X) {
11799 			mark_reg_unknown(env, regs, insn->dst_reg);
11800 			mark_reg_unknown(env, regs, insn->src_reg);
11801 		}
11802 	}
11803 	return branch;
11804 }
11805 
11806 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11807 			    struct bpf_insn *insn,
11808 			    const struct bpf_reg_state *ptr_reg,
11809 			    const struct bpf_reg_state *off_reg,
11810 			    struct bpf_reg_state *dst_reg,
11811 			    struct bpf_sanitize_info *info,
11812 			    const bool commit_window)
11813 {
11814 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11815 	struct bpf_verifier_state *vstate = env->cur_state;
11816 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11817 	bool off_is_neg = off_reg->smin_value < 0;
11818 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11819 	u8 opcode = BPF_OP(insn->code);
11820 	u32 alu_state, alu_limit;
11821 	struct bpf_reg_state tmp;
11822 	bool ret;
11823 	int err;
11824 
11825 	if (can_skip_alu_sanitation(env, insn))
11826 		return 0;
11827 
11828 	/* We already marked aux for masking from non-speculative
11829 	 * paths, thus we got here in the first place. We only care
11830 	 * to explore bad access from here.
11831 	 */
11832 	if (vstate->speculative)
11833 		goto do_sim;
11834 
11835 	if (!commit_window) {
11836 		if (!tnum_is_const(off_reg->var_off) &&
11837 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11838 			return REASON_BOUNDS;
11839 
11840 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11841 				     (opcode == BPF_SUB && !off_is_neg);
11842 	}
11843 
11844 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11845 	if (err < 0)
11846 		return err;
11847 
11848 	if (commit_window) {
11849 		/* In commit phase we narrow the masking window based on
11850 		 * the observed pointer move after the simulated operation.
11851 		 */
11852 		alu_state = info->aux.alu_state;
11853 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11854 	} else {
11855 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11856 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11857 		alu_state |= ptr_is_dst_reg ?
11858 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11859 
11860 		/* Limit pruning on unknown scalars to enable deep search for
11861 		 * potential masking differences from other program paths.
11862 		 */
11863 		if (!off_is_imm)
11864 			env->explore_alu_limits = true;
11865 	}
11866 
11867 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11868 	if (err < 0)
11869 		return err;
11870 do_sim:
11871 	/* If we're in commit phase, we're done here given we already
11872 	 * pushed the truncated dst_reg into the speculative verification
11873 	 * stack.
11874 	 *
11875 	 * Also, when register is a known constant, we rewrite register-based
11876 	 * operation to immediate-based, and thus do not need masking (and as
11877 	 * a consequence, do not need to simulate the zero-truncation either).
11878 	 */
11879 	if (commit_window || off_is_imm)
11880 		return 0;
11881 
11882 	/* Simulate and find potential out-of-bounds access under
11883 	 * speculative execution from truncation as a result of
11884 	 * masking when off was not within expected range. If off
11885 	 * sits in dst, then we temporarily need to move ptr there
11886 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11887 	 * for cases where we use K-based arithmetic in one direction
11888 	 * and truncated reg-based in the other in order to explore
11889 	 * bad access.
11890 	 */
11891 	if (!ptr_is_dst_reg) {
11892 		tmp = *dst_reg;
11893 		copy_register_state(dst_reg, ptr_reg);
11894 	}
11895 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11896 					env->insn_idx);
11897 	if (!ptr_is_dst_reg && ret)
11898 		*dst_reg = tmp;
11899 	return !ret ? REASON_STACK : 0;
11900 }
11901 
11902 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11903 {
11904 	struct bpf_verifier_state *vstate = env->cur_state;
11905 
11906 	/* If we simulate paths under speculation, we don't update the
11907 	 * insn as 'seen' such that when we verify unreachable paths in
11908 	 * the non-speculative domain, sanitize_dead_code() can still
11909 	 * rewrite/sanitize them.
11910 	 */
11911 	if (!vstate->speculative)
11912 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11913 }
11914 
11915 static int sanitize_err(struct bpf_verifier_env *env,
11916 			const struct bpf_insn *insn, int reason,
11917 			const struct bpf_reg_state *off_reg,
11918 			const struct bpf_reg_state *dst_reg)
11919 {
11920 	static const char *err = "pointer arithmetic with it prohibited for !root";
11921 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11922 	u32 dst = insn->dst_reg, src = insn->src_reg;
11923 
11924 	switch (reason) {
11925 	case REASON_BOUNDS:
11926 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11927 			off_reg == dst_reg ? dst : src, err);
11928 		break;
11929 	case REASON_TYPE:
11930 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11931 			off_reg == dst_reg ? src : dst, err);
11932 		break;
11933 	case REASON_PATHS:
11934 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11935 			dst, op, err);
11936 		break;
11937 	case REASON_LIMIT:
11938 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11939 			dst, op, err);
11940 		break;
11941 	case REASON_STACK:
11942 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11943 			dst, err);
11944 		break;
11945 	default:
11946 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11947 			reason);
11948 		break;
11949 	}
11950 
11951 	return -EACCES;
11952 }
11953 
11954 /* check that stack access falls within stack limits and that 'reg' doesn't
11955  * have a variable offset.
11956  *
11957  * Variable offset is prohibited for unprivileged mode for simplicity since it
11958  * requires corresponding support in Spectre masking for stack ALU.  See also
11959  * retrieve_ptr_limit().
11960  *
11961  *
11962  * 'off' includes 'reg->off'.
11963  */
11964 static int check_stack_access_for_ptr_arithmetic(
11965 				struct bpf_verifier_env *env,
11966 				int regno,
11967 				const struct bpf_reg_state *reg,
11968 				int off)
11969 {
11970 	if (!tnum_is_const(reg->var_off)) {
11971 		char tn_buf[48];
11972 
11973 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11974 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11975 			regno, tn_buf, off);
11976 		return -EACCES;
11977 	}
11978 
11979 	if (off >= 0 || off < -MAX_BPF_STACK) {
11980 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11981 			"prohibited for !root; off=%d\n", regno, off);
11982 		return -EACCES;
11983 	}
11984 
11985 	return 0;
11986 }
11987 
11988 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11989 				 const struct bpf_insn *insn,
11990 				 const struct bpf_reg_state *dst_reg)
11991 {
11992 	u32 dst = insn->dst_reg;
11993 
11994 	/* For unprivileged we require that resulting offset must be in bounds
11995 	 * in order to be able to sanitize access later on.
11996 	 */
11997 	if (env->bypass_spec_v1)
11998 		return 0;
11999 
12000 	switch (dst_reg->type) {
12001 	case PTR_TO_STACK:
12002 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12003 					dst_reg->off + dst_reg->var_off.value))
12004 			return -EACCES;
12005 		break;
12006 	case PTR_TO_MAP_VALUE:
12007 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12008 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12009 				"prohibited for !root\n", dst);
12010 			return -EACCES;
12011 		}
12012 		break;
12013 	default:
12014 		break;
12015 	}
12016 
12017 	return 0;
12018 }
12019 
12020 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12021  * Caller should also handle BPF_MOV case separately.
12022  * If we return -EACCES, caller may want to try again treating pointer as a
12023  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12024  */
12025 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12026 				   struct bpf_insn *insn,
12027 				   const struct bpf_reg_state *ptr_reg,
12028 				   const struct bpf_reg_state *off_reg)
12029 {
12030 	struct bpf_verifier_state *vstate = env->cur_state;
12031 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12032 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12033 	bool known = tnum_is_const(off_reg->var_off);
12034 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12035 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12036 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12037 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12038 	struct bpf_sanitize_info info = {};
12039 	u8 opcode = BPF_OP(insn->code);
12040 	u32 dst = insn->dst_reg;
12041 	int ret;
12042 
12043 	dst_reg = &regs[dst];
12044 
12045 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12046 	    smin_val > smax_val || umin_val > umax_val) {
12047 		/* Taint dst register if offset had invalid bounds derived from
12048 		 * e.g. dead branches.
12049 		 */
12050 		__mark_reg_unknown(env, dst_reg);
12051 		return 0;
12052 	}
12053 
12054 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12055 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12056 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12057 			__mark_reg_unknown(env, dst_reg);
12058 			return 0;
12059 		}
12060 
12061 		verbose(env,
12062 			"R%d 32-bit pointer arithmetic prohibited\n",
12063 			dst);
12064 		return -EACCES;
12065 	}
12066 
12067 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12068 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12069 			dst, reg_type_str(env, ptr_reg->type));
12070 		return -EACCES;
12071 	}
12072 
12073 	switch (base_type(ptr_reg->type)) {
12074 	case CONST_PTR_TO_MAP:
12075 		/* smin_val represents the known value */
12076 		if (known && smin_val == 0 && opcode == BPF_ADD)
12077 			break;
12078 		fallthrough;
12079 	case PTR_TO_PACKET_END:
12080 	case PTR_TO_SOCKET:
12081 	case PTR_TO_SOCK_COMMON:
12082 	case PTR_TO_TCP_SOCK:
12083 	case PTR_TO_XDP_SOCK:
12084 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12085 			dst, reg_type_str(env, ptr_reg->type));
12086 		return -EACCES;
12087 	default:
12088 		break;
12089 	}
12090 
12091 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12092 	 * The id may be overwritten later if we create a new variable offset.
12093 	 */
12094 	dst_reg->type = ptr_reg->type;
12095 	dst_reg->id = ptr_reg->id;
12096 
12097 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12098 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12099 		return -EINVAL;
12100 
12101 	/* pointer types do not carry 32-bit bounds at the moment. */
12102 	__mark_reg32_unbounded(dst_reg);
12103 
12104 	if (sanitize_needed(opcode)) {
12105 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12106 				       &info, false);
12107 		if (ret < 0)
12108 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12109 	}
12110 
12111 	switch (opcode) {
12112 	case BPF_ADD:
12113 		/* We can take a fixed offset as long as it doesn't overflow
12114 		 * the s32 'off' field
12115 		 */
12116 		if (known && (ptr_reg->off + smin_val ==
12117 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12118 			/* pointer += K.  Accumulate it into fixed offset */
12119 			dst_reg->smin_value = smin_ptr;
12120 			dst_reg->smax_value = smax_ptr;
12121 			dst_reg->umin_value = umin_ptr;
12122 			dst_reg->umax_value = umax_ptr;
12123 			dst_reg->var_off = ptr_reg->var_off;
12124 			dst_reg->off = ptr_reg->off + smin_val;
12125 			dst_reg->raw = ptr_reg->raw;
12126 			break;
12127 		}
12128 		/* A new variable offset is created.  Note that off_reg->off
12129 		 * == 0, since it's a scalar.
12130 		 * dst_reg gets the pointer type and since some positive
12131 		 * integer value was added to the pointer, give it a new 'id'
12132 		 * if it's a PTR_TO_PACKET.
12133 		 * this creates a new 'base' pointer, off_reg (variable) gets
12134 		 * added into the variable offset, and we copy the fixed offset
12135 		 * from ptr_reg.
12136 		 */
12137 		if (signed_add_overflows(smin_ptr, smin_val) ||
12138 		    signed_add_overflows(smax_ptr, smax_val)) {
12139 			dst_reg->smin_value = S64_MIN;
12140 			dst_reg->smax_value = S64_MAX;
12141 		} else {
12142 			dst_reg->smin_value = smin_ptr + smin_val;
12143 			dst_reg->smax_value = smax_ptr + smax_val;
12144 		}
12145 		if (umin_ptr + umin_val < umin_ptr ||
12146 		    umax_ptr + umax_val < umax_ptr) {
12147 			dst_reg->umin_value = 0;
12148 			dst_reg->umax_value = U64_MAX;
12149 		} else {
12150 			dst_reg->umin_value = umin_ptr + umin_val;
12151 			dst_reg->umax_value = umax_ptr + umax_val;
12152 		}
12153 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12154 		dst_reg->off = ptr_reg->off;
12155 		dst_reg->raw = ptr_reg->raw;
12156 		if (reg_is_pkt_pointer(ptr_reg)) {
12157 			dst_reg->id = ++env->id_gen;
12158 			/* something was added to pkt_ptr, set range to zero */
12159 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12160 		}
12161 		break;
12162 	case BPF_SUB:
12163 		if (dst_reg == off_reg) {
12164 			/* scalar -= pointer.  Creates an unknown scalar */
12165 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12166 				dst);
12167 			return -EACCES;
12168 		}
12169 		/* We don't allow subtraction from FP, because (according to
12170 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12171 		 * be able to deal with it.
12172 		 */
12173 		if (ptr_reg->type == PTR_TO_STACK) {
12174 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12175 				dst);
12176 			return -EACCES;
12177 		}
12178 		if (known && (ptr_reg->off - smin_val ==
12179 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12180 			/* pointer -= K.  Subtract it from fixed offset */
12181 			dst_reg->smin_value = smin_ptr;
12182 			dst_reg->smax_value = smax_ptr;
12183 			dst_reg->umin_value = umin_ptr;
12184 			dst_reg->umax_value = umax_ptr;
12185 			dst_reg->var_off = ptr_reg->var_off;
12186 			dst_reg->id = ptr_reg->id;
12187 			dst_reg->off = ptr_reg->off - smin_val;
12188 			dst_reg->raw = ptr_reg->raw;
12189 			break;
12190 		}
12191 		/* A new variable offset is created.  If the subtrahend is known
12192 		 * nonnegative, then any reg->range we had before is still good.
12193 		 */
12194 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12195 		    signed_sub_overflows(smax_ptr, smin_val)) {
12196 			/* Overflow possible, we know nothing */
12197 			dst_reg->smin_value = S64_MIN;
12198 			dst_reg->smax_value = S64_MAX;
12199 		} else {
12200 			dst_reg->smin_value = smin_ptr - smax_val;
12201 			dst_reg->smax_value = smax_ptr - smin_val;
12202 		}
12203 		if (umin_ptr < umax_val) {
12204 			/* Overflow possible, we know nothing */
12205 			dst_reg->umin_value = 0;
12206 			dst_reg->umax_value = U64_MAX;
12207 		} else {
12208 			/* Cannot overflow (as long as bounds are consistent) */
12209 			dst_reg->umin_value = umin_ptr - umax_val;
12210 			dst_reg->umax_value = umax_ptr - umin_val;
12211 		}
12212 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12213 		dst_reg->off = ptr_reg->off;
12214 		dst_reg->raw = ptr_reg->raw;
12215 		if (reg_is_pkt_pointer(ptr_reg)) {
12216 			dst_reg->id = ++env->id_gen;
12217 			/* something was added to pkt_ptr, set range to zero */
12218 			if (smin_val < 0)
12219 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12220 		}
12221 		break;
12222 	case BPF_AND:
12223 	case BPF_OR:
12224 	case BPF_XOR:
12225 		/* bitwise ops on pointers are troublesome, prohibit. */
12226 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12227 			dst, bpf_alu_string[opcode >> 4]);
12228 		return -EACCES;
12229 	default:
12230 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12231 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12232 			dst, bpf_alu_string[opcode >> 4]);
12233 		return -EACCES;
12234 	}
12235 
12236 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12237 		return -EINVAL;
12238 	reg_bounds_sync(dst_reg);
12239 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12240 		return -EACCES;
12241 	if (sanitize_needed(opcode)) {
12242 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12243 				       &info, true);
12244 		if (ret < 0)
12245 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12246 	}
12247 
12248 	return 0;
12249 }
12250 
12251 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12252 				 struct bpf_reg_state *src_reg)
12253 {
12254 	s32 smin_val = src_reg->s32_min_value;
12255 	s32 smax_val = src_reg->s32_max_value;
12256 	u32 umin_val = src_reg->u32_min_value;
12257 	u32 umax_val = src_reg->u32_max_value;
12258 
12259 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12260 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12261 		dst_reg->s32_min_value = S32_MIN;
12262 		dst_reg->s32_max_value = S32_MAX;
12263 	} else {
12264 		dst_reg->s32_min_value += smin_val;
12265 		dst_reg->s32_max_value += smax_val;
12266 	}
12267 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12268 	    dst_reg->u32_max_value + umax_val < umax_val) {
12269 		dst_reg->u32_min_value = 0;
12270 		dst_reg->u32_max_value = U32_MAX;
12271 	} else {
12272 		dst_reg->u32_min_value += umin_val;
12273 		dst_reg->u32_max_value += umax_val;
12274 	}
12275 }
12276 
12277 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12278 			       struct bpf_reg_state *src_reg)
12279 {
12280 	s64 smin_val = src_reg->smin_value;
12281 	s64 smax_val = src_reg->smax_value;
12282 	u64 umin_val = src_reg->umin_value;
12283 	u64 umax_val = src_reg->umax_value;
12284 
12285 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12286 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12287 		dst_reg->smin_value = S64_MIN;
12288 		dst_reg->smax_value = S64_MAX;
12289 	} else {
12290 		dst_reg->smin_value += smin_val;
12291 		dst_reg->smax_value += smax_val;
12292 	}
12293 	if (dst_reg->umin_value + umin_val < umin_val ||
12294 	    dst_reg->umax_value + umax_val < umax_val) {
12295 		dst_reg->umin_value = 0;
12296 		dst_reg->umax_value = U64_MAX;
12297 	} else {
12298 		dst_reg->umin_value += umin_val;
12299 		dst_reg->umax_value += umax_val;
12300 	}
12301 }
12302 
12303 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12304 				 struct bpf_reg_state *src_reg)
12305 {
12306 	s32 smin_val = src_reg->s32_min_value;
12307 	s32 smax_val = src_reg->s32_max_value;
12308 	u32 umin_val = src_reg->u32_min_value;
12309 	u32 umax_val = src_reg->u32_max_value;
12310 
12311 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12312 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12313 		/* Overflow possible, we know nothing */
12314 		dst_reg->s32_min_value = S32_MIN;
12315 		dst_reg->s32_max_value = S32_MAX;
12316 	} else {
12317 		dst_reg->s32_min_value -= smax_val;
12318 		dst_reg->s32_max_value -= smin_val;
12319 	}
12320 	if (dst_reg->u32_min_value < umax_val) {
12321 		/* Overflow possible, we know nothing */
12322 		dst_reg->u32_min_value = 0;
12323 		dst_reg->u32_max_value = U32_MAX;
12324 	} else {
12325 		/* Cannot overflow (as long as bounds are consistent) */
12326 		dst_reg->u32_min_value -= umax_val;
12327 		dst_reg->u32_max_value -= umin_val;
12328 	}
12329 }
12330 
12331 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12332 			       struct bpf_reg_state *src_reg)
12333 {
12334 	s64 smin_val = src_reg->smin_value;
12335 	s64 smax_val = src_reg->smax_value;
12336 	u64 umin_val = src_reg->umin_value;
12337 	u64 umax_val = src_reg->umax_value;
12338 
12339 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12340 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12341 		/* Overflow possible, we know nothing */
12342 		dst_reg->smin_value = S64_MIN;
12343 		dst_reg->smax_value = S64_MAX;
12344 	} else {
12345 		dst_reg->smin_value -= smax_val;
12346 		dst_reg->smax_value -= smin_val;
12347 	}
12348 	if (dst_reg->umin_value < umax_val) {
12349 		/* Overflow possible, we know nothing */
12350 		dst_reg->umin_value = 0;
12351 		dst_reg->umax_value = U64_MAX;
12352 	} else {
12353 		/* Cannot overflow (as long as bounds are consistent) */
12354 		dst_reg->umin_value -= umax_val;
12355 		dst_reg->umax_value -= umin_val;
12356 	}
12357 }
12358 
12359 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12360 				 struct bpf_reg_state *src_reg)
12361 {
12362 	s32 smin_val = src_reg->s32_min_value;
12363 	u32 umin_val = src_reg->u32_min_value;
12364 	u32 umax_val = src_reg->u32_max_value;
12365 
12366 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12367 		/* Ain't nobody got time to multiply that sign */
12368 		__mark_reg32_unbounded(dst_reg);
12369 		return;
12370 	}
12371 	/* Both values are positive, so we can work with unsigned and
12372 	 * copy the result to signed (unless it exceeds S32_MAX).
12373 	 */
12374 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12375 		/* Potential overflow, we know nothing */
12376 		__mark_reg32_unbounded(dst_reg);
12377 		return;
12378 	}
12379 	dst_reg->u32_min_value *= umin_val;
12380 	dst_reg->u32_max_value *= umax_val;
12381 	if (dst_reg->u32_max_value > S32_MAX) {
12382 		/* Overflow possible, we know nothing */
12383 		dst_reg->s32_min_value = S32_MIN;
12384 		dst_reg->s32_max_value = S32_MAX;
12385 	} else {
12386 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12387 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12388 	}
12389 }
12390 
12391 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12392 			       struct bpf_reg_state *src_reg)
12393 {
12394 	s64 smin_val = src_reg->smin_value;
12395 	u64 umin_val = src_reg->umin_value;
12396 	u64 umax_val = src_reg->umax_value;
12397 
12398 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12399 		/* Ain't nobody got time to multiply that sign */
12400 		__mark_reg64_unbounded(dst_reg);
12401 		return;
12402 	}
12403 	/* Both values are positive, so we can work with unsigned and
12404 	 * copy the result to signed (unless it exceeds S64_MAX).
12405 	 */
12406 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12407 		/* Potential overflow, we know nothing */
12408 		__mark_reg64_unbounded(dst_reg);
12409 		return;
12410 	}
12411 	dst_reg->umin_value *= umin_val;
12412 	dst_reg->umax_value *= umax_val;
12413 	if (dst_reg->umax_value > S64_MAX) {
12414 		/* Overflow possible, we know nothing */
12415 		dst_reg->smin_value = S64_MIN;
12416 		dst_reg->smax_value = S64_MAX;
12417 	} else {
12418 		dst_reg->smin_value = dst_reg->umin_value;
12419 		dst_reg->smax_value = dst_reg->umax_value;
12420 	}
12421 }
12422 
12423 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12424 				 struct bpf_reg_state *src_reg)
12425 {
12426 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12427 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12428 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12429 	s32 smin_val = src_reg->s32_min_value;
12430 	u32 umax_val = src_reg->u32_max_value;
12431 
12432 	if (src_known && dst_known) {
12433 		__mark_reg32_known(dst_reg, var32_off.value);
12434 		return;
12435 	}
12436 
12437 	/* We get our minimum from the var_off, since that's inherently
12438 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12439 	 */
12440 	dst_reg->u32_min_value = var32_off.value;
12441 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12442 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12443 		/* Lose signed bounds when ANDing negative numbers,
12444 		 * ain't nobody got time for that.
12445 		 */
12446 		dst_reg->s32_min_value = S32_MIN;
12447 		dst_reg->s32_max_value = S32_MAX;
12448 	} else {
12449 		/* ANDing two positives gives a positive, so safe to
12450 		 * cast result into s64.
12451 		 */
12452 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12453 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12454 	}
12455 }
12456 
12457 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12458 			       struct bpf_reg_state *src_reg)
12459 {
12460 	bool src_known = tnum_is_const(src_reg->var_off);
12461 	bool dst_known = tnum_is_const(dst_reg->var_off);
12462 	s64 smin_val = src_reg->smin_value;
12463 	u64 umax_val = src_reg->umax_value;
12464 
12465 	if (src_known && dst_known) {
12466 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12467 		return;
12468 	}
12469 
12470 	/* We get our minimum from the var_off, since that's inherently
12471 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12472 	 */
12473 	dst_reg->umin_value = dst_reg->var_off.value;
12474 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12475 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12476 		/* Lose signed bounds when ANDing negative numbers,
12477 		 * ain't nobody got time for that.
12478 		 */
12479 		dst_reg->smin_value = S64_MIN;
12480 		dst_reg->smax_value = S64_MAX;
12481 	} else {
12482 		/* ANDing two positives gives a positive, so safe to
12483 		 * cast result into s64.
12484 		 */
12485 		dst_reg->smin_value = dst_reg->umin_value;
12486 		dst_reg->smax_value = dst_reg->umax_value;
12487 	}
12488 	/* We may learn something more from the var_off */
12489 	__update_reg_bounds(dst_reg);
12490 }
12491 
12492 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12493 				struct bpf_reg_state *src_reg)
12494 {
12495 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12496 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12497 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12498 	s32 smin_val = src_reg->s32_min_value;
12499 	u32 umin_val = src_reg->u32_min_value;
12500 
12501 	if (src_known && dst_known) {
12502 		__mark_reg32_known(dst_reg, var32_off.value);
12503 		return;
12504 	}
12505 
12506 	/* We get our maximum from the var_off, and our minimum is the
12507 	 * maximum of the operands' minima
12508 	 */
12509 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12510 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12511 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12512 		/* Lose signed bounds when ORing negative numbers,
12513 		 * ain't nobody got time for that.
12514 		 */
12515 		dst_reg->s32_min_value = S32_MIN;
12516 		dst_reg->s32_max_value = S32_MAX;
12517 	} else {
12518 		/* ORing two positives gives a positive, so safe to
12519 		 * cast result into s64.
12520 		 */
12521 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12522 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12523 	}
12524 }
12525 
12526 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12527 			      struct bpf_reg_state *src_reg)
12528 {
12529 	bool src_known = tnum_is_const(src_reg->var_off);
12530 	bool dst_known = tnum_is_const(dst_reg->var_off);
12531 	s64 smin_val = src_reg->smin_value;
12532 	u64 umin_val = src_reg->umin_value;
12533 
12534 	if (src_known && dst_known) {
12535 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12536 		return;
12537 	}
12538 
12539 	/* We get our maximum from the var_off, and our minimum is the
12540 	 * maximum of the operands' minima
12541 	 */
12542 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12543 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12544 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12545 		/* Lose signed bounds when ORing negative numbers,
12546 		 * ain't nobody got time for that.
12547 		 */
12548 		dst_reg->smin_value = S64_MIN;
12549 		dst_reg->smax_value = S64_MAX;
12550 	} else {
12551 		/* ORing two positives gives a positive, so safe to
12552 		 * cast result into s64.
12553 		 */
12554 		dst_reg->smin_value = dst_reg->umin_value;
12555 		dst_reg->smax_value = dst_reg->umax_value;
12556 	}
12557 	/* We may learn something more from the var_off */
12558 	__update_reg_bounds(dst_reg);
12559 }
12560 
12561 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12562 				 struct bpf_reg_state *src_reg)
12563 {
12564 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12565 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12566 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12567 	s32 smin_val = src_reg->s32_min_value;
12568 
12569 	if (src_known && dst_known) {
12570 		__mark_reg32_known(dst_reg, var32_off.value);
12571 		return;
12572 	}
12573 
12574 	/* We get both minimum and maximum from the var32_off. */
12575 	dst_reg->u32_min_value = var32_off.value;
12576 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12577 
12578 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12579 		/* XORing two positive sign numbers gives a positive,
12580 		 * so safe to cast u32 result into s32.
12581 		 */
12582 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12583 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12584 	} else {
12585 		dst_reg->s32_min_value = S32_MIN;
12586 		dst_reg->s32_max_value = S32_MAX;
12587 	}
12588 }
12589 
12590 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12591 			       struct bpf_reg_state *src_reg)
12592 {
12593 	bool src_known = tnum_is_const(src_reg->var_off);
12594 	bool dst_known = tnum_is_const(dst_reg->var_off);
12595 	s64 smin_val = src_reg->smin_value;
12596 
12597 	if (src_known && dst_known) {
12598 		/* dst_reg->var_off.value has been updated earlier */
12599 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12600 		return;
12601 	}
12602 
12603 	/* We get both minimum and maximum from the var_off. */
12604 	dst_reg->umin_value = dst_reg->var_off.value;
12605 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12606 
12607 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12608 		/* XORing two positive sign numbers gives a positive,
12609 		 * so safe to cast u64 result into s64.
12610 		 */
12611 		dst_reg->smin_value = dst_reg->umin_value;
12612 		dst_reg->smax_value = dst_reg->umax_value;
12613 	} else {
12614 		dst_reg->smin_value = S64_MIN;
12615 		dst_reg->smax_value = S64_MAX;
12616 	}
12617 
12618 	__update_reg_bounds(dst_reg);
12619 }
12620 
12621 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12622 				   u64 umin_val, u64 umax_val)
12623 {
12624 	/* We lose all sign bit information (except what we can pick
12625 	 * up from var_off)
12626 	 */
12627 	dst_reg->s32_min_value = S32_MIN;
12628 	dst_reg->s32_max_value = S32_MAX;
12629 	/* If we might shift our top bit out, then we know nothing */
12630 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12631 		dst_reg->u32_min_value = 0;
12632 		dst_reg->u32_max_value = U32_MAX;
12633 	} else {
12634 		dst_reg->u32_min_value <<= umin_val;
12635 		dst_reg->u32_max_value <<= umax_val;
12636 	}
12637 }
12638 
12639 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12640 				 struct bpf_reg_state *src_reg)
12641 {
12642 	u32 umax_val = src_reg->u32_max_value;
12643 	u32 umin_val = src_reg->u32_min_value;
12644 	/* u32 alu operation will zext upper bits */
12645 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12646 
12647 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12648 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12649 	/* Not required but being careful mark reg64 bounds as unknown so
12650 	 * that we are forced to pick them up from tnum and zext later and
12651 	 * if some path skips this step we are still safe.
12652 	 */
12653 	__mark_reg64_unbounded(dst_reg);
12654 	__update_reg32_bounds(dst_reg);
12655 }
12656 
12657 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12658 				   u64 umin_val, u64 umax_val)
12659 {
12660 	/* Special case <<32 because it is a common compiler pattern to sign
12661 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12662 	 * positive we know this shift will also be positive so we can track
12663 	 * bounds correctly. Otherwise we lose all sign bit information except
12664 	 * what we can pick up from var_off. Perhaps we can generalize this
12665 	 * later to shifts of any length.
12666 	 */
12667 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12668 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12669 	else
12670 		dst_reg->smax_value = S64_MAX;
12671 
12672 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12673 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12674 	else
12675 		dst_reg->smin_value = S64_MIN;
12676 
12677 	/* If we might shift our top bit out, then we know nothing */
12678 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12679 		dst_reg->umin_value = 0;
12680 		dst_reg->umax_value = U64_MAX;
12681 	} else {
12682 		dst_reg->umin_value <<= umin_val;
12683 		dst_reg->umax_value <<= umax_val;
12684 	}
12685 }
12686 
12687 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12688 			       struct bpf_reg_state *src_reg)
12689 {
12690 	u64 umax_val = src_reg->umax_value;
12691 	u64 umin_val = src_reg->umin_value;
12692 
12693 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12694 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12695 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12696 
12697 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12698 	/* We may learn something more from the var_off */
12699 	__update_reg_bounds(dst_reg);
12700 }
12701 
12702 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12703 				 struct bpf_reg_state *src_reg)
12704 {
12705 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12706 	u32 umax_val = src_reg->u32_max_value;
12707 	u32 umin_val = src_reg->u32_min_value;
12708 
12709 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12710 	 * be negative, then either:
12711 	 * 1) src_reg might be zero, so the sign bit of the result is
12712 	 *    unknown, so we lose our signed bounds
12713 	 * 2) it's known negative, thus the unsigned bounds capture the
12714 	 *    signed bounds
12715 	 * 3) the signed bounds cross zero, so they tell us nothing
12716 	 *    about the result
12717 	 * If the value in dst_reg is known nonnegative, then again the
12718 	 * unsigned bounds capture the signed bounds.
12719 	 * Thus, in all cases it suffices to blow away our signed bounds
12720 	 * and rely on inferring new ones from the unsigned bounds and
12721 	 * var_off of the result.
12722 	 */
12723 	dst_reg->s32_min_value = S32_MIN;
12724 	dst_reg->s32_max_value = S32_MAX;
12725 
12726 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12727 	dst_reg->u32_min_value >>= umax_val;
12728 	dst_reg->u32_max_value >>= umin_val;
12729 
12730 	__mark_reg64_unbounded(dst_reg);
12731 	__update_reg32_bounds(dst_reg);
12732 }
12733 
12734 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12735 			       struct bpf_reg_state *src_reg)
12736 {
12737 	u64 umax_val = src_reg->umax_value;
12738 	u64 umin_val = src_reg->umin_value;
12739 
12740 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12741 	 * be negative, then either:
12742 	 * 1) src_reg might be zero, so the sign bit of the result is
12743 	 *    unknown, so we lose our signed bounds
12744 	 * 2) it's known negative, thus the unsigned bounds capture the
12745 	 *    signed bounds
12746 	 * 3) the signed bounds cross zero, so they tell us nothing
12747 	 *    about the result
12748 	 * If the value in dst_reg is known nonnegative, then again the
12749 	 * unsigned bounds capture the signed bounds.
12750 	 * Thus, in all cases it suffices to blow away our signed bounds
12751 	 * and rely on inferring new ones from the unsigned bounds and
12752 	 * var_off of the result.
12753 	 */
12754 	dst_reg->smin_value = S64_MIN;
12755 	dst_reg->smax_value = S64_MAX;
12756 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12757 	dst_reg->umin_value >>= umax_val;
12758 	dst_reg->umax_value >>= umin_val;
12759 
12760 	/* Its not easy to operate on alu32 bounds here because it depends
12761 	 * on bits being shifted in. Take easy way out and mark unbounded
12762 	 * so we can recalculate later from tnum.
12763 	 */
12764 	__mark_reg32_unbounded(dst_reg);
12765 	__update_reg_bounds(dst_reg);
12766 }
12767 
12768 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12769 				  struct bpf_reg_state *src_reg)
12770 {
12771 	u64 umin_val = src_reg->u32_min_value;
12772 
12773 	/* Upon reaching here, src_known is true and
12774 	 * umax_val is equal to umin_val.
12775 	 */
12776 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12777 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12778 
12779 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12780 
12781 	/* blow away the dst_reg umin_value/umax_value and rely on
12782 	 * dst_reg var_off to refine the result.
12783 	 */
12784 	dst_reg->u32_min_value = 0;
12785 	dst_reg->u32_max_value = U32_MAX;
12786 
12787 	__mark_reg64_unbounded(dst_reg);
12788 	__update_reg32_bounds(dst_reg);
12789 }
12790 
12791 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12792 				struct bpf_reg_state *src_reg)
12793 {
12794 	u64 umin_val = src_reg->umin_value;
12795 
12796 	/* Upon reaching here, src_known is true and umax_val is equal
12797 	 * to umin_val.
12798 	 */
12799 	dst_reg->smin_value >>= umin_val;
12800 	dst_reg->smax_value >>= umin_val;
12801 
12802 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12803 
12804 	/* blow away the dst_reg umin_value/umax_value and rely on
12805 	 * dst_reg var_off to refine the result.
12806 	 */
12807 	dst_reg->umin_value = 0;
12808 	dst_reg->umax_value = U64_MAX;
12809 
12810 	/* Its not easy to operate on alu32 bounds here because it depends
12811 	 * on bits being shifted in from upper 32-bits. Take easy way out
12812 	 * and mark unbounded so we can recalculate later from tnum.
12813 	 */
12814 	__mark_reg32_unbounded(dst_reg);
12815 	__update_reg_bounds(dst_reg);
12816 }
12817 
12818 /* WARNING: This function does calculations on 64-bit values, but the actual
12819  * execution may occur on 32-bit values. Therefore, things like bitshifts
12820  * need extra checks in the 32-bit case.
12821  */
12822 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12823 				      struct bpf_insn *insn,
12824 				      struct bpf_reg_state *dst_reg,
12825 				      struct bpf_reg_state src_reg)
12826 {
12827 	struct bpf_reg_state *regs = cur_regs(env);
12828 	u8 opcode = BPF_OP(insn->code);
12829 	bool src_known;
12830 	s64 smin_val, smax_val;
12831 	u64 umin_val, umax_val;
12832 	s32 s32_min_val, s32_max_val;
12833 	u32 u32_min_val, u32_max_val;
12834 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12835 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12836 	int ret;
12837 
12838 	smin_val = src_reg.smin_value;
12839 	smax_val = src_reg.smax_value;
12840 	umin_val = src_reg.umin_value;
12841 	umax_val = src_reg.umax_value;
12842 
12843 	s32_min_val = src_reg.s32_min_value;
12844 	s32_max_val = src_reg.s32_max_value;
12845 	u32_min_val = src_reg.u32_min_value;
12846 	u32_max_val = src_reg.u32_max_value;
12847 
12848 	if (alu32) {
12849 		src_known = tnum_subreg_is_const(src_reg.var_off);
12850 		if ((src_known &&
12851 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12852 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12853 			/* Taint dst register if offset had invalid bounds
12854 			 * derived from e.g. dead branches.
12855 			 */
12856 			__mark_reg_unknown(env, dst_reg);
12857 			return 0;
12858 		}
12859 	} else {
12860 		src_known = tnum_is_const(src_reg.var_off);
12861 		if ((src_known &&
12862 		     (smin_val != smax_val || umin_val != umax_val)) ||
12863 		    smin_val > smax_val || umin_val > umax_val) {
12864 			/* Taint dst register if offset had invalid bounds
12865 			 * derived from e.g. dead branches.
12866 			 */
12867 			__mark_reg_unknown(env, dst_reg);
12868 			return 0;
12869 		}
12870 	}
12871 
12872 	if (!src_known &&
12873 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12874 		__mark_reg_unknown(env, dst_reg);
12875 		return 0;
12876 	}
12877 
12878 	if (sanitize_needed(opcode)) {
12879 		ret = sanitize_val_alu(env, insn);
12880 		if (ret < 0)
12881 			return sanitize_err(env, insn, ret, NULL, NULL);
12882 	}
12883 
12884 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12885 	 * There are two classes of instructions: The first class we track both
12886 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12887 	 * greatest amount of precision when alu operations are mixed with jmp32
12888 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12889 	 * and BPF_OR. This is possible because these ops have fairly easy to
12890 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12891 	 * See alu32 verifier tests for examples. The second class of
12892 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12893 	 * with regards to tracking sign/unsigned bounds because the bits may
12894 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12895 	 * the reg unbounded in the subreg bound space and use the resulting
12896 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12897 	 */
12898 	switch (opcode) {
12899 	case BPF_ADD:
12900 		scalar32_min_max_add(dst_reg, &src_reg);
12901 		scalar_min_max_add(dst_reg, &src_reg);
12902 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12903 		break;
12904 	case BPF_SUB:
12905 		scalar32_min_max_sub(dst_reg, &src_reg);
12906 		scalar_min_max_sub(dst_reg, &src_reg);
12907 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12908 		break;
12909 	case BPF_MUL:
12910 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12911 		scalar32_min_max_mul(dst_reg, &src_reg);
12912 		scalar_min_max_mul(dst_reg, &src_reg);
12913 		break;
12914 	case BPF_AND:
12915 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12916 		scalar32_min_max_and(dst_reg, &src_reg);
12917 		scalar_min_max_and(dst_reg, &src_reg);
12918 		break;
12919 	case BPF_OR:
12920 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12921 		scalar32_min_max_or(dst_reg, &src_reg);
12922 		scalar_min_max_or(dst_reg, &src_reg);
12923 		break;
12924 	case BPF_XOR:
12925 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12926 		scalar32_min_max_xor(dst_reg, &src_reg);
12927 		scalar_min_max_xor(dst_reg, &src_reg);
12928 		break;
12929 	case BPF_LSH:
12930 		if (umax_val >= insn_bitness) {
12931 			/* Shifts greater than 31 or 63 are undefined.
12932 			 * This includes shifts by a negative number.
12933 			 */
12934 			mark_reg_unknown(env, regs, insn->dst_reg);
12935 			break;
12936 		}
12937 		if (alu32)
12938 			scalar32_min_max_lsh(dst_reg, &src_reg);
12939 		else
12940 			scalar_min_max_lsh(dst_reg, &src_reg);
12941 		break;
12942 	case BPF_RSH:
12943 		if (umax_val >= insn_bitness) {
12944 			/* Shifts greater than 31 or 63 are undefined.
12945 			 * This includes shifts by a negative number.
12946 			 */
12947 			mark_reg_unknown(env, regs, insn->dst_reg);
12948 			break;
12949 		}
12950 		if (alu32)
12951 			scalar32_min_max_rsh(dst_reg, &src_reg);
12952 		else
12953 			scalar_min_max_rsh(dst_reg, &src_reg);
12954 		break;
12955 	case BPF_ARSH:
12956 		if (umax_val >= insn_bitness) {
12957 			/* Shifts greater than 31 or 63 are undefined.
12958 			 * This includes shifts by a negative number.
12959 			 */
12960 			mark_reg_unknown(env, regs, insn->dst_reg);
12961 			break;
12962 		}
12963 		if (alu32)
12964 			scalar32_min_max_arsh(dst_reg, &src_reg);
12965 		else
12966 			scalar_min_max_arsh(dst_reg, &src_reg);
12967 		break;
12968 	default:
12969 		mark_reg_unknown(env, regs, insn->dst_reg);
12970 		break;
12971 	}
12972 
12973 	/* ALU32 ops are zero extended into 64bit register */
12974 	if (alu32)
12975 		zext_32_to_64(dst_reg);
12976 	reg_bounds_sync(dst_reg);
12977 	return 0;
12978 }
12979 
12980 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12981  * and var_off.
12982  */
12983 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12984 				   struct bpf_insn *insn)
12985 {
12986 	struct bpf_verifier_state *vstate = env->cur_state;
12987 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12988 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12989 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12990 	u8 opcode = BPF_OP(insn->code);
12991 	int err;
12992 
12993 	dst_reg = &regs[insn->dst_reg];
12994 	src_reg = NULL;
12995 	if (dst_reg->type != SCALAR_VALUE)
12996 		ptr_reg = dst_reg;
12997 	else
12998 		/* Make sure ID is cleared otherwise dst_reg min/max could be
12999 		 * incorrectly propagated into other registers by find_equal_scalars()
13000 		 */
13001 		dst_reg->id = 0;
13002 	if (BPF_SRC(insn->code) == BPF_X) {
13003 		src_reg = &regs[insn->src_reg];
13004 		if (src_reg->type != SCALAR_VALUE) {
13005 			if (dst_reg->type != SCALAR_VALUE) {
13006 				/* Combining two pointers by any ALU op yields
13007 				 * an arbitrary scalar. Disallow all math except
13008 				 * pointer subtraction
13009 				 */
13010 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13011 					mark_reg_unknown(env, regs, insn->dst_reg);
13012 					return 0;
13013 				}
13014 				verbose(env, "R%d pointer %s pointer prohibited\n",
13015 					insn->dst_reg,
13016 					bpf_alu_string[opcode >> 4]);
13017 				return -EACCES;
13018 			} else {
13019 				/* scalar += pointer
13020 				 * This is legal, but we have to reverse our
13021 				 * src/dest handling in computing the range
13022 				 */
13023 				err = mark_chain_precision(env, insn->dst_reg);
13024 				if (err)
13025 					return err;
13026 				return adjust_ptr_min_max_vals(env, insn,
13027 							       src_reg, dst_reg);
13028 			}
13029 		} else if (ptr_reg) {
13030 			/* pointer += scalar */
13031 			err = mark_chain_precision(env, insn->src_reg);
13032 			if (err)
13033 				return err;
13034 			return adjust_ptr_min_max_vals(env, insn,
13035 						       dst_reg, src_reg);
13036 		} else if (dst_reg->precise) {
13037 			/* if dst_reg is precise, src_reg should be precise as well */
13038 			err = mark_chain_precision(env, insn->src_reg);
13039 			if (err)
13040 				return err;
13041 		}
13042 	} else {
13043 		/* Pretend the src is a reg with a known value, since we only
13044 		 * need to be able to read from this state.
13045 		 */
13046 		off_reg.type = SCALAR_VALUE;
13047 		__mark_reg_known(&off_reg, insn->imm);
13048 		src_reg = &off_reg;
13049 		if (ptr_reg) /* pointer += K */
13050 			return adjust_ptr_min_max_vals(env, insn,
13051 						       ptr_reg, src_reg);
13052 	}
13053 
13054 	/* Got here implies adding two SCALAR_VALUEs */
13055 	if (WARN_ON_ONCE(ptr_reg)) {
13056 		print_verifier_state(env, state, true);
13057 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13058 		return -EINVAL;
13059 	}
13060 	if (WARN_ON(!src_reg)) {
13061 		print_verifier_state(env, state, true);
13062 		verbose(env, "verifier internal error: no src_reg\n");
13063 		return -EINVAL;
13064 	}
13065 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13066 }
13067 
13068 /* check validity of 32-bit and 64-bit arithmetic operations */
13069 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13070 {
13071 	struct bpf_reg_state *regs = cur_regs(env);
13072 	u8 opcode = BPF_OP(insn->code);
13073 	int err;
13074 
13075 	if (opcode == BPF_END || opcode == BPF_NEG) {
13076 		if (opcode == BPF_NEG) {
13077 			if (BPF_SRC(insn->code) != BPF_K ||
13078 			    insn->src_reg != BPF_REG_0 ||
13079 			    insn->off != 0 || insn->imm != 0) {
13080 				verbose(env, "BPF_NEG uses reserved fields\n");
13081 				return -EINVAL;
13082 			}
13083 		} else {
13084 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13085 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13086 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13087 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13088 				verbose(env, "BPF_END uses reserved fields\n");
13089 				return -EINVAL;
13090 			}
13091 		}
13092 
13093 		/* check src operand */
13094 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13095 		if (err)
13096 			return err;
13097 
13098 		if (is_pointer_value(env, insn->dst_reg)) {
13099 			verbose(env, "R%d pointer arithmetic prohibited\n",
13100 				insn->dst_reg);
13101 			return -EACCES;
13102 		}
13103 
13104 		/* check dest operand */
13105 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13106 		if (err)
13107 			return err;
13108 
13109 	} else if (opcode == BPF_MOV) {
13110 
13111 		if (BPF_SRC(insn->code) == BPF_X) {
13112 			if (insn->imm != 0) {
13113 				verbose(env, "BPF_MOV uses reserved fields\n");
13114 				return -EINVAL;
13115 			}
13116 
13117 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13118 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13119 					verbose(env, "BPF_MOV uses reserved fields\n");
13120 					return -EINVAL;
13121 				}
13122 			} else {
13123 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13124 				    insn->off != 32) {
13125 					verbose(env, "BPF_MOV uses reserved fields\n");
13126 					return -EINVAL;
13127 				}
13128 			}
13129 
13130 			/* check src operand */
13131 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13132 			if (err)
13133 				return err;
13134 		} else {
13135 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13136 				verbose(env, "BPF_MOV uses reserved fields\n");
13137 				return -EINVAL;
13138 			}
13139 		}
13140 
13141 		/* check dest operand, mark as required later */
13142 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13143 		if (err)
13144 			return err;
13145 
13146 		if (BPF_SRC(insn->code) == BPF_X) {
13147 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13148 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13149 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13150 				       !tnum_is_const(src_reg->var_off);
13151 
13152 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13153 				if (insn->off == 0) {
13154 					/* case: R1 = R2
13155 					 * copy register state to dest reg
13156 					 */
13157 					if (need_id)
13158 						/* Assign src and dst registers the same ID
13159 						 * that will be used by find_equal_scalars()
13160 						 * to propagate min/max range.
13161 						 */
13162 						src_reg->id = ++env->id_gen;
13163 					copy_register_state(dst_reg, src_reg);
13164 					dst_reg->live |= REG_LIVE_WRITTEN;
13165 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13166 				} else {
13167 					/* case: R1 = (s8, s16 s32)R2 */
13168 					bool no_sext;
13169 
13170 					no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13171 					if (no_sext && need_id)
13172 						src_reg->id = ++env->id_gen;
13173 					copy_register_state(dst_reg, src_reg);
13174 					if (!no_sext)
13175 						dst_reg->id = 0;
13176 					coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13177 					dst_reg->live |= REG_LIVE_WRITTEN;
13178 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13179 				}
13180 			} else {
13181 				/* R1 = (u32) R2 */
13182 				if (is_pointer_value(env, insn->src_reg)) {
13183 					verbose(env,
13184 						"R%d partial copy of pointer\n",
13185 						insn->src_reg);
13186 					return -EACCES;
13187 				} else if (src_reg->type == SCALAR_VALUE) {
13188 					if (insn->off == 0) {
13189 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13190 
13191 						if (is_src_reg_u32 && need_id)
13192 							src_reg->id = ++env->id_gen;
13193 						copy_register_state(dst_reg, src_reg);
13194 						/* Make sure ID is cleared if src_reg is not in u32
13195 						 * range otherwise dst_reg min/max could be incorrectly
13196 						 * propagated into src_reg by find_equal_scalars()
13197 						 */
13198 						if (!is_src_reg_u32)
13199 							dst_reg->id = 0;
13200 						dst_reg->live |= REG_LIVE_WRITTEN;
13201 						dst_reg->subreg_def = env->insn_idx + 1;
13202 					} else {
13203 						/* case: W1 = (s8, s16)W2 */
13204 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13205 
13206 						if (no_sext && need_id)
13207 							src_reg->id = ++env->id_gen;
13208 						copy_register_state(dst_reg, src_reg);
13209 						if (!no_sext)
13210 							dst_reg->id = 0;
13211 						dst_reg->live |= REG_LIVE_WRITTEN;
13212 						dst_reg->subreg_def = env->insn_idx + 1;
13213 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13214 					}
13215 				} else {
13216 					mark_reg_unknown(env, regs,
13217 							 insn->dst_reg);
13218 				}
13219 				zext_32_to_64(dst_reg);
13220 				reg_bounds_sync(dst_reg);
13221 			}
13222 		} else {
13223 			/* case: R = imm
13224 			 * remember the value we stored into this reg
13225 			 */
13226 			/* clear any state __mark_reg_known doesn't set */
13227 			mark_reg_unknown(env, regs, insn->dst_reg);
13228 			regs[insn->dst_reg].type = SCALAR_VALUE;
13229 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13230 				__mark_reg_known(regs + insn->dst_reg,
13231 						 insn->imm);
13232 			} else {
13233 				__mark_reg_known(regs + insn->dst_reg,
13234 						 (u32)insn->imm);
13235 			}
13236 		}
13237 
13238 	} else if (opcode > BPF_END) {
13239 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13240 		return -EINVAL;
13241 
13242 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13243 
13244 		if (BPF_SRC(insn->code) == BPF_X) {
13245 			if (insn->imm != 0 || insn->off > 1 ||
13246 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13247 				verbose(env, "BPF_ALU uses reserved fields\n");
13248 				return -EINVAL;
13249 			}
13250 			/* check src1 operand */
13251 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13252 			if (err)
13253 				return err;
13254 		} else {
13255 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13256 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13257 				verbose(env, "BPF_ALU uses reserved fields\n");
13258 				return -EINVAL;
13259 			}
13260 		}
13261 
13262 		/* check src2 operand */
13263 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13264 		if (err)
13265 			return err;
13266 
13267 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13268 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13269 			verbose(env, "div by zero\n");
13270 			return -EINVAL;
13271 		}
13272 
13273 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13274 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13275 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13276 
13277 			if (insn->imm < 0 || insn->imm >= size) {
13278 				verbose(env, "invalid shift %d\n", insn->imm);
13279 				return -EINVAL;
13280 			}
13281 		}
13282 
13283 		/* check dest operand */
13284 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13285 		if (err)
13286 			return err;
13287 
13288 		return adjust_reg_min_max_vals(env, insn);
13289 	}
13290 
13291 	return 0;
13292 }
13293 
13294 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13295 				   struct bpf_reg_state *dst_reg,
13296 				   enum bpf_reg_type type,
13297 				   bool range_right_open)
13298 {
13299 	struct bpf_func_state *state;
13300 	struct bpf_reg_state *reg;
13301 	int new_range;
13302 
13303 	if (dst_reg->off < 0 ||
13304 	    (dst_reg->off == 0 && range_right_open))
13305 		/* This doesn't give us any range */
13306 		return;
13307 
13308 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13309 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13310 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13311 		 * than pkt_end, but that's because it's also less than pkt.
13312 		 */
13313 		return;
13314 
13315 	new_range = dst_reg->off;
13316 	if (range_right_open)
13317 		new_range++;
13318 
13319 	/* Examples for register markings:
13320 	 *
13321 	 * pkt_data in dst register:
13322 	 *
13323 	 *   r2 = r3;
13324 	 *   r2 += 8;
13325 	 *   if (r2 > pkt_end) goto <handle exception>
13326 	 *   <access okay>
13327 	 *
13328 	 *   r2 = r3;
13329 	 *   r2 += 8;
13330 	 *   if (r2 < pkt_end) goto <access okay>
13331 	 *   <handle exception>
13332 	 *
13333 	 *   Where:
13334 	 *     r2 == dst_reg, pkt_end == src_reg
13335 	 *     r2=pkt(id=n,off=8,r=0)
13336 	 *     r3=pkt(id=n,off=0,r=0)
13337 	 *
13338 	 * pkt_data in src register:
13339 	 *
13340 	 *   r2 = r3;
13341 	 *   r2 += 8;
13342 	 *   if (pkt_end >= r2) goto <access okay>
13343 	 *   <handle exception>
13344 	 *
13345 	 *   r2 = r3;
13346 	 *   r2 += 8;
13347 	 *   if (pkt_end <= r2) goto <handle exception>
13348 	 *   <access okay>
13349 	 *
13350 	 *   Where:
13351 	 *     pkt_end == dst_reg, r2 == src_reg
13352 	 *     r2=pkt(id=n,off=8,r=0)
13353 	 *     r3=pkt(id=n,off=0,r=0)
13354 	 *
13355 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13356 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13357 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13358 	 * the check.
13359 	 */
13360 
13361 	/* If our ids match, then we must have the same max_value.  And we
13362 	 * don't care about the other reg's fixed offset, since if it's too big
13363 	 * the range won't allow anything.
13364 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13365 	 */
13366 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13367 		if (reg->type == type && reg->id == dst_reg->id)
13368 			/* keep the maximum range already checked */
13369 			reg->range = max(reg->range, new_range);
13370 	}));
13371 }
13372 
13373 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13374 {
13375 	struct tnum subreg = tnum_subreg(reg->var_off);
13376 	s32 sval = (s32)val;
13377 
13378 	switch (opcode) {
13379 	case BPF_JEQ:
13380 		if (tnum_is_const(subreg))
13381 			return !!tnum_equals_const(subreg, val);
13382 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13383 			return 0;
13384 		break;
13385 	case BPF_JNE:
13386 		if (tnum_is_const(subreg))
13387 			return !tnum_equals_const(subreg, val);
13388 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13389 			return 1;
13390 		break;
13391 	case BPF_JSET:
13392 		if ((~subreg.mask & subreg.value) & val)
13393 			return 1;
13394 		if (!((subreg.mask | subreg.value) & val))
13395 			return 0;
13396 		break;
13397 	case BPF_JGT:
13398 		if (reg->u32_min_value > val)
13399 			return 1;
13400 		else if (reg->u32_max_value <= val)
13401 			return 0;
13402 		break;
13403 	case BPF_JSGT:
13404 		if (reg->s32_min_value > sval)
13405 			return 1;
13406 		else if (reg->s32_max_value <= sval)
13407 			return 0;
13408 		break;
13409 	case BPF_JLT:
13410 		if (reg->u32_max_value < val)
13411 			return 1;
13412 		else if (reg->u32_min_value >= val)
13413 			return 0;
13414 		break;
13415 	case BPF_JSLT:
13416 		if (reg->s32_max_value < sval)
13417 			return 1;
13418 		else if (reg->s32_min_value >= sval)
13419 			return 0;
13420 		break;
13421 	case BPF_JGE:
13422 		if (reg->u32_min_value >= val)
13423 			return 1;
13424 		else if (reg->u32_max_value < val)
13425 			return 0;
13426 		break;
13427 	case BPF_JSGE:
13428 		if (reg->s32_min_value >= sval)
13429 			return 1;
13430 		else if (reg->s32_max_value < sval)
13431 			return 0;
13432 		break;
13433 	case BPF_JLE:
13434 		if (reg->u32_max_value <= val)
13435 			return 1;
13436 		else if (reg->u32_min_value > val)
13437 			return 0;
13438 		break;
13439 	case BPF_JSLE:
13440 		if (reg->s32_max_value <= sval)
13441 			return 1;
13442 		else if (reg->s32_min_value > sval)
13443 			return 0;
13444 		break;
13445 	}
13446 
13447 	return -1;
13448 }
13449 
13450 
13451 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13452 {
13453 	s64 sval = (s64)val;
13454 
13455 	switch (opcode) {
13456 	case BPF_JEQ:
13457 		if (tnum_is_const(reg->var_off))
13458 			return !!tnum_equals_const(reg->var_off, val);
13459 		else if (val < reg->umin_value || val > reg->umax_value)
13460 			return 0;
13461 		break;
13462 	case BPF_JNE:
13463 		if (tnum_is_const(reg->var_off))
13464 			return !tnum_equals_const(reg->var_off, val);
13465 		else if (val < reg->umin_value || val > reg->umax_value)
13466 			return 1;
13467 		break;
13468 	case BPF_JSET:
13469 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13470 			return 1;
13471 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13472 			return 0;
13473 		break;
13474 	case BPF_JGT:
13475 		if (reg->umin_value > val)
13476 			return 1;
13477 		else if (reg->umax_value <= val)
13478 			return 0;
13479 		break;
13480 	case BPF_JSGT:
13481 		if (reg->smin_value > sval)
13482 			return 1;
13483 		else if (reg->smax_value <= sval)
13484 			return 0;
13485 		break;
13486 	case BPF_JLT:
13487 		if (reg->umax_value < val)
13488 			return 1;
13489 		else if (reg->umin_value >= val)
13490 			return 0;
13491 		break;
13492 	case BPF_JSLT:
13493 		if (reg->smax_value < sval)
13494 			return 1;
13495 		else if (reg->smin_value >= sval)
13496 			return 0;
13497 		break;
13498 	case BPF_JGE:
13499 		if (reg->umin_value >= val)
13500 			return 1;
13501 		else if (reg->umax_value < val)
13502 			return 0;
13503 		break;
13504 	case BPF_JSGE:
13505 		if (reg->smin_value >= sval)
13506 			return 1;
13507 		else if (reg->smax_value < sval)
13508 			return 0;
13509 		break;
13510 	case BPF_JLE:
13511 		if (reg->umax_value <= val)
13512 			return 1;
13513 		else if (reg->umin_value > val)
13514 			return 0;
13515 		break;
13516 	case BPF_JSLE:
13517 		if (reg->smax_value <= sval)
13518 			return 1;
13519 		else if (reg->smin_value > sval)
13520 			return 0;
13521 		break;
13522 	}
13523 
13524 	return -1;
13525 }
13526 
13527 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13528  * and return:
13529  *  1 - branch will be taken and "goto target" will be executed
13530  *  0 - branch will not be taken and fall-through to next insn
13531  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13532  *      range [0,10]
13533  */
13534 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13535 			   bool is_jmp32)
13536 {
13537 	if (__is_pointer_value(false, reg)) {
13538 		if (!reg_not_null(reg))
13539 			return -1;
13540 
13541 		/* If pointer is valid tests against zero will fail so we can
13542 		 * use this to direct branch taken.
13543 		 */
13544 		if (val != 0)
13545 			return -1;
13546 
13547 		switch (opcode) {
13548 		case BPF_JEQ:
13549 			return 0;
13550 		case BPF_JNE:
13551 			return 1;
13552 		default:
13553 			return -1;
13554 		}
13555 	}
13556 
13557 	if (is_jmp32)
13558 		return is_branch32_taken(reg, val, opcode);
13559 	return is_branch64_taken(reg, val, opcode);
13560 }
13561 
13562 static int flip_opcode(u32 opcode)
13563 {
13564 	/* How can we transform "a <op> b" into "b <op> a"? */
13565 	static const u8 opcode_flip[16] = {
13566 		/* these stay the same */
13567 		[BPF_JEQ  >> 4] = BPF_JEQ,
13568 		[BPF_JNE  >> 4] = BPF_JNE,
13569 		[BPF_JSET >> 4] = BPF_JSET,
13570 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13571 		[BPF_JGE  >> 4] = BPF_JLE,
13572 		[BPF_JGT  >> 4] = BPF_JLT,
13573 		[BPF_JLE  >> 4] = BPF_JGE,
13574 		[BPF_JLT  >> 4] = BPF_JGT,
13575 		[BPF_JSGE >> 4] = BPF_JSLE,
13576 		[BPF_JSGT >> 4] = BPF_JSLT,
13577 		[BPF_JSLE >> 4] = BPF_JSGE,
13578 		[BPF_JSLT >> 4] = BPF_JSGT
13579 	};
13580 	return opcode_flip[opcode >> 4];
13581 }
13582 
13583 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13584 				   struct bpf_reg_state *src_reg,
13585 				   u8 opcode)
13586 {
13587 	struct bpf_reg_state *pkt;
13588 
13589 	if (src_reg->type == PTR_TO_PACKET_END) {
13590 		pkt = dst_reg;
13591 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13592 		pkt = src_reg;
13593 		opcode = flip_opcode(opcode);
13594 	} else {
13595 		return -1;
13596 	}
13597 
13598 	if (pkt->range >= 0)
13599 		return -1;
13600 
13601 	switch (opcode) {
13602 	case BPF_JLE:
13603 		/* pkt <= pkt_end */
13604 		fallthrough;
13605 	case BPF_JGT:
13606 		/* pkt > pkt_end */
13607 		if (pkt->range == BEYOND_PKT_END)
13608 			/* pkt has at last one extra byte beyond pkt_end */
13609 			return opcode == BPF_JGT;
13610 		break;
13611 	case BPF_JLT:
13612 		/* pkt < pkt_end */
13613 		fallthrough;
13614 	case BPF_JGE:
13615 		/* pkt >= pkt_end */
13616 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13617 			return opcode == BPF_JGE;
13618 		break;
13619 	}
13620 	return -1;
13621 }
13622 
13623 /* Adjusts the register min/max values in the case that the dst_reg is the
13624  * variable register that we are working on, and src_reg is a constant or we're
13625  * simply doing a BPF_K check.
13626  * In JEQ/JNE cases we also adjust the var_off values.
13627  */
13628 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13629 			    struct bpf_reg_state *false_reg,
13630 			    u64 val, u32 val32,
13631 			    u8 opcode, bool is_jmp32)
13632 {
13633 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13634 	struct tnum false_64off = false_reg->var_off;
13635 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13636 	struct tnum true_64off = true_reg->var_off;
13637 	s64 sval = (s64)val;
13638 	s32 sval32 = (s32)val32;
13639 
13640 	/* If the dst_reg is a pointer, we can't learn anything about its
13641 	 * variable offset from the compare (unless src_reg were a pointer into
13642 	 * the same object, but we don't bother with that.
13643 	 * Since false_reg and true_reg have the same type by construction, we
13644 	 * only need to check one of them for pointerness.
13645 	 */
13646 	if (__is_pointer_value(false, false_reg))
13647 		return;
13648 
13649 	switch (opcode) {
13650 	/* JEQ/JNE comparison doesn't change the register equivalence.
13651 	 *
13652 	 * r1 = r2;
13653 	 * if (r1 == 42) goto label;
13654 	 * ...
13655 	 * label: // here both r1 and r2 are known to be 42.
13656 	 *
13657 	 * Hence when marking register as known preserve it's ID.
13658 	 */
13659 	case BPF_JEQ:
13660 		if (is_jmp32) {
13661 			__mark_reg32_known(true_reg, val32);
13662 			true_32off = tnum_subreg(true_reg->var_off);
13663 		} else {
13664 			___mark_reg_known(true_reg, val);
13665 			true_64off = true_reg->var_off;
13666 		}
13667 		break;
13668 	case BPF_JNE:
13669 		if (is_jmp32) {
13670 			__mark_reg32_known(false_reg, val32);
13671 			false_32off = tnum_subreg(false_reg->var_off);
13672 		} else {
13673 			___mark_reg_known(false_reg, val);
13674 			false_64off = false_reg->var_off;
13675 		}
13676 		break;
13677 	case BPF_JSET:
13678 		if (is_jmp32) {
13679 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13680 			if (is_power_of_2(val32))
13681 				true_32off = tnum_or(true_32off,
13682 						     tnum_const(val32));
13683 		} else {
13684 			false_64off = tnum_and(false_64off, tnum_const(~val));
13685 			if (is_power_of_2(val))
13686 				true_64off = tnum_or(true_64off,
13687 						     tnum_const(val));
13688 		}
13689 		break;
13690 	case BPF_JGE:
13691 	case BPF_JGT:
13692 	{
13693 		if (is_jmp32) {
13694 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13695 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13696 
13697 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13698 						       false_umax);
13699 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13700 						      true_umin);
13701 		} else {
13702 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13703 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13704 
13705 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13706 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13707 		}
13708 		break;
13709 	}
13710 	case BPF_JSGE:
13711 	case BPF_JSGT:
13712 	{
13713 		if (is_jmp32) {
13714 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13715 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13716 
13717 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13718 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13719 		} else {
13720 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13721 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13722 
13723 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13724 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13725 		}
13726 		break;
13727 	}
13728 	case BPF_JLE:
13729 	case BPF_JLT:
13730 	{
13731 		if (is_jmp32) {
13732 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13733 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13734 
13735 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13736 						       false_umin);
13737 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13738 						      true_umax);
13739 		} else {
13740 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13741 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13742 
13743 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13744 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13745 		}
13746 		break;
13747 	}
13748 	case BPF_JSLE:
13749 	case BPF_JSLT:
13750 	{
13751 		if (is_jmp32) {
13752 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13753 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13754 
13755 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13756 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13757 		} else {
13758 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13759 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13760 
13761 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13762 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13763 		}
13764 		break;
13765 	}
13766 	default:
13767 		return;
13768 	}
13769 
13770 	if (is_jmp32) {
13771 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13772 					     tnum_subreg(false_32off));
13773 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13774 					    tnum_subreg(true_32off));
13775 		__reg_combine_32_into_64(false_reg);
13776 		__reg_combine_32_into_64(true_reg);
13777 	} else {
13778 		false_reg->var_off = false_64off;
13779 		true_reg->var_off = true_64off;
13780 		__reg_combine_64_into_32(false_reg);
13781 		__reg_combine_64_into_32(true_reg);
13782 	}
13783 }
13784 
13785 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13786  * the variable reg.
13787  */
13788 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13789 				struct bpf_reg_state *false_reg,
13790 				u64 val, u32 val32,
13791 				u8 opcode, bool is_jmp32)
13792 {
13793 	opcode = flip_opcode(opcode);
13794 	/* This uses zero as "not present in table"; luckily the zero opcode,
13795 	 * BPF_JA, can't get here.
13796 	 */
13797 	if (opcode)
13798 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13799 }
13800 
13801 /* Regs are known to be equal, so intersect their min/max/var_off */
13802 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13803 				  struct bpf_reg_state *dst_reg)
13804 {
13805 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13806 							dst_reg->umin_value);
13807 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13808 							dst_reg->umax_value);
13809 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13810 							dst_reg->smin_value);
13811 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13812 							dst_reg->smax_value);
13813 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13814 							     dst_reg->var_off);
13815 	reg_bounds_sync(src_reg);
13816 	reg_bounds_sync(dst_reg);
13817 }
13818 
13819 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13820 				struct bpf_reg_state *true_dst,
13821 				struct bpf_reg_state *false_src,
13822 				struct bpf_reg_state *false_dst,
13823 				u8 opcode)
13824 {
13825 	switch (opcode) {
13826 	case BPF_JEQ:
13827 		__reg_combine_min_max(true_src, true_dst);
13828 		break;
13829 	case BPF_JNE:
13830 		__reg_combine_min_max(false_src, false_dst);
13831 		break;
13832 	}
13833 }
13834 
13835 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13836 				 struct bpf_reg_state *reg, u32 id,
13837 				 bool is_null)
13838 {
13839 	if (type_may_be_null(reg->type) && reg->id == id &&
13840 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13841 		/* Old offset (both fixed and variable parts) should have been
13842 		 * known-zero, because we don't allow pointer arithmetic on
13843 		 * pointers that might be NULL. If we see this happening, don't
13844 		 * convert the register.
13845 		 *
13846 		 * But in some cases, some helpers that return local kptrs
13847 		 * advance offset for the returned pointer. In those cases, it
13848 		 * is fine to expect to see reg->off.
13849 		 */
13850 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13851 			return;
13852 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13853 		    WARN_ON_ONCE(reg->off))
13854 			return;
13855 
13856 		if (is_null) {
13857 			reg->type = SCALAR_VALUE;
13858 			/* We don't need id and ref_obj_id from this point
13859 			 * onwards anymore, thus we should better reset it,
13860 			 * so that state pruning has chances to take effect.
13861 			 */
13862 			reg->id = 0;
13863 			reg->ref_obj_id = 0;
13864 
13865 			return;
13866 		}
13867 
13868 		mark_ptr_not_null_reg(reg);
13869 
13870 		if (!reg_may_point_to_spin_lock(reg)) {
13871 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13872 			 * in release_reference().
13873 			 *
13874 			 * reg->id is still used by spin_lock ptr. Other
13875 			 * than spin_lock ptr type, reg->id can be reset.
13876 			 */
13877 			reg->id = 0;
13878 		}
13879 	}
13880 }
13881 
13882 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13883  * be folded together at some point.
13884  */
13885 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13886 				  bool is_null)
13887 {
13888 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13889 	struct bpf_reg_state *regs = state->regs, *reg;
13890 	u32 ref_obj_id = regs[regno].ref_obj_id;
13891 	u32 id = regs[regno].id;
13892 
13893 	if (ref_obj_id && ref_obj_id == id && is_null)
13894 		/* regs[regno] is in the " == NULL" branch.
13895 		 * No one could have freed the reference state before
13896 		 * doing the NULL check.
13897 		 */
13898 		WARN_ON_ONCE(release_reference_state(state, id));
13899 
13900 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13901 		mark_ptr_or_null_reg(state, reg, id, is_null);
13902 	}));
13903 }
13904 
13905 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13906 				   struct bpf_reg_state *dst_reg,
13907 				   struct bpf_reg_state *src_reg,
13908 				   struct bpf_verifier_state *this_branch,
13909 				   struct bpf_verifier_state *other_branch)
13910 {
13911 	if (BPF_SRC(insn->code) != BPF_X)
13912 		return false;
13913 
13914 	/* Pointers are always 64-bit. */
13915 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13916 		return false;
13917 
13918 	switch (BPF_OP(insn->code)) {
13919 	case BPF_JGT:
13920 		if ((dst_reg->type == PTR_TO_PACKET &&
13921 		     src_reg->type == PTR_TO_PACKET_END) ||
13922 		    (dst_reg->type == PTR_TO_PACKET_META &&
13923 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13924 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13925 			find_good_pkt_pointers(this_branch, dst_reg,
13926 					       dst_reg->type, false);
13927 			mark_pkt_end(other_branch, insn->dst_reg, true);
13928 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13929 			    src_reg->type == PTR_TO_PACKET) ||
13930 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13931 			    src_reg->type == PTR_TO_PACKET_META)) {
13932 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13933 			find_good_pkt_pointers(other_branch, src_reg,
13934 					       src_reg->type, true);
13935 			mark_pkt_end(this_branch, insn->src_reg, false);
13936 		} else {
13937 			return false;
13938 		}
13939 		break;
13940 	case BPF_JLT:
13941 		if ((dst_reg->type == PTR_TO_PACKET &&
13942 		     src_reg->type == PTR_TO_PACKET_END) ||
13943 		    (dst_reg->type == PTR_TO_PACKET_META &&
13944 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13945 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13946 			find_good_pkt_pointers(other_branch, dst_reg,
13947 					       dst_reg->type, true);
13948 			mark_pkt_end(this_branch, insn->dst_reg, false);
13949 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13950 			    src_reg->type == PTR_TO_PACKET) ||
13951 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13952 			    src_reg->type == PTR_TO_PACKET_META)) {
13953 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13954 			find_good_pkt_pointers(this_branch, src_reg,
13955 					       src_reg->type, false);
13956 			mark_pkt_end(other_branch, insn->src_reg, true);
13957 		} else {
13958 			return false;
13959 		}
13960 		break;
13961 	case BPF_JGE:
13962 		if ((dst_reg->type == PTR_TO_PACKET &&
13963 		     src_reg->type == PTR_TO_PACKET_END) ||
13964 		    (dst_reg->type == PTR_TO_PACKET_META &&
13965 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13966 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13967 			find_good_pkt_pointers(this_branch, dst_reg,
13968 					       dst_reg->type, true);
13969 			mark_pkt_end(other_branch, insn->dst_reg, false);
13970 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13971 			    src_reg->type == PTR_TO_PACKET) ||
13972 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13973 			    src_reg->type == PTR_TO_PACKET_META)) {
13974 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13975 			find_good_pkt_pointers(other_branch, src_reg,
13976 					       src_reg->type, false);
13977 			mark_pkt_end(this_branch, insn->src_reg, true);
13978 		} else {
13979 			return false;
13980 		}
13981 		break;
13982 	case BPF_JLE:
13983 		if ((dst_reg->type == PTR_TO_PACKET &&
13984 		     src_reg->type == PTR_TO_PACKET_END) ||
13985 		    (dst_reg->type == PTR_TO_PACKET_META &&
13986 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13987 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13988 			find_good_pkt_pointers(other_branch, dst_reg,
13989 					       dst_reg->type, false);
13990 			mark_pkt_end(this_branch, insn->dst_reg, true);
13991 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13992 			    src_reg->type == PTR_TO_PACKET) ||
13993 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13994 			    src_reg->type == PTR_TO_PACKET_META)) {
13995 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13996 			find_good_pkt_pointers(this_branch, src_reg,
13997 					       src_reg->type, true);
13998 			mark_pkt_end(other_branch, insn->src_reg, false);
13999 		} else {
14000 			return false;
14001 		}
14002 		break;
14003 	default:
14004 		return false;
14005 	}
14006 
14007 	return true;
14008 }
14009 
14010 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14011 			       struct bpf_reg_state *known_reg)
14012 {
14013 	struct bpf_func_state *state;
14014 	struct bpf_reg_state *reg;
14015 
14016 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14017 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14018 			copy_register_state(reg, known_reg);
14019 	}));
14020 }
14021 
14022 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14023 			     struct bpf_insn *insn, int *insn_idx)
14024 {
14025 	struct bpf_verifier_state *this_branch = env->cur_state;
14026 	struct bpf_verifier_state *other_branch;
14027 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14028 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14029 	struct bpf_reg_state *eq_branch_regs;
14030 	u8 opcode = BPF_OP(insn->code);
14031 	bool is_jmp32;
14032 	int pred = -1;
14033 	int err;
14034 
14035 	/* Only conditional jumps are expected to reach here. */
14036 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14037 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14038 		return -EINVAL;
14039 	}
14040 
14041 	if (BPF_SRC(insn->code) == BPF_X) {
14042 		if (insn->imm != 0) {
14043 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14044 			return -EINVAL;
14045 		}
14046 
14047 		/* check src1 operand */
14048 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14049 		if (err)
14050 			return err;
14051 
14052 		if (is_pointer_value(env, insn->src_reg)) {
14053 			verbose(env, "R%d pointer comparison prohibited\n",
14054 				insn->src_reg);
14055 			return -EACCES;
14056 		}
14057 		src_reg = &regs[insn->src_reg];
14058 	} else {
14059 		if (insn->src_reg != BPF_REG_0) {
14060 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14061 			return -EINVAL;
14062 		}
14063 	}
14064 
14065 	/* check src2 operand */
14066 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14067 	if (err)
14068 		return err;
14069 
14070 	dst_reg = &regs[insn->dst_reg];
14071 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14072 
14073 	if (BPF_SRC(insn->code) == BPF_K) {
14074 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14075 	} else if (src_reg->type == SCALAR_VALUE &&
14076 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14077 		pred = is_branch_taken(dst_reg,
14078 				       tnum_subreg(src_reg->var_off).value,
14079 				       opcode,
14080 				       is_jmp32);
14081 	} else if (src_reg->type == SCALAR_VALUE &&
14082 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14083 		pred = is_branch_taken(dst_reg,
14084 				       src_reg->var_off.value,
14085 				       opcode,
14086 				       is_jmp32);
14087 	} else if (dst_reg->type == SCALAR_VALUE &&
14088 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14089 		pred = is_branch_taken(src_reg,
14090 				       tnum_subreg(dst_reg->var_off).value,
14091 				       flip_opcode(opcode),
14092 				       is_jmp32);
14093 	} else if (dst_reg->type == SCALAR_VALUE &&
14094 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14095 		pred = is_branch_taken(src_reg,
14096 				       dst_reg->var_off.value,
14097 				       flip_opcode(opcode),
14098 				       is_jmp32);
14099 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14100 		   reg_is_pkt_pointer_any(src_reg) &&
14101 		   !is_jmp32) {
14102 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14103 	}
14104 
14105 	if (pred >= 0) {
14106 		/* If we get here with a dst_reg pointer type it is because
14107 		 * above is_branch_taken() special cased the 0 comparison.
14108 		 */
14109 		if (!__is_pointer_value(false, dst_reg))
14110 			err = mark_chain_precision(env, insn->dst_reg);
14111 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14112 		    !__is_pointer_value(false, src_reg))
14113 			err = mark_chain_precision(env, insn->src_reg);
14114 		if (err)
14115 			return err;
14116 	}
14117 
14118 	if (pred == 1) {
14119 		/* Only follow the goto, ignore fall-through. If needed, push
14120 		 * the fall-through branch for simulation under speculative
14121 		 * execution.
14122 		 */
14123 		if (!env->bypass_spec_v1 &&
14124 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14125 					       *insn_idx))
14126 			return -EFAULT;
14127 		*insn_idx += insn->off;
14128 		return 0;
14129 	} else if (pred == 0) {
14130 		/* Only follow the fall-through branch, since that's where the
14131 		 * program will go. If needed, push the goto branch for
14132 		 * simulation under speculative execution.
14133 		 */
14134 		if (!env->bypass_spec_v1 &&
14135 		    !sanitize_speculative_path(env, insn,
14136 					       *insn_idx + insn->off + 1,
14137 					       *insn_idx))
14138 			return -EFAULT;
14139 		return 0;
14140 	}
14141 
14142 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14143 				  false);
14144 	if (!other_branch)
14145 		return -EFAULT;
14146 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14147 
14148 	/* detect if we are comparing against a constant value so we can adjust
14149 	 * our min/max values for our dst register.
14150 	 * this is only legit if both are scalars (or pointers to the same
14151 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14152 	 * because otherwise the different base pointers mean the offsets aren't
14153 	 * comparable.
14154 	 */
14155 	if (BPF_SRC(insn->code) == BPF_X) {
14156 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14157 
14158 		if (dst_reg->type == SCALAR_VALUE &&
14159 		    src_reg->type == SCALAR_VALUE) {
14160 			if (tnum_is_const(src_reg->var_off) ||
14161 			    (is_jmp32 &&
14162 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14163 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14164 						dst_reg,
14165 						src_reg->var_off.value,
14166 						tnum_subreg(src_reg->var_off).value,
14167 						opcode, is_jmp32);
14168 			else if (tnum_is_const(dst_reg->var_off) ||
14169 				 (is_jmp32 &&
14170 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14171 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14172 						    src_reg,
14173 						    dst_reg->var_off.value,
14174 						    tnum_subreg(dst_reg->var_off).value,
14175 						    opcode, is_jmp32);
14176 			else if (!is_jmp32 &&
14177 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14178 				/* Comparing for equality, we can combine knowledge */
14179 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14180 						    &other_branch_regs[insn->dst_reg],
14181 						    src_reg, dst_reg, opcode);
14182 			if (src_reg->id &&
14183 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14184 				find_equal_scalars(this_branch, src_reg);
14185 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14186 			}
14187 
14188 		}
14189 	} else if (dst_reg->type == SCALAR_VALUE) {
14190 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14191 					dst_reg, insn->imm, (u32)insn->imm,
14192 					opcode, is_jmp32);
14193 	}
14194 
14195 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14196 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14197 		find_equal_scalars(this_branch, dst_reg);
14198 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14199 	}
14200 
14201 	/* if one pointer register is compared to another pointer
14202 	 * register check if PTR_MAYBE_NULL could be lifted.
14203 	 * E.g. register A - maybe null
14204 	 *      register B - not null
14205 	 * for JNE A, B, ... - A is not null in the false branch;
14206 	 * for JEQ A, B, ... - A is not null in the true branch.
14207 	 *
14208 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14209 	 * not need to be null checked by the BPF program, i.e.,
14210 	 * could be null even without PTR_MAYBE_NULL marking, so
14211 	 * only propagate nullness when neither reg is that type.
14212 	 */
14213 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14214 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14215 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14216 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14217 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14218 		eq_branch_regs = NULL;
14219 		switch (opcode) {
14220 		case BPF_JEQ:
14221 			eq_branch_regs = other_branch_regs;
14222 			break;
14223 		case BPF_JNE:
14224 			eq_branch_regs = regs;
14225 			break;
14226 		default:
14227 			/* do nothing */
14228 			break;
14229 		}
14230 		if (eq_branch_regs) {
14231 			if (type_may_be_null(src_reg->type))
14232 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14233 			else
14234 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14235 		}
14236 	}
14237 
14238 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14239 	 * NOTE: these optimizations below are related with pointer comparison
14240 	 *       which will never be JMP32.
14241 	 */
14242 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14243 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14244 	    type_may_be_null(dst_reg->type)) {
14245 		/* Mark all identical registers in each branch as either
14246 		 * safe or unknown depending R == 0 or R != 0 conditional.
14247 		 */
14248 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14249 				      opcode == BPF_JNE);
14250 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14251 				      opcode == BPF_JEQ);
14252 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14253 					   this_branch, other_branch) &&
14254 		   is_pointer_value(env, insn->dst_reg)) {
14255 		verbose(env, "R%d pointer comparison prohibited\n",
14256 			insn->dst_reg);
14257 		return -EACCES;
14258 	}
14259 	if (env->log.level & BPF_LOG_LEVEL)
14260 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14261 	return 0;
14262 }
14263 
14264 /* verify BPF_LD_IMM64 instruction */
14265 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14266 {
14267 	struct bpf_insn_aux_data *aux = cur_aux(env);
14268 	struct bpf_reg_state *regs = cur_regs(env);
14269 	struct bpf_reg_state *dst_reg;
14270 	struct bpf_map *map;
14271 	int err;
14272 
14273 	if (BPF_SIZE(insn->code) != BPF_DW) {
14274 		verbose(env, "invalid BPF_LD_IMM insn\n");
14275 		return -EINVAL;
14276 	}
14277 	if (insn->off != 0) {
14278 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14279 		return -EINVAL;
14280 	}
14281 
14282 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14283 	if (err)
14284 		return err;
14285 
14286 	dst_reg = &regs[insn->dst_reg];
14287 	if (insn->src_reg == 0) {
14288 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14289 
14290 		dst_reg->type = SCALAR_VALUE;
14291 		__mark_reg_known(&regs[insn->dst_reg], imm);
14292 		return 0;
14293 	}
14294 
14295 	/* All special src_reg cases are listed below. From this point onwards
14296 	 * we either succeed and assign a corresponding dst_reg->type after
14297 	 * zeroing the offset, or fail and reject the program.
14298 	 */
14299 	mark_reg_known_zero(env, regs, insn->dst_reg);
14300 
14301 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14302 		dst_reg->type = aux->btf_var.reg_type;
14303 		switch (base_type(dst_reg->type)) {
14304 		case PTR_TO_MEM:
14305 			dst_reg->mem_size = aux->btf_var.mem_size;
14306 			break;
14307 		case PTR_TO_BTF_ID:
14308 			dst_reg->btf = aux->btf_var.btf;
14309 			dst_reg->btf_id = aux->btf_var.btf_id;
14310 			break;
14311 		default:
14312 			verbose(env, "bpf verifier is misconfigured\n");
14313 			return -EFAULT;
14314 		}
14315 		return 0;
14316 	}
14317 
14318 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14319 		struct bpf_prog_aux *aux = env->prog->aux;
14320 		u32 subprogno = find_subprog(env,
14321 					     env->insn_idx + insn->imm + 1);
14322 
14323 		if (!aux->func_info) {
14324 			verbose(env, "missing btf func_info\n");
14325 			return -EINVAL;
14326 		}
14327 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14328 			verbose(env, "callback function not static\n");
14329 			return -EINVAL;
14330 		}
14331 
14332 		dst_reg->type = PTR_TO_FUNC;
14333 		dst_reg->subprogno = subprogno;
14334 		return 0;
14335 	}
14336 
14337 	map = env->used_maps[aux->map_index];
14338 	dst_reg->map_ptr = map;
14339 
14340 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14341 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14342 		dst_reg->type = PTR_TO_MAP_VALUE;
14343 		dst_reg->off = aux->map_off;
14344 		WARN_ON_ONCE(map->max_entries != 1);
14345 		/* We want reg->id to be same (0) as map_value is not distinct */
14346 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14347 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14348 		dst_reg->type = CONST_PTR_TO_MAP;
14349 	} else {
14350 		verbose(env, "bpf verifier is misconfigured\n");
14351 		return -EINVAL;
14352 	}
14353 
14354 	return 0;
14355 }
14356 
14357 static bool may_access_skb(enum bpf_prog_type type)
14358 {
14359 	switch (type) {
14360 	case BPF_PROG_TYPE_SOCKET_FILTER:
14361 	case BPF_PROG_TYPE_SCHED_CLS:
14362 	case BPF_PROG_TYPE_SCHED_ACT:
14363 		return true;
14364 	default:
14365 		return false;
14366 	}
14367 }
14368 
14369 /* verify safety of LD_ABS|LD_IND instructions:
14370  * - they can only appear in the programs where ctx == skb
14371  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14372  *   preserve R6-R9, and store return value into R0
14373  *
14374  * Implicit input:
14375  *   ctx == skb == R6 == CTX
14376  *
14377  * Explicit input:
14378  *   SRC == any register
14379  *   IMM == 32-bit immediate
14380  *
14381  * Output:
14382  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14383  */
14384 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14385 {
14386 	struct bpf_reg_state *regs = cur_regs(env);
14387 	static const int ctx_reg = BPF_REG_6;
14388 	u8 mode = BPF_MODE(insn->code);
14389 	int i, err;
14390 
14391 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14392 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14393 		return -EINVAL;
14394 	}
14395 
14396 	if (!env->ops->gen_ld_abs) {
14397 		verbose(env, "bpf verifier is misconfigured\n");
14398 		return -EINVAL;
14399 	}
14400 
14401 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14402 	    BPF_SIZE(insn->code) == BPF_DW ||
14403 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14404 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14405 		return -EINVAL;
14406 	}
14407 
14408 	/* check whether implicit source operand (register R6) is readable */
14409 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14410 	if (err)
14411 		return err;
14412 
14413 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14414 	 * gen_ld_abs() may terminate the program at runtime, leading to
14415 	 * reference leak.
14416 	 */
14417 	err = check_reference_leak(env);
14418 	if (err) {
14419 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14420 		return err;
14421 	}
14422 
14423 	if (env->cur_state->active_lock.ptr) {
14424 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14425 		return -EINVAL;
14426 	}
14427 
14428 	if (env->cur_state->active_rcu_lock) {
14429 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14430 		return -EINVAL;
14431 	}
14432 
14433 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14434 		verbose(env,
14435 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14436 		return -EINVAL;
14437 	}
14438 
14439 	if (mode == BPF_IND) {
14440 		/* check explicit source operand */
14441 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14442 		if (err)
14443 			return err;
14444 	}
14445 
14446 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14447 	if (err < 0)
14448 		return err;
14449 
14450 	/* reset caller saved regs to unreadable */
14451 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14452 		mark_reg_not_init(env, regs, caller_saved[i]);
14453 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14454 	}
14455 
14456 	/* mark destination R0 register as readable, since it contains
14457 	 * the value fetched from the packet.
14458 	 * Already marked as written above.
14459 	 */
14460 	mark_reg_unknown(env, regs, BPF_REG_0);
14461 	/* ld_abs load up to 32-bit skb data. */
14462 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14463 	return 0;
14464 }
14465 
14466 static int check_return_code(struct bpf_verifier_env *env)
14467 {
14468 	struct tnum enforce_attach_type_range = tnum_unknown;
14469 	const struct bpf_prog *prog = env->prog;
14470 	struct bpf_reg_state *reg;
14471 	struct tnum range = tnum_range(0, 1);
14472 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14473 	int err;
14474 	struct bpf_func_state *frame = env->cur_state->frame[0];
14475 	const bool is_subprog = frame->subprogno;
14476 
14477 	/* LSM and struct_ops func-ptr's return type could be "void" */
14478 	if (!is_subprog) {
14479 		switch (prog_type) {
14480 		case BPF_PROG_TYPE_LSM:
14481 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14482 				/* See below, can be 0 or 0-1 depending on hook. */
14483 				break;
14484 			fallthrough;
14485 		case BPF_PROG_TYPE_STRUCT_OPS:
14486 			if (!prog->aux->attach_func_proto->type)
14487 				return 0;
14488 			break;
14489 		default:
14490 			break;
14491 		}
14492 	}
14493 
14494 	/* eBPF calling convention is such that R0 is used
14495 	 * to return the value from eBPF program.
14496 	 * Make sure that it's readable at this time
14497 	 * of bpf_exit, which means that program wrote
14498 	 * something into it earlier
14499 	 */
14500 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14501 	if (err)
14502 		return err;
14503 
14504 	if (is_pointer_value(env, BPF_REG_0)) {
14505 		verbose(env, "R0 leaks addr as return value\n");
14506 		return -EACCES;
14507 	}
14508 
14509 	reg = cur_regs(env) + BPF_REG_0;
14510 
14511 	if (frame->in_async_callback_fn) {
14512 		/* enforce return zero from async callbacks like timer */
14513 		if (reg->type != SCALAR_VALUE) {
14514 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14515 				reg_type_str(env, reg->type));
14516 			return -EINVAL;
14517 		}
14518 
14519 		if (!tnum_in(tnum_const(0), reg->var_off)) {
14520 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14521 			return -EINVAL;
14522 		}
14523 		return 0;
14524 	}
14525 
14526 	if (is_subprog) {
14527 		if (reg->type != SCALAR_VALUE) {
14528 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14529 				reg_type_str(env, reg->type));
14530 			return -EINVAL;
14531 		}
14532 		return 0;
14533 	}
14534 
14535 	switch (prog_type) {
14536 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14537 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14538 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14539 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14540 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14541 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14542 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14543 			range = tnum_range(1, 1);
14544 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14545 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14546 			range = tnum_range(0, 3);
14547 		break;
14548 	case BPF_PROG_TYPE_CGROUP_SKB:
14549 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14550 			range = tnum_range(0, 3);
14551 			enforce_attach_type_range = tnum_range(2, 3);
14552 		}
14553 		break;
14554 	case BPF_PROG_TYPE_CGROUP_SOCK:
14555 	case BPF_PROG_TYPE_SOCK_OPS:
14556 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14557 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14558 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14559 		break;
14560 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14561 		if (!env->prog->aux->attach_btf_id)
14562 			return 0;
14563 		range = tnum_const(0);
14564 		break;
14565 	case BPF_PROG_TYPE_TRACING:
14566 		switch (env->prog->expected_attach_type) {
14567 		case BPF_TRACE_FENTRY:
14568 		case BPF_TRACE_FEXIT:
14569 			range = tnum_const(0);
14570 			break;
14571 		case BPF_TRACE_RAW_TP:
14572 		case BPF_MODIFY_RETURN:
14573 			return 0;
14574 		case BPF_TRACE_ITER:
14575 			break;
14576 		default:
14577 			return -ENOTSUPP;
14578 		}
14579 		break;
14580 	case BPF_PROG_TYPE_SK_LOOKUP:
14581 		range = tnum_range(SK_DROP, SK_PASS);
14582 		break;
14583 
14584 	case BPF_PROG_TYPE_LSM:
14585 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14586 			/* Regular BPF_PROG_TYPE_LSM programs can return
14587 			 * any value.
14588 			 */
14589 			return 0;
14590 		}
14591 		if (!env->prog->aux->attach_func_proto->type) {
14592 			/* Make sure programs that attach to void
14593 			 * hooks don't try to modify return value.
14594 			 */
14595 			range = tnum_range(1, 1);
14596 		}
14597 		break;
14598 
14599 	case BPF_PROG_TYPE_NETFILTER:
14600 		range = tnum_range(NF_DROP, NF_ACCEPT);
14601 		break;
14602 	case BPF_PROG_TYPE_EXT:
14603 		/* freplace program can return anything as its return value
14604 		 * depends on the to-be-replaced kernel func or bpf program.
14605 		 */
14606 	default:
14607 		return 0;
14608 	}
14609 
14610 	if (reg->type != SCALAR_VALUE) {
14611 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14612 			reg_type_str(env, reg->type));
14613 		return -EINVAL;
14614 	}
14615 
14616 	if (!tnum_in(range, reg->var_off)) {
14617 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14618 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14619 		    prog_type == BPF_PROG_TYPE_LSM &&
14620 		    !prog->aux->attach_func_proto->type)
14621 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14622 		return -EINVAL;
14623 	}
14624 
14625 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14626 	    tnum_in(enforce_attach_type_range, reg->var_off))
14627 		env->prog->enforce_expected_attach_type = 1;
14628 	return 0;
14629 }
14630 
14631 /* non-recursive DFS pseudo code
14632  * 1  procedure DFS-iterative(G,v):
14633  * 2      label v as discovered
14634  * 3      let S be a stack
14635  * 4      S.push(v)
14636  * 5      while S is not empty
14637  * 6            t <- S.peek()
14638  * 7            if t is what we're looking for:
14639  * 8                return t
14640  * 9            for all edges e in G.adjacentEdges(t) do
14641  * 10               if edge e is already labelled
14642  * 11                   continue with the next edge
14643  * 12               w <- G.adjacentVertex(t,e)
14644  * 13               if vertex w is not discovered and not explored
14645  * 14                   label e as tree-edge
14646  * 15                   label w as discovered
14647  * 16                   S.push(w)
14648  * 17                   continue at 5
14649  * 18               else if vertex w is discovered
14650  * 19                   label e as back-edge
14651  * 20               else
14652  * 21                   // vertex w is explored
14653  * 22                   label e as forward- or cross-edge
14654  * 23           label t as explored
14655  * 24           S.pop()
14656  *
14657  * convention:
14658  * 0x10 - discovered
14659  * 0x11 - discovered and fall-through edge labelled
14660  * 0x12 - discovered and fall-through and branch edges labelled
14661  * 0x20 - explored
14662  */
14663 
14664 enum {
14665 	DISCOVERED = 0x10,
14666 	EXPLORED = 0x20,
14667 	FALLTHROUGH = 1,
14668 	BRANCH = 2,
14669 };
14670 
14671 static u32 state_htab_size(struct bpf_verifier_env *env)
14672 {
14673 	return env->prog->len;
14674 }
14675 
14676 static struct bpf_verifier_state_list **explored_state(
14677 					struct bpf_verifier_env *env,
14678 					int idx)
14679 {
14680 	struct bpf_verifier_state *cur = env->cur_state;
14681 	struct bpf_func_state *state = cur->frame[cur->curframe];
14682 
14683 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14684 }
14685 
14686 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14687 {
14688 	env->insn_aux_data[idx].prune_point = true;
14689 }
14690 
14691 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14692 {
14693 	return env->insn_aux_data[insn_idx].prune_point;
14694 }
14695 
14696 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14697 {
14698 	env->insn_aux_data[idx].force_checkpoint = true;
14699 }
14700 
14701 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14702 {
14703 	return env->insn_aux_data[insn_idx].force_checkpoint;
14704 }
14705 
14706 
14707 enum {
14708 	DONE_EXPLORING = 0,
14709 	KEEP_EXPLORING = 1,
14710 };
14711 
14712 /* t, w, e - match pseudo-code above:
14713  * t - index of current instruction
14714  * w - next instruction
14715  * e - edge
14716  */
14717 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14718 		     bool loop_ok)
14719 {
14720 	int *insn_stack = env->cfg.insn_stack;
14721 	int *insn_state = env->cfg.insn_state;
14722 
14723 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14724 		return DONE_EXPLORING;
14725 
14726 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14727 		return DONE_EXPLORING;
14728 
14729 	if (w < 0 || w >= env->prog->len) {
14730 		verbose_linfo(env, t, "%d: ", t);
14731 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14732 		return -EINVAL;
14733 	}
14734 
14735 	if (e == BRANCH) {
14736 		/* mark branch target for state pruning */
14737 		mark_prune_point(env, w);
14738 		mark_jmp_point(env, w);
14739 	}
14740 
14741 	if (insn_state[w] == 0) {
14742 		/* tree-edge */
14743 		insn_state[t] = DISCOVERED | e;
14744 		insn_state[w] = DISCOVERED;
14745 		if (env->cfg.cur_stack >= env->prog->len)
14746 			return -E2BIG;
14747 		insn_stack[env->cfg.cur_stack++] = w;
14748 		return KEEP_EXPLORING;
14749 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14750 		if (loop_ok && env->bpf_capable)
14751 			return DONE_EXPLORING;
14752 		verbose_linfo(env, t, "%d: ", t);
14753 		verbose_linfo(env, w, "%d: ", w);
14754 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14755 		return -EINVAL;
14756 	} else if (insn_state[w] == EXPLORED) {
14757 		/* forward- or cross-edge */
14758 		insn_state[t] = DISCOVERED | e;
14759 	} else {
14760 		verbose(env, "insn state internal bug\n");
14761 		return -EFAULT;
14762 	}
14763 	return DONE_EXPLORING;
14764 }
14765 
14766 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14767 				struct bpf_verifier_env *env,
14768 				bool visit_callee)
14769 {
14770 	int ret;
14771 
14772 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14773 	if (ret)
14774 		return ret;
14775 
14776 	mark_prune_point(env, t + 1);
14777 	/* when we exit from subprog, we need to record non-linear history */
14778 	mark_jmp_point(env, t + 1);
14779 
14780 	if (visit_callee) {
14781 		mark_prune_point(env, t);
14782 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14783 				/* It's ok to allow recursion from CFG point of
14784 				 * view. __check_func_call() will do the actual
14785 				 * check.
14786 				 */
14787 				bpf_pseudo_func(insns + t));
14788 	}
14789 	return ret;
14790 }
14791 
14792 /* Visits the instruction at index t and returns one of the following:
14793  *  < 0 - an error occurred
14794  *  DONE_EXPLORING - the instruction was fully explored
14795  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14796  */
14797 static int visit_insn(int t, struct bpf_verifier_env *env)
14798 {
14799 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14800 	int ret, off;
14801 
14802 	if (bpf_pseudo_func(insn))
14803 		return visit_func_call_insn(t, insns, env, true);
14804 
14805 	/* All non-branch instructions have a single fall-through edge. */
14806 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14807 	    BPF_CLASS(insn->code) != BPF_JMP32)
14808 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
14809 
14810 	switch (BPF_OP(insn->code)) {
14811 	case BPF_EXIT:
14812 		return DONE_EXPLORING;
14813 
14814 	case BPF_CALL:
14815 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14816 			/* Mark this call insn as a prune point to trigger
14817 			 * is_state_visited() check before call itself is
14818 			 * processed by __check_func_call(). Otherwise new
14819 			 * async state will be pushed for further exploration.
14820 			 */
14821 			mark_prune_point(env, t);
14822 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14823 			struct bpf_kfunc_call_arg_meta meta;
14824 
14825 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14826 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14827 				mark_prune_point(env, t);
14828 				/* Checking and saving state checkpoints at iter_next() call
14829 				 * is crucial for fast convergence of open-coded iterator loop
14830 				 * logic, so we need to force it. If we don't do that,
14831 				 * is_state_visited() might skip saving a checkpoint, causing
14832 				 * unnecessarily long sequence of not checkpointed
14833 				 * instructions and jumps, leading to exhaustion of jump
14834 				 * history buffer, and potentially other undesired outcomes.
14835 				 * It is expected that with correct open-coded iterators
14836 				 * convergence will happen quickly, so we don't run a risk of
14837 				 * exhausting memory.
14838 				 */
14839 				mark_force_checkpoint(env, t);
14840 			}
14841 		}
14842 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14843 
14844 	case BPF_JA:
14845 		if (BPF_SRC(insn->code) != BPF_K)
14846 			return -EINVAL;
14847 
14848 		if (BPF_CLASS(insn->code) == BPF_JMP)
14849 			off = insn->off;
14850 		else
14851 			off = insn->imm;
14852 
14853 		/* unconditional jump with single edge */
14854 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
14855 				true);
14856 		if (ret)
14857 			return ret;
14858 
14859 		mark_prune_point(env, t + off + 1);
14860 		mark_jmp_point(env, t + off + 1);
14861 
14862 		return ret;
14863 
14864 	default:
14865 		/* conditional jump with two edges */
14866 		mark_prune_point(env, t);
14867 
14868 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14869 		if (ret)
14870 			return ret;
14871 
14872 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14873 	}
14874 }
14875 
14876 /* non-recursive depth-first-search to detect loops in BPF program
14877  * loop == back-edge in directed graph
14878  */
14879 static int check_cfg(struct bpf_verifier_env *env)
14880 {
14881 	int insn_cnt = env->prog->len;
14882 	int *insn_stack, *insn_state;
14883 	int ret = 0;
14884 	int i;
14885 
14886 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14887 	if (!insn_state)
14888 		return -ENOMEM;
14889 
14890 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14891 	if (!insn_stack) {
14892 		kvfree(insn_state);
14893 		return -ENOMEM;
14894 	}
14895 
14896 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14897 	insn_stack[0] = 0; /* 0 is the first instruction */
14898 	env->cfg.cur_stack = 1;
14899 
14900 	while (env->cfg.cur_stack > 0) {
14901 		int t = insn_stack[env->cfg.cur_stack - 1];
14902 
14903 		ret = visit_insn(t, env);
14904 		switch (ret) {
14905 		case DONE_EXPLORING:
14906 			insn_state[t] = EXPLORED;
14907 			env->cfg.cur_stack--;
14908 			break;
14909 		case KEEP_EXPLORING:
14910 			break;
14911 		default:
14912 			if (ret > 0) {
14913 				verbose(env, "visit_insn internal bug\n");
14914 				ret = -EFAULT;
14915 			}
14916 			goto err_free;
14917 		}
14918 	}
14919 
14920 	if (env->cfg.cur_stack < 0) {
14921 		verbose(env, "pop stack internal bug\n");
14922 		ret = -EFAULT;
14923 		goto err_free;
14924 	}
14925 
14926 	for (i = 0; i < insn_cnt; i++) {
14927 		if (insn_state[i] != EXPLORED) {
14928 			verbose(env, "unreachable insn %d\n", i);
14929 			ret = -EINVAL;
14930 			goto err_free;
14931 		}
14932 	}
14933 	ret = 0; /* cfg looks good */
14934 
14935 err_free:
14936 	kvfree(insn_state);
14937 	kvfree(insn_stack);
14938 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14939 	return ret;
14940 }
14941 
14942 static int check_abnormal_return(struct bpf_verifier_env *env)
14943 {
14944 	int i;
14945 
14946 	for (i = 1; i < env->subprog_cnt; i++) {
14947 		if (env->subprog_info[i].has_ld_abs) {
14948 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14949 			return -EINVAL;
14950 		}
14951 		if (env->subprog_info[i].has_tail_call) {
14952 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14953 			return -EINVAL;
14954 		}
14955 	}
14956 	return 0;
14957 }
14958 
14959 /* The minimum supported BTF func info size */
14960 #define MIN_BPF_FUNCINFO_SIZE	8
14961 #define MAX_FUNCINFO_REC_SIZE	252
14962 
14963 static int check_btf_func(struct bpf_verifier_env *env,
14964 			  const union bpf_attr *attr,
14965 			  bpfptr_t uattr)
14966 {
14967 	const struct btf_type *type, *func_proto, *ret_type;
14968 	u32 i, nfuncs, urec_size, min_size;
14969 	u32 krec_size = sizeof(struct bpf_func_info);
14970 	struct bpf_func_info *krecord;
14971 	struct bpf_func_info_aux *info_aux = NULL;
14972 	struct bpf_prog *prog;
14973 	const struct btf *btf;
14974 	bpfptr_t urecord;
14975 	u32 prev_offset = 0;
14976 	bool scalar_return;
14977 	int ret = -ENOMEM;
14978 
14979 	nfuncs = attr->func_info_cnt;
14980 	if (!nfuncs) {
14981 		if (check_abnormal_return(env))
14982 			return -EINVAL;
14983 		return 0;
14984 	}
14985 
14986 	if (nfuncs != env->subprog_cnt) {
14987 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14988 		return -EINVAL;
14989 	}
14990 
14991 	urec_size = attr->func_info_rec_size;
14992 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14993 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
14994 	    urec_size % sizeof(u32)) {
14995 		verbose(env, "invalid func info rec size %u\n", urec_size);
14996 		return -EINVAL;
14997 	}
14998 
14999 	prog = env->prog;
15000 	btf = prog->aux->btf;
15001 
15002 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15003 	min_size = min_t(u32, krec_size, urec_size);
15004 
15005 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15006 	if (!krecord)
15007 		return -ENOMEM;
15008 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15009 	if (!info_aux)
15010 		goto err_free;
15011 
15012 	for (i = 0; i < nfuncs; i++) {
15013 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15014 		if (ret) {
15015 			if (ret == -E2BIG) {
15016 				verbose(env, "nonzero tailing record in func info");
15017 				/* set the size kernel expects so loader can zero
15018 				 * out the rest of the record.
15019 				 */
15020 				if (copy_to_bpfptr_offset(uattr,
15021 							  offsetof(union bpf_attr, func_info_rec_size),
15022 							  &min_size, sizeof(min_size)))
15023 					ret = -EFAULT;
15024 			}
15025 			goto err_free;
15026 		}
15027 
15028 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15029 			ret = -EFAULT;
15030 			goto err_free;
15031 		}
15032 
15033 		/* check insn_off */
15034 		ret = -EINVAL;
15035 		if (i == 0) {
15036 			if (krecord[i].insn_off) {
15037 				verbose(env,
15038 					"nonzero insn_off %u for the first func info record",
15039 					krecord[i].insn_off);
15040 				goto err_free;
15041 			}
15042 		} else if (krecord[i].insn_off <= prev_offset) {
15043 			verbose(env,
15044 				"same or smaller insn offset (%u) than previous func info record (%u)",
15045 				krecord[i].insn_off, prev_offset);
15046 			goto err_free;
15047 		}
15048 
15049 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15050 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15051 			goto err_free;
15052 		}
15053 
15054 		/* check type_id */
15055 		type = btf_type_by_id(btf, krecord[i].type_id);
15056 		if (!type || !btf_type_is_func(type)) {
15057 			verbose(env, "invalid type id %d in func info",
15058 				krecord[i].type_id);
15059 			goto err_free;
15060 		}
15061 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15062 
15063 		func_proto = btf_type_by_id(btf, type->type);
15064 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15065 			/* btf_func_check() already verified it during BTF load */
15066 			goto err_free;
15067 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15068 		scalar_return =
15069 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15070 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15071 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15072 			goto err_free;
15073 		}
15074 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15075 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15076 			goto err_free;
15077 		}
15078 
15079 		prev_offset = krecord[i].insn_off;
15080 		bpfptr_add(&urecord, urec_size);
15081 	}
15082 
15083 	prog->aux->func_info = krecord;
15084 	prog->aux->func_info_cnt = nfuncs;
15085 	prog->aux->func_info_aux = info_aux;
15086 	return 0;
15087 
15088 err_free:
15089 	kvfree(krecord);
15090 	kfree(info_aux);
15091 	return ret;
15092 }
15093 
15094 static void adjust_btf_func(struct bpf_verifier_env *env)
15095 {
15096 	struct bpf_prog_aux *aux = env->prog->aux;
15097 	int i;
15098 
15099 	if (!aux->func_info)
15100 		return;
15101 
15102 	for (i = 0; i < env->subprog_cnt; i++)
15103 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15104 }
15105 
15106 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15107 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15108 
15109 static int check_btf_line(struct bpf_verifier_env *env,
15110 			  const union bpf_attr *attr,
15111 			  bpfptr_t uattr)
15112 {
15113 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15114 	struct bpf_subprog_info *sub;
15115 	struct bpf_line_info *linfo;
15116 	struct bpf_prog *prog;
15117 	const struct btf *btf;
15118 	bpfptr_t ulinfo;
15119 	int err;
15120 
15121 	nr_linfo = attr->line_info_cnt;
15122 	if (!nr_linfo)
15123 		return 0;
15124 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15125 		return -EINVAL;
15126 
15127 	rec_size = attr->line_info_rec_size;
15128 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15129 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15130 	    rec_size & (sizeof(u32) - 1))
15131 		return -EINVAL;
15132 
15133 	/* Need to zero it in case the userspace may
15134 	 * pass in a smaller bpf_line_info object.
15135 	 */
15136 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15137 			 GFP_KERNEL | __GFP_NOWARN);
15138 	if (!linfo)
15139 		return -ENOMEM;
15140 
15141 	prog = env->prog;
15142 	btf = prog->aux->btf;
15143 
15144 	s = 0;
15145 	sub = env->subprog_info;
15146 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15147 	expected_size = sizeof(struct bpf_line_info);
15148 	ncopy = min_t(u32, expected_size, rec_size);
15149 	for (i = 0; i < nr_linfo; i++) {
15150 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15151 		if (err) {
15152 			if (err == -E2BIG) {
15153 				verbose(env, "nonzero tailing record in line_info");
15154 				if (copy_to_bpfptr_offset(uattr,
15155 							  offsetof(union bpf_attr, line_info_rec_size),
15156 							  &expected_size, sizeof(expected_size)))
15157 					err = -EFAULT;
15158 			}
15159 			goto err_free;
15160 		}
15161 
15162 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15163 			err = -EFAULT;
15164 			goto err_free;
15165 		}
15166 
15167 		/*
15168 		 * Check insn_off to ensure
15169 		 * 1) strictly increasing AND
15170 		 * 2) bounded by prog->len
15171 		 *
15172 		 * The linfo[0].insn_off == 0 check logically falls into
15173 		 * the later "missing bpf_line_info for func..." case
15174 		 * because the first linfo[0].insn_off must be the
15175 		 * first sub also and the first sub must have
15176 		 * subprog_info[0].start == 0.
15177 		 */
15178 		if ((i && linfo[i].insn_off <= prev_offset) ||
15179 		    linfo[i].insn_off >= prog->len) {
15180 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15181 				i, linfo[i].insn_off, prev_offset,
15182 				prog->len);
15183 			err = -EINVAL;
15184 			goto err_free;
15185 		}
15186 
15187 		if (!prog->insnsi[linfo[i].insn_off].code) {
15188 			verbose(env,
15189 				"Invalid insn code at line_info[%u].insn_off\n",
15190 				i);
15191 			err = -EINVAL;
15192 			goto err_free;
15193 		}
15194 
15195 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15196 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15197 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15198 			err = -EINVAL;
15199 			goto err_free;
15200 		}
15201 
15202 		if (s != env->subprog_cnt) {
15203 			if (linfo[i].insn_off == sub[s].start) {
15204 				sub[s].linfo_idx = i;
15205 				s++;
15206 			} else if (sub[s].start < linfo[i].insn_off) {
15207 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15208 				err = -EINVAL;
15209 				goto err_free;
15210 			}
15211 		}
15212 
15213 		prev_offset = linfo[i].insn_off;
15214 		bpfptr_add(&ulinfo, rec_size);
15215 	}
15216 
15217 	if (s != env->subprog_cnt) {
15218 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15219 			env->subprog_cnt - s, s);
15220 		err = -EINVAL;
15221 		goto err_free;
15222 	}
15223 
15224 	prog->aux->linfo = linfo;
15225 	prog->aux->nr_linfo = nr_linfo;
15226 
15227 	return 0;
15228 
15229 err_free:
15230 	kvfree(linfo);
15231 	return err;
15232 }
15233 
15234 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15235 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15236 
15237 static int check_core_relo(struct bpf_verifier_env *env,
15238 			   const union bpf_attr *attr,
15239 			   bpfptr_t uattr)
15240 {
15241 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15242 	struct bpf_core_relo core_relo = {};
15243 	struct bpf_prog *prog = env->prog;
15244 	const struct btf *btf = prog->aux->btf;
15245 	struct bpf_core_ctx ctx = {
15246 		.log = &env->log,
15247 		.btf = btf,
15248 	};
15249 	bpfptr_t u_core_relo;
15250 	int err;
15251 
15252 	nr_core_relo = attr->core_relo_cnt;
15253 	if (!nr_core_relo)
15254 		return 0;
15255 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15256 		return -EINVAL;
15257 
15258 	rec_size = attr->core_relo_rec_size;
15259 	if (rec_size < MIN_CORE_RELO_SIZE ||
15260 	    rec_size > MAX_CORE_RELO_SIZE ||
15261 	    rec_size % sizeof(u32))
15262 		return -EINVAL;
15263 
15264 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15265 	expected_size = sizeof(struct bpf_core_relo);
15266 	ncopy = min_t(u32, expected_size, rec_size);
15267 
15268 	/* Unlike func_info and line_info, copy and apply each CO-RE
15269 	 * relocation record one at a time.
15270 	 */
15271 	for (i = 0; i < nr_core_relo; i++) {
15272 		/* future proofing when sizeof(bpf_core_relo) changes */
15273 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15274 		if (err) {
15275 			if (err == -E2BIG) {
15276 				verbose(env, "nonzero tailing record in core_relo");
15277 				if (copy_to_bpfptr_offset(uattr,
15278 							  offsetof(union bpf_attr, core_relo_rec_size),
15279 							  &expected_size, sizeof(expected_size)))
15280 					err = -EFAULT;
15281 			}
15282 			break;
15283 		}
15284 
15285 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15286 			err = -EFAULT;
15287 			break;
15288 		}
15289 
15290 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15291 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15292 				i, core_relo.insn_off, prog->len);
15293 			err = -EINVAL;
15294 			break;
15295 		}
15296 
15297 		err = bpf_core_apply(&ctx, &core_relo, i,
15298 				     &prog->insnsi[core_relo.insn_off / 8]);
15299 		if (err)
15300 			break;
15301 		bpfptr_add(&u_core_relo, rec_size);
15302 	}
15303 	return err;
15304 }
15305 
15306 static int check_btf_info(struct bpf_verifier_env *env,
15307 			  const union bpf_attr *attr,
15308 			  bpfptr_t uattr)
15309 {
15310 	struct btf *btf;
15311 	int err;
15312 
15313 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15314 		if (check_abnormal_return(env))
15315 			return -EINVAL;
15316 		return 0;
15317 	}
15318 
15319 	btf = btf_get_by_fd(attr->prog_btf_fd);
15320 	if (IS_ERR(btf))
15321 		return PTR_ERR(btf);
15322 	if (btf_is_kernel(btf)) {
15323 		btf_put(btf);
15324 		return -EACCES;
15325 	}
15326 	env->prog->aux->btf = btf;
15327 
15328 	err = check_btf_func(env, attr, uattr);
15329 	if (err)
15330 		return err;
15331 
15332 	err = check_btf_line(env, attr, uattr);
15333 	if (err)
15334 		return err;
15335 
15336 	err = check_core_relo(env, attr, uattr);
15337 	if (err)
15338 		return err;
15339 
15340 	return 0;
15341 }
15342 
15343 /* check %cur's range satisfies %old's */
15344 static bool range_within(struct bpf_reg_state *old,
15345 			 struct bpf_reg_state *cur)
15346 {
15347 	return old->umin_value <= cur->umin_value &&
15348 	       old->umax_value >= cur->umax_value &&
15349 	       old->smin_value <= cur->smin_value &&
15350 	       old->smax_value >= cur->smax_value &&
15351 	       old->u32_min_value <= cur->u32_min_value &&
15352 	       old->u32_max_value >= cur->u32_max_value &&
15353 	       old->s32_min_value <= cur->s32_min_value &&
15354 	       old->s32_max_value >= cur->s32_max_value;
15355 }
15356 
15357 /* If in the old state two registers had the same id, then they need to have
15358  * the same id in the new state as well.  But that id could be different from
15359  * the old state, so we need to track the mapping from old to new ids.
15360  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15361  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15362  * regs with a different old id could still have new id 9, we don't care about
15363  * that.
15364  * So we look through our idmap to see if this old id has been seen before.  If
15365  * so, we require the new id to match; otherwise, we add the id pair to the map.
15366  */
15367 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15368 {
15369 	struct bpf_id_pair *map = idmap->map;
15370 	unsigned int i;
15371 
15372 	/* either both IDs should be set or both should be zero */
15373 	if (!!old_id != !!cur_id)
15374 		return false;
15375 
15376 	if (old_id == 0) /* cur_id == 0 as well */
15377 		return true;
15378 
15379 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15380 		if (!map[i].old) {
15381 			/* Reached an empty slot; haven't seen this id before */
15382 			map[i].old = old_id;
15383 			map[i].cur = cur_id;
15384 			return true;
15385 		}
15386 		if (map[i].old == old_id)
15387 			return map[i].cur == cur_id;
15388 		if (map[i].cur == cur_id)
15389 			return false;
15390 	}
15391 	/* We ran out of idmap slots, which should be impossible */
15392 	WARN_ON_ONCE(1);
15393 	return false;
15394 }
15395 
15396 /* Similar to check_ids(), but allocate a unique temporary ID
15397  * for 'old_id' or 'cur_id' of zero.
15398  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15399  */
15400 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15401 {
15402 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15403 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15404 
15405 	return check_ids(old_id, cur_id, idmap);
15406 }
15407 
15408 static void clean_func_state(struct bpf_verifier_env *env,
15409 			     struct bpf_func_state *st)
15410 {
15411 	enum bpf_reg_liveness live;
15412 	int i, j;
15413 
15414 	for (i = 0; i < BPF_REG_FP; i++) {
15415 		live = st->regs[i].live;
15416 		/* liveness must not touch this register anymore */
15417 		st->regs[i].live |= REG_LIVE_DONE;
15418 		if (!(live & REG_LIVE_READ))
15419 			/* since the register is unused, clear its state
15420 			 * to make further comparison simpler
15421 			 */
15422 			__mark_reg_not_init(env, &st->regs[i]);
15423 	}
15424 
15425 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15426 		live = st->stack[i].spilled_ptr.live;
15427 		/* liveness must not touch this stack slot anymore */
15428 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15429 		if (!(live & REG_LIVE_READ)) {
15430 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15431 			for (j = 0; j < BPF_REG_SIZE; j++)
15432 				st->stack[i].slot_type[j] = STACK_INVALID;
15433 		}
15434 	}
15435 }
15436 
15437 static void clean_verifier_state(struct bpf_verifier_env *env,
15438 				 struct bpf_verifier_state *st)
15439 {
15440 	int i;
15441 
15442 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15443 		/* all regs in this state in all frames were already marked */
15444 		return;
15445 
15446 	for (i = 0; i <= st->curframe; i++)
15447 		clean_func_state(env, st->frame[i]);
15448 }
15449 
15450 /* the parentage chains form a tree.
15451  * the verifier states are added to state lists at given insn and
15452  * pushed into state stack for future exploration.
15453  * when the verifier reaches bpf_exit insn some of the verifer states
15454  * stored in the state lists have their final liveness state already,
15455  * but a lot of states will get revised from liveness point of view when
15456  * the verifier explores other branches.
15457  * Example:
15458  * 1: r0 = 1
15459  * 2: if r1 == 100 goto pc+1
15460  * 3: r0 = 2
15461  * 4: exit
15462  * when the verifier reaches exit insn the register r0 in the state list of
15463  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15464  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15465  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15466  *
15467  * Since the verifier pushes the branch states as it sees them while exploring
15468  * the program the condition of walking the branch instruction for the second
15469  * time means that all states below this branch were already explored and
15470  * their final liveness marks are already propagated.
15471  * Hence when the verifier completes the search of state list in is_state_visited()
15472  * we can call this clean_live_states() function to mark all liveness states
15473  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15474  * will not be used.
15475  * This function also clears the registers and stack for states that !READ
15476  * to simplify state merging.
15477  *
15478  * Important note here that walking the same branch instruction in the callee
15479  * doesn't meant that the states are DONE. The verifier has to compare
15480  * the callsites
15481  */
15482 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15483 			      struct bpf_verifier_state *cur)
15484 {
15485 	struct bpf_verifier_state_list *sl;
15486 	int i;
15487 
15488 	sl = *explored_state(env, insn);
15489 	while (sl) {
15490 		if (sl->state.branches)
15491 			goto next;
15492 		if (sl->state.insn_idx != insn ||
15493 		    sl->state.curframe != cur->curframe)
15494 			goto next;
15495 		for (i = 0; i <= cur->curframe; i++)
15496 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15497 				goto next;
15498 		clean_verifier_state(env, &sl->state);
15499 next:
15500 		sl = sl->next;
15501 	}
15502 }
15503 
15504 static bool regs_exact(const struct bpf_reg_state *rold,
15505 		       const struct bpf_reg_state *rcur,
15506 		       struct bpf_idmap *idmap)
15507 {
15508 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15509 	       check_ids(rold->id, rcur->id, idmap) &&
15510 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15511 }
15512 
15513 /* Returns true if (rold safe implies rcur safe) */
15514 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15515 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15516 {
15517 	if (!(rold->live & REG_LIVE_READ))
15518 		/* explored state didn't use this */
15519 		return true;
15520 	if (rold->type == NOT_INIT)
15521 		/* explored state can't have used this */
15522 		return true;
15523 	if (rcur->type == NOT_INIT)
15524 		return false;
15525 
15526 	/* Enforce that register types have to match exactly, including their
15527 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15528 	 * rule.
15529 	 *
15530 	 * One can make a point that using a pointer register as unbounded
15531 	 * SCALAR would be technically acceptable, but this could lead to
15532 	 * pointer leaks because scalars are allowed to leak while pointers
15533 	 * are not. We could make this safe in special cases if root is
15534 	 * calling us, but it's probably not worth the hassle.
15535 	 *
15536 	 * Also, register types that are *not* MAYBE_NULL could technically be
15537 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15538 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15539 	 * to the same map).
15540 	 * However, if the old MAYBE_NULL register then got NULL checked,
15541 	 * doing so could have affected others with the same id, and we can't
15542 	 * check for that because we lost the id when we converted to
15543 	 * a non-MAYBE_NULL variant.
15544 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15545 	 * non-MAYBE_NULL registers as well.
15546 	 */
15547 	if (rold->type != rcur->type)
15548 		return false;
15549 
15550 	switch (base_type(rold->type)) {
15551 	case SCALAR_VALUE:
15552 		if (env->explore_alu_limits) {
15553 			/* explore_alu_limits disables tnum_in() and range_within()
15554 			 * logic and requires everything to be strict
15555 			 */
15556 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15557 			       check_scalar_ids(rold->id, rcur->id, idmap);
15558 		}
15559 		if (!rold->precise)
15560 			return true;
15561 		/* Why check_ids() for scalar registers?
15562 		 *
15563 		 * Consider the following BPF code:
15564 		 *   1: r6 = ... unbound scalar, ID=a ...
15565 		 *   2: r7 = ... unbound scalar, ID=b ...
15566 		 *   3: if (r6 > r7) goto +1
15567 		 *   4: r6 = r7
15568 		 *   5: if (r6 > X) goto ...
15569 		 *   6: ... memory operation using r7 ...
15570 		 *
15571 		 * First verification path is [1-6]:
15572 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15573 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15574 		 *   r7 <= X, because r6 and r7 share same id.
15575 		 * Next verification path is [1-4, 6].
15576 		 *
15577 		 * Instruction (6) would be reached in two states:
15578 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15579 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15580 		 *
15581 		 * Use check_ids() to distinguish these states.
15582 		 * ---
15583 		 * Also verify that new value satisfies old value range knowledge.
15584 		 */
15585 		return range_within(rold, rcur) &&
15586 		       tnum_in(rold->var_off, rcur->var_off) &&
15587 		       check_scalar_ids(rold->id, rcur->id, idmap);
15588 	case PTR_TO_MAP_KEY:
15589 	case PTR_TO_MAP_VALUE:
15590 	case PTR_TO_MEM:
15591 	case PTR_TO_BUF:
15592 	case PTR_TO_TP_BUFFER:
15593 		/* If the new min/max/var_off satisfy the old ones and
15594 		 * everything else matches, we are OK.
15595 		 */
15596 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15597 		       range_within(rold, rcur) &&
15598 		       tnum_in(rold->var_off, rcur->var_off) &&
15599 		       check_ids(rold->id, rcur->id, idmap) &&
15600 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15601 	case PTR_TO_PACKET_META:
15602 	case PTR_TO_PACKET:
15603 		/* We must have at least as much range as the old ptr
15604 		 * did, so that any accesses which were safe before are
15605 		 * still safe.  This is true even if old range < old off,
15606 		 * since someone could have accessed through (ptr - k), or
15607 		 * even done ptr -= k in a register, to get a safe access.
15608 		 */
15609 		if (rold->range > rcur->range)
15610 			return false;
15611 		/* If the offsets don't match, we can't trust our alignment;
15612 		 * nor can we be sure that we won't fall out of range.
15613 		 */
15614 		if (rold->off != rcur->off)
15615 			return false;
15616 		/* id relations must be preserved */
15617 		if (!check_ids(rold->id, rcur->id, idmap))
15618 			return false;
15619 		/* new val must satisfy old val knowledge */
15620 		return range_within(rold, rcur) &&
15621 		       tnum_in(rold->var_off, rcur->var_off);
15622 	case PTR_TO_STACK:
15623 		/* two stack pointers are equal only if they're pointing to
15624 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15625 		 */
15626 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15627 	default:
15628 		return regs_exact(rold, rcur, idmap);
15629 	}
15630 }
15631 
15632 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15633 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15634 {
15635 	int i, spi;
15636 
15637 	/* walk slots of the explored stack and ignore any additional
15638 	 * slots in the current stack, since explored(safe) state
15639 	 * didn't use them
15640 	 */
15641 	for (i = 0; i < old->allocated_stack; i++) {
15642 		struct bpf_reg_state *old_reg, *cur_reg;
15643 
15644 		spi = i / BPF_REG_SIZE;
15645 
15646 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15647 			i += BPF_REG_SIZE - 1;
15648 			/* explored state didn't use this */
15649 			continue;
15650 		}
15651 
15652 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15653 			continue;
15654 
15655 		if (env->allow_uninit_stack &&
15656 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15657 			continue;
15658 
15659 		/* explored stack has more populated slots than current stack
15660 		 * and these slots were used
15661 		 */
15662 		if (i >= cur->allocated_stack)
15663 			return false;
15664 
15665 		/* if old state was safe with misc data in the stack
15666 		 * it will be safe with zero-initialized stack.
15667 		 * The opposite is not true
15668 		 */
15669 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15670 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15671 			continue;
15672 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15673 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15674 			/* Ex: old explored (safe) state has STACK_SPILL in
15675 			 * this stack slot, but current has STACK_MISC ->
15676 			 * this verifier states are not equivalent,
15677 			 * return false to continue verification of this path
15678 			 */
15679 			return false;
15680 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15681 			continue;
15682 		/* Both old and cur are having same slot_type */
15683 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15684 		case STACK_SPILL:
15685 			/* when explored and current stack slot are both storing
15686 			 * spilled registers, check that stored pointers types
15687 			 * are the same as well.
15688 			 * Ex: explored safe path could have stored
15689 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15690 			 * but current path has stored:
15691 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15692 			 * such verifier states are not equivalent.
15693 			 * return false to continue verification of this path
15694 			 */
15695 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15696 				     &cur->stack[spi].spilled_ptr, idmap))
15697 				return false;
15698 			break;
15699 		case STACK_DYNPTR:
15700 			old_reg = &old->stack[spi].spilled_ptr;
15701 			cur_reg = &cur->stack[spi].spilled_ptr;
15702 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15703 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15704 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15705 				return false;
15706 			break;
15707 		case STACK_ITER:
15708 			old_reg = &old->stack[spi].spilled_ptr;
15709 			cur_reg = &cur->stack[spi].spilled_ptr;
15710 			/* iter.depth is not compared between states as it
15711 			 * doesn't matter for correctness and would otherwise
15712 			 * prevent convergence; we maintain it only to prevent
15713 			 * infinite loop check triggering, see
15714 			 * iter_active_depths_differ()
15715 			 */
15716 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15717 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15718 			    old_reg->iter.state != cur_reg->iter.state ||
15719 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15720 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15721 				return false;
15722 			break;
15723 		case STACK_MISC:
15724 		case STACK_ZERO:
15725 		case STACK_INVALID:
15726 			continue;
15727 		/* Ensure that new unhandled slot types return false by default */
15728 		default:
15729 			return false;
15730 		}
15731 	}
15732 	return true;
15733 }
15734 
15735 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15736 		    struct bpf_idmap *idmap)
15737 {
15738 	int i;
15739 
15740 	if (old->acquired_refs != cur->acquired_refs)
15741 		return false;
15742 
15743 	for (i = 0; i < old->acquired_refs; i++) {
15744 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15745 			return false;
15746 	}
15747 
15748 	return true;
15749 }
15750 
15751 /* compare two verifier states
15752  *
15753  * all states stored in state_list are known to be valid, since
15754  * verifier reached 'bpf_exit' instruction through them
15755  *
15756  * this function is called when verifier exploring different branches of
15757  * execution popped from the state stack. If it sees an old state that has
15758  * more strict register state and more strict stack state then this execution
15759  * branch doesn't need to be explored further, since verifier already
15760  * concluded that more strict state leads to valid finish.
15761  *
15762  * Therefore two states are equivalent if register state is more conservative
15763  * and explored stack state is more conservative than the current one.
15764  * Example:
15765  *       explored                   current
15766  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15767  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15768  *
15769  * In other words if current stack state (one being explored) has more
15770  * valid slots than old one that already passed validation, it means
15771  * the verifier can stop exploring and conclude that current state is valid too
15772  *
15773  * Similarly with registers. If explored state has register type as invalid
15774  * whereas register type in current state is meaningful, it means that
15775  * the current state will reach 'bpf_exit' instruction safely
15776  */
15777 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15778 			      struct bpf_func_state *cur)
15779 {
15780 	int i;
15781 
15782 	for (i = 0; i < MAX_BPF_REG; i++)
15783 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15784 			     &env->idmap_scratch))
15785 			return false;
15786 
15787 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15788 		return false;
15789 
15790 	if (!refsafe(old, cur, &env->idmap_scratch))
15791 		return false;
15792 
15793 	return true;
15794 }
15795 
15796 static bool states_equal(struct bpf_verifier_env *env,
15797 			 struct bpf_verifier_state *old,
15798 			 struct bpf_verifier_state *cur)
15799 {
15800 	int i;
15801 
15802 	if (old->curframe != cur->curframe)
15803 		return false;
15804 
15805 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15806 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15807 
15808 	/* Verification state from speculative execution simulation
15809 	 * must never prune a non-speculative execution one.
15810 	 */
15811 	if (old->speculative && !cur->speculative)
15812 		return false;
15813 
15814 	if (old->active_lock.ptr != cur->active_lock.ptr)
15815 		return false;
15816 
15817 	/* Old and cur active_lock's have to be either both present
15818 	 * or both absent.
15819 	 */
15820 	if (!!old->active_lock.id != !!cur->active_lock.id)
15821 		return false;
15822 
15823 	if (old->active_lock.id &&
15824 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15825 		return false;
15826 
15827 	if (old->active_rcu_lock != cur->active_rcu_lock)
15828 		return false;
15829 
15830 	/* for states to be equal callsites have to be the same
15831 	 * and all frame states need to be equivalent
15832 	 */
15833 	for (i = 0; i <= old->curframe; i++) {
15834 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15835 			return false;
15836 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15837 			return false;
15838 	}
15839 	return true;
15840 }
15841 
15842 /* Return 0 if no propagation happened. Return negative error code if error
15843  * happened. Otherwise, return the propagated bit.
15844  */
15845 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15846 				  struct bpf_reg_state *reg,
15847 				  struct bpf_reg_state *parent_reg)
15848 {
15849 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15850 	u8 flag = reg->live & REG_LIVE_READ;
15851 	int err;
15852 
15853 	/* When comes here, read flags of PARENT_REG or REG could be any of
15854 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15855 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15856 	 */
15857 	if (parent_flag == REG_LIVE_READ64 ||
15858 	    /* Or if there is no read flag from REG. */
15859 	    !flag ||
15860 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15861 	    parent_flag == flag)
15862 		return 0;
15863 
15864 	err = mark_reg_read(env, reg, parent_reg, flag);
15865 	if (err)
15866 		return err;
15867 
15868 	return flag;
15869 }
15870 
15871 /* A write screens off any subsequent reads; but write marks come from the
15872  * straight-line code between a state and its parent.  When we arrive at an
15873  * equivalent state (jump target or such) we didn't arrive by the straight-line
15874  * code, so read marks in the state must propagate to the parent regardless
15875  * of the state's write marks. That's what 'parent == state->parent' comparison
15876  * in mark_reg_read() is for.
15877  */
15878 static int propagate_liveness(struct bpf_verifier_env *env,
15879 			      const struct bpf_verifier_state *vstate,
15880 			      struct bpf_verifier_state *vparent)
15881 {
15882 	struct bpf_reg_state *state_reg, *parent_reg;
15883 	struct bpf_func_state *state, *parent;
15884 	int i, frame, err = 0;
15885 
15886 	if (vparent->curframe != vstate->curframe) {
15887 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15888 		     vparent->curframe, vstate->curframe);
15889 		return -EFAULT;
15890 	}
15891 	/* Propagate read liveness of registers... */
15892 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15893 	for (frame = 0; frame <= vstate->curframe; frame++) {
15894 		parent = vparent->frame[frame];
15895 		state = vstate->frame[frame];
15896 		parent_reg = parent->regs;
15897 		state_reg = state->regs;
15898 		/* We don't need to worry about FP liveness, it's read-only */
15899 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15900 			err = propagate_liveness_reg(env, &state_reg[i],
15901 						     &parent_reg[i]);
15902 			if (err < 0)
15903 				return err;
15904 			if (err == REG_LIVE_READ64)
15905 				mark_insn_zext(env, &parent_reg[i]);
15906 		}
15907 
15908 		/* Propagate stack slots. */
15909 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15910 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15911 			parent_reg = &parent->stack[i].spilled_ptr;
15912 			state_reg = &state->stack[i].spilled_ptr;
15913 			err = propagate_liveness_reg(env, state_reg,
15914 						     parent_reg);
15915 			if (err < 0)
15916 				return err;
15917 		}
15918 	}
15919 	return 0;
15920 }
15921 
15922 /* find precise scalars in the previous equivalent state and
15923  * propagate them into the current state
15924  */
15925 static int propagate_precision(struct bpf_verifier_env *env,
15926 			       const struct bpf_verifier_state *old)
15927 {
15928 	struct bpf_reg_state *state_reg;
15929 	struct bpf_func_state *state;
15930 	int i, err = 0, fr;
15931 	bool first;
15932 
15933 	for (fr = old->curframe; fr >= 0; fr--) {
15934 		state = old->frame[fr];
15935 		state_reg = state->regs;
15936 		first = true;
15937 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15938 			if (state_reg->type != SCALAR_VALUE ||
15939 			    !state_reg->precise ||
15940 			    !(state_reg->live & REG_LIVE_READ))
15941 				continue;
15942 			if (env->log.level & BPF_LOG_LEVEL2) {
15943 				if (first)
15944 					verbose(env, "frame %d: propagating r%d", fr, i);
15945 				else
15946 					verbose(env, ",r%d", i);
15947 			}
15948 			bt_set_frame_reg(&env->bt, fr, i);
15949 			first = false;
15950 		}
15951 
15952 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15953 			if (!is_spilled_reg(&state->stack[i]))
15954 				continue;
15955 			state_reg = &state->stack[i].spilled_ptr;
15956 			if (state_reg->type != SCALAR_VALUE ||
15957 			    !state_reg->precise ||
15958 			    !(state_reg->live & REG_LIVE_READ))
15959 				continue;
15960 			if (env->log.level & BPF_LOG_LEVEL2) {
15961 				if (first)
15962 					verbose(env, "frame %d: propagating fp%d",
15963 						fr, (-i - 1) * BPF_REG_SIZE);
15964 				else
15965 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15966 			}
15967 			bt_set_frame_slot(&env->bt, fr, i);
15968 			first = false;
15969 		}
15970 		if (!first)
15971 			verbose(env, "\n");
15972 	}
15973 
15974 	err = mark_chain_precision_batch(env);
15975 	if (err < 0)
15976 		return err;
15977 
15978 	return 0;
15979 }
15980 
15981 static bool states_maybe_looping(struct bpf_verifier_state *old,
15982 				 struct bpf_verifier_state *cur)
15983 {
15984 	struct bpf_func_state *fold, *fcur;
15985 	int i, fr = cur->curframe;
15986 
15987 	if (old->curframe != fr)
15988 		return false;
15989 
15990 	fold = old->frame[fr];
15991 	fcur = cur->frame[fr];
15992 	for (i = 0; i < MAX_BPF_REG; i++)
15993 		if (memcmp(&fold->regs[i], &fcur->regs[i],
15994 			   offsetof(struct bpf_reg_state, parent)))
15995 			return false;
15996 	return true;
15997 }
15998 
15999 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16000 {
16001 	return env->insn_aux_data[insn_idx].is_iter_next;
16002 }
16003 
16004 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16005  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16006  * states to match, which otherwise would look like an infinite loop. So while
16007  * iter_next() calls are taken care of, we still need to be careful and
16008  * prevent erroneous and too eager declaration of "ininite loop", when
16009  * iterators are involved.
16010  *
16011  * Here's a situation in pseudo-BPF assembly form:
16012  *
16013  *   0: again:                          ; set up iter_next() call args
16014  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16015  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16016  *   3:   if r0 == 0 goto done
16017  *   4:   ... something useful here ...
16018  *   5:   goto again                    ; another iteration
16019  *   6: done:
16020  *   7:   r1 = &it
16021  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16022  *   9:   exit
16023  *
16024  * This is a typical loop. Let's assume that we have a prune point at 1:,
16025  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16026  * again`, assuming other heuristics don't get in a way).
16027  *
16028  * When we first time come to 1:, let's say we have some state X. We proceed
16029  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16030  * Now we come back to validate that forked ACTIVE state. We proceed through
16031  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16032  * are converging. But the problem is that we don't know that yet, as this
16033  * convergence has to happen at iter_next() call site only. So if nothing is
16034  * done, at 1: verifier will use bounded loop logic and declare infinite
16035  * looping (and would be *technically* correct, if not for iterator's
16036  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16037  * don't want that. So what we do in process_iter_next_call() when we go on
16038  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16039  * a different iteration. So when we suspect an infinite loop, we additionally
16040  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16041  * pretend we are not looping and wait for next iter_next() call.
16042  *
16043  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16044  * loop, because that would actually mean infinite loop, as DRAINED state is
16045  * "sticky", and so we'll keep returning into the same instruction with the
16046  * same state (at least in one of possible code paths).
16047  *
16048  * This approach allows to keep infinite loop heuristic even in the face of
16049  * active iterator. E.g., C snippet below is and will be detected as
16050  * inifintely looping:
16051  *
16052  *   struct bpf_iter_num it;
16053  *   int *p, x;
16054  *
16055  *   bpf_iter_num_new(&it, 0, 10);
16056  *   while ((p = bpf_iter_num_next(&t))) {
16057  *       x = p;
16058  *       while (x--) {} // <<-- infinite loop here
16059  *   }
16060  *
16061  */
16062 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16063 {
16064 	struct bpf_reg_state *slot, *cur_slot;
16065 	struct bpf_func_state *state;
16066 	int i, fr;
16067 
16068 	for (fr = old->curframe; fr >= 0; fr--) {
16069 		state = old->frame[fr];
16070 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16071 			if (state->stack[i].slot_type[0] != STACK_ITER)
16072 				continue;
16073 
16074 			slot = &state->stack[i].spilled_ptr;
16075 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16076 				continue;
16077 
16078 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16079 			if (cur_slot->iter.depth != slot->iter.depth)
16080 				return true;
16081 		}
16082 	}
16083 	return false;
16084 }
16085 
16086 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16087 {
16088 	struct bpf_verifier_state_list *new_sl;
16089 	struct bpf_verifier_state_list *sl, **pprev;
16090 	struct bpf_verifier_state *cur = env->cur_state, *new;
16091 	int i, j, err, states_cnt = 0;
16092 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16093 	bool add_new_state = force_new_state;
16094 
16095 	/* bpf progs typically have pruning point every 4 instructions
16096 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16097 	 * Do not add new state for future pruning if the verifier hasn't seen
16098 	 * at least 2 jumps and at least 8 instructions.
16099 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16100 	 * In tests that amounts to up to 50% reduction into total verifier
16101 	 * memory consumption and 20% verifier time speedup.
16102 	 */
16103 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16104 	    env->insn_processed - env->prev_insn_processed >= 8)
16105 		add_new_state = true;
16106 
16107 	pprev = explored_state(env, insn_idx);
16108 	sl = *pprev;
16109 
16110 	clean_live_states(env, insn_idx, cur);
16111 
16112 	while (sl) {
16113 		states_cnt++;
16114 		if (sl->state.insn_idx != insn_idx)
16115 			goto next;
16116 
16117 		if (sl->state.branches) {
16118 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16119 
16120 			if (frame->in_async_callback_fn &&
16121 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16122 				/* Different async_entry_cnt means that the verifier is
16123 				 * processing another entry into async callback.
16124 				 * Seeing the same state is not an indication of infinite
16125 				 * loop or infinite recursion.
16126 				 * But finding the same state doesn't mean that it's safe
16127 				 * to stop processing the current state. The previous state
16128 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16129 				 * Checking in_async_callback_fn alone is not enough either.
16130 				 * Since the verifier still needs to catch infinite loops
16131 				 * inside async callbacks.
16132 				 */
16133 				goto skip_inf_loop_check;
16134 			}
16135 			/* BPF open-coded iterators loop detection is special.
16136 			 * states_maybe_looping() logic is too simplistic in detecting
16137 			 * states that *might* be equivalent, because it doesn't know
16138 			 * about ID remapping, so don't even perform it.
16139 			 * See process_iter_next_call() and iter_active_depths_differ()
16140 			 * for overview of the logic. When current and one of parent
16141 			 * states are detected as equivalent, it's a good thing: we prove
16142 			 * convergence and can stop simulating further iterations.
16143 			 * It's safe to assume that iterator loop will finish, taking into
16144 			 * account iter_next() contract of eventually returning
16145 			 * sticky NULL result.
16146 			 */
16147 			if (is_iter_next_insn(env, insn_idx)) {
16148 				if (states_equal(env, &sl->state, cur)) {
16149 					struct bpf_func_state *cur_frame;
16150 					struct bpf_reg_state *iter_state, *iter_reg;
16151 					int spi;
16152 
16153 					cur_frame = cur->frame[cur->curframe];
16154 					/* btf_check_iter_kfuncs() enforces that
16155 					 * iter state pointer is always the first arg
16156 					 */
16157 					iter_reg = &cur_frame->regs[BPF_REG_1];
16158 					/* current state is valid due to states_equal(),
16159 					 * so we can assume valid iter and reg state,
16160 					 * no need for extra (re-)validations
16161 					 */
16162 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16163 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16164 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16165 						goto hit;
16166 				}
16167 				goto skip_inf_loop_check;
16168 			}
16169 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16170 			if (states_maybe_looping(&sl->state, cur) &&
16171 			    states_equal(env, &sl->state, cur) &&
16172 			    !iter_active_depths_differ(&sl->state, cur)) {
16173 				verbose_linfo(env, insn_idx, "; ");
16174 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16175 				return -EINVAL;
16176 			}
16177 			/* if the verifier is processing a loop, avoid adding new state
16178 			 * too often, since different loop iterations have distinct
16179 			 * states and may not help future pruning.
16180 			 * This threshold shouldn't be too low to make sure that
16181 			 * a loop with large bound will be rejected quickly.
16182 			 * The most abusive loop will be:
16183 			 * r1 += 1
16184 			 * if r1 < 1000000 goto pc-2
16185 			 * 1M insn_procssed limit / 100 == 10k peak states.
16186 			 * This threshold shouldn't be too high either, since states
16187 			 * at the end of the loop are likely to be useful in pruning.
16188 			 */
16189 skip_inf_loop_check:
16190 			if (!force_new_state &&
16191 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16192 			    env->insn_processed - env->prev_insn_processed < 100)
16193 				add_new_state = false;
16194 			goto miss;
16195 		}
16196 		if (states_equal(env, &sl->state, cur)) {
16197 hit:
16198 			sl->hit_cnt++;
16199 			/* reached equivalent register/stack state,
16200 			 * prune the search.
16201 			 * Registers read by the continuation are read by us.
16202 			 * If we have any write marks in env->cur_state, they
16203 			 * will prevent corresponding reads in the continuation
16204 			 * from reaching our parent (an explored_state).  Our
16205 			 * own state will get the read marks recorded, but
16206 			 * they'll be immediately forgotten as we're pruning
16207 			 * this state and will pop a new one.
16208 			 */
16209 			err = propagate_liveness(env, &sl->state, cur);
16210 
16211 			/* if previous state reached the exit with precision and
16212 			 * current state is equivalent to it (except precsion marks)
16213 			 * the precision needs to be propagated back in
16214 			 * the current state.
16215 			 */
16216 			err = err ? : push_jmp_history(env, cur);
16217 			err = err ? : propagate_precision(env, &sl->state);
16218 			if (err)
16219 				return err;
16220 			return 1;
16221 		}
16222 miss:
16223 		/* when new state is not going to be added do not increase miss count.
16224 		 * Otherwise several loop iterations will remove the state
16225 		 * recorded earlier. The goal of these heuristics is to have
16226 		 * states from some iterations of the loop (some in the beginning
16227 		 * and some at the end) to help pruning.
16228 		 */
16229 		if (add_new_state)
16230 			sl->miss_cnt++;
16231 		/* heuristic to determine whether this state is beneficial
16232 		 * to keep checking from state equivalence point of view.
16233 		 * Higher numbers increase max_states_per_insn and verification time,
16234 		 * but do not meaningfully decrease insn_processed.
16235 		 */
16236 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16237 			/* the state is unlikely to be useful. Remove it to
16238 			 * speed up verification
16239 			 */
16240 			*pprev = sl->next;
16241 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16242 				u32 br = sl->state.branches;
16243 
16244 				WARN_ONCE(br,
16245 					  "BUG live_done but branches_to_explore %d\n",
16246 					  br);
16247 				free_verifier_state(&sl->state, false);
16248 				kfree(sl);
16249 				env->peak_states--;
16250 			} else {
16251 				/* cannot free this state, since parentage chain may
16252 				 * walk it later. Add it for free_list instead to
16253 				 * be freed at the end of verification
16254 				 */
16255 				sl->next = env->free_list;
16256 				env->free_list = sl;
16257 			}
16258 			sl = *pprev;
16259 			continue;
16260 		}
16261 next:
16262 		pprev = &sl->next;
16263 		sl = *pprev;
16264 	}
16265 
16266 	if (env->max_states_per_insn < states_cnt)
16267 		env->max_states_per_insn = states_cnt;
16268 
16269 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16270 		return 0;
16271 
16272 	if (!add_new_state)
16273 		return 0;
16274 
16275 	/* There were no equivalent states, remember the current one.
16276 	 * Technically the current state is not proven to be safe yet,
16277 	 * but it will either reach outer most bpf_exit (which means it's safe)
16278 	 * or it will be rejected. When there are no loops the verifier won't be
16279 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16280 	 * again on the way to bpf_exit.
16281 	 * When looping the sl->state.branches will be > 0 and this state
16282 	 * will not be considered for equivalence until branches == 0.
16283 	 */
16284 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16285 	if (!new_sl)
16286 		return -ENOMEM;
16287 	env->total_states++;
16288 	env->peak_states++;
16289 	env->prev_jmps_processed = env->jmps_processed;
16290 	env->prev_insn_processed = env->insn_processed;
16291 
16292 	/* forget precise markings we inherited, see __mark_chain_precision */
16293 	if (env->bpf_capable)
16294 		mark_all_scalars_imprecise(env, cur);
16295 
16296 	/* add new state to the head of linked list */
16297 	new = &new_sl->state;
16298 	err = copy_verifier_state(new, cur);
16299 	if (err) {
16300 		free_verifier_state(new, false);
16301 		kfree(new_sl);
16302 		return err;
16303 	}
16304 	new->insn_idx = insn_idx;
16305 	WARN_ONCE(new->branches != 1,
16306 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16307 
16308 	cur->parent = new;
16309 	cur->first_insn_idx = insn_idx;
16310 	clear_jmp_history(cur);
16311 	new_sl->next = *explored_state(env, insn_idx);
16312 	*explored_state(env, insn_idx) = new_sl;
16313 	/* connect new state to parentage chain. Current frame needs all
16314 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16315 	 * to the stack implicitly by JITs) so in callers' frames connect just
16316 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16317 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16318 	 * from callee with its full parentage chain, anyway.
16319 	 */
16320 	/* clear write marks in current state: the writes we did are not writes
16321 	 * our child did, so they don't screen off its reads from us.
16322 	 * (There are no read marks in current state, because reads always mark
16323 	 * their parent and current state never has children yet.  Only
16324 	 * explored_states can get read marks.)
16325 	 */
16326 	for (j = 0; j <= cur->curframe; j++) {
16327 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16328 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16329 		for (i = 0; i < BPF_REG_FP; i++)
16330 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16331 	}
16332 
16333 	/* all stack frames are accessible from callee, clear them all */
16334 	for (j = 0; j <= cur->curframe; j++) {
16335 		struct bpf_func_state *frame = cur->frame[j];
16336 		struct bpf_func_state *newframe = new->frame[j];
16337 
16338 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16339 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16340 			frame->stack[i].spilled_ptr.parent =
16341 						&newframe->stack[i].spilled_ptr;
16342 		}
16343 	}
16344 	return 0;
16345 }
16346 
16347 /* Return true if it's OK to have the same insn return a different type. */
16348 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16349 {
16350 	switch (base_type(type)) {
16351 	case PTR_TO_CTX:
16352 	case PTR_TO_SOCKET:
16353 	case PTR_TO_SOCK_COMMON:
16354 	case PTR_TO_TCP_SOCK:
16355 	case PTR_TO_XDP_SOCK:
16356 	case PTR_TO_BTF_ID:
16357 		return false;
16358 	default:
16359 		return true;
16360 	}
16361 }
16362 
16363 /* If an instruction was previously used with particular pointer types, then we
16364  * need to be careful to avoid cases such as the below, where it may be ok
16365  * for one branch accessing the pointer, but not ok for the other branch:
16366  *
16367  * R1 = sock_ptr
16368  * goto X;
16369  * ...
16370  * R1 = some_other_valid_ptr;
16371  * goto X;
16372  * ...
16373  * R2 = *(u32 *)(R1 + 0);
16374  */
16375 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16376 {
16377 	return src != prev && (!reg_type_mismatch_ok(src) ||
16378 			       !reg_type_mismatch_ok(prev));
16379 }
16380 
16381 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16382 			     bool allow_trust_missmatch)
16383 {
16384 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16385 
16386 	if (*prev_type == NOT_INIT) {
16387 		/* Saw a valid insn
16388 		 * dst_reg = *(u32 *)(src_reg + off)
16389 		 * save type to validate intersecting paths
16390 		 */
16391 		*prev_type = type;
16392 	} else if (reg_type_mismatch(type, *prev_type)) {
16393 		/* Abuser program is trying to use the same insn
16394 		 * dst_reg = *(u32*) (src_reg + off)
16395 		 * with different pointer types:
16396 		 * src_reg == ctx in one branch and
16397 		 * src_reg == stack|map in some other branch.
16398 		 * Reject it.
16399 		 */
16400 		if (allow_trust_missmatch &&
16401 		    base_type(type) == PTR_TO_BTF_ID &&
16402 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16403 			/*
16404 			 * Have to support a use case when one path through
16405 			 * the program yields TRUSTED pointer while another
16406 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16407 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16408 			 */
16409 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16410 		} else {
16411 			verbose(env, "same insn cannot be used with different pointers\n");
16412 			return -EINVAL;
16413 		}
16414 	}
16415 
16416 	return 0;
16417 }
16418 
16419 static int do_check(struct bpf_verifier_env *env)
16420 {
16421 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16422 	struct bpf_verifier_state *state = env->cur_state;
16423 	struct bpf_insn *insns = env->prog->insnsi;
16424 	struct bpf_reg_state *regs;
16425 	int insn_cnt = env->prog->len;
16426 	bool do_print_state = false;
16427 	int prev_insn_idx = -1;
16428 
16429 	for (;;) {
16430 		struct bpf_insn *insn;
16431 		u8 class;
16432 		int err;
16433 
16434 		env->prev_insn_idx = prev_insn_idx;
16435 		if (env->insn_idx >= insn_cnt) {
16436 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16437 				env->insn_idx, insn_cnt);
16438 			return -EFAULT;
16439 		}
16440 
16441 		insn = &insns[env->insn_idx];
16442 		class = BPF_CLASS(insn->code);
16443 
16444 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16445 			verbose(env,
16446 				"BPF program is too large. Processed %d insn\n",
16447 				env->insn_processed);
16448 			return -E2BIG;
16449 		}
16450 
16451 		state->last_insn_idx = env->prev_insn_idx;
16452 
16453 		if (is_prune_point(env, env->insn_idx)) {
16454 			err = is_state_visited(env, env->insn_idx);
16455 			if (err < 0)
16456 				return err;
16457 			if (err == 1) {
16458 				/* found equivalent state, can prune the search */
16459 				if (env->log.level & BPF_LOG_LEVEL) {
16460 					if (do_print_state)
16461 						verbose(env, "\nfrom %d to %d%s: safe\n",
16462 							env->prev_insn_idx, env->insn_idx,
16463 							env->cur_state->speculative ?
16464 							" (speculative execution)" : "");
16465 					else
16466 						verbose(env, "%d: safe\n", env->insn_idx);
16467 				}
16468 				goto process_bpf_exit;
16469 			}
16470 		}
16471 
16472 		if (is_jmp_point(env, env->insn_idx)) {
16473 			err = push_jmp_history(env, state);
16474 			if (err)
16475 				return err;
16476 		}
16477 
16478 		if (signal_pending(current))
16479 			return -EAGAIN;
16480 
16481 		if (need_resched())
16482 			cond_resched();
16483 
16484 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16485 			verbose(env, "\nfrom %d to %d%s:",
16486 				env->prev_insn_idx, env->insn_idx,
16487 				env->cur_state->speculative ?
16488 				" (speculative execution)" : "");
16489 			print_verifier_state(env, state->frame[state->curframe], true);
16490 			do_print_state = false;
16491 		}
16492 
16493 		if (env->log.level & BPF_LOG_LEVEL) {
16494 			const struct bpf_insn_cbs cbs = {
16495 				.cb_call	= disasm_kfunc_name,
16496 				.cb_print	= verbose,
16497 				.private_data	= env,
16498 			};
16499 
16500 			if (verifier_state_scratched(env))
16501 				print_insn_state(env, state->frame[state->curframe]);
16502 
16503 			verbose_linfo(env, env->insn_idx, "; ");
16504 			env->prev_log_pos = env->log.end_pos;
16505 			verbose(env, "%d: ", env->insn_idx);
16506 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16507 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16508 			env->prev_log_pos = env->log.end_pos;
16509 		}
16510 
16511 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16512 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16513 							   env->prev_insn_idx);
16514 			if (err)
16515 				return err;
16516 		}
16517 
16518 		regs = cur_regs(env);
16519 		sanitize_mark_insn_seen(env);
16520 		prev_insn_idx = env->insn_idx;
16521 
16522 		if (class == BPF_ALU || class == BPF_ALU64) {
16523 			err = check_alu_op(env, insn);
16524 			if (err)
16525 				return err;
16526 
16527 		} else if (class == BPF_LDX) {
16528 			enum bpf_reg_type src_reg_type;
16529 
16530 			/* check for reserved fields is already done */
16531 
16532 			/* check src operand */
16533 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16534 			if (err)
16535 				return err;
16536 
16537 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16538 			if (err)
16539 				return err;
16540 
16541 			src_reg_type = regs[insn->src_reg].type;
16542 
16543 			/* check that memory (src_reg + off) is readable,
16544 			 * the state of dst_reg will be updated by this func
16545 			 */
16546 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16547 					       insn->off, BPF_SIZE(insn->code),
16548 					       BPF_READ, insn->dst_reg, false,
16549 					       BPF_MODE(insn->code) == BPF_MEMSX);
16550 			if (err)
16551 				return err;
16552 
16553 			err = save_aux_ptr_type(env, src_reg_type, true);
16554 			if (err)
16555 				return err;
16556 		} else if (class == BPF_STX) {
16557 			enum bpf_reg_type dst_reg_type;
16558 
16559 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16560 				err = check_atomic(env, env->insn_idx, insn);
16561 				if (err)
16562 					return err;
16563 				env->insn_idx++;
16564 				continue;
16565 			}
16566 
16567 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16568 				verbose(env, "BPF_STX uses reserved fields\n");
16569 				return -EINVAL;
16570 			}
16571 
16572 			/* check src1 operand */
16573 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16574 			if (err)
16575 				return err;
16576 			/* check src2 operand */
16577 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16578 			if (err)
16579 				return err;
16580 
16581 			dst_reg_type = regs[insn->dst_reg].type;
16582 
16583 			/* check that memory (dst_reg + off) is writeable */
16584 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16585 					       insn->off, BPF_SIZE(insn->code),
16586 					       BPF_WRITE, insn->src_reg, false, false);
16587 			if (err)
16588 				return err;
16589 
16590 			err = save_aux_ptr_type(env, dst_reg_type, false);
16591 			if (err)
16592 				return err;
16593 		} else if (class == BPF_ST) {
16594 			enum bpf_reg_type dst_reg_type;
16595 
16596 			if (BPF_MODE(insn->code) != BPF_MEM ||
16597 			    insn->src_reg != BPF_REG_0) {
16598 				verbose(env, "BPF_ST uses reserved fields\n");
16599 				return -EINVAL;
16600 			}
16601 			/* check src operand */
16602 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16603 			if (err)
16604 				return err;
16605 
16606 			dst_reg_type = regs[insn->dst_reg].type;
16607 
16608 			/* check that memory (dst_reg + off) is writeable */
16609 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16610 					       insn->off, BPF_SIZE(insn->code),
16611 					       BPF_WRITE, -1, false, false);
16612 			if (err)
16613 				return err;
16614 
16615 			err = save_aux_ptr_type(env, dst_reg_type, false);
16616 			if (err)
16617 				return err;
16618 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16619 			u8 opcode = BPF_OP(insn->code);
16620 
16621 			env->jmps_processed++;
16622 			if (opcode == BPF_CALL) {
16623 				if (BPF_SRC(insn->code) != BPF_K ||
16624 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16625 				     && insn->off != 0) ||
16626 				    (insn->src_reg != BPF_REG_0 &&
16627 				     insn->src_reg != BPF_PSEUDO_CALL &&
16628 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16629 				    insn->dst_reg != BPF_REG_0 ||
16630 				    class == BPF_JMP32) {
16631 					verbose(env, "BPF_CALL uses reserved fields\n");
16632 					return -EINVAL;
16633 				}
16634 
16635 				if (env->cur_state->active_lock.ptr) {
16636 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16637 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16638 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16639 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16640 						verbose(env, "function calls are not allowed while holding a lock\n");
16641 						return -EINVAL;
16642 					}
16643 				}
16644 				if (insn->src_reg == BPF_PSEUDO_CALL)
16645 					err = check_func_call(env, insn, &env->insn_idx);
16646 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16647 					err = check_kfunc_call(env, insn, &env->insn_idx);
16648 				else
16649 					err = check_helper_call(env, insn, &env->insn_idx);
16650 				if (err)
16651 					return err;
16652 
16653 				mark_reg_scratched(env, BPF_REG_0);
16654 			} else if (opcode == BPF_JA) {
16655 				if (BPF_SRC(insn->code) != BPF_K ||
16656 				    insn->src_reg != BPF_REG_0 ||
16657 				    insn->dst_reg != BPF_REG_0 ||
16658 				    (class == BPF_JMP && insn->imm != 0) ||
16659 				    (class == BPF_JMP32 && insn->off != 0)) {
16660 					verbose(env, "BPF_JA uses reserved fields\n");
16661 					return -EINVAL;
16662 				}
16663 
16664 				if (class == BPF_JMP)
16665 					env->insn_idx += insn->off + 1;
16666 				else
16667 					env->insn_idx += insn->imm + 1;
16668 				continue;
16669 
16670 			} else if (opcode == BPF_EXIT) {
16671 				if (BPF_SRC(insn->code) != BPF_K ||
16672 				    insn->imm != 0 ||
16673 				    insn->src_reg != BPF_REG_0 ||
16674 				    insn->dst_reg != BPF_REG_0 ||
16675 				    class == BPF_JMP32) {
16676 					verbose(env, "BPF_EXIT uses reserved fields\n");
16677 					return -EINVAL;
16678 				}
16679 
16680 				if (env->cur_state->active_lock.ptr &&
16681 				    !in_rbtree_lock_required_cb(env)) {
16682 					verbose(env, "bpf_spin_unlock is missing\n");
16683 					return -EINVAL;
16684 				}
16685 
16686 				if (env->cur_state->active_rcu_lock) {
16687 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16688 					return -EINVAL;
16689 				}
16690 
16691 				/* We must do check_reference_leak here before
16692 				 * prepare_func_exit to handle the case when
16693 				 * state->curframe > 0, it may be a callback
16694 				 * function, for which reference_state must
16695 				 * match caller reference state when it exits.
16696 				 */
16697 				err = check_reference_leak(env);
16698 				if (err)
16699 					return err;
16700 
16701 				if (state->curframe) {
16702 					/* exit from nested function */
16703 					err = prepare_func_exit(env, &env->insn_idx);
16704 					if (err)
16705 						return err;
16706 					do_print_state = true;
16707 					continue;
16708 				}
16709 
16710 				err = check_return_code(env);
16711 				if (err)
16712 					return err;
16713 process_bpf_exit:
16714 				mark_verifier_state_scratched(env);
16715 				update_branch_counts(env, env->cur_state);
16716 				err = pop_stack(env, &prev_insn_idx,
16717 						&env->insn_idx, pop_log);
16718 				if (err < 0) {
16719 					if (err != -ENOENT)
16720 						return err;
16721 					break;
16722 				} else {
16723 					do_print_state = true;
16724 					continue;
16725 				}
16726 			} else {
16727 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16728 				if (err)
16729 					return err;
16730 			}
16731 		} else if (class == BPF_LD) {
16732 			u8 mode = BPF_MODE(insn->code);
16733 
16734 			if (mode == BPF_ABS || mode == BPF_IND) {
16735 				err = check_ld_abs(env, insn);
16736 				if (err)
16737 					return err;
16738 
16739 			} else if (mode == BPF_IMM) {
16740 				err = check_ld_imm(env, insn);
16741 				if (err)
16742 					return err;
16743 
16744 				env->insn_idx++;
16745 				sanitize_mark_insn_seen(env);
16746 			} else {
16747 				verbose(env, "invalid BPF_LD mode\n");
16748 				return -EINVAL;
16749 			}
16750 		} else {
16751 			verbose(env, "unknown insn class %d\n", class);
16752 			return -EINVAL;
16753 		}
16754 
16755 		env->insn_idx++;
16756 	}
16757 
16758 	return 0;
16759 }
16760 
16761 static int find_btf_percpu_datasec(struct btf *btf)
16762 {
16763 	const struct btf_type *t;
16764 	const char *tname;
16765 	int i, n;
16766 
16767 	/*
16768 	 * Both vmlinux and module each have their own ".data..percpu"
16769 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16770 	 * types to look at only module's own BTF types.
16771 	 */
16772 	n = btf_nr_types(btf);
16773 	if (btf_is_module(btf))
16774 		i = btf_nr_types(btf_vmlinux);
16775 	else
16776 		i = 1;
16777 
16778 	for(; i < n; i++) {
16779 		t = btf_type_by_id(btf, i);
16780 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16781 			continue;
16782 
16783 		tname = btf_name_by_offset(btf, t->name_off);
16784 		if (!strcmp(tname, ".data..percpu"))
16785 			return i;
16786 	}
16787 
16788 	return -ENOENT;
16789 }
16790 
16791 /* replace pseudo btf_id with kernel symbol address */
16792 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16793 			       struct bpf_insn *insn,
16794 			       struct bpf_insn_aux_data *aux)
16795 {
16796 	const struct btf_var_secinfo *vsi;
16797 	const struct btf_type *datasec;
16798 	struct btf_mod_pair *btf_mod;
16799 	const struct btf_type *t;
16800 	const char *sym_name;
16801 	bool percpu = false;
16802 	u32 type, id = insn->imm;
16803 	struct btf *btf;
16804 	s32 datasec_id;
16805 	u64 addr;
16806 	int i, btf_fd, err;
16807 
16808 	btf_fd = insn[1].imm;
16809 	if (btf_fd) {
16810 		btf = btf_get_by_fd(btf_fd);
16811 		if (IS_ERR(btf)) {
16812 			verbose(env, "invalid module BTF object FD specified.\n");
16813 			return -EINVAL;
16814 		}
16815 	} else {
16816 		if (!btf_vmlinux) {
16817 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16818 			return -EINVAL;
16819 		}
16820 		btf = btf_vmlinux;
16821 		btf_get(btf);
16822 	}
16823 
16824 	t = btf_type_by_id(btf, id);
16825 	if (!t) {
16826 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16827 		err = -ENOENT;
16828 		goto err_put;
16829 	}
16830 
16831 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16832 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16833 		err = -EINVAL;
16834 		goto err_put;
16835 	}
16836 
16837 	sym_name = btf_name_by_offset(btf, t->name_off);
16838 	addr = kallsyms_lookup_name(sym_name);
16839 	if (!addr) {
16840 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16841 			sym_name);
16842 		err = -ENOENT;
16843 		goto err_put;
16844 	}
16845 	insn[0].imm = (u32)addr;
16846 	insn[1].imm = addr >> 32;
16847 
16848 	if (btf_type_is_func(t)) {
16849 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16850 		aux->btf_var.mem_size = 0;
16851 		goto check_btf;
16852 	}
16853 
16854 	datasec_id = find_btf_percpu_datasec(btf);
16855 	if (datasec_id > 0) {
16856 		datasec = btf_type_by_id(btf, datasec_id);
16857 		for_each_vsi(i, datasec, vsi) {
16858 			if (vsi->type == id) {
16859 				percpu = true;
16860 				break;
16861 			}
16862 		}
16863 	}
16864 
16865 	type = t->type;
16866 	t = btf_type_skip_modifiers(btf, type, NULL);
16867 	if (percpu) {
16868 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16869 		aux->btf_var.btf = btf;
16870 		aux->btf_var.btf_id = type;
16871 	} else if (!btf_type_is_struct(t)) {
16872 		const struct btf_type *ret;
16873 		const char *tname;
16874 		u32 tsize;
16875 
16876 		/* resolve the type size of ksym. */
16877 		ret = btf_resolve_size(btf, t, &tsize);
16878 		if (IS_ERR(ret)) {
16879 			tname = btf_name_by_offset(btf, t->name_off);
16880 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16881 				tname, PTR_ERR(ret));
16882 			err = -EINVAL;
16883 			goto err_put;
16884 		}
16885 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16886 		aux->btf_var.mem_size = tsize;
16887 	} else {
16888 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16889 		aux->btf_var.btf = btf;
16890 		aux->btf_var.btf_id = type;
16891 	}
16892 check_btf:
16893 	/* check whether we recorded this BTF (and maybe module) already */
16894 	for (i = 0; i < env->used_btf_cnt; i++) {
16895 		if (env->used_btfs[i].btf == btf) {
16896 			btf_put(btf);
16897 			return 0;
16898 		}
16899 	}
16900 
16901 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16902 		err = -E2BIG;
16903 		goto err_put;
16904 	}
16905 
16906 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16907 	btf_mod->btf = btf;
16908 	btf_mod->module = NULL;
16909 
16910 	/* if we reference variables from kernel module, bump its refcount */
16911 	if (btf_is_module(btf)) {
16912 		btf_mod->module = btf_try_get_module(btf);
16913 		if (!btf_mod->module) {
16914 			err = -ENXIO;
16915 			goto err_put;
16916 		}
16917 	}
16918 
16919 	env->used_btf_cnt++;
16920 
16921 	return 0;
16922 err_put:
16923 	btf_put(btf);
16924 	return err;
16925 }
16926 
16927 static bool is_tracing_prog_type(enum bpf_prog_type type)
16928 {
16929 	switch (type) {
16930 	case BPF_PROG_TYPE_KPROBE:
16931 	case BPF_PROG_TYPE_TRACEPOINT:
16932 	case BPF_PROG_TYPE_PERF_EVENT:
16933 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16934 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16935 		return true;
16936 	default:
16937 		return false;
16938 	}
16939 }
16940 
16941 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16942 					struct bpf_map *map,
16943 					struct bpf_prog *prog)
16944 
16945 {
16946 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16947 
16948 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16949 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16950 		if (is_tracing_prog_type(prog_type)) {
16951 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16952 			return -EINVAL;
16953 		}
16954 	}
16955 
16956 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16957 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16958 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16959 			return -EINVAL;
16960 		}
16961 
16962 		if (is_tracing_prog_type(prog_type)) {
16963 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16964 			return -EINVAL;
16965 		}
16966 
16967 		if (prog->aux->sleepable) {
16968 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16969 			return -EINVAL;
16970 		}
16971 	}
16972 
16973 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16974 		if (is_tracing_prog_type(prog_type)) {
16975 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16976 			return -EINVAL;
16977 		}
16978 	}
16979 
16980 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16981 	    !bpf_offload_prog_map_match(prog, map)) {
16982 		verbose(env, "offload device mismatch between prog and map\n");
16983 		return -EINVAL;
16984 	}
16985 
16986 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16987 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16988 		return -EINVAL;
16989 	}
16990 
16991 	if (prog->aux->sleepable)
16992 		switch (map->map_type) {
16993 		case BPF_MAP_TYPE_HASH:
16994 		case BPF_MAP_TYPE_LRU_HASH:
16995 		case BPF_MAP_TYPE_ARRAY:
16996 		case BPF_MAP_TYPE_PERCPU_HASH:
16997 		case BPF_MAP_TYPE_PERCPU_ARRAY:
16998 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16999 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17000 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17001 		case BPF_MAP_TYPE_RINGBUF:
17002 		case BPF_MAP_TYPE_USER_RINGBUF:
17003 		case BPF_MAP_TYPE_INODE_STORAGE:
17004 		case BPF_MAP_TYPE_SK_STORAGE:
17005 		case BPF_MAP_TYPE_TASK_STORAGE:
17006 		case BPF_MAP_TYPE_CGRP_STORAGE:
17007 			break;
17008 		default:
17009 			verbose(env,
17010 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17011 			return -EINVAL;
17012 		}
17013 
17014 	return 0;
17015 }
17016 
17017 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17018 {
17019 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17020 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17021 }
17022 
17023 /* find and rewrite pseudo imm in ld_imm64 instructions:
17024  *
17025  * 1. if it accesses map FD, replace it with actual map pointer.
17026  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17027  *
17028  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17029  */
17030 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17031 {
17032 	struct bpf_insn *insn = env->prog->insnsi;
17033 	int insn_cnt = env->prog->len;
17034 	int i, j, err;
17035 
17036 	err = bpf_prog_calc_tag(env->prog);
17037 	if (err)
17038 		return err;
17039 
17040 	for (i = 0; i < insn_cnt; i++, insn++) {
17041 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17042 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17043 		    insn->imm != 0)) {
17044 			verbose(env, "BPF_LDX uses reserved fields\n");
17045 			return -EINVAL;
17046 		}
17047 
17048 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17049 			struct bpf_insn_aux_data *aux;
17050 			struct bpf_map *map;
17051 			struct fd f;
17052 			u64 addr;
17053 			u32 fd;
17054 
17055 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17056 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17057 			    insn[1].off != 0) {
17058 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17059 				return -EINVAL;
17060 			}
17061 
17062 			if (insn[0].src_reg == 0)
17063 				/* valid generic load 64-bit imm */
17064 				goto next_insn;
17065 
17066 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17067 				aux = &env->insn_aux_data[i];
17068 				err = check_pseudo_btf_id(env, insn, aux);
17069 				if (err)
17070 					return err;
17071 				goto next_insn;
17072 			}
17073 
17074 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17075 				aux = &env->insn_aux_data[i];
17076 				aux->ptr_type = PTR_TO_FUNC;
17077 				goto next_insn;
17078 			}
17079 
17080 			/* In final convert_pseudo_ld_imm64() step, this is
17081 			 * converted into regular 64-bit imm load insn.
17082 			 */
17083 			switch (insn[0].src_reg) {
17084 			case BPF_PSEUDO_MAP_VALUE:
17085 			case BPF_PSEUDO_MAP_IDX_VALUE:
17086 				break;
17087 			case BPF_PSEUDO_MAP_FD:
17088 			case BPF_PSEUDO_MAP_IDX:
17089 				if (insn[1].imm == 0)
17090 					break;
17091 				fallthrough;
17092 			default:
17093 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17094 				return -EINVAL;
17095 			}
17096 
17097 			switch (insn[0].src_reg) {
17098 			case BPF_PSEUDO_MAP_IDX_VALUE:
17099 			case BPF_PSEUDO_MAP_IDX:
17100 				if (bpfptr_is_null(env->fd_array)) {
17101 					verbose(env, "fd_idx without fd_array is invalid\n");
17102 					return -EPROTO;
17103 				}
17104 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17105 							    insn[0].imm * sizeof(fd),
17106 							    sizeof(fd)))
17107 					return -EFAULT;
17108 				break;
17109 			default:
17110 				fd = insn[0].imm;
17111 				break;
17112 			}
17113 
17114 			f = fdget(fd);
17115 			map = __bpf_map_get(f);
17116 			if (IS_ERR(map)) {
17117 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17118 					insn[0].imm);
17119 				return PTR_ERR(map);
17120 			}
17121 
17122 			err = check_map_prog_compatibility(env, map, env->prog);
17123 			if (err) {
17124 				fdput(f);
17125 				return err;
17126 			}
17127 
17128 			aux = &env->insn_aux_data[i];
17129 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17130 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17131 				addr = (unsigned long)map;
17132 			} else {
17133 				u32 off = insn[1].imm;
17134 
17135 				if (off >= BPF_MAX_VAR_OFF) {
17136 					verbose(env, "direct value offset of %u is not allowed\n", off);
17137 					fdput(f);
17138 					return -EINVAL;
17139 				}
17140 
17141 				if (!map->ops->map_direct_value_addr) {
17142 					verbose(env, "no direct value access support for this map type\n");
17143 					fdput(f);
17144 					return -EINVAL;
17145 				}
17146 
17147 				err = map->ops->map_direct_value_addr(map, &addr, off);
17148 				if (err) {
17149 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17150 						map->value_size, off);
17151 					fdput(f);
17152 					return err;
17153 				}
17154 
17155 				aux->map_off = off;
17156 				addr += off;
17157 			}
17158 
17159 			insn[0].imm = (u32)addr;
17160 			insn[1].imm = addr >> 32;
17161 
17162 			/* check whether we recorded this map already */
17163 			for (j = 0; j < env->used_map_cnt; j++) {
17164 				if (env->used_maps[j] == map) {
17165 					aux->map_index = j;
17166 					fdput(f);
17167 					goto next_insn;
17168 				}
17169 			}
17170 
17171 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17172 				fdput(f);
17173 				return -E2BIG;
17174 			}
17175 
17176 			/* hold the map. If the program is rejected by verifier,
17177 			 * the map will be released by release_maps() or it
17178 			 * will be used by the valid program until it's unloaded
17179 			 * and all maps are released in free_used_maps()
17180 			 */
17181 			bpf_map_inc(map);
17182 
17183 			aux->map_index = env->used_map_cnt;
17184 			env->used_maps[env->used_map_cnt++] = map;
17185 
17186 			if (bpf_map_is_cgroup_storage(map) &&
17187 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17188 				verbose(env, "only one cgroup storage of each type is allowed\n");
17189 				fdput(f);
17190 				return -EBUSY;
17191 			}
17192 
17193 			fdput(f);
17194 next_insn:
17195 			insn++;
17196 			i++;
17197 			continue;
17198 		}
17199 
17200 		/* Basic sanity check before we invest more work here. */
17201 		if (!bpf_opcode_in_insntable(insn->code)) {
17202 			verbose(env, "unknown opcode %02x\n", insn->code);
17203 			return -EINVAL;
17204 		}
17205 	}
17206 
17207 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17208 	 * 'struct bpf_map *' into a register instead of user map_fd.
17209 	 * These pointers will be used later by verifier to validate map access.
17210 	 */
17211 	return 0;
17212 }
17213 
17214 /* drop refcnt of maps used by the rejected program */
17215 static void release_maps(struct bpf_verifier_env *env)
17216 {
17217 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17218 			     env->used_map_cnt);
17219 }
17220 
17221 /* drop refcnt of maps used by the rejected program */
17222 static void release_btfs(struct bpf_verifier_env *env)
17223 {
17224 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17225 			     env->used_btf_cnt);
17226 }
17227 
17228 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17229 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17230 {
17231 	struct bpf_insn *insn = env->prog->insnsi;
17232 	int insn_cnt = env->prog->len;
17233 	int i;
17234 
17235 	for (i = 0; i < insn_cnt; i++, insn++) {
17236 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17237 			continue;
17238 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17239 			continue;
17240 		insn->src_reg = 0;
17241 	}
17242 }
17243 
17244 /* single env->prog->insni[off] instruction was replaced with the range
17245  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17246  * [0, off) and [off, end) to new locations, so the patched range stays zero
17247  */
17248 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17249 				 struct bpf_insn_aux_data *new_data,
17250 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17251 {
17252 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17253 	struct bpf_insn *insn = new_prog->insnsi;
17254 	u32 old_seen = old_data[off].seen;
17255 	u32 prog_len;
17256 	int i;
17257 
17258 	/* aux info at OFF always needs adjustment, no matter fast path
17259 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17260 	 * original insn at old prog.
17261 	 */
17262 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17263 
17264 	if (cnt == 1)
17265 		return;
17266 	prog_len = new_prog->len;
17267 
17268 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17269 	memcpy(new_data + off + cnt - 1, old_data + off,
17270 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17271 	for (i = off; i < off + cnt - 1; i++) {
17272 		/* Expand insni[off]'s seen count to the patched range. */
17273 		new_data[i].seen = old_seen;
17274 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17275 	}
17276 	env->insn_aux_data = new_data;
17277 	vfree(old_data);
17278 }
17279 
17280 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17281 {
17282 	int i;
17283 
17284 	if (len == 1)
17285 		return;
17286 	/* NOTE: fake 'exit' subprog should be updated as well. */
17287 	for (i = 0; i <= env->subprog_cnt; i++) {
17288 		if (env->subprog_info[i].start <= off)
17289 			continue;
17290 		env->subprog_info[i].start += len - 1;
17291 	}
17292 }
17293 
17294 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17295 {
17296 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17297 	int i, sz = prog->aux->size_poke_tab;
17298 	struct bpf_jit_poke_descriptor *desc;
17299 
17300 	for (i = 0; i < sz; i++) {
17301 		desc = &tab[i];
17302 		if (desc->insn_idx <= off)
17303 			continue;
17304 		desc->insn_idx += len - 1;
17305 	}
17306 }
17307 
17308 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17309 					    const struct bpf_insn *patch, u32 len)
17310 {
17311 	struct bpf_prog *new_prog;
17312 	struct bpf_insn_aux_data *new_data = NULL;
17313 
17314 	if (len > 1) {
17315 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17316 					      sizeof(struct bpf_insn_aux_data)));
17317 		if (!new_data)
17318 			return NULL;
17319 	}
17320 
17321 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17322 	if (IS_ERR(new_prog)) {
17323 		if (PTR_ERR(new_prog) == -ERANGE)
17324 			verbose(env,
17325 				"insn %d cannot be patched due to 16-bit range\n",
17326 				env->insn_aux_data[off].orig_idx);
17327 		vfree(new_data);
17328 		return NULL;
17329 	}
17330 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17331 	adjust_subprog_starts(env, off, len);
17332 	adjust_poke_descs(new_prog, off, len);
17333 	return new_prog;
17334 }
17335 
17336 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17337 					      u32 off, u32 cnt)
17338 {
17339 	int i, j;
17340 
17341 	/* find first prog starting at or after off (first to remove) */
17342 	for (i = 0; i < env->subprog_cnt; i++)
17343 		if (env->subprog_info[i].start >= off)
17344 			break;
17345 	/* find first prog starting at or after off + cnt (first to stay) */
17346 	for (j = i; j < env->subprog_cnt; j++)
17347 		if (env->subprog_info[j].start >= off + cnt)
17348 			break;
17349 	/* if j doesn't start exactly at off + cnt, we are just removing
17350 	 * the front of previous prog
17351 	 */
17352 	if (env->subprog_info[j].start != off + cnt)
17353 		j--;
17354 
17355 	if (j > i) {
17356 		struct bpf_prog_aux *aux = env->prog->aux;
17357 		int move;
17358 
17359 		/* move fake 'exit' subprog as well */
17360 		move = env->subprog_cnt + 1 - j;
17361 
17362 		memmove(env->subprog_info + i,
17363 			env->subprog_info + j,
17364 			sizeof(*env->subprog_info) * move);
17365 		env->subprog_cnt -= j - i;
17366 
17367 		/* remove func_info */
17368 		if (aux->func_info) {
17369 			move = aux->func_info_cnt - j;
17370 
17371 			memmove(aux->func_info + i,
17372 				aux->func_info + j,
17373 				sizeof(*aux->func_info) * move);
17374 			aux->func_info_cnt -= j - i;
17375 			/* func_info->insn_off is set after all code rewrites,
17376 			 * in adjust_btf_func() - no need to adjust
17377 			 */
17378 		}
17379 	} else {
17380 		/* convert i from "first prog to remove" to "first to adjust" */
17381 		if (env->subprog_info[i].start == off)
17382 			i++;
17383 	}
17384 
17385 	/* update fake 'exit' subprog as well */
17386 	for (; i <= env->subprog_cnt; i++)
17387 		env->subprog_info[i].start -= cnt;
17388 
17389 	return 0;
17390 }
17391 
17392 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17393 				      u32 cnt)
17394 {
17395 	struct bpf_prog *prog = env->prog;
17396 	u32 i, l_off, l_cnt, nr_linfo;
17397 	struct bpf_line_info *linfo;
17398 
17399 	nr_linfo = prog->aux->nr_linfo;
17400 	if (!nr_linfo)
17401 		return 0;
17402 
17403 	linfo = prog->aux->linfo;
17404 
17405 	/* find first line info to remove, count lines to be removed */
17406 	for (i = 0; i < nr_linfo; i++)
17407 		if (linfo[i].insn_off >= off)
17408 			break;
17409 
17410 	l_off = i;
17411 	l_cnt = 0;
17412 	for (; i < nr_linfo; i++)
17413 		if (linfo[i].insn_off < off + cnt)
17414 			l_cnt++;
17415 		else
17416 			break;
17417 
17418 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17419 	 * last removed linfo.  prog is already modified, so prog->len == off
17420 	 * means no live instructions after (tail of the program was removed).
17421 	 */
17422 	if (prog->len != off && l_cnt &&
17423 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17424 		l_cnt--;
17425 		linfo[--i].insn_off = off + cnt;
17426 	}
17427 
17428 	/* remove the line info which refer to the removed instructions */
17429 	if (l_cnt) {
17430 		memmove(linfo + l_off, linfo + i,
17431 			sizeof(*linfo) * (nr_linfo - i));
17432 
17433 		prog->aux->nr_linfo -= l_cnt;
17434 		nr_linfo = prog->aux->nr_linfo;
17435 	}
17436 
17437 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17438 	for (i = l_off; i < nr_linfo; i++)
17439 		linfo[i].insn_off -= cnt;
17440 
17441 	/* fix up all subprogs (incl. 'exit') which start >= off */
17442 	for (i = 0; i <= env->subprog_cnt; i++)
17443 		if (env->subprog_info[i].linfo_idx > l_off) {
17444 			/* program may have started in the removed region but
17445 			 * may not be fully removed
17446 			 */
17447 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17448 				env->subprog_info[i].linfo_idx -= l_cnt;
17449 			else
17450 				env->subprog_info[i].linfo_idx = l_off;
17451 		}
17452 
17453 	return 0;
17454 }
17455 
17456 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17457 {
17458 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17459 	unsigned int orig_prog_len = env->prog->len;
17460 	int err;
17461 
17462 	if (bpf_prog_is_offloaded(env->prog->aux))
17463 		bpf_prog_offload_remove_insns(env, off, cnt);
17464 
17465 	err = bpf_remove_insns(env->prog, off, cnt);
17466 	if (err)
17467 		return err;
17468 
17469 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17470 	if (err)
17471 		return err;
17472 
17473 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17474 	if (err)
17475 		return err;
17476 
17477 	memmove(aux_data + off,	aux_data + off + cnt,
17478 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17479 
17480 	return 0;
17481 }
17482 
17483 /* The verifier does more data flow analysis than llvm and will not
17484  * explore branches that are dead at run time. Malicious programs can
17485  * have dead code too. Therefore replace all dead at-run-time code
17486  * with 'ja -1'.
17487  *
17488  * Just nops are not optimal, e.g. if they would sit at the end of the
17489  * program and through another bug we would manage to jump there, then
17490  * we'd execute beyond program memory otherwise. Returning exception
17491  * code also wouldn't work since we can have subprogs where the dead
17492  * code could be located.
17493  */
17494 static void sanitize_dead_code(struct bpf_verifier_env *env)
17495 {
17496 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17497 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17498 	struct bpf_insn *insn = env->prog->insnsi;
17499 	const int insn_cnt = env->prog->len;
17500 	int i;
17501 
17502 	for (i = 0; i < insn_cnt; i++) {
17503 		if (aux_data[i].seen)
17504 			continue;
17505 		memcpy(insn + i, &trap, sizeof(trap));
17506 		aux_data[i].zext_dst = false;
17507 	}
17508 }
17509 
17510 static bool insn_is_cond_jump(u8 code)
17511 {
17512 	u8 op;
17513 
17514 	op = BPF_OP(code);
17515 	if (BPF_CLASS(code) == BPF_JMP32)
17516 		return op != BPF_JA;
17517 
17518 	if (BPF_CLASS(code) != BPF_JMP)
17519 		return false;
17520 
17521 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17522 }
17523 
17524 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17525 {
17526 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17527 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17528 	struct bpf_insn *insn = env->prog->insnsi;
17529 	const int insn_cnt = env->prog->len;
17530 	int i;
17531 
17532 	for (i = 0; i < insn_cnt; i++, insn++) {
17533 		if (!insn_is_cond_jump(insn->code))
17534 			continue;
17535 
17536 		if (!aux_data[i + 1].seen)
17537 			ja.off = insn->off;
17538 		else if (!aux_data[i + 1 + insn->off].seen)
17539 			ja.off = 0;
17540 		else
17541 			continue;
17542 
17543 		if (bpf_prog_is_offloaded(env->prog->aux))
17544 			bpf_prog_offload_replace_insn(env, i, &ja);
17545 
17546 		memcpy(insn, &ja, sizeof(ja));
17547 	}
17548 }
17549 
17550 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17551 {
17552 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17553 	int insn_cnt = env->prog->len;
17554 	int i, err;
17555 
17556 	for (i = 0; i < insn_cnt; i++) {
17557 		int j;
17558 
17559 		j = 0;
17560 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17561 			j++;
17562 		if (!j)
17563 			continue;
17564 
17565 		err = verifier_remove_insns(env, i, j);
17566 		if (err)
17567 			return err;
17568 		insn_cnt = env->prog->len;
17569 	}
17570 
17571 	return 0;
17572 }
17573 
17574 static int opt_remove_nops(struct bpf_verifier_env *env)
17575 {
17576 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17577 	struct bpf_insn *insn = env->prog->insnsi;
17578 	int insn_cnt = env->prog->len;
17579 	int i, err;
17580 
17581 	for (i = 0; i < insn_cnt; i++) {
17582 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17583 			continue;
17584 
17585 		err = verifier_remove_insns(env, i, 1);
17586 		if (err)
17587 			return err;
17588 		insn_cnt--;
17589 		i--;
17590 	}
17591 
17592 	return 0;
17593 }
17594 
17595 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17596 					 const union bpf_attr *attr)
17597 {
17598 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17599 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17600 	int i, patch_len, delta = 0, len = env->prog->len;
17601 	struct bpf_insn *insns = env->prog->insnsi;
17602 	struct bpf_prog *new_prog;
17603 	bool rnd_hi32;
17604 
17605 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17606 	zext_patch[1] = BPF_ZEXT_REG(0);
17607 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17608 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17609 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17610 	for (i = 0; i < len; i++) {
17611 		int adj_idx = i + delta;
17612 		struct bpf_insn insn;
17613 		int load_reg;
17614 
17615 		insn = insns[adj_idx];
17616 		load_reg = insn_def_regno(&insn);
17617 		if (!aux[adj_idx].zext_dst) {
17618 			u8 code, class;
17619 			u32 imm_rnd;
17620 
17621 			if (!rnd_hi32)
17622 				continue;
17623 
17624 			code = insn.code;
17625 			class = BPF_CLASS(code);
17626 			if (load_reg == -1)
17627 				continue;
17628 
17629 			/* NOTE: arg "reg" (the fourth one) is only used for
17630 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17631 			 *       here.
17632 			 */
17633 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17634 				if (class == BPF_LD &&
17635 				    BPF_MODE(code) == BPF_IMM)
17636 					i++;
17637 				continue;
17638 			}
17639 
17640 			/* ctx load could be transformed into wider load. */
17641 			if (class == BPF_LDX &&
17642 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17643 				continue;
17644 
17645 			imm_rnd = get_random_u32();
17646 			rnd_hi32_patch[0] = insn;
17647 			rnd_hi32_patch[1].imm = imm_rnd;
17648 			rnd_hi32_patch[3].dst_reg = load_reg;
17649 			patch = rnd_hi32_patch;
17650 			patch_len = 4;
17651 			goto apply_patch_buffer;
17652 		}
17653 
17654 		/* Add in an zero-extend instruction if a) the JIT has requested
17655 		 * it or b) it's a CMPXCHG.
17656 		 *
17657 		 * The latter is because: BPF_CMPXCHG always loads a value into
17658 		 * R0, therefore always zero-extends. However some archs'
17659 		 * equivalent instruction only does this load when the
17660 		 * comparison is successful. This detail of CMPXCHG is
17661 		 * orthogonal to the general zero-extension behaviour of the
17662 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17663 		 */
17664 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17665 			continue;
17666 
17667 		/* Zero-extension is done by the caller. */
17668 		if (bpf_pseudo_kfunc_call(&insn))
17669 			continue;
17670 
17671 		if (WARN_ON(load_reg == -1)) {
17672 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17673 			return -EFAULT;
17674 		}
17675 
17676 		zext_patch[0] = insn;
17677 		zext_patch[1].dst_reg = load_reg;
17678 		zext_patch[1].src_reg = load_reg;
17679 		patch = zext_patch;
17680 		patch_len = 2;
17681 apply_patch_buffer:
17682 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17683 		if (!new_prog)
17684 			return -ENOMEM;
17685 		env->prog = new_prog;
17686 		insns = new_prog->insnsi;
17687 		aux = env->insn_aux_data;
17688 		delta += patch_len - 1;
17689 	}
17690 
17691 	return 0;
17692 }
17693 
17694 /* convert load instructions that access fields of a context type into a
17695  * sequence of instructions that access fields of the underlying structure:
17696  *     struct __sk_buff    -> struct sk_buff
17697  *     struct bpf_sock_ops -> struct sock
17698  */
17699 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17700 {
17701 	const struct bpf_verifier_ops *ops = env->ops;
17702 	int i, cnt, size, ctx_field_size, delta = 0;
17703 	const int insn_cnt = env->prog->len;
17704 	struct bpf_insn insn_buf[16], *insn;
17705 	u32 target_size, size_default, off;
17706 	struct bpf_prog *new_prog;
17707 	enum bpf_access_type type;
17708 	bool is_narrower_load;
17709 
17710 	if (ops->gen_prologue || env->seen_direct_write) {
17711 		if (!ops->gen_prologue) {
17712 			verbose(env, "bpf verifier is misconfigured\n");
17713 			return -EINVAL;
17714 		}
17715 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17716 					env->prog);
17717 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17718 			verbose(env, "bpf verifier is misconfigured\n");
17719 			return -EINVAL;
17720 		} else if (cnt) {
17721 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17722 			if (!new_prog)
17723 				return -ENOMEM;
17724 
17725 			env->prog = new_prog;
17726 			delta += cnt - 1;
17727 		}
17728 	}
17729 
17730 	if (bpf_prog_is_offloaded(env->prog->aux))
17731 		return 0;
17732 
17733 	insn = env->prog->insnsi + delta;
17734 
17735 	for (i = 0; i < insn_cnt; i++, insn++) {
17736 		bpf_convert_ctx_access_t convert_ctx_access;
17737 		u8 mode;
17738 
17739 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17740 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17741 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17742 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17743 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17744 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17745 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17746 			type = BPF_READ;
17747 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17748 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17749 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17750 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17751 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17752 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17753 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17754 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17755 			type = BPF_WRITE;
17756 		} else {
17757 			continue;
17758 		}
17759 
17760 		if (type == BPF_WRITE &&
17761 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17762 			struct bpf_insn patch[] = {
17763 				*insn,
17764 				BPF_ST_NOSPEC(),
17765 			};
17766 
17767 			cnt = ARRAY_SIZE(patch);
17768 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17769 			if (!new_prog)
17770 				return -ENOMEM;
17771 
17772 			delta    += cnt - 1;
17773 			env->prog = new_prog;
17774 			insn      = new_prog->insnsi + i + delta;
17775 			continue;
17776 		}
17777 
17778 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17779 		case PTR_TO_CTX:
17780 			if (!ops->convert_ctx_access)
17781 				continue;
17782 			convert_ctx_access = ops->convert_ctx_access;
17783 			break;
17784 		case PTR_TO_SOCKET:
17785 		case PTR_TO_SOCK_COMMON:
17786 			convert_ctx_access = bpf_sock_convert_ctx_access;
17787 			break;
17788 		case PTR_TO_TCP_SOCK:
17789 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17790 			break;
17791 		case PTR_TO_XDP_SOCK:
17792 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17793 			break;
17794 		case PTR_TO_BTF_ID:
17795 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17796 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17797 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17798 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17799 		 * any faults for loads into such types. BPF_WRITE is disallowed
17800 		 * for this case.
17801 		 */
17802 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17803 			if (type == BPF_READ) {
17804 				if (BPF_MODE(insn->code) == BPF_MEM)
17805 					insn->code = BPF_LDX | BPF_PROBE_MEM |
17806 						     BPF_SIZE((insn)->code);
17807 				else
17808 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17809 						     BPF_SIZE((insn)->code);
17810 				env->prog->aux->num_exentries++;
17811 			}
17812 			continue;
17813 		default:
17814 			continue;
17815 		}
17816 
17817 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17818 		size = BPF_LDST_BYTES(insn);
17819 		mode = BPF_MODE(insn->code);
17820 
17821 		/* If the read access is a narrower load of the field,
17822 		 * convert to a 4/8-byte load, to minimum program type specific
17823 		 * convert_ctx_access changes. If conversion is successful,
17824 		 * we will apply proper mask to the result.
17825 		 */
17826 		is_narrower_load = size < ctx_field_size;
17827 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17828 		off = insn->off;
17829 		if (is_narrower_load) {
17830 			u8 size_code;
17831 
17832 			if (type == BPF_WRITE) {
17833 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17834 				return -EINVAL;
17835 			}
17836 
17837 			size_code = BPF_H;
17838 			if (ctx_field_size == 4)
17839 				size_code = BPF_W;
17840 			else if (ctx_field_size == 8)
17841 				size_code = BPF_DW;
17842 
17843 			insn->off = off & ~(size_default - 1);
17844 			insn->code = BPF_LDX | BPF_MEM | size_code;
17845 		}
17846 
17847 		target_size = 0;
17848 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17849 					 &target_size);
17850 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17851 		    (ctx_field_size && !target_size)) {
17852 			verbose(env, "bpf verifier is misconfigured\n");
17853 			return -EINVAL;
17854 		}
17855 
17856 		if (is_narrower_load && size < target_size) {
17857 			u8 shift = bpf_ctx_narrow_access_offset(
17858 				off, size, size_default) * 8;
17859 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17860 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17861 				return -EINVAL;
17862 			}
17863 			if (ctx_field_size <= 4) {
17864 				if (shift)
17865 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17866 									insn->dst_reg,
17867 									shift);
17868 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17869 								(1 << size * 8) - 1);
17870 			} else {
17871 				if (shift)
17872 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17873 									insn->dst_reg,
17874 									shift);
17875 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17876 								(1ULL << size * 8) - 1);
17877 			}
17878 		}
17879 		if (mode == BPF_MEMSX)
17880 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17881 						       insn->dst_reg, insn->dst_reg,
17882 						       size * 8, 0);
17883 
17884 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17885 		if (!new_prog)
17886 			return -ENOMEM;
17887 
17888 		delta += cnt - 1;
17889 
17890 		/* keep walking new program and skip insns we just inserted */
17891 		env->prog = new_prog;
17892 		insn      = new_prog->insnsi + i + delta;
17893 	}
17894 
17895 	return 0;
17896 }
17897 
17898 static int jit_subprogs(struct bpf_verifier_env *env)
17899 {
17900 	struct bpf_prog *prog = env->prog, **func, *tmp;
17901 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17902 	struct bpf_map *map_ptr;
17903 	struct bpf_insn *insn;
17904 	void *old_bpf_func;
17905 	int err, num_exentries;
17906 
17907 	if (env->subprog_cnt <= 1)
17908 		return 0;
17909 
17910 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17911 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17912 			continue;
17913 
17914 		/* Upon error here we cannot fall back to interpreter but
17915 		 * need a hard reject of the program. Thus -EFAULT is
17916 		 * propagated in any case.
17917 		 */
17918 		subprog = find_subprog(env, i + insn->imm + 1);
17919 		if (subprog < 0) {
17920 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17921 				  i + insn->imm + 1);
17922 			return -EFAULT;
17923 		}
17924 		/* temporarily remember subprog id inside insn instead of
17925 		 * aux_data, since next loop will split up all insns into funcs
17926 		 */
17927 		insn->off = subprog;
17928 		/* remember original imm in case JIT fails and fallback
17929 		 * to interpreter will be needed
17930 		 */
17931 		env->insn_aux_data[i].call_imm = insn->imm;
17932 		/* point imm to __bpf_call_base+1 from JITs point of view */
17933 		insn->imm = 1;
17934 		if (bpf_pseudo_func(insn))
17935 			/* jit (e.g. x86_64) may emit fewer instructions
17936 			 * if it learns a u32 imm is the same as a u64 imm.
17937 			 * Force a non zero here.
17938 			 */
17939 			insn[1].imm = 1;
17940 	}
17941 
17942 	err = bpf_prog_alloc_jited_linfo(prog);
17943 	if (err)
17944 		goto out_undo_insn;
17945 
17946 	err = -ENOMEM;
17947 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17948 	if (!func)
17949 		goto out_undo_insn;
17950 
17951 	for (i = 0; i < env->subprog_cnt; i++) {
17952 		subprog_start = subprog_end;
17953 		subprog_end = env->subprog_info[i + 1].start;
17954 
17955 		len = subprog_end - subprog_start;
17956 		/* bpf_prog_run() doesn't call subprogs directly,
17957 		 * hence main prog stats include the runtime of subprogs.
17958 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17959 		 * func[i]->stats will never be accessed and stays NULL
17960 		 */
17961 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17962 		if (!func[i])
17963 			goto out_free;
17964 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17965 		       len * sizeof(struct bpf_insn));
17966 		func[i]->type = prog->type;
17967 		func[i]->len = len;
17968 		if (bpf_prog_calc_tag(func[i]))
17969 			goto out_free;
17970 		func[i]->is_func = 1;
17971 		func[i]->aux->func_idx = i;
17972 		/* Below members will be freed only at prog->aux */
17973 		func[i]->aux->btf = prog->aux->btf;
17974 		func[i]->aux->func_info = prog->aux->func_info;
17975 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17976 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17977 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17978 
17979 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17980 			struct bpf_jit_poke_descriptor *poke;
17981 
17982 			poke = &prog->aux->poke_tab[j];
17983 			if (poke->insn_idx < subprog_end &&
17984 			    poke->insn_idx >= subprog_start)
17985 				poke->aux = func[i]->aux;
17986 		}
17987 
17988 		func[i]->aux->name[0] = 'F';
17989 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17990 		func[i]->jit_requested = 1;
17991 		func[i]->blinding_requested = prog->blinding_requested;
17992 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
17993 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
17994 		func[i]->aux->linfo = prog->aux->linfo;
17995 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17996 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17997 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
17998 		num_exentries = 0;
17999 		insn = func[i]->insnsi;
18000 		for (j = 0; j < func[i]->len; j++, insn++) {
18001 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18002 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18003 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18004 				num_exentries++;
18005 		}
18006 		func[i]->aux->num_exentries = num_exentries;
18007 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18008 		func[i] = bpf_int_jit_compile(func[i]);
18009 		if (!func[i]->jited) {
18010 			err = -ENOTSUPP;
18011 			goto out_free;
18012 		}
18013 		cond_resched();
18014 	}
18015 
18016 	/* at this point all bpf functions were successfully JITed
18017 	 * now populate all bpf_calls with correct addresses and
18018 	 * run last pass of JIT
18019 	 */
18020 	for (i = 0; i < env->subprog_cnt; i++) {
18021 		insn = func[i]->insnsi;
18022 		for (j = 0; j < func[i]->len; j++, insn++) {
18023 			if (bpf_pseudo_func(insn)) {
18024 				subprog = insn->off;
18025 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18026 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18027 				continue;
18028 			}
18029 			if (!bpf_pseudo_call(insn))
18030 				continue;
18031 			subprog = insn->off;
18032 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18033 		}
18034 
18035 		/* we use the aux data to keep a list of the start addresses
18036 		 * of the JITed images for each function in the program
18037 		 *
18038 		 * for some architectures, such as powerpc64, the imm field
18039 		 * might not be large enough to hold the offset of the start
18040 		 * address of the callee's JITed image from __bpf_call_base
18041 		 *
18042 		 * in such cases, we can lookup the start address of a callee
18043 		 * by using its subprog id, available from the off field of
18044 		 * the call instruction, as an index for this list
18045 		 */
18046 		func[i]->aux->func = func;
18047 		func[i]->aux->func_cnt = env->subprog_cnt;
18048 	}
18049 	for (i = 0; i < env->subprog_cnt; i++) {
18050 		old_bpf_func = func[i]->bpf_func;
18051 		tmp = bpf_int_jit_compile(func[i]);
18052 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18053 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18054 			err = -ENOTSUPP;
18055 			goto out_free;
18056 		}
18057 		cond_resched();
18058 	}
18059 
18060 	/* finally lock prog and jit images for all functions and
18061 	 * populate kallsysm. Begin at the first subprogram, since
18062 	 * bpf_prog_load will add the kallsyms for the main program.
18063 	 */
18064 	for (i = 1; i < env->subprog_cnt; i++) {
18065 		bpf_prog_lock_ro(func[i]);
18066 		bpf_prog_kallsyms_add(func[i]);
18067 	}
18068 
18069 	/* Last step: make now unused interpreter insns from main
18070 	 * prog consistent for later dump requests, so they can
18071 	 * later look the same as if they were interpreted only.
18072 	 */
18073 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18074 		if (bpf_pseudo_func(insn)) {
18075 			insn[0].imm = env->insn_aux_data[i].call_imm;
18076 			insn[1].imm = insn->off;
18077 			insn->off = 0;
18078 			continue;
18079 		}
18080 		if (!bpf_pseudo_call(insn))
18081 			continue;
18082 		insn->off = env->insn_aux_data[i].call_imm;
18083 		subprog = find_subprog(env, i + insn->off + 1);
18084 		insn->imm = subprog;
18085 	}
18086 
18087 	prog->jited = 1;
18088 	prog->bpf_func = func[0]->bpf_func;
18089 	prog->jited_len = func[0]->jited_len;
18090 	prog->aux->extable = func[0]->aux->extable;
18091 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18092 	prog->aux->func = func;
18093 	prog->aux->func_cnt = env->subprog_cnt;
18094 	bpf_prog_jit_attempt_done(prog);
18095 	return 0;
18096 out_free:
18097 	/* We failed JIT'ing, so at this point we need to unregister poke
18098 	 * descriptors from subprogs, so that kernel is not attempting to
18099 	 * patch it anymore as we're freeing the subprog JIT memory.
18100 	 */
18101 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18102 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18103 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18104 	}
18105 	/* At this point we're guaranteed that poke descriptors are not
18106 	 * live anymore. We can just unlink its descriptor table as it's
18107 	 * released with the main prog.
18108 	 */
18109 	for (i = 0; i < env->subprog_cnt; i++) {
18110 		if (!func[i])
18111 			continue;
18112 		func[i]->aux->poke_tab = NULL;
18113 		bpf_jit_free(func[i]);
18114 	}
18115 	kfree(func);
18116 out_undo_insn:
18117 	/* cleanup main prog to be interpreted */
18118 	prog->jit_requested = 0;
18119 	prog->blinding_requested = 0;
18120 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18121 		if (!bpf_pseudo_call(insn))
18122 			continue;
18123 		insn->off = 0;
18124 		insn->imm = env->insn_aux_data[i].call_imm;
18125 	}
18126 	bpf_prog_jit_attempt_done(prog);
18127 	return err;
18128 }
18129 
18130 static int fixup_call_args(struct bpf_verifier_env *env)
18131 {
18132 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18133 	struct bpf_prog *prog = env->prog;
18134 	struct bpf_insn *insn = prog->insnsi;
18135 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18136 	int i, depth;
18137 #endif
18138 	int err = 0;
18139 
18140 	if (env->prog->jit_requested &&
18141 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18142 		err = jit_subprogs(env);
18143 		if (err == 0)
18144 			return 0;
18145 		if (err == -EFAULT)
18146 			return err;
18147 	}
18148 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18149 	if (has_kfunc_call) {
18150 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18151 		return -EINVAL;
18152 	}
18153 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18154 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18155 		 * have to be rejected, since interpreter doesn't support them yet.
18156 		 */
18157 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18158 		return -EINVAL;
18159 	}
18160 	for (i = 0; i < prog->len; i++, insn++) {
18161 		if (bpf_pseudo_func(insn)) {
18162 			/* When JIT fails the progs with callback calls
18163 			 * have to be rejected, since interpreter doesn't support them yet.
18164 			 */
18165 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18166 			return -EINVAL;
18167 		}
18168 
18169 		if (!bpf_pseudo_call(insn))
18170 			continue;
18171 		depth = get_callee_stack_depth(env, insn, i);
18172 		if (depth < 0)
18173 			return depth;
18174 		bpf_patch_call_args(insn, depth);
18175 	}
18176 	err = 0;
18177 #endif
18178 	return err;
18179 }
18180 
18181 /* replace a generic kfunc with a specialized version if necessary */
18182 static void specialize_kfunc(struct bpf_verifier_env *env,
18183 			     u32 func_id, u16 offset, unsigned long *addr)
18184 {
18185 	struct bpf_prog *prog = env->prog;
18186 	bool seen_direct_write;
18187 	void *xdp_kfunc;
18188 	bool is_rdonly;
18189 
18190 	if (bpf_dev_bound_kfunc_id(func_id)) {
18191 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18192 		if (xdp_kfunc) {
18193 			*addr = (unsigned long)xdp_kfunc;
18194 			return;
18195 		}
18196 		/* fallback to default kfunc when not supported by netdev */
18197 	}
18198 
18199 	if (offset)
18200 		return;
18201 
18202 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18203 		seen_direct_write = env->seen_direct_write;
18204 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18205 
18206 		if (is_rdonly)
18207 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18208 
18209 		/* restore env->seen_direct_write to its original value, since
18210 		 * may_access_direct_pkt_data mutates it
18211 		 */
18212 		env->seen_direct_write = seen_direct_write;
18213 	}
18214 }
18215 
18216 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18217 					    u16 struct_meta_reg,
18218 					    u16 node_offset_reg,
18219 					    struct bpf_insn *insn,
18220 					    struct bpf_insn *insn_buf,
18221 					    int *cnt)
18222 {
18223 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18224 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18225 
18226 	insn_buf[0] = addr[0];
18227 	insn_buf[1] = addr[1];
18228 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18229 	insn_buf[3] = *insn;
18230 	*cnt = 4;
18231 }
18232 
18233 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18234 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18235 {
18236 	const struct bpf_kfunc_desc *desc;
18237 
18238 	if (!insn->imm) {
18239 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18240 		return -EINVAL;
18241 	}
18242 
18243 	*cnt = 0;
18244 
18245 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18246 	 * __bpf_call_base, unless the JIT needs to call functions that are
18247 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18248 	 */
18249 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18250 	if (!desc) {
18251 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18252 			insn->imm);
18253 		return -EFAULT;
18254 	}
18255 
18256 	if (!bpf_jit_supports_far_kfunc_call())
18257 		insn->imm = BPF_CALL_IMM(desc->addr);
18258 	if (insn->off)
18259 		return 0;
18260 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18261 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18262 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18263 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18264 
18265 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18266 		insn_buf[1] = addr[0];
18267 		insn_buf[2] = addr[1];
18268 		insn_buf[3] = *insn;
18269 		*cnt = 4;
18270 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18271 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18272 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18273 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18274 
18275 		insn_buf[0] = addr[0];
18276 		insn_buf[1] = addr[1];
18277 		insn_buf[2] = *insn;
18278 		*cnt = 3;
18279 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18280 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18281 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18282 		int struct_meta_reg = BPF_REG_3;
18283 		int node_offset_reg = BPF_REG_4;
18284 
18285 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18286 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18287 			struct_meta_reg = BPF_REG_4;
18288 			node_offset_reg = BPF_REG_5;
18289 		}
18290 
18291 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18292 						node_offset_reg, insn, insn_buf, cnt);
18293 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18294 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18295 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18296 		*cnt = 1;
18297 	}
18298 	return 0;
18299 }
18300 
18301 /* Do various post-verification rewrites in a single program pass.
18302  * These rewrites simplify JIT and interpreter implementations.
18303  */
18304 static int do_misc_fixups(struct bpf_verifier_env *env)
18305 {
18306 	struct bpf_prog *prog = env->prog;
18307 	enum bpf_attach_type eatype = prog->expected_attach_type;
18308 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18309 	struct bpf_insn *insn = prog->insnsi;
18310 	const struct bpf_func_proto *fn;
18311 	const int insn_cnt = prog->len;
18312 	const struct bpf_map_ops *ops;
18313 	struct bpf_insn_aux_data *aux;
18314 	struct bpf_insn insn_buf[16];
18315 	struct bpf_prog *new_prog;
18316 	struct bpf_map *map_ptr;
18317 	int i, ret, cnt, delta = 0;
18318 
18319 	for (i = 0; i < insn_cnt; i++, insn++) {
18320 		/* Make divide-by-zero exceptions impossible. */
18321 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18322 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18323 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18324 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18325 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18326 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18327 			struct bpf_insn *patchlet;
18328 			struct bpf_insn chk_and_div[] = {
18329 				/* [R,W]x div 0 -> 0 */
18330 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18331 					     BPF_JNE | BPF_K, insn->src_reg,
18332 					     0, 2, 0),
18333 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18334 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18335 				*insn,
18336 			};
18337 			struct bpf_insn chk_and_mod[] = {
18338 				/* [R,W]x mod 0 -> [R,W]x */
18339 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18340 					     BPF_JEQ | BPF_K, insn->src_reg,
18341 					     0, 1 + (is64 ? 0 : 1), 0),
18342 				*insn,
18343 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18344 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18345 			};
18346 
18347 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18348 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18349 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18350 
18351 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18352 			if (!new_prog)
18353 				return -ENOMEM;
18354 
18355 			delta    += cnt - 1;
18356 			env->prog = prog = new_prog;
18357 			insn      = new_prog->insnsi + i + delta;
18358 			continue;
18359 		}
18360 
18361 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18362 		if (BPF_CLASS(insn->code) == BPF_LD &&
18363 		    (BPF_MODE(insn->code) == BPF_ABS ||
18364 		     BPF_MODE(insn->code) == BPF_IND)) {
18365 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18366 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18367 				verbose(env, "bpf verifier is misconfigured\n");
18368 				return -EINVAL;
18369 			}
18370 
18371 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18372 			if (!new_prog)
18373 				return -ENOMEM;
18374 
18375 			delta    += cnt - 1;
18376 			env->prog = prog = new_prog;
18377 			insn      = new_prog->insnsi + i + delta;
18378 			continue;
18379 		}
18380 
18381 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18382 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18383 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18384 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18385 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18386 			struct bpf_insn *patch = &insn_buf[0];
18387 			bool issrc, isneg, isimm;
18388 			u32 off_reg;
18389 
18390 			aux = &env->insn_aux_data[i + delta];
18391 			if (!aux->alu_state ||
18392 			    aux->alu_state == BPF_ALU_NON_POINTER)
18393 				continue;
18394 
18395 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18396 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18397 				BPF_ALU_SANITIZE_SRC;
18398 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18399 
18400 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18401 			if (isimm) {
18402 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18403 			} else {
18404 				if (isneg)
18405 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18406 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18407 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18408 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18409 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18410 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18411 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18412 			}
18413 			if (!issrc)
18414 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18415 			insn->src_reg = BPF_REG_AX;
18416 			if (isneg)
18417 				insn->code = insn->code == code_add ?
18418 					     code_sub : code_add;
18419 			*patch++ = *insn;
18420 			if (issrc && isneg && !isimm)
18421 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18422 			cnt = patch - insn_buf;
18423 
18424 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18425 			if (!new_prog)
18426 				return -ENOMEM;
18427 
18428 			delta    += cnt - 1;
18429 			env->prog = prog = new_prog;
18430 			insn      = new_prog->insnsi + i + delta;
18431 			continue;
18432 		}
18433 
18434 		if (insn->code != (BPF_JMP | BPF_CALL))
18435 			continue;
18436 		if (insn->src_reg == BPF_PSEUDO_CALL)
18437 			continue;
18438 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18439 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18440 			if (ret)
18441 				return ret;
18442 			if (cnt == 0)
18443 				continue;
18444 
18445 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18446 			if (!new_prog)
18447 				return -ENOMEM;
18448 
18449 			delta	 += cnt - 1;
18450 			env->prog = prog = new_prog;
18451 			insn	  = new_prog->insnsi + i + delta;
18452 			continue;
18453 		}
18454 
18455 		if (insn->imm == BPF_FUNC_get_route_realm)
18456 			prog->dst_needed = 1;
18457 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18458 			bpf_user_rnd_init_once();
18459 		if (insn->imm == BPF_FUNC_override_return)
18460 			prog->kprobe_override = 1;
18461 		if (insn->imm == BPF_FUNC_tail_call) {
18462 			/* If we tail call into other programs, we
18463 			 * cannot make any assumptions since they can
18464 			 * be replaced dynamically during runtime in
18465 			 * the program array.
18466 			 */
18467 			prog->cb_access = 1;
18468 			if (!allow_tail_call_in_subprogs(env))
18469 				prog->aux->stack_depth = MAX_BPF_STACK;
18470 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18471 
18472 			/* mark bpf_tail_call as different opcode to avoid
18473 			 * conditional branch in the interpreter for every normal
18474 			 * call and to prevent accidental JITing by JIT compiler
18475 			 * that doesn't support bpf_tail_call yet
18476 			 */
18477 			insn->imm = 0;
18478 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18479 
18480 			aux = &env->insn_aux_data[i + delta];
18481 			if (env->bpf_capable && !prog->blinding_requested &&
18482 			    prog->jit_requested &&
18483 			    !bpf_map_key_poisoned(aux) &&
18484 			    !bpf_map_ptr_poisoned(aux) &&
18485 			    !bpf_map_ptr_unpriv(aux)) {
18486 				struct bpf_jit_poke_descriptor desc = {
18487 					.reason = BPF_POKE_REASON_TAIL_CALL,
18488 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18489 					.tail_call.key = bpf_map_key_immediate(aux),
18490 					.insn_idx = i + delta,
18491 				};
18492 
18493 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18494 				if (ret < 0) {
18495 					verbose(env, "adding tail call poke descriptor failed\n");
18496 					return ret;
18497 				}
18498 
18499 				insn->imm = ret + 1;
18500 				continue;
18501 			}
18502 
18503 			if (!bpf_map_ptr_unpriv(aux))
18504 				continue;
18505 
18506 			/* instead of changing every JIT dealing with tail_call
18507 			 * emit two extra insns:
18508 			 * if (index >= max_entries) goto out;
18509 			 * index &= array->index_mask;
18510 			 * to avoid out-of-bounds cpu speculation
18511 			 */
18512 			if (bpf_map_ptr_poisoned(aux)) {
18513 				verbose(env, "tail_call abusing map_ptr\n");
18514 				return -EINVAL;
18515 			}
18516 
18517 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18518 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18519 						  map_ptr->max_entries, 2);
18520 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18521 						    container_of(map_ptr,
18522 								 struct bpf_array,
18523 								 map)->index_mask);
18524 			insn_buf[2] = *insn;
18525 			cnt = 3;
18526 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18527 			if (!new_prog)
18528 				return -ENOMEM;
18529 
18530 			delta    += cnt - 1;
18531 			env->prog = prog = new_prog;
18532 			insn      = new_prog->insnsi + i + delta;
18533 			continue;
18534 		}
18535 
18536 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18537 			/* The verifier will process callback_fn as many times as necessary
18538 			 * with different maps and the register states prepared by
18539 			 * set_timer_callback_state will be accurate.
18540 			 *
18541 			 * The following use case is valid:
18542 			 *   map1 is shared by prog1, prog2, prog3.
18543 			 *   prog1 calls bpf_timer_init for some map1 elements
18544 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18545 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18546 			 *   prog3 calls bpf_timer_start for some map1 elements.
18547 			 *     Those that were not both bpf_timer_init-ed and
18548 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18549 			 */
18550 			struct bpf_insn ld_addrs[2] = {
18551 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18552 			};
18553 
18554 			insn_buf[0] = ld_addrs[0];
18555 			insn_buf[1] = ld_addrs[1];
18556 			insn_buf[2] = *insn;
18557 			cnt = 3;
18558 
18559 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18560 			if (!new_prog)
18561 				return -ENOMEM;
18562 
18563 			delta    += cnt - 1;
18564 			env->prog = prog = new_prog;
18565 			insn      = new_prog->insnsi + i + delta;
18566 			goto patch_call_imm;
18567 		}
18568 
18569 		if (is_storage_get_function(insn->imm)) {
18570 			if (!env->prog->aux->sleepable ||
18571 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18572 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18573 			else
18574 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18575 			insn_buf[1] = *insn;
18576 			cnt = 2;
18577 
18578 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18579 			if (!new_prog)
18580 				return -ENOMEM;
18581 
18582 			delta += cnt - 1;
18583 			env->prog = prog = new_prog;
18584 			insn = new_prog->insnsi + i + delta;
18585 			goto patch_call_imm;
18586 		}
18587 
18588 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18589 		 * and other inlining handlers are currently limited to 64 bit
18590 		 * only.
18591 		 */
18592 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18593 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18594 		     insn->imm == BPF_FUNC_map_update_elem ||
18595 		     insn->imm == BPF_FUNC_map_delete_elem ||
18596 		     insn->imm == BPF_FUNC_map_push_elem   ||
18597 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18598 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18599 		     insn->imm == BPF_FUNC_redirect_map    ||
18600 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18601 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18602 			aux = &env->insn_aux_data[i + delta];
18603 			if (bpf_map_ptr_poisoned(aux))
18604 				goto patch_call_imm;
18605 
18606 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18607 			ops = map_ptr->ops;
18608 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18609 			    ops->map_gen_lookup) {
18610 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18611 				if (cnt == -EOPNOTSUPP)
18612 					goto patch_map_ops_generic;
18613 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18614 					verbose(env, "bpf verifier is misconfigured\n");
18615 					return -EINVAL;
18616 				}
18617 
18618 				new_prog = bpf_patch_insn_data(env, i + delta,
18619 							       insn_buf, cnt);
18620 				if (!new_prog)
18621 					return -ENOMEM;
18622 
18623 				delta    += cnt - 1;
18624 				env->prog = prog = new_prog;
18625 				insn      = new_prog->insnsi + i + delta;
18626 				continue;
18627 			}
18628 
18629 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18630 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18631 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18632 				     (long (*)(struct bpf_map *map, void *key))NULL));
18633 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18634 				     (long (*)(struct bpf_map *map, void *key, void *value,
18635 					      u64 flags))NULL));
18636 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18637 				     (long (*)(struct bpf_map *map, void *value,
18638 					      u64 flags))NULL));
18639 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18640 				     (long (*)(struct bpf_map *map, void *value))NULL));
18641 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18642 				     (long (*)(struct bpf_map *map, void *value))NULL));
18643 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18644 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18645 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18646 				     (long (*)(struct bpf_map *map,
18647 					      bpf_callback_t callback_fn,
18648 					      void *callback_ctx,
18649 					      u64 flags))NULL));
18650 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18651 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18652 
18653 patch_map_ops_generic:
18654 			switch (insn->imm) {
18655 			case BPF_FUNC_map_lookup_elem:
18656 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18657 				continue;
18658 			case BPF_FUNC_map_update_elem:
18659 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18660 				continue;
18661 			case BPF_FUNC_map_delete_elem:
18662 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18663 				continue;
18664 			case BPF_FUNC_map_push_elem:
18665 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18666 				continue;
18667 			case BPF_FUNC_map_pop_elem:
18668 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18669 				continue;
18670 			case BPF_FUNC_map_peek_elem:
18671 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18672 				continue;
18673 			case BPF_FUNC_redirect_map:
18674 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18675 				continue;
18676 			case BPF_FUNC_for_each_map_elem:
18677 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18678 				continue;
18679 			case BPF_FUNC_map_lookup_percpu_elem:
18680 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18681 				continue;
18682 			}
18683 
18684 			goto patch_call_imm;
18685 		}
18686 
18687 		/* Implement bpf_jiffies64 inline. */
18688 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18689 		    insn->imm == BPF_FUNC_jiffies64) {
18690 			struct bpf_insn ld_jiffies_addr[2] = {
18691 				BPF_LD_IMM64(BPF_REG_0,
18692 					     (unsigned long)&jiffies),
18693 			};
18694 
18695 			insn_buf[0] = ld_jiffies_addr[0];
18696 			insn_buf[1] = ld_jiffies_addr[1];
18697 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18698 						  BPF_REG_0, 0);
18699 			cnt = 3;
18700 
18701 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18702 						       cnt);
18703 			if (!new_prog)
18704 				return -ENOMEM;
18705 
18706 			delta    += cnt - 1;
18707 			env->prog = prog = new_prog;
18708 			insn      = new_prog->insnsi + i + delta;
18709 			continue;
18710 		}
18711 
18712 		/* Implement bpf_get_func_arg inline. */
18713 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18714 		    insn->imm == BPF_FUNC_get_func_arg) {
18715 			/* Load nr_args from ctx - 8 */
18716 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18717 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18718 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18719 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18720 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18721 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18722 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18723 			insn_buf[7] = BPF_JMP_A(1);
18724 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18725 			cnt = 9;
18726 
18727 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18728 			if (!new_prog)
18729 				return -ENOMEM;
18730 
18731 			delta    += cnt - 1;
18732 			env->prog = prog = new_prog;
18733 			insn      = new_prog->insnsi + i + delta;
18734 			continue;
18735 		}
18736 
18737 		/* Implement bpf_get_func_ret inline. */
18738 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18739 		    insn->imm == BPF_FUNC_get_func_ret) {
18740 			if (eatype == BPF_TRACE_FEXIT ||
18741 			    eatype == BPF_MODIFY_RETURN) {
18742 				/* Load nr_args from ctx - 8 */
18743 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18744 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18745 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18746 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18747 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18748 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18749 				cnt = 6;
18750 			} else {
18751 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18752 				cnt = 1;
18753 			}
18754 
18755 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18756 			if (!new_prog)
18757 				return -ENOMEM;
18758 
18759 			delta    += cnt - 1;
18760 			env->prog = prog = new_prog;
18761 			insn      = new_prog->insnsi + i + delta;
18762 			continue;
18763 		}
18764 
18765 		/* Implement get_func_arg_cnt inline. */
18766 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18767 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18768 			/* Load nr_args from ctx - 8 */
18769 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18770 
18771 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18772 			if (!new_prog)
18773 				return -ENOMEM;
18774 
18775 			env->prog = prog = new_prog;
18776 			insn      = new_prog->insnsi + i + delta;
18777 			continue;
18778 		}
18779 
18780 		/* Implement bpf_get_func_ip inline. */
18781 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18782 		    insn->imm == BPF_FUNC_get_func_ip) {
18783 			/* Load IP address from ctx - 16 */
18784 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18785 
18786 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18787 			if (!new_prog)
18788 				return -ENOMEM;
18789 
18790 			env->prog = prog = new_prog;
18791 			insn      = new_prog->insnsi + i + delta;
18792 			continue;
18793 		}
18794 
18795 patch_call_imm:
18796 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18797 		/* all functions that have prototype and verifier allowed
18798 		 * programs to call them, must be real in-kernel functions
18799 		 */
18800 		if (!fn->func) {
18801 			verbose(env,
18802 				"kernel subsystem misconfigured func %s#%d\n",
18803 				func_id_name(insn->imm), insn->imm);
18804 			return -EFAULT;
18805 		}
18806 		insn->imm = fn->func - __bpf_call_base;
18807 	}
18808 
18809 	/* Since poke tab is now finalized, publish aux to tracker. */
18810 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18811 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18812 		if (!map_ptr->ops->map_poke_track ||
18813 		    !map_ptr->ops->map_poke_untrack ||
18814 		    !map_ptr->ops->map_poke_run) {
18815 			verbose(env, "bpf verifier is misconfigured\n");
18816 			return -EINVAL;
18817 		}
18818 
18819 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18820 		if (ret < 0) {
18821 			verbose(env, "tracking tail call prog failed\n");
18822 			return ret;
18823 		}
18824 	}
18825 
18826 	sort_kfunc_descs_by_imm_off(env->prog);
18827 
18828 	return 0;
18829 }
18830 
18831 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18832 					int position,
18833 					s32 stack_base,
18834 					u32 callback_subprogno,
18835 					u32 *cnt)
18836 {
18837 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18838 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18839 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18840 	int reg_loop_max = BPF_REG_6;
18841 	int reg_loop_cnt = BPF_REG_7;
18842 	int reg_loop_ctx = BPF_REG_8;
18843 
18844 	struct bpf_prog *new_prog;
18845 	u32 callback_start;
18846 	u32 call_insn_offset;
18847 	s32 callback_offset;
18848 
18849 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18850 	 * be careful to modify this code in sync.
18851 	 */
18852 	struct bpf_insn insn_buf[] = {
18853 		/* Return error and jump to the end of the patch if
18854 		 * expected number of iterations is too big.
18855 		 */
18856 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18857 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18858 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18859 		/* spill R6, R7, R8 to use these as loop vars */
18860 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18861 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18862 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18863 		/* initialize loop vars */
18864 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18865 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18866 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18867 		/* loop header,
18868 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18869 		 */
18870 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18871 		/* callback call,
18872 		 * correct callback offset would be set after patching
18873 		 */
18874 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18875 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18876 		BPF_CALL_REL(0),
18877 		/* increment loop counter */
18878 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18879 		/* jump to loop header if callback returned 0 */
18880 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18881 		/* return value of bpf_loop,
18882 		 * set R0 to the number of iterations
18883 		 */
18884 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18885 		/* restore original values of R6, R7, R8 */
18886 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18887 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18888 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18889 	};
18890 
18891 	*cnt = ARRAY_SIZE(insn_buf);
18892 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18893 	if (!new_prog)
18894 		return new_prog;
18895 
18896 	/* callback start is known only after patching */
18897 	callback_start = env->subprog_info[callback_subprogno].start;
18898 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18899 	call_insn_offset = position + 12;
18900 	callback_offset = callback_start - call_insn_offset - 1;
18901 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18902 
18903 	return new_prog;
18904 }
18905 
18906 static bool is_bpf_loop_call(struct bpf_insn *insn)
18907 {
18908 	return insn->code == (BPF_JMP | BPF_CALL) &&
18909 		insn->src_reg == 0 &&
18910 		insn->imm == BPF_FUNC_loop;
18911 }
18912 
18913 /* For all sub-programs in the program (including main) check
18914  * insn_aux_data to see if there are bpf_loop calls that require
18915  * inlining. If such calls are found the calls are replaced with a
18916  * sequence of instructions produced by `inline_bpf_loop` function and
18917  * subprog stack_depth is increased by the size of 3 registers.
18918  * This stack space is used to spill values of the R6, R7, R8.  These
18919  * registers are used to store the loop bound, counter and context
18920  * variables.
18921  */
18922 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18923 {
18924 	struct bpf_subprog_info *subprogs = env->subprog_info;
18925 	int i, cur_subprog = 0, cnt, delta = 0;
18926 	struct bpf_insn *insn = env->prog->insnsi;
18927 	int insn_cnt = env->prog->len;
18928 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18929 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18930 	u16 stack_depth_extra = 0;
18931 
18932 	for (i = 0; i < insn_cnt; i++, insn++) {
18933 		struct bpf_loop_inline_state *inline_state =
18934 			&env->insn_aux_data[i + delta].loop_inline_state;
18935 
18936 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18937 			struct bpf_prog *new_prog;
18938 
18939 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18940 			new_prog = inline_bpf_loop(env,
18941 						   i + delta,
18942 						   -(stack_depth + stack_depth_extra),
18943 						   inline_state->callback_subprogno,
18944 						   &cnt);
18945 			if (!new_prog)
18946 				return -ENOMEM;
18947 
18948 			delta     += cnt - 1;
18949 			env->prog  = new_prog;
18950 			insn       = new_prog->insnsi + i + delta;
18951 		}
18952 
18953 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18954 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
18955 			cur_subprog++;
18956 			stack_depth = subprogs[cur_subprog].stack_depth;
18957 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18958 			stack_depth_extra = 0;
18959 		}
18960 	}
18961 
18962 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18963 
18964 	return 0;
18965 }
18966 
18967 static void free_states(struct bpf_verifier_env *env)
18968 {
18969 	struct bpf_verifier_state_list *sl, *sln;
18970 	int i;
18971 
18972 	sl = env->free_list;
18973 	while (sl) {
18974 		sln = sl->next;
18975 		free_verifier_state(&sl->state, false);
18976 		kfree(sl);
18977 		sl = sln;
18978 	}
18979 	env->free_list = NULL;
18980 
18981 	if (!env->explored_states)
18982 		return;
18983 
18984 	for (i = 0; i < state_htab_size(env); i++) {
18985 		sl = env->explored_states[i];
18986 
18987 		while (sl) {
18988 			sln = sl->next;
18989 			free_verifier_state(&sl->state, false);
18990 			kfree(sl);
18991 			sl = sln;
18992 		}
18993 		env->explored_states[i] = NULL;
18994 	}
18995 }
18996 
18997 static int do_check_common(struct bpf_verifier_env *env, int subprog)
18998 {
18999 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19000 	struct bpf_verifier_state *state;
19001 	struct bpf_reg_state *regs;
19002 	int ret, i;
19003 
19004 	env->prev_linfo = NULL;
19005 	env->pass_cnt++;
19006 
19007 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19008 	if (!state)
19009 		return -ENOMEM;
19010 	state->curframe = 0;
19011 	state->speculative = false;
19012 	state->branches = 1;
19013 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19014 	if (!state->frame[0]) {
19015 		kfree(state);
19016 		return -ENOMEM;
19017 	}
19018 	env->cur_state = state;
19019 	init_func_state(env, state->frame[0],
19020 			BPF_MAIN_FUNC /* callsite */,
19021 			0 /* frameno */,
19022 			subprog);
19023 	state->first_insn_idx = env->subprog_info[subprog].start;
19024 	state->last_insn_idx = -1;
19025 
19026 	regs = state->frame[state->curframe]->regs;
19027 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19028 		ret = btf_prepare_func_args(env, subprog, regs);
19029 		if (ret)
19030 			goto out;
19031 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19032 			if (regs[i].type == PTR_TO_CTX)
19033 				mark_reg_known_zero(env, regs, i);
19034 			else if (regs[i].type == SCALAR_VALUE)
19035 				mark_reg_unknown(env, regs, i);
19036 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19037 				const u32 mem_size = regs[i].mem_size;
19038 
19039 				mark_reg_known_zero(env, regs, i);
19040 				regs[i].mem_size = mem_size;
19041 				regs[i].id = ++env->id_gen;
19042 			}
19043 		}
19044 	} else {
19045 		/* 1st arg to a function */
19046 		regs[BPF_REG_1].type = PTR_TO_CTX;
19047 		mark_reg_known_zero(env, regs, BPF_REG_1);
19048 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19049 		if (ret == -EFAULT)
19050 			/* unlikely verifier bug. abort.
19051 			 * ret == 0 and ret < 0 are sadly acceptable for
19052 			 * main() function due to backward compatibility.
19053 			 * Like socket filter program may be written as:
19054 			 * int bpf_prog(struct pt_regs *ctx)
19055 			 * and never dereference that ctx in the program.
19056 			 * 'struct pt_regs' is a type mismatch for socket
19057 			 * filter that should be using 'struct __sk_buff'.
19058 			 */
19059 			goto out;
19060 	}
19061 
19062 	ret = do_check(env);
19063 out:
19064 	/* check for NULL is necessary, since cur_state can be freed inside
19065 	 * do_check() under memory pressure.
19066 	 */
19067 	if (env->cur_state) {
19068 		free_verifier_state(env->cur_state, true);
19069 		env->cur_state = NULL;
19070 	}
19071 	while (!pop_stack(env, NULL, NULL, false));
19072 	if (!ret && pop_log)
19073 		bpf_vlog_reset(&env->log, 0);
19074 	free_states(env);
19075 	return ret;
19076 }
19077 
19078 /* Verify all global functions in a BPF program one by one based on their BTF.
19079  * All global functions must pass verification. Otherwise the whole program is rejected.
19080  * Consider:
19081  * int bar(int);
19082  * int foo(int f)
19083  * {
19084  *    return bar(f);
19085  * }
19086  * int bar(int b)
19087  * {
19088  *    ...
19089  * }
19090  * foo() will be verified first for R1=any_scalar_value. During verification it
19091  * will be assumed that bar() already verified successfully and call to bar()
19092  * from foo() will be checked for type match only. Later bar() will be verified
19093  * independently to check that it's safe for R1=any_scalar_value.
19094  */
19095 static int do_check_subprogs(struct bpf_verifier_env *env)
19096 {
19097 	struct bpf_prog_aux *aux = env->prog->aux;
19098 	int i, ret;
19099 
19100 	if (!aux->func_info)
19101 		return 0;
19102 
19103 	for (i = 1; i < env->subprog_cnt; i++) {
19104 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19105 			continue;
19106 		env->insn_idx = env->subprog_info[i].start;
19107 		WARN_ON_ONCE(env->insn_idx == 0);
19108 		ret = do_check_common(env, i);
19109 		if (ret) {
19110 			return ret;
19111 		} else if (env->log.level & BPF_LOG_LEVEL) {
19112 			verbose(env,
19113 				"Func#%d is safe for any args that match its prototype\n",
19114 				i);
19115 		}
19116 	}
19117 	return 0;
19118 }
19119 
19120 static int do_check_main(struct bpf_verifier_env *env)
19121 {
19122 	int ret;
19123 
19124 	env->insn_idx = 0;
19125 	ret = do_check_common(env, 0);
19126 	if (!ret)
19127 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19128 	return ret;
19129 }
19130 
19131 
19132 static void print_verification_stats(struct bpf_verifier_env *env)
19133 {
19134 	int i;
19135 
19136 	if (env->log.level & BPF_LOG_STATS) {
19137 		verbose(env, "verification time %lld usec\n",
19138 			div_u64(env->verification_time, 1000));
19139 		verbose(env, "stack depth ");
19140 		for (i = 0; i < env->subprog_cnt; i++) {
19141 			u32 depth = env->subprog_info[i].stack_depth;
19142 
19143 			verbose(env, "%d", depth);
19144 			if (i + 1 < env->subprog_cnt)
19145 				verbose(env, "+");
19146 		}
19147 		verbose(env, "\n");
19148 	}
19149 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19150 		"total_states %d peak_states %d mark_read %d\n",
19151 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19152 		env->max_states_per_insn, env->total_states,
19153 		env->peak_states, env->longest_mark_read_walk);
19154 }
19155 
19156 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19157 {
19158 	const struct btf_type *t, *func_proto;
19159 	const struct bpf_struct_ops *st_ops;
19160 	const struct btf_member *member;
19161 	struct bpf_prog *prog = env->prog;
19162 	u32 btf_id, member_idx;
19163 	const char *mname;
19164 
19165 	if (!prog->gpl_compatible) {
19166 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19167 		return -EINVAL;
19168 	}
19169 
19170 	btf_id = prog->aux->attach_btf_id;
19171 	st_ops = bpf_struct_ops_find(btf_id);
19172 	if (!st_ops) {
19173 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19174 			btf_id);
19175 		return -ENOTSUPP;
19176 	}
19177 
19178 	t = st_ops->type;
19179 	member_idx = prog->expected_attach_type;
19180 	if (member_idx >= btf_type_vlen(t)) {
19181 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19182 			member_idx, st_ops->name);
19183 		return -EINVAL;
19184 	}
19185 
19186 	member = &btf_type_member(t)[member_idx];
19187 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19188 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19189 					       NULL);
19190 	if (!func_proto) {
19191 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19192 			mname, member_idx, st_ops->name);
19193 		return -EINVAL;
19194 	}
19195 
19196 	if (st_ops->check_member) {
19197 		int err = st_ops->check_member(t, member, prog);
19198 
19199 		if (err) {
19200 			verbose(env, "attach to unsupported member %s of struct %s\n",
19201 				mname, st_ops->name);
19202 			return err;
19203 		}
19204 	}
19205 
19206 	prog->aux->attach_func_proto = func_proto;
19207 	prog->aux->attach_func_name = mname;
19208 	env->ops = st_ops->verifier_ops;
19209 
19210 	return 0;
19211 }
19212 #define SECURITY_PREFIX "security_"
19213 
19214 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19215 {
19216 	if (within_error_injection_list(addr) ||
19217 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19218 		return 0;
19219 
19220 	return -EINVAL;
19221 }
19222 
19223 /* list of non-sleepable functions that are otherwise on
19224  * ALLOW_ERROR_INJECTION list
19225  */
19226 BTF_SET_START(btf_non_sleepable_error_inject)
19227 /* Three functions below can be called from sleepable and non-sleepable context.
19228  * Assume non-sleepable from bpf safety point of view.
19229  */
19230 BTF_ID(func, __filemap_add_folio)
19231 BTF_ID(func, should_fail_alloc_page)
19232 BTF_ID(func, should_failslab)
19233 BTF_SET_END(btf_non_sleepable_error_inject)
19234 
19235 static int check_non_sleepable_error_inject(u32 btf_id)
19236 {
19237 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19238 }
19239 
19240 int bpf_check_attach_target(struct bpf_verifier_log *log,
19241 			    const struct bpf_prog *prog,
19242 			    const struct bpf_prog *tgt_prog,
19243 			    u32 btf_id,
19244 			    struct bpf_attach_target_info *tgt_info)
19245 {
19246 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19247 	const char prefix[] = "btf_trace_";
19248 	int ret = 0, subprog = -1, i;
19249 	const struct btf_type *t;
19250 	bool conservative = true;
19251 	const char *tname;
19252 	struct btf *btf;
19253 	long addr = 0;
19254 	struct module *mod = NULL;
19255 
19256 	if (!btf_id) {
19257 		bpf_log(log, "Tracing programs must provide btf_id\n");
19258 		return -EINVAL;
19259 	}
19260 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19261 	if (!btf) {
19262 		bpf_log(log,
19263 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19264 		return -EINVAL;
19265 	}
19266 	t = btf_type_by_id(btf, btf_id);
19267 	if (!t) {
19268 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19269 		return -EINVAL;
19270 	}
19271 	tname = btf_name_by_offset(btf, t->name_off);
19272 	if (!tname) {
19273 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19274 		return -EINVAL;
19275 	}
19276 	if (tgt_prog) {
19277 		struct bpf_prog_aux *aux = tgt_prog->aux;
19278 
19279 		if (bpf_prog_is_dev_bound(prog->aux) &&
19280 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19281 			bpf_log(log, "Target program bound device mismatch");
19282 			return -EINVAL;
19283 		}
19284 
19285 		for (i = 0; i < aux->func_info_cnt; i++)
19286 			if (aux->func_info[i].type_id == btf_id) {
19287 				subprog = i;
19288 				break;
19289 			}
19290 		if (subprog == -1) {
19291 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19292 			return -EINVAL;
19293 		}
19294 		conservative = aux->func_info_aux[subprog].unreliable;
19295 		if (prog_extension) {
19296 			if (conservative) {
19297 				bpf_log(log,
19298 					"Cannot replace static functions\n");
19299 				return -EINVAL;
19300 			}
19301 			if (!prog->jit_requested) {
19302 				bpf_log(log,
19303 					"Extension programs should be JITed\n");
19304 				return -EINVAL;
19305 			}
19306 		}
19307 		if (!tgt_prog->jited) {
19308 			bpf_log(log, "Can attach to only JITed progs\n");
19309 			return -EINVAL;
19310 		}
19311 		if (tgt_prog->type == prog->type) {
19312 			/* Cannot fentry/fexit another fentry/fexit program.
19313 			 * Cannot attach program extension to another extension.
19314 			 * It's ok to attach fentry/fexit to extension program.
19315 			 */
19316 			bpf_log(log, "Cannot recursively attach\n");
19317 			return -EINVAL;
19318 		}
19319 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19320 		    prog_extension &&
19321 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19322 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19323 			/* Program extensions can extend all program types
19324 			 * except fentry/fexit. The reason is the following.
19325 			 * The fentry/fexit programs are used for performance
19326 			 * analysis, stats and can be attached to any program
19327 			 * type except themselves. When extension program is
19328 			 * replacing XDP function it is necessary to allow
19329 			 * performance analysis of all functions. Both original
19330 			 * XDP program and its program extension. Hence
19331 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19332 			 * allowed. If extending of fentry/fexit was allowed it
19333 			 * would be possible to create long call chain
19334 			 * fentry->extension->fentry->extension beyond
19335 			 * reasonable stack size. Hence extending fentry is not
19336 			 * allowed.
19337 			 */
19338 			bpf_log(log, "Cannot extend fentry/fexit\n");
19339 			return -EINVAL;
19340 		}
19341 	} else {
19342 		if (prog_extension) {
19343 			bpf_log(log, "Cannot replace kernel functions\n");
19344 			return -EINVAL;
19345 		}
19346 	}
19347 
19348 	switch (prog->expected_attach_type) {
19349 	case BPF_TRACE_RAW_TP:
19350 		if (tgt_prog) {
19351 			bpf_log(log,
19352 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19353 			return -EINVAL;
19354 		}
19355 		if (!btf_type_is_typedef(t)) {
19356 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19357 				btf_id);
19358 			return -EINVAL;
19359 		}
19360 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19361 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19362 				btf_id, tname);
19363 			return -EINVAL;
19364 		}
19365 		tname += sizeof(prefix) - 1;
19366 		t = btf_type_by_id(btf, t->type);
19367 		if (!btf_type_is_ptr(t))
19368 			/* should never happen in valid vmlinux build */
19369 			return -EINVAL;
19370 		t = btf_type_by_id(btf, t->type);
19371 		if (!btf_type_is_func_proto(t))
19372 			/* should never happen in valid vmlinux build */
19373 			return -EINVAL;
19374 
19375 		break;
19376 	case BPF_TRACE_ITER:
19377 		if (!btf_type_is_func(t)) {
19378 			bpf_log(log, "attach_btf_id %u is not a function\n",
19379 				btf_id);
19380 			return -EINVAL;
19381 		}
19382 		t = btf_type_by_id(btf, t->type);
19383 		if (!btf_type_is_func_proto(t))
19384 			return -EINVAL;
19385 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19386 		if (ret)
19387 			return ret;
19388 		break;
19389 	default:
19390 		if (!prog_extension)
19391 			return -EINVAL;
19392 		fallthrough;
19393 	case BPF_MODIFY_RETURN:
19394 	case BPF_LSM_MAC:
19395 	case BPF_LSM_CGROUP:
19396 	case BPF_TRACE_FENTRY:
19397 	case BPF_TRACE_FEXIT:
19398 		if (!btf_type_is_func(t)) {
19399 			bpf_log(log, "attach_btf_id %u is not a function\n",
19400 				btf_id);
19401 			return -EINVAL;
19402 		}
19403 		if (prog_extension &&
19404 		    btf_check_type_match(log, prog, btf, t))
19405 			return -EINVAL;
19406 		t = btf_type_by_id(btf, t->type);
19407 		if (!btf_type_is_func_proto(t))
19408 			return -EINVAL;
19409 
19410 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19411 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19412 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19413 			return -EINVAL;
19414 
19415 		if (tgt_prog && conservative)
19416 			t = NULL;
19417 
19418 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19419 		if (ret < 0)
19420 			return ret;
19421 
19422 		if (tgt_prog) {
19423 			if (subprog == 0)
19424 				addr = (long) tgt_prog->bpf_func;
19425 			else
19426 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19427 		} else {
19428 			if (btf_is_module(btf)) {
19429 				mod = btf_try_get_module(btf);
19430 				if (mod)
19431 					addr = find_kallsyms_symbol_value(mod, tname);
19432 				else
19433 					addr = 0;
19434 			} else {
19435 				addr = kallsyms_lookup_name(tname);
19436 			}
19437 			if (!addr) {
19438 				module_put(mod);
19439 				bpf_log(log,
19440 					"The address of function %s cannot be found\n",
19441 					tname);
19442 				return -ENOENT;
19443 			}
19444 		}
19445 
19446 		if (prog->aux->sleepable) {
19447 			ret = -EINVAL;
19448 			switch (prog->type) {
19449 			case BPF_PROG_TYPE_TRACING:
19450 
19451 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19452 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19453 				 */
19454 				if (!check_non_sleepable_error_inject(btf_id) &&
19455 				    within_error_injection_list(addr))
19456 					ret = 0;
19457 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19458 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19459 				 */
19460 				else {
19461 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19462 										prog);
19463 
19464 					if (flags && (*flags & KF_SLEEPABLE))
19465 						ret = 0;
19466 				}
19467 				break;
19468 			case BPF_PROG_TYPE_LSM:
19469 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19470 				 * Only some of them are sleepable.
19471 				 */
19472 				if (bpf_lsm_is_sleepable_hook(btf_id))
19473 					ret = 0;
19474 				break;
19475 			default:
19476 				break;
19477 			}
19478 			if (ret) {
19479 				module_put(mod);
19480 				bpf_log(log, "%s is not sleepable\n", tname);
19481 				return ret;
19482 			}
19483 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19484 			if (tgt_prog) {
19485 				module_put(mod);
19486 				bpf_log(log, "can't modify return codes of BPF programs\n");
19487 				return -EINVAL;
19488 			}
19489 			ret = -EINVAL;
19490 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19491 			    !check_attach_modify_return(addr, tname))
19492 				ret = 0;
19493 			if (ret) {
19494 				module_put(mod);
19495 				bpf_log(log, "%s() is not modifiable\n", tname);
19496 				return ret;
19497 			}
19498 		}
19499 
19500 		break;
19501 	}
19502 	tgt_info->tgt_addr = addr;
19503 	tgt_info->tgt_name = tname;
19504 	tgt_info->tgt_type = t;
19505 	tgt_info->tgt_mod = mod;
19506 	return 0;
19507 }
19508 
19509 BTF_SET_START(btf_id_deny)
19510 BTF_ID_UNUSED
19511 #ifdef CONFIG_SMP
19512 BTF_ID(func, migrate_disable)
19513 BTF_ID(func, migrate_enable)
19514 #endif
19515 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19516 BTF_ID(func, rcu_read_unlock_strict)
19517 #endif
19518 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19519 BTF_ID(func, preempt_count_add)
19520 BTF_ID(func, preempt_count_sub)
19521 #endif
19522 #ifdef CONFIG_PREEMPT_RCU
19523 BTF_ID(func, __rcu_read_lock)
19524 BTF_ID(func, __rcu_read_unlock)
19525 #endif
19526 BTF_SET_END(btf_id_deny)
19527 
19528 static bool can_be_sleepable(struct bpf_prog *prog)
19529 {
19530 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19531 		switch (prog->expected_attach_type) {
19532 		case BPF_TRACE_FENTRY:
19533 		case BPF_TRACE_FEXIT:
19534 		case BPF_MODIFY_RETURN:
19535 		case BPF_TRACE_ITER:
19536 			return true;
19537 		default:
19538 			return false;
19539 		}
19540 	}
19541 	return prog->type == BPF_PROG_TYPE_LSM ||
19542 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19543 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19544 }
19545 
19546 static int check_attach_btf_id(struct bpf_verifier_env *env)
19547 {
19548 	struct bpf_prog *prog = env->prog;
19549 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19550 	struct bpf_attach_target_info tgt_info = {};
19551 	u32 btf_id = prog->aux->attach_btf_id;
19552 	struct bpf_trampoline *tr;
19553 	int ret;
19554 	u64 key;
19555 
19556 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19557 		if (prog->aux->sleepable)
19558 			/* attach_btf_id checked to be zero already */
19559 			return 0;
19560 		verbose(env, "Syscall programs can only be sleepable\n");
19561 		return -EINVAL;
19562 	}
19563 
19564 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19565 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19566 		return -EINVAL;
19567 	}
19568 
19569 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19570 		return check_struct_ops_btf_id(env);
19571 
19572 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19573 	    prog->type != BPF_PROG_TYPE_LSM &&
19574 	    prog->type != BPF_PROG_TYPE_EXT)
19575 		return 0;
19576 
19577 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19578 	if (ret)
19579 		return ret;
19580 
19581 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19582 		/* to make freplace equivalent to their targets, they need to
19583 		 * inherit env->ops and expected_attach_type for the rest of the
19584 		 * verification
19585 		 */
19586 		env->ops = bpf_verifier_ops[tgt_prog->type];
19587 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19588 	}
19589 
19590 	/* store info about the attachment target that will be used later */
19591 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19592 	prog->aux->attach_func_name = tgt_info.tgt_name;
19593 	prog->aux->mod = tgt_info.tgt_mod;
19594 
19595 	if (tgt_prog) {
19596 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19597 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19598 	}
19599 
19600 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19601 		prog->aux->attach_btf_trace = true;
19602 		return 0;
19603 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19604 		if (!bpf_iter_prog_supported(prog))
19605 			return -EINVAL;
19606 		return 0;
19607 	}
19608 
19609 	if (prog->type == BPF_PROG_TYPE_LSM) {
19610 		ret = bpf_lsm_verify_prog(&env->log, prog);
19611 		if (ret < 0)
19612 			return ret;
19613 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19614 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19615 		return -EINVAL;
19616 	}
19617 
19618 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19619 	tr = bpf_trampoline_get(key, &tgt_info);
19620 	if (!tr)
19621 		return -ENOMEM;
19622 
19623 	prog->aux->dst_trampoline = tr;
19624 	return 0;
19625 }
19626 
19627 struct btf *bpf_get_btf_vmlinux(void)
19628 {
19629 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19630 		mutex_lock(&bpf_verifier_lock);
19631 		if (!btf_vmlinux)
19632 			btf_vmlinux = btf_parse_vmlinux();
19633 		mutex_unlock(&bpf_verifier_lock);
19634 	}
19635 	return btf_vmlinux;
19636 }
19637 
19638 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19639 {
19640 	u64 start_time = ktime_get_ns();
19641 	struct bpf_verifier_env *env;
19642 	int i, len, ret = -EINVAL, err;
19643 	u32 log_true_size;
19644 	bool is_priv;
19645 
19646 	/* no program is valid */
19647 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19648 		return -EINVAL;
19649 
19650 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19651 	 * allocate/free it every time bpf_check() is called
19652 	 */
19653 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19654 	if (!env)
19655 		return -ENOMEM;
19656 
19657 	env->bt.env = env;
19658 
19659 	len = (*prog)->len;
19660 	env->insn_aux_data =
19661 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19662 	ret = -ENOMEM;
19663 	if (!env->insn_aux_data)
19664 		goto err_free_env;
19665 	for (i = 0; i < len; i++)
19666 		env->insn_aux_data[i].orig_idx = i;
19667 	env->prog = *prog;
19668 	env->ops = bpf_verifier_ops[env->prog->type];
19669 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19670 	is_priv = bpf_capable();
19671 
19672 	bpf_get_btf_vmlinux();
19673 
19674 	/* grab the mutex to protect few globals used by verifier */
19675 	if (!is_priv)
19676 		mutex_lock(&bpf_verifier_lock);
19677 
19678 	/* user could have requested verbose verifier output
19679 	 * and supplied buffer to store the verification trace
19680 	 */
19681 	ret = bpf_vlog_init(&env->log, attr->log_level,
19682 			    (char __user *) (unsigned long) attr->log_buf,
19683 			    attr->log_size);
19684 	if (ret)
19685 		goto err_unlock;
19686 
19687 	mark_verifier_state_clean(env);
19688 
19689 	if (IS_ERR(btf_vmlinux)) {
19690 		/* Either gcc or pahole or kernel are broken. */
19691 		verbose(env, "in-kernel BTF is malformed\n");
19692 		ret = PTR_ERR(btf_vmlinux);
19693 		goto skip_full_check;
19694 	}
19695 
19696 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19697 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19698 		env->strict_alignment = true;
19699 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19700 		env->strict_alignment = false;
19701 
19702 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19703 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19704 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19705 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19706 	env->bpf_capable = bpf_capable();
19707 
19708 	if (is_priv)
19709 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19710 
19711 	env->explored_states = kvcalloc(state_htab_size(env),
19712 				       sizeof(struct bpf_verifier_state_list *),
19713 				       GFP_USER);
19714 	ret = -ENOMEM;
19715 	if (!env->explored_states)
19716 		goto skip_full_check;
19717 
19718 	ret = add_subprog_and_kfunc(env);
19719 	if (ret < 0)
19720 		goto skip_full_check;
19721 
19722 	ret = check_subprogs(env);
19723 	if (ret < 0)
19724 		goto skip_full_check;
19725 
19726 	ret = check_btf_info(env, attr, uattr);
19727 	if (ret < 0)
19728 		goto skip_full_check;
19729 
19730 	ret = check_attach_btf_id(env);
19731 	if (ret)
19732 		goto skip_full_check;
19733 
19734 	ret = resolve_pseudo_ldimm64(env);
19735 	if (ret < 0)
19736 		goto skip_full_check;
19737 
19738 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19739 		ret = bpf_prog_offload_verifier_prep(env->prog);
19740 		if (ret)
19741 			goto skip_full_check;
19742 	}
19743 
19744 	ret = check_cfg(env);
19745 	if (ret < 0)
19746 		goto skip_full_check;
19747 
19748 	ret = do_check_subprogs(env);
19749 	ret = ret ?: do_check_main(env);
19750 
19751 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19752 		ret = bpf_prog_offload_finalize(env);
19753 
19754 skip_full_check:
19755 	kvfree(env->explored_states);
19756 
19757 	if (ret == 0)
19758 		ret = check_max_stack_depth(env);
19759 
19760 	/* instruction rewrites happen after this point */
19761 	if (ret == 0)
19762 		ret = optimize_bpf_loop(env);
19763 
19764 	if (is_priv) {
19765 		if (ret == 0)
19766 			opt_hard_wire_dead_code_branches(env);
19767 		if (ret == 0)
19768 			ret = opt_remove_dead_code(env);
19769 		if (ret == 0)
19770 			ret = opt_remove_nops(env);
19771 	} else {
19772 		if (ret == 0)
19773 			sanitize_dead_code(env);
19774 	}
19775 
19776 	if (ret == 0)
19777 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19778 		ret = convert_ctx_accesses(env);
19779 
19780 	if (ret == 0)
19781 		ret = do_misc_fixups(env);
19782 
19783 	/* do 32-bit optimization after insn patching has done so those patched
19784 	 * insns could be handled correctly.
19785 	 */
19786 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19787 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19788 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19789 								     : false;
19790 	}
19791 
19792 	if (ret == 0)
19793 		ret = fixup_call_args(env);
19794 
19795 	env->verification_time = ktime_get_ns() - start_time;
19796 	print_verification_stats(env);
19797 	env->prog->aux->verified_insns = env->insn_processed;
19798 
19799 	/* preserve original error even if log finalization is successful */
19800 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19801 	if (err)
19802 		ret = err;
19803 
19804 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19805 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19806 				  &log_true_size, sizeof(log_true_size))) {
19807 		ret = -EFAULT;
19808 		goto err_release_maps;
19809 	}
19810 
19811 	if (ret)
19812 		goto err_release_maps;
19813 
19814 	if (env->used_map_cnt) {
19815 		/* if program passed verifier, update used_maps in bpf_prog_info */
19816 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19817 							  sizeof(env->used_maps[0]),
19818 							  GFP_KERNEL);
19819 
19820 		if (!env->prog->aux->used_maps) {
19821 			ret = -ENOMEM;
19822 			goto err_release_maps;
19823 		}
19824 
19825 		memcpy(env->prog->aux->used_maps, env->used_maps,
19826 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19827 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19828 	}
19829 	if (env->used_btf_cnt) {
19830 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19831 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19832 							  sizeof(env->used_btfs[0]),
19833 							  GFP_KERNEL);
19834 		if (!env->prog->aux->used_btfs) {
19835 			ret = -ENOMEM;
19836 			goto err_release_maps;
19837 		}
19838 
19839 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19840 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19841 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19842 	}
19843 	if (env->used_map_cnt || env->used_btf_cnt) {
19844 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19845 		 * bpf_ld_imm64 instructions
19846 		 */
19847 		convert_pseudo_ld_imm64(env);
19848 	}
19849 
19850 	adjust_btf_func(env);
19851 
19852 err_release_maps:
19853 	if (!env->prog->aux->used_maps)
19854 		/* if we didn't copy map pointers into bpf_prog_info, release
19855 		 * them now. Otherwise free_used_maps() will release them.
19856 		 */
19857 		release_maps(env);
19858 	if (!env->prog->aux->used_btfs)
19859 		release_btfs(env);
19860 
19861 	/* extension progs temporarily inherit the attach_type of their targets
19862 	   for verification purposes, so set it back to zero before returning
19863 	 */
19864 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19865 		env->prog->expected_attach_type = 0;
19866 
19867 	*prog = env->prog;
19868 err_unlock:
19869 	if (!is_priv)
19870 		mutex_unlock(&bpf_verifier_lock);
19871 	vfree(env->insn_aux_data);
19872 err_free_env:
19873 	kfree(env);
19874 	return ret;
19875 }
19876